CN113930723B - 一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用 - Google Patents

一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN113930723B
CN113930723B CN202111200705.4A CN202111200705A CN113930723B CN 113930723 B CN113930723 B CN 113930723B CN 202111200705 A CN202111200705 A CN 202111200705A CN 113930723 B CN113930723 B CN 113930723B
Authority
CN
China
Prior art keywords
transparent conductive
conductive film
magneli phase
substrate
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111200705.4A
Other languages
English (en)
Other versions
CN113930723A (zh
Inventor
乔文涛
李明
王康佳
宗海涛
潘靖
殷月红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN202111200705.4A priority Critical patent/CN113930723B/zh
Publication of CN113930723A publication Critical patent/CN113930723A/zh
Application granted granted Critical
Publication of CN113930723B publication Critical patent/CN113930723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明涉及一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用,该制备方法的步骤如下:采用脉冲激光沉积法,以石英玻璃作为衬底、TiO2作为靶材,靶材和衬底之间的间距保持在4‑8cm,激光束以45°的入射角度照射在靶材表面,先将腔室抽真空为1×10‑3‑5×10‑3 Pa,然后加热衬底温度至200‑700℃,再继续抽真空为1×10‑4‑5×10‑4 Pa,接着通氧气,控制氧流量为10sccm,调节氧分压为5‑10Pa;先预溅射5min,去除靶材表面氧化物后再开始向衬底溅射,结束后原位退火至室温,即生成沉积在石英玻璃衬底上的Magnéli相Ti6O11透明导电薄膜,其中生长速率为2‑12 nm/min。该薄膜材料为纯Ti6O11Magnéli相且具有高度择优取向性,同时具有良好的导电性和可见区及近红外光区的透光率。

