WO2006028042A1 - 作業車両のエンジンの負荷制御装置 - Google Patents

作業車両のエンジンの負荷制御装置 Download PDF

Info

Publication number
WO2006028042A1
WO2006028042A1 PCT/JP2005/016237 JP2005016237W WO2006028042A1 WO 2006028042 A1 WO2006028042 A1 WO 2006028042A1 JP 2005016237 W JP2005016237 W JP 2005016237W WO 2006028042 A1 WO2006028042 A1 WO 2006028042A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
hydraulic
variable displacement
speed
absorption torque
Prior art date
Application number
PCT/JP2005/016237
Other languages
English (en)
French (fr)
Inventor
Yuuichi Iwamoto
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to DE112005000083.4T priority Critical patent/DE112005000083B4/de
Priority to US10/578,315 priority patent/US7810323B2/en
Publication of WO2006028042A1 publication Critical patent/WO2006028042A1/ja
Priority to SE0600990A priority patent/SE531422C2/sv

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/05Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • F16N13/02Lubricating-pumps with reciprocating piston
    • F16N13/06Actuation of lubricating-pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/06Motor parameters of internal combustion engines
    • F04B2203/0603Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/16Pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Definitions

  • the present invention relates to a load control device for an engine of a work vehicle.
  • a wheel loader travels by driving wheels (wheels) driven by an engine as a drive source via a torque converter.
  • the engine is also the driving source for working machines such as steering mechanisms and loaders.
  • the steering hydraulic pump is driven by the engine and supplied to the hydraulic pressure steering hydraulic cylinder discharged from the steering hydraulic pump, and the steering mechanism is operated accordingly.
  • the loader hydraulic pump is driven by the engine, and the pressure oil discharged from the loader hydraulic pump is supplied to the loader hydraulic cylinder, and the loader is operated accordingly.
  • Fixed displacement hydraulic pumps with a constant capacity are used for steering hydraulic pumps and loader hydraulic pumps.
  • the traveling speed of the wheel loader varies depending on the amount of depression of the accelerator pedal.
  • the engine speed is changed according to the depression amount of the accelerator pedal, and the vehicle speed is changed accordingly.
  • the target engine speed varies from a low idle speed to a high idle speed.
  • the wheel loader has many opportunities to set the target engine speed to a low idle speed (idling state) as compared with other work vehicles such as hydraulic excavators.
  • FIG. 3 shows the relationship between the engine speed N and the engine torque Te.
  • the engine matches the hydraulic load on the regulation line FL corresponding to the low idle speed NL.
  • the hydraulic load is low, the matching force at the low torque matching point V0 on the regulation line FL
  • the operator suddenly operates the steering handle and the control lever, If the “high hydraulic load is applied suddenly by lifting the loader” is performed, the hydraulic load rises rapidly and the hydraulic load is switched to the line indicated by Tpl.
  • the engine is subject to a sudden increase in hydraulic load as indicated by the force B at which the torque tends to increase to match this high hydraulic load Tpl (point VI on the regulation line FL). O The engine did not stop in time (a time delay occurred) and eventually the engine stopped.
  • the engine idling speed is set to a higher value so that the torque increase during idling of the engine is accelerated, and the engine torque is increased rapidly when the high hydraulic load is increased. It is conceivable to keep up with the rise.
  • the present invention has been made in view of such a situation, and in a working vehicle such as a wheel loader, a sudden increase in fuel efficiency, deterioration of vehicle body performance, waste of energy, etc. is caused without causing problems.
  • the solution is to reliably prevent the engine from being stopped when the hydraulic load force S is applied.
  • the first invention is a first invention.
  • the absorption torque changing means (19, 22, 23) for changing the absorption torque For one or more variable displacement hydraulic pumps (7, 8, 9), the absorption torque changing means (19, 22, 23) for changing the absorption torque,
  • the second invention is the first invention
  • the predetermined threshold value is a rotational speed equal to or lower than a low idle rotational speed.
  • a third invention is the first invention
  • a fourth invention is the first invention
  • the absorption torque changing means is means (19) for changing the maximum absorption torque of the hydraulic pump.
  • the fifth invention is the first invention
  • the absorption torque changing means is
  • Capacity control means for controlling the capacity of the variable displacement hydraulic pump (8) so that the differential pressure between the discharge pressure of the variable displacement hydraulic pump (8) and the load pressure of the hydraulic actuator (14) becomes the set differential pressure (22 )When,
  • a sixth invention is the first invention
  • Pressure oil is supplied from multiple variable displacement hydraulic pumps (7, 8, 9) to multiple hydraulic actuators (13, 14, 15) via independent oil passages.
  • the controller 18 determines that the engine speed Nr detected by the engine speed detection sensor la has dropped below the threshold value Nc, the controller 18 reduces the absorption torque of the variable displacement hydraulic pumps 7, 8, and 9. The control to be executed is executed.
  • the controller 18 determines that the detected engine speed Nr has exceeded the threshold value Nc, the controller 18 ends the control for reducing the absorption torque of the variable displacement hydraulic pumps 7, 8, 9.
  • the hydraulic load is a force that returns to the high-load line Tpl according to the current work content.
  • the torque Te of the engine 1 has already increased to some extent during that time. Therefore, it can be matched at the matching point VI of the high hydraulic load Tpl.
  • the control for reducing the absorption torque of the variable displacement hydraulic pumps 7, 8, 9 may be terminated.
  • the control may be terminated after a predetermined time has elapsed since the start of the control for reducing the absorption torque of the variable displacement hydraulic pumps 7, 8, and 9.
  • the time for reducing the absorption torque of the variable displacement hydraulic pumps 7, 8, and 9 is only the minimum time necessary to prevent the engine from stopping, and there is no risk of engine stop. Sometimes the absorption torque remains at normal magnitude. In addition, it is not necessary to increase the low idle speed NL. [0030] For this reason, when a work vehicle such as a wheel loader is subjected to a sudden high hydraulic load without causing problems such as deterioration of fuel consumption, deterioration of vehicle body performance, and waste of energy, the engine is stopped. Can be reliably prevented.
  • the PC control is executed as shown by the arrow D in FIG. 5 by using the existing PC control and the function and device of “mode” selection in the wheel loader 100.
  • the maximum absorption torque of the hydraulic pumps 7, 8, and 9 may be reduced (fourth invention).
  • the existing PC control, “mode” selection function and device are used for the work vehicle, the device cost required to realize the engine stop prevention control can be further reduced.
  • the existing LS control and differential pressure set value change control functions and devices are used for the wheel loader 100, and as shown by arrow E in FIG.
  • the capacity of the hydraulic pumps 7, 8, and 9 may be reduced (fifth invention).
  • the existing LS control and differential pressure set value change control functions and devices are used in the work vehicle, the device cost required to realize engine stop prevention control can be further reduced.
  • a plurality of variable displacement hydraulic pumps 7, 8, 9 force are supplied to the plurality of hydraulic actuators 13, 14, 15 via respective independent oil passages. The engine stop prevention control described above is performed on the premise of the supplied hydraulic circuit.
  • variable displacement hydraulic pumps 7, 8, and 9 are provided with a hydraulic circuit that supplies pressure oil to the plurality of hydraulic actuators 13, 14, and 15 via independent oil passages, respectively. If adopted, the capacity of the corresponding hydraulic pump 7, 8, 9 must be determined according to the maximum load of each hydraulic actuator 13, 14, 15, so each variable displacement hydraulic pump 7, The capacity of 8 and 9 tends to increase.
  • the pressure oil discharged from a plurality of variable displacement hydraulic pumps is merged, and the differential pressure across each control valve is adjusted by the pressure compensation valve, and then a plurality of hydraulic actuators are combined. If a hydraulic circuit that supplies pressure oil separately is used, the flow rate can be distributed according to the load of each hydraulic actuator, so the capacity of each variable displacement hydraulic pump can be reduced. [0035] For this reason, the hydraulic circuit of the sixth invention shown in FIG. 1 tends to have a larger hydraulic load than the hydraulic circuit using the pressure compensation valve, and the necessity of performing engine stop prevention control is high. Yes.
  • the seventh invention relates to
  • An operating element (17) for setting a target engine speed according to an operation amount is provided, and the predetermined threshold is set according to an operating amount of the operating element (17), and the control means (18) is characterized in that when the detected engine speed force falls below the predetermined threshold value, the absorption torque of the variable displacement hydraulic pump (7, 8, 9) is reduced.
  • an engine target speed NM corresponding to the depression amount SM is set (see Figs. 10 and 9 (a)). Also, the threshold Nc (SM) is determined according to the accelerator pedal depression amount SM at that time (see Fig. 10 and Fig. 9 (a)).
  • the accelerator pedal 17 is depressed to the operation amount SM, and the low rotation / low hydraulic load matching point V0 (point V0 on the regulation line FL) is changed to the high rotation / high hydraulic load.
  • the controller 18 determines whether or not the detected engine speed Nr force has fallen below the predetermined threshold Nc (SM). . If the controller 18 determines that the detected engine speed Nr has dropped below the predetermined threshold Nc (SM), the absorption torque of the variable capacity hydraulic pumps 7, 8, 9 is reduced. Execute control.
  • the hydraulic load moves to the low hydraulic load line indicated by Tp2. Since the hydraulic load has changed from the high hydraulic load Tpl to the low hydraulic load Tp2, the torque of the current engine 1 now has a margin with respect to the low hydraulic load ⁇ 2, and the actual engine 1 speed Nr rises quickly.
  • the time required to reduce the absorption torque of the variable displacement hydraulic pumps 7, 8, and 9 is only the minimum time required to prevent engine stoppage and acceleration deterioration.
  • the absorption torque remains at the normal level.
  • the accelerator pedal 17 when the accelerator pedal 17 is depressed even in a high hydraulic load state, it quickly rises to the target rotational speed Nc (SM), so that the acceleration performance is excellent and the working efficiency is high. The effect of dramatically improving can also be obtained.
  • SM target rotational speed
  • FIG. 1 shows the configuration of the wheel loader according to the embodiment, showing the parts according to the present invention.
  • the output shaft of the engine 1 of the wheel loader 100 is connected to the PTO shaft 6.
  • the PTO shaft 6 is connected to the torque converter 2, and is also connected to a steering hydraulic pump 7, a loader hydraulic pump 8, a fan hydraulic pump 9, and a torque converter lubrication hydraulic pump 10.
  • the output of engine 1 is torque converter 2, transmission 3, and differential gear.
  • the output of the engine 1 is transmitted to a steering hydraulic pump 7, a loader hydraulic pump 8, a fan hydraulic pump 9, and a torque converter lubricating hydraulic pump 10.
  • the steering hydraulic cylinder 13 is connected to a steering mechanism.
  • the steering mechanism When pressure oil is supplied to the steering hydraulic cylinder 13, the steering mechanism is activated and the vehicle body is turned.
  • the spool of the steering control valve 11 is moved according to the operation of a steering handle (not shown), and the opening area of the control valve 11 changes accordingly, and the flow rate supplied to the steering hydraulic cylinder 13 changes. .
  • the loader hydraulic cylinder 14 is connected to a loader at the front of the vehicle body.
  • the loader When pressure oil is supplied to the loader hydraulic cylinder 14, the loader is activated. That is, the boom constituting the loader rises or falls, and the packet tilts.
  • the spool of the loader control valve 12 is moved according to the operation of a loader operation lever (not shown), and the opening area of the control valve 12 is changed accordingly, and the flow rate supplied to the loader hydraulic cylinder 14 is changed.
  • the engine 1 output shaft is provided with an engine speed detection sensor la that detects the actual speed Nr of the engine 1.
  • the engine speed Nr detected by the engine speed detection sensor la is input to the controller 18.
  • the accelerator pedal 17 is operated by an operator and is provided on the accelerator pedal 17.
  • the stroke sensor 17a detects the operation amount (depression amount), and a signal indicating the operation amount is input to the controller 18.
  • the controller 18 controls the engine 1 so that the target rotational speed is in accordance with the operation amount of the accelerator pedal 17.
  • Engine 1 is a diesel engine, and its output is controlled by adjusting the amount of fuel injected into the cylinder. This adjustment is performed by controlling the governor attached to the fuel injection pump of engine 1.
  • the governor an all-speed control type governor is generally used, and the engine speed and the fuel injection amount are adjusted according to the load so that the target speed depends on the accelerator pedal depression amount. In other words, the governor increases or decreases the fuel injection amount so that there is no difference between the target engine speed and the actual engine speed.
  • FIG. 2 shows a control method of the engine 1.
  • the horizontal axis in Fig. 2 is the engine speed N
  • the vertical axis represents the engine torque Te.
  • the region defined by the maximum torque line indicates the performance that the engine 1 can produce.
  • the governor controls the engine 1 so that the torque does not exceed the maximum torque line and the exhaust smoke limit is not reached, and the engine speed N does not exceed the high idle speed NH and does not become overspeed.
  • the low idle speed NL is set as the target speed, and the speed is adjusted on the regulation line FL connecting the low idle points NL.
  • the hydraulic load Tp fluctuates as shown by arrow A, the matching point V at which the output of engine 2 and the pump absorption horsepower are balanced moves on the regulation line FL according to the fluctuation.
  • variable displacement hydraulic pumps 7, 8, 9 are provided with absorption torque changing means for changing the absorption torque, and the controller 18 reduces the absorption torque as shown in FIG. The control to be executed is executed.
  • the rotational speed Nc equal to or lower than the low idle rotational speed NL is set as the threshold! /.
  • This threshold value Nc is set to a rotational speed at which it is determined that the engine 1 may stop.
  • controller 18 determines that engine speed Nr detected by engine speed detection sensor la has decreased to a value equal to or lower than threshold value Nc (YES in step 201), variable displacement hydraulic pumps 7, 8 , Control to reduce the absorption torque of 9 is executed.
  • the hydraulic load moves to the low hydraulic load line indicated by Tp2. Since the hydraulic load has changed from the high hydraulic load Tpl to the low hydraulic load Tp2 (point V2 on the regulation line FL), the torque of the current engine 1 is now reduced to the low hydraulic load ⁇ 2. As shown by C2, the actual engine speed Nr increases, exceeds the threshold Nc, and returns to the regulation line FL (step 202).
  • step 204 if the detected engine speed Nr force exceeds the value Nc (YES in step 203), the absorption torque of the variable displacement hydraulic pumps 7, 8, 9 is reduced. (Step 204), and as shown in Fig. 11 (b), a predetermined time has elapsed since the start of the control to reduce the absorption torque of the variable displacement hydraulic pumps 7, 8, and 9. Later (YES at step 203 '), the control may be terminated (step 204).
  • FIG. 7 shows a configuration for PC control of the loader hydraulic pump 8.
  • the force shown as representative of the hydraulic pump 8 for the driver is configured similarly when the other variable displacement hydraulic pumps 7 and 9 are subjected to PC control.
  • the PC valve 19 is arranged so that the product of the discharge pressure Pp (kg / cm2) of the hydraulic pump 8 and the capacity q (cc / rev) of the hydraulic pump 8 does not exceed a certain torque, Control the tilt angle. If the rotation speed of engine 1 is constant, the product of the discharge pressure Pp (kg / cm2) of hydraulic pump 8 and the flow rate Q (1 / min) of hydraulic pump 8 should not exceed a certain horsepower.
  • the swash plate 8a of the pump 8 is controlled.
  • the PC valve 19 inputs the discharge pressure Pp of the hydraulic pump 8 as a pilot pressure, and supplies the drive pressure oil corresponding to the discharge pressure Pp to the servo valve 20, thereby controlling the capacity q of the hydraulic pump 8. .
  • the horizontal axis in Fig. 5 is the discharge pressure P of the hydraulic pump 8. p (kg / cm2), and the vertical axis represents the capacity q (cc / rev) of the hydraulic pump 8, that is, the tilt angle of the swash plate 8a.
  • the pump capacity q is controlled in accordance with the pump discharge pressure Pp within a range not exceeding the hydraulic load, that is, the absorption torque force maximum absorption torque Tpl.
  • a control signal il is applied to the PC valve 19 from the controller 18, and the maximum absorption torque is changed in accordance with the control signal il.
  • An operation panel (not shown) is provided with a “mode switch”, and the maximum absorption torque value changes according to the mode selected by the mode switch.
  • the maximum absorption torque of the hydraulic pump 8 is set to a large value Tpl, and the hydraulic pump 8 is controlled by the force having the characteristic LN1.
  • Tpl the maximum absorption torque of the hydraulic pump 8
  • the value changes from characteristic LN1 to characteristic LN2, and the pump discharge pressure value at which the pump capacity starts to decrease decreases, and the maximum absorption torque is reduced.
  • Tp2 the value is set to a small value Tp2.
  • control for preventing engine stop is performed using the PC control function, the “mode” setting function, and the device provided in the wheel loader 100 as described above.
  • the controller 18 sets the maximum hydraulic pump 8 relative to the PC valve 19. Outputs the control signal il that sets the absorption torque to a large value Tpl.
  • the maximum absorption torque of the hydraulic pump 8 is set to a small value Tp2 for the PC valve 19.
  • the maximum absorption torque of the hydraulic pump 8 is set to a large value for the PC valve 19.
  • the maximum absorption torque of the hydraulic pump 8 is set to a small value Tp2 and the force is also increased after a predetermined time.
  • the wheel loader 100 can be used to stop the engine when a high hydraulic load is suddenly applied by using the existing PC control, "mode" selection function and device. Can be prevented.
  • FIG. 8A shows a configuration for performing LS control on the loader hydraulic pump 8.
  • the force shown as a representative of the loader hydraulic pump 8 is another variable displacement hydraulic pump.
  • the LS valve 22 is a swash plate 8a of the hydraulic pump 8 so that the differential pressure ⁇ P between the discharge pressure Pp of the hydraulic pump 8 and the load pressure PLS of the loader hydraulic cylinder 14 becomes a constant differential pressure ⁇ PLS. Controls the tilt angle.
  • a panel for setting a constant differential pressure ⁇ PLS is applied to the LS valve 22!
  • the discharge pressure Pp of the hydraulic pump 8 is applied as a pilot pressure to the pilot port on the side opposite to the panel side of the LS valve 22, and the load pressure PLS of the loader hydraulic cylinder 14 is piloted to the pilot port on the panel side. It can be used as pressure.
  • the drive pressure oil is supplied from the LS valve 22 to the servo valve 20, whereby the capacity q of the hydraulic pump 8 is controlled.
  • the opening area A of the loader control valve 12 increases according to the operation amount, and the pump flow rate Q increases as the opening area A increases.
  • the pump flow rate Q is not affected by the hydraulic load and is determined only by the operation amount of the loader operation lever.
  • the engine 1 Even in the area where the maximum flow rate of the hydraulic pump 8 is not exceeded, such as during fine control, the engine 1 always supplies the flow rate required by the hydraulic cylinder 14 for the loader.
  • the discharge flow rate is the same as the rotation range.
  • the LS valve 22 is provided with a differential pressure setting unit 23 that changes the panel setting panel force.
  • the controller 18 outputs a control signal i2 to the differential pressure setting unit 23, the differential pressure setting unit 23 Change the set panel force of the 22 panel and change the differential pressure setting value A PLS.
  • the horizontal axis in FIG. 6 is the discharge pressure Pp (kg / cm2) of the hydraulic pump 8, and the vertical axis is the capacity q (cc / rev) of the hydraulic pump 8, that is, the tilt angle of the swash plate 8a.
  • control for preventing engine stop is performed using the LS control function and the differential pressure set value change function provided in the wheel loader 100 described above.
  • the controller 18 sets the differential pressure set value ⁇ PL to the LS valve 22.
  • Set S to a large value and output control signal i2 to increase the absorption torque of hydraulic pump 8.
  • the differential pressure set value A PLS is set to a small value for the LS valve 22. Outputs the control signal i2 to reduce the absorption torque of. Again, the engine speed detected by the engine speed sensor la exceeded the Nr force threshold value Nc or less.
  • the control signal i2 for increasing the absorption torque of the hydraulic pump 8 is output to the LS valve 22 by setting the differential pressure setting value A PLS to a large value.
  • the engine stop prevention control shown in Figs. 4 (a), (b), and (c) is realized, and the torque of the engine 1 without stopping the engine 1 is raised according to the hydraulic load to increase the high hydraulic load. Matching with Tpl's matching point VI is possible.
  • the differential pressure set value ⁇ PLS is set to a small value and the absorption torque of the hydraulic pump 8 is reduced. After a predetermined time, the differential pressure set value ⁇ PLS is set to a large value to reduce the absorption torque of the hydraulic pump 8. Return the value to a large value.
  • the engine in the case where a high hydraulic load is suddenly applied by using the existing LS control and differential pressure set value change control functions and devices in the wheel loader 100 is used. Stopping can be prevented.
  • the engine stop may be prevented by combining the control for changing the maximum absorption torque shown in FIG. 5 and the control for changing the pump capacity shown in FIG.
  • variable capacity can be reduced by reducing the maximum absorption torque or capacity for all variable displacement hydraulic pumps 7, 8, and 9.
  • the maximum absorption torque or capacity may be reduced for one or two variable displacement hydraulic pumps of type 7, 8, 9
  • independent oil passages are provided from the plurality of variable displacement hydraulic pumps 7, 8, 9 to the plurality of hydraulic actuators 13, 14, 15, respectively.
  • variable displacement hydraulic pumps 7, 8, and 9 are provided with hydraulic circuits that supply pressure oil to the plurality of hydraulic actuators 13, 14, and 15 via independent oil passages, respectively. If adopted, the capacity of the corresponding hydraulic pump 7, 8, 9 must be determined according to the maximum load of each hydraulic actuator 13, 14, 15, so each variable displacement hydraulic pump 7, The capacity of 8 and 9 tends to increase.
  • the pressure oil discharged from a plurality of variable displacement hydraulic pumps is merged, the differential pressure across each control valve is adjusted by the pressure compensation valve, and then a plurality of hydraulic actuators are combined. If a hydraulic circuit that supplies and distributes pressure oil is used, each hydraulic actuator Since the flow rate can be distributed according to the load, it is possible to reduce the capacity of each variable displacement hydraulic pump.
  • the hydraulic circuit shown in FIG. 1 tends to have a larger hydraulic load than the hydraulic circuit using the pressure compensation valve, and it is highly necessary to perform engine stop prevention control.
  • the engine stop prevention control shown in Fig. 4 is performed when the accelerator pedal 17 is not depressed and the engine speed is the idle idle speed NL. 4 may similarly perform the engine stop prevention control shown in FIG.
  • the threshold value Nc for determining that the engine 1 may stop can be set to a different value depending on the current engine speed Nr. For example, when the engine is operating at a speed Nr higher than the low idle speed NL, the threshold value Nc for judging the engine stop is set to a speed slightly higher than the low idle speed NL. May be. Of course, regardless of the engine speed Nr, the threshold value Nc may be uniformly set to a speed equal to or lower than the low idle speed NL.
  • the threshold value is set according to the depression amount (accelerator pedal opening) S of the accelerator pedal 17, and the value Nc (S) is used with the accelerator pedal operation amount S as a variable. Similarly, it is possible to perform control to reduce the pump absorption torque.
  • the engine 1 regulation line is a low-rotation regulation line FL or Therefore, it is necessary to shift to the high rotation regulation line FM. In addition, it is necessary to shift the engine torque from low torque corresponding to low hydraulic load TpO to high torque corresponding to high hydraulic pressure Tpl.
  • the threshold value Nc (S) is set according to the operation amount S (accelerator pedal opening) of the accelerator pedal 17. .
  • This threshold value Nc (S) is a threshold value that determines that there is a risk of engine stoppage or acceleration acceleration, and the actual engine speed Nr is less than or equal to threshold value Nc (S) (same as above). If it is the region indicated by the slanted lines in FIG. 10, it is determined that there is a risk of engine stoppage or deterioration of acceleration, and control for reducing the absorption torque of the variable capacity hydraulic pumps 7, 8, 9 is executed.
  • the straight line indicated by N (S) indicates the engine target speed (unloaded speed) that is set according to the operation amount S (accelerator pedal opening) of the accelerator pedal 17. It shows.
  • the target engine speed NM corresponding to the depression amount SM is set (see Figs. 10 and 9 (a)). Also, the threshold Nc (SM) is determined according to the accelerator pedal depression amount SM at that time (see Fig. 10 and Fig. 9 (a)).
  • the accelerator pedal 17 is depressed to the operation amount SM, and the low rotation / low hydraulic load matching point V0 (point V0 on the regulation line FL)
  • the controller 18 determines whether or not the detected engine speed Nr force has fallen below the predetermined threshold Nc (SM).
  • the controller 18 determines that the detected engine speed Nr has dropped below the predetermined threshold value Nc (SM)
  • the variable capacity Control is performed to reduce the absorption torque of the quantity hydraulic pumps 7, 8, and 9.
  • the hydraulic load moves to the low hydraulic load line indicated by Tp2. Since the hydraulic load has changed from the high hydraulic load Tpl to the low hydraulic load Tp2, the torque of the current engine 1 now has a margin with respect to the low hydraulic load ⁇ 2, and the actual engine 1 speed Nr rises quickly.
  • the controller 18 In the process of moving to the matching point V0 (point V0 on the regulation line FL) of the low rotation low hydraulic load, the matching point V2 (point V2 on the regulation line FM) of the high rotation high hydraulic load, the controller 18 When it is determined that the detected engine speed Nr is not less than the predetermined threshold value Nc (S), the control for reducing the absorption torque of the variable displacement hydraulic pumps 7, 8, 9 is terminated. Let Alternatively, the control may be terminated after a predetermined time has elapsed after starting the control for reducing the absorption torque of the variable displacement hydraulic pumps 7, 8, and 9.
  • the time during which the absorption torque of the variable displacement hydraulic pumps 7, 8, and 9 is reduced is only the minimum time necessary to prevent engine stoppage and acceleration failure. If there is no risk of engine stop or acceleration, the absorbed torque will remain at the normal level. In addition, it is not necessary to increase the engine size to allow a sufficient engine torque.
  • the present invention is not limited to a wheel loader, and can be similarly applied to a work vehicle in which the engine speed changes from a wide speed (from a low idle speed to a high idle speed). it can.
  • FIG. 1 is a diagram showing a configuration of a work vehicle according to an embodiment.
  • FIG. 2 is a graph showing the relationship between engine speed and engine torque.
  • FIG. 3 is a diagram for explaining how the engine stops in the prior art.
  • FIGS. 4 (a), 4 (b), and 4 (c) are diagrams illustrating the contents of the engine stop prevention control of the embodiment.
  • FIG. 5 is a diagram illustrating control for changing the maximum absorption torque of the hydraulic pump.
  • FIG. 6 is a diagram for explaining control for changing the capacity of the hydraulic pump.
  • FIG. 7 is a diagram showing a configuration example for performing PC control.
  • FIG. 8 is a diagram showing a configuration example for performing LS control.
  • Fig. 9 is a diagram for explaining the contents of the engine stop prevention control of the embodiment, and Fig. 9 (b) is a diagram showing a case where the engine stop prevention control is not performed as a comparative example.
  • FIG. 10 is a graph showing the relationship between the accelerator pedal opening, the target engine speed, and the threshold value.
  • FIGS. 11 (a) and 11 (b) are flowcharts for explaining the control contents of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

明 細 書
作業車両のエンジンの負荷制御装置
技術分野
[0001] 本発明は、作業車両のエンジンの負荷制御装置に関する。
背景技術
[0002] ホイールローダは、エンジンを駆動源としてトルクコンバータを介して駆動輪(車輪) が駆動され、走行される。また、エンジンは、ステアリング機構やローダ等の作業機の 駆動源となっている。すなわち、エンジンによってステアリング用油圧ポンプが駆動さ れ、ステアリング用油圧ポンプから吐出された圧油力 ステアリング用油圧シリンダに 供給され、これに応じてステアリング機構が作動される。また、エンジンによってロー ダ用油圧ポンプが駆動され、ローダ用油圧ポンプから吐出された圧油が、ローダ用 油圧シリンダに供給され、これに応じてローダが作動される。ステアリング用油圧ボン プ、ローダ用油圧ポンプには、容量が一定の固定容量型油圧ポンプが使用されてい る。
[0003] ホイールローダの走行速度は、アクセルペダルの踏み込み量に応じて変化する。
すなわち、アクセルペダルの踏み込み量に応じて、エンジンの回転数が変化され、そ れに応じて車速が変化する。エンジンの目標回転数は、ローアイドル回転数からハイ アイドル回転数まで変化する。
[0004] アクセルペダルを踏み込まない状態にすることで、車速が零になり、停止状態で作 業が行われる。
[0005] このためホイールローダは、他の油圧ショベルなどの作業車両と比較して、エンジン の目標回転数をローアイドル回転数 (アイドリング状態)に設定する機会が多い。
[0006] 一方で、エンジンは、高回転域、つまりハイアイドル回転数にあるときと比較して、低 回転域、つまりローアイドル回転数にあるときの方力 急激な油圧負荷の上昇に対す るエンジントルクの上昇力 鈍くなるという特性がある。 発明の開示
発明が解決しょうとする課題 [0007] 作業者としては、アイドリング状態のままで、ステアリングを切りながら、積み荷が積 み込まれたローダ (ブームおよびパケット)を持ち上げるという高油圧負荷が急激にか 力る作業を行うことがある。
[0008] 図 3は、エンジン回転数 Nとエンジントルク Teとの関係を示している。
[0009] 今、エンジンの目標回転数がローアイドル回転数 NLに設定されている場合には、 エンジンは、ローアイドル回転数 NLに対応するレギュレーションライン FL上で油圧負 荷とマッチングする。油圧負荷が低負荷の場合には、レギュレーションライン FL上の 低トルクのマッチング点 V0でマッチングしている力 ここで、オペレータがステアリング ハンドル、操作レバーを急操作して、上述した「ステアリングを切りながらローダを持ち 上げるという高油圧負荷が急激に力かる作業」が行われると、油圧負荷が急上昇し、 油圧負荷は Tplで示すラインに切り替わる。このためエンジンとしては、この高油圧負 荷 Tpl (レギュレーションライン FL上のポイント VI)とマッチングするために、トルクが 上昇しょうとする力 Bで示すように、急激な油圧負荷上昇に、エンジンのトルク上昇 が間に合わずに(時間遅れが生じ)、ついにはエンジンが停止(エンスト)することがあ つた o
[0010] そこで、このような問題を解決するために、エンジンのローアイドル回転数を高めに 設定して、エンジンのアイドリング時のトルク上昇を早めて、高油圧負荷の急激な上 昇にエンジントルクの上昇を間に合わせるようにすることが考えられる。
[0011] しかし、エンジンのローアイドル回転数を高めに設定すると、アイドリング状態にお ける燃費が悪ィ匕するという問題が招来する。また、エンジンのローアイドル回転数を 高めに設定すると、トルクコンバータで発生するクリープが強くなるという問題も招来 する。
[0012] また、油圧ポンプで吸収されるトルク自体を減らすために、固定容量型油圧ポンプ の容量を小さく設定することが考えられる。しかし、固定容量型油圧ポンプの容量を 小さく設定すると、ローアイドル時にステアリングが十分に切れなくなるという問題が発 生する。ホイールローダでは、エンジンがアイドリング状態(ローアイドル回転時)でも 、十分にステアリングが切れることが要求される。ローアイドル回転時であっても、ステ ァリング用油圧シリンダに多くの流量の圧油が流れるようにするためには、ポンプの 容量は一定レベル以上確保することが必要となる。仮にポンプ容量を小さくすれば、 ローアイドル回転時に油圧シリンダに供給され得る最大流量が減り、ステアリングを切 る速度が遅くなるという問題が生じる。また、ローダ用油圧ポンプの容量を小さく設定 すれば、同じく流量が減り、ローダを上げ下げする速度が遅くなり、作業効率が損な われる。このように固定容量型油圧ポンプの容量を減らすことは、車体性能のダウン につながる。
[0013] 当然、エンジンを大型化してエンジントルクに余裕を持たせることで、対処することも 考えられるが、稀にしか起きないエンジン停止のために、エンジンを大型化すること は、コスト上昇を招くとともに、エネルギーの無駄となる。
[0014] ローアイドル回転時に急激な高油圧負荷が力かった場合について説明したが、 アクセルペダルを踏み込んだ状態で急激な高油圧負荷力 Sかかった場合についても 同様にエンジン停止のおそれがあり、このような場合もエンジン停止を未然に防止す る必要がある。
[0015] 本発明はこうした実状に鑑みてなされたものであり、ホイールローダ等の作業車両 において、燃費悪化や、車体性能のダウンや、エネルギーの無駄等の問題を生じさ せることなぐ急激な高油圧負荷力 Sかかった場合のエンジン停止を確実に防止するこ とを解決課題とするものである。
課題を解決するための手段
[0016] 第 1発明は、
ローアイドル回転数からハイアイドル回転数の間で目標回転数が設定されるェンジ ン(1)と、
エンジン(1)によって駆動される複数の可変容量型油圧ポンプ (7、 8、 9)と、 複数の可変容量型油圧ポンプ(7、 8、 9)から吐出された圧油が供給される複数の 油圧ァクチユエータ(13、 14、 15)と、
1つ以上の可変容量型油圧ポンプ(7、 8、 9)について、吸収トルクを変化させる吸 収トルク変化手段(19、 22、 23)と、
エンジンの回転数を検出する回転数検出手段(la)と、
検出したエンジン回転数力 所定のしきい値以下に低下した場合に、可変容量型 油圧ポンプ(7、 8、 9)の吸収トルクを低下させる制御手段(18)と
を備えたことを特徴とする。
[0017] 第 2発明は、第 1発明において、
前記所定のしきい値は、ローアイドル回転数以下の回転数であること
を特徴とする。
[0018] 第 3発明は、第 1発明において、
ステアリング機構を作動させる油圧ァクチユエータ(13)と、作業機を作動させる油 圧ァクチユエータ(14)とを備えたこと
を特徴とする。
[0019] 第 4発明は、第 1発明において、
前記吸収トルク変化手段は、油圧ポンプの最大吸収トルクを変化させる手段(19) であること
を特徴とする。
[0020] 第 5発明は、第 1発明において、
前記吸収トルク変化手段は、
可変容量型油圧ポンプ (8)の吐出圧と油圧ァクチユエータ(14)の負荷圧との差圧 が設定差圧となるように可変容量型油圧ポンプ (8)の容量を制御する容量制御手段 (22)と、
前記設定差圧を変化させる手段 (23)と
で構成されていること
を特徴とする。
[0021] 第 6発明は、第 1発明において、
複数の可変容量型油圧ポンプ(7、 8、 9)から複数の油圧ァクチユエータ(13、 14、 15)に対して、それぞれ独立した油路を経由して圧油が供給されること
を特徴とする。
[0022] 第 1発明〜第 6発明の作用、効果について、図面を参照しながら説明する。
[0023] すなわち、オペレータがステアリングハンドルを操作しながら、ローダ用操作レバー を上昇方向に急操作すると、ステアリング用油圧ポンプ 7、ローダ用油圧ポンプ 8の油 圧負荷が急上昇する。
[0024] このため図 4 (a)にお 、て、油圧負荷は、 Tplで示す高油圧負荷のラインに移動す る。このためエンジン 1としては、この高油圧負荷 Tpl (レギュレーションライン FL上の ポイント VI)とマッチングさせるために、トルクを上昇させようとする力 C1で示すよう に、急激な油圧負荷上昇に、エンジンのトルク上昇が間に合わずに(時間遅れが生 じ)、エンジン 1の実際の回転数 Nr力 しきい値 Nc以下となる。
[0025] コントローラ 18は、エンジン回転数検出センサ laで検出したエンジン回転数 Nrが、 しきい値 Nc以下に低下したと判断すると、可変容量型油圧ポンプ 7、 8、 9の吸収トル クを低下させる制御を実行する。
[0026] これにより、図 4 (b)に示すように、油圧負荷は、 Tp2で示す低油圧負荷のラインに 移動する。油圧負荷が高油圧負荷 Tplから、低油圧負荷 Tp2 (レギュレーションライン FL上のポイント V2)に変化したことで、今現在のエンジン 1のトルクが低油圧負荷 Τρ2 に対して余裕をもった大きさとなり、 C2で示すように、エンジン 1の実際の回転数 Nrが 上昇し、しきい値 Ncを超えて、レギュレーションライン FL上に復帰する。
[0027] つぎに、コントローラ 18は、検出したエンジン回転数 Nrが、しきい値 Ncを超えたと 判断すると、可変容量型油圧ポンプ 7、 8、 9の吸収トルクを低下させる制御を終了さ せる。これにより、図 4 (c)に示すように、油圧負荷は、現在の作業内容に応じた高負 荷なライン Tplに復帰する力 既にエンジン 1のトルク Teは、その間に、ある程度上昇 しているので、高油圧負荷 Tplのマッチング点 VIでマッチングすることができる。
[0028] なお、上述したように、検出したエンジン回転数 Nr力 しき 、値 Ncを超えた場合に 、可変容量型油圧ポンプ 7、 8、 9の吸収トルクを低下させる制御を終了させてもよぐ また、可変容量型油圧ポンプ 7、 8、 9の吸収トルクを低下させる制御を開始してから 所定時間経過後に、同制御を終了させてもよい。
[0029] 以上のように、可変容量型油圧ポンプ 7、 8、 9の吸収トルクを低下させる時間は、ェ ンジン停止を防止するために必要最小限の時間だけであり、エンジン停止のおそれ がないときは、吸収トルクは通常の大きさのままである。また、ローアイドル回転数 NL も上げる必要はなぐエンジンを大型化してエンジントルクに余裕を持たせる必要もな い。 [0030] このため、ホイールローダ等の作業車両にぉ 、て、燃費悪化や、車体性能のダウン や、エネルギーの無駄等の問題を生じさせることなぐ急激な高油圧負荷がかかった 場合のエンジン停止を確実に防止することができる。
[0031] また、図 7に示すように、ホイールローダ 100に既存の PC制御、「モード」選択の機 能、装置を利用して、図 5の矢印 Dで示すように、 PC制御を実行し、エンジン回転数 Nrがしきい値 Nc以下になった場合に、油圧ポンプ 7、 8、 9の最大吸収トルクを低下 させてもよい (第 4発明)。このように作業車両に既存の PC制御、「モード」選択の機 能、装置を利用すれば、エンジン停止防止制御を実現するために必要な装置コスト をさらに低下させることができる。
