WO2006030789A1 - 光ヘッド装置 - Google Patents

光ヘッド装置 Download PDF

Info

Publication number
WO2006030789A1
WO2006030789A1 PCT/JP2005/016851 JP2005016851W WO2006030789A1 WO 2006030789 A1 WO2006030789 A1 WO 2006030789A1 JP 2005016851 W JP2005016851 W JP 2005016851W WO 2006030789 A1 WO2006030789 A1 WO 2006030789A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical
phase plate
optical head
head device
Prior art date
Application number
PCT/JP2005/016851
Other languages
English (en)
French (fr)
Inventor
Nobuhiko Takeshita
Tomoki Gunjima
Kara Yoshida
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2006535152A priority Critical patent/JP5034501B2/ja
Publication of WO2006030789A1 publication Critical patent/WO2006030789A1/ja
Priority to US11/686,131 priority patent/US7986606B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to an optical head device equipped with a broadband phase plate for controlling the phase state of laser light.
  • An optical head device is used to write optical information on an optical recording medium such as an optical disk and a magneto-optical disk and to read optical information.
  • This optical head device collects light emitted from a semiconductor laser as a light source on a recording surface of a disk-shaped optical recording medium (hereinafter referred to as “optical disk”) by an objective lens, and writes and reads information. Make out. When information is read out, the emitted light reflected from the information recording surface of the optical disk is received by a photodetector.
  • this optical head device has shortened the wavelength of light emitted from the light source (405 nm). Is underway.
  • this optical head device it is necessary to be able to simultaneously perform reproduction with long-wavelength (660 nm and 790 nm) laser beams for many optical disks that have been widely used. For this reason, various system powers having compatibility of an optical disk with conventional laser light on the longer wavelength side and laser light on the shorter wavelength side have been proposed, for example, in JP-A-2004-158118.
  • the forward path refers to the direction in which the emitted light from the light source travels toward the optical disk
  • the return path refers to the reflected light reflected from the information recording surface of the optical disk. In this direction, the reflected light is directed toward the photodetector, that is, the reflected return light travels.
  • FIG. 14 shows an example of the configuration of an optical head device having a polarization optical system using three different, ie, three types of laser beams.
  • the linearly polarized laser beams from the semiconductor laser 101A having an emission wavelength of 405 nm, the semiconductor laser 101B having a wavelength of 660 nm, and the semiconductor laser 101C having a wavelength of 790 nm are highly transmissive for incident linearly polarized light.
  • the polarization hologram 102A, the 660 nm polarization hologram 102B, and the 790 nm polarization hologram 102C are respectively transmitted.
  • the linearly polarized laser light is linearly polarized by the 405 nm 1/4 wavelength plate 103A, the 660 nm 1/4 wavelength plate 103B and the 790 nm 1Z4 wavelength plate 103C, which are integrated with the polarization hologram, respectively.
  • Force Converted to circularly polarized light After that, the laser light becomes parallel light by the collimating lens 104A, the collimating lens 104B, and the collimating lens 104C that are individually arranged, and is transmitted and reflected by the beam splitter 105 having the characteristics of 405 nm transmission and 660 nm reflection. And transmits and reflects the beam splitter 106 having the characteristics of 790 nm reflection and strong 660 nm transmission.
  • This laser light is collected on the information recording surface of the optical disc D (hereinafter simply referred to as “the surface of the optical disc!”) By the objective lens 108 that is held in the actuator 107 and is common to the three wavelengths. To do.
  • the reflected light of the optical disk D force including information of pits formed on the surface of the optical disk travels in the opposite direction along each path. That is, the circularly polarized light whose rotation direction is reversed by the reflection of the surface of the optical disk D is transmitted again through the 1Z4 wavelength plate 103A, the 1Z4 wavelength plate 103B, and the 1Z4 wavelength plate 103C, respectively, and has a polarization direction orthogonal to the incident polarization direction. It is converted into linearly polarized light, and is diffracted by the polarization hologram 102A, the polarization hologram 102B, and the polarization hologram 102C, respectively, and becomes diffracted light.
  • the information on the pits of the optical disk D possessed by these diffracted lights is detected on the surface of the optical disk D by detecting the photodiodes 109A, 109B and 790nm photodiodes 109A and 790nm, which are photodetectors for 405nm.
  • the recorded information is read out.
  • an optical element such as a 1Z4 wavelength plate is shared. It has been proposed (see, for example, JP-A-10-68816).
  • phase plate (1Z4 wavelength plate) that converts linearly polarized light of two wavelengths, for example, linearly polarized light of wavelengths 405 nm and 660 nm into circularly polarized light, is completely circularly polarized for linearly polarized light of wavelength 790 nm
  • a phase plate that converts linearly polarized light with wavelengths of 660 nm and 790 nm to circularly polarized light cannot be completely circularly polarized with respect to 405 nm linearly polarized light, and the desired characteristics cannot be obtained.
  • Japanese Patent Application Laid-Open No. 14-156528 describes that a broadband phase plate can be formed by a single sheet without laminating phase plates.
  • This broadband phase plate is designed so that the retardation value decreases as the wavelength becomes shorter.
  • material design is extremely difficult and high light utilization is required. It was not satisfactory for high recording density.
  • Blu-Ray Disk which is expected as a next-generation standard in which the wavelength of the light source is further shortened, is required to have higher light utilization efficiency.
  • optical elements such as the aforementioned 1Z4 wavelength plate do not have sufficient characteristics.
  • the volume of the device is increased and time is required for assembly adjustment.
  • the present invention has been made in view of the above circumstances, and in an optical head device using laser light of three or more different wavelengths as a light source, by sharing an optical element at each wavelength, Small and cost-saving, reducing the number of parts and shortening assembly time
  • An object of the present invention is to provide an optical head device capable of achieving the above.
  • the present invention has the following gist.
  • optical head device in which linearly polarized laser light emitted from a light source is collected by an objective lens and guided to an optical recording medium, and reflected light from the optical recording medium is received by a photodetector.
  • the laser beam is one of three or more laser beams having different wavelengths, and a broadband phase plate for controlling the phase state of the laser beam is installed between the light source and the objective lens.
  • the broadband phase plate is formed by stacking two phase plates so that their optical axes cross each other, and the laser beam has a wavelength of 1, ⁇
  • the laser beam has any one of a wavelength, ⁇ , and
  • the at least one phase plate has a retardation value R () tR (
  • the retardation value R () / R (;)> is larger than the wavelength ratio value ( ⁇ / ⁇ ).
  • R () / R ()) is the ratio of the ratio of the wavelength R () tR () and the ratio of the wavelengths ( ⁇ / ⁇ )
  • R () / R (;)> is a ratio value with a retardation value R () tR () greater than 3 2 2 3 2 3
  • the retardation value of the phase plate on which the laser beam is incident on the first is larger than the retardation value of the phase plate on which the laser beam is incident on the second, and 3.
  • the optical head device according to 1 or 2 above, wherein the ratio of the two retardation values is 1.8 to 2.2.
  • Cross angle force of each optical axis of the two phase plates is in the range of 0-70 degrees, 4.
  • the optical head device according to any one of items 1 to 3.
  • optical head device according to any one of 1 to 4, wherein the broadband phase plate has substantially the same ellipticity in each wavelength region when the laser beams having the three wavelengths are transmitted.
  • the two phase plates are overlapped via an adhesive layer, and the thickness of the adhesive layer is 10
  • optical head device according to any one of 1 to 5 above, which is not more than / z m.
  • At least one of the two broadband phase plates to be stacked has a phase in which the retardation value decreases as the wavelength decreases.
  • a plate By using a plate, it can function as a 1Z4 wavelength plate for one linearly polarized laser beam with three or more wavelengths to be transmitted, and linearly polarized light can be made circularly polarized. Can be shared, reduce the number of parts, shorten the assembly time, and provide a compact and low-cost optical head device.
  • FIG. 1 is a configuration diagram showing an optical head device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a configuration of a broadband phase plate according to an embodiment of the present invention.
  • FIG. 3 is a graph showing the wavelength dependence of the retardation value for the transmitted light of the broadband phase plate of the present invention shown in FIG.
  • FIG. 4 is a graph showing the wavelength dependence of ellipticity with respect to the transmitted light of the broadband phase plate in the present invention.
  • FIG. 5 is a graph showing the wavelength dependence of the retardation value for the transmitted light of the comparative broadband phase plate.
  • FIG. 6 is a graph showing the wavelength dependence of the ellipticity with respect to the transmitted light of the broadband phase plate of the comparative example.
  • FIG. 7 is a graph showing the wavelength dependence of the retardation value for the transmitted light in the phase plate of Example 2
  • FIG. 8 is a graph showing the wavelength dependence of ellipticity with respect to the transmitted light of the broadband phase plate of Example 2.
  • FIG. 9 is a graph showing the wavelength dependence of the retardation value for the transmitted light in the phase plate of Example 3.
  • FIG. 10 is a graph showing the wavelength dependence of ellipticity with respect to the transmitted light of the broadband phase plate of Example 3.
  • FIG. 12 A graph showing FIG. 11 in three dimensions.
  • FIG. 14 is a configuration diagram showing a conventional optical head device.
  • FIG. 1 shows an optical head device according to an embodiment of the present invention.
  • This optical head device includes a light source 1, collimating lenses 2A to 2C, first and second beam splitters 3 and 4,
  • the polarization hologram 8 In addition to the objective lens 6 common to the three wavelengths held by the actuator 5 and the light receiving element 7, the polarization hologram 8 and (composed of a broadband phase plate that controls the phase state of the three types of laser light) 1Z4