Description

一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方 法和应用
技术领域
本发明涉及透明导电薄膜技术领域,尤其涉及一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用。
背景技术
Magnéli相亚氧化钛TinO2n-1(4≤n≤10)自60年前发现以来也引起了广泛关注。Magnéli相亚氧化钛TinO2n-1以金红石相TiO2结构为基础,每间隔n层TiO2结构,存在一个氧缺失层TiO。氧缺陷层的存在降低了TinO2n-1的禁带宽度,使其具有良好的导电性,Magnéli相亚氧化钛的电导率要比TiO2的电导率高出几个数量级。TiO2层的存在又使Magnéli相亚氧化钛保留了金红石相TiO2优良的化学稳定性和良好的耐磨性。这些优点使Magnéli相亚氧化钛在燃料电池、污水处理、电极材料等方面显示了巨大的应用潜力。
目前,Magnéli相亚氧化钛薄膜主要有溶胶-凝胶法、物理气相沉积法、化学气相沉积法和等离子喷涂法等制备方法。根据文献报道,制备出的Magnéli相亚氧化钛薄膜多为TiO2(如锐钛矿相和金红石相)和多种Magnéli相(如Ti4O7、Ti5O9、Ti6O11等)的混合相薄膜,纯Magnéli相亚氧化钛薄膜的制备难度较大,目前还未见相关报道。
因此,本发明提出一种高度择优取向Magnéli相Ti6O11透明导电薄膜的制备方法,该薄膜材料为纯Ti6O11Magnéli相,其生长方式具有高度择优取向性,同时具有良好的导电性和可见区及近红外光区的透光率。为宽谱太阳能电池、表面气敏传感器、显示屏等提供了备选材料。
发明内容
解决的技术问题:针对现有技术存在的缺点,本发明提供一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用,该薄膜材料为纯Ti6O11Magnéli相且具有高度择优取向性,同时具有良好的导电性和可见区及近红外光区的透光率。
技术方案:一种高度择优取向Magnéli相Ti6O11透明导电薄膜的制备方法,步骤如下:
(1)石英玻璃预处理:将石英玻璃分别在丙酮、无水乙醇、去离子水溶液中超声清洗10min,最后用氮气干燥,备用;
(2)沉积准备:采用脉冲激光沉积法,以石英玻璃作为衬底、TiO2作为靶材,靶材和衬底之间的间距保持在4-8cm,激光束以45°的入射角度照射在靶材表面,先将腔室抽真空为1×10-3-5×10-3Pa,然后加热衬底温度至200-700℃,再继续抽真空为1×10-4-5×10-4Pa,接着通氧气,控制氧流量为10sccm,调节氧分压为5-10Pa;
(3)沉积:先预溅射5min,去除靶材表面氧化物后再开始向衬底溅射,结束后原位退火至室温,即生成沉积在石英玻璃衬底上的Magnéli相Ti6O11透明导电薄膜,其中生长速率为2-12nm/min。
上述所述的脉冲激光沉积法的设置参数为脉冲激光波长248nm、脉冲宽度25ns、脉冲频率5Hz、输出脉冲能量为200-300mJ。
上述所述的TiO2靶材的纯度为99.99%、直径为40mm、厚度为3mm。
上述所述的生成的Magnéli相Ti6O11透明导电薄膜的厚度为30~200nm。
由上述所述的制备方法制备得到的高度择优取向Magnéli相Ti6O11透明导电薄膜。
上述所述的透明导电薄膜为纯Magnéli相Ti6O11透明导电薄膜。
上述所述的纯Magnéli相Ti6O11透明导电薄膜在(-204)晶面有高度的择优取向性。
由上述所述的制备方法制备得到的高度择优取向Magnéli相Ti6O11透明导电薄膜在宽谱太阳能电池、表面气敏传感器或显示屏中的应用。
本发明的高度择优取向Magnéli相Ti6O11透明导电薄膜作为宽谱太阳电池的窗口层,在可见光近红外的高透过率和优良的电学性能对提高宽谱太阳能电池转化效率有重要作用,同时作用在宽谱太阳电池的前电极,能起到收集电流,增透减反的作用。
也可利用本发明的高度择优取向Magnéli相Ti6O11透明导电薄膜优良的导电性对气体表面吸附产生的变化,制造表明气敏传感器。
有益效果:本发明提供的一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用,具有以下有益效果:
1.本发明的制备方法,通过在玻璃衬底沉积形成透明导电薄膜,该薄膜为纯Ti6O11Magnéli相薄膜材料;
2.本发明的纯Magnéli相Ti6O11透明导电薄膜在可见区及近红外光区具有很高的透光率;
3.本发明的纯Magnéli相Ti6O11透明导电薄膜在(-204)晶面有高度的择优取向性,此结构有利于在该薄膜之上进一步引入其他功能薄膜,也有利于通过掺杂进一步提高其导电及透光性能。
附图说明
图1为实施例1制备得到的Magnéli相Ti6O11透明导电薄膜的XRD图。
图2为实施例1制备得到的Magnéli相Ti6O11透明导电薄膜的可见光及近红外光区透射图。
图3为实施例2制备得到的Magnéli相Ti6O11透明导电薄膜的XRD图。
图4为实施例2制备得到的Magnéli相Ti6O11透明导电薄膜的可见光及近红外光区透射图。
图5为实施例3制备得到的Magnéli相Ti6O11透明导电薄膜的XRD图。
图6为实施例3制备得到的Magnéli相Ti6O11透明导电薄膜的可见光及近红外光区透射图。
图7为实施例4制备得到的Magnéli相Ti6O11透明导电薄膜的XRD图。
图8为实施例4制备得到的Magnéli相Ti6O11透明导电薄膜的可见光及近红外光区透射图。
具体实施方式
以下实施例中所用脉冲激光由KrF准分子激光器提供,激光器型号:CoherentCOMPex Pro-102F,厂家:美国Coherent公司;所用TiO2为靶材,纯度99.99%,直径40mm,厚度3mm,厂家:河北罗鸿科技有限公司;所用石英玻璃衬底尺寸1cm×1cm,厚度0.5mm,石英衬底含99.5%以上的SiO2,有Na、Ga、K等杂质。
实施例1
该实施例提供一种高度择优取向Magnéli相Ti6O11透明导电薄膜的制备方法,步骤如下:采用脉冲激光沉积法生长Magnéli相Ti6O11薄膜层,脉冲激光波长248nm、脉冲宽度25ns、脉冲频率5Hz、输出脉冲能量为300mJ;使用TiO2为靶材,纯度99.99%,直径40mm,厚度3mm;采用石英玻璃作为衬底,石英玻璃分别在丙酮、无水乙醇、去离子水溶液中超声清洗10min,最后用氮气干燥。
靶材和衬底之间的间距保持在6cm,激光束以45°的入射角度照射在靶材表面。生长时先将腔室抽真空为5×10-3Pa;然后加热衬底温度至300℃;再继续抽真空为5×10-4Pa;接着通氧气,控制氧流量为10sccm,调节氧分压为5Pa;沉积前先预溅射5min,去除靶材表面氧化物,再开始向衬底溅射,结束后原位退火至室温,生成沉积在石英玻璃衬底上的Magnéli相Ti6O11透明导电薄膜,生长速率为10nm/min,Magnéli相Ti6O11透明导电薄膜的厚度为50nm。
实施例2
实施例2与实施例1的区别在于沉积在石英玻璃衬底上的Magnéli相Ti6O11透明导电薄膜的厚度为100nm。
实施例3
实施例3与实施例1的区别在于加热衬底温度至650℃。
实施例4
实施例4与实施例1的区别在于加热衬底温度至650℃,且沉积在石英玻璃衬底上的Magnéli相Ti6O11透明导电薄膜的厚度为100nm。
接着采用HMS-5300(Ecopia)霍尔效应测试仪对实施例1-4制备得到的Magnéli相Ti6O11透明导电薄膜的电阻率进行检测,采用UV-3600(Shimazu)紫外-可见-红外分光光度计对实施例1-4制备得到的Magnéli相Ti6O11透明导电薄膜的透光光谱进行检测,所有测试都是在大气环境下进行。得到的检测结果图如图1-8所示,数据如下表1所示。
表1
电阻率(Ωcm) 可见光透射率 近红外透射率
实施例1 1.6884x10-2 83.58% 83.68%
实施例2 2.7591x10-2 79.74% 87.42%
实施例3 2.4515x10-3 83.68% 83.43%
实施例4 3.3811x10-3 78.18% 83.98%
由上表可见,制备的Magnéli相Ti6O11透明导电薄膜,具有10-3~10-2量级的电阻率,在可见光有接近或高于80%的透射率,近红外透射率大于80%,可以作为一种新型透明导电薄膜的备选材料。
以上对本发明实施例进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

