WO2006032401A1 - Verfahren zur herstellung von polycarbonat - Google Patents

Verfahren zur herstellung von polycarbonat Download PDF

Info

Publication number
WO2006032401A1
WO2006032401A1 PCT/EP2005/009911 EP2005009911W WO2006032401A1 WO 2006032401 A1 WO2006032401 A1 WO 2006032401A1 EP 2005009911 W EP2005009911 W EP 2005009911W WO 2006032401 A1 WO2006032401 A1 WO 2006032401A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium hydroxide
hydroxide solution
ppm
polycarbonate
chlorate
Prior art date
Application number
PCT/EP2005/009911
Other languages
English (en)
French (fr)
Inventor
Ulrich Blaschke
Stefan Westernacher
Wolfgang Ebert
Rainer Neumann
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to EP05784029A priority Critical patent/EP1794208A1/de
Priority to JP2007532807A priority patent/JP2008513590A/ja
Publication of WO2006032401A1 publication Critical patent/WO2006032401A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides

Definitions

  • the invention relates to a process for the production of polycarbonate by the phase boundary surface method.
  • Polycarbonate is prepared, inter alia, by the phase boundary surface process known from the prior art in which dihydroxydiarylalkanes (bisphenols) in the form of their alkali metal salts (bisphenolates) with phosgene in a heterogeneous phase in the presence of inorganic bases such as sodium hydroxide solution and an organic solvent the product polycarbonate is well soluble, be implemented. So there are two phases, an aqueous and an organic, before. After the reaction, the organic polycarbonate-containing phase is washed with an aqueous liquid to, inter alia, remove electrolytes, and then the washing liquid is separated.
  • dihydroxydiarylalkanes bisphenols
  • bisphenolates alkali metal salts
  • bisphenol A is generally dissolved or suspended in sodium hydroxide solution to form sodium bisphenolate.
  • the purity of the sodium hydroxide solution used to prepare the sodium bisphenolate solution is decisive for the purity of the polycarbonate produced therefrom.
  • DE 199 52 848 A for example, a process for the production of polycarbonate is described in which the Roche ⁇ set sodium hydroxide solution has a low content of certain metals and the water used has VE quality.
  • the object of the present invention is therefore to provide a process for the preparation of polycarbonate by the interfacial process, in which the quality of the polycarbonate, in particular with respect to its color, is not impaired.
  • the invention accordingly provides a process for the production of polycarbonate by the interfacial process, comprising at least the following steps:
  • step (b) condensation of the oligocarbonates prepared according to step (a) in the presence of at least one catalyst
  • step (c) separating off the polycarbonate-containing organic phase obtained according to step (b),
  • a sodium hydroxide solution which contains a maximum of 30 ppm, preferably not more than 10 ppm, sodium chlorate, based on 100 wt.% Sodium hydroxide.
  • the invention further provides a process for preparing an aqueous sodium hydroxide solution of at least one dihydroxydiarylalkane by reacting a dihydroxydiarylalkane with an aqueous sodium hydroxide solution, the dihydroxydiarylalkane being present as solid and / or melt.
  • This process is characterized in that the sodium hydroxide solution contains not more than 30 ppm, preferably not more than 10 ppm, of sodium chlorate, based on 100% by weight of sodium hydroxide.
  • the sodium hydroxide solution used in the process according to the invention generally contains sodium chlorate as an impurity, so that the content of sodium chlorate is> 0 ppm, preferably> 0.1 ppm (based on 100% by weight of sodium hydroxide).
  • an aqueous sodium hydroxide solution of a disodium salt of at least one dihydroxydiarylalkane is also understood as meaning an aqueous sodium hydroxide suspension of the dihydroyxdiarylalkane or its disodium salt.
  • the preparation of polycarbonate according to the invention comprising the steps (a) to (c), and the inventive preparation of an aqueous sodium hydroxide solution of at least one dihydroxydiarylalkans is preferably carried out under inert conditions.
  • inert conditions are understood as meaning an oxygen content of not more than 20 ppb in the sodium hydroxide solution and any DI water used working under the greatest possible exclusion of oxygen.
  • Working under exclusion of oxygen is preferably carried out as described in DE 199 43 640 A and DE 198 59 690 A.
  • dihydroxydiarylalkane as melt is understood to mean both the direct use of the melt from the preparation of the dihydroxydiarylalkane without prior solidification and also the indirect use of a remelted dihydroxydiarylalkane after solidification, for example in the form of prills or flakes.
  • the interfacial process for producing polycarbonate comprising steps (a) to (c) is well known in the art.