[0032] また、図 8に示すように、ホイールローダ 100に既存の LS制御、差圧設定値変更制 御の機能、装置を利用して、図 6に矢印 Eで示すように、差圧設定値変更制御を実行 し、エンジン回転数 Nrがしきい値 Nc以下になった場合に、油圧ポンプ 7、 8、 9の容 量を低下させてもよい (第 5発明)。このように作業車両に既存の LS制御、差圧設定 値変更制御の機能、装置を利用すれば、エンジン停止防止制御を実現するために 必要な装置コストをさらに低下させることができる。 第 6発明では、図 1に示すように 、複数の可変容量型油圧ポンプ 7、 8、 9力 複数の油圧ァクチユエータ 13、 14、 15 に対して、それぞれ独立した油路を経由して圧油が供給される油圧回路を前提とし て、上述したエンジン停止防止制御が行われる。
[0033] このように複数の可変容量型油圧ポンプ 7、 8、 9力 複数の油圧ァクチユエータ 13 、 14、 15に対して、それぞれ独立した油路を経由して圧油が供給される油圧回路を 採用した場合には、各油圧ァクチユエータ 13、 14、 15の最大負荷に応じて、それぞ れ対応する油圧ポンプ 7、 8、 9の容量を定めなければならないため、各可変容量型 油圧ポンプ 7、 8、 9の容量が大きくなる傾向にある。
[0034] これに対して複数の可変容量型油圧ポンプから吐出された圧油を合流させて、圧 力補償弁によって、各制御弁の前後差圧を調整した上で、複数の油圧ァクチユエ一 タに圧油を分流して供給する油圧回路を採用した場合には、各油圧ァクチユエータ の負荷に応じて流量を配分できるため、各可変容量型油圧ポンプの容量を小さくす ることがでさる。 [0035] このため図 1に示す第 6発明の油圧回路は、圧力補償弁を使用した油圧回路と比 較して、油圧負荷が大きくなる傾向にあり、エンジン停止防止制御を行う必要性が高 い。
[0036] 第 7発明は、
操作量に応じてエンジンの目標回転数を設定する操作子(17)が備えられ、 前記操作子(17)の操作量に応じて、前記所定のしきい値が設定されており、 前記制御手段(18)は、検出したエンジン回転数力 前記所定のしきい値以下に低 下した場合に、可変容量型油圧ポンプ(7、 8、 9)の吸収トルクを低下させること を特徴とする。
[0037] 第 7発明の作用、効果について、図面を参照しながら説明する。
[0038] すなわち、オペレータが、例えば、アクセルペダル 17を踏み込んだ状態で、ステア リングノヽンドルを操作しながら、ローダ用操作レバーを上昇方向に急操作すると、ス テアリング用油圧ポンプ 7、ローダ用油圧ポンプ 8の油圧負荷が急上昇する。
[0039] アクセルペダル 17が踏み込まれたときは、その踏み込み量 SMに対応するエンジン 目標回転数 NMが設定される(図 10、図 9 (a)参照)。また、そのときのアクセルぺダ ル踏み込み量 SMに応じて、しきい値 Nc (SM)が定まる(図 10、図 9 (a)参照)。
[0040] 図 9 (a)に示すように、アクセルペダル 17が操作量 SMまで踏み込まれ、低回転低 油圧負荷のマッチング点 V0 (レギュレーションライン FL上のポイント V0)から、高回転 高油圧負荷のマッチング点 V2 (レギュレーションライン FM上のポイント V2)に移行す る過程で、コントローラ 18は、検出したエンジン回転数 Nr力 上記所定のしきい値 Nc (SM)以下に低下したか否かを判断する。コントローラ 18で、検出したエンジン回転 数 Nrが、上記所定のしきい値 Nc (SM)以下に低下したことが判断されると、可変容 量型油圧ポンプ 7、 8、 9の吸収トルクを低下させる制御を実行する。これにより、図 9 ( a)に示すように、油圧負荷は、 Tp2で示す低油圧負荷のラインに移動する。油圧負 荷が高油圧負荷 Tplから、低油圧負荷 Tp2に変化したことで、今現在のエンジン 1の トルクが低油圧負荷 Τρ2に対して余裕をもった大きさとなり、エンジン 1の実際の回転 数 Nrは迅速に上昇する。
[0041] 低回転低油圧負荷のマッチング点 V0 (レギュレーションライン FL上のポイント V0) 力 、高回転高油圧負荷のマッチング点 V2 (レギュレーションライン FM上のポイント V 2)に移行する過程で、コントローラ 18で、検出したエンジン回転数 Nrが、上記所定 のしき 、値 Nc (SM)以下ではなくなつたと判断した場合には、可変容量型油圧ボン プ 7、 8、 9の吸収トルクを低下させる制御を終了させる。また、可変容量型油圧ボン プ 7、 8、 9の吸収トルクを低下させる制御を開始して力も所定時間経過後に、同制御 を終了させてもよい。
[0042] この結果、レギュレーションライン FM上のマッチング点 V2に迅速に移行する。
[0043] 以上のように、可変容量型油圧ポンプ 7、 8、 9の吸収トルクを低下させる時間は、ェ ンジン停止や加速悪ィヒを防止するために必要最小限の時間だけであり、エンジン停 止のおそれがないときは、吸収トルクは通常の大きさのままである。また、エンジンを 大型化してエンジントルクに余裕を持たせる必要もな 、。
[0044] このため、ホイールローダ等の作業車両にぉ 、て、燃費悪化や、車体性能のダウン や、エネルギーの無駄等の問題を生じさせることなぐアクセルペダルを踏み込んだ ときに急激な高油圧負荷力 Sかかった場合のエンジン停止を確実に防止することがで きる。
[0045] また、本発明によれば、高油圧負荷状態であってもアクセルペダル 17を踏み込ん だときに、 目標回転数 Nc (SM)まで迅速に上昇するため、加速性に優れ、作業効率 が飛躍的に向上するという効果も得られる。
発明を実施するための最良の形態
[0046] 以下図面を参照して本発明に係る作業車両のエンジン負荷制御装置の実施の形 態について説明する。
[0047] 図 1は、実施形態のホイールローダの構成を、本発明に係る部分につ!ヽて示して!/ヽ る。
[0048] 同図 1に示すように、ホイールローダ 100のエンジン 1の出力軸は、 PTO軸 6に連 結されている。 PTO軸 6は、トルクコンバータ 2に連結されているとともに、ステアリング 用油圧ポンプ 7、ローダ用油圧ポンプ 8、ファン用油圧ポンプ 9、トルコン潤滑用油圧 ポンプ 10に連結されている。
[0049] ステアリング用油圧ポンプ 7、ローダ用油圧ポンプ 8、ファン用油圧ポンプ 9 は、可変容量型油圧ポンプであり、それぞれ斜板 7a、 8a、 9aの傾転角が変化される ことにより、ポンプ容量 q (cc/rev)が変化される。
[0050] エンジン 1の出力は、トルクコンバータ 2、トランスミッション 3、ディファレンシャルギア
4を介して駆動輪 5に伝達される。
[0051] また、エンジン 1の出力は、ステアリング用油圧ポンプ 7、ローダ用油圧ポンプ 8、フ アン用油圧ポンプ 9、トルコン潤滑用油圧ポンプ 10に伝達される。
[0052] ステアリング用油圧ポンプ 7が駆動されると、吐出圧油がステアリング用制御弁 11を 介してステアリング用油圧シリンダ 13に供給される。
[0053] ステアリング用油圧シリンダ 13はステアリング機構に接続されている。ステアリング 用油圧シリンダ 13に圧油が供給されると、ステアリング機構が作動し、車体が旋回さ れる。ステアリング用制御弁 11のスプールは、図示しないステアリングハンドルの操 作に応じて、移動され、それに応じて制御弁 11の開口面積が変化し、ステアリング用 油圧シリンダ 13に供給される流量が変化される。
[0054] ローダ用油圧ポンプ 8が駆動されると、吐出圧油がローダ用制御弁 12を介してロー ダ用油圧シリンダ 14に供給される。
[0055] ローダ用油圧シリンダ 14は、車体前部のローダに接続されている。ローダ用油圧シ リンダ 14に圧油が供給されると、ローダが作動される。つまり、ローダを構成するブー ムが上昇ないしは下降し、パケットがチルトする。ローダ用制御弁 12のスプールは、 図示しないローダ用操作レバーの操作に応じて、移動され、それに応じて制御弁 12 の開口面積が変化し、ローダ用油圧シリンダ 14に供給される流量が変化される。
[0056] ファン用油圧ポンプ 9が駆動されると、吐出圧油がファン用油圧モータ 15に供給さ れ、冷却用ファン 16が作動される。
[0057] トルコン潤滑用油圧ポンプ 10が駆動されると、吐出圧油がトルクコンバータ 2に供給 され、トルクコンバータ 2が潤滑される。
[0058] エンジン 1の出力軸には、エンジン 1の実際の回転数 Nrを検出するエンジン回転数 検出センサ laが設けられている。エンジン回転数検出センサ laで検出されたェンジ ン回転数 Nrは、コントローラ 18に入力される。
[0059] アクセルペダル 17は、オペレータによって操作され、アクセルペダル 17に設けられ たストロークセンサ 17aによって操作量 (踏み込み量)が検出され、操作量を示す信 号がコントローラ 18に入力される。
[0060] コントローラ 18は、アクセルペダル 17の操作量に応じた目標回転数となるようにェ ンジン 1を制御する。エンジン 1はディーゼルエンジンであり、その出力の制御は、シ リンダ内に噴射する燃料量を調整することで行われる。この調整はエンジン 1の燃料 噴射ポンプに付設したガバナを制御することで行われる。ガバナとしては、一般的に オールスピード制御方式のガバナが用いられ、アクセルペダル踏み込み量に応じた 目標回転数となるように、負荷に応じてエンジン回転数と燃料噴射量とを調整する。 すなわちガバナは目標回転数と実際のエンジン回転数との差がなくなるよう燃料噴 射量を増減する。
[0061] 図 2はエンジン 1の制御方法を示している。図 2の横軸は、エンジン回転数 Nであり
、縦軸がエンジントルク Teである。
[0062] 図 2において最大トルク線で規定される領域がエンジン 1が出し得る性能を示す。
ガバナはトルクが最大トルク線を超えて排気煙限界とならな 、ように、またエンジン回 転数 Nがハイアィドル回転数 NHを超えて過回転とならないようにエンジン 1を制御す る。
[0063] アクセルペダル 17が最大限に踏み込まれると最大目標回転数が設定され、ガバナ は定格点とハイアイドル点 NHとを結ぶ最高速レギュレーションライン Fe上で調速を 行う。
[0064] アクセルペダル 17の踏み込み量が小さくなり目標回転数が小さくなるに伴ってレギ ユレーシヨンライン Fe- 1、 Fe- 2"'Fe- n"'FLが順次定められ、各レギュレーションライ ン上で調速が行われる。
[0065] アクセルペダル 17の踏み込み量が最小、つまり踏み込まれていないときは、 目標 回転数としてローアイドル回転数 NLが設定され、ローアイドル点 NLを結ぶレギユレ ーシヨンライン FL上で調速を行う。油圧負荷 Tpが矢印 Aに示すように変動すると、ェ ンジン 2の出力とポンプ吸収馬力とが釣り合うマッチング点 Vは、その変動に従いレギ ユレーシヨンライン FL上を移動する。
[0066] ここで、エンジン 1の特性上、レギュレーションライン上でマッチング点が低負荷から 高負荷まで移動する時間は、高回転数域 (ハイアィドル回転数 NH)よりも低回転数 域(ローアイドル回転数 NL)の方が長くかかる(エンジン 1の応答性がにぶ 、)。この ため従来技術にあっては、図 3で前述したように、高油圧負荷 Tplが急激にかかった ときに、エンジンが停止することがあった。
[0067] そこで、本実施形態では、可変容量型油圧ポンプ 7、 8、 9に、吸収トルクを変化さ せる吸収トルク変化手段を設けて、コントローラ 18によって図 4に示すように吸収トル クを低下させる制御を実行する。
[0068] 以下、図 11 (a)に示すフローチャートを併せ参照して説明する。
[0069] 図 4 (a)に示すように、ローアイドル回転数 NL以下の回転数 Ncがしき!/、値として設 定される。このしきい値 Ncは、エンジン 1が停止するおそれあり、と判断する回転数に 設定される。
[0070] アクセルペダル 17が踏み込まれていない状態であって、油圧負荷が低負荷の場合
[0071] ここで、オペレータがステアリングハンドルを操作しながら、ローダ用操作レバーを 上昇方向に急操作すると、ステアリング用油圧ポンプ 7、ローダ用油圧ポンプ 8の油 圧負荷が急上昇する。
[0072] このため図 4 (a)にお 、て、油圧負荷は、 Tplで示す高油圧負荷のラインに移動す る。このためエンジン 1としては、この高油圧負荷 Tpl (レギュレーションライン FL上の ポイント VI)とマッチングさせるために、トルクを上昇させようとする力 C1で示すよう に、急激な油圧負荷上昇に、エンジンのトルク上昇が間に合わずに(時間遅れが生 じ)、エンジン 1の実際の回転数 Nr力 しきい値 Nc以下となる。
[0073] コントローラ 18は、エンジン回転数検出センサ laで検出したエンジン回転数 Nrが、 しきい値 Nc以下に低下したと判断すると (ステップ 201の判断 YES)、可変容量型油 圧ポンプ 7、 8、 9の吸収トルクを低下させる制御を実行する。
[0074] これにより、図 4 (b)に示すように、油圧負荷は、 Tp2で示す低油圧負荷のラインに 移動する。油圧負荷が高油圧負荷 Tplから、低油圧負荷 Tp2 (レギュレーションライン FL上のポイント V2)に変化したことで、今現在のエンジン 1のトルクが低油圧負荷 Τρ2 に対して余裕をもった大きさとなり、 C2で示すように、エンジン 1の実際の回転数 Nrが 上昇し、しきい値 Ncを超えて、レギュレーションライン FL上に復帰する(ステップ 202
) o
[0075] つぎに、コントローラ 18は、エンジン回転数検出センサ laで検出したエンジン回転 数 Nrが、しきい値 Ncを超えたと判断すると (ステップ 203の判断 YES)、可変容量型 油圧ポンプ 7、 8、 9の吸収トルクを低下させる制御を終了させる。これにより、図 4 (c) に示すように、油圧負荷は、現在の作業内容に応じた高負荷なライン Tplに復帰する 力 既にエンジン 1のトルク Teは、その間に、ある程度上昇しているので、高油圧負 荷 Tplのマッチング点 VIでマッチングすることができる (ステップ 204)。
[0076] なお、上述したように、検出したエンジン回転数 Nr力 しき 、値 Ncを超えた場合に( ステップ 203の判断 YES)、可変容量型油圧ポンプ 7、 8、 9の吸収トルクを低下させ る制御を終了させてもよく(ステップ 204)、また、図 11 (b)に示すように、可変容量型 油圧ポンプ 7、 8、 9の吸収トルクを低下させる制御を開始してから所定時間経過後に (ステップ 203' の判断 YES)、同制御を終了させてもょ ヽ(ステップ 204)。
[0077] つぎに、吸収トルクを変化させる手段の具体的な構成例について、説明する。
[0078] 図 7は、ローダ用油圧ポンプ 8を PC制御するための構成を示している。図 7では、口 ーダ用油圧ポンプ 8を代表させて示している力 他の可変容量型油圧ポンプ 7、 9を P C制御する場合も同様に構成される。
[0079] PC弁 19は、油圧ポンプ 8の吐出圧 Pp (kg/cm2)と油圧ポンプ 8の容量 q (cc/rev) の積が一定トルクを超えないように、油圧ポンプ 8の斜板 7aの傾転角を制御する。ェ ンジン 1の回転数が一定であれば、油圧ポンプ 8の吐出圧 Pp (kg/cm2)と油圧ポン プ 8の流量 Q (1/min)の積が一定の馬力を超えないように、油圧ポンプ 8の斜板 8aを 制御することになる。
[0080] また、油圧ポンプ 7、 8、 9をまとめて PC制御する場合は、これらポンプ 7、 8、 9の吐 出圧の平均値力 SPC弁 19に入力される。
[0081] PC弁 19は、油圧ポンプ 8の吐出圧 Ppをパイロット圧として入力し、吐出圧 Ppに応じ た駆動圧油をサーボ弁 20に供給することで、油圧ポンプ 8の容量 qを制御する。
[0082] PC制御の内容は、図 5を用いて説明される。図 5の横軸は油圧ポンプ 8の吐出圧 P p (kg/cm2)であり、縦軸は油圧ポンプ 8の容量 q (cc/rev)、つまり斜板 8aの傾転角 である。
[0083] 同図 5に示すように、油圧ポンプ 8の吐出圧 Ppがー定圧以下であれば、油圧ポンプ 8の斜板 8aの傾転角が最大に設定され、最大容量 qmaxとなっている。油圧負荷が大 きくなり、ポンプ吐出圧 Ppがー定圧を超えると、特性 LN1にしたがいポンプ容量 qを 減少させて、斜板傾転角を最小、最小容量 qminにする。
[0084] 以上のようにして、油圧ポンプ 8では、油圧負荷、つまり吸収トルク力 最大吸収トル ク Tplを超えな 、範囲で、ポンプ吐出圧 Ppに応じてポンプ容量 qが制御される。
[0085] PC弁 19には、コントローラ 18から制御信号 ilが加えられており、この制御信号 ilに 応じて、最大吸収トルクが変化される。図示しない操作盤には、「モードスィッチ」が設 けられており、モードスィッチで選択したモードに応じて、最大吸収トルク値が変化す る。
[0086] 今、あるモードが選択されている場合には、油圧ポンプ 8の最大吸収トルクが Tplと いう大きな値に設定され、油圧ポンプ 8は、特性 LN1にした力^、、制御される。また、 別のモードが選択された場合には、矢印 Dに示すように、特性 LN1から特性 LN2に 変化して、ポンプ容量の減少を開始するポンプ吐出圧の値が小さくなり、最大吸収ト ルク値が小さな値 Tp2に設定される。
[0087] このような、ホイールローダ 100に設けられた PC制御の機能、「モード」設定の機能 、装置を利用して、本実施例では、エンジン停止を防止する制御が行われる。
[0088] すなわち、コントローラ 18は、エンジン回転数検出センサ laで検出したエンジン回 転数 Nrが、しきい値 Ncを超えている場合には、 PC弁 19に対して、油圧ポンプ 8の最 大吸収トルクを大きな値 Tplに設定する制御信号 ilを出力する。そして、エンジン回 転数検出センサ laで検出したエンジン回転数 Nr力 しきい値 Nc以下になった場合 には、 PC弁 19に対して、油圧ポンプ 8の最大吸収トルクを小さな値 Tp2に設定する 制御信号 ilを出力する。そして、再度、エンジン回転数検出センサ laで検出したェン ジン回転数 Nr力 しきい値 Nc以下を超えた場合には、 PC弁 19に対して、油圧ボン プ 8の最大吸収トルクを大きな値 Tplに設定する制御信号 ilを出力する。これにより 図 4 (a)、(b)、 (c)に示す制御が実現され、エンジン 1を停止させることなぐエンジン 1のトルクを油圧負荷に合わせて上昇させ、高油圧負荷 Tplのマッチング点 VIでマツ チングさせることができるよう〖こなる。
[0089] なお、油圧ポンプ 8の最大吸収トルクを小さな値 Tp2に設定して力も所定時間後に
、油圧ポンプ 8の最大吸収トルクの設定値を大きな値 Tplに戻してもょ 、。
[0090] 以上のように本実施例によれば、ホイールローダ 100に既存の PC制御、「モード」 選択の機能、装置を利用して、高油圧負荷が急激に力かった場合のエンジン停止を 防止することができる。
[0091] 図 8 (a)は、ローダ用油圧ポンプ 8を LS制御するための構成を示している。図 8 (a) では、ローダ用油圧ポンプ 8を代表させて示している力 他の可変容量型油圧ポンプ
7、 9を LS制御する場合も同様に構成される。
[0092] LS弁 22は、油圧ポンプ 8の吐出圧 Ppと、ローダ用油圧シリンダ 14の負荷圧 PLSと の差圧 Δ Pが一定差圧 Δ PLSとなるように、油圧ポンプ 8の斜板 8aの傾転角を制御 する。
[0093] LS弁 22には、一定差圧 Δ PLSを設定するパネが付与されて!、る。 LS弁 22のパネ 側と反対側のパイロットポートには、油圧ポンプ 8の吐出圧 Ppがパイロット圧として加 えられ、パネ側のパイロットポートには、ローダ用油圧シリンダ 14の負荷圧 PLSがパイ ロット圧としてカ卩えられる。 LS弁 22から駆動圧油がサーボ弁 20に供給されることで、 油圧ポンプ 8の容量 qが制御される。
[0094] ローダ用制御弁 12の開口面積を A、抵抗係数を cとすると、油圧ポンプ 8の吐出流 量 Qは、
Q = c 'A. (Δ Ρ)
で表される。差圧 Δ Ρは、 LS弁 22により一定になるのでポンプ流量 Qは制御弁 12の スプールの開口面積 Aによってのみ変化する。
[0095] ローダ用操作レバーを操作すると操作量に応じてローダ用制御弁 12の開口面積 A が増加し、開口面積 Aの増加に応じてポンプ流量 Qが増加する。このときポンプ流量 Qは油圧負荷の影響を受けずローダ用操作レバーの操作量のみによって定まる。こ のように LS弁 22を設けたことにより、ポンプ流量 Qは油圧負荷によって増減すること なくオペレータの意思通りに(ローダ用操作レバーの操作位置に応じて)変化しフアイ ンコントロール性つまり中間操作領域における操作性が向上する。
[0096] し力し、ファインコントロール時など、油圧ポンプ 8の最大流量を超えない領域でも、 常にローダ用油圧シリンダ 14が要求する通りの流量を供給するために、エンジン 1が 低回転域でも高回転域と同じ吐出流量となってしまう。
[0097] このためコントローラ 18では、エンジン 1の回転数が低い場合には、差圧設定値 Δ PLSを下げて、吐出流量を下げる制御が行われる。 LS弁 22には、パネの設定パネ 力を変化させる差圧設定部 23が付設され、コントローラ 18から差圧設定部 23に対し て制御信号 i2を出力すると、差圧設定部 23は、 LS弁 22のパネの設定パネ力を変化 させ、差圧設定値 A PLSを変更する。
[0098] なお、図 8 (b)に示すように、 LS弁 22の電磁ソレノイドに制御信号 i2をカ卩えることで 、 LS弁 22のパネの設定パネ力を変化させ、差圧設定値 A PLSを変更してもよい。
[0099] このような差圧設定値変更制御の内容は、図 6を用いて説明される。図 6の横軸は 油圧ポンプ 8の吐出圧 Pp (kg/cm2)であり、縦軸は油圧ポンプ 8の容量 q (cc/rev)、 つまり斜板 8aの傾転角である。
[0100] 同図 6に示すように、油圧ポンプ 8の吐出圧 Ppが、ある値 Pplになっており、ポンプ 容量 qが最大値 qmaxとなって 、るときに、差圧設定値 Δ PLSを小さ 、値に変更すると 、上記式 (Q = c 'A' ( A P) )の右辺が小さくなつたことに相当し、これにより矢印 E に示すように、ポンプ容量 qは、最大値 qmaxから小さな値 qlに変更される。ポンプ容 量 qが小さくなることで、油圧ポンプ 8の吸収トルク、つまり油圧負荷が小さくなる。
[0101] 上述したホイールローダ 100に設けられた LS制御の機能、差圧設定値変更の機 能を利用して、本実施例では、エンジン停止を防止する制御が行われる。
[0102] すなわち、コントローラ 18は、エンジン回転数検出センサ laで検出したエンジン回 転数 Nrが、しきい値 Ncを超えている場合には、 LS弁 22に対して、差圧設定値 Δ PL Sを大きな値に設定し油圧ポンプ 8の吸収トルクを大きくする制御信号 i2を出力する。 そして、エンジン回転数検出センサ laで検出したエンジン回転数 Nr力 しきい値 Nc 以下になった場合には、 LS弁 22に対して、差圧設定値 A PLSを小さな値に設定し 油圧ポンプ 8の吸収トルクを小さくする制御信号 i2を出力する。そして、再度、ェンジ ン回転数検出センサ laで検出したエンジン回転数 Nr力 しきい値 Nc以下を超えた 場合には、 LS弁 22に対して、差圧設定値 A PLSを大きな値に設定し油圧ポンプ 8の 吸収トルクを大きくする制御信号 i2を出力する。これにより図 4 (a)、(b)、 (c)に示す エンジン停止防止制御が実現され、エンジン 1を停止させることなぐエンジン 1のトル クを油圧負荷に合わせて上昇させて、高油圧負荷 Tplのマッチング点 VIでマツチン グさせることがでさるよう〖こなる。
[0103] なお、差圧設定値 Δ PLSを小さな値に設定し油圧ポンプ 8の吸収トルクを小さくして から所定時間後に、差圧設定値 Δ PLSを大きな値に設定し油圧ポンプ 8の吸収トル クを大きな値に戻してもょ 、。
[0104] 以上のように本実施例によれば、ホイールローダ 100に既存の LS制御、差圧設定 値変更制御の機能、装置を利用して、高油圧負荷が急激に力かった場合のエンジン 停止を防止することができる。
[0105] なお、図 5に示す最大吸収トルクを変更する制御と、図 6に示すポンプ容量を変更 する制御を組み合わせて、エンジン停止を防止してもよ 、。
[0106] なお、エンジン回転数 Nr力 しきい値 Nc以下になった場合に、全ての可変容量型 油圧ポンプ 7、 8、 9について、最大吸収トルクまたは容量を小さくしてもよぐ可変容 量形油圧ポンプ 7、 8、 9のうちの 1つまたは 2つの可変容量型油圧ポンプについて、 最大吸収トルクまたは容量を小さくしてもよい。
[0107] ところで、上述した実施例では、図 1に示すように、複数の可変容量型油圧ポンプ 7 、 8、 9から複数の油圧ァクチユエータ 13、 14、 15に対して、それぞれ独立した油路 を経由して圧油が供給される油圧回路を採用している。
[0108] このように複数の可変容量型油圧ポンプ 7、 8、 9力 複数の油圧ァクチユエータ 13 、 14、 15に対して、それぞれ独立した油路を経由して圧油が供給される油圧回路を 採用した場合には、各油圧ァクチユエータ 13、 14、 15の最大負荷に応じて、それぞ れ対応する油圧ポンプ 7、 8、 9の容量を定めなければならないため、各可変容量型 油圧ポンプ 7、 8、 9の容量が大きくなる傾向にある。
[0109] これに対して複数の可変容量型油圧ポンプから吐出された圧油を合流させて、圧 力補償弁によって、各制御弁の前後差圧を調整した上で、複数の油圧ァクチユエ一 タに圧油を分流して供給する油圧回路を採用した場合には、各油圧ァクチユエータ の負荷に応じて流量を配分できるため、各可変容量型油圧ポンプの容量を小さくす ることがでさる。
[0110] このため図 1に示す油圧回路は、圧力補償弁を使用した油圧回路と比較して、油 圧負荷が大きくなる傾向にあり、エンジン停止防止制御を行う必要性が高い。
[0111] 上述した説明では、アクセルペダル 17が踏み込まれておらずエンジン回転数が口 一アイドル回転数 NLの場合に、図 4に示すエンジン停止防止制御を行うものとして 説明したが、本発明としては、エンジン 1の回転数力 ^、かなる回転数であっても、同 様に図 4に示すエンジン停止防止制御を行ってもよい。ただし、エンジン 1が停止す るおそれがあると判断するためのしきい値 Ncは、現在のエンジン回転数 Nrに応じて 異なる値に設定することができる。たとえば、ローアイドル回転数 NLよりも高い回転数 Nrで稼働中の場合には、エンジン停止を判断するためのしきい値 Ncとしては、ロー アイドル回転数 NLよりも僅か〖こ高い回転数に設定してもよい。もちろん、エンジン回 転数 Nrがいかなる回転数であっても、しきい値 Ncを一律に、ローアイドル回転数 NL 以下の回転数に設定してもよい。
[0112] また、上記しきい値は、アクセルペダル 17の踏み込み量(アクセルペダル開度) Sに 応じて設定し、このアクセルペダル操作量 Sを変数とするしき 、値 Nc (S)を用いて同 様にポンプ吸収トルクを低下させる制御を行う実施も可能である。
[0113] すなわち、オペレータが、例えば、アクセルペダル 17を踏み込んだ状態で、ステア リングノヽンドルを操作しながら、ローダ用操作レバーを上昇方向に急操作すると、ス テアリング用油圧ポンプ 7、ローダ用油圧ポンプ 8の油圧負荷が急上昇する。
[0114] このような状況で本発明の制御を行った場合のエンジンの過渡特性(図 9 (a) )と、 本発明の制御を行わない場合のエンジンの過渡特性(図 9 (b) )とを対比して説明す る。
[0115] 図 9 (b)において、油圧負荷は、 TpOで示す低油圧負荷のラインから、 Tplで示す 高油圧負荷のラインに移動する。また、アクセルペダル 17を踏み込んでいるため、ェ ンジン 1の目標回転数は、ローアイドル回転数 NLから、高回転数の目標回転数 NM に変化する。
[0116] エンジン 1のレギュレーションラインとしては、低回転のレギュレーションライン FLか ら、高回転のレギュレーションライン FMに移行させる必要がある。また、エンジントル クとしては、低油圧負荷 TpOに対応する低トルクから、高油圧 Tplに対応する高トルク に移行させる必要がある。
[0117] このためエンジン 1としては、エンジン回転を上昇させようとし、エンジントルクと油圧 負荷のマッチング点は、低回転低油圧負荷の V0 (レギュレーションライン FL上のボイ ント V0)から、高回転高油圧負荷の V2 (レギュレーションライン FM上のポイント V2)に 変化しょうとする力 油圧負荷が高い値 Tplのままでありエンジントルクに余裕がない ために、エンジン 1の回転数 Nrの上昇が鈍ぐマッチング点 V2に移行するまでに長 時間を要する。また、場合によっては、図 4 (a)に示した状態に至り、エンジン停止に 至るおそれもある。
[0118] これに対して、本発明の場合には、図 10に示すように、アクセルペダル 17の操作 量 S (アクセルペダル開度)に応じて、しきい値 Nc (S)が設定される。このしきい値 Nc (S)は、エンジン停止のおそれや加速の悪ィ匕のおそれがあると判断するしきい値で あり、実際のエンジン回転数 Nrがしきい値 Nc (S)以下(同図 10に斜線で示す領域) であるならば、エンジン停止のおそれや加速悪化のおそれがあると判断し、可変容 量型油圧ポンプ 7、 8、 9の吸収トルクを低下させる制御を実行する。
[0119] 図 10において、 N (S)で示す直線は、アクセルペダル 17の操作量 S (アクセルぺダ ル開度)に応じて、設定されるエンジン目標回転数 (無負荷状態回転数)を示してい る。
[0120] アクセルペダル 17が踏み込まれたときは、その踏み込み量 SMに対応するエンジン 目標回転数 NMが設定される(図 10、図 9 (a)参照)。また、そのときのアクセルぺダ ル踏み込み量 SMに応じて、しきい値 Nc (SM)が定まる(図 10、図 9 (a)参照)。
[0121] 図 9 (a)に示すように、アクセルペダル 17が操作量 SMまで踏み込まれ、低回転低 油圧負荷のマッチング点 V0 (レギュレーションライン FL上のポイント V0)から、高回転 高油圧負荷のマッチング点 V2 (レギュレーションライン FM上のポイント V2)に移行す る過程で、コントローラ 18は、検出したエンジン回転数 Nr力 上記所定のしきい値 Nc (SM)以下に低下したか否かを判断する。コントローラ 18で、検出したエンジン回転 数 Nrが、上記所定のしきい値 Nc (SM)以下に低下したことが判断されると、可変容 量型油圧ポンプ 7、 8、 9の吸収トルクを低下させる制御を実行する。これにより、図 9 ( a)に示すように、油圧負荷は、 Tp2で示す低油圧負荷のラインに移動する。油圧負 荷が高油圧負荷 Tplから、低油圧負荷 Tp2に変化したことで、今現在のエンジン 1の トルクが低油圧負荷 Τρ2に対して余裕をもった大きさとなり、エンジン 1の実際の回転 数 Nrは迅速に上昇する。
[0122] 低回転低油圧負荷のマッチング点 V0 (レギュレーションライン FL上のポイント V0) 力 、高回転高油圧負荷のマッチング点 V2 (レギュレーションライン FM上のポイント V 2)に移行する過程で、コントローラ 18で、検出したエンジン回転数 Nrが、上記所定 のしき 、値 Nc (S)以下ではなくなつたと判断した場合には、可変容量型油圧ポンプ 7 、 8、 9の吸収トルクを低下させる制御を終了させる。また、可変容量型油圧ポンプ 7、 8、 9の吸収トルクを低下させる制御を開始して力 所定時間経過後に、同制御を終 了させてもよい。
[0123] この結果、レギュレーションライン FM上のマッチング点 V2に迅速に移行する。
[0124] 以上のように、可変容量型油圧ポンプ 7、 8、 9の吸収トルクを低下させている時間 は、エンジン停止や加速悪ィ匕を防止するために必要最小限の時間だけであり、ェン ジン停止のおそれや加速悪ィ匕のおそれがないときは、吸収トルクは通常の大きさのま まである。また、エンジンを大型化してエンジントルクに余裕を持たせる必要もない。
[0125] このため、ホイールローダ等の作業車両において、燃費悪化や、車体性能のダウン や、エネルギーの無駄等の問題を生じさせることなぐアクセルペダルを踏み込んだ ときに急激な高油圧負荷力 Sかかった場合のエンジン停止を確実に防止することがで きる。
[0126] また、本実施例によれば、高油圧負荷状態であってもアクセルペダル 17を踏み込 んだときに、 目標回転数 Nc (SM)まで迅速に上昇するため、加速性に優れ、作業効 率が飛躍的に向上するという効果も得られる。
産業上の利用可能性
[0127] 本発明は、ホイールローダに限定されることなぐエンジン回転数が広い回転数で 変化する(ローアイドル回転数からハイアイドル回転数まで)作業車両であれば、同 様に適用することができる。 図面の簡単な説明
[図 1]図 1は、実施形態の作業車両の構成を示す図である。
[図 2]図 2はエンジン回転数とエンジントルクとの関係を示す図である。
[図 3]図 3は従来技術でエンジンが停止する様子を説明する図である。
[図 4]図 4 (a)、(b)、(c)は実施形態のエンジン停止防止制御の内容を説明する図で ある。
[図 5]図 5は油圧ポンプの最大吸収トルクを変更する制御を説明する図である。
[図 6]図 6は油圧ポンプの容量を変更する制御を説明する図である。
[図 7]図 7は PC制御を行うための構成例を示した図である。
[図 8]図 8は LS制御を行うための構成例を示した図である。
[図 9]図 9 (a)は実施形態のエンジン停止防止制御の内容を説明する図で、図 9 (b) はエンジン停止防止制御を行わない場合を比較例として示す図である。
[図 10]図 10はアクセルペダル開度とエンジン目標回転数、しきい値との関係を示した 図である。
[図 11]図 11 (a)、 (b)は実施例の制御内容を説明するフローチャートである。

Claims

請求の範囲 [1] ローアイドル回転数からハイアイドル回転数の間で目標回転数が設定されるエンジン
(1)と、
エンジン(1)によって駆動される複数の可変容量型油圧ポンプ (7、 8、 9)と、 複数の可変容量型油圧ポンプ(7、 8、 9)から吐出された圧油が供給される複数の 油圧ァクチユエータ(13、 14、 15)と、
1つ以上の可変容量型油圧ポンプ(7、 8、 9)について、吸収トルクを変化させる吸 収トルク変化手段(19、 22、 23)と、
エンジンの回転数を検出する回転数検出手段(la)と、
検出したエンジン回転数力 所定のしきい値以下に低下した場合に、可変容量型 油圧ポンプ(7、 8、 9)の吸収トルクを低下させる制御手段(18)と
を備えたことを特徴とする作業車両のエンジンの負荷制御装置。
[2] 前記所定のしきい値は、ローアイドル回転数以下の回転数であること
を特徴とする請求項 1記載の作業車両のエンジンの負荷制御装置。
[3] ステアリング機構を作動させる油圧ァクチユエータ(13)と、作業機を作動させる油圧 ァクチユエータ(14)とを備えたこと
を特徴とする請求項 1記載の作業車両のエンジンの負荷制御装置。
[4] 前記吸収トルク変化手段は、油圧ポンプの最大吸収トルクを変化させる手段(19)で あること
を特徴とする請求項 1記載の作業車両のエンジンの負荷制御装置。
[5] 前記吸収トルク変化手段は、
可変容量型油圧ポンプ (8)の吐出圧と油圧ァクチユエータ(14)の負荷圧との差圧 が設定差圧となるように可変容量型油圧ポンプ (8)の容量を制御する容量制御手段 (22)と、
前記設定差圧を変化させる手段 (23)と
で構成されていること
を特徴とする請求項 1記載の作業車両のエンジンの負荷制御装置。
[6] 複数の可変容量型油圧ポンプ(7、 8、 9)から複数の油圧ァクチユエータ(13、 14、 1 5)に対して、それぞれ独立した油路を経由して圧油が供給されること
を特徴とする請求項 1記載の作業車両のエンジンの負荷制御装置。
操作量に応じてエンジンの目標回転数を設定する操作子(17)が備えられ、 前記操作子(17)の操作量に応じて、前記所定のしきい値が設定されており、 前記制御手段(18)は、検出したエンジン回転数力 前記所定のしきい値以下に低 下した場合に、可変容量型油圧ポンプ(7、 8、 9)の吸収トルクを低下させること を特徴とする請求項 1記載の作業車両のエンジンの負荷制御装置。
PCT/JP2005/016237 2004-09-06 2005-09-05 作業車両のエンジンの負荷制御装置 WO2006028042A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005000083.4T DE112005000083B4 (de) 2004-09-06 2005-09-05 Lastregelvorrichtung für den Motor eines Arbeitsfahrzeugs
US10/578,315 US7810323B2 (en) 2004-09-06 2005-09-05 Load control device for engine of work vehicle
SE0600990A SE531422C2 (sv) 2004-09-06 2006-05-04 Belastningsstyrande anordning för en motor hos ett arbetsfordon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-258476 2004-09-06
JP2004258476A JP4410640B2 (ja) 2004-09-06 2004-09-06 作業車両のエンジンの負荷制御装置

Publications (1)

Publication Number Publication Date
WO2006028042A1 true WO2006028042A1 (ja) 2006-03-16

Family

ID=36036323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016237 WO2006028042A1 (ja) 2004-09-06 2005-09-05 作業車両のエンジンの負荷制御装置

Country Status (7)

Country Link
US (1) US7810323B2 (ja)
JP (1) JP4410640B2 (ja)
KR (1) KR100801930B1 (ja)
CN (1) CN1898471A (ja)
DE (1) DE112005000083B4 (ja)
SE (1) SE531422C2 (ja)
WO (1) WO2006028042A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211042A1 (en) * 2007-10-24 2010-07-28 Hitachi Construction Machinery Co., Ltd Engine control device for working vehicle
US20110131967A1 (en) * 2008-08-29 2011-06-09 Volvo Construction Equipment Ab Brake system and vehicle comprising a brake system
WO2020059130A1 (ja) * 2018-09-21 2020-03-26 日立建機株式会社 油圧駆動ファン制御装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134238B2 (ja) * 2006-12-15 2013-01-30 株式会社小松製作所 作業車両のエンジン負荷制御装置
DE602008004099D1 (de) * 2008-04-29 2011-02-03 Parker Hannifin Ab Anordnung zum Bedienen einer hydraulischen Vorrichtung
KR100919436B1 (ko) * 2008-06-03 2009-09-29 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 복수의 가변용량형 유압펌프 토오크 제어시스템 및 그제어방법
JP5588136B2 (ja) * 2009-08-26 2014-09-10 株式会社Kcm 油圧回路、及びそれを備える車両
GB2473631A (en) * 2009-09-18 2011-03-23 Valtra Oy Ab Auxiliary hydraulic fluid pressure supply system in a tractor
DK2386024T3 (en) 2010-02-23 2016-01-25 Artemis Intelligent Power Ltd Fluidarbejdsmaskine and method to operate an fluidarbejdsmaskine
GB2477997B (en) 2010-02-23 2015-01-14 Artemis Intelligent Power Ltd Fluid working machine and method for operating fluid working machine
US8610382B2 (en) * 2010-12-23 2013-12-17 Caterpillar Inc. Active high voltage bus bleed down
KR101752503B1 (ko) * 2011-01-12 2017-06-30 두산인프라코어 주식회사 휠로더의 유압 펌프 제어 방법
JP5331843B2 (ja) * 2011-03-22 2013-10-30 日立オートモティブシステムズ株式会社 電動オイルポンプの制御装置
JP5222975B2 (ja) * 2011-05-18 2013-06-26 株式会社小松製作所 作業機械のエンジン制御装置およびそのエンジン制御方法
US8676457B2 (en) * 2012-01-20 2014-03-18 Caterpillar Inc. System and method for controlling engine torque load
JP5341228B2 (ja) * 2012-05-21 2013-11-13 株式会社小松製作所 作業車両のエンジン負荷制御装置
US9080515B2 (en) * 2012-05-29 2015-07-14 GM Global Technology Operations LLC System and method for controlling engine torque to prevent driveline bump when a driver depresses an accelerator pedal
US9102372B2 (en) * 2012-07-24 2015-08-11 Caterpillar Inc. Track drive system and method
JP6116379B2 (ja) * 2013-05-29 2017-04-19 ヤンマー株式会社 建設機械
US9284902B2 (en) 2013-08-16 2016-03-15 GM Global Technology Operations LLC Engine control systems and methods for accelerator pedal tip-out
JP2015086575A (ja) * 2013-10-30 2015-05-07 日立建機株式会社 作業車両
WO2015097910A1 (ja) * 2013-12-27 2015-07-02 株式会社小松製作所 フォークリフト及びフォークリフトの制御方法
KR102192740B1 (ko) * 2014-04-24 2020-12-17 두산인프라코어 주식회사 건설기계의 엔진 및 유압펌프 통합 제어 장치 및 방법
WO2016041200A1 (en) * 2014-09-19 2016-03-24 Cummins, Inc. Systems and methods for adaptive acceleration based speed control
CN110469647A (zh) * 2019-06-28 2019-11-19 中冶宝钢技术服务有限公司 一种用于静压驱动车辆的防超速液压装置
CN113404743B (zh) * 2021-08-04 2024-03-22 重庆博昂斯特智能装备有限公司 一种用于液力变矩器测试的供油系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159580A (en) * 1980-05-13 1981-12-08 Hitachi Constr Mach Co Ltd Method of controlling system including internal combustion engine and hydraulic pump
JPH06221301A (ja) * 1993-01-19 1994-08-09 Samsung Heavy Ind Co Ltd 油圧ポンプの吐出流量制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981001031A1 (en) 1979-10-15 1981-04-16 Hitachi Construction Machinery Method of controlling internal combustion engine and hydraulic pump system
EP0062072B1 (en) * 1980-10-09 1987-05-20 Hitachi Construction Machinery Co., Ltd. Method for controlling a hydraulic power system
US4523892A (en) * 1984-05-14 1985-06-18 Caterpillar Tractor Co. Hydrostatic vehicle control
US4663936A (en) * 1984-06-07 1987-05-12 Eaton Corporation Load sensing priority system with bypass control
JPS6155183A (ja) 1984-08-27 1986-03-19 Canon Inc El素子
GB2171757B (en) * 1985-02-28 1989-06-14 Komatsu Mfg Co Ltd Method of controlling an output of an internal combustion engine and a variabledisplacement hydraulic pump driven by the engine
JPH0826552B2 (ja) * 1989-07-27 1996-03-13 株式会社小松製作所 建設機械のポンプ吐出量制御システム
JPH0754803A (ja) * 1993-08-12 1995-02-28 Komatsu Ltd 可変容量型油圧ポンプの容量制御装置
JP3587957B2 (ja) * 1997-06-12 2004-11-10 日立建機株式会社 建設機械のエンジン制御装置
US5967756A (en) * 1997-07-01 1999-10-19 Caterpillar Inc. Power management control system for a hydraulic work machine
JP3511453B2 (ja) 1997-10-08 2004-03-29 日立建機株式会社 油圧建設機械の原動機と油圧ポンプの制御装置
JPH11115780A (ja) 1997-10-15 1999-04-27 Komatsu Ltd 作業車両用ステアリングポンプの容量制御方法および装置
JP3874226B2 (ja) * 1998-04-24 2007-01-31 株式会社小松製作所 油圧駆動機械の制御装置
US6405844B1 (en) * 1999-09-10 2002-06-18 Komatsu Ltd. Working vehicle
JP3819699B2 (ja) 2000-10-20 2006-09-13 日立建機株式会社 油圧走行車両
US7316113B2 (en) 2004-07-14 2008-01-08 Komatsu Ltd. Control device for a work machine hydraulic pump used in a work vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159580A (en) * 1980-05-13 1981-12-08 Hitachi Constr Mach Co Ltd Method of controlling system including internal combustion engine and hydraulic pump
JPH06221301A (ja) * 1993-01-19 1994-08-09 Samsung Heavy Ind Co Ltd 油圧ポンプの吐出流量制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211042A1 (en) * 2007-10-24 2010-07-28 Hitachi Construction Machinery Co., Ltd Engine control device for working vehicle
EP2211042A4 (en) * 2007-10-24 2013-08-14 Hitachi Construction Machinery MOTOR CONTROL DEVICE FOR WORKING VEHICLE
US20110131967A1 (en) * 2008-08-29 2011-06-09 Volvo Construction Equipment Ab Brake system and vehicle comprising a brake system
US9067575B2 (en) * 2008-08-29 2015-06-30 Volvo Construction Equipment Ab Brake system and vehicle comprising a brake system
WO2020059130A1 (ja) * 2018-09-21 2020-03-26 日立建機株式会社 油圧駆動ファン制御装置
JPWO2020059130A1 (ja) * 2018-09-21 2020-12-17 日立建機株式会社 油圧駆動ファン制御装置
US11396839B2 (en) 2018-09-21 2022-07-26 Hitachi Construction Machinery Co., Ltd. Hydraulic drive fan control device

Also Published As

Publication number Publication date
SE0600990L (sv) 2006-07-03
DE112005000083T5 (de) 2007-07-26
CN1898471A (zh) 2007-01-17
SE531422C2 (sv) 2009-03-31
KR20060086377A (ko) 2006-07-31
DE112005000083B4 (de) 2019-03-07
JP2006070877A (ja) 2006-03-16
JP4410640B2 (ja) 2010-02-03
US7810323B2 (en) 2010-10-12
US20090101101A1 (en) 2009-04-23
KR100801930B1 (ko) 2008-02-12

Similar Documents

Publication Publication Date Title
WO2006028042A1 (ja) 作業車両のエンジンの負荷制御装置
CN101558243B (zh) 工程车辆的发动机负载控制装置
JP4804137B2 (ja) 作業車両のエンジン負荷制御装置
JP4270505B2 (ja) 作業車両のエンジンの負荷制御装置
JP4163073B2 (ja) 作業車両の制御装置
JP4754969B2 (ja) 作業車両のエンジン制御装置
JP5140863B2 (ja) フォークリフトのエンジン制御装置
US10773590B2 (en) Work vehicle
WO2013145339A1 (ja) 作業車両及び作業車両の制御方法
WO2006006600A1 (ja) 作業車両の作業機用油圧ポンプの制御装置
JP4787336B2 (ja) 作業車両のエンジンの負荷制御装置
JP2009197805A (ja) 作業車両のエンジンの負荷制御装置
JP4707122B2 (ja) 作業車両のエンジンの負荷制御装置
JP5219376B2 (ja) 作業車両のエンジン負荷制御装置
JP5341228B2 (ja) 作業車両のエンジン負荷制御装置
KR20080049519A (ko) 중장비의 엔진 제어장치
JP5190408B2 (ja) 建設機械におけるエンジンの制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001293.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10578315

Country of ref document: US

Ref document number: 1020067008753

Country of ref document: KR

Ref document number: 06009906

Country of ref document: SE

WWE Wipo information: entry into national phase

Ref document number: 1120050000834

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 06009906

Country of ref document: SE

WWP Wipo information: published in national office

Ref document number: 1020067008753

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
RET De translation (de og part 6b)

Ref document number: 112005000083

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

122 Ep: pct application non-entry in european phase