1.一种高度择优取向Magnéli相Ti6O11透明导电薄膜的制备方法,其特征在于步骤如下:
(1)石英玻璃预处理:将石英玻璃分别在丙酮、无水乙醇、去离子水溶液中超声清洗10min,最后用氮气干燥,备用;
(2)沉积准备:采用脉冲激光沉积法,以石英玻璃作为衬底、TiO2作为靶材,靶材和衬底之间的间距保持在4-8cm,激光束以45°的入射角度照射在靶材表面,先将腔室抽真空为1×10-3-5×10-3 Pa,然后加热衬底温度至200-700℃,再继续抽真空为1×10-4-5×10-4 Pa,接着通氧气,控制氧流量为10sccm,调节氧分压为5-10Pa,所述脉冲激光沉积法的设置参数为脉冲激光波长248nm、脉冲宽度25ns、脉冲频率5Hz、输出脉冲能量为200-300 mJ;
(3)沉积:先预溅射5min,去除靶材表面氧化物后再开始向衬底溅射,结束后原位退火至室温,即生成沉积在石英玻璃衬底上的Magnéli相Ti6O11透明导电薄膜,其中生长速率为2-12 nm/min。
2.根据权利要求1所述的一种高度择优取向Magnéli相Ti6O11透明导电薄膜的制备方法,其特征在于:所述TiO2靶材的纯度为99.99%、直径为40 mm、厚度为3 mm。
3.根据权利要求1所述的一种高度择优取向Magnéli相Ti6O11透明导电薄膜的制备方法,其特征在于:所述生成的Magnéli相Ti6O11透明导电薄膜的厚度为30~200nm。
4.一种由权利要求1-3任一项所述的制备方法制备得到的高度择优取向Magnéli相Ti6O11透明导电薄膜。
5.根据权利要求4所述的一种高度择优取向Magnéli相Ti6O11透明导电薄膜,其特征在于:所述透明导电薄膜为纯Magnéli相Ti6O11透明导电薄膜。
6.根据权利要求5所述的一种高度择优取向Magnéli相Ti6O11透明导电薄膜,其特征在于:所述纯Magnéli相Ti6O11透明导电薄膜在(-204)晶面有高度的择优取向性。
7.一种由权利要求1-3任一项所述的制备方法制备得到的高度择优取向Magnéli相Ti6O11透明导电薄膜在宽谱太阳能电池、表面气敏传感器或显示屏中的应用。
CN202111200705.4A 2021-10-14 2021-10-14 一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用 Active CN113930723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111200705.4A CN113930723B (zh) 2021-10-14 2021-10-14 一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111200705.4A CN113930723B (zh) 2021-10-14 2021-10-14 一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113930723A CN113930723A (zh) 2022-01-14
CN113930723B true CN113930723B (zh) 2023-08-04

