WO2006033305A1 - 黒色材料、黒色微粒子分散液とそれを用いた黒色遮光膜、並びに黒色遮光膜付き基材 - Google Patents

黒色材料、黒色微粒子分散液とそれを用いた黒色遮光膜、並びに黒色遮光膜付き基材 Download PDF

Info

Publication number
WO2006033305A1
WO2006033305A1 PCT/JP2005/017178 JP2005017178W WO2006033305A1 WO 2006033305 A1 WO2006033305 A1 WO 2006033305A1 JP 2005017178 W JP2005017178 W JP 2005017178W WO 2006033305 A1 WO2006033305 A1 WO 2006033305A1
Authority
WO
WIPO (PCT)
Prior art keywords
black
particles
light
film
fine particles
Prior art date
Application number
PCT/JP2005/017178
Other languages
English (en)
French (fr)
Inventor
Yosuke Takeda
Tooru Kinoshita
Toyomasa Nakano
Hideki Nukui
Original Assignee
Sumitomo Osaka Cement Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004273348A external-priority patent/JP4237122B2/ja
Priority claimed from JP2005040257A external-priority patent/JP4437096B2/ja
Priority claimed from JP2005040258A external-priority patent/JP2006225495A/ja
Application filed by Sumitomo Osaka Cement Co., Ltd. filed Critical Sumitomo Osaka Cement Co., Ltd.
Priority to CN200580031598XA priority Critical patent/CN101031621B/zh
Publication of WO2006033305A1 publication Critical patent/WO2006033305A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Definitions

  • the present invention relates to a black material (black fine particles), and is particularly suitable for a black matrix of various display devices such as a recording material and a liquid crystal display, and has a high blackness and excellent light-shielding property. It relates to materials.
  • the present invention also relates to a black fine particle dispersion, a black light-shielding film using the black fine particle dispersion, and a substrate with a black light-shielding film, and particularly suitable for recording materials, black matrices of various display devices, black decorative films, etc. This is related to film technology with high degree of light shielding properties.
  • black materials metal materials and inorganic materials such as carbon black, low-order titanium oxide, iron oxide, chromium, and silver fine particles are known! / (For example, see Patent Document 1).
  • black materials are black light shielding film, black light shielding glass, black paper, black cloth, black ink, black matrix material for plasma display (PDP) and liquid crystal display (LCD), black seal material, black mask material. It is used as a material that imparts black color and light shielding properties to the materials.
  • aqueous materials are used as light-sensitive materials for photography that improve sharpness, record optical information exposed from the back side at an appropriate density, and have improved infrared detection characteristics during development processing.
  • a black colloidal silver dispersion in which black colloidal silver is dispersed in gelatin has been proposed (see Patent Document 3).
  • LCD liquid crystal display
  • each pixel of R (red), G (green), and B (blue) arranged in a matrix on a transparent substrate is used to improve the contrast on the display surface.
  • a black matrix having a high light shielding property is formed.
  • This black matrix prevents the leakage current induced by the TFT light, especially in the active matrix type liquid crystal display (TFT-LCD) using thin film transistors (TFT), and also other than the display surface of each pixel.
  • TFT-LCD active matrix type liquid crystal display
  • TFT thin film transistors
  • the image quality as a display device can be improved by preventing the transmission of light and improving the contrast of each pixel.
  • This black matrix may be formed on the TFT array substrate side or on the color filter side.
  • the black matrix When it is formed on the TFT array substrate side, the black matrix is in direct contact with the pixel electrode and the TFT, so that the black matrix requires high insulation.
  • the black matrix on the color filter side when it is formed on the color filter side, particularly in the case of a lateral electric field drive type liquid crystal display (LCD), the black matrix on the color filter side is also required to have high insulation.
  • this black matrix was highly light-shielding !, and a metal film such as Cr was formed so as to cover portions other than transparent pixel electrodes by vacuum deposition or sputtering.
  • a material for forming a black matrix has been developed and put into practical use, which has a high light-shielding property, a simple manufacturing process, and a low cost.
  • a black matrix forming material for example, a dispersion liquid in which carbon black or titanium black whose surface is covered with insulating resin by insulating resin is dispersed in an organic solvent (for example, patent document) 4, 5), metal fine particles such as silver fine particles A dispersion liquid dispersed in a medium (see, for example, Patent Documents 6 and 7) has been proposed.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-127433
  • Patent Document 2 Japanese Patent Laid-Open No. 10-8235
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-155387
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2002-201381
  • Patent Document 5 JP 2002-267832 A
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-317897
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-334180
  • silver particles produced by reducing silver bromide used in photographic films and the like are excellent in blackness and light shielding properties, but silver itself is a noble metal and is expensive. Therefore, apart from some expensive products, they are not generally used as black materials for general purpose products.
  • silver particles produced by reducing silver bromide used in photographic films and the like and black silver colloids are excellent in blackness and light shielding properties. It can be synthesized only in the presence of gelatin, and after synthesis, gelatin and silver particles cannot be completely separated.
  • gelatin since gelatin is insoluble in organic solvents, it cannot be dispersed in organic solvents. Therefore, it can be used only for water-based paints, and the width of the paints is very narrow.
  • this black paint is excellent in light-shielding properties, but it exhibits excellent blackness because it has a metallic color and a color due to plasmon absorption. There was a problem that could not be done.
  • the first of the present invention has been made to solve the above problems, and provides an inexpensive black material having high blackness, excellent light shielding properties, and low environmental load.
  • the purpose is to do.
  • the second of the present invention was made to solve the above-mentioned problems, and it is possible to obtain a neutral black color, which is excellent in light shielding properties, and has a low strength and low environmental load, and is inexpensive black fine particles. It is an object to provide a dispersion, a black light-shielding film using the dispersion, and a substrate with a black light-shielding film.
  • carbon black and titanium black may be subjected to a surface treatment by a gas phase method or a liquid phase method, but when the surface treatment is performed by a gas phase method, particles may be dispersed in the gas phase. Because it is difficult, the particles are mixed with the material to be surface-treated in a state where the particles are in contact with each other. Therefore, aggregation of particles having poor surface treatment uniformity becomes a problem. Therefore, there is a method in which the alkoxide such as tetraethoxysilane is vapor-phase adsorbed on the surface of the particles, and then the excess alkoxide is removed under reduced pressure. This method is complicated and requires time and cost. There is a problem.
  • the surface treatment when the surface treatment is performed by the liquid phase method, the surface treatment can be performed in a state where the particles are dispersed in the liquid phase.
  • the particles are dispersed in the liquid phase.
  • carbon black and titanium black are obtained in a powder state in which particles are aggregated, it is very difficult to disperse them in water or an organic solvent.
  • a third aspect of the present invention has been made to solve the above-described problem, and is easily dispersed in a solvent, has a high blackness, and has a high insulating property. And a black fine particle dispersion, a black light-shielding film, and a substrate with a black light-shielding film.
  • the present inventors have made a metal having a particle diameter of 1 nm or more and 200 nm or less and Z or a metal oxide.
  • Primary particles ⁇ are combined into secondary particles with a particle size of 5 nm or more and 300 nm or less.
  • the outermost layer of the secondary particles is made of one or more elements selected from Au, Pt, Pd, Ag, Ru, Cu, Si, Ti, Sn, and N or their oxides.
  • the inventors have found that a black material having excellent blackness and light shielding properties can be obtained by using a structure containing 50% by weight or more of the product, and the present invention has been completed.
  • the first black material of the present invention has a secondary particle force in which primary particles having a particle diameter of not less than 1 nm and not more than 200 nm and Z or metal oxides are gathered.
  • the particle size of the secondary particles is 5 nm or more and 300 nm or less, and the outermost layer of the secondary particles is Au, Pt, Pd, Ag, Ru, Cu, Si, Ti, Sn, N 1 or 2 types selected It contains 50% by weight or more of the above elements or their oxides.
  • the secondary particles have a space inside.
  • the secondary particles preferably have a space formed inside the outermost layer or a plurality of outer shell layers including the outermost layer.
  • the secondary particles preferably have a core-shell shape in which the outer surface of a substance serving as a nucleus is covered with the outermost layer or an outer shell layer including a plurality of layers including the outermost layer.
  • the outer shell layer is preferably dense.
  • metals and Z or metal oxides having an average particle diameter of 1 nm or more and 200 nm or less are used.
  • High blackness can be achieved by using a black fine particle dispersion containing secondary particles with an average particle size of 5 nm or more and 300 nm or less, and a primary dispersion of fine particles having physical properties. It was found that a black light-shielding film and a black decorative film having excellent light-shielding properties can be obtained, and the present invention has been completed.
  • the second black fine particle dispersion of the present invention is an average particle in which primary particles of metal and Z or metal oxides having an average particle diameter of 1 nm to 200 nm are aggregated. It comprises secondary particles having a diameter of 5 nm or more and 300 nm or less, and a polymer dispersant.
  • the fine particles preferably contain one or more selected from the group strength of silver, tin, and nickel.
  • the polymer dispersant is 1% by weight or more and 10% by weight with respect to the total weight of the fine particles. It is preferable to contain the following:
  • the polymer dispersant is polybulur pyrrolidone.
  • the secondary particles preferably have a space formed therein.
  • the secondary particles preferably have a space formed inside the outermost layer or an outer shell layer comprising a plurality of layers including the outermost layer.
  • the secondary particles preferably have a core-shell shape in which the outer surface of a substance serving as a nucleus is covered with the outermost layer or an outer shell layer including a plurality of layers including the outermost layer.
  • the black light-shielding film of the present invention is characterized by being coated with the black fine particle dispersion of the present invention.
  • the base material with a black light-shielding film of the present invention is characterized by comprising the black light-shielding film of the present invention on the main surface of the base material.
  • the black light-shielding film has a CIE lightness L * of 10 or less, a chromaticity a * of ⁇ 1 or more and 1 or less, a chromaticity b * of ⁇ 1 or more and 1 or less, and an optical density OD value of 3 or more. Is preferred.
  • the present inventors have found that the average particle diameter of conventional silver fine particles is 1 nm or more.
  • the coating it was found that it was easy to disperse in a solvent, and black fine particles having high blackness and high insulation could be obtained, and the present invention was completed.
  • the black fine particles according to the third aspect of the present invention have an average particle size in which primary particles of fine particles having an average particle size of not less than 1 nm and not more than 200 ⁇ m and fine particles having a metal or metal oxide strength are aggregated. Is characterized by being covered with a surface force insulating film of secondary particles of 5 nm or more and 300 nm or less.
  • the insulating film is preferably a metal oxide or an organic polymer compound.
  • the fine particles preferably contain one or more selected from the group strength of silver, tin, and nickel.
  • the black fine particle dispersion of the present invention comprises the black fine particles of the present invention. To do.
  • the black light-shielding film of the present invention is characterized by being coated with the black fine particle dispersion of the present invention.
  • the base material with a black light-shielding film of the present invention is characterized by comprising the black light-shielding film of the present invention on the main surface of the base material.
  • the secondary particle force is formed by agglomeration of primary particles of metal and Z or metal oxides having a particle diameter of 1 nm or more and 200 nm or less.
  • the particle diameter of the particles is 5 nm or more and 300 nm or less, and the outermost layer of these secondary particles is Au, Pt, Pd, Ag, Ru, Cu, Si, Ti, Sn, N
  • the blackness of the black material itself can be increased and the light shielding property can be improved.
  • the coating film can be maintained for a long period of time without fear of the strength of the coating film being lowered.
  • the outermost layer of the secondary particles is made of one or more elements selected from Au, Pt, Pd, Ag, Ru, Cu, Si, Ti, Sn, and Ni, or their oxides. Since the composition contains more than wt%, the environmental impact is small and inexpensive.
  • an average particle size of 5 nm is obtained by aggregating primary particles of fine particles made of metal and Z or metal oxide having an average particle size of 1 nm or more and 200 nm or less. Since the secondary particles of 300 nm or less and the polymer dispersant are contained, it is possible to obtain a black light-shielding film or a black decorative film that is neutral black and has high light-shielding properties.
  • the secondary particles themselves dispersed in the black fine particle dispersion are excellent in blackness and light shielding properties. Since the amount can be reduced, it is possible to maintain the coating film for a long period of time without reducing the strength of the coating film. As described above, it is possible to provide a black light-shielding film and a black decorative film that have high blackness and excellent light-shielding properties, and are environmentally friendly and inexpensive.
  • the average particle diameter is greater than or equal to nm and the average particle diameter is a combination of primary particles of fine particles comprising metal and Z or metal oxide having an average particle diameter of 1 nm or more and 200 nm or less. Since the surface of secondary particles of 300 nm or less is coated with an insulating film, it can be easily dispersed in a solvent, the blackness of the black fine particles themselves can be improved, and the insulating properties can be improved. it can.
  • the black fine particle dispersion of the present invention since the black fine particles of the present invention are contained, the dispersibility of the black fine particles can be improved, and the coating property can be improved.
  • the black light-shielding film of the present invention is obtained by applying the black fine particle dispersion of the present invention, the light-shielding property and the insulating property can be improved even when the film thickness is thin. If this black light-shielding film is applied to the black matrix of a flat display device such as a liquid crystal display, the overlap between the black matrix and each pixel can be reduced by reducing the film thickness, resulting in uneven cell gaps in each pixel. Can be reduced, and the pixels can be made uniform. Therefore, color unevenness hardly occurs on the display surface, and the quality of the display surface can be improved. In addition, the aperture ratio of each pixel can be improved, and the luminance of the entire display surface of the display device can be improved.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a black material according to an embodiment (part 1) of the present invention and a black fine particle according to an embodiment (part 2).
  • FIG. 2 is a schematic diagram showing another example of the cross-sectional structure of the black material of the embodiment (part 1) of the present invention and the black fine particles of the embodiment (part 2).
  • FIG. 3 is a schematic diagram showing another example of the cross-sectional structure of the black material according to the embodiment (part 1) of the present invention and the black fine particles according to the embodiment (part 2).
  • FIG. 4 is a schematic diagram showing another example of the cross-sectional structure of the black material according to the embodiment (part 1) of the present invention and the black fine particles according to the embodiment (part 2).
  • FIG. 5 is a schematic diagram showing a cross-sectional structure of black fine particles according to an embodiment (part 3) of the present invention.
  • FIG. 6 is a schematic diagram showing another example of the cross-sectional structure of black fine particles according to the embodiment of the present invention (part 3). It is.
  • FIG. 7 is a schematic view showing another example of the cross-sectional structure of black fine particles according to the embodiment (part 3) of the present invention.
  • FIG. 8 is a schematic view showing another example of the cross-sectional structure of black fine particles according to the embodiment (part 3) of the present invention.
  • FIG. 9 is a diagram showing a powder X-ray diffraction pattern of a powder sample of Examples 1 and 7 of the present invention.
  • FIG. 10 is a diagram showing a powder X-ray diffraction pattern of powder samples of Examples 2 and 8 of the present invention.
  • FIG. 11 is a diagram showing a powder X-ray diffraction pattern of powder samples of Examples 3 and 9 of the present invention.
  • FIG. 12 is a view showing a powder X-ray diffraction pattern of a powder sample of Example 4 of the present invention.
  • FIG. 13 is a view showing a powder X-ray diffraction pattern of a powder sample of Example 5 of the present invention.
  • the black material of the present embodiment also has a secondary particle force in which primary particles made of metal and Z or metal oxide having a particle diameter of 1 nm or more and 200 nm or less are aggregated.
  • the diameter is 5 nm or more and 300 nm or less, and the outermost layer of this secondary particle is one or more elements selected from Au, Pt, Pd, Ag, Ru, Cu, Si, Ti, Sn, Ni or these
  • the secondary particles are composed of one or more elements selected from Au, Pt, Pd, Ag, Ru, Cu, Si, Ti, Sn, and N, or an acid thereof.
  • the material composition of the portion excluding the outermost layer is not limited as long as it contains 50% by weight or more of porridge.
  • the secondary particles are most preferably in a form in which a space is formed inside, and then in a form in which a space is formed inside a plurality of outer shell layers, or It is preferable that the outer surface of the material is in the form of a core shell formed by coating the outermost layer or a plurality of outer shell layers including the outermost layer.
  • This black material can take various structures as follows.
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of a black material according to the present embodiment.
  • 1 is a black material, a metal having a particle diameter of 1 nm or more and 200 nm or less, and Z or Z
  • the primary particles 2 that are metal oxides are aggregated to form secondary particles 3 having a particle diameter of 5 nm or more and 300 nm or less.
  • the outermost layer of the secondary particles 3 is Au, Pt, Pd, Ag, Ru , Cu, Si, Ti, Sn, and Ni are composed of fine particles 4 that are primary particles containing 50% by weight or more of one or more elements selected from these elements or oxides thereof.
  • This black material 1 has a dense structure with no space inside because the primary particles 2 are densely assembled.
  • FIG. 2 is a cross-sectional view schematically showing another example of the cross-sectional structure of the black material of the present embodiment.
  • the black material 11 is different from the black material 1 in FIG. This is the point where the space part 12 is formed.
  • FIG. 3 is a cross-sectional view schematically showing another example of the cross-sectional structure of the black material of the present embodiment.
  • the black material 21 is different from the black material 11 of FIG.
  • the outer shell layer 22 is configured, and the inside of the outer shell layer 22 is a space 23.
  • the outer shell layer 22 may be composed of a plurality of layers having two or more layers each consisting of only the fine particles 4.
  • FIG. 4 is a cross-sectional view schematically showing another example of the cross-sectional structure of the black material of the present embodiment.
  • the black material 31 is different from the black material 1 of FIG.
  • the outer surface is covered with a dense outer shell layer 22 consisting of only fine particles 4.
  • the material constituting the core 32 is not particularly limited, but a material having excellent adhesion to the fine particles 4 constituting the outer shell layer 22 is preferable.
  • zirconium oxide (ZrO 2) and the like are preferably used.
  • These black materials 1 to 31 can be produced using a normal fine particle synthesis method.
  • any method such as a gas phase reaction method, a spray pyrolysis method, an atomization method, a liquid phase reaction method, a freeze drying method, and a hydrothermal synthesis method may be used.
  • the secondary particle force is formed by the aggregation of primary particles having a particle diameter of 1 nm or more and 200 nm or less, and primary particles of Z or metal oxides, and this secondary particle.
  • the particle size of the secondary particles is 5 nm or more and 300 nm or less.
  • the outermost layer of the secondary particles is Au, Pt, Pd, Ag, Ru, Cu, Si, Ti, Sn, N.
  • the blackness can be increased and the light shielding property can be improved.
  • the black fine particle dispersion of the present embodiment has an average particle size force of not less than nm and not more than 300 nm, in which primary particles of fine particles comprising metal and Z or metal oxide having an average particle size of not less than 1 nm and not more than 200 nm are aggregated.
  • the black fine particle dispersion containing the secondary particles and the polymer dispersion contains a solvent and, if necessary, an organic solder.
  • the fine particles preferably include one or more selected from the group strength of silver, tin, and nickel.
  • This secondary particle is most preferably in the form in which a space portion is formed inside, and then, the space portion is formed inside the outer shell layer or a plurality of outer shell layers including the outermost layer. Or a core-shell shape in which the outer surface of a substance serving as a nucleus is covered with the outermost layer or a plurality of outer shell layers including the outermost layer.
  • the secondary particles may be in a form in which the primary particles are aggregated and dispersed via a dispersant or the like! / The primary particles are in direct contact with each other without using a dispersant or the like. More preferred is a form that is joined, or has a neck between primary particles.
  • the black fine particles can take various structures as follows.
  • FIG. 1 is a cross-sectional view schematically showing the cross-sectional structure of the black fine particles of the present embodiment.
  • reference numeral 1 denotes black fine particles (black material), and the average particle size is 1 nm or more and 200 ⁇ m or less.
  • the primary particles 2 of the metal and soot or metal oxides are gathered to form secondary particles 3 with an average particle size of 5 nm or more and 300 nm or less.
  • the primary particles 2 may be composed of one type of metal or metal oxide, or may be composed of two or more types of metal and Z or metal oxide physical force.
  • the shape of the secondary particles is not particularly limited, and various shapes such as a spherical shape, an indeterminate shape, and a plate shape can be used.
  • FIG. 2 is a cross-sectional view schematically showing another example of the cross-sectional structure of the black fine particles of this embodiment.
  • the black fine particles (black material) 11 is different from the black fine particles 1 of FIG. This is the point where a space 12 is formed inside the space 3.
  • the secondary particles can have various shapes such as a spherical shape, an indefinite shape, and a plate shape, which are not particularly limited.
  • this hollow structure may not be in a perfect state, and the outside and the space 12 may be connected by pores, for example, the spherical secondary particles in FIG. 2 are broken into several shapes. May be.
  • FIG. 3 is a cross-sectional view schematically showing another example of the cross-sectional structure of the black fine particles of this embodiment.
  • the black fine particles (black material) 21 is different from the black fine particles 11 of FIG.
  • the outer shell layer 22 is constituted only by this, and the inside of the outer shell layer 22 is the space 23.
  • the outer shell layer 22 may be composed of a plurality of layers having two or more forces as one layer of the fine particles 4.
  • the shape of the black fine particles is not particularly limited, and various shapes such as a spherical shape, an indeterminate shape, and a plate shape can be used.
  • this hollow structure may not be in a perfect state, and the outside and the space 23 may be connected by pores.
  • FIG. 4 is a cross-sectional view schematically showing another example of the cross-sectional structure of the black fine particles of the present embodiment.
  • the shape of the black fine particles and various shapes such as a spherical shape, an irregular shape, and a plate shape can be used.
  • the material constituting the core 32 is not particularly limited, but materials having excellent adhesion with the fine particles 4 constituting the outer shell layer 22 are preferred, for example, silver, tin, nickel, silicon oxide (SiO 2), Acid titanium (TiO 2), acid zirconium (ZrO 2), etc. are preferably used.
  • the polymer dispersant improves the dispersibility of the fine particles by improving the wettability of the surface of the fine particles, and as a result, improves the uniformity of the dispersion.
  • PVP polybulur pyrrolidone
  • the polymer dispersant may be contained in an amount of 1 to 10% by weight based on the total weight of the fine particles contained in the black fine particle dispersion. More preferably, it is 2% by weight or more and 8% by weight or less, more preferably 3% by weight or more and 6% by weight or less.
  • the solvent is not particularly limited, and examples thereof include monohydric alcohols such as water, methanol, ethanol, n-propanol, 2-propanol, and butanol, dihydric alcohols such as ethylene glycol, / 3 Oxetyl methyl ether (Methylcerosolve), j8—Oxetylether (Ethylcetesolve), j8—Oxetylpropyl ether (Propylcellosolve), Butyl- ⁇ Oxetyl ether (Butylcelesolve) Glycols such as ethylene glycol and propylene glycol, ketones such as acetone, methyl ethyl ketone, and jetyl ketone, esters such as ethyl acetate, butyl acetate, and benzyl acetate. And ether alcohols such as methoxyethanol and ethoxyethanol, and propylene glycol monomethyl ether a
  • the black fine particles in the black fine particle dispersion of the present embodiment can be produced using a normal fine particle synthesis method.
  • a fine particle synthesis method any method such as a gas phase reaction method, a spray pyrolysis method, an atomization method, a liquid phase reaction method, a freeze-drying method, or a hydrothermal synthesis method may be used.
  • the average particle diameter is 5 nm or more, which is an aggregate of primary particles of fine particles made of metal and Z or metal oxide having an average particle diameter of 1 nm or more and 200 nm or less. Since secondary particles of 300 nm or less are contained, the blackness can be increased and the light shielding property can be improved.
  • the polymer dispersant when contained in an amount of 1% by weight or more and 10% by weight or less based on the total weight of the fine particles contained in the black fine particle dispersion, good dispersion stability can be obtained, and good black color can be obtained. Light shielding properties can be obtained.
  • polyvinylpyrrolidone as the polymer dispersant, it is possible to obtain even better dispersion stability. Since this polybulurpyrrolidone is also soluble in organic solvents, it is possible to disperse the fine particles in various solvents by using polypyrrolidone as a polymer dispersant. Application becomes possible.
  • black fine particle dispersion that is a raw material for an inexpensive black light-shielding film that has high blackness and excellent light-shielding properties, and has low strength and environmental load.
  • the black light-shielding film of this embodiment is obtained by applying the black fine particle dispersion of this embodiment on a substrate and then drying it.
  • the substrate is not particularly limited, and examples thereof include a glass substrate and a plastic substrate (organic polymer substrate).
  • examples of the shape include a flat plate, a film shape, and a sheet shape.
  • the plastic substrate includes plastic sheets and plastics. A plastic film or the like is preferable.
  • the material of the glass substrate is not particularly limited, but for example, power such as soda glass, potash glass, non-alkali glass and the like can be appropriately selected.
  • the material of the plastic substrate is not particularly limited.
  • cell mouth acetate polystyrene (PS), polyethylene terephthalate (PET), polyether, polyimide, epoxy, phenoxy, polycarbonate (PC), polyfluoride It can be appropriately selected from bi-lidene, triacetyl cellulose, polyethersulfone (PES), polyacrylate and the like.
  • a coating method a commonly used method such as a bar coating method, a spin coating method, a spray coating method, an ink jet method, a dip method, a roll coating method, a screen printing method, or the like is preferably used.
  • the solvent is removed by a subsequent drying step.
  • the substrate coated with the dispersion is left at room temperature (25 ° C) in the atmosphere or heated at a predetermined temperature, for example, 50 ° C to 80 ° C in the air.
  • a predetermined temperature for example, 50 ° C to 80 ° C in the air.
  • the black light shielding film has a CIE lightness L * standardized by CIE (International Commission on Illumination) of 10 or less, a chromaticity a * of -1 or more and 1 or less, and a chromaticity b * of -1 or more and It is preferable that the OD value as an optical density is 1 or less and 3 or more.
  • the third aspect of the present invention is that the black fine particles, the black fine particle dispersion, and the black light-shielding film are aligned.
  • the best mode of the base material with the black light-shielding film will be described.
  • the black fine particles of the present embodiment have an average particle diameter of 5 nm or more and 300 nm or less, in which primary particles of fine particles made of metal and Z or metal oxide having an average particle diameter of 1 nm or more and 200 nm or less are aggregated.
  • the surface of the secondary particles is covered with an insulating film.
  • the fine particles preferably include one or more selected from the group strength of silver, tin, and nickel.
  • This secondary particle is most preferably in the form in which a space portion is formed inside, and then, the space portion is formed inside the outermost layer or a plurality of outer shell layers including the outermost layer. Or a core-shell shape in which the outer surface of a substance serving as a nucleus is covered with the outermost layer or a plurality of outer shell layers including the outermost layer.
  • the secondary particles may be in a form in which the primary particles are aggregated and dispersed via a dispersant or the like! / The primary particles are in direct contact with each other without using a dispersant or the like. More preferred is a form that is joined, or has a neck between primary particles.
  • the fine particles that are constituents of the black fine particles can be produced by using a normal fine particle synthesis method.
  • a normal fine particle synthesis method any method such as a gas phase reaction method, a spray pyrolysis method, an atomization method, a liquid phase reaction method, a freeze-drying method, or a hydrothermal synthesis method may be used.
  • the insulating film is a secondary particle having an average particle diameter of 5 nm or more and 300 nm or less, in which primary particles of fine particles made of metal and Z or metal oxide having an average particle diameter of 1 nm or more and 200 nm or less are assembled.
  • a metal oxide or an organic polymer compound is preferable because the surface is made into highly insulating fine particles.
  • metal oxides include metal oxides having insulating properties, such as acid silicon (silica), aluminum oxide (alumina), zirconium oxide (zircoua), yttrium oxide (yttria), and titanium oxide. (Titer) or the like is preferably used.
  • an insulating resin such as polyimide, polyether, polyacrylate, polyamine compound and the like is preferably used.
  • the thickness of the insulating film is preferably from 1 to 100 nm, more preferably from 5 to 50 nm in order to sufficiently maintain the insulating properties of the surface of the fine particles.
  • This insulating film is easily formed by surface modification technology or surface coating technology. can do.
  • an alkoxide such as tetraethoxysilane or aluminum triethoxide because an insulating film having a uniform thickness can be formed at a relatively low temperature.
  • the black fine particles can take various structures as follows.
  • FIG. 5 is a cross-sectional view schematically showing the cross-sectional structure of the black fine particles of the present embodiment.
  • reference numeral 1 denotes black fine particles, and metal and Z having an average particle diameter of 1 nm or more and 200 nm or less.
  • primary particles 2 that are metal oxides and physical forces aggregate to form secondary particles 3 having an average particle size of 5 nm or more and 300 nm or less.
  • the primary particles 2 may be composed of one kind of metal or metal oxide, or may be composed of two or more kinds of metals and Z or metal oxide.
  • the shape of the secondary particles is not particularly limited, and various shapes such as a spherical shape, an indeterminate shape, and a plate shape can be used.
  • FIG. 6 is a cross-sectional view schematically showing another example of the cross-sectional structure of the black fine particles of this embodiment.
  • the black fine particles 11 are different from the black fine particles 1 of FIG. This is the point where space 12 was formed. Even in the black fine particles 11, the surfaces of the secondary particles 3 are covered with the insulating film 5.
  • the shape of the secondary particles There are no particular restrictions on the shape of the secondary particles, and various shapes such as a spherical shape, an indeterminate shape, and a plate shape can be used.
  • the hollow structure may not be in a perfect state, and the outside and the space 12 may be connected by pores, for example, the spherical secondary particles in FIG. It's okay!
  • FIG. 7 is a cross-sectional view schematically showing another example of the cross-sectional structure of the black fine particles of the present embodiment.
  • the black fine particles 21 are different from the black fine particles 11 of FIG. 22, and the inside of the outer shell layer 22 is a space 23. Even in the black fine particles 21, the surfaces of the secondary particles 3 are covered with the insulating film 5.
  • the outer shell layer 22 may be composed of a plurality of layers having two or more forces as one layer of the fine particles 4.
  • the shape of the black fine particles is not particularly limited, and various shapes such as a spherical shape, an indeterminate shape, and a plate shape can be used.
  • this hollow structure may not be in a perfect state, and the outside and the space 23 may be connected by pores.
  • FIG. 8 is a cross-sectional view schematically showing another example of the cross-sectional structure of the black fine particles of this embodiment.
  • the black fine particles 31 are different from the black material 1 of FIG.
  • the surface is covered with an outer shell layer 22 consisting of only fine particles 4. Even in the black fine particles 31, the surfaces of the secondary particles 3 are covered with the insulating film 5.
  • the outer shell layer 22 may not be in a complete state, and the outer core 32 may be connected by a pore.
  • the shape of the black fine particles is not particularly limited, and various shapes such as a spherical shape, an indeterminate shape, and a plate shape can be used.
  • the material constituting the core 32 is not particularly limited, but materials having excellent adhesion with the fine particles 4 constituting the outer shell layer 22 are preferred, for example, silver, tin, nickel, silicon oxide (SiO 2), Acid titanium (TiO 2), acid zirconium (ZrO 2), etc. are preferably used.
  • the average particle size is 5 nm or more and 300 nm or less in which primary particles of fine particles composed of metal and Z or metal oxide having an average particle size of 1 nm or more and 200 nm or less are aggregated.
  • the degree of blackness is increased compared to Ag particles and Sn particles, the light shielding property is improved, and the insulating properties are also improved.
  • the surface of secondary particles having an average particle size of 5 nm to 300 nm is collected on the surface of the metal oxide with a mean particle size of 1 nm or more and 200 nm or less.
  • an insulating film such as a metal cover, it becomes superior in heat resistance compared to fine metal particles such as Ag particles and Sn particles, and it has high mechanical strength and is hard to wear.
  • the black fine particle dispersion of the present embodiment contains the black fine particles of the present embodiment, and this black fine particle dispersion contains a solvent and, if necessary, an organic binder.
  • the solvent is not particularly limited, and for example, the solvent exemplified in the above embodiment (No. 2) can be used similarly.
  • the average particle size is 5 nm or more and 300 nm or less, in which primary particles of fine particles composed of metal and Z or metal oxide having an average particle size of 1 nm or more and 200 nm or less are aggregated.
  • the black fine particle dispersion used as the raw material for the black light-shielding film has a high blackness and is excellent in light-shielding and insulating properties, and has a low cost by including black particles whose surface is covered with an insulating film. It becomes possible to provide.
  • polyvinyl pyrrolidone as the polymer dispersant, even better dispersion stability can be obtained. Since this polybulurpyrrolidone is also soluble in organic solvents, it is possible to disperse the fine particles in various solvents by using polypyrrolidone as a polymer dispersant. Application becomes possible.
  • black fine particle dispersion that is a raw material for an inexpensive black light-shielding film that has high blackness and excellent light-shielding properties, and has low strength and environmental load.
  • the black light-shielding film of this embodiment is obtained by applying the black fine particle dispersion of this embodiment on a substrate.
  • the substrate is not particularly limited, and examples thereof include a glass substrate and a plastic substrate (organic polymer substrate).
  • examples of the shape include a flat plate, a film shape, and a sheet shape.
  • a plastic sheet, a plastic film, and the like are preferable.
  • the material of the glass substrate and the plastic substrate is not particularly limited.
  • the materials of the glass substrate and the plastic substrate exemplified in the above embodiment can be used similarly.
  • a coating method a conventionally used method such as a bar coating method, a spin coating method, a spray coating method, an ink jet method, a dip method, a roll coating method, a screen printing method, or the like is preferably used.
  • the solvent is removed by a subsequent drying step.
  • the substrate coated with the dispersion is left at room temperature (25 ° C) in the atmosphere or heated at a predetermined temperature, for example, 50 ° C to 80 ° C in the air. By doing so, the solvent contained in the dispersion is dissipated to form a black light-shielding film.
  • this black light-shielding film is used as a black matrix of a display device such as a liquid crystal display (LCD), it is preferable to have a high insulating property.
  • the volume resistance ( ⁇ 'cm) is 10 7 ⁇ . 'cm or more is a preferable range.
  • CIE lightness L * standardized by CIE (International Commission on Illumination) is 10 or less
  • chromaticity a * is
  • the chromaticity b * is ⁇ 1 or more and 1 or less
  • the OD value as optical density is 3 or more.
  • the preferred range is 10 or less, which is a good display contrast range.
  • Chromaticity a * and b * are hues when the absolute value preferred from the point of display quality to be achromatic color exceeds 1, so the absolute value that makes the preferred range an achromatic color is 1 or less That is, 1 or more and 1 or less.
  • the film thickness must be increased, especially for liquid crystal displays (LCD), etc.
  • LCD liquid crystal displays
  • liquid A and liquid B were mixed for 10 minutes using a magnetic stirrer, and then washed by centrifugation to obtain liquid C having a solid content of 15%.
  • FIG. 9 is a diagram showing a powder X-ray diffraction pattern of the powder sample of Example 1, in which ⁇ is a diffraction line of tin (Sn), and ⁇ is a diffraction of an Ag Sn alloy phase or an Ag Sn alloy phase. Is a line.
  • the particles in the liquid C had a core-shell structure in which the surface of Sn particles serving as nuclei was covered with Ag ⁇ Sn alloy fine particles.
  • this coating solution was applied onto a glass substrate having a thickness of 1.1 mm by a spin coating method to form a black coating film.
  • the thickness of the coating film was set to 0.5 m by adjusting the amount of water in the coating solution.
  • the film thickness was measured with a film thickness measuring instrument Tencor (Tencor), and black for light having a wavelength of 550 nm was measured with a spectrospectrometer. The light transmittance of the film itself was measured.
  • the hollow particles had a shape in which particles having a particle diameter of 10 to 30 nm were assembled.
  • this D liquid force also separated particles by a filtration method, and then dried to produce a powder sample of Example 2, and the product phase in this powder sample was identified using an X-ray diffractometer. .
  • FIG. 10 is a diagram showing a powder X-ray diffraction pattern of the powder sample of Example 2, in which ⁇ is a Sn diffraction line, and ⁇ is an Ag Sn alloy phase or Ag Sn alloy phase diffraction line .
  • the particles in D liquid are hollow particles composed of Ag'Sn alloy.
  • this coating solution was applied onto a glass substrate having a thickness of 1.1 mm by a spin coating method to form a black coating film.
  • the thickness of the coating film was set to 0.5 m by adjusting the amount of water in the coating solution.
  • the film thickness was measured with a film thickness measuring instrument Tencor (Tencor), and light having a wavelength of 550 nm was measured with a spectrospectrometer. The light transmittance of the black film itself was measured.
  • the particles were separated from the E solution by a filtration method and then dried to produce a powder sample of Example 3, and the product phase in the powder sample was identified using an X-ray diffractometer.
  • FIG. 11 is a view showing a powder X-ray diffraction pattern of the powder sample of Example 3, and in the drawing, ⁇ marks are diffraction lines of the Ag Sn alloy phase or the Ag Sn alloy phase.
  • the particles in E liquid are aggregates of Ag'Sn alloy fine particles.
  • this coating solution was applied onto a glass substrate having a thickness of 1.1 mm by a spin coating method to form a black coating film.
  • the thickness of the coating film was set to 0.5 m by adjusting the amount of water in the coating solution.
  • the black film was dried at room temperature (25 ° C), and then the film thickness was measured with a film thickness measuring instrument Tencor (Tencor), and the spectrum film was measured against light having a wavelength of 550 nm. The light transmittance of the black film itself was measured.
  • FIG. 12 is a diagram showing a powder X-ray diffraction pattern of the powder sample of Example 4, in which ⁇ indicates a Sn diffraction line, X indicates a silver (Ag) diffraction line, and ⁇ indicates an Ag Sn alloy. Phase or Ag Sn alloy phase
  • the surface of the particles in the liquid H was composed of a dense layer of Ag and Ag′Sn alloy.
  • this coating solution was applied onto a glass substrate having a thickness of 1.1 mm by a spin coating method to form a black coating film.
  • the thickness of the coating film was set to 0.5 m by adjusting the amount of water in the coating solution.
  • this black film was dried at room temperature (25 ° C), and then the film thickness was measured with a film thickness measuring instrument Tencor (Tencor), and the spectrum film was measured against light having a wavelength of 550 nm. The light transmittance of the black film itself was measured.
  • the particles were separated from the liquid I by a filtration method and then dried to produce a powder sample of Example 5, and the product phase in the powder sample was identified using an X-ray diffractometer.
  • FIG. 13 is a diagram showing a powder X-ray diffraction pattern of the powder sample of Example 5, in which Sn diffraction lines and ⁇ marks are diffraction lines of Ag Sn alloy phase or Ag Sn alloy phase.
  • the hollow particles formed by the dense outer shell layer in the liquid I were composed of Ag'Sn alloy.
  • an ultrasonic disperser Sofire 450: manufactured by BRANSON ULTRASONICS
  • this coating solution was applied onto a glass substrate having a thickness of 1.1 mm by a spin coating method to form a black coating film.
  • the thickness of the coating film was set to 0.5 m by adjusting the amount of water in the coating solution.
  • the black film was dried at room temperature (25 ° C), and then the film thickness was measured with a film thickness measuring instrument Tencor (Tencor). The light transmittance of the black film itself was measured.
  • the solution obtained by dissolving in Og was added all at once and stirred for 1 hour. Thereafter, washing was performed by centrifugation to obtain a solution J having a solid content of 10%.
  • Example 6 was separated from the solution J by filtration and then dried.
  • EPMA electron probe microanalyzer
  • Ni, Sn, and a trace amount of B were detected.
  • the particles in the J liquid had a core-shell structure in which the surface of the Ni particles serving as the core was covered with Sn fine particles.
  • this coating solution was applied onto a glass substrate having a thickness of 1.1 mm by a spin coating method to form a black coating film.
  • the thickness of the coating film was set to 0.5 m by adjusting the amount of water in the coating solution.
  • the water content was adjusted and applied onto a glass substrate to produce a black coating film with a thickness of 0.
  • titanium black 13M, manufactured by Gemcone Earth
  • the amount of water in the coating solution was adjusted and applied onto a glass substrate to produce a black coating film with a thickness of 0.5 m.
  • CIE brightness L * was also excellent, and it was confirmed that it had excellent light-shielding properties and blackness.
  • the black films of Comparative Examples 1 and 2 were inferior in light-shielding properties to the black films of Examples 1 to 5 having high light transmittance.
  • the black film of Comparative Example 3 had a light shielding property similar to that of Examples 1 to 6, but the film color was gray, and there was a problem in terms of color tone.
  • Tin (Sn) colloid particle size 20-80nm, average particle size: 30nm, solid content: 15% by weight
  • residence 20 g of Tomo Osaka Cement Co., Ltd. was taken, and this was added to 0.15 g of polybulurpyrrolidone (PVP) (kl5: manufactured by Tokyo Chemical Industry Co., Ltd.) in pure water and the total volume was 300 ml.
  • PVP polybulurpyrrolidone
  • this black fine particle dispersion was applied on a glass substrate having a thickness of 1.1 mm by a spin coating method to form a black coating film.
  • the thickness of the coating film is adjusted by adjusting the amount of water in the dispersion. 5 ⁇ m.
  • this glass substrate with a coating film was dried at room temperature (25 ° C.) to obtain a glass substrate with a black light-shielding film.
  • the light transmittance of this glass substrate with a black light shielding film was measured.
  • the light transmittance of the black light-shielding film itself with respect to light with a wavelength of 550 nm is measured with a spectroscopic vector meter.
  • the OD value which is the optical density of the black light-shielding film, was measured using a transmission densitometer. Table 2 shows the measurement results.
  • FIG. 9 is a diagram showing a powder X-ray diffraction pattern of the powder sample of Example 7, in which ⁇ is a diffraction line of tin (Sn), and ⁇ is a diffraction of an Ag Sn alloy phase or an Ag Sn alloy phase. Is a line.
  • the particles in the liquid C had a core-shell structure in which the surface of the Sn particles serving as the nucleus was covered with Ag'Sn alloy fine particles.
  • this black fine particle dispersion was applied onto a glass substrate having a thickness of 1.1 mm by a spin coating method to form a black coating film.
  • the thickness of the coating film is adjusted by adjusting the amount of water in the dispersion. 5 ⁇ m.
  • this glass substrate with a coating film was dried at room temperature (25 ° C.) to obtain a glass substrate with a black light-shielding film.
  • FIG. 10 is a diagram showing a powder X-ray diffraction pattern of the powder sample of Example 8, in which Tin (Sn) diffraction lines and ⁇ marks are diffraction lines of Ag Sn alloy phase or Ag Sn alloy phase.
  • the particles in the liquid D were hollow particles composed of an Ag′Sn alloy, and some of the hollow particles were missing or broken into several.
  • this black fine particle dispersion was applied onto a glass substrate having a thickness of 1.1 mm by a spin coating method to form a black coating film.
  • the thickness of the coating film is adjusted by adjusting the amount of water in the dispersion. 5 ⁇ m.
  • this glass substrate with a coating film was dried at room temperature (25 ° C.) to obtain a glass substrate with a black light-shielding film.
  • the particles were separated from the E solution by a filtration method and then dried to produce a powder sample of Example 9, and the product phase in the powder sample was identified using an X-ray diffractometer. .
  • FIG. 11 is a diagram showing a powder X-ray diffraction pattern of the powder sample of Example 9, in which ⁇ marks
  • the particles in E liquid are aggregates of Ag'Sn alloy fine particles.
  • a solution obtained by dissolving in Og was added at once, stirred for 1 hour, and then washed by centrifugation to obtain a liquid F having a solid content of 10%.
  • this black fine particle dispersion was applied on a glass substrate having a thickness of 1.1 mm by a spin coating method to form a black coating film.
  • the thickness of the coating film is adjusted by adjusting the amount of water in the dispersion. 5 ⁇ m.
  • this glass substrate with a coating film was dried at room temperature (25 ° C.) to obtain a glass substrate with a black light-shielding film.
  • the average particle size was 1 to: the particle force of LOnm
  • the surface of the particles with an average particle size of 20 to 30 nm It was found that secondary particles with an average particle diameter of 30 to 50 nm were formed.
  • the particles in the liquid F have a core shell structure in which the surface of the core Ni particles is covered with Sn fine particles.
  • the water content was adjusted and applied onto a glass substrate by spin coating to produce a black coating film with a thickness of 0.5 ⁇ m.
  • the glass substrate with a coating film was dried at room temperature (25 ° C.) to obtain a glass substrate with a black light-shielding film.
  • the glass substrate with a coating film was dried at room temperature (25 ° C.) to obtain a glass substrate with a black light-shielding film.
  • the water content was adjusted and applied onto a glass substrate by spin coating to produce a black coating film with a thickness of 0.5 m.
  • the glass substrate with a coating film was dried at room temperature (25 ° C.) to obtain a glass substrate with a black light-shielding film.
  • the black light-shielding films of Examples 7 to 10 have low chromaticity a * and b * with low light transmittance and low CIE lightness L * as compared with Comparative Examples 4 to 6. Since the absolute value was also small, it was confirmed that the light-shielding property and blackness were excellent.
  • the black light-shielding films of Comparative Examples 4 and 5 were inferior in light-shielding properties to the black light-shielding films of Examples 7 to 10 having high light transmittance.
  • the black light-shielding film of Comparative Example 6 has almost the same light-shielding properties as those of Examples 7 to 10, the film color is gray and there is a problem in terms of color tone.
  • Black fine particles were prepared as follows.
  • An aqueous dispersion of black silver tin alloy aggregated particles forming secondary particles with an average particle size of 20 to 150 nm in which primary particles with an average particle size of 5 to 20 nm are aggregated (solids concentration 15% by weight, Sumitomo Osaka Cement Co., Ltd.)
  • APS 3-aminobutyltrimethoxysilane
  • the pH was adjusted to 10.5 using, and used as solution B.
  • the pH of the solution A was adjusted to 9.5 with an aqueous NaOH solution (0.1 N), and the solution B was slowly added dropwise to the solution A, followed by stirring for 1 hour. Subsequently, unreacted water glass, APS, ions, and the like were removed from this solution using ultrafiltration, and then concentrated to obtain a dispersion.
  • a dispersion was obtained.
  • 50 g of a binder consisting of 64 parts by weight of benzylmetatalylate Z methacrylic acid copolymer, 26 parts by weight of dipentaerythritol hexatalylate, and 907 gs of Irgacure is mixed and mixed.
  • a coating solution was obtained. This coating solution was applied onto a glass substrate with a spin coater, dried at room temperature (25 ° C), and then irradiated with ultraviolet rays (UV) to form a black film having a thickness of 0.0.
  • UV ultraviolet rays
  • Example 12 The black film of Example 12 was formed in the same manner as in Example 11 except that silica-coated silver-tin alloy aggregated particle B was used in place of silica-coated silver-tin alloy aggregated particle A in Example 11.
  • a black film was formed in the same manner as in Example 11 except that silver-tin alloy aggregate particles were used without being coated with silica.
  • Example 8 A black film was formed in the same manner as in Example 11 except that silica-coated carbon black was used.
  • a black film was formed in the same manner as in Example 11 except that silica-coated titanium black was used.
  • volume resistance of each black film in Examples 11 to 12 and Comparative Examples 7 to 9 was measured. Measurement was performed by the 4-terminal method in accordance with Japanese Industrial Standard JIS C2103-1991 “Volume Resistivity Test”.
  • the OD value which is the optical density of the black film, was measured using a transmission densitometer.
  • B * was measured based on the L * a * b * color system standardized by the CIE (International Commission on Illumination).
  • the black films of Examples 11 and 12 have a volume resistance of more than OD value greater than 10 ⁇ ⁇ cm, CIE lightness L * is low, chromaticity a *, Since the absolute value of b * is also small, it was confirmed that it has excellent insulation, light shielding and blackness.
  • the black film of Comparative Example 7 has an OD value of 4 or more, a low CIE lightness L *, a low chromaticity a *, and a small absolute value of b *, but a volume resistance of 1.2 X 10 6 Q cm It was found that the insulation was lowered.
  • the black films of Comparative Examples 8 and 9 have absolute volume resistance of 10 1 (> ⁇ cm, but CIE brightness L * is high, OD value is around 2 and small chromaticity a *, b * The value also exceeded 1, and it was found that the blackness and light shielding properties were inferior to the black films of Examples 11 and 12.
  • the first black material of the present invention is excellent in blackness and light shielding properties and is inexpensive, it can be applied to any material that requires blackness or light shielding properties, or certain blackness and light shielding properties. is there.
  • black light shielding film, black light shielding glass, black paper, black cloth, black ink, black matrix material for display devices such as plasma display (PDP) and liquid crystal display (LCD), black sealing material It can also be used as a black mask material.
  • the second black fine particle dispersion of the present invention can be used as a material for a black light-shielding film having excellent blackness and light-shielding properties, and further excellent heat resistance and low strength. It can be applied to any material that requires light shielding and heat resistance.
  • the third black fine particles of the present invention are excellent in blackness, light-shielding property and insulating property, and can be used as a material for an inexpensive black light-shielding film.
  • black matrix materials, black seal materials, and black mask materials for display devices such as liquid crystal displays (LCDs), plasma displays (PDPs), electo-luminescence displays (ELDs), and electo-chromic displays (ECDs).
  • LCDs liquid crystal displays
  • PDPs plasma displays
  • ELDs electo-luminescence displays
  • ECDs electo-chromic displays
  • it can also be used as a black light-shielding film, black light-shielding glass, black paper, black cloth, black ink and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Optical Filters (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明の黒色材料は、粒子径が1nm以上かつ200nm以下の金属および/または金属酸化物からなる1次粒子が集合した2次粒子からなり、この2次粒子の粒子径は5nm以上かつ300nm以下であり、この2次粒子の最外層は、金(Au)、白金(Pt)、パラジウム(Pd)、銀(Ag)、ルテニウム(Ru)、銅(Cu)、ケイ素(Si)、チタン(Ti)、錫(Sn)、ニッケル(Ni)から選択された1種または2種以上の元素またはこれらの酸化物を50重量%以上含有してなることを特徴とする。また、本発明の黒色微粒子分散液は、前記黒色材料と、高分子分散剤とを、含有してなることを特徴とする。さらに、本発明の黒色微粒子は、前記黒色材料の表面が、有機高分子化合物からなる絶縁膜により被覆されていることを特徴とする。

Description

黒色材料、黒色微粒子分散液とそれを用いた黒色遮光膜、並びに黒色 遮光膜付き基材
技術分野
[0001] 本発明は、黒色材料 (黒色微粒子)に関し、特に、記録材、液晶ディスプレイ等の各 種表示装置のブラックマトリックス等に好適に用いられ、黒色度が高ぐ遮光性に優 れた黒色材料に関するものである。また、本発明は、黒色微粒子分散液とそれを用 いた黒色遮光膜及び黒色遮光膜付き基材に関し、特に、記録材、各種表示装置の ブラックマトリックス、黒色装飾膜等に好適に用いられ、黒色度が高ぐ遮光性に優れ た膜技術に関するものである。
本願は、 2004年 9月 21日に出願された特願 2004-273348号、 2005年 2月 17日に 出願された特願 2005-040257号、 2005年 2月 17日に出願された特願 2005-040258 号に基づき優先権を主張し、その内容をここに援用する。
背景技術
[0002] 従来、黒色材料としては、カーボンブラック、低次酸化チタン、酸化鉄、クロム、銀微 粒子等の金属材料や無機材料が知られて!/ヽる (例えば、特許文献 1参照)。
これらの黒色材料は、黒色光遮蔽性フィルム、黒色光遮蔽性ガラス、黒色紙、黒色 布、黒色インキ、プラズマディスプレイ(PDP)や液晶ディスプレイ(LCD)のブラック マトリックス材料、ブラックシール材、ブラックマスク材等に黒色や光遮蔽性を付与す る材料として利用されて 、る。
[0003] 一方、金、白金族元素、またはこれらの合金を黒色化する場合、これらの金属また は合金の母材の表面に黒色酸ィ匕物からなる被膜を形成する方法が採られているが、 この方法では、黒色酸ィ匕物が母材力 剥離し易ぐ耐久性のある黒色金合金が得ら れな力つた。そこで、金、白金族元素、またはこれらの合金、または前記いずれかの 金属または合金に銀を添加した合金に、銅、ニッケル、鉄等の金属を添加し、酸ィ匕す ることにより、表面に密着性の良い金属酸ィ匕物からなる黒色酸ィ匕物層を形成した黒 色合金が提案されて!ヽる (特許文献 2参照)。 さらに、感光材料の分野では、鮮鋭性を向上させ、裏面から露光された光学情報を 適切な濃度で記録し、かつ現像処理時の赤外線検出特性が改良された写真用の感 光材料として、水性ゼラチン中に黒色コロイド銀を分散した黒色コロイド銀分散物が 提案されて ヽる (特許文献 3参照)。
[0004] ところで、従来、薄型かつ大型の平面型表示装置として、フルカラー表示が可能な 液晶ディスプレイ (LCD)が知られて 、る。
このカラー液晶ディスプレイにおいては、透明基板上にマトリックス状に配列されて いる R (赤)、 G (緑)、 B (青)の各画素には、その表示面におけるコントラストを向上さ せるために、遮光性の高 、ブラックマトリックスが形成されて 、る。
このブラックマトリックスは、特に、薄膜トランジスタ (TFT)を用いたアクティブマトリツ タス型の液晶ディスプレイ (TFT— LCD)においては、 TFTの光が誘起するリーク電 流を防止するとともに、各画素の表示面以外の光の透過を阻止して各画素のコントラ ストを向上させることにより、表示装置としての画質を向上させることができる。
[0005] このブラックマトリックスは、 TFTアレイ基板側に形成する場合と、カラーフィルタ側 に形成する場合とがある。
TFTアレイ基板側に形成する場合、ブラックマトリックスが画素電極および TFTに 直接接触することになるために、ブラックマトリックスに高い絶縁性が要求される。 一方、カラーフィルタ側に形成する場合、特に横電界駆動方式の液晶ディスプレイ (LCD)の場合には、カラーフィルタ側のブラックマトリックスにも高い絶縁性が要求さ れる。
[0006] このブラックマトリックスは、従来では、遮光性の高!、Cr等の金属膜が、真空蒸着法 やスパッタリング法により透明な画素電極以外の部分を覆うように成膜されていたが、 近年、これに取って代わる材料として、遮光性が高ぐ製造工程が簡単で、し力も低 価格ィ匕を図ることが可能なブラックマトリックス形成用材料が開発され、実用に供され ている。
この様なブラックマトリックス形成用材料としては、例えば、表面を榭脂ゃ酸化ケィ 素により被覆して絶縁化させたカーボンブラックやチタンブラックを有機溶媒中に分 散させた分散液 (例えば、特許文献 4、 5参照)、銀微粒子等の金属微粒子を有機溶 媒中に分散させた分散液 (例えば、特許文献 6、 7参照)が提案されている。
[0007] 特許文献 1 :特開平 5— 127433号公報
特許文献 2:特開平 10— 8235号公報
特許文献 3 :特開 2000— 155387号公報
特許文献 4:特開 2002— 201381号公報
特許文献 5:特開 2002— 267832号公報
特許文献 6:特開 2004 - 317897号公報
特許文献 7:特開 2004— 334180号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、従来のカーボンブラック、低次酸化チタン、酸化鉄等の金属材料や 無機材料は、黒色ではあるが、光遮蔽性 (遮光性)が不十分である。そこで、これらの 黒色材料を含む膜を用いて光を遮蔽するためには、黒色材料を含む塗布液を厚く 塗布するか、該塗布液を複数回重ねて塗布することにより、厚みのある膜を基材に形 成する必要がある。
これらの黒色材料を白色基材上に黒色の線を描く記録材として用いた場合、遮光 性が弱いために、下地の白色基材との境界線部分がぼやけてしまい、シャープな線 を描くことができな!/、と!、う問題点があった。
また、これらの黒色材料を光遮蔽材料として用いた場合、光遮蔽性を高めるために は材料中の黒色材料の体積比を多くする必要があり、相対的にバインダーの含有量 力 S減少すること〖こなる。したがって、これらの黒色材料を用いて黒色塗膜を作製した 場合、塗膜の強度が低下し、塗膜を長期間に亘つて維持することができない、および 、遮光膜の信頼性を維持することができない、という問題点があった。
[0009] また、クロムは、黒色度及び光遮蔽性に優れているものの、重金属である点、環境 負荷が大きい点、高コストな点等、様々な理由から、適用可能な製品が制限されると いう問題点があった。
また、写真フィルム等に用 、られて 、る臭化銀を還元することにより生成される銀粒 子は、黒色度及び光遮蔽性に優れているが、銀自体が貴金属で、しかも高価である ことから、一部の高額な製品は別として、一般に汎用製品の黒色材料として用いられ ることはない。
また、写真フィルム等に用 、られて 、る臭化銀を還元することにより生成される銀粒 子や、黒色銀コロイドは、黒色度及び遮光性に優れているが、これらの黒色銀粒子 はゼラチンの存在下でしか合成することができず、しかも、合成後にゼラチンと銀粒 子を完全に分離することができな 、。
さらに、ゼラチンは有機溶剤に不溶であるから、有機溶剤への分散が不可能で、し たがって、水系の塗料にしか用いることができず、塗料の幅が非常に狭いという問題 点がめった。
さらに加えて、銀コロイドを用いて黒色塗膜を作製した場合、この黒色塗料は、遮光 性には優れるものの、メタリック色およびプラズモン吸収による色を帯びるために、優 れた黒色度を発現することができな 、と 、う問題点があった。
[0010] 本発明の第 1は、上記の課題を解決するためになされたものであって、黒色度が高 ぐかつ光遮蔽性に優れ、しかも、環境負荷が小さぐ安価な黒色材料を提供するこ とを目的とする。
[0011] 本発明の第 2は、上記の課題を解決するためになされたものであって、ニュートラル な黒色が得られ、かつ遮光性に優れ、し力も、環境負荷が小さぐ安価な黒色微粒子 分散液とそれを用いた黒色遮光膜及び黒色遮光膜付き基材を提供することを目的と する。
[0012] ところで、従来のカーボンブラックやチタンブラックを用いた分散液でブラックマトリツ タスを作製した場合、遮光性が不足しているために、分散液の高濃度化や重ね塗り 等で、膜厚を厚くする必要がある。しカゝしながら、膜厚を厚くすると、ブラックマトリック スと各画素との重なりが大きくなり、カラーフィルタの平坦性が低下し、各画素のセル ギャップにムラが生じるために、均一な画素が形成し難くなるという問題点があった。 セルギャップにムラが生じた場合、表示面に色むらが発生し易くなり、その結果、表 示面の品質が低下することとなる。
また、ブラックマトリックスと各画素との重なりが大きくなると、各画素におけるブラック マトリックスの占有面積が大きくなり、各画素の開口率が低下するという問題点があつ た。開口率が低下した場合、各画素の輝度が低下し、その結果、表示装置の表示面 全体の輝度が低下することとなる。
[0013] また、カーボンブラックやチタンブラックは、気相法や液相法で表面処理を行って ヽ るが、気相法で表面処理を行った場合、粒子を気相中に分散させることが難しいた めに、粒子同士が接触している状態で表面処理する物質と混合することとなり、した がって、表面処理の均一性が悪ぐ粒子同士の凝集等も問題となる。そこで、粒子の 表面にテトラエトキシシラン等のアルコキシドを気相吸着させた後、過剰のアルコキシ ドを減圧下にて除去する方法もある力 この方法には、操作が煩雑で時間及びコスト 力 Sかかるという問題点がある。
また、液相法で表面処理を行った場合、粒子が液相中に分散している状態で表面 処理することができるので、気相法に比べて均一に表面処理することが可能であるが 、例えば、カーボンブラックやチタンブラックは、粒子同士が凝集した粉末状態で得ら れるために、これらを水や有機溶剤中に分散させることが非常に困難である。
[0014] 一方、従来の金属微粒子を用いた分散液でブラックマトリックスを作製した場合、単 に金属微粒子を分散させたブラックマトリックスでは、高 、絶縁性が得られな 、と 、う 問題点があった。
特に、黒色銀微粒子を用いた分散液の場合、ゼラチンを用いて銀微粒子を合成し ているために、合成した後にゼラチンを完全に除去することができず、したがって、銀 微粒子を有機溶剤中に均一分散させることが難しい。この場合、ゼラチンを用いない と銀微粒子を合成することができな 、。
[0015] よって、本発明の第 3は、上記の課題を解決するためになされたものであって、溶 媒に分散させることが容易で、黒色度が高ぐしかも高い絶縁性を有する黒色微粒子 と黒色微粒子分散液及び黒色遮光膜並びに黒色遮光膜付き基材を提供することを 目的とする。
課題を解決するための手段
[0016] 本発明者等は、黒色度に優れ、かつ光遮蔽性に優れた材料について鋭意検討し た結果、粒子径が lnm以上かつ 200nm以下の金属および Zまたは金属酸ィ匕物か らなる 1次粒子^^合させて粒子径が 5nm以上かつ 300nm以下の 2次粒子とし、さ らに、この 2次粒子の最外層を、 Au、 Pt、 Pd、 Ag、 Ru、 Cu、 Si、 Ti、 Sn、 N ら選 択された 1種または 2種以上の元素またはこれらの酸ィ匕物を 50重量%以上含有した 構造とすることで、黒色度に優れ、かつ光遮蔽性に優れた黒色材料を得ることができ ることを見出し、本発明を完成するに至った。
[0017] すなわち、本発明の第 1である黒色材料は、粒子径が lnm以上かつ 200nm以下 の金属および Zまたは金属酸ィ匕物力 なる 1次粒子が集合した 2次粒子力 なり、こ の 2次粒子の粒子径は 5nm以上かつ 300nm以下であり、この 2次粒子の最外層は、 Au、 Pt、 Pd、 Ag、 Ru、 Cu、 Si、 Ti、 Sn、 N 選択された 1種または 2種以上の元 素またはこれらの酸ィ匕物を 50重量%以上含有してなることを特徴とする。
[0018] 前記 2次粒子は、内部に空間部が形成されていることが好ましい。
前記 2次粒子は、前記最外層または前記最外層を含む複数層からなる外殻層の内 側に空間部が形成されて 、ることが好ま 、。
前記 2次粒子は、核となる物質の外表面を前記最外層または前記最外層を含む複 数層からなる外殻層により被覆してなるコアシェル状であることが好ま ヽ。
前記外殻層は、緻密であることが好ましい。
[0019] また、本発明者等は、黒色度に優れ、遮光性に優れた材料につ!、て鋭意検討した 結果、平均粒子径が lnm以上かつ 200nm以下の金属および Zまたは金属酸ィ匕物 力もなる微粒子の 1次粒子が集合した、平均粒子径が 5nm以上かつ 300nm以下の 2次粒子と、高分子分散剤とを、含有してなる黒色微粒子分散液を用いれば、黒色 度が高ぐ遮光性に優れた黒色遮光膜や黒色装飾膜などを得ることができることを見 出し、本発明を完成するに至った。
[0020] すなわち、本発明の第 2である黒色微粒子分散液は、平均粒子径が lnm以上かつ 200nm以下の金属および Zまたは金属酸ィ匕物力 なる微粒子の 1次粒子が集合し た、平均粒子径が 5nm以上かつ 300nm以下の 2次粒子と、高分子分散剤とを、含 有してなることを特徴とする。
[0021] 前記微粒子は、銀、錫、ニッケルの群力 選択された 1種または 2種以上を含有して なることが好ましい。
前記高分子分散剤は、前記微粒子の全重量に対して 1重量%以上かつ 10重量% 以下含有してなることが好まし 、。
前記高分子分散剤は、ポリビュルピロリドンであることが好ま 、。
[0022] 前記 2次粒子は、内部に空間部が形成されていることが好ましい。
前記 2次粒子は、最外層または該最外層を含む複数層からなる外殻層の内側に空 間部が形成されて 、ることが好まし 、。
前記 2次粒子は、核となる物質の外表面を前記最外層または前記最外層を含む複 数層からなる外殻層により被覆してなるコアシェル状であることが好ま ヽ。
[0023] 本発明の黒色遮光膜は、本発明の黒色微粒子分散液を塗布してなることを特徴と する。
[0024] 本発明の黒色遮光膜付き基材は、基材のー主面に、本発明の黒色遮光膜を備え てなることを特徴とする。
前記黒色遮光膜は、 CIE明度 L*が 10以下、色度 a*が— 1以上かつ 1以下、色度 b *がー 1以上かつ 1以下、光学濃度である OD値が 3以上であることが好ましい。
[0025] さらに、本発明者等は、溶媒に分散させることが容易で、黒色度が高ぐしかも高い 絶縁性を有する材料について鋭意検討した結果、従来の銀微粒子を、平均粒子径 が lnm以上かつ 200nm以下の金属および Zまたは金属酸化物力 なる微粒子の 1 次粒子が集合した、平均粒子径が 5nm以上かつ 300nm以下の 2次粒子に替え、さ らに、この 2次粒子の表面を絶縁膜により被覆することで、溶媒に分散させることが容 易で、黒色度が高ぐしかも高い絶縁性を有する黒色微粒子を得ることができることを 見出し、本発明を完成するに至った。
[0026] すなわち、本発明の第 3である黒色微粒子は、平均粒子径が lnm以上かつ 200η m以下の金属および Ζまたは金属酸ィ匕物力 なる微粒子の 1次粒子が集合した、平 均粒子径が 5nm以上かつ 300nm以下の 2次粒子の表面力 絶縁膜により被覆され ていることを特徴とする。
[0027] 前記絶縁膜は、金属酸化物または有機高分子化合物であることが好ま Uヽ。
前記微粒子は、銀、錫、ニッケルの群力 選択された 1種または 2種以上を含有して なることが好ましい。
[0028] 本発明の黒色微粒子分散液は、本発明の黒色微粒子を含有してなることを特徴と する。
[0029] 本発明の黒色遮光膜は、本発明の黒色微粒子分散液を塗布してなることを特徴と する。
[0030] 本発明の黒色遮光膜付き基材は、基材のー主面に、本発明の黒色遮光膜を備え てなることを特徴とする。
発明の効果
[0031] 本発明の第 1の黒色材料によれば、粒子径が lnm以上かつ 200nm以下の金属お よび Zまたは金属酸ィ匕物力 なる 1次粒子が集合した 2次粒子力 なり、この 2次粒 子の粒子径は 5nm以上かつ 300nm以下であり、この 2次粒子の最外層を Au、 Pt、 Pd、 Ag、 Ru、 Cu、 Si、 Ti、 Sn、 N 選択された 1種または 2種以上の元素または これらの酸ィ匕物を 50重量%以上含有してなることとしたので、黒色材料自体の黒色 度を高めることができ、光遮蔽性も向上させることができる。
また、この黒色材料を用いて黒色塗膜を作製した場合においても、塗膜の強度が 低下する虞が無ぐ塗膜を長期間に亘つて維持することができる。
さらに、 2次粒子の最外層を、 Au、 Pt、 Pd、 Ag、 Ru、 Cu、 Si、 Ti、 Sn、 Niから選択 された 1種または 2種以上の元素またはこれらの酸ィ匕物を 50重量%以上含有した構 成としたので、環境負荷が小さぐ安価である。
以上により、黒色度が高ぐかつ光遮蔽性に優れ、しかも環境負荷力 、さぐ安価な 黒色材料を提供することができる。
[0032] 本発明の第 2の黒色微粒子分散液によれば、平均粒子径が lnm以上かつ 200nm 以下の金属および Zまたは金属酸化物からなる微粒子の 1次粒子が集合した、平均 粒子径が 5nm以上かつ 300nm以下の 2次粒子と、高分子分散剤とを、含有したの で、ニュートラルな黒色でかつ、遮光性の高い黒色遮光膜や黒色装飾膜を得ること ができる。
また、この黒色微粒子分散液を用いて塗膜を作製した場合、黒色微粒子分散液中 に分散した 2次粒子自体が黒色度や遮光性に優れているので、塗膜中のバインダー に対する黒色微粒子の量を減らすことができるため、塗膜の強度が低下することがな ぐ塗膜を長期間に亘つて維持することができる。 以上により、黒色度が高ぐかつ遮光性に優れ、しかも環境負荷力 、さぐ安価な黒 色遮光膜や黒色装飾膜を提供することができる。
[0033] 本発明の第 3の黒色微粒子によれば、平均粒子径が lnm以上かつ 200nm以下の 金属および Zまたは金属酸化物からなる微粒子の 1次粒子が集合した、平均粒子径 力 nm以上かつ 300nm以下の 2次粒子の表面を、絶縁膜により被覆したので、溶 媒に分散させることを容易とすることができ、黒色微粒子自体の黒色度を向上させる ことができ、絶縁性を高めることができる。
本発明の黒色微粒子分散液によれば、本発明の黒色微粒子を含有したので、黒 色微粒子の分散性を向上させることができ、塗布性を向上させることができる。
本発明の黒色遮光膜によれば、本発明の黒色微粒子分散液を塗布して得られた ので、膜厚が薄い場合であっても、遮光性および絶縁性を高めることができる。 この黒色遮光膜を液晶ディスプレイなどの平面型表示装置のブラックマトリックスに 適用すれば、膜厚を薄くすることでブラックマトリックスと各画素との重なりを小さくする ことができ、各画素のセルギャップのムラを小さくすることができ、画素の均一化を図 ることができる。したがって、表示面に色むらが発生し難くなり、表示面の品質を向上 させることができる。また、各画素の開口率を向上させることができ、表示装置の表示 面全体の輝度を向上させることができる。
図面の簡単な説明
[0034] [図 1]本発明の実施形態 (その 1)の黒色材料、実施形態 (その 2)の黒色微粒子の断 面構造を示す模式図である。
[図 2]本発明の実施形態 (その 1)の黒色材料、実施形態 (その 2)の黒色微粒子の断 面構造の他の例を示す模式図である。
[図 3]本発明の実施形態 (その 1)の黒色材料、実施形態 (その 2)の黒色微粒子の断 面構造の他の例を示す模式図である。
[図 4]本発明の実施形態 (その 1)の黒色材料、実施形態 (その 2)の黒色微粒子の断 面構造の他の例を示す模式図である。
[図 5]本発明の実施形態 (その 3)の黒色微粒子の断面構造を示す模式図である。
[図 6]本発明の実施形態 (その 3)の黒色微粒子の断面構造の他の例を示す模式図 である。
[図 7]本発明の実施形態 (その 3)の黒色微粒子の断面構造の他の例を示す模式図 である。
[図 8]本発明の実施形態 (その 3)の黒色微粒子の断面構造の他の例を示す模式図 である。
[図 9]本発明の実施例 1,7の粉末試料の粉末 X線回折図形を示す図である。
[図 10]本発明の実施例 2,8の粉末試料の粉末 X線回折図形を示す図である。
[図 11]本発明の実施例 3,9の粉末試料の粉末 X線回折図形を示す図である。
[図 12]本発明の実施例 4の粉末試料の粉末 X線回折図形を示す図である。
[図 13]本発明の実施例 5の粉末試料の粉末 X線回折図形を示す図である。
符号の説明
[0035] 1、 11、 21、 31 黒色材料
2 1次粒子
3 2次粒子
4 微粒子
5 絶縁膜
12、 23 空間部
22 緻密な外殻層
32 粒子状の核
発明を実施するための最良の形態
[0036] 実施の形態 (その 1) :
先ず、本発明の第 1である、黒色材料の最良の形態について説明する。 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するもの であり、特に指定のない限り、本発明を限定するものではない。
[0037] 本実施形態の黒色材料は、粒子径が lnm以上かつ 200nm以下の金属および Z または金属酸ィ匕物からなる 1次粒子が集合した 2次粒子力もなり、この 2次粒子の粒 子径は 5nm以上かつ 300nm以下であり、この 2次粒子の最外層が Au、 Pt、 Pd、 Ag 、 Ru、 Cu、 Si、 Ti、 Sn、 Niから選択された 1種または 2種以上の元素またはこれらの 酸化物を 50重量%以上含有してなる黒色材料である。
[0038] この 2次粒子は、その最外層が Au、 Pt、 Pd、 Ag、 Ru、 Cu、 Si、 Ti、 Sn、 N ら選 択された 1種または 2種以上の元素またはこれらの酸ィ匕物を 50重量%以上含有した ものであればよぐこの最外層を除く部分の材料組成については、限定されない。
[0039] この 2次粒子は、内部に空間部が形成されている形態が最も好ましぐ次いで、複 数層からなる外殻層の内側に空間部が形成されている形態、もしくは、核となる物質 の外表面を前記最外層または前記最外層を含む複数層からなる外殻層により被覆し てなるコアシェル状である形態が好まし 、。
[0040] 次に、この黒色材料の断面形状について説明する。
この黒色材料は、次の様な様々な構造を採ることができる。
(1)密構造
図 1は、本実施形態の黒色材料の断面構造を模式的に示す断面図であり、図にお いて、 1は黒色材料であり、粒子径が lnm以上かつ 200nm以下の金属および Zま たは金属酸ィ匕物力 なる 1次粒子 2が集合して、粒子径が 5nm以上かつ 300nm以 下の 2次粒子 3とされ、この 2次粒子 3の最外層は Au、 Pt、 Pd、 Ag、 Ru、 Cu、 Si、 Ti 、 Sn、 Niから選択された 1種または 2種以上の元素またはこれらの酸ィ匕物を 50重量 %以上含有した 1次粒子である微粒子 4により構成されている。この黒色材料 1は、 1 次粒子 2が密に集合したことにより、内部に空間部の無い密構造になっている。
[0041] (2)中空構造 (その 1)
図 2は、本実施形態の黒色材料の断面構造の他の例を模式的に示す断面図であ り、この黒色材料 11が図 1の黒色材料 1と異なる点は、 2次粒子 3の内部に空間部 12 を形成した点である。
[0042] (3)中空構造 (その 2)
図 3は、本実施形態の黒色材料の断面構造の他の例を模式的に示す断面図であ り、この黒色材料 21が図 2の黒色材料 11と異なる点は、微粒子 4のみにより緻密な外 殻層 22を構成し、この外殻層 22の内側を空間部 23とした点である。
この外殻層 22は、ここでは、微粒子 4のみの 1層とした力 2層以上の複数層からな る構成としてちよい。 [0043] (4)コアシェル構造
図 4は、本実施形態の黒色材料の断面構造の他の例を模式的に示す断面図であ り、この黒色材料 31が図 1の黒色材料 1と異なる点は、粒子状の核 32の外表面を微 粒子 4のみカゝらなる緻密な外殻層 22により被覆した構成である。
核 32を構成する物質としては、特に限定されないが、外殻層 22を構成する微粒子 4と密着性に優れている物質が好ましぐ例えば、酸化ケィ素(SiO )、酸ィ匕チタン (Ti
2
O )、酸ィ匕ジルコニウム (ZrO )等が好適に用いられる。
2 2
[0044] これらの黒色材料 1〜31は、通常の微粒子合成法を用いて作製することができる。
微粒子合成法としては、気相反応法、噴霧熱分解法、アトマイズ法、液相反応法、凍 結乾燥法、水熱合成法等、いずれの方法を用いても良い。
[0045] 本実施形態の黒色材料によれば、粒子径が lnm以上かつ 200nm以下の金属お よび Zまたは金属酸ィ匕物力 なる 1次粒子が集合した 2次粒子力 なり、この 2次粒 子の粒子径は 5nm以上かつ 300nm以下であり、この 2次粒子の最外層を Au、 Pt、 Pd、 Ag、 Ru、 Cu、 Si、 Ti、 Sn、 N 選択された 1種または 2種以上の元素または これらの酸ィ匕物を 50重量%以上含有してなることで、黒色度を高めることができ、光 遮蔽'性ち向上させることができる。
[0046] 実施の形態 (その 2) :
次に、本発明の第 2である、黒色微粒子分散液とそれを用いた黒色遮光膜及び黒 色遮光膜付き基材の最良の形態について説明する。
[0047] 本実施形態の黒色微粒子分散液は、平均粒子径が lnm以上かつ 200nm以下の 金属および Zまたは金属酸化物からなる微粒子の 1次粒子が集合した、平均粒子径 力 nm以上かつ 300nm以下の 2次粒子と、高分子分散液とを、含有したものである この黒色微粒子分散液には、溶媒、必要に応じて有機ノ ンダ一などが含まれる。
[0048] この微粒子は、元素は特に限定されないが、銀、錫、ニッケルの群力も選択された 1 種または 2種以上を含有してなるものが好ま 、。
[0049] この 2次粒子は、内部に空間部が形成されている形態が最も好ましぐ次いで、最 外層または該最外層を含む複数層からなる外殻層の内側に空間部が形成されてい る形態、もしくは、核となる物質の外表面を前記最外層または前記最外層を含む複 数層からなる外殻層により被覆してなるコアシェル状である形態が好ましい。また、こ の 2次粒子は、 1次粒子が分散剤などを介して集合して ヽるだけの形態でもよ!/ヽが、 分散剤などを介さずに 1次粒子が互いに直に接している形態、もしくは 1次粒子間に ネックを有して接合して 、る形態がより好ま U、。
[0050] 次に、この 2次粒子をなす黒色微粒子の断面形状について、上記実施の形態 (そ の 1)で用いた図 1〜4を用いて説明する。
この黒色微粒子は、次の様な様々な構造を採ることができる。
[0051] (1)密構造
図 1は、本実施形態の黒色微粒子の断面構造を模式的に示す断面図であり、図に おいて、符号 1は黒色微粒子(黒色材料)であり、平均粒子径が lnm以上かつ 200η m以下の金属および Ζまたは金属酸ィ匕物力 なる 1次粒子 2が集合して、平均粒子 径が 5nm以上かつ 300nm以下の 2次粒子 3とされ、この黒色微粒子 1は、 1次粒子 2 が密に集合したことにより、内部に粒子の間隙以外には大きな空間部のない密構造 になっている。また、 1次粒子 2は 1種類の金属または金属酸化物から構成されても、 2種類以上の金属および Zまたは金属酸ィ匕物力 構成されても構わない。また、この 2次粒子の形状は特に制限はなぐ球状、不定形、板状など種々の形状のものを使 用することができる。
[0052] (2)中空構造 (その 1)
図 2は、本実施形態の黒色微粒子の断面構造の他の例を模式的に示す断面図で あり、この黒色微粒子(黒色材料) 11が図 1の黒色微粒子 1と異なる点は、 2次粒子 3 の内部に空間部 12を形成した点である。この 2次粒子の形状は特に制限はなぐ球 状、不定形、板状など種々の形状のものを使用することができる。また、この中空構 造は完全な状態でなくてもよぐ外部と空間部 12がポアで繋がっていても良いし、例 えば図 2の球状の 2次粒子がいくつかに割れた形状になっていても良い。
[0053] (3)中空構造 (その 2)
図 3は、本実施形態の黒色微粒子の断面構造の他の例を模式的に示す断面図で あり、この黒色微粒子(黒色材料) 21が図 2の黒色微粒子 11と異なる点は、微粒子 4 のみにより外殻層 22を構成し、この外殻層 22の内側を空間部 23とした点である。 この外殻層 22は、ここでは、微粒子 4の 1層とした力 2層以上の複数層からなる構 成としてもよい。また、この黒色微粒子の形状は特に制限はなぐ球状、不定形、板 状など種々の形状のものを使用することができる。また、この中空構造は完全な状態 でなくてもよぐ外部と空間部 23がポアで繋がっていても良いし、例えば図 3の球状 の黒色微粒子が 、くつかに割れた形状になって 、ても良 、。
[0054] (4)コアシェル構造
図 4は、本実施形態の黒色微粒子の断面構造の他の例を模式的に示す断面図で あり、この黒色微粒子 (黒色材料) 31が図 1の黒色材料 1と異なる点は、粒子状の核 3 2の外表面を微粒子 4のみ力もなる外殻層 22により被覆した構成である。また、この 外殻層 22は完全な状態でなくてもよぐ外部と核 32がポアで繋がっていても良い。こ の黒色微粒子の形状は特に制限はなぐ球状、不定形、板状など種々の形状のもの を使用することができる。
核 32を構成する物質としては、特に限定されないが、外殻層 22を構成する微粒子 4と密着性に優れている物質が好ましぐ例えば、銀、錫、ニッケル、酸化ケィ素(SiO )、酸ィ匕チタン (TiO )、酸ィ匕ジルコニウム (ZrO )などが好適に用いられる。
2 2 2
[0055] 高分子分散剤は、微粒子の表面の濡れ性を向上させることで、この微粒子の分散 性を向上させ、その結果、分散液の均一性を向上させるもので、例えば、ポリビュル ピロリドン (PVP)、ポリエチレングリコール、ポリアクリルアミドなどが好適に用いられる この高分子分散剤は、黒色微粒子分散液に含まれる微粒子の全重量に対して 1重 量%以上かつ 10重量%以下含有してなることが好ましぐより好ましくは 2重量%以 上かつ 8重量%以下、さらに好ましくは 3重量%以上かつ 6重量%以下である。
[0056] 溶媒としては、特に限定されるものではないが、例えば、水、メタノール、エタノール 、 n—プロパノール、 2—プロパノール、ブタノールなどの一価アルコール類、ェチレ ングリコールなどの二価アルコール類、 /3 ォキシェチルメチルエーテル(メチルセ 口ソルブ)、 j8—ォキシェチルエーテル(ェチルセ口ソルブ)、 j8—ォキシェチルプロ ピルエーテル(プロピルセロソルブ)、ブチルー β ォキシェチルエーテル(ブチルセ 口ソルブ)などのエチレングリコールエーテル(セロソルブ)類、エチレングリコール、プ ロピレングリコールなどのグリコール類、アセトン、メチルェチルケトン、ジェチルケトン などのケトン類、酢酸ェチル、酢酸ブチル、酢酸べンジルなどのエステル類、メトキシ エタノール、エトキシエタノールなどのエーテルアルコール類、プロピレングリコール モノメチルエーテルアセテートなどを挙げることができる。
[0057] 本実施形態の黒色微粒子分散液中の黒色微粒子は、通常の微粒子合成法を用い て作製することができる。微粒子合成法としては、気相反応法、噴霧熱分解法、アト マイズ法、液相反応法、凍結乾燥法、水熱合成法など、いずれの方法を用いてもよ い。
[0058] 本実施形態の黒色微粒子分散液によれば、平均粒子径が lnm以上かつ 200nm 以下の金属および Zまたは金属酸化物からなる微粒子の 1次粒子が集合した、平均 粒子径が 5nm以上かつ 300nm以下の 2次粒子を含有したので、黒色度を高めるこ とができ、遮光性も向上させることができる。
また、高分子分散剤を、黒色微粒子分散液に含まれる微粒子の全重量に対して 1 重量%以上かつ 10重量%以下含有することで、良好な分散安定性を得ることができ 、良好な黒色遮光性を得ることができる。
[0059] また、高分子分散剤としてポリビニルピロリドンを用いることで、さらに良好な分散安 定性を得ることができる。このポリビュルピロリドンは有機溶剤にも可溶であるから、ポ リビュルピロリドンを高分子分散剤として用いることで、微粒子をさまざまな溶剤へ分 散させることができ、その結果、さまざまな塗料への応用が可能となる。
以上により、黒色度が高ぐ遮光性に優れ、し力も環境負荷が小さぐ安価な黒色遮 光膜の原料となる黒色微粒子分散液を提供することができる。
[0060] 本実施形態の黒色遮光膜は、本実施形態の黒色微粒子分散液を基材上に塗布し 、その後乾燥することで得られる。
この黒色遮光膜を基材のー主面に形成すれば、黒色遮光膜付き基材となる。 基材としては、特に限定されるものではないが、ガラス基材、プラスチック基材 (有機 高分子基材)を挙げることができる。また、その形状としては、平板、フィルム状、シー ト状などが挙げられる。また、上記のプラスチック基材としては、プラスチックシート、プ ラスチックフィルムなどが好適である。
[0061] ガラス基材の材質としては、特に限定されるものではな 、が、例えば、ソーダガラス 、カリガラス、無アルカリガラスなど力も適宜選択することができる。
プラスチック基材の材質としては、特に限定されるものではないが、例えば、セル口 ースアセテート、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエーテル 、ポリイミド、エポキシ、フエノキシ、ポリカーボネート(PC)、ポリフッ化ビ-リデン、トリ ァセチルセルロース、ポリエーテルスルホン(PES)、ポリアタリレートなどから適宜選 択することができる。
[0062] 塗布方法としては、通常用いられている方法、例えば、バーコート法、スピンコート 法、スプレーコート法、インクジェット法、ディップ法、ロールコート法、スクリーン印刷 法などが好適に用いられる。
[0063] 基材上に塗布された分散液は溶媒を含んでいるので、その後の乾燥工程により溶 媒を除去する。
例えば、分散液が塗布された基材を、大気中、室温 (25°C)に放置するか、あるい は所定の温度、例えば、大気中、 50°C〜80°Cの温度にて加熱することにより、分散 液に含まれる溶媒を散逸させ、黒色遮光膜とする。
[0064] 前記黒色遮光膜は、 CIE (国際照明委員会)により規格化された CIE明度 L*が 10 以下、色度 a*がー 1以上かつ 1以下、色度 b*がー 1以上かつ 1以下、光学濃度であ る OD値が 3以上であることが好ましい。
[0065] CIE明度 L*が低いほど黒色遮光膜の黒色度が上がり、ブラックマトリックスとして用 いた場合は表示コントラストが向上する。色度 a*、色度 b*は、 +の値でも、—の値で も数値が大きくなると色相を帯びるので、 0に近い値、すなわち、黒色遮光膜が無彩 色であることが表示品位の点力 好ま 、。 OD値が低 、と十分な遮光性を得るため には黒色遮光膜の膜厚が厚くなつてしまうので、特に、黒色遮光膜をブラックマトリツ タスとして用いた場合、黒色遮光膜の膜厚が厚くなると、表示ムラなどの問題が発生 する。
[0066] 実施の形態 (その 3) :
次いで、本発明の第 3である、黒色微粒子と黒色微粒子分散液及び黒色遮光膜並 びに黒色遮光膜付き基材の最良の形態について説明する。
[0067] 本実施形態の黒色微粒子は、平均粒子径が lnm以上かつ 200nm以下の金属お よび Zまたは金属酸化物からなる微粒子の 1次粒子が集合した、平均粒子径が 5nm 以上かつ 300nm以下の 2次粒子の表面が、絶縁膜により被覆されて ヽる。
[0068] この微粒子は、元素は特に限定されないが、銀、錫、ニッケルの群力 選択された 1 種または 2種以上を含有してなるものが好ま 、。
[0069] この 2次粒子は、内部に空間部が形成されている形態が最も好ましぐ次いで、最 外層または該最外層を含む複数層からなる外殻層の内側に空間部が形成されてい る形態、もしくは、核となる物質の外表面を前記最外層または前記最外層を含む複 数層からなる外殻層により被覆してなるコアシェル状である形態が好ましい。また、こ の 2次粒子は、 1次粒子が分散剤などを介して集合して ヽるだけの形態でもよ!/ヽが、 分散剤などを介さずに 1次粒子が互いに直に接している形態、もしくは 1次粒子間に ネックを有して接合して 、る形態がより好ま U、。
[0070] この黒色微粒子の構成要素である微粒子は、通常の微粒子合成法を用いて作製 することができる。微粒子合成法としては、気相反応法、噴霧熱分解法、アトマイズ法 、液相反応法、凍結乾燥法、水熱合成法など、いずれの方法を用いてもよい。
[0071] 絶縁膜は、平均粒子径が lnm以上かつ 200nm以下の金属および Zまたは金属 酸ィ匕物からなる微粒子の 1次粒子が集合した、平均粒子径が 5nm以上かつ 300nm 以下の 2次粒子の表面を絶縁化させることにより高絶縁性微粒子とするもので、金属 酸ィ匕物または有機高分子化合物が好適である。
金属酸ィ匕物としては、絶縁性を有する金属酸化物、例えば、酸ィ匕ケィ素(シリカ)、 酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコユア)、酸化イットリウム (イット リア)、酸ィ匕チタン (チタ-ァ)などが好適に用いられる。
[0072] また、有機高分子化合物としては、絶縁性を有する榭脂、例えば、ポリイミド、ポリエ 一テル、ポリアタリレート、ポリアミンィ匕合物などが好適に用いられる。
[0073] 絶縁膜の膜厚は、上記微粒子の表面の絶縁性を十分に保持することができるため には l〜100nmの厚みが好ましぐより好ましくは 5〜50nmである。
[0074] この絶縁膜は、表面改質技術あるいは表面のコーティング技術により容易に形成 することができる。特に、テトラエトキシシラン、アルミニウムトリエトキシドなどのアルコ キシドを用いれば、比較的低温で、膜厚の均一な絶縁膜を形成することができるので 好ましい。
[0075] 次に、本実施形態の黒色微粒子の断面形状について説明する。
この黒色微粒子は、次の様な様々な構造を採ることができる。
(1)密構造
図 5は、本実施形態の黒色微粒子の断面構造を模式的に示す断面図であり、図に おいて、符号 1は黒色微粒子であり、平均粒子径が lnm以上かつ 200nm以下の金 属および Zまたは金属酸ィ匕物力 なる 1次粒子 2が集合して、平均粒子径が 5nm以 上かつ 300nm以下の 2次粒子 3とされ、この黒色微粒子 1は、 1次粒子 2が密に集合 したことにより、内部に粒子の間隙以外には大きな空間部の無い密構造をなし、さら に、 2次粒子 3の表面が、絶縁膜 5により被覆されている。また、 1次粒子 2は 1種類の 金属または金属酸化物から構成されても、 2種類以上の金属および Zまたは金属酸 化物から構成されても構わない。また、この 2次粒子の形状は特に制限はなぐ球状 、不定形、板状など種々の形状のものを使用することができる。
[0076] (2)中空構造 (その 1)
図 6は、本実施形態の黒色微粒子の断面構造の他の例を模式的に示す断面図で あり、この黒色微粒子 11が図 1の黒色微粒子 1と異なる点は、 2次粒子 3の内部に空 間部 12を形成した点である。この黒色微粒子 11でも、 2次粒子 3の表面が、絶縁膜 5 により被覆されている。この 2次粒子の形状は特に制限はなぐ球状、不定形、板状 など種々の形状のものを使用することができる。また、この中空構造は完全な状態で なくてもよぐ外部と空間部 12がポアで繋がっていても良いし、例えば図 2の球状の 2 次粒子が!/、くつかに割れた形状になって 、ても良!、。
[0077] (3)中空構造 (その 2)
図 7は、本実施形態の黒色微粒子の断面構造の他の例を模式的に示す断面図で あり、この黒色微粒子 21が図 2の黒色微粒子 11と異なる点は、微粒子 4のみにより外 殻層 22を構成し、この外殻層 22の内側を空間部 23とした点である。この黒色微粒子 21でも、 2次粒子 3の表面が、絶縁膜 5により被覆されている。 この外殻層 22は、ここでは、微粒子 4の 1層とした力 2層以上の複数層からなる構 成としてもよい。また、この黒色微粒子の形状は特に制限はなぐ球状、不定形、板 状など種々の形状のものを使用することができる。また、この中空構造は完全な状態 でなくてもよぐ外部と空間部 23がポアで繋がっていても良いし、例えば図 3の球状 の黒色微粒子が 、くつかに割れた形状になって 、ても良 、。
[0078] (4)コアシェル構造