  • a broadband optical element 10 in which a wave plate 9 is integrated is installed between a light source 1 and an objective lens 6.
  • the light source 1 is composed of semiconductor lasers 1A, IB, and 1C that emit three types of laser beams having different wavelengths.
  • the light receiving element 7 also uses the first to third photodiodes 7A to 7C according to the wavelength of each laser beam.
  • the polarization hologram 8 and the 1Z4 wavelength plate 9 are integrally formed and are mounted substantially horizontally with respect to the objective lens 6 mounted on the actuator 5.
  • the 1Z4 wave plate 9 used here is a broadband phase plate 90 according to the present invention.
  • the broadband phase plate 90 has a structure in which two phase plates are integrally stacked so as to cross the optical axes.
  • the broadband phase plate 90 of the present embodiment has a wavelength of laser light
  • the retardation value at each wavelength that is, the ratio value of R (), R () and R ()
  • Equation (1) shows that R () ⁇ R () ⁇ R () between the retardation values at each wavelength.
  • phase difference generated by the phase plate increases with an increase in wavelength, and the longer the wavelength, the larger the phase difference, and a broadband phase plate can be obtained.
  • the broadband phase plate 90 functions as a substantially 1Z4 wavelength plate with respect to a linearly polarized laser beam of any wavelength that passes therethrough, and the linearly polarized light can be substantially circularly polarized.
  • a birefringent material used for a broadband phase plate has a wavelength dependency that the retardation value increases as the wavelength becomes shorter, such as a polycarbonate film that has been made birefringent by stretching.
  • the birefringent material used in the present invention has a characteristic that the retardation value decreases as the wavelength becomes shorter (hereinafter referred to as “abnormal dispersion characteristic”).
  • the birefringent material having the anomalous dispersion characteristics include the following materials: As long as the material exhibits anomalous dispersion characteristics, the phase plate material of the present invention is not limited at all.
  • a copolymer comprising a monomer unit of a polymer having a positive birefringence (that is, a difference between an extraordinary refractive index and an ordinary refractive index) and a monomer unit of a polymer having a negative birefringence. And a film obtained by stretching a cocoon or blend polymer (see Japanese Patent Application Laid-Open No. 2002-156528),
  • R 3 each independently a hydrogen atom or a methyl group.
  • R 2 an alkyl group having 2 to 8 carbon atoms.
  • J 2 and J 3 each independently a single bond, OCO or COO—.
  • E 2 , E 3 each independently 1, 4 phenylene group or trans 1, 4 cyclohexylene group.
  • the hydrogen atom in these groups may be substituted with a chlorine atom, a fluorine atom, a methyl group or a cyan group! /.
  • W 2 Independently, naphthalene 1,4-diinole group, naphthalene 1,1,5 diyl group, anthracene 1,1,4 diyl group, anthracene 1,5-diyl group, anthracene 1,1,10 diyl group, anthracene one 4,9 diyl group, anthracene 5,9 diyl group or anthracene—9,10 diyl group.
  • the hydrogen atom in these groups may be substituted with a chlorine atom, a fluorine atom, a methyl group or a cyan group.
  • M A group represented by the following formulas (a) to (f) is also selected, which is a deviation group.
  • Examples of such materials include the following compounds.
  • the description will be made assuming that the emitted laser light has a configuration with three different wavelength forces.
  • the laser light used in the optical head device of the present invention is not limited to this. There may be.
  • typical phase difference combinations of two phase plates (this are referred to as “first and second phase plates”) constituting the broadband phase plate 90 in the present embodiment are as follows, for example. To do.
  • the retardation values generated by the first and second phase plates, that is, the first and second phase plates are respectively represented by R1 and Let R2.
  • the retardation value generated when light of wavelength 1 is incident on the first phase plate is R (e), and light of wavelength ⁇ is the second
  • the retardance value generated when entering the phase plate is defined as R ( ⁇ ).
  • the ratio of the retardation value R at each wavelength satisfies the above-mentioned equation (1), that is, R ( ⁇ ) / R () and R () / R () are smaller than 1, respectively R () / R ()
  • Equation (3) The relationship between the retardation value ratio and the wavelength ratio expressed by Equation (3) is that the wavelength is ⁇
  • Equation (3) is derived by modifying Equation (4), which is a condition that the rate of change in the retardation value is smaller than the proportion of change in wavelength.
  • equation (3) is more gradual than the ratio of decreasing (or increasing!) Wavelength.
  • the phase difference decreases (or increases) and becomes a condition.
  • the phase difference of the wavelength changes more gradually, and therefore the change of the phase difference becomes smaller than the rate of change of the incident wavelength. The effect that the ratio is difficult to change is obtained.
  • the retardation value generated by the first phase plate is approximately 1Z2 times the wavelength, and the retardation value R at each wavelength R (the second phase plate is
  • the resulting retardation value is approximately 1Z4, and the ratio R of these retardation values is
  • One wavelength is about 9 ⁇ 2 times, and the retardation value R at each wavelength is about 9 ⁇ 4.
  • the ratio R ZR may be 1.8 to 2.2. Again, wideband 1Z4 wavelength
  • It can be a board.
  • the change in ellipticity angle from 8 to 2.2 is shown in a two-dimensional display, and the graph in Fig. 12 shows the same change in a three-dimensional display (wavelength is 695 nm).
  • the ellipticity is 1.0 or the maximum value very close to this. If the ellipticity is 0.8 or more, it functions practically as a 1Z4 wavelength plate, and if it is 0.9 or more, it is more preferable. Also, you can understand this situation well by looking at the 3D graph. However, in the graph of Fig. 12, the area where the ellipticity is smaller than 0.8 is also drawn as 0.8 for easy understanding.
  • the ellipticity is expressed as I / ⁇ b a where the major axis intensity of the transmitted elliptical polarization is Ia and the minor axis intensity is lb. When the ellipticity is 1, it corresponds to perfect circular polarization.
  • the thickness of the two phase plates in the present invention is determined from the problems of light transmission efficiency and manufacturing process.
  • the birefringence amount ⁇ of the birefringent material that is preferably in the range of 2 to L0 m is ,wave When the length is 589 nm, it is preferable that the phase difference is in the range of 0.01 to 0.2 because the phase difference can be freely selected.
  • an adhesive film, a UV curable adhesive, or a thermosetting adhesive can be used to overlap the two phase plates.
  • the adhesive layer In order to reduce wavefront aberration and improve temperature characteristics and reliability of broadband phase plates, it is desirable to make the adhesive layer as thin as possible, and in particular, the adhesive layer thickness should be 10 m or less.
  • the crossing angle of the optical axes of the first and second phase plates when superposed is such that the ellipticity increases in a wide wavelength range from 40 to 70 degrees and a wavelength of about 400 nm force to about 79 Onm. Although it is preferable for the reason that it can be made to be 8 or more, it is not particularly limited as long as it is overlapped at each optimized crossing angle of the optical axis.
  • the angles formed by the optical axis directions of the first and second phase plates constituting the broadband phase plate and the polarization direction of the linearly polarized light incident on the broadband phase plate are ⁇ , ⁇
  • the ellipticity is very close to 1.0 at these wavelengths.
  • the graph shows the distance between two peak wavelengths where the ellipticity is 1.0 by changing the value of a.
  • the position can be designed freely. At this time, the ellipticity of the third wavelength is large as described above.
  • the position may be either the wavelength or the wavelength, or the wavelength or the wavelength.
  • Figure 13 shows the general theory and
  • the broadband phase plate according to the present invention it is desirable that the surface be smoothed or adhered and held by the substrate in order to avoid deterioration of wavefront aberration of transmitted light. Specifically, it is desirable to use a broadband phase plate bonded to at least one transparent substrate. When a broadband phase plate is used alone without being laminated and integrated with other optical elements, a configuration in which it is sandwiched between two transparent substrates is desirable in terms of reducing wavefront aberration and ensuring strength.
  • the broadband phase plate according to the present invention can be used alone, but by stacking and integrating with other optical elements used in the optical head device, the number of parts can be reduced, the assembly of the optical head device can be simplified, and the device Miniaturization can be realized. Therefore, the broadband phase plate is preferably integrated with at least one optical element that changes the optical properties of the laser light.
  • an optical element is a phase correction element that uses, for example, liquid crystal to improve the light collection characteristics on an optical disc, or a diffraction grating that guides signal light to a detector by diffraction, especially the difference in diffraction characteristics depending on the polarization direction. And a polarization type diffraction grating using.
  • the wideband phase plate according to the present invention is particularly effective when used in an optical head device having an optical element that utilizes the difference in characteristics depending on the polarization direction. Recording and reproduction of optical information that is required to be further reduced in size and weight. Suitable for parts for optical head devices used in Next, the operation of the present embodiment will be described with reference to FIG.
  • the laser beams emitted from the semiconductor laser 1A having a wavelength of 405 nm, the semiconductor laser IB having a wavelength of 660 nm, and the semiconductor laser 1C having a wavelength of 790 nm are collimated by the collimating lenses 2 A to 2 C, and pass through the beam splitter 3 and the beam splitter 4. Then, the light passes through the polarization hologram 8 and the 1Z4 wavelength plate 9 and is focused on the optical disk D by the objective lens 6. On the other hand, the reflected light including the pit information reflected by the pits formed on the surface of the optical disc D travels in the opposite directions.
  • the return light from the optical disk D transmitted or reflected by the beam splitter 4 and the beam splitter 3 is transmitted through the collimating lenses 2A to 2C, respectively, and the 405 nm photodiode 7A, the 660 nm photodiode 7B, and the 790 nm photodiode 7C. Is detected.
  • the polarization hologram 8 is optimized for a laser beam having one of three wavelengths, or is optimized for 405 nm and 660 nm. For all wavelengths, the forward path exhibits high transmission characteristics, and the return path does not cause a problem of reduced efficiency.
  • the broadband phase plate 90 of the present embodiment is formed by integrating first and second phase plates 9A and 9B.
  • a transparent substrate having a diameter of 12.5 cm and a thickness of 0.5 mm in which a low-reflection coating film 91A is applied to one side surface (lower surface in the figure) on which laser light is incident.
  • a glass substrate 92A is prepared, a polyimide film is formed on the surface opposite to the light source 1 (see Fig. 1) of the glass substrate 92A (the upper surface in the figure), and a horizontal alignment process is performed by rubbing to obtain a polyimide film.
  • 93A On this glass substrate 92A subjected to the alignment treatment, 310 beads (3.3 111 in diameter) (in order to maintain a gap with a glass substrate surface 92B, which is a transparent substrate to be described later, which becomes a liquid crystal cell)
  • the entire liquid crystal material is irradiated with UV light having a wavelength of 365 nm, and the entire liquid crystal monomer composition is polymerized and solidified in the horizontal alignment state, thereby fixing the entire composition of the glass substrate.
  • the horizontally aligned counter glass substrate (not shown) was removed from the mold, and the horizontally aligned polymer liquid crystal thin film with a thickness of 6.6 m 9
  • the organic thin film 4 is formed to produce the phase plate 9A.
  • phase plate 9B on which an organic thin film of a horizontally aligned polymer liquid crystal thin film 95 having a thickness of 3.3 m is formed. create.
  • the retardation values of the first phase plate 9A and the second phase plate 9B are measured, anomalous dispersion characteristics can be obtained in which the retardation value decreases as the wavelength decreases, as shown in FIG.
  • the retardation ratio at each wavelength of the first phase plate 9A and the second phase plate 9B is almost double in the wavelength band of 400 to 800 nm.
  • the birefringence of the organic thin film at this time is 0.0361 when the wavelength is 405 nm, 0.0473 when the wavelength is 660 nm, and 0.05 when the wavelength is 790 nm.
  • represents a retardation value for each wavelength of the first phase plate 9A
  • represents a retardation value for each wavelength of the first phase plate 9A.
  • R () / at each wavelength is calculated and its it force is 8.91: 7.17: 6.33 for wavelengths of 405 nm, 660 nm, and 790 nm, and decreases as the wavelength increases. You can see that That is, the increase rate of the retardation value is smaller than the increase rate of the wavelength.
  • each organic thin film side of the first phase plate 9A and the second phase plate 9B is set inside, and a UV curable adhesive is dropped between them and placed in a spin coater, and the rotational speed of lOOOrpm Rotate at a rotational speed of 5000 rpm for 20 seconds at 100 rpm for a thickness of 5 m of adhesive layer 96 .
  • the first phase plate 9A and the second phase plate 9B are arranged so that the intersection angle of the optical axes is 57 degrees.
  • Broadband phase plate 90 is diced to 5mm x 5mm with a reference of the direction of the first phase plate 9A relative to the optical axis of 20A (the horizontal direction on the paper is 0 °). A phase plate element is obtained.
  • the light emitted from a semiconductor laser with a wavelength of 860 nm is used as the fundamental wave, the second harmonic wavelength 430 nm laser light generated using nonlinear optical crystal KNbO and the wavelength 660 ⁇
  • the ellipticity of the broadband phase plate 90 is measured using the light emitted from the m semiconductor laser and the light emitted from the semiconductor laser having a wavelength of 789 nm.
  • the ellipticity to be measured is about 0.96 for laser light with a wavelength of 430 nm, about 0.97 for laser light with a wavelength of 660 nm, and about 0.97 for laser light with a wavelength of 789 nm. It is a sufficient characteristic.
  • the wavefront aberration of the broadband phase plate 90 of this example is less than 25 ml rms (root mean square) when measured using a He-Ne laser with a wavelength of 633 nm, and can be used as an optical element sufficiently. Is a level.
  • This broadband phase plate 90 is incorporated as a 1 Z4 wavelength plate 9 of the optical head device shown in FIG.
  • 405 nm, 660 nm, and 790 nm semiconductor lasers are respectively installed as the light source 1 of the optical head device. As a result, satisfactory circularly polarized light can be obtained for laser light having three wavelengths of 405 nm, 660 nm, and 790 nm, and signal light can be obtained with high light utilization efficiency.
  • the birefringent material having the normal dispersion characteristic a monomer that forms a general side chain polymer liquid crystal is used.
  • a broadband phase plate using this liquid crystal monomer is prepared in the same way as “Example 1”.
  • the thickness of the first phase plate on the incident side is 5.2 / ⁇ ⁇
  • the emission side The thickness of the second phase plate is 2.
  • the phase plates are arranged so that the crossing angle of the optical axes is 56 degrees.
  • the retardation values of the incident-side and emission-side phase plates in this broadband phase plate are as shown in the graphs ⁇ and ⁇ in FIG. 5, and the retardation value increases as the wavelength becomes shorter, that is, it has normal dispersion characteristics. I understand.
  • the birefringence of the organic thin film at this time is 0.0508 at a wavelength of 405 nm, 0.0453 at a wavelength of 660 nm, and 0.0443 at a wavelength of 790 nm.
  • the wavelength dispersion of the ellipticity in each wavelength region was investigated using the broadband phase plate of this comparative example, the wavelength dispersion of this ellipticity is as shown in FIG. It showed about 0.99 for light, about 0.99 for laser light with a wavelength of 660 nm, and about 0.82 for laser light with a wavelength of 789 nm.
  • Example 2 shows the case where two types of liquid crystal monomers are used as materials having anomalous dispersion characteristics.
  • the two types of liquid crystal monomers have a birefringence amount of 0.0361 at a wavelength of 405 nm, 0473 at a wavelength of 660 nm, and 0 at a wavelength of 790 nm.
  • a liquid crystal monomer of 0500 and a liquid crystal monomer of 0.0194 at a wavelength of 405 nm, 0.0239 at a wavelength of 660 nm and 0.0250 at a wavelength of 790 nm are used.
  • a broadband phase plate is produced in the same manner as in “Example 1”. At this time, the thickness of the first phase plate on the incident side is 6.6 m, and the thickness of the second phase plate on the output side is 6.
  • the crossing angle of the optical axes of these phase plates is 61 degrees. Arrange them as follows.
  • the retardation values of the first and second phase plates on the incident side and the emission side are as shown in FIG. 7, and the retardation value on the emission side becomes shorter as the wavelength becomes shorter. It has anomalous dispersion characteristics with a small value.
  • this wavelength dispersion is as shown in FIG. 8, and is about 0.9 for a laser beam having a wavelength of 430 nm. 6. About 0.96 for laser light with a wavelength of 660 nm and about 0.96 for laser light with a wavelength of 789 nm. Comparing Fig. 8 with Fig. 4, which is the expected result of ellipticity chromatic dispersion performed in "Example 1", it can be seen that the chromatic dispersion characteristics are almost the same. In addition, as is clear from FIG. 8 of “Example 2”, the ellipticity is constant regardless of the wavelength, compared to FIG. 6 of Comparative Example 1, and almost perfect in a broad wavelength band. It can be seen that it is a 1Z4 wavelength plate.
  • the following compound (1A), the following compound (1B), the following compound (1C) and the following compound (1U) were mixed in a 6: 8: 6: 5 (molar ratio) to obtain a liquid crystal composition A.
  • the amount of birefringence was 0.0071 at a wavelength of 405 nm, 0.0105 at a wavelength of 660 ⁇ m, and 0.005 at a wavelength of 790 nm. Met.
  • R () / at each wavelength is calculated from these values, its it force is 1.65: 1.59: 1.35 for wavelengths 405nm, 660nm and 790nm, and decreases with increasing wavelength. You can see that That is, the increase rate of the retardation value is smaller than the increase rate of the wavelength.
  • a broadband phase plate is produced in the same manner as in “Example 1”.
  • the thickness of the first phase plate on the incident side is 31.5 / ⁇ ⁇
  • the thickness of the second phase plate on the output side is 15.
  • the crossing angle of the optical axes of these phase plates is 59 degrees. Arrange to be at an angle.
  • anomalous dispersion characteristics were obtained in which the retardation value decreased as the wavelength decreased as shown in FIG.
  • the retardation ratio at each wavelength of the second phase plate 9A and the second phase plate 9B is almost double in the wavelength band of 400 to 800 nm.
  • Fig. 10 is the measurement result of ellipticity chromatic dispersion performed in "Example 1”
  • Fig. 4 which is the measurement result of ellipticity chromatic dispersion performed in "Example 1”
  • the ellipticity is constant regardless of the wavelength, compared to FIG. 6 of Comparative Example 1, and almost perfect in a wide band of power. It can be seen that it is a 1Z4 wavelength plate.
  • the present invention is not limited to the above-described embodiment, and can be implemented in various forms without departing from the gist thereof. That is, it is obvious that the present invention can be applied not only to the wideband castle 1 Z4 wavelength plate but also to the broadband 1Z2 wavelength plate and the broadband 3Z4 wavelength plate. In addition, various applications can be made without departing from the effects of the present invention.
  • the optical head device of the present invention has a retardation value that decreases as the wavelength decreases in at least one of the two wideband phase plates to be laminated.
  • a phase plate By using such a phase plate, it functions as a 1Z4 wavelength plate for the linearly polarized laser beam having three or more wavelengths to be transmitted, and has the effect that the linearly polarized light can be made circularly polarized. For this reason, it is possible to share an optical element for each wavelength, reduce the number of parts, and provide a compact and low-cost optical head device with reduced assembly time.
  • the broadband phase plate of the present invention acts as a substantially complete 1Z4 wavelength plate in the entire wavelength band to be used, there is a problem even if the wavelength of light emitted from the semiconductor laser varies due to a lot difference or the like. Linearly polarized light can be converted to circularly polarized light.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)
  • Polarising Elements (AREA)

Abstract

 3つ以上の異なる波長を有する直線偏光を円偏光に変換できる広帯域位相板を備えた光ヘッド装置を得る。  2枚の位相板9A,9Bがそれぞれの光軸を交差するように接着剤などで重ねられており、入射する直線偏光の波長をλ1、λ2及びλ3(λ1<λ2<λ3)とするとき、2枚の位相板のうち少なくともいずれか一方が、各波長でのリタデーション値の比の値〈R(λ1)/R(λ3)〉及び比の値〈R(λ2)/R(λ3)〉が1より小さく、〈R(λ1)/R(λ3)〉が〈R(λ2)/R(λ3)〉よりも小さくなるような位相差特性を有する広帯域位相板を光ヘッド装置に設置する。

Description

光ヘッド装置
技術分野
[0001] 本発明は、レーザー光の位相状態を制御するための広帯域位相板を搭載した光 ヘッド装置に関する。
背景技術
[0002] 光ディスク及び光磁気ディスクなどの光記録媒体に光学的情報を書き込んだり、光 学的情報を読み取ったりするために、光ヘッド装置が用いられている。この光ヘッド 装置は、ディスク状の光記録媒体 (以下、「光ディスク」という)の記録面上に光源であ る半導体レーザーからの出射光を対物レンズにより集光して、情報の書き込みや読 み出しを行う。情報の読み出しなどを行う際には、光ディスクの情報の記録面により反 射した出射光を光検出器で受光する。
ところで、情報の読み出しに関していえば、使用されるレーザー光の波長は短波長 であるほど記録密度を高めることができるため、近年、この光ヘッド装置では光源から の出射光の短波長化 (405nm)が進められている。一方、この光ヘッド装置では、こ れまで普及している多くの光ディスク用の長波長(660nm及び 790nm)のレーザー 光による再生も同時にできるようにする必要がある。そのため、従来の長波長側のレ 一ザ一光と、より短波長側のレーザー光とによる光ディスクの互換性を有する様々な 方式力 例えば特開 2004— 158118号公報に提案されている。
[0003] 情報の書き込み関していえば、従来の光ディスクに対してこの互換性を確保するた めに、高記録密度用の短波長光源に加えて、長波長側の光源を併せて設置する方 式が検討されている。一方、高密度光ディスクと DVD—R及び CD— Rなどの書き込 み型の光ディスクに対応する光ヘッド装置を実現するため、それぞれの光ディスク用 の 、ずれの波長に対しても高!、光利用率が要求されて 、る。
このため、往路高透過率でかつ復路高回折効率を有する偏光型回折素子を用い た偏光系光ヘッド装置が検討されている。ここで往路とは、光源からの出射光が光デ イスクへ向かう方向をいい、復路とは出射光が光ディスクの情報の記録面により反射 されて光検出器へ向力う方向、すなわち反射した戻り光が進む方向である。
[0004] 従来の異なる 3つの、すなわち 3種類のレーザー光を使用した偏光光学系を有する 光ヘッド装置の構成の一例を図 14に示す。
この図 14において、出射波長が 405nmの半導体レーザー 101A、 660nmの半導 体レーザー 101B及び 790nmの半導体レーザー 101Cからの直線偏光のレーザー 光は、入射する直線偏光に対して高透過性を有する 405nm用の偏光ホログラム 10 2A、 660nm用の偏光ホログラム 102B及び 790nm用の偏光ホログラム 102Cを各 々透過する。そして、直線偏光のレーザー光は、それぞれ偏光ホログラムと一体化さ れた 405nm用の 1/4波長板 103A、 660nm用の 1/4波長板 103B及び 790nm 用の 1Z4波長板 103Cにより、それぞれ直線偏光力 円偏光に変換される。その後 、レーザー光は、個別に配置されたコリメートレンズ 104A、コリメートレンズ 104B及 びコリメートレンズ 104Cで平行光となり、 405nm透過でかつ 660nm反射の特性を 持つビームスプリッタ 105を透過及び反射し、更に、 405nm及び 660nm透過で力 つ 790nm反射の特性を持つビームスプリッタ 106を透過及び反射する。そして、この レーザー光は、ァクチユエータ 107に保持された、 3つの波長に共通の対物レンズ 1 08により光ディスク Dの情報の記録面(以下、単に「光ディスクの表面」と!、う)上に集 光する。
[0005] さらに、光ディスクの表面に形成されたピットの情報を含んだ光ディスク D力 の反 射光は、それぞれの経路を逆方向に進行する。即ち、光ディスク Dの表面の反射によ り回転方向が逆転した円偏光は、それぞれ 1Z4波長板 103A、 1Z4波長板 103B 及び 1Z4波長板 103Cを再度透過し、入射偏光方向とは直交する偏光方向の直線 偏光に変換され、それぞれ偏光ホログラム 102A、偏光ホログラム 102B及び偏光ホ ログラム 102Cで回折されて回折光となる。これら回折光が持つ光ディスク Dのピット の情報を 405nm用の光検出器であるフォトダイオード 109A、 660nm用のフォトダ ィオード 109B及び 790nm用のフォトダイオード 109Cにより検出することで、光ディ スク Dの表面に記録された情報の読み出しを行っている。
[0006] 従来の光ヘッド装置では、レーザー光として、例えば 405nm、 660nm及び 790η mの複数の波長領域を用いる場合に、 1Z4波長板などの光学素子を共用化して一 つにすることが提案されている(例えば、特開平 10— 68816号公報参照)。しかしな がら、 2波長の直線偏光、例えば、波長 405nmと 660nmの直線偏光を円偏光に変 換する位相板(1Z4波長板)では、波長 790nmの直線偏光に対しては完全な円偏 光とできず、同様に波長 660nmと 790nmの直線偏光を円偏光に変換する位相板で は、 405nmの直線偏光に対して完全な円偏光とできず、所望の特性が得られない。 また、特開平 14— 156528号公報には、位相板を積層せずに一枚で広帯域位相 板を形成できることが記載されている。この広帯域位相板は、短波長になるにつれて リタデーシヨン値が小さくなるよう設計されている。し力しながら、この広帯域位相板一 枚を用いて、波長 400〜780nmの全域で、完全な 1Z4波長板にするためには、材 料設計が非常に困難で、高い光利用率が要求される高記録密度用では満足できる ものではなかった。
[0007] また、今後、光源の波長を更に短くした次世代規格として期待されている、例えば、 Blu-Ray Disk (ブルーレイ.ディスク)などのように、より高い光利用効率が求められ ている光記録媒体に対して用いる光ヘッド装置にあっては、前述の 1Z4波長板など の光学素子は、十分な特性を有していない。例えば、 405nm、 660nm及び 790nm の 3波長を利用する光ヘッド装置では、 405nm用の光学素子、 660nm用の光学素 子及び 790nm用の光学素子、合計 3セット配置する必要があり、部品点数が多く装 置の体積が大きくなり、さらに組み立て調整にも時間が力かる問題が生じている。 一方、光ヘッド装置を小型化するために、 2つの半導体レーザーを接近させて配置 したり、複数の波長を発振できる半導体レーザーを用いたりすることが提案されてい る力 この場合、波長により反射率の異なるビームスプリッタなどを使用しても、波長 ごとに光路を切り替えることは困難であるため、各波長での光学素子の共用化が望ま れている。
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、上記事情に鑑みてなされたもので、光源として 3つ以上の異なる波長の レーザー光を用いた光ヘッド装置において、各波長での光学素子を共用化させるこ とで、部品点数を減らし、組み立て時間も短縮ィ匕することができる、小型でコスト削減 が可能な光ヘッド装置を提供することを目的とする。
課題を解決するための手段
[0009] 本発明は、以下の要旨を有する。
1.光源から出射される直線偏光のレーザー光を対物レンズにより集光して光記録 謀体へ導き、光記録媒体からの反射光を光検出器で受光する光ヘッド装置において
、前記レーザー光は、波長の異なる 3つ以上のレーザー光のいずれかが用いられ、 前記光源と前記対物レンズとの間に前記レーザー光の位相状態を制御する広帯域 位相板が設置されており、前記広帯域位相板は、 2枚の位相板をそれぞれの光学軸 が交差するように重ねられて形成されてなり、前記レーザー光が波長え 1、 λ
2及びえ 3
(λ < λ < λ )を有するときに、前記 2枚の位相板のうち少なくともいずれか一方の
1 2 3
位相板に対して、各波長でのリタデーシヨン値 R( )についての比の値、く R( )/
1
R(X
3;)〉及びく R( )/R(X
2 3;)〉は、次の各式を満たすことを特徴とする光ヘッド装 置。
(R( )/R(X )〉<1、
1 3
(R( )/R( )〉<1、
2 3
(R( )/R( )}< (R( )/R( )>
1 3 2 3
[0010] 2·前記レーザー光は、波長え 、 λ 及びえ のいずれかを有するとともに、
1 2 3
前記少なくともいずれか一方の位相板は、リタデーシヨン値 R( )tR(
3 1 )との比 の値く R( )/R( ;)〉が前記波長の比の値(λ /λ )よりも大きぐリタデーシヨン
1 3 1 3
値 R( )tR( )との比の値く R( )/R( ;)〉が前記波長の比の値(λ / λ )
3 2 2 3 2 3 よりも大きぐリタデーシヨン値 R( )tR( )との比の値く R( )/R( ;)〉が前記
2 1 1 2 波長の比の値(λ /λ )よりも大きい、
1 2
上記 1に記載の光ヘッド装置。
[0011] 3.前記 2枚の位相板のうち、前記レーザー光が第 1に入射する前記位相板のリタ デーシヨン値は、第 2に入射する前記位相板のレタデーシヨン値よりも大きぐかつ、 前記 2つのリタデーシヨン値の比の値が 1. 8〜2. 2である上記 1または 2に記載の光 ヘッド装置。
4.前記 2枚の位相板のそれぞれの光学軸の交差角力 0〜70度の範囲にある、上 記 1から 3のいずれか 1つに記載の光ヘッド装置。
5.前記広帯域位相板は、前記 3つの波長のレーザー光が透過するときの各波長 領域における楕円率が実質的に等しい上記 1から 4のいずれ力 1つに記載の光へッ ド装置。
[0012] 6.前記 2つの位相板は、接着層を介して重ねられていて、前記接着層の厚さが 10
/z m以下である上記 1から 5のいずれ力 1つに記載の光ヘッド装置。
7.前記 2つの位相板は、それぞれ少なくとも 1枚の透明基板に接着されて用いられ る上記 1から 6のいずれか 1つに記載の光ヘッド装置。
8.前記広帯域位相板がレーザー光の光学的性質を変化させる少なくとも一つの 光学素子と一体ィ匕されている上記 1から 7のいずれか 1つに記載の光ヘッド装置。 発明の効果
[0013] 本発明によれば、従来の光ヘッド装置とは異なり、積層される 2枚の広帯域位相板 のうち少なくともどちらか一方に、波長が短くなるにしたがってリタデーシヨン値も小さ くなるような位相板を用いることにより、透過する 3つ以上の波長の直線偏光のレーザ 一光に対してほぼ 1Z4波長板として機能し、直線偏光を円偏光とすることができるた め、各波長での光学素子を共用化でき、部品点数を減らして、組み立て時間も短縮 ィ匕された小型で低コストな光ヘッド装置を提供できる。
図面の簡単な説明
[0014] [図 1]本発明の一実施形態に係る光ヘッド装置を示す構成図。
[図 2]本発明の一実施形態に係る広帯域位相板の構成を示す概略断面図。
[図 3]図 2に示す本発明の広帯域位相板の透過光に対するレタデーシヨン値の波長 依存性を示すグラフ。
[図 4]本発明における広帯域位相板の透過光に対する楕円率の波長依存性を示す グラフ。
[図 5]比較例の広帯域位相板の透過光に対するリタデーシヨン値の波長依存性を示 すグラフ。
[図 6]比較例の広帯域位相板の透過光に対する楕円率の波長依存性を示すグラフ。
[図 7]例 2の位相板での透過光に対するレタデーシヨン値の波長依存性を示すグラフ [図 8]例 2の広帯域位相板の透過光に対する楕円率の波長依存性を示すグラフ。
[図 9]例 3の位相板での透過光に対するレタデーシヨン値の波長依存性を示すグラフ
[図 10]例 3の広帯域位相板の透過光に対する楕円率の波長依存性を示すグラフ。
[図 11]R /R = 1. 8〜2. 2における楕円率角の変化を 2次元表示したグラフ。
1 2
[図 12]図 11を 3次元表示したグラフ。
[図 13] 0 = 75— a度及び 0 = 15 + a度とおいて、光学軸の交差角を略 60度とし、 a
1 2
の値を変化させて、楕円率角が 90度となる 2つのピーク波長間の距離を変化させた グラフ。
[図 14]従来の光ヘッド装置を示す構成図。
符号の説明
1A, IB, 1C 半導体レーザー
2, 2A, 2B, 2C コリメートレンズ
3、 4 ビームスプリッタ
5 ァクチユエータ
6 対物レンズ
7, 7A, 7B, 7C フォトダイオード
8 偏光ホログラム
9 1Z4波長板
9 A 第 1の位相板
9B 第 2の位相板
90 広帯域位相板
91 低反射コート膜
92 ガラス基板
93 ポリイミド配向膜
94, 95 高分子液晶薄膜
96 接着層 10 広帯域光学素子
D ディスク
発明を実施するための最良の形態
[0016] 以下、本発明の実施形態について、添付図面を参照しながら詳細に説明する。
図 1は、本発明の実施形態に係る光ヘッド装置を示すものであり、この光ヘッド装置 は、光源 1と、コリメートレンズ 2A〜2Cと、第 1、第 2のビームスプリッタ 3, 4と、ァクチ ユエータ 5に保持された 3つの波長に共通の対物レンズ 6と、受光素子 7とのほかに、 偏光ホログラム 8および(3種類のレーザー光の位相状態を制御する広帯域位相板 で構成した) 1Z4波長板 9を一体ィ匕した広帯域光学素子 10が光源 1と対物レンズ 6 との間に設置されている。
[0017] 光源 1は、本実施形態では、波長が異なる 3種類のレーザー光を出射する半導体 レーザー 1A, IB, 1Cで構成されている。また、受光素子 7も、各レーザー光の波長 に応じて第 1〜第 3のフォトダイオード 7A〜7Cを用いて 、る。
一方、偏光ホログラム 8及び 1Z4波長板 9は、一体ィ匕されているとともに、ァクチュ エータ 5に搭載された対物レンズ 6に対して、ほぼ水平に取り付けられている。ここで 使用している 1Z4波長板 9は、本発明にかかる広帯域位相板 90である。この広帯域 位相板 90は、 2枚の位相板がそれぞれ光学軸を交差するように一体に重ねられた構 成のものである。特に、本実施形態の広帯域位相板 90は、レーザー光が波長え 、
1 λ及びえ (λ < λ < λ )を有するとき、少なくともいずれか一方の位相板において
2 3 1 2 3
、各波長でのリタデーシヨン値、つまり R( )、R( )及び R( )の各比の値が、次
1 2 3
(R( )/R( )〉<1.0、
1 3
(R( )/R( )〉<1.0、
2 3
(R( )/R( )}<(R( )/R( )>
1 3 2 3
•••(l)
を満たす特性を有している。
式(1)は、各波長におけるリタデーシヨン値の間に、 R( )<R( )<R( )の
1 2 3 関係式が成立するとし、この関係式を R( )で割って得られる式(2)より容易に得ら れる。ただし、 0 < R ( λ )として!/、る。
3
R( ) /R ( ) <R( ) /R( ) < 1. 0 …(2)
1 3 2 3
したがって、式(1)が成立することは、波長が λ 、え 、 λと増加するにつれて、リタ
1 2 3
デーシヨン値 R( λ )、 R (え )、 R( λ )が順次増加することを意味する。
1 2 3
このとき、位相板が発生する位相差は波長の増加とともに増加し、波長が長ければ 長いほど、位相差はより大きくなる、広帯域位相板を得ることができる。
このような特性を有することにより、広帯域位相板 90は、透過するいずれの波長の 直線偏光のレーザーに対してもほぼ 1Z4波長板として機能し、直線偏光をほぼ円偏 光とすることができる。
一般に、広帯域位相板に用いられる複屈折材料は、延伸などにより複屈折性を持 たせたポリカーボネィトフイルムなどのように、波長が短くなるにつれてリタデーシヨン 値が大きくなるという波長依存性 (以下、「正常分散特性」という)を有しているが、本 発明で用いる複屈折材料は波長が短くなるにつれてリタデーシヨン値が小さくなる特 性 (以下、「異常分散特性」とよぶ)を有するものである。
この異常分散特性を有する複屈折材料としては、例えば下記の材料が挙げられる 力 異常分散特性を示す材料であれば、本発明の位相板材料として何ら限定される ものではない。
(1)複屈折量 (即ち、異常光屈折率と常光屈折率との差)が正である高分子のモノ マー単位と複屈折量が負である高分子のモノマー単位とを含む共重合体及び Ζ又 はブレンド高分子を延伸させたフィルム(特開 2002— 156528号公報参照。)、
(2) 2種類以上のメソゲン基を有する化合物と棒状液晶化合物とを含む液晶層を有 し、棒状液晶化合物がホモジ-ァス配向しており、メソゲン基を有する化合物の少な くとも一種類のメソゲン基が、棒状液晶化合物の光学軸方向に対してフィルム面内で 45度から 90度の方向に配向して 、る位相差膜 (特開 2002— 267838号公報参照。 )、
(3)下記重合性ィ匕合物 (Α)力 選ばれる 1種以上の化合物、もしくは、下記重合性 化合物(Β)カゝら選ばれる 1種以上の化合物を含有する重合性液晶組成物を重合して なる高分子液晶フィルム、または、下記重合性化合物 (Α)の 1種以上と下記重合性 化合物(B)の 1種以上とを含有する重合性液晶組成物を重合してなる高分子液晶フ イルム(特願 2005— 115886参照。;)。
CH ^R -COO-J -CE -J2) -W -J3-M-R2 (A)
2 n
CH =CR3- COO- J4- E2- COO- W2- 0C0- E3- J5- 0C0- CR3=CH · · · (B)
2 2
(ただし、
Figure imgf000011_0001
W2および Mは、そ れぞれ以下の内容を表すものである。 )
R3:それぞれ独立に、水素原子またはメチル基。
R2:炭素数 2〜8のアルキル基。
11: 0または1。
J1 :単結合、 (CH )―、または、―(CH ) 0- (ただし、 aおよび bはそれぞれ独
2 a 2 b
立に、 2〜8の整数。 )。
J2、J3 :それぞれ独立に、単結合、 OCO 、または、 COO—。
J4:— (CH ) O 、または、一(CH ) O— CO (ただし、 tおよび uは、それぞれ独
2 t 2 u
立に 2〜6の整数。;)。
J5:— 0 (CH ) ―、または、 COO— (CH ) - (ただし、 cおよび dは、それぞれ独
2 c 2 d
立に 2〜6の整数。;)。
E2、 E3:それぞれ独立に、 1 , 4 フエ-レン基またはトランス一 1 , 4 シクロへ キシレン基。ただし、これらの基中の水素原子は、塩素原子、フッ素原子、メチル基ま たはシァノ基で置換されて 、てもよ!/、。
W2 :それぞれ独立に、ナフタレン一 1, 4ージィノレ基、ナフタレン一 1, 5 ジィ ル基、アントラセン一 1, 4 ジィル基、アントラセン一 1, 5 ジィル基、アントラセン一 1, 10 ジィル基、アントラセン一 4, 9 ジィル基、アントラセン一 5, 9 ジィル基ま たはアントラセン— 9, 10 ジィル基。ただし、これらの基中の水素原子は、塩素原子 、フッ素原子、メチル基またはシァノ基で置換されてもよい。
M:下記式 (a)〜(f)で表される基力も選ばれる 、ずれかの基。
[化 1]
Figure imgf000012_0001
このような材料としては たとえば下記化合物が挙げられる。
[0020] [化 2]
Figure imgf000012_0002
[0021] 以下、出射するレーザー光が 3つの異なる波長力 なる構成のものとして説明する 力 勿論、本発明の光ヘッド装置で使用するレーザー光はこれに限定されるもので はなぐ 4つ以上であってもよい。また、本実施形態における広帯域位相板 90を構成 する 2つの位相板 (これを、「第 1、第 2の位相板」とする)の代表的な位相差の組合せ については、例えば次の通りとする。ここで、一体に重ねられた位相板にレーザー光 が入射するとき、第 1、第 2の順に入射する位相板、つまり第 1、第 2の位相板が生じ るリタデーシヨン値を、各々、 R1および R2とする。さらに、 3つのレーザー光の異なる 波長を、波長の短い方力も順に、 λ 、 λ
1 2及びえ 3とし、例えばえ 1の波長の光が第 1 の位相板に入射した際に生じるリタデーシヨン値を R (え)、 λの波長の光が第 2の
1 1 2
位相板に入射した際に生じるリタデーンヨン値を R ( λ )などと定義する。
2 2
このとき、第 1あるいは第 2の少なくともいずれか一方、より好ましくは両方の位相板 において、各波長でのリタデーシヨン値 Rの比の値が前述の(1)式を満たす、つまり R (λ )/R( )、及び R( )/R( )が、それぞれ、 1より小さぐ R( )/R( )
1 3 2 3 1 3 が R( )/R( )よりも小さくなつており、各々のリタデーシヨン値 Rと 2枚の位相板
2 3
の重ね合わせる光学軸の交差角を最適化させることで、上述の効果、すなわち、直 線偏光をほぼ円偏光にする効果をもたらす。
また、第 1あるいは第 2の少なくともいずれか一方、より好ましくは両方の位相板にお いて、リタデーシヨン値 R( )tR(
3 1 )との比の値、く R( )ZR(
1 3;)〉が波長の比 の値(λ / λ )よりも大きぐリタデーシヨン値 R( )tR( )との比の値、く R( )
1 3 3 2 2
/R( ;)〉が波長の比の値(λ /λ )よりも大きぐまた、リタデーシヨン値 R( )tR
3 2 3 2
(λ ( )ZR(
1 )との比の値、く R
1 2;)〉が波長の比の値(λ /λ
1 2 )よりも大きくなること により、すなわち式 (3)の条件を満たすことにより、上述の効果がより一層高められ、 直線偏光をほぼ完全に円偏光とすることができる。
(R( )/R(X ))>(λ /λ )、
1 3 1 3
(R( )/R(X )}>(λ /λ )、
2 3 2 3
(R( )/R(X )}>(λ /λ )
1 2 1 2
•••(3)
式 (3)が表現しているリタデーシヨン値の比と波長の比の大小関係は、波長が λ
1、
X、 X と増加するにつれて、 R( )/λ、R( )/λ、R( )/λが順次減少
2 3 1 1 2 2 3 3
することと同義である。これは単位波長あたりのリタデーシヨン値力 波長の増加ととも に減少することを意味して 、る。
このことは、式 (3)の導出過程をみれば明らかである。すなわち、波長の変化の割 合よりもリタ一デーシヨン値の変化の割合の方が小さ 、と 、う条件である式 (4)を変形 して、式 (3)は導出したものである。
(R( )/R(X ))<(λ /λ )、
3 1 3 1
(R( )/R( )}<(λ /λ )、
3 2 3 2
(R( )/R( )}<(λ /λ )
2 1 2 1
•••(4)
式 (3)は、式(1)の限定条件に加え、波長の減少(又は増力!])する比よりも緩やかに 位相差が減少 (又は増加)して 、く条件となって 、る。すなわち式(1)で表される効果 に加えさらに、波長の位相差がより緩やかに変化するため、入射する波長の変化す る割合よりも位相差の変化が小さくなるため、広帯域で位相差の比が変化しにくい効 果が得られる。
さらには、各波長におけるリタデーシヨン値 R
1 (第 1の位相板が生じるリタデーシヨン 値)がその波長の約 1Z2倍で、各波長におけるリタデーシヨン値 R (第 2の位相板が
2
生じるリタデーシヨン値)が約 1Z4であり、これらのリタデーシヨン値の比 R が
1 ZR 2 1·
8〜2. 2とすることにより、え〜 λまでのほぼ全域で、直線偏光を円偏光とする広帯
1 3
域 1Z4波長板とすることができる。また、各波長におけるリタデーシヨン値 Rがその
1 波長の約 9Ζ2倍で、各波長におけるリタデーシヨン値 Rが約 9Ζ4であり、これらのリ
2
タデーシヨン値の比 R ZRが 1. 8〜2. 2としてもよい。この場合も広帯域 1Z4波長
1 2
板とすることができる。
R /R = 1. 8〜2. 2の関係についてさらに説明する。図 11のグラフは R ZR = 1.
1 2 1 2
8〜2. 2における楕円率角の変化を 2次元表示で表わしたものであり、図 12のグラフ は同じ変化を 3次元表示で表わしたものである(波長は 695nm)。
2次元表示のグラフでは、ドットライン (R /R = 2)を境にして、下の線群の一番下
1 2
の線は R /R =約 2. 2の場合を示し、上の線群の一番上の線は R /R =約 1. 8の
1 2 1 2 場合を示している。
そして、一番上と下の線は、楕円率がほぼ 0. 8の境界線となっていることがわかつ ている。従って、 R ZR = 1. 8〜2. 2にあるものは、楕円率が約 0. 8以上あり、特に
1 2
2. 0の場合楕円率が 1. 0又はこれに極めて近い最大の値となる。楕円率が 0. 8以 上あれば、 1Z4波長板として実用上機能し、 0. 9以上であればさらに好ましいものと なる。また、 3次元グラフを見ると、この様子がよく理解できる。ただし、図 12のグラフで は理解しやすくするために、楕円率が 0. 8より小さい領域も 0. 8として描かれている。 ここで、楕円率とは、透過楕円偏光の長軸強度を Ia、短軸強度を lbとすると、 I /\ b a で表され、楕円率が 1のとき完全な円偏光に対応する。
本発明における 2つの位相板の厚さは、光の透過効率や製造プロセス上の問題な どから、 2〜: L0 mの範囲が好ましぐ使用される複屈折材料の複屈折量 Δ ηは、波 長 589nmのときに 0. 01〜0. 2の範囲にあることが位相差を、自由に選択できて好 ましい。
本発明における 2つの位相板の重ね合わせには、粘着フィルム、 UV硬化型や熱 硬化型の接着剤が使用できる。広帯域位相板の波面収差の低減、温度特性や信頼 性の向上のためには、接着層をできるだけ薄くして張り合わせることが望ましぐ特に 接着層の厚さを 10 m以下にすることが望ましい。また、重ね合わせる際の第 1及び 第 2の位相板の光学軸の交差角は、 40〜70度の範囲力 波長約 400nm力ら約 79 Onmまでの広い波長領域で楕円率を大きぐすなわち 0. 8以上にすることができると いう理由により好ましいが、各々最適化された光学軸の交差角で重ね合わされれば よぐ特に限定されるものではない。
楕円率が大きぐ 1. 0に近ければ、直線偏光が円偏光に変換されたとき、完全な円 偏光に近くなる。前述の図 11では、光学軸の交差角が 60度で、入射光の波長が 69 5nmの場合が計算されており、例えば、ドットライン (R /R = 2)上では、楕円率が
1 2
殆ど 1. 0で、ほぼ完全な 1Z4波長板として機能する。
上記の光学軸の交差角が 60度は、広帯域位相板を構成する第 1及び第 2の位相 板の光学軸方向と、広帯域位相板に入射する直線偏光の偏光方向とが為す角度 Θ 、 Θ を、例えばそれぞれ 0 = 75度及び 0 = 15度としたものである。本発明にお
1 2 1 2
いては、 3つの波長え 、 λ 及びえ を用いるものである力 そのうちの 2つの波長、例
1 2 3
えば波長え 及びえ に着目してこれらの波長において、楕円率を 1. 0に極めて近く
1 2
することができる。このとき、この 2つの波長で楕円率にそれぞれピークが形成され、 また波長え においては、ピークは形成されないものの、 1. 0に近い値が結果的に得
3
られる。ここで、 0 = 15度及び 0 = 75度としても、同じ結果が得られる。
1 2
以下、 2つの波長え 及びえ においてピークが得られるように、設計する方法を説
1 2
明する。
今、例えば Θ = 75度及び Θ = 15度とする。このとき、 2つの光学軸の為す角度は
1 2
60度である。
この角度から a度ずれた角度を再度、 Θ = 75— a度及び 0 = 15 + a度として再定
1 2
義する。 図 13に 0 = 75— a度及び 0 = 15 + a度とおいて、光学軸の交差角を略 60度とし
1 2
、 aの値を変化させて、楕円率が 1. 0となる 2つのピーク波長間の距離を変化させた グラフを示す。図 13には、 R /R = 2として、 a = 0のとき、ピーク波長が 515nmにあ
1 2
るところから出発し、 a値が 2から 10まで変化したときの 2つの波長え及びえ のピー
1 2 クの位置が変化する様子を示してある。したがって、 a値を適切に変化させることによ つて、 2つの波長え 及びえ の楕円率を 1. 0近くに維持しながら、そのピークの波長
1 2
位置を自由に設計できる。このとき 3番目の波長え の楕円率は上記したように、大き
3
な値を採ることができる。
この設計思想は、実施例における広帯域位相板の設計にぉ 、ても用いられて 、る 。なお、上記においては波長え 及びえ にピークがくるように設計した力 ピークの位
1 2
置が、波長え 及びえ でもよいし、波長え 及びえ でもよい。なお、図 13は一般論と
1 3 2 3
して説明するために正常分散特性の場合を描 、て!、る。
本発明における広帯域位相板を使用する際には、透過光の波面収差の劣化を回 避するために、表面の平滑ィ匕処理や基板による接着保持が望ましい。具体的には、 少なくとも 1枚の透明基板に広帯域位相板を接着して使用することが望ましい。他の 光学素子と積層一体ィ匕せずに広帯域位相板を単独で用いる場合には、 2枚の透明 基板により挟み込む構成が波面収差低減 ·強度確保の点カゝら望ましい。
本発明における広帯域位相板は、単独で使用することもできるが、光ヘッド装置に 用いるその他の光学素子と積層一体ィ匕することで、部品点数の削減、光ヘッド装置 組み立ての簡略化並びに装置の小型化が実現できる。したがって、広帯域位相板が レーザー光の光学的性質を変化させる少なくとも一つの光学素子と一体化されてい ることが好ましい。
具体的に光学素子とは、光ディスク上での集光特性を改善する、例えば液晶を用 いた位相補正素子や、回折により信号光を検出器に導く回折格子、特に偏光方向に よる回折特性の違いを用いた偏光型回折格子などが挙げられる。本発明に係る広帯 域位相板は、偏光方向による特性の違いを利用した光学素子を有する光ヘッド装置 に用いると特に効果も大きぐ更に小型化 ·軽量化が要求される光情報の記録再生 に用いる光ヘッド装置用の部品に適している。 [0023] 次に、本実施形態の作用について、図 1を参照しながら説明する。
波長 405nmの半導体レーザー 1A、波長 660nmの半導体レーザー IB及び波長 7 90nmの半導体レーザー 1Cからそれぞれ出射したレーザー光は、コリメートレンズ 2 A〜2Cで平行化され、ビームスプリッタ 3及びビームスプリッタ 4を介して、偏光ホログ ラム 8及び 1Z4波長板 9を透過し、対物レンズ 6で光ディスク D上に集光される。 一方、光ディスク Dの表面上に形成されたピットで反射する、このピット情報を含ん だ反射光は、それぞれの経路を逆に進行する。ビームスプリッタ 4及びビームスプリツ タ 3を透過又は反射した光ディスク Dからの戻り光は、それぞれコリメートレンズ 2A〜 2Cを透過し、 405nm用のフォトダイオード 7A、 660nm用のフォトダイオード 7B及び 790nm用のフォトダイオード 7Cにより検出される。
この図 1に示す光ヘッド装置の構成では、偏光ホログラム 8に 3つの波長のうち ヽず れか一方の波長のレーザー光に対して最適化した、または 405nmおよび 660nmに 対して最適化した偏光ホログラムを使用しており、いずれの波長に対しても、往路は 高透過の特性を示し、復路は問題となる効率の低下が発生しな 、。
実施例
[0024] 「例 1」
本実施例について、図 2を参照しながら説明する。
図 2に示すように、本実施例の広帯域位相板 90は、第 1、第 2の位相板 9A、 9Bを 一体化させて構成する。
[0025] 具体的には、レーザー光の入射する一方の側面(図中、下側の面)に低反射コート 膜 91Aが施された直径 12. 5cm、厚さ 0. 5mmの透明基板であるガラス基板 92Aを 用意し、このガラス基板 92Aの光源 1 (図 1参照)と反対側の面(図中、上側の面)に ポリイミドの膜を形成し、ラビングによる水平配向処理を施してポリイミド膜 93Aとする 。この配向処理したガラス基板 92A上には、液晶セルとなる後述する透明基板である ガラス基板面 92Bとの間のギャップを保持するために、直径 3. 3 111の310ビーズ(
2 図示しない)を 5000個 Zcm2の密度で散布する。その後、離型化処理剤(図示しな い)が施された図示外の水平配向ガラス基板と、上記配向処理を施したガラス基板 9 2Aとを対向させ、ガラス基板 92Aの外周部に印刷された熱硬化型のエポキシシー ル剤(図示しな!ヽ)を用いて、 2枚のガラス基板間のギャップを 3. 3 μ mに保持する。 そのギャップには、異常分散特性を有する液晶モノマーを真空注入し、 2枚のガラ ス基板間、つまりガラス基板 92Aと図示外の前述した水平配向ガラス基板との間に狭 持させる。このとき、液晶モノマーには、光重合開始剤を 1%添加して UV硬化性の液 晶モノマー糸且成物とする。
その後、波長 365nmの UV光を液晶材料全体に照射し、水平配向状態のまま液 晶性モノマー組成物全体を重合'固化することによって、ガラス基板による構成物全 体を固定する。ここで、 140°C、 30分間の熱処理の後に、上記水平配向対向ガラス 基板 (図示しない)を離型除去して、厚さ 6. 6 mの水平配向した高分子液晶薄膜 9
4の有機薄膜が形成されて 、る位相板 9Aを作成する。
[0026] また同様にして、同じ UV硬化性の液晶モノマー組成物を用いて、厚さが 3. 3 m となる水平配向した高分子液晶薄膜 95の有機薄膜が形成されている位相板 9Bを作 成する。
[0027] このとき、第 1の位相板 9Aと第 2の位相板 9Bのリタデーシヨン値を測定すると、図 3 のように波長が短くなるにつれてリタデーシヨン値も小さくなる異常分散特性が得られ ることが予想され、第 1の位相板 9Aと、第 2の位相板 9Bとの各波長におけるリタデー シヨン比は、 400〜800nmの波長帯域でほぼ 2倍である。このときの有機薄膜の複 屈折率は、波長 405nmのときに 0. 0361、波長 660nmのときに 0. 0473、また、波 長 790nmのとき〖こ 0. 05となる。なお、図 3において、 αは第 1の位相板 9Aの各波長 に対するリタデーシヨン値、 βは第 1の位相板 9Βの各波長に対するリタデーシヨン値 を示す。
これらの値から各波長における R( ) / を算出すると、波長 405nm、 660nm及 び 790nmに対してその it力 8. 91 : 7. 17 : 6. 33となり、波長の増カロととちに減少し ていることがわかる。すなわち、波長の増加割合よりもリタデーシヨン値の増加割合が 小さいことを示している。
[0028] 次に、第 1の位相板 9Aと第 2の位相板 9Bの各有機薄膜側を内側にし、その間に U V硬化型接着剤を滴下してスピンコート装置に設置し、 lOOOrpmの回転速度で 20 秒間、 5000rpmの回転速度で 100秒間、回転させ、接着層 96の厚さを 5 mとする 。この際、第 1の位相板 9Aと第 2の位相板 9Bとの光学軸の交差角が 57度の角度に なるように配置する。
その後、 5000miの UV光を照射し、接着層 96を硬化させて広帯域位相板 90とす る。第 1の位相板 9 Aの光学軸に対して 20度 (紙面水平方向を 0度とする)の方向 を基準として、広帯域位相板 90を外形 5mm X 5mmにダイシング 'ソ一により切断し 、広帯域位相板素子を得る。
[0029] 次に、波長 860nmの半導体レーザーからの出射光を基本波とし、非線形光学結 晶 KNbOを用いて発生させた第 2高調波の波長 430nmのレーザー光と波長 660η
3
mの半導体レーザーからの出射光及び波長 789nmの半導体レーザーからの出射 光とを用いて、広帯域位相板 90の楕円率を測定する。
測定する楕円率は、波長 430nmのレーザー光に対し約 0. 96、波長 660nmのレ 一ザ一光に対し約 0. 97および波長 789nmのレーザー光に対し約 0. 97となって、 実用上充分な特性である。
[0030] 同様にして、他の波長帯域における楕円率の波長分散を測定すると、図 4に示すよ うに、ほぼ波長の全域で 1Z4波長板として機能していることが分かる。また、本実施 例の広帯域位相板 90の波面収差は、波長 633nmの He-Neレーザーを用いて測定 すると、 25m l rms (root mean square:平方自乗平均)以下であり、光学素子として 充分使用できるレベルである。この広帯域位相板 90を図 1に示す光ヘッド装置の 1 Z4波長板 9として組み込む。一方、光ヘッド装置の光源 1として、 405nmと 660nm および 790nmの半導体レーザーを各々設置する。その結果、 3つの波長 405nm、 6 60nm及び 790nmのレーザー光に対して満足できる円偏光が得られ、光利用効率 の高 、信号光を得ることができる。
[0031] 「比較例」
次に、比較例として、正常分散特性を有する複屈折材料を高分子液晶の形成材料 として用いた場合を示す。
この正常分散特性を有する複屈折材料としては、一般的な側鎖型高分子液晶を形 成するモノマーを使用する。この液晶モノマーを使用した広帯域位相板を「例 1」と同 様な方法にて作成する。このとき入射側の第 1の位相板の厚さは 5. 2 /ζ πι、出射側 の第 2の位相板の厚さは 2. とし、これら位相板の光学軸の交差角が 56度の角 度になるように配置する。この広帯域位相板における入射側及び出射側の位相板の リタデーシヨン値は、図 5のグラフ γ、 δのようになり、波長が短くなるにつれてリタデ ーシヨン値も大きくなる、つまり正常分散特性を有することが分かる。このときの有機 薄膜の複屈折率は、波長 405nmのときに 0. 0508、波長 660nmのときに 0. 0453、 また、波長 790nmのときに 0. 0443である。
次に、この比較例の広帯域位相板を用いて、各波長領域における楕円率の波長分 散をしらべたところ、この楕円率の波長分散は、図 6のようになり、波長 430nmのレー ザ一光では約 0. 99、波長 660nmのレーザー光では約 0. 99および波長 789nmの レーザー光では約 0. 82を示した。
この比較例 1での楕円率波長分散の測定結果である図 6と、「例 1」での楕円率波長 分散の予想結果である図 4とを比較すると、明らかなように、「例 1」の図 4のグラフは、 比較例 1の図 6のグラフよりも、楕円率が波長によらず一定であり、力なりの広帯域な 波長帯においてほぼ完全な 1Z4波長板となっていることが分かる。この結果は、複 数のレーザー光を用いる光ヘッド装置における広帯域位相板として、本実施形態の 方が優れて!/、ることを示して 、る。
「例 2」
この「例 2」では、異常分散特性を有する材料として、 2種類の液晶モノマーを使用 する場合を示す。
このとき、 2種類の液晶モノマーとしては、有機薄膜を形成する場合の複屈折量が、 波長 405nmのとさに 0. 0361、波長 660nmのとさに 0. 0473及び波長 790nmのと きに 0. 0500である液晶モノマーと、波長 405nmのときに 0. 0194、波長 660nmの ときに 0. 0239及び波長 790nmのときに 0. 0250である液晶モノマーとを用!/、る。 これらの液晶モノマーを用いて、「例 1」と同様な方法にて、広帯域位相板を作成す る。このとき入射側の第 1の位相板の厚さは 6. 6 m、出射側の第 2の位相板の厚さ は 6. とし、これら位相板の光学軸の交差角が 61度の角度になるように配置す る。この広帯域位相板における、入射側および出射側の第 1および第 2の位相板のリ タデーシヨン値は、図 7のようになり、波長が短くなるにつれて出射側のリタデーシヨン 値が小さくなる、異常分散特性を有している。
[0033] 次に、この広帯域位相板素子を用いて、各波長領域における楕円率の波長分散を 調べると、この波長分散は、図 8のようになり、波長 430nmのレーザー光では約 0. 9 6、波長 660nmのレーザー光では約 0. 96および波長 789nmのレーザー光では約 0. 96を示す。図 8と「例 1」で行った楕円率波長分散の予想結果である図 4とを比較 すると、ほぼ同じような波長分散特性になっていることが分かる。また、明らかなように 、「例 2」の図 8の方は、比較例 1の図 6よりも、楕円率が波長によらず一定であり、力な りの広帯域な波長帯においてほぼ完全な 1Z4波長板となっていることが分かる。
[0034] 「例 3」
下記化合物(1A)、下記化合物(1B)、下記化合物(1C)及び下記化合物(1U)を 6 : 8 : 6 : 5 (モル比)で混合し、液晶組成物 Aを得た。この液晶組成物 Aを用いて有機 薄膜を形成したところ、その複屈折量は、波長 405nmのときに 0. 0065、波長 660η mのとさに 0. 0105及び波長 790nmのとさに 0. 0107であった。
これらの値から各波長における R( ) / を算出すると、波長 405nm、 660nm及 び 790nmに対してその it力 1. 65 : 1. 59 : 1. 35となり、波長の増カロととちに減少し ていることがわかる。すなわち、波長の増加割合よりもリタデーシヨン値の増加割合が 小さいことを示している。
[0035] [化 3]
Figure imgf000021_0001
0
0-C-( H )-n-C4H9 (1C)
Figure imgf000021_0002
[0036] この液晶組成物 Aを用いて、「例 1」と同様な方法にて、広帯域位相板を作成する。 このとき入射側の第 1の位相板の厚さは 31. 5 /ζ πι、出射側の第 2の位相板の厚さは 15. とし、これら位相板の光学軸の交差角が 59度の角度になるように配置する 。このとき、第 1の位相板 9Aと第 2の位相板 9Bのリタデーシヨン値を測定した結果、 図 9のように波長が短くなるにつれてリタデーシヨン値も小さくなる異常分散特性が得 られており、第 1の位相板 9Aと、第 2の位相板 9Bとの各波長におけるリタデーシヨン 比は、 400〜800nmの波長帯域でほぼ 2倍である。
次に、この広帯域位相差素子を用いて、各波長領域における楕円率の波長分散を 調べたところ、この波長分散は、図 10のようになり、波長 430nmのレーザー光では 約 0. 96、波長 660nmのレーザー光では約 0. 95および波長 789nmのレーザー光 では約 0. 99を示した。図 10と「例 1」で行った楕円率波長分散の測定結果である図 4とを比較すると、ほぼ同じような波長分散特性になっていることが分かる。また、明ら かなように、「例 3」の図 10の方は、比較例 1の図 6よりも、楕円率が波長によらず一定 であり、力なりの広帯域な波長帯においてほぼ完全な 1Z4波長板となっていることが 分かる。
なお、本発明は上述した実施形態に何ら限定されるものではなぐその要旨を逸脱 しない範囲において種々の形態で実施し得るものである。即ち、本発明は、広帯城 1 Z4波長板のみならず、広帯域 1Z2波長板や広帯域 3Z4波長板などに応用できる ことは自明である。また、本発明の効果を損なわない範囲内で種々応用することも可 能である。
産業上の利用可能性
[0037] 本発明の光ヘッド装置は、従来の光ヘッド装置とは異なり、積層される 2枚の広帯 域位相板のうち少なくともどちらか一方に、波長が短くなるにしたがってリタデーシヨン 値も小さくなるような位相板を用いることにより、透過する 3つ以上の波長の直線偏光 のレーザー光に対してほぼ 1Z4波長板として機能し、直線偏光を円偏光とすること ができる効果を有する。このため、各波長での光学素子を共用化でき、部品点数を 減らして、組み立て時間も短縮化された小型で低コストの光ヘッド装置を提供できる また、本発明の広帯域位相板は、使用する波長帯全域でほぼ完全な 1Z4波長板 として作用するので、半導体レーザーから出射される光の波長に、ロットの違いなど でバラツキがあっても、問題なく直線偏光を円偏光に変換することができる。 なお、 2004年 9月 14曰に出願された曰本特許出願 2004— 266728号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として 取り入れるものである。

Claims

請求の範囲
[1] 光源から出射される直線偏光のレーザー光を対物レンズにより集光して光記録謀 体へ導き、光記録媒体からの反射光を光検出器で受光する光ヘッド装置において、 前記レーザー光は、波長の異なる 3つ以上のレーザー光の 、ずれかが用いられ、 前記光源と前記対物レンズとの間に前記レーザー光の位相状態を制御する広帯域 位相板が設置されており、
前記広帯域位相板は、 2枚の位相板をそれぞれの光学軸が交差するように重ねら れて形成されてなり、
前記レーザー光が波長え 、 λ及びえ (λ < λ < λ )を有するときに、前記 2枚
1 2 3 1 2 3
の位相板のうち少なくともいずれか一方の位相板に対して、各波長でのリタデーショ ン値 R( )についての比の値、く R( )/R( ;)〉及びく R( )/R( ;)〉は、次の
1 3 2 3 各式を満たすことを特徴とする光ヘッド装置。
(R( )/R(X )〉<1、
1 3
(R( )/R( )〉<1、
2 3
(R( )/R( )}<(R( )/R( )>
1 3 2 3
[2] 前記レーザー光は、波長え 、 λ及びえ のいずれかを有するとともに、
1 2 3
前記少なくとも!/、ずれか一方の位相板は、
リタデーシヨン値 R( )tR( )との比の値く R( )/R( ;)〉が前記波長の比の
3 1 1 3
値(λ /λ )よりも大きく、
1 3
リタデーシヨン値 R( )tR( )との比の値く R( )/R( ;)〉が前記波長の比の
3 2 2 3
値(λ /λ )よりも大きく、
2 3
リタデーシヨン値 R( )tR( )との比の値く R( )/R( ;)〉が前記波長の比の
2 1 1 2
値(λ /λ )よりも大きい、
1 2
請求項 1に記載の光ヘッド装置。
[3] 前記 2枚の位相板のうち、前記レーザー光が第 1に入射する前記位相板のリタデー シヨン値は、第 2に入射する前記位相板のレタデーシヨン値よりも大きぐかつ、 前記 2つのリタデーシヨン値の比の値が 1. 8〜2. 2である請求項 1または 2に記載 の光ヘッド装置。
[4] 前記 2枚の位相板のそれぞれの光学軸の交差角力 0〜70度の範囲にある、請求 項 1から 3のいずれか 1項に記載の光ヘッド装置。
[5] 前記広帯域位相板は、前記 3つの波長のレーザー光が透過するときの各波長領域 における楕円率が実質的に等しい請求項 1から 4のいずれ力 1項に記載の光ヘッド 装置。
[6] 前記 2つの位相板は、接着層を介して重ねられていて、前記接着層の厚さが 10 m以下である請求項 1から 5のいずれか 1項に記載の光ヘッド装置。
[7] 前記 2つの位相板は、それぞれ少なくとも 1枚の透明基板に接着されて用いられる 請求項 1から 6のいずれか 1項に記載の光ヘッド装置。
[8] 前記広帯域位相板がレーザー光の光学的性質を変化させる少なくとも一つの光学 素子と一体化されて!/、る請求項 1から 7の 、ずれか 1項に記載の光ヘッド装置。
PCT/JP2005/016851 2004-09-14 2005-09-13 光ヘッド装置 WO2006030789A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006535152A JP5034501B2 (ja) 2004-09-14 2005-09-13 光ヘッド装置
US11/686,131 US7986606B2 (en) 2004-09-14 2007-03-14 Optical head device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004266728 2004-09-14
JP2004-266728 2004-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/686,131 Continuation US7986606B2 (en) 2004-09-14 2007-03-14 Optical head device

Publications (1)

Publication Number Publication Date
WO2006030789A1 true WO2006030789A1 (ja) 2006-03-23

Family

ID=36060040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016851 WO2006030789A1 (ja) 2004-09-14 2005-09-13 光ヘッド装置

Country Status (5)

Country Link
US (1) US7986606B2 (ja)
JP (1) JP5034501B2 (ja)
KR (1) KR20070048778A (ja)
TW (1) TW200623097A (ja)
WO (1) WO2006030789A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198244A (ja) * 2007-02-08 2008-08-28 Asahi Glass Co Ltd 広帯域波長板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894321B2 (en) * 2005-09-28 2011-02-22 Epson Toyocom Corporation Laminated wave plate and optical pickup using the same
US7907499B2 (en) * 2006-07-26 2011-03-15 Konica Minolta Holdings, Inc. Optical element, optical element manufacturing method and optical pickup device
JP5316409B2 (ja) * 2007-07-27 2013-10-16 旭硝子株式会社 位相差素子および光ヘッド装置
KR20170011306A (ko) * 2015-07-22 2017-02-02 삼성전자주식회사 광학 필름, 그 제조 방법 및 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004841A (ja) * 1999-06-24 2001-01-12 Matsushita Electric Ind Co Ltd 光学素子と光ヘッドと光記録再生装置
JP2001101700A (ja) * 1999-09-30 2001-04-13 Asahi Glass Co Ltd 光ヘッド装置
JP2002156528A (ja) * 1998-10-30 2002-05-31 Teijin Ltd 熱可塑性高分子フィルム
JP2003098350A (ja) * 2001-09-21 2003-04-03 Ricoh Co Ltd 光学素子、該光学素子を用いた光ピックアップ装置及び光ディスクドライブ装置
JP2003329840A (ja) * 2002-05-16 2003-11-19 Teijin Ltd 熱安定性に優れた位相差フィルム、及び偏光変換素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068816A (ja) 1996-08-29 1998-03-10 Sharp Corp 位相差板及び円偏光板
TW424154B (en) * 1998-10-30 2001-03-01 Teijin Ltd Phase film and optical device using same
US6580674B1 (en) * 1999-08-26 2003-06-17 Asahi Glass Company, Limited Phase shifter and optical head device mounted with the same
US7050380B2 (en) * 2000-04-18 2006-05-23 Ricoh Company, Ltd. Optical element, optical pickup unit, and optical disk drive unit
US6812983B2 (en) * 2000-05-17 2004-11-02 Fuji Photo Film Co., Ltd. Retardation plate and fabrication method thereof, and plate for circularly polarizing light, ½ wave plate and reflection-type liquid crystal display device utilizing the retardation plate
JP4175092B2 (ja) 2002-11-06 2008-11-05 日本電気株式会社 光ヘッド装置および光学式情報記録再生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156528A (ja) * 1998-10-30 2002-05-31 Teijin Ltd 熱可塑性高分子フィルム
JP2001004841A (ja) * 1999-06-24 2001-01-12 Matsushita Electric Ind Co Ltd 光学素子と光ヘッドと光記録再生装置
JP2001101700A (ja) * 1999-09-30 2001-04-13 Asahi Glass Co Ltd 光ヘッド装置
JP2003098350A (ja) * 2001-09-21 2003-04-03 Ricoh Co Ltd 光学素子、該光学素子を用いた光ピックアップ装置及び光ディスクドライブ装置
JP2003329840A (ja) * 2002-05-16 2003-11-19 Teijin Ltd 熱安定性に優れた位相差フィルム、及び偏光変換素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198244A (ja) * 2007-02-08 2008-08-28 Asahi Glass Co Ltd 広帯域波長板

Also Published As

Publication number Publication date
US7986606B2 (en) 2011-07-26
JPWO2006030789A1 (ja) 2008-05-15
TW200623097A (en) 2006-07-01
KR20070048778A (ko) 2007-05-09
JP5034501B2 (ja) 2012-09-26
US20070159932A1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
KR100569633B1 (ko) 위상자 및 이것을 탑재한 광헤드 장치
US7738346B2 (en) Polarizing diffraction element and optical head device
JP2002318306A (ja) 波長選択性回折素子および光ヘッド装置
WO2006030789A1 (ja) 光ヘッド装置
JP4518009B2 (ja) 3波長用回折素子、位相板付3波長用回折素子および光ヘッド装置
WO2004097816A1 (ja) 回折素子および光ヘッド装置
JP3671768B2 (ja) 光ヘッド装置
JP5316409B2 (ja) 位相差素子および光ヘッド装置
KR20090025273A (ko) 레이저광용 광학 부품
JP4930084B2 (ja) 広帯域波長板
JP4631135B2 (ja) 位相子
JP4218393B2 (ja) 光ヘッド装置
JP4349335B2 (ja) 光ヘッド装置
KR101097078B1 (ko) 회절 소자 및 광헤드 장치
EP1562186B1 (en) Double-wavelength light source unit and optical head device
JP5131244B2 (ja) 積層位相板及び光ヘッド装置
US8040781B2 (en) Wavelength selecting wavelength plate and optical head device using it
JP2001344800A (ja) 光ヘッド装置
JP3968593B2 (ja) 光ヘッド装置
KR100536186B1 (ko) 광대역 위상지연판 및 이를 갖는 광학소자 및/또는광헤드장치
JP2002040257A (ja) 開口制限素子および光ヘッド装置
WO2004051326A1 (ja) 位相板および光情報記録再生装置
JP5083014B2 (ja) 広帯域波長板および光ヘッド装置
JP2010244681A (ja) 光ヘッド装置
JP2010186526A (ja) 選択光学素子及び光ピックアップ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535152

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077005415

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11686131

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11686131

Country of ref document: US

122 Ep: pct application non-entry in european phase