  • the process and usable therein solvents, catalysts, chain terminators and branching agents and molecular weights of the polycarbonates are described for example in EP 411 433 A, EP 894 816 A or EP 1 352 925 A.
  • sodium hydroxide solution which contains not more than 30 ppm, preferably not more than 10 ppm, of sodium chlorate, based on 100% by weight of sodium hydroxide.
  • the use of such a caustic soda solution refers to all steps of the process in which caustic soda is used.
  • a sodium hydroxide solution containing a maximum of 30 ppm of sodium chlorate is used.
  • sodium hydroxide solution can be added which contains a maximum of 30 ppm sodium chlorate.
  • such a caustic soda may be used to dissolve a branching agent.
  • caustic soda with a maximum content of 30 ppm of sodium chlorate is likewise used.
  • the process according to the invention also comprises an embodiment in which initially a dilute solution of the dihydroxydiarylalkane is prepared from at least one dihydroxydiarylalkane and sodium hydroxide solution, which is subsequently brought to a higher concentration by addition of further dihydroxydiarylalkane.
  • the aqueous sodium hydroxide solution of the disodium salt is prepared by contacting the Dihydroxydi ⁇ arylalkans with sodium hydroxide solution.
  • the Dihydroxydiarylalkan be present in solid form, such as prills or flakes, or in the form of a melt.
  • the dihydroxydiarylalkane can first be brought into contact with water and then only with the sodium hydroxide solution. The production can take place both continuously and batchwise.
  • the concentration of the solution prepared according to the invention (the disodium salt) of a dihydroxydiarylalkane is from 3 to 25% by weight, preferably from 5 to 20% by weight, particularly preferably at 10 to 18 wt.%, Dihydroxydiarylalkan (or sum of Dihydroxydiarylalkane) based on the total Dihydroxydiarylalkanest.
  • the sodium hydroxide solution is preferably used in the process according to the invention as 2 to 55% by weight, particularly preferably as 5 to 35% by weight, solution.
  • the sodium hydroxide solution is present in a higher concentration, it is first diluted, preferably with demineralized water, hereinafter called demineralized water.
  • demineralized water is preferably desalted, degassed and, if appropriate, desiccated.
  • the demineralized water preferably has an electrical conductivity of not more than 0.2 ⁇ S / cm and a SiO 2 concentration of not more than 0.02 mg / kg (see also DE 19 952 848 A and DE 198 59 690 A).
  • the demineralized water, the sodium hydroxide solution and / or the dihydroxydiarylalkane solution are preferably filtered at least once, particularly preferably two to three times before the beginning of the reaction.
  • different filter types with pore sizes of, for example, 0.25 to 100 microns can be used.
  • the demineralized water is filtered twice, for example, using bag and / or candle filters with a pore size of 1 micron.
  • the dihydroxydiarylalkane solution is preferably first filtered once with polypropylene filters (pore size 50 ⁇ m), then twice with bag filters (5 ⁇ m and 1 ⁇ m pore size).
  • the content of other impurities in the sodium hydroxide solution is as low as possible.
  • oxidatively active substances such as perchlorate should be present at a maximum of 30 ppm, particularly preferably at most 10 ppm (based on 100% by weight of sodium hydroxide).
  • the content of sulfates, carbonates and chlorides in the sodium hydroxide should preferably be as low as possible.
  • a maximum of 120 ppm of chloride, a maximum of 80 ppm of sulfate and a maximum of 300 ppm of carbonate (based on 100% by weight of sodium hydroxide) are preferred here.
  • a sodium hydroxide solution with a maximum content of 30 ppm sodium chlorate can either be prepared directly with such a sodium chlorate content or indirectly, by first obtaining a sodium hydroxide solution with a higher content of sodium chlorate, the sodium chlorate content of which is subsequently reduced.
  • Processes for the production of caustic soda are well known.
  • a common method is the chloralkali electrolysis, wherein a distinction is made between the amalgam method, the membrane method and the diaphragm method. The latter have the advantage over the amalgam process that no mercury is used.
  • the content of metals in the resulting caustic soda is also lower in the membrane process.
  • a disadvantage of the membrane and diaphragm method is that the separation of the anode compartment and the cathode compartment is no longer completely guaranteed.
  • chlorate is formed by the contact of the chlorine with the sodium hydroxide solution.
  • the sodium hydroxide solution is prepared by means of an amalgam process.
  • a sodium hydroxide solution contains a maximum of 30 ppm sodium chlorate.
  • the caustic soda contains more than 30 ppm of sodium chlorate per 100% by weight of sodium hydroxide after its preparation, for example by means of the diaphragm-type or membrane process of chlor-alkali electrolysis
  • the content of sodium chlorate may e.g. be reduced by mixing with a sodium hydroxide solution with a lower content of sodium chlorate, for example produced by the amalgam process.
  • sodium hydroxide solution according to the Membranverfah ⁇ ren for example, 15 ppm sodium chlorate based on 100 wt.% Sodium hydroxide
  • sodium hydroxide solution by the diaphragm method for example, 45 ppm sodium chlorate bezo ⁇ gen to 100 wt.% Sodium hydroxide
  • sodium hydroxide solution having a sodium chlorate content of not more than 30 ppm, based on 100 wt.% Of sodium hydroxide for example, by mixing 50 parts of sodium hydroxide solution according to the Membranverfah ⁇ ren (for example, 15 ppm sodium chlorate based on 100 wt.% Sodium hydroxide) with 50 parts of sodium hydroxide solution by the diaphragm method (for example, 45 ppm sodium chlorate bezo ⁇ gen to 100 wt.% Sodium hydroxide)
  • the content of sodium chlorate in the sodium hydroxide solution can be lowered by lowering the content of sodium chlorate in the brine of the chloralkali electrolysis by chlorate decomposition in the brine circuit.
  • acidification of the brine for example with hydrochloric acid, the chlorate synpro- poses with the chloride to form chlorine.
  • Under the brine circuit is understood to mean the enrichment of the remaining brine with electrolysis with NaCl and their return to the electrolysis. In this case, an acidification for chlorate removal of the total amount of brine or even only parts of the brine can be done.
  • the content of sodium chlorate is deliberately lowered even in the sodium hydroxide solution itself, for example by treatment (addition) with inorganic reducing agents (for example sodium sulphite, sodium dithionite) or with organic reducing agents (For example, formaldehyde), by catalytic reduction with hydrogen or by removal by means of suitable ion exchangers or a combination of these methods.
  • inorganic reducing agents for example sodium sulphite, sodium dithionite
  • organic reducing agents for example, formaldehyde
  • the content of chlorate in the brine can be reduced by feeding from the brine circuit.
  • such brine derived from a membrane or diaphragm process may be used after any enrichment with NaCl in an amalgam process.
  • a polycarbonate In the production of polycarbonate using a sodium hydroxide solution with a maximum content of sodium chlorate of 30 ppm, a polycarbonate is formed, which has a lower intrinsic color and thus a compared to a polycarbonate, which was prepared with a sodium hydroxide solution with a higher sodium chlorate has a lower Yellowness Index (YI) as a measure of color.
  • YI Yellowness Index
  • Preferred starting materials for the preparation of the sodium hydroxide solution of at least one dihydroxyarylalkane are: dihydroxydiarylalkanes of the general formula HO-Z-OH, wherein Z is a divalent organic radical having from 6 to 30 carbon atoms and containing one or more aromatic groups.
  • Z is a divalent organic radical having from 6 to 30 carbon atoms and containing one or more aromatic groups.
  • Examples of such compounds are bisphenols belonging to the group of dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, indanebisphenols, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) ketones and ⁇ , ⁇ '-bis (hydroxyphenyl) diisopropylbenzene - zole belong.
  • Particularly preferred bisphenols which belong to the abovementioned linking groups are 2,2-bis (4-hydroxy-phenyl) propane (bisphenol A (BPA)), tetraalkyl bisphenol A, 4,4- (meta-phenylenedi-isopropyl) diphenol (bisphenol M ), l, l-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and optionally mixtures thereof.
  • Particularly preferred copolycarbonates are those on the
  • a part, ie not more than 80 mol%, preferably 20 to 50 mol%, of the carbonate groups in the polycarbonates may be replaced by aromatic dicarboxylic acid ester groups.
  • Table 1 shows that with higher sodium chlorate content the absorption, i. Farbig ⁇ speed, the Natriumbisphenolatains increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung beschreibt ein Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren, umfassend wenigstens die folgenden Schritte: (a) Umsetzung einer wässrigen Natriumhydroxid-Lösung eines Dinatriumsalzes wenigstens eines Dihydroxydiarylalkans mit Phosgen in Gegenwart wenigstens eines organischen Lösungsmittels, eines Kettenabbrechers und ggf. eines Verzweigers (b) Kondensation der gemäß Schritt (a) hergestellten Oligocarbonate in Gegenwart wenigstens eines Katalysators (c) Abtrennung der gemäß Schritt (b) erhaltenen Polycarbonat enthaltenden, organischen Phase, wobei eine Natriumhydroxid-Lösung eingesetzt wird, welche maximal 30 ppm, bevorzugt maximal 10 ppm, Natriumchlorat, bezogen auf 100 Gew.% Natriumhydroxid, enthält.

Description

Verfahren zur Herstellung von Polvcarbonat
Die Erfindung betrifft ein Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenz¬ flächenverfahren.
Polycarbonat wird unter anderem nach dem aus dem Stand der Technik bekannten Phasengrenz- flächenverfahren hergestellt, bei dem Dihydroxydiarylalkane (Bisphenole) in Form ihrer Alkali¬ salze (Bisphenolate) mit Phosgen in heterogener Phase in Gegenwart von anorganischen Basen wie Natronlauge und einem organischen Lösungsmittel, in dem das Produkt Polycarbonat gut löslich ist, umgesetzt werden. Es liegen also zwei Phasen, eine wässrige und eine organische, vor. Nach der Reaktion wird die organische, Polycarbonat enthaltende Phase mit einer wässrigen Flüssigkeit gewaschen, wobei unter anderem Elektrolyte entfernt werden sollen, und die Waschflüssigkeit anschließend abgetrennt.
Zur Herstellung von Polycarbonat auf Basis von Bisphenol A wird in der Regel Bisphenol A in Natronlauge unter Ausbildung von Natriumbisphenolat gelöst oder suspendiert. Dabei ist die Reinheit der verwendeten Natronlauge zur Herstellung der Natriumbisphenolat-Lösung mit aus- schlaggebend für die Reinheit des daraus hergestellten Polycarbonats. In DE 199 52 848 A ist beispielsweise ein Verfahren zur Herstellung von Polycarbonat beschrieben, bei dem die ein¬ gesetzte Natronlauge einen niedrigen Gehalt an bestimmten Metallen hat und das eingesetzte Wasser VE-Qualität besitzt.
Ferner ist bekannt, dass Sauerstoff eine schädigende Wirkung auf Natriumbisphenolat-Lösungen hat. Die Oxidation von (bis-)phenolischen Strukturen führt zur Färbung der Natriumbisphenolat- Lösungen. Diese Färbung findet sich auch im Endprodukt Polycarbonat wieder und ist für Anwen¬ dungen unerwünscht, bei denen es auf Transparenz und Farblosigkeit des Polycarbonats ankommt. So beschreibt DE 198 59 690 A ein Verfahren zur Herstellung von Natriumbisphenolat-Lösungen mit einem Gehalt an gelöstem Sauerstoff von weniger als 150 ppb, bei dem Bisphenole mit einer wässrigen NaOH-Lösung mit einem Gehalt an gelöstem Sauerstoff von weniger als 100 ppb unter Sauerstoffausschluss umgesetzt werden.
Die Aufgabe der vorliegenden Erfindung besteht demnach darin, ein Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren bereitzustellen, bei dem die Qualität des Polycarbonats, insbesondere hinsichtlich seiner Farbe, nicht beeinträchtigt ist.
Es wurde gefunden, dass ein bestimmter Gehalt an Chlorat, welches in der wässrigen Natrium¬ hydroxid-Lösung (Natronlauge) eines Dinatriumsalzes eines Dihydroxydi-arylalkans enthalten ist, zu einer Beeinträchtigung der Farbe der Natriumbisphenolatlösung, und damit auch des PoIy- carbonats, führt.
Gegenstand der Erfindung ist dementsprechend ein Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren, umfassend wenigstens die folgenden Schritte:
(a) Umsetzung einer wässrigen Natriumhydroxid-Lösung eines Dinatriumsalzes wenigstens eines Dihydroxydiarylalkans mit Phosgen in Gegenwart wenigstens eines organischen Lösungsmittels, eines Kettenabbrechers und ggf. eines Verzweigers
(b) Kondensation der gemäß Schritt (a) hergestellten Oligocarbonate in Gegenwart wenigstens eines Katalysators
(c) Abtrennung der gemäß Schritt (b) erhaltenen Polycarbonat enthaltenden, organischen Phase,
wobei eine Natriumhydroxid-Lösung eingesetzt wird, welche maximal 30 ppm, bevorzugt maximal 10 ppm, Natriumchlorat, bezogen auf 100 Gew.% Natriumhydroxid, enthält.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer wässrigen Natrium- hydroxid-Lösung wenigstens eines Dihydroxydiarylalkans durch Umsetzen eines Dihydroxydiaryl¬ alkans mit einer wässrigen Natriumhydroxid-Lösung, wobei das Dihydroxydiarylalkan als Fest¬ stoff und/oder Schmelze vorliegt. Dieses Verfahren ist dadurch gekennzeichnet, dass die Natrium¬ hydroxid-Lösung maximal 30 ppm, bevorzugt maximal 10 ppm, Natriumchlorat, bezogen auf 100 Gew.% Natriumhydroxid, enthält.
Die im erfindungsgemäßen Verfahren eingesetzte Natriumhydroxid-Lösung enthält im allgemeinen Natriumchlorat als Verunreinigung, so dass der Gehalt an Natriumchlorat >0 ppm, bevorzugt >0,l ppm (bezogen auf 100 Gew.-% Natriumhydroxid) ist.
Im Rahmen der vorliegenden Erfindung wird unter einer wässrigen Natriumhydroxid-Lösung eines Dinatriumsalzes wenigstens eines Dihydroxydiarylalkans auch eine wässrige Natriumhydroxid- Suspension des Dihydroyxdiarylalkans bzw. seines Dinatriumsalzes verstanden.
Die erfindungsgemäße Herstellung von Polycarbonat, umfassend die Schritte (a) bis (c), sowie die erfindungsgemäße Herstellung einer wässrigen Natriumhydroxid-Lösung wenigstens eines Di¬ hydroxydiarylalkans erfolgt bevorzugt unter inerten Bedingungen.
Unter inerten Bedingungen wird im Sinne der vorliegenden Erfindung ein Sauerstoffgehalt von maximal 20 ppb in der Natronlauge und in eventuell eingesetztem VE-Wasser verstanden, wobei unter weitestgehendem Ausschluss von Sauerstoff gearbeitet wird. Das Arbeiten unter Ausschluss von Sauerstoff erfolgt bevorzugt wie in DE 199 43 640 A und DE 198 59 690 A beschrieben.
Unter der Verwendung des Dihydroxydiarylalkans als Schmelze wird sowohl der direkte Einsatz der Schmelze aus der Herstellung des Dihydroxydiarylalkans ohne vorherige Verfestigung verstanden als auch eine indirekte Verwendung eines wieder aufgeschmolzenen Dihydroxydiaryl¬ alkans nach Verfestigung, beispielsweise in Form von Prills oder Schuppen.
Das Phasengrenzflächenverfahren zur Herstellung von Polycarbonat umfassend die Schritte (a) bis (c) ist an sich aus dem Stand der Technik bekannt. Das Verfahren sowie darin einsetzbare Lösungsmittel, Katalysatoren, Kettenabbrecher und Verzweiger sowie Molmassen der PoIy- carbonate sind beispielsweise in EP 411 433 A, EP 894 816 A oder EP 1 352 925 A beschrieben.
Bei dem erfmdungsgemäßen Verfahren zur Herstellung von Polycarbonat wird Natronlauge ein¬ gesetzt, die maximal 30 ppm, bevorzugt maximal 10 ppm, Natriumchlorat, bezogen auf 100 Gew.% Natriumhydroxid, enthält. Die Verwendung einer solchen Natronlauge bezieht sich auf alle Schritte des Verfahrens, in denen Natronlauge eingesetzt wird. So wird bei der Herstellung der in Schritt (a) eingesetzten wässrigen Natriumhydroxid-Lösung eines Dinatriumsalzes wenigstens eines Dihydroxydiarylalkans (nachfolgend auch Dihydroxydiarylalkan-Lösung genannt) eine Natriumhydroxid-Lösung verwendet, die maximal 30 ppm Natriumchlorat enthält. Ferner kann für die Polycarbonatreaktion (Schritte (a) und (b)) zusätzlich Natronlauge zugegeben werden, die maximal 30 ppm Natriumchlorat enthält. Auch kann eine solche Natronlauge zum Lösen eines Verzweigers verwendet werden.
Bei dem erfindungsgemäßen Verfahren zur Herstellung einer wässrigen Natriumhydroxid-Lösung wenigstens eines Dihydroxydiarylalkans wird ebenfalls Natronlauge mit einem Maximalgehalt von 30 ppm Natriumchlorat eingesetzt. Das erfindungsgemäße Verfahren umfasst auch eine Ausfüh¬ rungsform, bei der zunächst eine verdünnte Lösung des Dihydroxydiarylalkans aus wenigstens einem Dihydroxydiarylalkan und Natronlauge hergestellt wird, welche anschließend durch Zugabe von weiterem Dihydroxydiarylalkan auf eine höhere Konzentration gebracht wird. Die wässrige Natriumhydroxid-Lösung des Dinatriumsalzes wird durch in Kontakt bringen des Dihydroxydi¬ arylalkans mit Natronlauge hergestellt. Dabei kann das Dihydroxydiarylalkan in fester Form, wie beispielsweise Prills oder Schuppen, oder in Form einer Schmelze vorliegen. Ebenso kann das Di- hydroxydiarylalkan zunächst mit Wasser und dann erst mit der Natronlauge in Kontakt gebracht werden. Die Herstellung kann sowohl kontinuierlich als auch batchweise ablaufen.
Die Konzentration der erfindungsgemäß hergestellten Lösung (des Dinatriumsalzes) eines Di¬ hydroxydiarylalkans liegt bei 3 bis 25 Gew.%, bevorzugt bei 5 bis 20 Gew.%, besonders bevorzugt bei 10 bis 18 Gew.%, Dihydroxydiarylalkan (bzw. Summe der Dihydroxydiarylalkane) bezogen auf die gesamte Dihydroxydiarylalkanlösung.
Die Natronlauge wird in den erfindungsgemäßen Verfahren vorzugsweise als 2 bis 55 Gew.-%ige, besonders bevorzugt als 5 bis 35 Gew.-%ige, Lösung eingesetzt.
Liegt die Natronlauge in einer höheren Konzentration vor, wird sie zunächst, vorzugsweise mit vollentsalztem Wasser, nachstehend VE- Wasser genannt, verdünnt. Das VE-Wasser ist vorzugs¬ weise entsalzt, entgast und ggf. entkieselt. Als Qualitätskriterium dient z.B. die elektrische Leit¬ fähigkeit (Summenparameter für ionogene Stoffe der noch in Spuren im Wasser vorhandenen Salze), wobei das VE-Wasser bevorzugt durch eine elektrische Leitfähigkeit von maximal 0,2 μS/cm und einer Siθ2-Konzentration von maximal 0,02 mg/kg gekennzeichnet ist (siehe auch DE 19 952 848 A und DE 198 59 690 A).
Weiterhin werden das VE-Wasser, die Natronlauge und/oder die Dihydroxydiarylalkan-Lösung bevorzugt mindestens einmal, besonders bevorzugt zwei- bis dreimal vor dem Beginn der Reaktion filtriert. Hierbei können unterschiedliche Filtertypen mit Porengrößen von beispielsweise 0,25 bis 100 μm zum Einsatz kommen. Insbesondere wird das VE-Wasser zweimal filtriert, wobei beispielsweise Beutel- und/oder Kerzenfilter mit einer Porengröße von 1 μm zur Anwendung kommen. Vorzugsweise wird die Dihydroxydiarylalkan-Lösung vor Einsatz in der Synthese des Polycarbonats zunächst einmal mit Polypropylenfiltern (Porengröße 50 μm), dann zweimal mit Beutelfiltern (5 μm und 1 μm Porengröße) filtriert.
Vorzugsweise ist auch der Gehalt an anderen Verunreinigungen in der Natronlauge möglichst gering.
Insbesondere andere oxidativ wirksame Substanzen wie Perchlorat sollten zu maximal 30 ppm, besonders bevorzugt maximal 10 ppm (bezogen auf 100 Gew.% Natriumhydroxid) vorliegen.
Darüber hinaus sollte vorzugsweise auch der Gehalt an Sulfaten, Carbonaten und Chloriden in der Natronlauge möglichst gering sein. Bevorzugt sind hierbei maximal 120 ppm Chlorid, maximal 80 ppm Sulfat und maximal 300 ppm Carbonat (bezogen auf 100 Gew.% Natriumhydroxid).
Eine Natronlauge mit einem Maximalgehalt von 30 ppm Natriumchlorat kann entweder direkt mit einem solchen Natriumchloratgehalt hergestellt werden oder indirekt, indem zunächst eine Natronlauge mit einem höheren Gehalt an Natriumchlorat gewonnen wird, deren Natriumchlorat- gehalt anschließend verringert wird. Verfahren zur Herstellung von Natronlauge sind hinlänglich bekannt. Ein gängiges Verfahren ist die Chloralkali-Elektrolyse, wobei zwischen dem Amalgamverfahren, dem Membranverfahren und dem Diaphragmaverfahren unterschieden wird. Letztere haben gegenüber dem Amalgamverfahren den Vorteil, dass kein Quecksilber eingesetzt wird. Neben dem geringeren Stromverbrauch ist beim Membranverfahren außerdem der Gehalt an Metallen in der erhaltenen Natronlauge geringer. Nachteilig an dem Membran- und Diaphragmaverfahren ist hingegen, dass die Trennung von Anodenraum und Kathodenraum nicht mehr vollständig gewährleistet ist. Insbesondere beim Dia¬ phragmaverfahren, aber auch in geringerem Umfang beim Membranverfahren, wird durch den Kontakt des Chlors mit der Natronlauge Chlorat gebildet.
Demnach wird gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens die Natronlauge mittels Amalgamverfahren hergestellt. Eine solche Natronlauge enthält maximal 30 ppm Natriumchlorat.
Enthält die Natronlauge nach ihrer Herstellung, beispielsweise mittels dem Diaphragma- oder Membranverfahren der Chloralkali-Elektrolyse, mehr als 30 ppm Natriumchlorat bezogen auf 100 Gew.% Natriumhydroxid, kann der Gehalt an Natriumchlorat z.B. durch Vermischen mit einer Natronlauge mit niedrigerem Gehalt an Natriumchlorat, beispielsweise hergestellt nach dem Amalgamverfahren, verringert werden.
So kann beispielsweise durch das Mischen von 50 Teilen Natronlauge nach dem Membranverfah¬ ren (beispielsweise 15 ppm Natriumchlorat bezogen auf 100 Gew.% Natriumhydroxid) mit 50 Teilen Natronlauge nach dem Diaphragmaverfahren (beispielsweise 45 ppm Natriumchlorat bezo¬ gen auf 100 Gew.% Natriumhydroxid) Natronlauge mit einem Natriumchloratgehalt von maximal 30 ppm bezogen auf 100 Gew.% Natriumhydroxid erhalten werden.
Ferner kann der Gehalt an Natriumchlorat in der Natronlauge dadurch gesenkt werden, dass der Gehalt an Natriumchlorat in der Sole der Chloralkali-Elektrolyse durch Chloratzersetzung im Solekreislauf gesenkt wird. Durch das Ansäuern der Sole, beispielsweise mit Salzsäure, synpro- portioniert das Chlorat mit dem Chlorid unter Bildung von Chlor. Unter dem Solekreislauf versteht man dabei die Anreicherung der bei der Elektrolyse übrig bleibenden Sole mit NaCl und deren Rückführung in die Elektrolyse. Dabei kann eine Ansäuerung zur Chloratentfernung der gesamten Menge Sole oder auch nur von Teilen der Sole erfolgen.
In einer weiteren Ausführungsform wird der Gehalt an Natriumchlorat auch in der Natronlauge selbst gezielt gesenkt, beispielsweise durch Behandeln (Zusatz)mit anorganischen Reduktionsmitteln (z.B. Natriumsulfϊt, Natriumdithionit) oder mit organischen Reduktionsmitteln (z.B. Formaldehyd), durch katalytische Reduktion mit Wasserstoff oder durch Entfernen mittels geeigneter Ionentauscher oder einer Kombination dieser Methoden.
Daneben kann der Gehalt an Chlorat in der Sole durch Ausspeisung aus dem Solekreislauf gesenkt werden. Um die Unwirtschaftlichkeit eines solchen Verfahrens zu minimieren, kann eine solche aus einem Membran- oder Diaphragmaverfahren stammende Sole nach eventueller Anreicherung mit NaCl in einem Amalgamverfahren verwendet werden.
Bei der Herstellung von Polycarbonat unter Verwendung einer Natronlauge mit einem Maximal¬ gehalt an Natriumchlorat von 30 ppm, wird ein Polycarbonat gebildet, das im Vergleich zu einem Polycarbonat, welches mit einer Natronlauge mit einem höheren Natriumchlorat hergestellt wurde, eine geringere Eigenfärbung aufweist und damit einen niedrigeren Yellowness Index (YI) als Maß für die Farbe besitzt.
Als Einsatzstoffe für die Herstellung der Natriumhydroxid-Lösung wenigstens eines Dihydroxy- diarylalkans sind bevorzugt: Dihydroxydiarylalkane der allgemeinen Formel HO-Z-OH, worin Z ein divalenter organischer Rest mit 6 bis 30 Kohlenstoffatomen ist, der eine oder mehrere aroma- tische Gruppen enthält. Beispiele solcher Verbindungen sind Bisphenole, die zu der Gruppe der Dihydroxydiphenyle, Bis(hydroxyphenyl)alkane, Indanbisphenole, Bis(hydroxyphenyl)ether, Bis- (hydroxyphenyl)sulfone, Bis(hydroxyphenyl)ketone und α,α'-Bis(hydroxyphenyl)diisopropylben- zole gehören.
Besonders bevorzugte Bisphenole, die zu den vorgenannten Verbindungsgruppen gehören, sind 2,2-Bis-(4-hydroxyρhenyl)propan (Bisphenol A (BPA)), Tetraalkylbisphenol A, 4,4-(meta-Pheny- lendiisopropyl)diphenol (Bisphenol M), l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan sowie gegebenenfalls deren Gemische. Besonders bevorzugte Copolycarbonate sind solche auf der
Basis der Monomere Bisphenol A und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan. Die erfindungsgemäß einzusetzenden Bisphenolverbindungen werden mit Kohlensäureverbindungen, insbesondere Phosgen, umgesetzt.
Des Weiteren kann ein Teil, d.h. maximal 80 Mol%, vorzugsweise 20 bis 50 Mol%, der Carbonat- Gruppen in den Polycarbonaten durch aromatische Dicarbonsäureester-Gruppen ersetzt sein. Beispiele
Beispiel 1
Aus festem Bisphenol A und einer inertisierten, chloratfreien 6,5%igen Natronlauge wurde eine 15%ige Natriumbisphenolat-Lösung hergestellt. Nach Zusatz von O ppm, lO ppm und 100 ppm Natriumchlorat bezogen auf das Bisphenol (entsprechend 0 ppm, 27 ppm und 270 ppm bezogen auf 100 Gew.% Natriumhydroxid) wurde unter Stickstoff für 5 Stunden bei 65 0C gerührt. Anschließend wurden mit einem Varian Cary 1 E UV-Spektrometer die UV-VIS-Spektren bei einer Schichtdicke von 5 cm gemessen.
Tabelle 1: Absorption in Abhängigkeit von der Wellenlänge (in nm) und dem Gehalt an Chlorat (in ppm Natriumchlorat)
Figure imgf000008_0001
Tabelle 1 ist zu entnehmen, dass mit höherem Natriumchloratgehalt die Absorption, d.h. Farbig¬ keit, der Natriumbisphenolatlösung zunimmt.
Beispiel 2
Zur Herstellung eines Polycarbonats wurde Bisphenol A in Natronlauge unter Sauerstoffausschluss gemischt, wobei Bisphenol A als Schmelze eingesetzt wurde. Die Natronlauge war 32 Gew.%ig und enthielt 5 ppm Natriumchlorat (16 ppm bezogen auf 100 Gew.% Natriumhydroxid). Zur Lösung des Bisphenols wurde die Natronlauge auf eine 6,5 %ige Natronlauge mit VE-Wasser ver¬ dünnt wird. Diese Natriumbisphenolatlösung wurde nach Filtration wie in der zitierten Literatur beschrieben in der Phasengrenzflächen-Polycarbonatreaktion eingesetzt. Nach der Reaktion wurde die Reaktionslösung, enthaltend Polycarbonat, Chlorbenzol und Methylenchlorid, filtriert und der Wäsche zugeführt. Es wurde mit Salzsäure gewaschen und anschließend mit filtriertem VE-Wasser mehrmals gewaschen, bis das Waschwasser eine Leitfähigkeit von < 10 μS/cm erreicht hat. Die organische Phase wurde von den wässrigen Phasen abgetrennt und filtriert. Das Poly-2,2-bis-(4- hydroxylphenyl)-propancarbonat wurde durch Abdestillieren der organischen Lösungsmittel iso¬ liert. Das Polycarbonat wies ein mittleres Molekulargewicht von Mw = 26.000 auf. Der Yellow- ness Index als Maß für die Farbe betrug YI = 1,4.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren, umfassend wenigstens die folgenden Schritte:
(a) Umsetzung einer wässrigen Natriumhydroxid-Lösung eines Dinatriumsalzes wenigstens eines Dihydroxydiarylalkans mit Phosgen in Gegenwart wenigstens eines organischen Lösungsmittels, eines Kettenabbrechers und ggf. eines Verzweigers
(b) Kondensation der gemäß Schritt (a) hergestellten Oligocarbonate in Gegenwart wenigstens eines Katalysators
(c) Abtrennung der gemäß Schritt (b) erhaltenen Polycarbonat enthaltenden, organischen Phase,
dadurch gekennzeichnet, dass eine Natriumhydroxid-Lösung eingesetzt wird, welche maximal 30 ppm Natriumchlorat, bezogen auf 100 Gew.% Natriumhydroxid, enthält.
2. Verfahren zur Herstellung einer wässrigen Natriumhydroxid-Lösung wenigstens eines Dihydroxydiarylalkans durch Umsetzen eines Dihydroxydiarylalkans mit einer wässrigen
Natriumhydroxid-Lösung, wobei das Dihydroxydiarylalkan als Feststoff und/oder Schmelze vorliegt, dadurch gekennzeichnet, dass die Natriumhydroxid-Lösung maximal 30 ppm Natriumchlorat, bezogen auf 100 Gew.% Natriumhydroxid, enthält.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass eine Natriumhydroxid-Lösung eingesetzt wird, welche >0 ppm bis 30 ppm Natriumchlorat, bezogen auf 100 Gew.-% Natriumhydroxid, enthält.
4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass eine Natriumhydroxid-Lösung eingesetzt wird, welche >0 ppm bis 10 ppm Natriumchlorat, bezogen auf 100 Gew.-% Natriumhydroxid, enthält.
5. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Verfahren unter inerten Bedingungen durchgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Natriumhydroxid-Lösung mittels Chloralkali-Elektrolyse hergestellt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Natriumhydroxid-Lösung vor dem Einsatz zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren oder zur Herstellung einer wässrigen Natriumhydroxid- Lösung wenigstens eines Dihydroxydiarylalkans mit wenigstens einem anorganischen oder organischen Reduktionsmittel versetzt wird, einer katalytischen Reduktion mit Wasserstoff unterworfen wird und/oder mit wenigstens einem Ionentauscher behandelt wird.
8. Verfahren nach einem der Ansprüche 1 oder 5 bis 7, dadurch gekennzeichnet, dass die wässrige Natriumhydroxid-Lösung eines Dinatriumsalzes wenigstens eines Dihydroxy¬ diarylalkans vor Schritt (a) mindestens einmal filtriert wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Dihydroxydiarylalkan Bisphenol A, l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan oder deren Mischung, bevorzugt Bisphenol A ist.
PCT/EP2005/009911 2004-09-22 2005-09-15 Verfahren zur herstellung von polycarbonat WO2006032401A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05784029A EP1794208A1 (de) 2004-09-22 2005-09-15 Verfahren zur herstellung von polycarbonat
JP2007532807A JP2008513590A (ja) 2004-09-22 2005-09-15 ポリカーボネートの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004045822A DE102004045822A1 (de) 2004-09-22 2004-09-22 Verfahren zur Herstellung von Polycarbonat
DE102004045822.7 2004-09-22

Publications (1)

Publication Number Publication Date
WO2006032401A1 true WO2006032401A1 (de) 2006-03-30

Family

ID=35405873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/009911 WO2006032401A1 (de) 2004-09-22 2005-09-15 Verfahren zur herstellung von polycarbonat

Country Status (8)

Country Link
US (1) US20060063906A1 (de)
EP (1) EP1794208A1 (de)
JP (1) JP2008513590A (de)
KR (1) KR20070056106A (de)
CN (1) CN101023118A (de)
DE (1) DE102004045822A1 (de)
RU (1) RU2007114944A (de)
WO (1) WO2006032401A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207918A (ja) * 2010-03-27 2011-10-20 Osaka Univ 電気化学を用いたポリマーの製造方法と生成物
CN104136489B (zh) * 2012-02-28 2016-08-24 沙特基础全球技术有限公司 制备具有增强的光学特性的聚碳酸酯的方法
WO2017021802A1 (en) * 2015-07-31 2017-02-09 Sabic Global Technologies B.V. Polycarbonate with low chlorine content and a method of making and analyzing the same
US10544259B2 (en) 2015-08-31 2020-01-28 Sabic Global Technologies B.V. Polycarbonate with low chlorine content and a method of making and analyzing the same
EP3719051B1 (de) * 2019-04-03 2021-11-03 Covestro Deutschland AG Verfahren zur herstellung von polycarbonat-zugabezeitpunkt des kettenabbrechers
CN113999382B (zh) * 2021-12-10 2023-07-11 万华化学集团股份有限公司 一种聚碳酸酯的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859690C1 (de) * 1998-12-23 2000-09-07 Bayer Ag Polycarbonate mit niedrigem Yellowness-Index
US6340736B1 (en) * 1999-11-29 2002-01-22 General Electric Company Method and apparatus for the production of polycarbonates with brine recycling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017338A (en) * 1958-03-03 1962-01-16 Diamond Alkali Co Electrolytic process and apparatus
CN1170870C (zh) * 1998-12-23 2004-10-13 拜尔公司 双酚钠溶液的制备方法
DE19952848A1 (de) * 1999-11-03 2001-05-10 Bayer Ag Verfahren zur Herstellung von Polycarbonaten

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859690C1 (de) * 1998-12-23 2000-09-07 Bayer Ag Polycarbonate mit niedrigem Yellowness-Index
US6340736B1 (en) * 1999-11-29 2002-01-22 General Electric Company Method and apparatus for the production of polycarbonates with brine recycling

Also Published As

Publication number Publication date
US20060063906A1 (en) 2006-03-23
CN101023118A (zh) 2007-08-22
JP2008513590A (ja) 2008-05-01
EP1794208A1 (de) 2007-06-13
RU2007114944A (ru) 2008-10-27
DE102004045822A1 (de) 2006-04-06
KR20070056106A (ko) 2007-05-31

Similar Documents

Publication Publication Date Title
EP1894914B1 (de) Verfahren zur Herstellung von Diarylcarbonat
EP2229343B1 (de) Verfahren zur herstellung von diarylcarbonat
EP2096131B1 (de) Verfahren zur Herstellung von Polycarbonat
EP2286898A1 (de) Verfahren zur Herstellung von Polycarbonat
WO2006032401A1 (de) Verfahren zur herstellung von polycarbonat
DE1495906C3 (de) Verfahren zur Herstellung eines Polycarbonats
WO2020182834A1 (de) Verfahren zur aufarbeitung und wiederverwendung von salzhaltigem prozesswasser
DE2410716A1 (de) Verfahren zur herstellung aromatischer polycarbonate nach dem phasengrenzflaechenverfahren in chlorbenzol als loesungsmittel
DE2602366A1 (de) Rueckgewinnung von diphenylolalkanen aus der bei der herstellung von polycarbonaten entstehenden alkalischen phase
EP3728399B1 (de) Verfahren zur herstellung eines polycarbonats unter verwendung eines organischen lösungsmittels auf der grundlage von chlorkohlenwasserstoffen
EP0025928B1 (de) Verfahren zur Herstellung von aromatischen Polycarbonaten nach dem Phasengrenzflächenverfahren
EP3719052B1 (de) Verfahren zur herstellung von polycarbonat mit reduziertem phosgenüberschuss
DE3026937A1 (de) Verfahren zur herstellung eines aromatischen oligoesters mit zwei endstaendigen hydroxylgruppen
DE2702294A1 (de) Verfahren zur herstellung von polyphenylenoxiden
EP3728392B1 (de) Verfahren zur herstellung von polycarbonat
EP3719051B1 (de) Verfahren zur herstellung von polycarbonat-zugabezeitpunkt des kettenabbrechers
EP2241550B1 (de) Verfahren zur Herstellung von Diarylcarbonat
EP4090695A1 (de) Verfahren zur herstellung eines polycarbonats mit verbesserter rückgewinnung von nicht umgesetzten diarylcarbonat
EP4011861A1 (de) Verfahren zur herstellung von diarylcarbonaten mit geringem phenolgehalt im abwasser
DE4129545C1 (en) Prodn. of finely divided aq. sodium bis:phenolate - by mixing bisphenol=A with sodium hydroxide to ppte. prod. and stirring vigorously
WO2019121240A1 (de) Verfahren zur herstellung eines polycarbonats unter verwendung eines organischen lösungsmittels auf der grundlage von chlorkohlenwasserstoffen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005784029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1850/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077006464

Country of ref document: KR

Ref document number: 200580031853.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007532807

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007114944

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005784029

Country of ref document: EP