図 8は、本実施形態の黒色微粒子の断面構造の他の例を模式的に示す断面図で あり、この黒色微粒子 31が図 1の黒色材料 1と異なる点は、粒子状の核 32の外表面 を微粒子 4のみカゝらなる外殻層 22により被覆した構成である。この黒色微粒子 31で も、 2次粒子 3の表面が、絶縁膜 5により被覆されている。また、この外殻層 22は完全 な状態でなくてもよぐ外部と核 32がポアで繋がっていても良い。この黒色微粒子の 形状は特に制限はなぐ球状、不定形、板状など種々の形状のものを使用することが できる。
核 32を構成する物質としては、特に限定されないが、外殻層 22を構成する微粒子 4と密着性に優れている物質が好ましぐ例えば、銀、錫、ニッケル、酸化ケィ素(SiO )、酸ィ匕チタン (TiO )、酸ィ匕ジルコニウム (ZrO )などが好適に用いられる。
2 2 2
[0079] 本実施形態の黒色微粒子では、平均粒子径が lnm以上かつ 200nm以下の金属 および Zまたは金属酸化物からなる微粒子の 1次粒子が集合した、平均粒子径が 5n m以上かつ 300nm以下の 2次粒子の表面を、絶縁膜により被覆したことにより、 Ag 粒子や Sn粒子に比べて黒色度が高まり、遮光性が向上し、絶縁性も向上する。 また、平均粒子径が lnm以上かつ 200nm以下の金属および Zまたは金属酸化物 力もなる微粒子の 1次粒子が集合した、平均粒子径が 5nm以上かつ 300nm以下の 2次粒子の表面を、金属酸ィ匕物カゝらなる絶縁膜により被覆することにより、 Ag粒子や Sn粒子等の金属微粒子に比べて耐熱性に優れたものとなり、し力も、機械的強度が 高ぐ摩耗し難い。
[0080] 本実施形態の黒色微粒子分散液は、本実施形態の黒色微粒子を含有したもので あり、この黒色微粒子分散液には、溶媒、必要に応じて有機バインダーなどが含まれ る。 [0081] 溶媒としては、特に限定されるものではないが、例えば、上記実施の形態 (その 2) で例示された溶媒を同様に用いることができる。
[0082] 本実施形態の黒色微粒子分散液では、平均粒子径が lnm以上かつ 200nm以下 の金属および Zまたは金属酸化物からなる微粒子の 1次粒子が集合した、平均粒子 径が 5nm以上かつ 300nm以下の 2次粒子の表面を絶縁膜により被覆した黒色微粒 子を含有したことにより、黒色度が高ぐ遮光性および絶縁性に優れ、し力も安価な 黒色遮光膜の原料となる黒色微粒子分散液を提供することが可能になる。
[0083] また、高分子分散剤としてポリビニルピロリドンを用いることで、さらに良好な分散安 定性を得ることができる。このポリビュルピロリドンは有機溶剤にも可溶であるから、ポ リビュルピロリドンを高分子分散剤として用いることで、微粒子をさまざまな溶剤へ分 散させることができ、その結果、さまざまな塗料への応用が可能となる。
以上により、黒色度が高ぐ遮光性に優れ、し力も環境負荷が小さぐ安価な黒色遮 光膜の原料となる黒色微粒子分散液を提供することができる。
[0084] 本実施形態の黒色遮光膜は、本実施形態の黒色微粒子分散液を基材上に塗布し
、その後乾燥することで得られる。
この黒色遮光膜を基材のー主面に形成すれば、黒色遮光膜付き基材となる。 基材としては、特に限定されるものではないが、ガラス基材、プラスチック基材 (有機 高分子基材)を挙げることができる。また、その形状としては、平板、フィルム状、シー ト状などが挙げられる。また、上記のプラスチック基材としては、プラスチックシート、プ ラスチックフィルムなどが好適である。
[0085] ガラス基材およびプラスチック基材の材質としては、特に限定されるものではないが
、例えば、上記実施の形態 (その 2)で例示されたガラス基材およびプラスチック基材 の材質を同様に用いることができる。
[0086] 塗布方法としては、通常用いられている方法、例えば、バーコート法、スピンコート 法、スプレーコート法、インクジェット法、ディップ法、ロールコート法、スクリーン印刷 法などが好適に用いられる。
[0087] 基材上に塗布された分散液は溶媒を含んでいるので、その後の乾燥工程により溶 媒を除去する。 例えば、分散液が塗布された基材を、大気中、室温 (25°C)に放置するか、あるい は所定の温度、例えば、大気中、 50°C〜80°Cの温度にて加熱することにより、分散 液に含まれる溶媒を散逸させ、黒色遮光膜とする。
[0088] この黒色遮光膜は、液晶ディスプレイ (LCD)などの表示装置のブラックマトリックス として用いる場合、高絶縁性を有することが好ましぐ例えば、体積抵抗(Ω 'cm)とし ては 107 Ω 'cm以上が好ましい範囲である。
[0089] また、 CIE (国際照明委員会)により規格化された CIE明度 L*が 10以下、色度 a*が
1以上かつ 1以下、色度 b*がー 1以上かつ 1以下、光学濃度である OD値が 3以上 であることが好ましい。
CIE明度 L*は、低いほど黒色度が向上し、特に、液晶ディスプレイ (LCD)などの 表示装置のブラックマトリックスとして用いた場合には、低いほど表示のコントラストが 向上する。そこで、表示コントラストが良好な範囲である 10以下を好ましい範囲とした
[0090] 色度 a*、 b*は、無彩色であることが表示品位の点から好ましぐ絶対値が 1を超える と色相を帯びるので、好ましい範囲を無彩色となる絶対値が 1以下、すなわち 1以 上かつ 1以下とした。
OD値は、低いと十分な遮光性が得られず、また、低い OD値の膜で十分な遮光性 を得るためには膜厚を厚くせざるを得ず、特に、液晶ディスプレイ (LCD)などのブラ ックマトリックスとして用いた場合、膜厚が厚くなることにより、表示ムラなどが生じ易く なる。そこで、膜厚が薄い場合であっても、十分な遮光性が得られる範囲を 3以上とし た。
実施例
[0091] 以下、本発明の実施の形態 (その 1)について、実施例 1〜6及び比較例 1〜3によ つて、より具体的に説明するが、本発明はこれらの実施例によって限定されるもので はない。
[0092] (実施例 1)
錫コロイド (平均粒子径: 90nm、固形分 : 30重量%、住友大阪セメント社製)を 10g 分取し、これに純水を加え、全容量が 300mlの A液を得た。また、硝酸銀 1. 5gおよ びチォ硫酸ナトリウム 33gを秤量 '混合し、これに純水をカ卩えて水溶液とし、この水溶 液に濃アンモニア水(NH : 28%)を 5mlカロえ、さらに純水をカロえ、全容量が 100ml
3
の B液を得た。
次いで、これら A液と B液をマグネチックスターラを用いて 10分間混合し、次いで、 遠心分離により洗浄を行い、固形分が 15%の C液を得た。
[0093] この C液中の粒子の形状を透過型電子顕微鏡 (TEM)により観察したところ、粒子 径が 50〜90nmの粒子の表面を、粒子径が 10〜30nmの粒子が覆う形状であった また、この C液から濾過法により粒子を分離し、その後乾燥させて、実施例 1の粉末 試料を作製し、この粉末試料中の生成相を X線回折装置を用いて同定した。
図 9は、実施例 1の粉末試料の粉末 X線回折図形を示す図であり、図中、〇印は錫 (Sn)の回折線、△印は Ag Sn合金相または Ag Sn合金相の回折線である。
4 3
この粉末 X線回折図形と上記の合成手順により、 C液中の粒子は、核となる Sn粒子 の表面を Ag · Sn合金微粒子で覆ったコアシェル構造であることが分力つた。
[0094] 次いで、この C液に、 C液中の固形分: PVA= 50 : 50の体積比となるように PVA水 溶液を加え、超音波分散機(ソ -フアイヤー 450 : BRANSON ULTRASONICS社製)に て分散処理した後、 1時間静置し、塗布液とした。
次いで、この塗布液をスピンコート法により厚み 1. 1mmのガラス基板上に塗布し、 黒色の塗膜とした。ここでは、塗布液中の水分量を調整することにより、塗膜の厚み を 0. 5 mとした。
[0095] 次いで、この黒色膜を室温 (25°C)にて乾燥後、膜厚測定機テンコール (テンコー ル社)により膜厚を測定し、分光スペクトルメーターにより 550nmの波長の光に対す る黒色膜自体の光透過率を測定した。
また、この黒色膜の黒色度を評価するために、この黒色膜の CIE明度 L*を、 CIE ( 国際照明委員会)により規格化された L*a*b*表色系に基づいて測定した。これらの 測定結果を表 1に示す。
[0096] (実施例 2)
実施例 1で得た C液に純水を加えて 10倍に希釈し、この希釈液に酒石酸水溶液 ( 酒石酸: 5%)を lOOg加えて 10分間攪拌し、次いで、遠心分離により洗浄を行い、固 形分が 15%の D液を得た。
この D液中の粒子の形状を透過型電子顕微鏡 (TEM)により観察したところ、粒子 径が 50〜90nmで内部に空間部が形成された中空状の粒子が多数存在しているこ とが分力つた。この中空粒子は、粒子径が 10〜30nmの粒子が集合した形状であつ た。
[0097] また、この D液力も濾過法により粒子を分離し、その後乾燥させて、実施例 2の粉末 試料を作製し、この粉末試料中の生成相を X線回折装置を用いて同定した。
図 10は、実施例 2の粉末試料の粉末 X線回折図形を示す図であり、図中、〇印は Snの回折線、△印は Ag Sn合金相または Ag Sn合金相の回折線である。
4 3
以上により、 D液中の粒子は、 Ag' Sn合金で構成された中空粒子であることが分か つた o
[0098] 次いで、この D液に、 D液中の固形分: PVA= 50 : 50の体積比となるように PVA水 溶液を加え、超音波分散機(ソ -フアイヤー 450 : BRANSON ULTRASONICS社製)に て分散処理した後、 1時間静置し、塗布液とした。
次いで、この塗布液をスピンコート法により厚み 1. 1mmのガラス基板上に塗布し、 黒色の塗膜とした。ここでは、塗布液中の水分量を調整することにより、塗膜の厚み を 0. 5 mとした。
[0099] 次 、で、この黒色膜を室温 (25°C)にて乾燥した後、膜厚測定機テンコール (テンコ ール社)により膜厚を測定し、分光スペクトルメーターにより 550nmの波長の光に対 する黒色膜自体の光透過率を測定した。
また、この黒色膜の CIE明度 L*を、 CIEにより規格ィ匕された L*a*b*表色系に基づ いて測定した。これらの測定結果を表 1に示す。
[0100] (実施例 3)
実施例 2で得た D液に純水をカ卩えて 10倍に希釈し、この希釈液をサンドミルを用い て 5分間分散処理し、固形分が 15%の E液を得た。
この E液中の粒子の形状を透過型電子顕微鏡 (TEM)により観察したところ、粒子 径が 10〜30nmの粒子が集合して粒子径が 50〜150nmの粒子を形成していること が分かった。
[0101] また、この E液から濾過法により粒子を分離し、その後乾燥させて、実施例 3の粉末 試料を作製し、この粉末試料中の生成相を X線回折装置を用いて同定した。
図 11は、実施例 3の粉末試料の粉末 X線回折図形を示す図であり、図中、△印は Ag Sn合金相または Ag Sn合金相の回折線である。
4 3
以上により、 E液中の粒子は、 Ag' Sn合金微粒子が集合した粒子であることが分か つた o
[0102] 次いで、この E液に、 E液中の固形分: PVA= 50 : 50の体積比となるように PVA水 溶液を加え、超音波分散機(ソ -フアイヤー 450 : BRANSON ULTRASONICS社製)に て分散処理した後、 1時間静置し、塗布液とした。
次いで、この塗布液をスピンコート法により厚み 1. 1mmのガラス基板上に塗布し、 黒色の塗膜とした。ここでは、塗布液中の水分量を調整することにより、塗膜の厚み を 0. 5 mとした。
[0103] 次いで、この黒色膜を室温 (25°C)にて乾燥した後、膜厚測定機テンコール (テンコ ール社)により膜厚を測定し、分光スペクトルメーターにより 550nmの波長の光に対 する黒色膜自体の光透過率を測定した。
また、この黒色膜の CIE明度 L*を、 CIEにより規格ィ匕された L*a*b*表色系に基づ いて測定した。これらの測定結果を表 1に示す。
[0104] (実施例 4)
ぶどう糖 2. 3gと酒石酸 0. 2gとエタノール 4gに水を加え,全重量が 50gの F液を得 た。また、硝酸銀 1. 5gに濃アンモニア水(NH : 28%)を 5mlカ卩え、さらに純水を加
3
え、全重量が 50gの G液を得た。
次いで、これら F液と G液を混合し、この混合液を実施例 1で用いた A液に加え、こ の溶液を攪拌しながら、この溶液に 0. 05Nの水酸ィ匕ナトリウム水溶液 10gをゆっくり 滴下した。次いで、この溶液をマグネチックスターラを用いて 10分間攪拌し、その後、 遠心分離により洗浄を行い、固形分が 15%の H液を得た。
[0105] この H液中の粒子の形状を透過型電子顕微鏡 (TEM)により観察したところ、粒子 径が 80〜100nmの表面が滑らかな粒子であった。 また、この H液から濾過法により粒子を分離し、その後乾燥させて、実施例 4の粉末 試料を作製し、この粉末試料中の生成相を X線回折装置を用いて同定した。
図 12は、実施例 4の粉末試料の粉末 X線回折図形を示す図であり、図中、〇印は Snの回折線、 X印は銀 (Ag)の回折線、△印は Ag Sn合金相または Ag Sn合金相
4 3 の回折線である。
以上により、 H液中の粒子は、表面が Agと Ag' Sn合金の緻密な層で構成されてい ることが分かった。
[0106] 次いで、この H液に、 H液中の固形分: PVA= 50 : 50の体積比となるように PVA水 溶液を加え、超音波分散機(ソ -フアイヤー 450 : BRANSON ULTRASONICS社製)に て分散処理した後、 1時間静置し、塗布液とした。
次いで、この塗布液をスピンコート法により厚み 1. 1mmのガラス基板上に塗布し、 黒色の塗膜とした。ここでは、塗布液中の水分量を調整することにより、塗膜の厚み を 0. 5 mとした。
[0107] 次いで、この黒色膜を室温 (25°C)にて乾燥した後、膜厚測定機テンコール (テンコ ール社)により膜厚を測定し、分光スペクトルメーターにより 550nmの波長の光に対 する黒色膜自体の光透過率を測定した。
また、この黒色膜の CIE明度 L*を、 CIEにより規格ィ匕された L*a*b*表色系に基づ いて測定した。これらの測定結果を表 1に示す。
[0108] (実施例 5)
実施例 4で得た H液に純水を加えて 10倍に希釈し、この希釈液に酒石酸水溶液 ( 酒石酸: 5%)を 100g加えて 10分間攪拌し、次いで、遠心分離により洗浄を行い、固 形分が 15%の I液を得た。
この I液中の粒子の形状を透過型電子顕微鏡 (TEM)により観察したところ、粒子径 力 ¾0〜: LOOnmの中空状の粒子が多数存在し、この中空状の粒子は緻密な外殻層 で形成されて ヽることが分力ゝつた。
[0109] また、この I液から濾過法により粒子を分離し、その後乾燥させて、実施例 5の粉末 試料を作製し、この粉末試料中の生成相を X線回折装置を用いて同定した。
図 13は、実施例 5の粉末試料の粉末 X線回折図形を示す図であり、図中、〇印は Snの回折線、△印は Ag Sn合金相または Ag Sn合金相の回折線である。
4 3
以上により、 I液中の緻密な外殻層で形成されている中空状の粒子は、 Ag' Sn合 金で構成されて ヽることが分力ゝつた。
[0110] 次いで、この I液に、 I液中の固形分: PVA= 50 : 50の体積比となるように PVA水溶 液を加え、超音波分散機(ソ -フアイヤー 450 : BRANSON ULTRASONICS社製)にて 分散処理した後、 1時間静置し、塗布液とした。
次いで、この塗布液をスピンコート法により厚み 1. 1mmのガラス基板上に塗布し、 黒色の塗膜とした。ここでは、塗布液中の水分量を調整することにより、塗膜の厚み を 0. 5 mとした。
[0111] 次いで、この黒色膜を室温 (25°C)にて乾燥した後、膜厚測定機テンコール (テンコ ール社)により膜厚を測定し、分光スペクトルメーターにより 550nmの波長の光に対 する黒色膜自体の光透過率を測定した。
また、この黒色膜の CIE明度 L*を、 CIEにより規格ィ匕された L*a*b*表色系に基づ いて測定した。これらの測定結果を表 1に示す。
[0112] (実施例 6)
純水 100に、塩化ニッケル粉末(NiCl · 6Η 0) 1. 19gと、塩化錫(SnCl · 2Η Ο)
2 2 2 2
100gを純水に溶解して全量を 1リットル (L)とした塩化錫水溶液 33. 8mlを溶解し、 この溶液に、さらに、ピロリン酸カリウム粉末 9. 9g、酒石酸 7. 5g、グリシン 0. 82gを 加え、 10分間攪拌した。
[0113] その後、この溶液に 1%ポリビュルピロリドン水溶液を 5. Ogカロえ、さらに、 5Nの Na
OH水溶液を滴下し、この溶液の pHを 8. 5に調整した。
次いで、この溶液を 55°Cに保持した状態で、水素化ホウ素ナトリウム 1. lgを純水 5
Ogに溶解して得られた溶液を一気に投入し、 1時間攪拌した。その後、遠心分離によ り洗浄を行い、固形分が 10%の J液を得た。
[0114] この J液中の粒子の形状を透過型電子顕微鏡 (TEM)により観察したところ、粒子径 力^〜 10nmの粒子力 粒子径が 20〜30nmの粒子の表面を覆うように付着しており
、粒子径が 30〜50nmの 2次粒子を形成して!/、ることが分かった。
[0115] また、この J液から濾過法により粒子を分離し、その後乾燥させて、実施例 6の粉末 試料を作製し、この粉末試料の元素分析を電子プローブマイクロアナライザ (EPMA )を用いて行ったところ、 Ni、 Snおよび微量の Bが検出された。
この粉末試料中の生成相を X線回折装置を用いて同定したところ、 Niと Snの回折 線が検出された。
この粉末 X線回折図形と上記の合成手順により、 J液中の粒子は、核となる Ni粒子 の表面を Sn微粒子で覆ったコアシェル構造であることが分力ゝつた。
[0116] 次いで、この J液に、 J液中の固形分: PVA= 50 : 50の体積比となるように PVA水溶 液を加え、超音波分散機(ソ -フアイヤー 450 : BRANSON ULTRASONICS社製)にて 分散処理した後、 1時間静置し、塗布液とした。
次いで、この塗布液をスピンコート法により厚み 1. 1mmのガラス基板上に塗布し、 黒色の塗膜とした。ここでは、塗布液中の水分量を調整することにより、塗膜の厚み を 0. 5 mとした。
[0117] 次いで、この黒色膜を室温 (25°C)にて乾燥後、膜厚測定機テンコール (テンコー ル社)により膜厚を測定し、分光スペクトルメーターにより 550nmの波長の光に対す る黒色膜自体の光透過率を測定した。
また、この黒色膜の黒色度を評価するために、この黒色膜の CIE明度 L*を、 CIE ( 国際照明委員会)により規格化された L*a*b*表色系に基づいて測定した。これらの 測定結果を表 1に示す。
[0118] (比較例 1)
カーボンブラック (HA3、東海カーボン社製)に、実施例 1と同様にカーボンブラック : PVA= 50: 50の体積比となるように PVA水溶液を加え、実施例 1と同様に分散処 理、塗布液中の水分量の調整、ガラス基板上への塗布を行い、厚みが 0. の黒 色の塗膜を作製した。
次いで、実施例 1と同様にして、この黒色膜の乾燥、膜厚の測定、光透過率の測定 、 CIE明度 L*の測定を行った。これらの測定結果を表 1に示す。
[0119] (比較例 2)
チタンブラック(13M、ジェムコネ土製)に、実施例 1と同様にチタンブラック: PVA= 5 0 : 50の体積比となるように PVA水溶液をカ卩え、実施例 1と同様に分散処理、塗布液 中の水分量の調整、ガラス基板上への塗布を行い、厚みが 0. 5 mの黒色の塗膜 を作製した。
次いで、実施例 1と同様にして、この黒色膜の乾燥、膜厚の測定、光透過率の測定 、 CIE明度 L*の測定を行った。これらの測定結果を表 1に示す。
[0120] (比較例 3)
銀ナノ粒子 (住友大阪セメント社製)に、実施例 1と同様に銀ナノ粒子: PVA= 50 : 50の体積比となるように PVA水溶液をカ卩え、実施例 1と同様に分散処理、塗布液中 の水分量の調整、ガラス基板上への塗布を行い、厚みが 0. 5 mの黒色の塗膜を 作製した。
次いで、実施例 1と同様にして、この黒色膜の乾燥、膜厚の測定、光透過率の測定 、 CIE明度 L*の測定を行った。これらの測定結果を表 1に示す。
[0121] [表 1]
Figure imgf000029_0001
[0122] この表 1によれば、実施例 1〜6の黒色膜は、比較例 1〜3に対して光透過率が低く
、 CIE明度 L*も優れており、遮光性及び黒色度に優れていることが確認された。 一方、比較例 1、 2の黒色膜は光透過率が高ぐ実施例 1〜5の黒色膜に対して遮 光性が劣って 、ることが分力つた。
また、比較例 3の黒色膜は、実施例 1〜6とほぼ同様の遮光性が得られるものの、膜 の色は灰色であり、色調の点で問題があった。
[0123] 次に、本発明の実施の形態 (その 2)について、実施例 7〜: LOおよび比較例 4〜6 により本発明を具体的に説明する力 本発明はこれらの実施例によって限定されるも のではない。
[0124] (実施例 7)
錫(Sn)コロイド(粒子径 20〜80nm、平均粒子径: 30nm、固形分: 15重量%、住 友大阪セメント社製)を 20g分取し、これをポリビュルピロリドン (PVP) (kl5 :東京化 成工業社製)を 0. 15g溶解した純水にカ卩え、全容量が 300mlの A液を得た。
また、硝酸銀 1. 5gおよびチォ硫酸ナトリウム 33gを秤量 '混合し、これに純水をカロ えて水溶液とし、この水溶液に濃アンモニア水(NH : 28%)を 5mlカ卩え、さらに純水
3
を加え、全容量が 100mlの B液を得た。
次いで、これら A液と B液を、マグネチックスターラを用いて 10分間混合し、次いで
、遠心分離により洗浄を行い、固形分が 15%の C液を得た。
[0125] 次いで、この C液に、 C液中の固形分: PVA= 50 : 50の体積比となるように PVA水 溶液を加え、超音波分散機(ソ -フアイヤー 450 : BRANSON ULTRASONICS 社製)にて分散処理した後、 1時間静置し、黒色微粒子分散液とした。
[0126] 次いで、この黒色微粒子分散液をスピンコート法により厚み 1. 1mmのガラス基板 上に塗布し、黒色の塗膜とした。ここでは、分散液中の水分量を調整することにより、 塗膜の厚みを。. 5 μ mとした。
次いで、この塗膜付きガラス基板を、室温 (25°C)にて乾燥した後、黒色遮光膜付 きガラス基板を得た。
[0127] 次いで、膜厚測定機テンコール (テンコール社)により、この黒色遮光膜の膜厚を測 し 7こ。
次いで、この黒色遮光膜付きガラス基板の光透過率を測定した。ここでは、分光ス ベクトルメーターにより 550nmの波長の光に対する黒色遮光膜自体の光透過率を測 し 7こ。
また、この黒色遮光膜の黒色度を評価するために、この黒色遮光膜の CIE明度! 、色度 a*、 b*を、 CIE (国際照明委員会)により規格化された L*a*b*表色系に基づ いて測定した。
また、この黒色遮光膜の光学濃度である OD値を、透過濃度計を用いて測定した。 これらの測定結果を表 2に示す。
[0128] さらに、上記の C液中の粒子の形状を透過型電子顕微鏡 (TEM)により観察したと ころ、平均粒子径が 20〜80nmの粒子の表面を、平均粒子径が 5〜30nmの粒子が 覆う形状であった。 また、上記の C液から濾過法により粒子を分離し、その後乾燥させて、実施例 1の粉 末試料を作製し、この粉末試料中の生成相を、 X線回折装置を用いて同定した。 図 9は、実施例 7の粉末試料の粉末 X線回折図形を示す図であり、図中、〇印は錫 (Sn)の回折線、△印は Ag Sn合金相または Ag Sn合金相の回折線である。
4 3
これにより、 C液中の粒子は、核となる Sn粒子の表面を Ag' Sn合金微粒子で覆つ たコアシェル構造であることが分かった。
[0129] (実施例 8)
実施例 7で得た C液に純水を加えて 10倍に希釈し、この希釈液に塩酸水溶液 (塩 酸 :4. 5%)を lOOg加えて 10分間攪拌し、次いで、遠心分離により洗浄を行い、固 形分が 15%の D液を得た。
[0130] 次いで、この D液に、 D液中の固形分: PVA= 50 : 50の体積比となるように PVA水 溶液を加え、超音波分散機(ソ -フアイヤー 450 : BRANSON ULTRASONICS 社製)にて分散処理した後、 1時間静置し、黒色微粒子分散液とした。
[0131] 次いで、この黒色微粒子分散液をスピンコート法により厚み 1. 1mmのガラス基板 上に塗布し、黒色の塗膜とした。ここでは、分散液中の水分量を調整することにより、 塗膜の厚みを。. 5 μ mとした。
次いで、この塗膜付きガラス基板を、室温 (25°C)にて乾燥した後、黒色遮光膜付 きガラス基板を得た。
[0132] 次いで、実施例 7と同様にして、黒色遮光膜の膜厚、光透過率の測定、 CIE明度 L *、色度 a*、 b*の測定、 OD値の測定を行った。これらの測定結果を表 1に示す。
[0133] さらに、上記の D液中の粒子の形状を透過型電子顕微鏡 (TEM)により観察したと ころ、平均粒子径が 20〜80nmで内部に空間部が形成された完全な中空状の粒子 が多数存在していることが分力つた。また同時に中空状の粒子の一部が欠たり、幾つ かに割れた粒子も存在していた。この中空粒子は、平均粒子径が 5〜30nmの 1次粒 子が集合した 2次粒子であった。
[0134] また、上記の D液から濾過法により粒子を分離し、その後乾燥させて、実施例 8の粉 末試料を作製し、この粉末試料中の生成相を、 X線回折装置を用いて同定した。 図 10は、実施例 8の粉末試料の粉末 X線回折図形を示す図であり、図中、〇印は 錫(Sn)の回折線、△印は Ag Sn合金相または Ag Sn合金相の回折線である。
4 3
これにより、 D液中の粒子は、 Ag' Sn合金で構成された中空粒子、および中空状 の粒子の一部が欠けたり、幾つかに割れた粒子であることが分力つた。
[0135] (実施例 9)
実施例 8で得た D液に純水をカ卩えて 10倍に希釈し、この希釈液を、サンドミルを用 いて 5分間分散処理し、固形分が 15%の E液を得た。
[0136] 次いで、この E液に、 E液中の固形分: PVA= 50 : 50の体積比となるように PVA水 溶液を加え、超音波分散機(ソ -フアイヤー 450 : BRANSON ULTRASONICS 社製)にて分散処理した後、 1時間静置し、黒色微粒子分散液とした。
[0137] 次いで、この黒色微粒子分散液をスピンコート法により厚み 1. 1mmのガラス基板 上に塗布し、黒色の塗膜とした。ここでは、分散液中の水分量を調整することにより、 塗膜の厚みを。. 5 μ mとした。
次いで、この塗膜付きガラス基板を、室温 (25°C)にて乾燥した後、黒色遮光膜付 きガラス基板を得た。
[0138] 次いで、実施例 7と同様にして、黒色遮光膜の膜厚、光透過率の測定、 CIE明度 L
*、色度 a*、 b*の測定、 OD値の測定を行った。これらの測定結果を表 2に示す。
[0139] さらに、上記の E液中の粒子の形状を透過型電子顕微鏡 (TEM)により観察したと ころ、平均粒子径が 5〜30nmの粒子が集合して平均粒子径が 30〜150nmの 2次 粒子を形成して 、ることが分力つた。
[0140] また、この E液から濾過法により粒子を分離し、その後乾燥させて、実施例 9の粉末 試料を作製し、この粉末試料中の生成相を、 X線回折装置を用いて同定した。
図 11は、実施例 9の粉末試料の粉末 X線回折図形を示す図であり、図中、△印は
Ag Sn合金相または Ag Sn合金相の回折線である。
4 3
これにより、 E液中の粒子は、 Ag' Sn合金微粒子が集合した粒子であることが分か つた o
[0141] (実施例 10)
純水 100mlに、塩化ニッケル粉末(NiCl · 6Η 0) 1. 19gと、塩化錫(SnCl · 2Η
2 2 2 2
O) 100gを純水に溶解して全容量を 1リットル (L)とした塩化錫水溶液 33. 8mlを溶 解し、この溶液に、さらに、ピロリン酸カリウム粉末 9. 9g、酒石酸 7. 5gおよびグリシン
0. 82gを加え、 10分間攪拌した。
[0142] その後、この溶液に 1%ポリビュルピロリドン (PVP)水溶液を 5. Ogカロえ、さらに、 5
Nの NaOH水溶液を滴下し、この溶液の pHを 8. 5に調整した。
次いで、この溶液を 55°Cに保持した状態で、水素化ホウ素ナトリウム 1. lgを純水 5
Ogに溶解して得られた溶液を一気に投入し、 1時間攪拌し、次いで、遠心分離により 洗浄を行い、固形分が 10%の F液を得た。
[0143] 次いで、この F液に、 F液中の固形分: PVA= 50 : 50の体積比となるように PVA水 溶液を加え、超音波分散機(ソ -フアイヤー 450 : BRANSON ULTRASONICS 社製)にて分散処理した後、 1時間静置し、黒色微粒子分散液とした。
[0144] 次いで、この黒色微粒子分散液をスピンコート法により厚み 1. 1mmのガラス基板 上に塗布し、黒色の塗膜とした。ここでは、分散液中の水分量を調整することにより、 塗膜の厚みを。. 5 μ mとした。
次いで、この塗膜付きガラス基板を、室温 (25°C)にて乾燥した後、黒色遮光膜付 きガラス基板を得た。
[0145] 次いで、実施例 7と同様にして、黒色遮光膜の膜厚、光透過率の測定、 CIE明度 L *、色度 a*、 b*の測定、 OD値の測定を行った。これらの測定結果を表 2に示す。
[0146] さらに、上記の F液中の粒子の形状を透過型電子顕微鏡 (TEM)により観察したと ころ、平均粒子径が 1〜: LOnmの粒子力 平均粒子径が 20〜30nmの粒子の表面を 覆うように付着しており、平均粒子径が 30〜50nmの 2次粒子を形成していることが 分かった。
[0147] また、この F液から濾過法により粒子を分離し、その後乾燥させて、実施例 10の粉 末試料を作製し、この粉末試料の元素分析を、電子プローブマイクロアナライザ (EP MA)を用いて行ったところ、 Ni、 Snおよび微量の Bが検出された。
この粉末試料中の生成相を、 X線回折装置を用いて同定したところ、 Niと Snの回 折線が検出された。
これにより、 F液中の粒子は、核となる Ni粒子の表面が Sn微粒子で覆われたコアシ エル構造であることが分力つた。 [0148] (比較例 4)
カーボンブラック (HA3、東海カーボン社製)に、実施例 7と同様にカーボンブラック : PVA= 50: 50の体積比となるように PVA水溶液を加え、実施例 7と同様に分散処 理、分散液中の水分量の調整、スピンコート法によるガラス基板上への塗布を行い、 厚みが 0. 5 μ mの黒色の塗膜を作製した。
次いで、この塗膜付きガラス基板を室温 (25°C)にて乾燥させ、黒色遮光膜付きガ ラス基板を得た。
次いで、実施例 7と同様にして、黒色遮光膜の膜厚、光透過率の測定、 CIE明度 L *、色度 a*、 b*の測定、 OD値の測定を行った。これらの測定結果を表 1に示す。
[0149] (比較例 5)
チタンブラック(13M、ジェムコネ土製)に、実施例 7と同様にチタンブラック: PVA= 5 0 : 50の体積比となるように PVA水溶液を加え、実施例 7と同様に分散処理、分散液 中の水分量の調整、スピンコート法によるガラス基板上への塗布を行い、厚みが 0. 5 μ mの黒色の塗膜を作製した。
次いで、この塗膜付きガラス基板を室温 (25°C)にて乾燥させ、黒色遮光膜付きガ ラス基板を得た。
次いで、実施例 7と同様にして、黒色遮光膜の膜厚、光透過率の測定、 CIE明度 L *、色度 a*、 b*の測定、 OD値の測定を行った。これらの測定結果を表 2に示す。
[0150] (比較例 6)
銀ナノ粒子 (住友大阪セメント社製)に、実施例 7と同様に銀ナノ粒子: PVA= 50 : 50の体積比となるように PVA水溶液を加え、実施例 7と同様に分散処理、分散液中 の水分量の調整、スピンコート法によるガラス基板上への塗布を行い、厚みが 0. 5 mの黒色の塗膜を作製した。
次いで、この塗膜付きガラス基板を室温 (25°C)にて乾燥させ、黒色遮光膜付きガ ラス基板を得た。
次いで、実施例 7と同様にして、黒色遮光膜の膜厚、光透過率の測定、 CIE明度 L *、色度 a*、 b*の測定、 OD値の測定を行った。これらの測定結果を表 2に示す。
[0151] [表 2]
Figure imgf000035_0001
[0152] この表 2によれば、実施例 7〜10の黒色遮光膜は、比較例 4〜6に対して光透過率 が低ぐ CIE明度 L*も低ぐ色度 a*、 b*の絶対値も小さいことから、遮光性および黒 色度に優れて ヽることが確認された。
[0153] 一方、比較例 4、 5の黒色遮光膜は光透過率が高ぐ実施例 7〜10の黒色遮光膜 に対して遮光性が劣って ヽることが分力つた。
また、比較例 6の黒色遮光膜は、実施例 7〜10とほぼ同様の遮光性が得られるもの の、膜の色は灰色であり、色調の点で問題があった。
[0154] 次に、本発明の実施の形態 (その 3)について、実施例 11〜12および比較例 7〜9 によって、より具体的に説明するが、本発明はこれらの実施例によって限定されるも のではない。
[0155] 「黒色微粒子の調製」
以下により黒色微粒子を調製した。
(1)シリカコーティング銀錫合金集合粒子 A
平均粒子径 5〜20nmの 1次粒子が集合した、平均粒子径 20〜150nmの 2次粒 子を形成している黒色の銀錫合金集合粒子の水分散液(固形分の濃度 15重量%、 住友大阪セメント社製) lOOgを、純水を用いて 10倍に希釈した溶液に、 3—アミノブ 口ピルトリメトキシシラン (APS) O. 1重量%水溶液 750gをカ卩えて撹拌し、 A液とした。
[0156] 一方、水ガラスを水で希釈した溶液 (SiO換算で 3%) lOOgを、陽イオン交換榭脂
2
を用いて pHを 10. 5に調製し、 B液とした。
次いで、上記の A液を NaOH水溶液(0. 1N)により pHを 9. 5に調整し、この A液 に上記の B液をゆっくりと滴下し、 1時間撹拌した。次いで、限外濾過を用いて、この 溶液から未反応の水ガラス、 APS、イオンなどを除去し、その後濃縮し、分散液を得 た。
次いで、この分散液から遠心分離、フリーズドライなどにより溶液と微粒子を分離し 、乾燥することにより、シリカコーティング銀錫合金集合粒子 Aを得た。
[0157] (2)シリカコーティング銀錫合金集合粒子 B
平均粒子径 5〜20nmの 1次粒子が集合した、平均粒子径 20〜150nmの 2次粒 子を形成している黒色の銀錫合金集合粒子の水分散液(固形分の濃度 15重量%、 住友大阪セメント社製) lOOgを、純水を用いて 10倍に希釈した溶液に、酢酸を加え て pHを 4. 8に調整した。
次いで、この溶液に、テトラエトキシシラン 1重量%含有水溶液 200gを滴下した後、 60°Cにて 2時間撹拌した。次いで、限外濾過を用いて、この溶液から未反応のテトラ エトキシシラン、酢酸などを除去し、その後濃縮し、分散液を得た。
次いで、この分散液から遠心分離、フリーズドライなどにより溶液と微粒子を分離し 、乾燥することにより、シリカコーティング銀錫合金集合粒子 Bを得た。
[0158] 「黒色微粒子分散液および黒色遮光膜の作製」(実施例 11)
シリカコーティング銀錫合金集合粒子 AlOOgに分散剤(ソルスパース 24000:アビ シァ(株)製) 2g、プロピレングリコールモノメチルエーテルアセテート lOOgをカ卩え、ビ ーズミルを用いて分散し、シリカコーティング銀錫合金集合粒子分散液を得た。この 分散液に、ベンジルメタタリレート Zメタクリル酸共重合体: 64重量部、ジペンタエリス リトールへキサアタリレート: 26重量部、ィルガキュア 907: 9重量部からなるバインダ 一を 50gカ卩え、混合し、塗布液を得た。この塗布液をガラス基板上にスピンコーター により塗布し、室温(25°C)にて乾燥後、紫外線 (UV)を照射して厚み 0. の黒 色膜を形成した。
[0159] (実施例 12)
実施例 11にて、シリカコーティング銀錫合金集合粒子 Aの替わりにシリカコーティン グ銀錫合金集合粒子 Bを用いた以外は、実施例 11と同様にして実施例 12の黒色膜 を形成した。
[0160] (比較例 7)
シリカコーティングされて 、な 、銀錫合金集合粒子を用いたこと以外は、実施例 11 と同様にして黒色膜を形成した。
[0161] (比較例 8) シリカコーティングされたカーボンブラックを用いたこと以外は、実施例 11と同様に して黒色膜を形成した。
[0162] (比較例 9)
シリカコーティングされたチタンブラックを用いたこと以外は、実施例 11と同様にし て黒色膜を形成した。
[0163] 「黒色膜の評価」
実施例 11〜12および比較例 7〜9それぞれの黒色膜の体積抵抗を測定した。測 定は、日本工業規格 JIS C2103— 1991「体積抵抗率試験」に準拠して、 4端子法 により測定した。
また、この黒色膜の光学濃度である OD値を、透過濃度計を用いて測定した。
また、この黒色膜の黒色度を評価するために、この黒色膜の CIE明度 L*、色度 a*
、 b*を、 CIE (国際照明委員会)により規格化された L*a*b*表色系に基づいて測定 した。
これらの結果を表 3に示す。
[0164] [表 3]
Figure imgf000037_0001
[0165] この表 3によれば、実施例 11、 12の黒色膜は、体積抵抗が 10ιυ Ω cmよりも大きぐ OD値力 以上であり、 CIE明度 L*も低く、色度 a*、 b*の絶対値も小さいことから、絶 縁性、遮光性及び黒色度に優れて ヽることが確認された。
一方、比較例 7の黒色膜は、 OD値が 4以上であり、 CIE明度 L*も低ぐ色度 a*、 b *の絶対値も小さいものの、体積抵抗が 1. 2 X 106 Q cmと低く、絶縁性が低下してい ることが分かった。
また、比較例 8、 9の黒色膜は、体積抵抗が 101(> Ω cmよりも大きいものの、 CIE明度 L*が高ぐ OD値が 2前後と小さぐ色度 a*、 b*の絶対値も 1を超えており、実施例 11 、 12の黒色膜に対して黒色度、遮光性共に劣っていることが分力つた。 産業上の利用可能性
[0166] 本発明の第 1の黒色材料は、黒色度、遮光性に優れ、しかも安価であるから、黒色 度または遮光性、ある ヽは黒色度および遮光性が求められるあらゆる物に適用可能 である。例えば、黒色光遮蔽性フィルム、黒色光遮蔽性ガラス、黒色紙、黒色布、黒 色インキ、プラズマディスプレイ (PDP)や液晶ディスプレイ (LCD)等の表示装置向 けのブラックマトリックス材料、ブラックシール材、ブラックマスク材等としても利用でき る。
[0167] 本発明の第 2の黒色微粒子分散液は、黒色度、遮光性に優れ、さらには耐熱性に 優れ、し力も安価な黒色遮光膜の材料として利用することができるので、黒色度、遮 光性、耐熱性が求められるあらゆる物の材料に適用可能である。例えば、黒色遮光 性フィルム、黒色遮光性ガラス、黒色紙、黒色布、黒色インキ、プラズマディスプレイ ( PDP)や液晶ディスプレイ (LCD)などの表示装置向けのブラックマトリックス材料、ブ ラックシール材料、ブラックマスク材料などとしても利用できる。
[0168] 本発明の第 3の黒色微粒子は、黒色度、遮光性、絶縁性に優れ、しかも安価な黒 色遮光膜の材料として利用することができるので、黒色度、遮光性、絶縁性が求めら れるあらゆる物の材料に適用可能である。例えば、液晶ディスプレイ (LCD)、ブラズ マディスプレイ(PDP)、エレクト口ルミネッセンスディスプレイ(ELD)、エレクト口クロミ ックディスプレイ(ECD)等の表示装置向けのブラックマトリックス材料、ブラックシー ル材料、ブラックマスク材料等の他、黒色遮光性フィルム、黒色遮光性ガラス、黒色 紙、黒色布、黒色インキ等としても利用することができる。

Claims

請求の範囲
[I] 粒子径が lnm以上かつ 200nm以下の金属および Zまたは金属酸化物からなる 1 次粒子が集合した 2次粒子力 なり、
この 2次粒子の粒子径は 5nm以上かつ 300nm以下であり、
この 2次粒子の最外層は、金 (Au)、白金 (Pt)、ノ《ラジウム (Pd)、銀 (Ag)、ルテ- ゥム (Ru)、銅 (Cu)、ケィ素(Si)、チタン (Ti)、錫(Sn)、ニッケル (Ni)から選択され た 1種または 2種以上の元素またはこれらの酸ィ匕物を 50重量%以上含有してなること を特徴とする黒色材料。
[2] 前記 2次粒子は、内部に空間部が形成されていることを特徴とする請求項 1記載の 黒色材料。
[3] 前記 2次粒子は、前記最外層または前記最外層を含む複数層からなる外殻層の内 側に空間部が形成されていることを特徴とする請求項 1記載の黒色材料。
[4] 前記 2次粒子は、核となる物質の外表面を前記最外層または前記最外層を含む複 数層からなる外殻層により被覆してなるコアシェル状であることを特徴とする請求項 1 記載の黒色材料。
[5] 前記外殻層は、緻密であることを特徴とする請求項 3または 4記載の黒色材料。
[6] 平均粒子径が lnm以上かつ 200nm以下の金属および Zまたは金属酸化物から なる微粒子の 1次粒子が集合した、平均粒子径が 5nm以上かつ 300nm以下の 2次 粒子と、高分子分散剤とを、含有してなることを特徴とする黒色微粒子分散液。
[7] 前記微粒子は、銀、錫、ニッケルの群力 選択された 1種または 2種以上を含有して なることを特徴とする請求項 6に記載の黒色微粒子分散液。
[8] 前記高分子分散剤は、前記微粒子の全重量に対して 1重量%以上かつ 10重量% 以下含有してなることを特徴とする請求項 6記載の黒色微粒子分散液。
[9] 前記高分子分散剤は、ポリビュルピロリドンであることを特徴とする請求項 6記載の 黒色微粒子分散液。
[10] 前記 2次粒子は、内部に空間部が形成されていることを特徴とする請求項 6記載の 黒色微粒子分散液。
[II] 前記 2次粒子は、最外層または該最外層を含む複数層からなる外殻層の内側に空 間部が形成されていることを特徴とする請求項 6記載の黒色微粒子分散液。
[12] 前記 2次粒子は、核となる物質の外表面を前記最外層または前記最外層を含む複 数層からなる外殻層により被覆してなるコアシェル状であることを特徴とする請求項 6 記載の黒色微粒子分散液。
[13] 請求項 6な 、し 12の 、ずれか 1項記載の黒色微粒子分散液を塗布してなることを 特徴とする黒色遮光膜。
[14] 基材のー主面に、請求項 13記載の黒色遮光膜を備えてなることを特徴とする黒色 遮光膜付き基材。
[15] 前記黒色遮光膜は、 CIE明度 L*が 10以下、色度 a*が— 1以上かつ 1以下、色度 b *がー 1以上かつ 1以下、 OD値が 3以上であることを特徴とする請求項 14記載の黒 色遮光膜付き基材。
[16] 平均粒子径が lnm以上かつ 200nm以下の金属および Zまたは金属酸化物から なる微粒子の 1次粒子が集合した、平均粒子径が 5nm以上かつ 300nm以下の 2次 粒子の表面が、絶縁膜により被覆されて 、ることを特徴とする黒色微粒子。
[17] 前記絶縁膜は、金属酸ィ匕物または有機高分子化合物であることを特徴とする請求 項 16記載の黒色微粒子。
[18] 前記微粒子は、銀、錫、ニッケルの群力 選択された 1種または 2種以上を含有して なることを特徴とする請求項 16記載の黒色微粒子。
[19] 請求項 16記載の黒色微粒子を含有してなることを特徴とする黒色微粒子分散液。
[20] 請求項 19記載の黒色微粒子分散液を塗布してなることを特徴とする黒色遮光膜。
[21] 基材のー主面に、請求項 20記載の黒色遮光膜を備えてなることを特徴とする黒色 遮光膜付き基材。
PCT/JP2005/017178 2004-09-21 2005-09-16 黒色材料、黒色微粒子分散液とそれを用いた黒色遮光膜、並びに黒色遮光膜付き基材 WO2006033305A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200580031598XA CN101031621B (zh) 2004-09-21 2005-09-16 黑色材料、黑色微粒分散液和使用了它的黑色遮光膜以及带有黑色遮光膜的基材

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-273348 2004-09-21
JP2004273348A JP4237122B2 (ja) 2004-09-21 2004-09-21 黒色材料
JP2005-040258 2005-02-17
JP2005-040257 2005-02-17
JP2005040257A JP4437096B2 (ja) 2005-02-17 2005-02-17 黒色微粒子分散液とそれを用いた黒色遮光膜及び黒色遮光膜付き基材
JP2005040258A JP2006225495A (ja) 2005-02-17 2005-02-17 黒色微粒子と黒色微粒子分散液及び黒色遮光膜並びに黒色遮光膜付き基材

Publications (1)

Publication Number Publication Date
WO2006033305A1 true WO2006033305A1 (ja) 2006-03-30

Family

ID=36090065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017178 WO2006033305A1 (ja) 2004-09-21 2005-09-16 黒色材料、黒色微粒子分散液とそれを用いた黒色遮光膜、並びに黒色遮光膜付き基材

Country Status (4)

Country Link
KR (1) KR101008747B1 (ja)
CN (2) CN101914316B (ja)
TW (2) TW201302930A (ja)
WO (1) WO2006033305A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104031413A (zh) * 2014-05-04 2014-09-10 上海纳旭实业有限公司 纳米锑掺杂氧化锡材料及其高固含量分散液的制备方法
CN104276598A (zh) * 2014-09-12 2015-01-14 上海纳旭实业有限公司 纳米锌掺杂氧化锡锑复合材料及水性分散液的制备方法
CN113249959A (zh) * 2021-06-18 2021-08-13 上海贝域实业有限公司 纳米黑丝物理遮光窗帘及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170037703A (ko) * 2015-09-25 2017-04-05 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조 방법
KR102438632B1 (ko) * 2015-12-30 2022-08-31 엘지디스플레이 주식회사 표시장치 및 표시장치의 제조방법
CN114700497B (zh) * 2022-03-18 2024-03-29 昆明理工大学 一种石榴状结构Cu-Ag合金的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090511A (ja) * 1996-09-13 1998-04-10 Dainippon Printing Co Ltd 非導電性遮光層用組成物、非導電性遮光層及びカラーフイルター
JP2003268402A (ja) * 2002-03-18 2003-09-25 Shin Etsu Chem Co Ltd 高分散性の金属粉、その製造方法及び該金属粉を含有する導電ペースト
JP2004511612A (ja) * 2000-10-09 2004-04-15 バイエル アクチェンゲゼルシャフト 複合粒子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3318082B2 (ja) * 1992-12-17 2002-08-26 宇部日東化成株式会社 黒色微粒子の製造方法
JP3857040B2 (ja) * 2000-11-17 2006-12-13 三井金属鉱業株式会社 酸化鉄粒子及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090511A (ja) * 1996-09-13 1998-04-10 Dainippon Printing Co Ltd 非導電性遮光層用組成物、非導電性遮光層及びカラーフイルター
JP2004511612A (ja) * 2000-10-09 2004-04-15 バイエル アクチェンゲゼルシャフト 複合粒子
JP2003268402A (ja) * 2002-03-18 2003-09-25 Shin Etsu Chem Co Ltd 高分散性の金属粉、その製造方法及び該金属粉を含有する導電ペースト

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104031413A (zh) * 2014-05-04 2014-09-10 上海纳旭实业有限公司 纳米锑掺杂氧化锡材料及其高固含量分散液的制备方法
CN104276598A (zh) * 2014-09-12 2015-01-14 上海纳旭实业有限公司 纳米锌掺杂氧化锡锑复合材料及水性分散液的制备方法
CN113249959A (zh) * 2021-06-18 2021-08-13 上海贝域实业有限公司 纳米黑丝物理遮光窗帘及其制备方法

Also Published As

Publication number Publication date
CN101914316A (zh) 2010-12-15
KR101008747B1 (ko) 2011-01-14
CN101914316B (zh) 2013-03-27
TWI395795B (zh) 2013-05-11
TW200619327A (en) 2006-06-16
KR20070053712A (ko) 2007-05-25
TW201302930A (zh) 2013-01-16
CN102702802A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
JP4223487B2 (ja) 黒色微粒子と黒色微粒子分散液及び黒色遮光膜並びに黒色遮光膜付き基材
JP4237148B2 (ja) 黒色微粒子分散液とそれを用いた黒色遮光膜及び黒色遮光膜付き基材
WO2006033304A1 (ja) 黒色材料、黒色微粒子分散液とそれを用いた黒色遮光膜、並びに黒色遮光膜付き基材
EP3950584A1 (en) Zirconium nitride powder coated with alumina and method for producing same
US9261633B2 (en) Black resin composition, resin black matrix substrate, and touch panel
CN111511680B (zh) 黑色遮光膜形成用粉末及其制备方法
WO2006033305A1 (ja) 黒色材料、黒色微粒子分散液とそれを用いた黒色遮光膜、並びに黒色遮光膜付き基材
CN101027368A (zh) 黑色材料、黑色微粒分散液和使用了它的黑色遮光膜以及带有黑色遮光膜的基材
CN1442453A (zh) 透明导电层形成用涂料
KR20140006767A (ko) 흑색막, 흑색막이 있는 기재 및 화상 표시 장치, 및 흑색 수지 조성물 및 흑색 재료 분산액
JP2006225495A (ja) 黒色微粒子と黒色微粒子分散液及び黒色遮光膜並びに黒色遮光膜付き基材
CN101031621B (zh) 黑色材料、黑色微粒分散液和使用了它的黑色遮光膜以及带有黑色遮光膜的基材
JP4877444B2 (ja) ブラックマトリックス用着色材料及び該ブラックマトリックス用着色材料を含むブラックマトリックス用着色組成物並びにカラーフィルター
JP5028830B2 (ja) 黒色材料と黒色遮光膜、黒色微粒子分散液及び黒色遮光膜付き基材並びに黒色遮光膜の製造方法
TWI250547B (en) Display unit and manufacturing method thereof
JP4437096B2 (ja) 黒色微粒子分散液とそれを用いた黒色遮光膜及び黒色遮光膜付き基材
JP2007326970A (ja) 塗膜形成用樹脂組成物とこれを含有する塗膜および塗膜形成方法
JP3508399B2 (ja) ブラックマトリックス用カーボンブラック
JP2004303628A (ja) 金属被覆金属微粒子とその製造方法及びそれを含有する透明導電膜形成用塗料及び導電性接着材料、及びそれを用いた透明導電膜並びに表示装置
JP2012167194A (ja) 黒色材料、黒色材料分散液、黒色樹脂組成物、黒色膜及び黒色膜付き基材
JP5080840B2 (ja) 黒色複合酸化物粒子、黒色スラリー、黒色ペースト、およびブラックマトリックス
JP2004203941A (ja) 透明導電膜形成用塗料と透明導電膜及びその製造方法並びにそれを備えた表示装置
JP2003187643A (ja) 低透過率透明導電性基材とその製造方法およびこの基材が適用された表示装置
TW202330394A (zh) 含有氧化鋁系組成物之氮化鋯粉末及其製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077003791

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580031598.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase