WO2006033189A1 - Voc含浸物からのvoc除去方法 - Google Patents

Voc含浸物からのvoc除去方法 Download PDF

Info

Publication number
WO2006033189A1
WO2006033189A1 PCT/JP2005/011282 JP2005011282W WO2006033189A1 WO 2006033189 A1 WO2006033189 A1 WO 2006033189A1 JP 2005011282 W JP2005011282 W JP 2005011282W WO 2006033189 A1 WO2006033189 A1 WO 2006033189A1
Authority
WO
WIPO (PCT)
Prior art keywords
voc
humidity
treatment space
impregnated
impregnated material
Prior art date
Application number
PCT/JP2005/011282
Other languages
English (en)
French (fr)
Inventor
Hikoo Miyauchi
Masahiro Miyauchi
Original Assignee
Dyna-Air Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004273707A external-priority patent/JP2005125085A/ja
Application filed by Dyna-Air Incorporated filed Critical Dyna-Air Incorporated
Priority to JP2006536320A priority Critical patent/JPWO2006033189A1/ja
Priority to US11/662,908 priority patent/US20070243100A1/en
Priority to CA002580417A priority patent/CA2580417A1/en
Publication of WO2006033189A1 publication Critical patent/WO2006033189A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a method for removing a volatile organic compound (hereinafter referred to as VOC) impregnated in a building material or the like.
  • VOC volatile organic compound
  • Volatile and highly toxic formaldehyde is the first to be regulated (1997), then in 2000, eight types of toluene, xylene, paradichlorobenzene, ethylbenzene, styrene, di-n-butyl phthalate, and chlorpyrifos
  • a “tentative target” was set so that TVOC (total VOC) would be 400 / z gZm 3 or less in order to “regulate the total amount” of chemical substances.
  • TVOC total VOC
  • the room temperature heating process for forcing the generation of VOC into the room by raising the room temperature is set to 30 to 40 ° C or higher with a normal room heating appliance, 0. Warm for 1-5 hours or more.
  • a humidifier or the like will trap VOCs that are soluble in water droplets in the air, increasing the amount of VOC generated from building materials.
  • VOCs that have been forcibly diffused are forcibly exhausted to the outside by opening windows and the like, and after exhausting, they are dehumidified with a dehumidifier in order to remove water vapor of equal strength outdoors.
  • a device called a solvent-concentrated rotor that absorbs and concentrates VOCs by passing processing air containing VOCs through a rotor (filter) using silica gel zeolite or activated carbon.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-218702
  • Non-Patent Literature 1 Atsushi Nishino et al. “VOC Countermeasures” NTS Publishing 1998 Disclosure of Invention
  • VOC is dissolved and collected in water droplets attached to the surface of building materials and the like. If it happens, it is only slightly reduced, not a fundamental removal effect.
  • VOCs dissolved and collected in water droplets are limited to hydrophilic substances, and are not effective for hydrophobic substances. This may be due in part to the lack of effectiveness even after the completion of the above study.
  • VOC adsorbed by treating the used rotor at a high temperature is re-volatilized or pyrolyzed. It is possible to reproduce and use it by removing it. There was a problem that the lifetime was short compared with the price that deteriorated severely due to temperature. Since rotors using relatively inexpensive activated carbon cannot be treated at high temperatures like silica gel zeolite, it is difficult to completely recycle them.
  • An object of the present invention is to execute VOC and odor removal processing safely and at low cost without damaging the interior members and installation items in a short period of time.
  • the present invention releases VOC little by little and emits an odor.
  • the atmosphere in which the VOC impregnated product is present is humidified to high humidity in the gas phase state, so that water molecules in the gas phase state are contained inside the VOC impregnated product.
  • the VOC hydrate composite is diffused from the VOC impregnation into the atmosphere by forming a VOC hydrate composite with the internal VOC and water molecules and lowering the humidity of the atmosphere.
  • the VOC hydrate composite released in the atmosphere is dissociated into VOC and water, and by further dehumidifying the atmosphere, VOC is collected in the desiccant. VOC removal method.
  • VOC inside the VOC impregnated material can also be removed.
  • FIG. 2 is a characteristic diagram showing the measurement results of formaldehyde by the VOC removal method and apparatus of the present invention.
  • FIG. 3 is a diagram showing another measurement result of formaldehyde by the VOC removal method and apparatus of the present invention.
  • FIG. 4 is a diagram showing the measurement results of toluene by the VOC removal method and apparatus of the present invention.
  • FIG. 5 is an explanatory diagram of a dry rotor type dehumidifier.
  • the humidity in the atmosphere is further reduced, and the released VOC hydrate complex is dissociated into water and VOC, and VOC is collected in a desiccant.
  • Hydrophobic VOCs such as benzene, toluene, and xylene have a low affinity for water, so water molecules and hydrophobic VOCs are not directly bonded by hydrogen bonds or intermolecular forces. Moisture molecules bind to neighboring water molecules with strong binding forces, and hydrogen bonds are formed around the VOC molecules, and the VOC behaves like a single large molecule around the surrounding water molecules. In this specification, such a state is called a hydrophobic VOC hydrated composite. The number of water molecules surrounding the surface is estimated to be a specific number due to the physical properties of VOCs, and from the behavior at the molecular level, it is presumed to be a phenomenon similar to azeotropy.
  • Hydrophilic VOCs such as formaldehyde, acetonitrile, and ammonia have hydrophilic groups with high affinity for water, so water molecules and their hydrophilic groups are directly hydrogen-bonded. In addition, water molecules with strong bonding forces also form hydrogen bonds around them. Then, (1) hydrogen bonds between water molecules surrounding the same VOC molecule are created, but only the structure around the hydrophilic group is different. In this specification, this is called a hydrophilic VOC hydrated composite.
  • the molecules in a state in which the VOC and the surrounding water molecules are linked by hydrogen bonding as described in the above (1) and (2) are collectively referred to as "voc hydrated complex".
  • Many of these VOC hydrated composites are produced in a state where the water vapor pressure is high, that is, in a state where the absolute humidity is high. Presumed. Therefore, in order to remove VOC, it is first necessary to humidify to make this VOC hydrated composite. Humidification is aimed at increasing the absolute humidity, so maintaining not only the relative humidity but also the temperature to a certain degree can increase the absolute humidity with a higher saturation point, resulting in a higher VOC removal effect. It is done.
  • VOC impregnation such as building materials is fixed by intermolecular force.
  • the bond due to V is weak enough to be compared with hydrogen bond or ionic bond, so it gradually dissipates due to the volatility of VOC itself in the normal atmosphere where VOC impregnation is placed. This gradual release is the reason why the VOC odors of building materials and furniture cannot be easily removed.
  • VOC impregnated force VOC hydrated compound is more dissipated, so it is dissipated from the VOC impregnated material. It becomes a trend.
  • FIG. 1 shows a first embodiment of the present invention.
  • Reference numeral 10 denotes a treatment space in which a VOC-impregnated material 11 such as a building material impregnated with VOC exists, and a humidifier 14 and a dehumidifier 15 are installed.
  • the humidifying device 14 and the dehumidifying device 15 may be installed outside the processing space 10 by connecting them using a force duct or the like installed inside the processing space 10.
  • the humidifying device 14 may be basically any type of device, but a humidifying device using an ultrasonic vibrator or the like, a spray-type humidifying device, or the like has an extremely low effect. . This is because these types of humidifiers simply spray liquid droplets into the air, and the liquid phase water has a low vapor pressure and forms a hydrated complex with VOC. In addition, since it is a huge droplet compared to water at the molecular level, even if it adheres to the surface of building materials and soaks into shallow areas, it penetrates into the interior due to its low activity and is absorbed into VOC. This is because there is little effect of forming a hydrated composite of the above and releasing the building material power.
  • the humidifier 14 includes a heating device such as the heater 28 or utilizes steam humidification.
  • a heating device such as the heater 28 or utilizes steam humidification.
  • water is dissipated in the gas phase to increase the water vapor pressure, and this water vapor pressure is high and penetrates into the water molecular force SVOC impregnated material 11 in the gas phase to form the VOC hydrated composite. Form.
  • the dehumidifying device 15 is a wet dehumidifying device that uses the hygroscopic property of a liquid desiccant such as a high concentration sodium chloride solution or triethylene glycol. Since this wet dehumidifying device itself is not particularly new, detailed description thereof is omitted.
  • the processing space 10 is humidified to a high humidity in a gas phase within a range not reaching saturation. More specifically, the high humidity usually means that the room RH is 20 to 70% and is preferably humidified to 80 to 95%. In this humidification step, a sufficient time is set as described above.
  • the VOC floating in the atmosphere in the processing space 10 forms a hydrated composite, and water molecules in the gas phase penetrate into the VOC impregnated material 11 and are adsorbed inside. It also forms a hydrated complex with the voc.
  • the dehumidifier 15 dehumidifies the atmosphere in the treatment space 10 as a second step.
  • the water floating in the atmosphere of the processing space 10 is mainly collected in the desiccant of the dehumidifier 15 and dehumidified.
  • VOCs floating in the atmosphere of the treatment space 10 form a hydrated complex and are still difficult to collect.
  • VOC is collected in the dehumidifier 15 in the fourth step.
  • moisture and VOC are collected. Is a problem of thermostatistical probabilities, and it is thought that VOC collection started gradually with a small amount of first-stage force.
  • hydrophilic VOC is highly likely to be collected in desiccant as a hydrated compound, and the results of an experimental example (formaldehyde) described later show this.
  • the humidification process and the dehumidification process are treated as one cycle, and this cycle is repeated when the concentration needs to be reduced.
  • Example 1 In order to verify the effect of Example 1, the VOC impregnated material 11 was housed in the treatment space 10 of 2.7m X 2.7m X 2.4m. In the processing space 10, the humidifier 14 and In addition to the dehumidifier 15, a VOC measuring device 12 and a temperature / humidity measuring device 13 are accommodated.
  • the VOC impregnated material 11 was obtained by applying formaldehyde to a plywood board as a sample and drying it outside for two days.
  • the outside air drying for two days was dried in the sun during the day, stored in the laboratory at night, and stored in the laboratory when it rained.
  • Pre-treatment measurement After processing space 10 is sealed for 8 hours, measure the VOC concentration.
  • Humidification step As the first step described above, the inside of the treatment space 10 is humidified to a gas phase state of RH 95%, and this state is also maintained for 24 hours.
  • Dehumidification process As the above-mentioned second process, the inside of the treatment space 10 is dehumidified with the dehumidifier 15 for 24 hours.
  • Ventilation before measurement Ventilate enough so that the air in the treatment space 10 is completely replaced with the outside air.
  • Measurement after treatment Measure the VOC concentration taking care that the temperature, sealing time, etc. are the same as [1] measurement before treatment. If there is a difference in temperature, etc., perform temperature correction if necessary.
  • the RH in the treatment space 10 increased to about 95% after 24 hours, as was shown by the characteristic curve e, which was about 38% at the beginning.
  • the RH of outside air is almost unchanged at about 38%, as shown in the characteristic curve g.
  • the temperature in the processing space 10 rose to about 15 ° C after 24 hours, which was about 12 ° C, as shown in the characteristic curve d.
  • the outside air temperature hardly changes at about 12 ° C.
  • the formaldehyde concentration tends to increase slightly from the start of humidification to around 16 hours.
  • the outside air RH is almost unchanged at about 38%.
  • the temperature in the treatment space 10 rose to about 23 ° C after 50 hours of force, which was about 15 ° C at the beginning, as shown in the characteristic curve d.
  • the outside air temperature is almost unchanged at about 12 ° C.
  • the temperature characteristic curve d in the processing space 10 it rises due to dehumidification.
  • FIG. 3 shows the test results obtained by removing formaldehyde at a higher concentration than in the example of FIG. 2, and the same removal effect as in FIG. 2 can be seen.
  • the formaldehyde removal effect is excellent at 135 to 145 minutes and 165 to 190 minutes where the rate of change of RH in the processing space 10 is large. In other words, it shows that if it is not dehumidified, it will show a slightly increasing tendency as it is. If the RH in the treatment space 10 is rapidly lowered, the effect of removing formaldehyde will be noticeable.
  • Fig. 4 shows the toluene removal effect, which has a large rate of change when the RH in the processing space 10 is reduced. From 65 to LOO minutes, there is an extremely excellent toluene removal effect.
  • Example 2 an example using a dry rotor type dehumidifier using a solid desiccant will be described.
  • the dry rotor type dehumidifier (total heat exchanger) has a rotor 26 made of a solid desiccant such as silica gel or zeolite, which alternates between the dehumidifying side 32 and the humidifying / regenerating side 33.
  • the aerodynamic force introduced by the rotor 26 also adsorbs moisture
  • the humidifying / regenerating side 33 water is diffused and dried from the rotor 26 to which moisture has adsorbed, and these dehumidified It is a device that performs humidification and regeneration simultaneously. As this moisture adsorbs and dissipates and dries, the sensible heat of water is accompanied by the receipt of latent heat, so it is sometimes called total heat exchange.
  • the humidifier 14 and the dehumidifier 15 can be made to function as a single device.
  • the humidification process in the first step is the same as in Example 1 by connecting the intake and exhaust air on the dehumidifying side 32 and the humidifying / regenerating side 33 to the inside and outside of the processing space 10 with ducts, and switching the connection using a switching valve according to the process. And the second dehumidification process.
  • the water in the air supplied from the outside air or the water of the tanker is adsorbed to the rotor 26 on the dehumidification side 32 and introduced into the humidification 'regeneration side 33.
  • the air from 10 is passed through the moist rotor 26 and humidified, and again diffused into the processing space 10.
  • a heating device may be provided in front of the dehumidifying side 32.
  • the air in the processing space 10 is introduced to the dehumidifying side 32 and moisture is adsorbed to the port 26 to perform dehumidification, and then diffused into the processing space 10 again.
  • This dehumidification During the process, water molecules are preferentially adsorbed on the surface of the solid desiccant in a high-humidity state, and VOC is not easily captured by the solid desiccant. As a result, the effect of VOC removal by solid desiccant is weak in the high humidity state at the beginning of the dehumidification process.
  • the VOC hydrate complex in the atmosphere dissociates into water and VOC, and the amount of VOC adsorbed on the solid desiccant increases as the humidity decreases.
  • the moisture and VOC hydrated composite adsorbed on the rotor 26 evaporate by heating in the desiccant regeneration process, and at the same time, the VOC hydrated composite is also decomposed and dehydrated and processed from the regeneration exhaust port. It is discharged out of space.
  • Example 2 is an example using a single dry rotor type dehumidifier.
  • the solid desiccant is strong because VOC is difficult to be collected when the humidity of the processing air is high.
  • a powerful dehumidifier is desired. Therefore, two dry rotor type dehumidifiers are connected in series, and the treated air is dried by collecting the water molecules with the former dehumidifier, and the VOC is collected and removed with the latter dehumidifier.
  • Example 2 In Example 2 described above, even when the VOC adsorbed on the rotor is dried through air at a normal temperature or a slightly higher temperature than normal, only the moisture is dissipated and the VOC remains in the solid desiccant. Resulting in. Normally, the temperature is high for a certain time or every constant flow (for example 150 It is necessary to dissipate through air (° C or higher), and the desiccant is severely deteriorated by this high temperature. Therefore, the following configuration can be considered.
  • the regeneration side may alternately operate VOC removal (1) and (2) drying, or regeneration.
  • the side may be further divided into a VOC removal side for (1) and a dry side for (2) to allow continuous operation.
  • Example 2 the force that both the humidification and dehumidification steps are performed by the dry rotor type dehumidifier.
  • the present invention is not limited to this, and the humidification of the first step is separately dedicated. May be equipped with a humidifier.
  • the inside of the processing space 10 is humidified to a high humidity in a gas phase within a range that does not reach saturation.
  • the present invention is not limited to the following two points even if saturated. There is no problem.
  • water that has become saturated and in a liquid phase must also be dehumidified, it is necessary to increase the dehumidifying capacity of the dehumidifying device or lengthen the time of the dehumidifying process.
  • the other is condensation inside the treatment space 10. None of them reduce the effect of the present invention.
  • VOC impregnated material can be infiltrated with water molecules in a gas phase to forcibly dissipate VOC into the atmosphere. Therefore, it is possible to remove even the VOC existing inside the VOC impregnation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

【課題】 湿度を制御して処理空間内に存在するVOC含浸物からのVOC及び臭気の除去を内装部材、設置物類を痛めることなく安全かつ低価格に実行すること。 【解決手段】 VOCを除去すべき処理空間内を飽和しない範囲で高湿度に加湿して、VOC含浸物に吸着又は含浸されたVOCを、発生した気相状態の水分子との水和複合物形成さる加湿工程と、この加湿工程によりVOC内部に形成されたVOC水和複合物を、湿度を低下させることによりVOC含浸物から処理空間へ放散させる第2工程とからなる。

Description

明 細 書
VOC含浸物からの VOC除去方法
技術分野
[0001] 本発明は、建材などに含浸された揮発性有機化合物 (以下、 VOCという)を除去す る方法に関するものである。
背景技術
[0002] 近年、室内空気中の VOC汚染により、住宅やビルの新築'改築直後に、のどや眼 などの刺激、めまい、頭痛などの体調不良を訴える居住者が数多く報告されている。 症状が多様で、症状発生の仕組みを始め、未解明な部分が多ぐまた様々な複合要 因が考えられることから、シックハウス(室内空気汚染)症候群と呼ばれている。
揮発性が高く毒性も強いホルムアルデヒドが真っ先(平成 9年)に規制され、その後 、平成 12年に、トルエン、キシレン、パラジクロルベンゼン、ェチルベンゼン、スチレン 、フタル酸ジ—n—ブチル、クロルピリホスの 8種類に増え、また、同時に化学物質を「 総量規制」するため、 TVOC (トータル VOC)を 400/z gZm3以下にするように暫定 目標値が設定された。平成 13年には、テトラデカン、フタル酸— 2—ジェチルへキシ ル、ダイアジノンが追加され、さらに、平成 14年には、ァセトアルデヒド、フエノブカル ブが追加された。そして、これらの物質の室内濃度指針値が厚生労働省により策定さ れた。
[0003] 室内空気中の基本的な化学物質濃度低減ィ匕対策としては、従来より、換気法、吸 収薬剤利用法 (特許文献 1)、消臭器の使用法、加熱法 (ベークァ外法)、オゾン散 布法、発生防止薬剤塗布法等がある。
これらの従来の方法は、大別して、 VOC及び臭気を含む内装部材力 の放散を促 進又は防止する方法と、内部処理空間中の VOC及び臭気を除去する方法とに大別 され、前者の代表的なものが加熱法 (60°C以上)であり、後者の代表的なものが換気 法である (非特許文献 1)。
[0004] 前記ベータアウト法として、室温を上げて VOCの室内への放散を強制する室内温 度加温工程と、室内の vocを空気清浄器および Zまたは脱臭剤で除去する除去ェ 程とを有する vocの室外排気方法および除去方法が既に提案されている (特許文 献 2)。
この特許文献 2に基づきより具体的に説明すると、室温を上げて VOCの室内への 発生を強制する室内温度加温工程は、通常の室内用暖房器具で 30〜40°C以上に 設定し、 0. 1〜5時間以上加温する。室内温度を上げて行く状態では、加湿器など で室内湿度を上げると、空気中の水滴に可溶な VOCが捕捉され、建材などからの V OCの発生量を上昇させる。強制的に放散させた VOCを、窓などを開放して室外に 強制的に排気し、排気後に屋外等力もの水蒸気を除去するために除湿器で除湿す る。
換気法は説明するまでもなぐ室内の空気を外気と入れ替える方法である。
[0005] また、シリカゲルゃゼオライト、活性炭を用いたロータ (フィルタ)に VOCなど含む処 理空気を通じることによって VOCを吸着 '濃縮する溶剤濃縮ロータと呼ばれる装置が めつに。
[0006] 特許文献 1 :特開平 10— 218702号公報
特許文献 2:特開 2001— 193974号公報
非特許文献 1 :西野 敦 他著 「VOC対策」ェヌ'ティー'エス出版 1998年 発明の開示
発明が解決しょうとする課題
[0007] 前記加熱法では、内装部材、設置物等を劣化させる恐れがあり、特に、設置物等 が設置された状態では加熱処理を行うことは好ましくない。
特許文献 2の方法によれば、次のような試験結果になったと記載して 、る。
(1)ベータアウト 1 (加温 +室内空気を循環 +強制排気)を 10サイクル処置したとき、 TVOCは減少したが、ホルムアルデヒドは増加した。
(2)ベータアウト 1を 5サイクル処置したとき、 TVOCとホルムアルデヒドはともに増加し た。
(3)ベータアウト 2 (加温'加湿 +室内空気を循環 +強制排気)を 10サイクル処置した とき、 TVOCは増加し、ホルムアルデヒドは減少した。
[0008] この試験結果にっ 、て、特許文献 2記載によれば、前記(2)の詳細な機構は不明 であるが、増大している理由は、中途半端なサイクルでは、放出された VOCが室内 に留まるためと推測される。また、前記(3)については、加温により発生したホルムァ ルデヒドが加湿により室内に発生させられた水滴に溶け込み捕集されて除去されるた めと推察されるとしている。しかし、 TVOCが増加している現象については何ら触れら れていない。
[0009] 以上のような特許文献 2記載の方法による問題点は、次の通りである。
まず第 1に、加湿器による加湿は、室内に水の粒子、即ち、液相の状態で散布して いるにすぎないため、 VOCは、建材等の表面に付着した水滴に溶け込み捕集される ことがあっても、それはわずかに減少するだけであって、根本的な除去効果にはなら ない。また、水滴に溶け込み捕集される VOCは、親水性の物質に限られ、疎水性の 物質には効果がない。上記の試験終了後にも拘わらず効果が現われないのは、 1つ にはこの理由〖こよるものと考えられる。
第 2に、上記方法でいう除湿は、除湿器で行なうものであるから、室内温度の変化 にともない飽和湿度が変化することを利用するにすぎず、建材等の内部の VOCまで 除去することは不可能である。
第 3に、強制的に排気するといつても、建材等の表面の VOCだけを排気するに止 まり、内部の VOCまで除去することにはならない。
[0010] 前記換気法は、最も手軽な方法であり、内部処理空間内の気中に放出された VO Cを除去するには効果がある力 内装部材力 の VOCの放散を促進しないため、自 然放散に対しては長期間の換気処理を継続する必要がある上、大量の換気は冷暖 房空調に大きな負担となることである。
また薬剤使用法は、いずれの処理の場合も薬剤代が高価になる場合が多ぐ継続 的に VOC及び臭気が発生する場合の対処が困難であった。連続的に VOC及び臭 気が発生する場所においては、大量換気において熱失効が大きく冷暖房空調の導 入が困難であった。
[0011] 前記溶剤濃縮ロータにおいては、シリカゲルゃゼオライトを用いたロータの場合に は、使用済みのロータを高温 (150°C以上)で処理して吸着した VOCを再揮発あるい は熱分解して除去することにより再生して利用することが可能であるが、再生時の高 温のために劣化が激しぐ価格に比して寿命が短いという問題点があった。比較的安 価な活性炭を用いたロータは、シリカゲルゃゼオライトのように高温で処理することが できな 、ので、完全な再生利用をすることが難 U、と 、う問題点があった。
[0012] 本発明の目的は、短期間に内装部材、設置物類を痛めることなく安全、かつ、低価 格に VOC及び臭気の除去処理を実行することにある。
課題を解決するための手段
[0013] 本発明は、 VOCを少しずつ放散して臭気を発する VOC含浸物が存在する雰囲気 中を気相状態の高湿度に加湿することにより、 VOC含浸物の内部に気相状態の水 分子を浸透させて内部の VOCと水分子とで VOC水和複合物を形成させ、この雰囲 気の湿度を低下させることによって、前記 VOC水和複合物を VOC含浸物から雰囲 気中に放散させ、さらに雰囲気を除湿することによって、雰囲気中に放散された VO C水和複合物を VOCと水とに解離させ、さらに雰囲気を除湿することによって VOC をデシカントに捕集する VOC含浸物からの VOC除去方法である。
発明の効果
[0014] 本発明によれば、雰囲気を気相状態の高湿度に加湿することにより、気相状態の 水分子が VOC含浸物内部にまで浸透して VOC水和複合物を形成し、除湿により V OC含浸物から放散されるので、 VOC含浸物の内部の VOCをも除去できる。
図面の簡単な説明
[0015] [図 1]本発明による VOCの除去方法及びその装置の実施例 1を示す説明図である。
[図 2]本発明の VOCの除去方法及びその装置によるホルムアルデヒドの測定結果を 示す特性図である。
[図 3]本発明の VOCの除去方法及びその装置によるホルムアルデヒドの他の測定結 果を示す図である。
[図 4]本発明の VOCの除去方法及びその装置によるトルエンの測定結果を示す図で ある。
[図 5]乾式ロータ型除湿機の説明図である。
符号の説明 [0016] 10· ··処理空間、 l l"'VOC含浸物、 12—VOC測定器、 13· ··温湿度測定器、 14 …加湿装置、 15· ··除湿装置。
発明を実施するための最良の形態
[0017] 本発明は、 VOCが存在する雰囲気中を気相状態の高湿度に加湿することにより、 VOC含浸物内部にまで気相状態の水分子を浸透させ、浸透した水分子と含浸物内 部の VOCとで VOC水和複合物を形成させ、雰囲気中の湿度を低下させることにより 、水和複合物を形成した VOCを含浸物カゝら放散させる。
また、さらに雰囲気中の湿度を低下させて、放散された VOC水和複合物を水と VO Cに解離させて、 VOCをデシカントに捕集する。
[0018] ここで、本発明の実施例を説明する前に、気相状態の高湿度に加湿したときの水 分子と VOCとの水和複合物の形成について簡単に説明する。
(1)疎水性 VOCの場合
ベンゼン、トルエン、キシレンのような疎水性 VOCは水との親和性が薄いため、水 分子と疎水性 VOCとは直接、水素結合および分子間力による結合はしない。水分 子は結合力の強い隣の水分子と結合して、 VOC分子を囲むように水の水素結合が 作られ、 VOCは周囲の水分子をまとった 1つの大きな分子のような振舞いをする。本 明細書では、このような状態を疎水性 VOC水和複合物と呼ぶ。周囲を囲む水分子 の数は、 VOCの物性により固有の決まった数になっていると推測され、分子レベル の振舞いからすると共沸と似た現象だと推測される。
[0019] (2)親水性 VOCの場合;
ホルムアルデヒド、ァセトアルデヒド、アンモニアなど親水性 VOCは水との親和性が 高い親水基を持っため、水分子とその親水基とは直接、水素結合する。また結合力 の強い水分子同士も周囲で水素結合する。すると(1)同様の VOC分子を囲む水分 子同士の水素結合が作られるが、親水基周辺部分だけは構造が異なっている。本明 細書では、これを親水性 VOC水和複合物と呼ぶ。
[0020] 本明細書では、上記(1)、(2)のような VOCおよび、その周囲の水分子が水素結 合で連係した状態の分子を総称して、「voc水和複合物」と呼ぶ。これら VOC水和 複合物は、水蒸気圧の高い状態、すなわち絶対湿度が高い状態で多く生成されると 推定される。従って、 VOC除去にはまずこの VOC水和複合物を作るための加湿が 必要になる。加湿は絶対湿度を上げることが目的であるので、相対湿度のみならず、 気温もある程度高く維持したほうが、飽和点が高くなつて絶対湿度を高くすることがで き、より高い VOC除去効果を得られる。
[0021] 次に、加湿プロセスで起こる VOC含浸物での現象を表面化学の観点力 説明する まず、建材などの VOC含浸物内の VOCは、分子間力によって固定されているが、 分子間力による結合は水素結合やイオン結合に比べると取るに足らな 、ほど弱 ヽた め、 VOC含浸物の置かれた通常の雰囲気中では、 VOC自身が持つ揮発性よつて 徐々に放散する。この徐々に放散することが、建材や家具の VOC臭気がなかなか消 えない原因である。
[0022] 高湿度下の気相状態の水分子は、処理空間に浮遊して 、る VOCと前述のように水 和複合物を形成するとともに、 VOC含浸物に浸透して内部の VOCとも水和複合物 を形成する。水和複合物を形成した VOCの行動は、水分子の行動に支配される。 V OC含浸物の内部に浸透しょうとする水分子の数は、雰囲気の水蒸気圧に比例する ため、雰囲気の絶対湿度 (水蒸気圧)が高いほど多くなり、 VOC含浸物内で VOC水 和複合物を形成しやすくなる。
[0023] 雰囲気中と VOC含浸物内部との水蒸気圧とが平衡した状態では、 VOC含浸物内 部の水分子および VOC水和複合物は、同時に放散と吸着を繰り返しつつ平衡を保 つている。しかし、加湿の序盤には、または加湿装置の性能によっては平衡初期には
、雰囲気中より VOC含浸物内部のほうが VOC水和複合物の濃度が高いために、 V OC含浸物力 VOC水和複合物が放散される数の方が多 、ので、 VOC含浸物から 放散される傾向となる。
[0024] また、雰囲気中の湿度が上昇しても、即座に水蒸気圧が平衡するだけの水分子が VOC含浸物に浸透するわけではないので、加湿プロセスには、充分な時間を設定し なければならない。例えば、予定の湿度まで達するのに長時間、例えば 24時間かけ るような場合にはさほど必要な ヽが、高性能の加湿装置で一気に湿度を上昇させる ような場合には、除湿プロセスに入る前に充分なエージングが必要になる。 実施例 1
[0025] 以下、本発明の実施例 1を図面に基づき説明する。
図 1は本発明の実施例 1を示すもので、 10は、 VOCを含浸した建材などの VOC含 浸物 11が存在する処理空間であり、加湿装置 14および除湿装置 15が設置されてい る。この加湿装置 14および除湿装置 15は、処理空間 10の内部に設置した力 ダクト などを用いて接続することにより処理空間 10の外に設置してもよい。
[0026] 前記加湿装置 14は、基本的にはどのような方式の装置でもよいが、超音波振動子 などを利用した加湿装置や噴霧式の加湿装置などでは、本発明の効果が極めて低く なる。何故なら、これらの方式の加湿装置は、空気中に液相状態の水滴を噴き飛ば して 、るだけに過ぎず、液相状態の水は蒸気圧が低く VOCと水和複合物を形成せ ず、さらに、分子レベルの水と比べ巨大な液滴であるため、建材などの表面に付着し て浅い領域まで染みることはあっても、活性が低いことと相まって内部まで浸透して V OCとの水和複合物を形成し建材力も離脱するという作用が少ないからである。
したがって、加湿装置 14は、ヒータ 28などの加温装置を包含するか又はスチーム 加湿を利用することが好ま ヽ。加温することにより水を気相状態で放散して水蒸気 圧を高め、この水蒸気圧が高 、気相状態にある水分子力 SVOC含浸物 11の内部に まで浸透して VOC水和複合物を形成する。
[0027] 前記除湿装置 15は、高濃度の塩ィ匕ナトリウム溶液やトリエチレングリコールなどの 液体デシカントが有する吸湿性を利用した湿式除湿装置が用いられる。この湿式除 湿装置自体は、特に新しいものではないので、詳しい説明は省略する。
[0028] つぎに、上記の装置を用いて VOCを捕集する方法および VOC含浸物 11から VO Cを除去する方法にっ 、て説明する。
まず、第 1工程として、処理空間 10内を飽和に達しない範囲内で気相状態の高湿 度に加湿する。高湿度とは、具体的には、通常、室内 RHは、 20〜70%であるから、 好ましくは 80〜95%に加湿する。この加湿工程では、上述のように充分な時間を設 定する。
この第 1工程により、処理空間 10内の雰囲気中に浮遊している VOCは水和複合物 を形成し、かつ、気相状態の水分子が VOC含浸物 11に浸透して内部に吸着されて ヽる vocとも水和複合物を形成する。
[0029] 処理空間 10の雰囲気と VOC含浸物 11の水蒸気圧が平衡するのに充分な時間を 経過したら、第 2工程として、除湿装置 15で処理空間 10内の雰囲気を除湿する。こ の第 2工程の序盤は、第 1段階として、主に処理空間 10の雰囲気中を浮遊している 水分が除湿装置 15のデシカントに捕集されて除湿される。この第 1段階では、処理空 間 10の雰囲気に浮遊している VOCは、水和複合物を形成しており、まだ捕集されに くい。そして、気中の湿度が低下するにしたがって、処理空間 10の雰囲気と VOC含 浸物 11内部との水蒸気圧の平衡が崩れて VOC含浸物 11内部の蒸気圧の方が高く なり、第 2段階として、 VOC含浸物 11から水分子および VOC水和複合物が放散す る。この第 2段階でも、まだ VOCは捕集されにくい。さらに湿度が低下してくると、第 3 段階として、処理空間 10の雰囲気中を浮遊している VOC水和複合物が水と VOCに 解離し始め、解離した水分は除湿装置 15に捕集される。さらに湿度が低下すると、 第 4段階として、 VOCが除湿装置に捕集されて除去される。
[0030] この第 2工程の説明は、便宜上第 1段階〜第 4段階に分けて説明し、第 4段階で V OCが除湿装置 15に捕集されるとしたが、水分や VOCの捕集は、熱統計力学的な 確率の問題であって、 VOCの捕集は少量ながら第 1段階力 徐々に始まっていると 考えられる。特に、親水性の VOCについては、水和複合物のままデシカントに捕集 される可能性が高く、後述の実験例 (ホルムアルデヒド)の結果がそれを表して 、る。
[0031] この第 2工程おいて、処理空間 10内の雰囲気の湿度が低下しても、 VOC含浸物 1 1から即座に水蒸気圧が平衡するだけの水や VOC水和複合物が放散されるわけで はないので、除湿プロセスは、処理空間 10内の雰囲気の湿度が下がりきつたからと いって除湿を止めてはならず、湿度が下がりきつた状態に達して力も充分な時間に 設定しなければならな 、。この湿度の下限漸近状態を加湿時間の 1〜2倍取らなけ ればならない。
以上のように、加湿プロセスと除湿プロセスを 1サイクルとして処理し、さらに濃度の 低減が必要なときには、このサイクルを繰り返す。
[0032] 上記実施例 1の効果を検証するため、 2. 7m X 2. 7m X 2. 4mの処理空間 10内部 に VOC含浸物 11を収納して実験を行った。処理空間 10内には、加湿装置 14およ び除湿装置 15の他、 VOC測定器 12、温湿度測定器 13が収容されている。
前記 VOC含浸物 11は、サンプルとしてベニヤ板にホルムアルデヒドを塗布し、 2日 間外気乾燥したものである。この 2日間の外気乾燥は、雨天以外のときは、昼は天日 干し、夜は実験室に保管し、また、雨天時には実験室で保管した。
[0033] この実験では、つぎの 5つの工程により測定を行った。
[1]処理前測定:処理空間 10を 8時間密閉した後、 VOC濃度を測定する。
[2]加湿工程:前述の第 1工程として、処理空間 10内を RH95%の気相状態に加湿 し、この状態を加湿開始力も 24時間維持する。
[3]除湿工程:前述の第 2工程として、処理空間 10内を除湿装置 15で 24時間除湿 する。
[4]測定前換気:処理空間 10内の空気が、外気と完全に入れ替わるように充分に換 気する。
[5]処理後測定:温度、密閉時間などが [1]処理前測定と同一になるように留意して VOC濃度を測定する。温度などに差があるときは、必要に応じて温度補正などを行
[0034] 図 2に示すように、 [1]処理前測定の段階では、
ホルムアルデヒドの濃度 (特性曲線 a):0. 14ppm (厚生労働省が設定した濃度指 針値 =0. 08ppm)
処理空間の相対湿度 RH (特性曲線 e):約 37%
外気の相対湿度 RH (特性曲線 g):約 37%
処理空間の温度 (特性曲線 d):約 12°C
外気の温度 (特性曲線 f):約 12°C
であった。
[0035] [2]加湿工程では、処理空間 10内の RHは、特性曲線 eに示すように、当初約 38% であったもの力 24時間後約 95%まで上昇した。外気の RHは、特性曲線 gに示すよ うに、約 38%でほとんど変化がない。また、処理空間 10内の温度は、特性曲線 dに 示すように、当初約 12°Cであったもの力 24時間後約 15°Cに上昇した。外気温度は 、特性曲線 fに示すように、約 12°Cでほとんど変化がない。 ホルムアルデヒドの濃度は、特性曲線 aに示すように加湿開始から 16時間頃までは 、僅かながらも増加する傾向にある。これは、気相状態の水分子が VOC含浸物 11の 表面や内部に存在する VOCが水和複合物を形成して処理空間 10に放散されてい ることを表わしている。また、 16時間を越えたあたりから増加しなくなつている。これは 、 VOC水和複合物の VOC含浸物 11から雰囲気中に放散する数と雰囲気中から V OC含浸物 11に吸着する数が平衡したものと考えられる。したがって、このあたりで第 1工程を終了しても、本発明の効果はさほど下がらないものと考えられる。
[0036] [3]除湿工程では、処理空間 10内の RHは、特性曲線 eに示すように、第 1工程の加 湿時に約 95%であったもの力 除湿開始から 24時間で約 15%に低下し、ホルムァ ルデヒドの濃度は、特性曲線 aに示すように、 0. 143ppm力も 0. 005ppm以下に著 しく低下した。このときの特徴として、処理空間 10内の RHとホルムアルデヒドの濃度 力 略相似した曲線を描いて低下している力 これは、雰囲気中のホルムアルデヒド のほとんど力VOC水和複合物を形成しており、デシカント剤に吸着余力がある場合 に VOC水和複合物のままデシカントに捕集されているからであると考えられる。 なお、外気 RHは、特性曲線 gに示すように、約 38%でほとんど変化がない。また、 処理空間 10内の温度は、特性曲線 dに示すように、当初約 15°Cであったもの力 50 時間後約 23°Cに上昇した。外気温度は、特性曲線 fに示すように、約 12°Cでほとん ど変化がない。処理空間 10内の温度特性曲線 dに示すように、除湿したことにより上 昇している。
[0037] なお、本発明による方法によらずに、処理空間 10を通常の換気のみを行なった場 合、図 2の特性曲線 cに示すように、 50時間後のホルムアルデヒドのは、 0. 08ppmに 減少するに過ぎなかった。
[0038] 図 3は、図 2の例よりも高濃度のホルムアルデヒドを除去した試験結果を表わすもの で、図 2の場合と同様の除去効果が見られる。
この図 3に示すように、処理空間 10内の RHの変化率の大きい 135〜145分間、 1 65〜190分間では、ホルムアルデヒドの除去効果に優れている。即ち、除湿しなけ ればそのままかやや上昇する傾向を見せる力 処理空間 10内の RHを急激に下降 すると、ホルムアルデヒドの除去効果が顕著に現われることを示して 、る。 [0039] 図 4は、トルエンの除去効果を表わすもので、処理空間 10内の RHの減少時におけ る変化率の大きい 65〜: LOO分間では、極めて優れたトルエンの除去効果がある。た だし、処理空間 10内の RHの変化率の小さい 30〜50分間、 55〜65分間だけでなく 、増加時の変化率の大きい 50〜55分間でも、トルエンの除去効果がほとんどないこ とを表わしている。言い換えれば、トルエンについても、処理空間 10内の RHを急激 に減少させると、除去効果に優れて 、ることを表わして 、る。
実施例 2
[0040] つぎに、実施例 2として、固体デシカントを用いた乾式ロータ型除湿装置を用いた 例を説明する。
乾式ロータ型除湿装置 (全熱交換器)は、図 5の説明図に示すように、シリカゲルや ゼォライトなどの固体デシカントからなるロータ 26が装置内の除湿側 32と加湿 '再生 側 33を交互に巡回するように配置され、除湿側 32では、ロータ 26が導入された空気 力も水分を吸着し、加湿 ·再生側 33では、水分が吸着したロータ 26から水を放散-乾 燥させ、これらの除湿および加湿 ·再生を同時進行で行う装置である。この水分の吸 着、放散'乾燥に伴って、水の顕熱ゃ潜熱の収受を伴うので全熱交^^と呼ばれる 場合がある。
[0041] この乾式ロータ型除湿装置を利用することにより、加湿装置 14と除湿装置 15を 1台 の装置で機能させることができる。除湿側 32および加湿'再生側 33の吸気と排気を ダクトで処理空間 10の内外と接続し、工程に応じて切換えバルブにより接続を切り替 えて、前記実施例 1と同様に第 1工程の加湿プロセスと第 2工程の除湿プロセスを行 えるように構成する。
[0042] すなわち、第 1工程の加湿プロセスでは、外気から供給された空気中の水、又はタ ンクカもの水を除湿側 32でロータ 26に吸着させ、加湿'再生側 33に導入した処理空 間 10からの空気を湿ったロータ 26を通過させて加湿し、再び処理空間 10に放散さ せる。この加湿プロセス時に気相状態での加湿を補助するために、除湿側 32の前段 に加温装置を設けてもよい。
[0043] また、第 2工程の除湿プロセスでは、除湿側 32に処理空間 10の空気を導入して口 ータ 26に水分を吸着させて除湿を行い、再び処理空間 10に放散させる。この除湿 プロセス時、高湿度状態における固体デシカントの表面には水分子が優先的に吸着 され、 VOCは固体デシカントに捕獲されにくい。その結果、除湿プロセス初期の高湿 度状態では、固体デシカントによる VOC除去の効果は薄い。除湿が進んで、雰囲気 中の VOC水和複合物が水と VOCに解離し、さらに湿度が低下するに従つて VOCの 固体デシカントへの吸着量が増えてくる。すなわち固体デシカントで VOCを除去す るには、再生工程で、固体デシカントの表面を高い乾燥状態にして強力に除湿する 必要がある。
[0044] また、除湿によって処理空間内の湿度 (水蒸気圧)が低下するに従って、 VOC含浸 物内部との平衡が崩れるため、これを平衡させるように VOC含浸物内部から水およ び VOC水和複合物が放散される量が多くなる。すなわち、除湿プロセス初期では、 VOC含浸物からの VOC水和複合物の放散が少なぐ VCO含浸物からの VOC除去 の効果は薄い。
[0045] これらの 2つの理由により、固体デシカントを用いた除湿プロセス初期には VOC除 去効果が薄ぐある程度以上処理空間の除湿が進んだ時点で顕著な効果が現れ始 める。すなわち、処理空間の空気全体を乾燥状態に維持することで、 VOC含浸物か らの VOC放散が促進され、さらに、放散された VOC水和複合物が水と VOCに解離 して効果的に含浸物内部の voc水和複合物を捕集 ·除去することができる。
[0046] ロータ 26に吸着された水分および VOC水和複合物は、デシカントの再生プロセス での加熱により、水分は蒸発すると同時に、 VOC水和複合物も分解'脱水されて再 生排気口から処理空間外へ排出される。
[0047] 以上の実施例 2は、 1台の乾式ロータ型除湿機を用いた例である力 前述したよう に固体デシカントは、処理空気の湿度が高い場合に VOCが捕集されにくいため、強 力な除湿装置が望まれる。したがって、乾式ロータ型除湿装置 2台を直列に連結し、 前段の除湿装置で水分子の捕集を行うことによって処理空気を乾燥状態とし、後段 の除湿装置で VOCの捕集 ·除去を行うようにしてもよ!、。
[0048] 以上の実施例 2では、ロータに吸着した VOCは、通常の温度や通常より多少高い 程度の温度の空気を通して乾燥させても、水分のみが放散されて VOCが固体デシ カント内に残留してしまう。通常は、一定時間または一定流量ごとに高温 (例えば 150 °c以上)の空気を通して放散させる必要があり、この高温によるデシカントの劣化が激 しぐロータが高価な割に寿命が短い。そのため、次のような構成とすることが考えら れる。
[0049] すなわち、固体デシカントの水の吸着性と VOC水和複合物の吸着性の差を利用し て、(1)気相状態の水を大量に吸着させて VOC水和複合物を形成することにより水と 置換して放散させて VOCを除去し、その後に (2)通常より多少高い程度の温度の空 気を通して乾燥する。これにより、従来ほどの高温をかけずに VOCを除去させること ができ、デシカントの劣化を抑えることができる。
具体的には、従来どおり、除湿側と再生側に区分された除湿装置を用い、再生側 で (1)の VOC除去と (2)の乾燥とを交互運転するようにしてもよいし、再生側をさらに (1 )のための VOC除去側と (2)のための乾燥側の 2つに区分して連続運転するようにし てもよい。
[0050] 以上の実施例 2では、加湿と除湿の両方の工程を、乾式ロータ型除湿装置により行 うようにした力 本発明はこれに限られるものではなぐ第 1工程の加湿は、別に専用 の加湿装置を設けても良 、。
[0051] 以上の実施例では、処理空間 10内を飽和に達しない範囲内で気相状態の高湿度 に加湿する、と説明したが、本発明は、飽和させてもつぎの 2点以外は問題となること はない。 1つは、飽和して液相状態となった水をも除湿しなければならないので、除 湿装置の除湿容量を大きくするか、除湿工程の時間を長くする必要がある。もう 1つ は、処理空間 10内部への結露である。いずれも、本発明の作用'効果を減少させる ものではない。
産業上の利用可能性
[0052] 高温による処理がないので、内装部材ゃ設置物等を劣化させる恐れがなぐ VOC 含浸物に気相状態の水分子を浸透させて強制的に VOCを雰囲気中に放散させるこ とができので、 VOC含浸物の内部に存在する VOCまで除去することができる。

Claims

請求の範囲
[1] VOC含浸物が存在する処理空間を気相状態の高湿度に加湿することにより、 VO
C含浸物に気相状態の水分子を浸透させて内部に吸着 ·含浸された VOCとの VOC 水和複合物を形成させる第 1工程と、処理空間の湿度を低下させることにより、前記 第 1工程において VOC含浸物内に形成した VOC水和複合物の処理空間への放散 を促進することを特徴とする VOC含浸物からの VOC除去方法。
[2] 処理空間に放散させた VOC水和複合物を、処理空間を除湿して湿度を低下させ ることにより水と VOCとに解離させ、解離した VOCをデシカントに捕集することを特徴 とする請求項 1記載の VOC含浸物力 の VOC除去方法。
[3] 液体デシカントにより処理空間を除湿して湿度を低下させるとともに、 VOCを捕集 することを特徴とする請求項 2記載の VOC含浸物からの VOC除去方法。
[4] 固体デシカントにより処理空間を除湿して湿度を低下させるとともに、 VOCを捕集 することを特徴とする請求項 2記載の VOC含浸物からの VOC除去方法。
[5] 第 1工程での加湿は、室内相対湿度 (RH)を外気の湿度以上の RH60〜95%に 設定し、第 2工程での除湿は、 RH40%以下に設定したことを特徴とする請求項 3ま たは 4記載の VOC含浸物力 の VOC除去方法。
[6] 第 1工程での加湿と第 2工程での除湿は、前記処理空間温度を、この処理空間温 度 + 30°Cの温度範囲内に加温して行なうようにしたことを特徴とする請求項 3または
4記載の VOC含浸物からの VOC除去方法。
[7] 第 1工程と第 2工程を 1サイクルとして複数サイクルを繰り返し行なうようにしたことを 特徴とする請求項 3また 4記載の VOC含浸物力 の VOC除去方法。
PCT/JP2005/011282 2004-09-21 2005-06-20 Voc含浸物からのvoc除去方法 WO2006033189A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006536320A JPWO2006033189A1 (ja) 2004-09-21 2005-06-20 Voc含浸物からのvoc除去方法
US11/662,908 US20070243100A1 (en) 2004-09-21 2005-06-20 Voc Removal Method From Voc Impregnated Materials
CA002580417A CA2580417A1 (en) 2004-09-21 2005-06-20 Method of removing voc from voc-impregnated material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004273707A JP2005125085A (ja) 2003-09-30 2004-09-21 揮発性有機化合物の除去方法及びその装置
JP2004-273707 2004-09-21

Publications (1)

Publication Number Publication Date
WO2006033189A1 true WO2006033189A1 (ja) 2006-03-30

Family

ID=36089955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011282 WO2006033189A1 (ja) 2004-09-21 2005-06-20 Voc含浸物からのvoc除去方法

Country Status (4)

Country Link
US (1) US20070243100A1 (ja)
JP (1) JPWO2006033189A1 (ja)
CA (1) CA2580417A1 (ja)
WO (1) WO2006033189A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019691A (ja) * 2006-07-13 2008-01-31 Takahashi Kanri:Kk 地下室の浮き床と二重壁の換気構造

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050158198A1 (en) * 2003-12-21 2005-07-21 Albers Walter F. Micro-cycle energy transfer systems and methods
CN100472168C (zh) * 2005-07-27 2009-03-25 三菱电机株式会社 热交换元件及装载有该热交换元件的热交换换气装置
WO2012081744A1 (en) * 2010-12-15 2012-06-21 Ntpia Co., Ltd. Polymer composite materials for building air conditioning or dehumidification and preparation method thereof
US10143608B2 (en) 2016-09-23 2018-12-04 Stryker Corporation Systems and methods for determining the usability of person support apparatuses
CN108826492A (zh) * 2018-05-31 2018-11-16 安徽省皓宇环保设备有限公司 一种养殖场用杀菌消毒净化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213809A (ja) * 2001-11-15 2003-07-30 Hiroshi Saito 建築物の空気環境調整システム
JP2005016810A (ja) * 2003-06-25 2005-01-20 Max Co Ltd 換気装置
JP2005021729A (ja) * 2003-06-30 2005-01-27 Orion Mach Co Ltd 空気循環装置および建物内から揮発性有機化合物を除去する方法
JP2005125084A (ja) * 2003-10-03 2005-05-19 Canon Inc 放射線撮像装置及び撮像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213809A (ja) * 2001-11-15 2003-07-30 Hiroshi Saito 建築物の空気環境調整システム
JP2005016810A (ja) * 2003-06-25 2005-01-20 Max Co Ltd 換気装置
JP2005021729A (ja) * 2003-06-30 2005-01-27 Orion Mach Co Ltd 空気循環装置および建物内から揮発性有機化合物を除去する方法
JP2005125084A (ja) * 2003-10-03 2005-05-19 Canon Inc 放射線撮像装置及び撮像方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019691A (ja) * 2006-07-13 2008-01-31 Takahashi Kanri:Kk 地下室の浮き床と二重壁の換気構造

Also Published As

Publication number Publication date
US20070243100A1 (en) 2007-10-18
JPWO2006033189A1 (ja) 2008-05-29
CA2580417A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
KR102546428B1 (ko) 환기 공조 장치
TWI757523B (zh) 換氣空調裝置
WO2006033189A1 (ja) Voc含浸物からのvoc除去方法
JP2011247566A (ja) デシカント空調機
KR102329696B1 (ko) 배기재순환 드라이룸 제습 시스템 및 이를 포함하는 드라이룸 설비
WO2010100739A1 (ja) 空気調和機
JP2011089665A (ja) 調湿装置
JPH08270980A (ja) 除加湿機能付き空気調和機
JP2011033302A (ja) 調湿換気装置
JP4692078B2 (ja) 調湿装置
JP2009019788A (ja) デシカント空調機
JP4258930B2 (ja) 除加湿装置、除加湿機及び空気調和機
JP2005125085A (ja) 揮発性有機化合物の除去方法及びその装置
CN101342377A (zh) 一种室内有害气体清除方法
JP2008253672A (ja) Voc除去装置
WO2002051454A1 (fr) Procédé et dispositif de traitement de l'air pollué
JP5356019B2 (ja) ハロゲン化金属塩を有するデシカントデバイス及びその製造方法
JP3594486B2 (ja) 湿気交換素子
JP5262167B2 (ja) 除湿装置
JP7277801B2 (ja) 吸着システム
JPS61212311A (ja) 除湿装置
JP2979679B2 (ja) 乾式除加湿方法
JPS6388076A (ja) 給気付塗装ブ−スの排気処理装置
JP2004301406A (ja) ホルムアルデヒド等の有害化学物質除去設備
SE2250840A2 (en) A system and method for controlling humidity in a defined space

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2580417

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11662908

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006536320

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11662908

Country of ref document: US

122 Ep: pct application non-entry in european phase