Family

ID=79279486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111200705.4A Active CN113930723B (zh) 2021-10-14 2021-10-14 一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113930723B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046390A1 (de) * 2004-09-24 2006-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Vakuumbeschichten mit einer photohalbleitenden Schicht und Anwendung des Verfahrens
CN101139702A (zh) * 2007-10-19 2008-03-12 华中科技大学 脉冲激光沉积制备硅基锐钛矿相TiO2薄膜的方法
CN106830065A (zh) * 2017-03-02 2017-06-13 攀枝花学院 制备Magnéli相低价钛氧化物的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120251887A1 (en) * 2011-04-04 2012-10-04 Brookhaven Science Associates, Llc Carbon-Coated Magneli-Phase TinO2n-1 Nanomaterials and a Method of Synthesis Thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046390A1 (de) * 2004-09-24 2006-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Vakuumbeschichten mit einer photohalbleitenden Schicht und Anwendung des Verfahrens
CN101139702A (zh) * 2007-10-19 2008-03-12 华中科技大学 脉冲激光沉积制备硅基锐钛矿相TiO2薄膜的方法
CN106830065A (zh) * 2017-03-02 2017-06-13 攀枝花学院 制备Magnéli相低价钛氧化物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rong Tu .et.al."Preparation of Magnéli phases of Ti27O52 and Ti6O11 films by laser chemical vapor deposition".《Thin Solid Films》.2010,6927-6932. *

Also Published As

Publication number Publication date
CN113930723A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
Wang et al. Influence of hydrogen plasma treatment on Al-doped ZnO thin films for amorphous silicon thin film solar cells
JP6979938B2 (ja) 導電性透明アルミニウムドープ酸化亜鉛スパッタ膜
US8609253B2 (en) Coated article and method for making the same
Jianjun et al. Electrical and optical properties of deep ultraviolet transparent conductive Ga2O3/ITO films by magnetron sputtering
Sahu et al. Characteristics of ZnO–Cu–ZnO multilayer films on copper layer properties
Tohsophon et al. Effect of aluminum and indium co-doping on zinc oxide films prepared by dc magnetron sputtering
Stryhalski et al. Nb-doped Ti2O3 films deposited through grid-assisted magnetron sputtering on glass substrate: electrical and optical analysis
CN109136859A (zh) 一种制备高透光率氧化镓薄膜的方法
Huang et al. Influence of deposition parameters and annealing treatment on the properties of GZO films grown using rf magnetron sputtering
Yuan et al. Stable indium tin oxide with high mobility
Du et al. Synthesis of high-quality AZO polycrystalline films via target bias radio frequency magnetron sputtering
Kong et al. Processing parameters and property of AZO thin film prepared by magnetron sputtering
CN113930723B (zh) 一种高度择优取向Magnéli相Ti6O11透明导电薄膜及其制备方法和应用
Patel et al. Preparation and characterization of SnO2 thin film coating using rf-plasma enhanced reactive thermal evaporation
CN102881727B (zh) 一种具有高导电性的减反射膜及其制备方法
Zhao et al. Effect of power density on compositional and structural evolution of ITO thin film by HiPIMS method
Chen et al. Growth of Ga-doped ZnO films with ZnO buffer layer by sputtering at room temperature
Chaoumead et al. Structural and electrical properties of titanium-doped indium oxide films deposited by RF sputtering
CN101413102A (zh) 两步制备NiO透明导电薄膜的方法
Aliyu et al. High quality indium tin oxide (ITO) film growth by controlling pressure in RF magnetron sputtering
CN110467230A (zh) 相变温度可调的RuxV1-xO2合金半导体薄膜材料、制备方法及其在智能窗中的应用
CN102650044B (zh) 一种SGZO-Au-SGZO透明导电膜的制备方法
Wang et al. Tailoring of textured ZnO: Al film via hydrogen
Huang et al. Influence of process parameters on band gap of Al-doped ZnO film
Lin et al. Effect of oxygen to argon flow ratio on the properties of Al-doped ZnO films for amorphous silicon thin film solar cell applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant