WO2006027524A1 - Composition de vernis d'emaillage notamment pour fil de bobinage - Google Patents

Composition de vernis d'emaillage notamment pour fil de bobinage Download PDF

Info

Publication number
WO2006027524A1
WO2006027524A1 PCT/FR2005/050691 FR2005050691W WO2006027524A1 WO 2006027524 A1 WO2006027524 A1 WO 2006027524A1 FR 2005050691 W FR2005050691 W FR 2005050691W WO 2006027524 A1 WO2006027524 A1 WO 2006027524A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactate
varnish
mixture
composition according
polyesters
Prior art date
Application number
PCT/FR2005/050691
Other languages
English (en)
Inventor
Jérome Fournier
Arnaud Piechaczyk
Laurent Schildknecht
Olivier Pinto
Original Assignee
Nexans
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexans filed Critical Nexans
Priority to EP05797537A priority Critical patent/EP1786874A1/fr
Priority to US11/660,189 priority patent/US20070248821A1/en
Publication of WO2006027524A1 publication Critical patent/WO2006027524A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • the present invention relates to a composition intended to constitute an electrically insulating enameling varnish.
  • the invention finds a particularly advantageous, but not exclusive, application in the field of winding wires.
  • the vast majority of varnishes used for the insulation of enamelled wires are produced in the form of a solution of polymer in a mixture of cresylic solvents and aromatic hydrocarbons, or in a mixture of N-methyl pyrollidone and aromatic hydrocarbons.
  • the effectiveness of these solvents is indeed quite obvious in practice, either during the synthesis of the varnish, in terms of solubility or at the time of application on the wire.
  • cresylic solvents are also known to be highly toxic products, which, moreover, have very unpleasant odors.
  • N-methyl pyrollidone commonly referred to by the abbreviation NMP, is suspected of toxicity.
  • Today, the entire enamelled wire industry is under increasing pressure to reduce the use of these conventional solvents.
  • benzyl alcohol is known to be a good solvent for replacing cresol and phenol in particular, but its toxicity still remains too important and its cost price is disadvantageously higher.
  • the technical problem to be solved, by the object of the present invention is to propose an enameling varnish composition especially for winding wire, a composition which would make it possible to avoid the problems of the state of the art by offering a significantly reduced toxic solvent content, while preserving the performance of the final product and not restoring the standard enameling processes currently used.
  • the solution to the technical problem consists in that the enameling varnish composition comprises a polymer resin and an alkyl lactate, and in that the polymeric resin is selected from the group of polyesters, polyesters imides, THEIC modified polyesters imides, polyurethanes, polyamides, imide polyamides, polyvinyl acetoformals, or any mixture of these compounds.
  • the invention as defined thus therefore consists in substituting at least a portion of the toxic solvents commonly used in the prior art, and in particular the cresylic solvents, with a solvent which is known to it and recognized as being completely harmless, the occurrence a lactate. This ultimately allows to reduce in more or less significant proportions the toxicity of the enameling varnish.
  • Lactate type solvents have the advantage of not altering the mechanical and insulating properties of the enamelling varnishes in which they are integrated.
  • enamelled son prepared from lacquer based on lactates offer the same performance as their counterparts developed using varnishes of conventional formulations.
  • Lactate-type solvents furthermore give the enameling varnish excellent stability, good application capacity and a satisfactory surface finish.
  • the price level of lactates is also of the same order of magnitude as that of cresol and NMP, so that their use does not generate any increase in the particular cost.
  • the alkyl lactate is chosen from methyl lactate, ethyl lactate, propyl lactate, butyl lactate or any mixture of these compounds.
  • a first embodiment of the invention is related to the fact that the polymer resin is chosen from the group of polyesters, polyesters imides, THEIC modified polyesters imides, polyurethanes, polyvinyl acetoformals, or any mixture of these compounds.
  • the proportion by weight of alkyl lactate relative to the total amount of solvents may advantageously be between 5 and 100%, and preferably between 10 and 70%.
  • the enameling varnish composition may comprise 5 to 100% by weight of alkyl lactate, and preferably 10 to 70% by weight, all this in relation to the total amount of solvents.
  • a composition according to this first embodiment may further comprise at least one cresylic solvent.
  • cresylic solvent denotes phenol, cresol, xylenol and their derivatives.
  • a second embodiment of the invention relates to demisting varnish compositions whose polymer resin is chosen from polyamides, polyamide imides, or any mixture of these compounds.
  • the proportion by weight of alkyl lactate may advantageously be between 5 and 70% relative to the total amount of solvents, and preferably between 10 and 40% by weight.
  • the enameling varnish composition may also comprise N-methyl pyrollidone.
  • the enameling varnish composition may further comprise at least one aromatic hydrocarbon.
  • aromatic hydrocarbon very generally designates all isomers of xylenes, but also of petroleum fractions, and more particularly of hydrocarbon cuts having a boiling point between 160 and 21O 0 C .
  • the presence of aromatics in the enameling varnish composition makes it possible to reduce the cost price, to adjust the viscosity if necessary, but also to raise the boiling point of the solvent mixture.
  • the aim is not to be penalized by the relatively low boiling point of lactates, which is generally between 145 and 170 ° C., and thus to avoid any risk of drying in the applicators. Such a phenomenon could indeed compromise the manufacturing process as a whole.
  • the proportion by weight of aromatic hydrocarbon will advantageously be between 10 and 50% relative to the total amount of solvents.
  • an enameling varnish composition according to the invention may further comprise any kind of additive known from the state of the art.
  • the invention also relates to any winding wire comprising a conductive element covered with an insulating layer made from an enameling varnish composition as previously described.
  • Examples I to V relate to enameling varnish compositions which are all intended to form electrically insulating layers for winding wires. More specifically, each example relates to compositions consisting of the same polymer resin but with different solvent mixtures, namely in each case a composition according to the invention and a reference composition comprising a solvent mixture typical of the prior art.
  • Example I Samples 1 and 2 both relate to polyester imide (PEI) compositions. They relate respectively to a composition according to the invention, that is to say whose solvent mixture is provided with lactate, and to a reference composition, that is to say whose solvent mixture is based only conventional solvents.
  • PEI polyester imide
  • sample 1 begins with the addition of 437 g of trimellitic anhydride to 285 g of diphenyl methane diisocyanate in 590 g of cresol. The mixture is then heated to 200 0 C, resulting in a release of carbon dioxide of 105 g. 430 g of ethylene glycol, 328 g of trimellitic anhydride and 51 g of isophthalic acid are then introduced into the reactor at 120 ° C. The whole is heated with vigorous stirring up to about 215 ° C. 110 g of distillate are then collected.
  • Sample 2 is prepared by adding 437 g of trimellitic anhydride to 285 g of diphenyl methane diisocyanate in 590 g of cresol. The mixture is heated to 200 0 C, resulting in a release of carbon dioxide of 105g. 430 g of ethylene glycol, 328 g of trimellitic anhydride and 51 g of isophthalic acid are then introduced into the reactor at 120 ° C. The whole is heated with vigorous stirring up to about 215 ° C. 110 g of distillate are then collected.
  • titanate introduced is generally tetra n-butyl titanate. This compound acts as a catalyst for the esterification and transesterification reaction. It is also a crosslinking agent.
  • Table 1 summarizes the differences in compositions between the solvent mixtures of samples 1 and 2.
  • Viscosity at 20 ° C. 1,205 mPa. s 2,600 mPa. s It is observed that the characteristic properties of the two types of enamel varnish are directly comparable. However, it is noted that the presence of lactate advantageously reduces the viscosity in the case of the composition according to the invention (Sample 1). This characteristic makes it possible to work with much more concentrated compositions.
  • Winding son are then made using as enameling varnish the compositions corresponding to samples 1 and 2. Concretely, layers of varnish are applied in a predetermined number, in successive passes and at a given speed, on conductors son of identical diameters . The extra thickness of the varnish, as well as its appearance on the surface, are then evaluated for each enamelled wire.
  • Standard characterization tests are then conducted to determine the essential properties of both types of winding wires (in accordance with the international standard IEC 60317). These are conventionally tests of flexibility, thermal shock at 200 0 C, and solderability at 475 0 C. With the aid of Dansk brand apparatus and type TD300, a well-known value is also determined. in the field of enameling, namely the delta tangent.
  • Table 3 combines both the structural characteristics of the two types of enamelled wires, and their specific properties.
  • Samples 3 and 4 both relate to THEIC-modified imide polyester compositions. They are respectively relative to a composition according to the invention, that is to say whose solvent mixture is provided with lactate, and a reference composition, that is to say whose solvent mixture is based only conventional solvents.
  • the preparation of sample 3 begins with the introduction of 190 g of ethylene glycol and 435 g of trishydroxyethyl isocyanurate (THEIC) into a reactor at room temperature. The mixture is then heated to 120 ° C.
  • TEEIC trishydroxyethyl isocyanurate
  • the varnish obtained is of dry extract 44% and viscosity at 20 ° C. of 860 mPa.s- 1 .
  • Sample 4 is prepared by introducing 190 g of ethylene glycol and 435 g of trishydroxyethyl isocyanurate (THEIC) into The mixture is then heated to 120 ° C. At this temperature, 122 g of diphenyl methane diamine, 270 g of dimethoxy terephthalate, 277 g of trimellitic anhydride, and 13 g of Xylene are introduced into the reactor. 2 g of Titanate are in turn added before heating the mixture with vigorous stirring to 22O 0 C.
  • TEEIC trishydroxyethyl isocyanurate
  • 140 g of distillate are then collected: 463 g of cresol, 463 g of phenol, 82 g of benzyl alcohol, 44 g of ethylene glycol and 326 g of Solvesso 150 are then added to the lacquer At 60 ° C., 46 g of titanate and 80 g of phenolic resin are added to the lacquer
  • the varnish obtained is 44% solids and has a viscosity at 20 ° C. of 1300 mPa. s "1 .
  • the winding wires are then made using, as enameling varnish, the compositions corresponding to the samples 3 and 4. Concretely, layers of varnish are applied in a predetermined number, in successive passes and at a given speed, on conducting wires of identical diameters. . The extra thickness of the varnish, as well as its appearance on the surface, are then evaluated for each enamelled wire.
  • Standard characterization tests are then conducted to determine the essential properties of both types of winding wires. This is conventionally tests of flexibility and thermal shock at 200 ° C. As in Example I, the delta tangent is determined using a Dansk TD300 type device.
  • Table 6 combines both the structural characteristics of the two types of enamelled wires, as well as their specific properties.
  • Samples 5 and 6 both relate to polyurethane compositions. They are respectively relative to a composition according to the invention, that is to say whose solvent mixture is provided with lactate, and a reference composition, that is to say whose solvent mixture is based only conventional solvents.
  • sample 5 begins with the introduction of 416.5g of Cresol, 544g of ethyl lactate and 55.4g of Xylene into the reactor. At 60 ° C., 120 g of trimethylolpropane (TMP) and 26 g of trishydroxyethyl isocyanurate (THEIC) are added. The mixture is heated until the total distillation of Xylene. After cooling, 835 g of diphenyl methane diisocyanate and 1.5 g of catalyst are introduced. The varnish is then heated with vigorous stirring up to 140 ° C.
  • TMP trimethylolpropane
  • TBEIC trishydroxyethyl isocyanurate
  • Sample 6 is prepared by introducing 960.5 g of cresol and 55.4 g of Xylene into the reactor. At 60 ° C., 120 g of trimethylolpropane (TMP) and 26 g of trishydroxyethyl isocyanurate (THEIC) are added. The mixture is heated until total distillation of Xylene. After cooling, 835 g of diphenyl methane diisocyanate and 1.5 g of catalyst are introduced. The varnish is then heated with vigorous stirring up to 140 ° C.
  • TMP trimethylolpropane
  • TEEIC trishydroxyethyl isocyanurate
  • Winding son are then made using as enameling varnish the compositions corresponding to samples 5 and 6. Concretely, layers of varnish are applied in a predetermined number, in successive passes and at a given speed, on conductors son of identical diameters. The extra thickness of the varnish, as well as its appearance on the surface, are then evaluated for each enamelled wire.
  • Standard characterization tests are then conducted to determine the essential properties of both types of winding wires. These are conventionally tests of flexibility, thermal shock at 200 ° C., and weldability at 39 ° C. Using a Dansk-branded apparatus and of the TD300 type, the value of the tangent delta.
  • Table 9 combines both the structural characteristics of the two types of enamelled wires, as well as their characteristic properties.
  • Samples 7 and 8 both relate to polyvinyl acetoformal (PVF) compositions. They are respectively relative to a composition according to the invention, that is to say whose solvent mixture is provided with lactate, and a reference composition, that is to say whose solvent mixture is based only conventional solvents.
  • the preparation of sample 7 begins with the cold loading of 755 g of ethyl lactate, 799 g of aromatic solvent (Solvesso 100), and 278.5 g of Xylene. At 90 ° C., 429 g of polyvinyl acetoformal powder are in turn charged. The mixture is maintained at 90 ° C. for 1 hour and then cooled.
  • Sample 8 is prepared by cold loading 528.5g of Cresol, 226.5g of Phenol, 799g of aromatic solvent (Solvesso 100 - Exxon), and 278.5g of Xylene. At 90 ° C., 429 g of polyvinyl acetoformal powder are in turn charged. The mixture is maintained at 90 ° C. for 1 hour and then cooled. 61.2 g of Desmodur AP are introduced at 80 ° C. and the varnish is maintained at this temperature for 1 hour and until perfect clarity. The mixture is then cooled to 50 ° C. by adding 255 g of Xylene. After good stirring 306g of phenolic resin, 37g of melamine resin are added to the varnish. The varnish is finally diluted with 2.5 g of aromatic solvent (Solvesso 100 from Exxon) and 69 g of Cresol to reach a solids content of 19.7% and a viscosity of 6450 mPa. s.
  • Winding wires are then produced by using, as enameling varnish, the compositions corresponding to samples 7 and 8. Concretely, layers of varnish are applied in a predetermined number, in successive passes and at a given speed, on conducting wires of identical diameters. . The extra thickness of the varnish, as well as its appearance on the surface, are then evaluated for each enamelled wire.
  • Standard characterization tests are then conducted to determine the properties essential of both types of winding wires. These are typically flexibility tests, thermal shock at 160 ° C. for 30 minutes, unidirectional abrasion and breakdown voltage.
  • Table 3 combines both the structural characteristics of the two types of enamelled wires, as well as their characteristic properties.
  • Example V Samples 9 and 10 both relate to polyamide imide (PAI) based compositions. They are respectively relative to a composition according to the invention, that is to say whose solvent mixture is provided with lactate, and a reference composition, that is to say whose solvent mixture is based only conventional solvents.
  • PAI polyamide imide
  • sample 9 begins with the introduction at 60 ° C. of 2420 g of N-methylpyrrolidone, 30.4 g of blocking agent, 836 g of trimellitic anhydride, 81 g of terephthalic acid and 580 g of solvent.
  • Sample 10 is prepared by introducing at 60 ° C., 2420 g of N-methyl pyrrolidone, 30.4 g of blocking agent, 836 g of trimellitic anhydride, 81 g of terephthalic acid and 580 g of aromatic solvent (Solvesso 100). ) and 1258g of diphenyl methane diisocyanate.
  • the reaction mixture is heated at 140 ° C. in 5 hours and the evolution of the reaction is monitored by measuring the viscosity and observing the evolution of CO 2 .
  • the reactor is cooled by adding 1212 g of N-methyl pyrrolidone and 700 g of aromatic solvent (Solvesso 100).
  • An enameling varnish of dry extract 30% and viscosity at 20 ° C. of 2820 mPa.s is then obtained.
  • Table 13 summarizes the differences in compositions between the solvent mixtures of samples 9 and 10.
  • Table 15 gathers both the structural characteristics of the two types of enamelled wires, as well as their specific properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Insulating Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

La présente invention concerne une composition de vernis d'émaillage notamment pour fil de bobinage. L'invention est remarquable en ce que la composition de vernis d'émaillage comporte une résine polymère et un lactate d'alkyle, et en ce que la résine polymère est choisie parmi le groupe des polyesters, des polyesters imides, des polyesters imides modifiés par du THEIC, des polyuréthanes, des polyamides, des polyamides imides, des acétoformals de polyvinyle, ou un mélange quelconque de ces composés.

Description

COMPOSITION DE VERNIS D 'EMAILLAGE NOTAMMENT POUR FIL DE BOBINAGE
La présente invention concerne une composition destinée à constituer un vernis d'émaillage électriquement isolant.
L'invention trouve une application particulièrement avantageuse, mais non exclusive, dans le domaine des fils de bobinage. Dans leur grande majorité, les vernis utilisés pour l'isolation des fils émaillés sont produits sous la forme d'une solution de polymère dans un mélange de solvants crésyliques et d'hydrocarbures aromatiques, ou dans un mélange de N-méthyl pyrollidone et d'hydrocarbures aromatiques. L'efficacité de ces solvants est en effet tout à fait manifeste dans la pratique, que ce soit lors de la synthèse du vernis, en terme de solubilité ou au moment de l'application sur le fil conducteur. Cependant, les solvants crésyliques sont également connus pour être des produits hautement toxiques, qui plus est présentant des odeurs très désagréables. La N-méthyl pyrollidone, communément désignée par l'abréviation NMP, est quant à elle suspectée de toxicité. Or aujourd'hui, toute l'industrie du fil émaillé subit des pressions de plus en plus importantes afin que l'utilisation de ces solvants classiques se réduise.
Des vernis d'émaillage dépourvus de solvants crésyliques ont bien entendu été développés.
A cet égard, l'alcool benzylique est connu pour être un bon solvant de substitution au crésol et au phénol notamment, mais sa toxicité demeure encore trop importante et son prix de revient s'avère désavantageusement plus élevé.
Il est également possible d'employer de l'acétate de méthoxy propyle, plus connu sous la marque Dowanol PMA. Malheureusement, ce produit est coûteux et a des rendements calorifiques faibles lors de l'émaillage. L'aspect de surface du vernis s'avère par ailleurs insuffisamment bon dans la plupart des cas. Si l'eau peut à priori être utilisée elle aussi en lieu et place des solvants crésyliques, elle n'est absolument pas adaptée aux machines d'émaillage standards. Ces dernières requièrent en effet un solvant susceptible de fournir de l'énergie par combustion, c'est-à-dire un solvant organique. Indépendamment du surcoût qu'un nouveau procédé de fabrication impliquerait, les performances du produit final s'avèrent quoi qu'il en soit inférieures à celles des vernis à base de solvants crésyliques.
Aussi le problème technique à résoudre, par l'objet de la présente invention, est de proposer une composition de vernis d'émaillage notamment pour fil de bobinage, composition qui permettrait d'éviter les problèmes de l'état de la technique en offrant une teneur en solvants toxiques sensiblement réduite, tout en préservant les performances du produit final et en ne remettant pas cause les procédés d'émaillage standards actuellement utilisés.
La solution au problème technique posé consiste, selon la présente invention, en ce que la composition de vernis d'émaillage comporte une résine polymère et un lactate d'alkyle, et en ce que la résine polymère est choisie parmi le groupe des polyesters, des polyesters imides, des polyesters imides modifiés par du THEIC, des polyuréthanes, des polyamides, des polyamides imides, des acétoformals de polyvinyle, ou un mélange quelconque de ces composés .
L'invention telle qu'ainsi définie consiste donc à substituer au moins une partie des solvants toxiques communément utilisés dans l'art antérieur, et notamment les solvants crésyliques, par un solvant qui lui est connu et reconnu comme étant dépourvu de toute nocivité, en l'occurrence un lactate. Cela permet au final de diminuer dans des proportions plus ou moins importantes la toxicité du vernis d'émaillage.
Les solvants de type lactate présentent l'avantage de ne pas altérer les propriétés mécaniques et isolantes des vernis d'émaillage dans lesquels ils sont intégrés. A titre d'exemples applicatifs, des fils émaillés préparés à partir de vernis à base de lactates offrent les mêmes performances que leurs homologues élaborés en utilisant des vernis de formulations classiques.
Les solvants de type lactate confèrent en outre au vernis d'émaillage une excellente stabilité, une bonne capacité d'application, ainsi qu'un état de surface tout à fait satisfaisant.
Le niveau de prix des lactates, et principalement celui du lactate d'éthyle, s'avère par ailleurs du même ordre de grandeur que celui du crésol et de la NMP, de sorte que leur utilisation n'engendre avantageusement aucune augmentation du coût particulière. Selon une particularité de l'invention, le lactate d'alkyle est choisi parmi le lactate de méthyle, le lactate d'éthyle, le lactate de propyle, le lactate de butyle, ou un quelconque mélange de ces composés.
Un premier mode de réalisation de l'invention est lié au fait que la résine polymère soit choisie parmi le groupe des polyesters, des polyesters imides, des polyesters imides modifiés par du THEIC, des polyuréthanes, des acétoformals de polyvinyle, ou un quelconque mélange de ces composés. Dans ces conditions, la proportion en poids de lactate d'alkyle par rapport à la quantité totale de solvants pourra être avantageusement comprise entre 5 et 100%, et de préférence entre 10 et 70%. Cela signifie en d'autres termes que lorsque la résine polymère est telle que précédemment définie, la composition de vernis d'émaillage peut comporter 5 à 100% en poids de lactate d'alkyle, et de préférence 10 à 70% en poids, tout ceci par rapport à la quantité totale de solvants.
De manière particulièrement avantageuse, une composition conforme à ce premier mode de réalisation peut comporter en outre au moins un solvant crésylique. A cet égard, il est à noter que la notion de solvant crésylique désigne indifféremment le phénol, le crésol, le xylénol, et leurs dérivés .
Cette caractéristique a essentiellement pour but d'obtenir au final un vernis dont les propriétés mécaniques et isolantes sont équivalentes à celles des vernis à base de solvants crésyliques, tout ceci afin de ne pas avoir à remettre en cause les procédés de fabrication standards actuellement utilisés .
Un second mode de réalisation de l'invention concerne les compositions de vernis démaillage dont la résine polymère est choisie parmi les polyamides, les polyamides imides, ou un mélange quelconque de ces composés. Dans ce cas de figure, la proportion en poids de lactate d'alkyle pourra être avantageusement comprise entre 5 et 70% par rapport à la quantité totale de solvants, et de préférence entre 10 et 40% en poids.
Conformément à une caractéristique avantageuse de ce second mode de réalisation, la composition de vernis d'émaillage peut comporter par ailleurs de la N-méthyl pyrollidone.
Que la composition de vernis d'émaillage réponde aux conditions du premier ou du second mode de réalisation de l'invention, elle peut comprendre en outre au moins un hydrocarbure aromatique. A cet égard, il faut préciser que la notion d'hydrocarbure aromatique désigne très généralement tous les isomères du xylènes, mais également des coupes pétrolières, et plus particulièrement des coupes d'hydrocarbures ayant un point d'ébullition compris entre 160 et 21O0C.
La présence d'aromatiques dans la composition de vernis d'émaillage permet d'en diminuer le prix de revient, d'ajuster éventuellement la viscosité, mais également de relever le point d'ébullition du mélange solvant. En ce qui concerne plus particulièrement ce dernier aspect, le but est de ne pas être pénalisé par le point d'ébullition relativement peu élevé des lactates, qui se situe généralement entre 145 et 17O0C, et ainsi d'éviter tout risque de séchage dans les applicateurs . Un tel phénomène risquerait en effet de compromettre le procédé de fabrication dans son ensemble.
Quoi qu'il en soit, la proportion en poids d'hydrocarbure aromatique sera avantageusement comprise entre 10 et 50% par rapport à la quantité totale de solvants.
Bien évidemment, une composition de vernis d'émaillage conforme à l'invention peut comporter en outre toute sorte d'additif connu de l'état de la technique .
Bien entendu, l'invention concerne également tout fil de bobinage comportant un élément conducteur recouvert d'une couche isolante réalisée à partir d'une composition de vernis d'émaillage telle que précédemment décrite.
D'autres caractéristiques et avantages de la présente invention apparaîtront au cours de la description des exemples qui va suivre ; ces derniers étant donnés à titre illustratif et nullement limitatif.
Les exemples I à V sont relatifs à des compositions de vernis d'émaillage qui sont toutes destinées à constituer des couches électriquement isolantes pour des fils de bobinage. Plus précisément, chaque exemple concerne des compositions constituées de la même résine polymère mais avec des mélanges solvants différents, à savoir à chaque fois une composition conforme à l'invention et une composition de référence comportant un mélange solvant typique de l'art antérieur.
Exemple I Les échantillons 1 et 2 concernent tous deux des compositions à base de polyester imide (PEI) . Ils sont relatifs respectivement à une composition conforme à l'invention, c'est-à-dire dont le mélange solvant est pourvu de lactate, et à une composition de référence, c'est-à-dire dont le mélange solvant est à base uniquement de solvants classiques.
La préparation de l'échantillon 1 débute par l'ajout de 437 g d'anhydride triméllitique à 285 g de diisocyanate de diphényl méthane dans 590 g de crésol. Le mélange est alors chauffé à 2000C, ce qui entraîne un dégagement de dioxyde de carbone de 105 g. 430g de d' éthylène glycol, 328 g d'anhydride triméllitique et 51g de d'acide isophtalique sont ensuite introduits dans le réacteur à 12O0C. Le tout est chauffé sous forte agitation jusqu' à environ 2150C. 110g de distillât sont alors recueillis. 385g de Lactate d'éthyle, 20g de titanate puis 680g de solvant aromatique sous forme de Solvesso 100 (marque de la société Exxon) sont ajoutés afin d'obtenir un vernis d'émaillage d'extrait sec 44% et de viscosité à 2O0C de 1205 mPa.s.
L'échantillon 2 est quant à lui préparé en ajoutant 437g d'anhydride triméllitique à 285g de diisocyanate de diphényl méthane dans 590g de crésol. Le mélange est chauffé à 2000C, entraînant un dégagement de dioxyde de carbone de 105g. 430g de d' éthylène glycol, 328 g d'anhydride triméllitique et 51 g de d' acide isophtalique sont ensuite introduits dans le réacteur à 12O0C. Le tout est chauffé sous forte agitation jusqu'à environ 2150C. 110g de distillât sont alors recueillis. 150g de crésol, 235g de phénol, 20 g de titanate puis 680 g de solvant aromatique sous forme de Solvesso 100 sont ajoutés afin d'obtenir un vernis d'émaillage d'extrait sec 44% et de viscosité à 2O0C de 2600 mPa. s .
Il est à noter que le titanate introduit est généralement du tétra n-butyl titanate. Ce composé joue le rôle de catalyseur de la réaction d' estérification et de trans-estérification . Il est de plus agent réticulant.
Pour plus de clarté, le tableau 1 résume les différences de compositions entre les mélanges solvants des échantillons 1 et 2.
Tableau 1
Figure imgf000009_0001
Des mesures de la concentration en extrait sec après séchage d'ig de produit pendant 1 heure à 18O0C, ainsi que de la viscosité à 2O0C, sont réalisées sur chaque échantillon afin de pouvoir comparer les propriétés caractéristiques des vernis d'émaillage préalablement préparés. Le tableau 2 regroupe les résultats des mesures en question.
Tableau 2
Ech. 1 Ech. 2
Extrait sec (Ih, Ig, 44% 44% 18O0C)
Viscosité à 20 0C 1 205 mPa. s 2 600 mPa. s On observe que les propriétés caractéristiques des deux types de vernis d'émaillage sont directement comparables. On note toutefois que la présence de lactate fait avantageusement chuter la viscosité dans le cas de la composition conforme à l'invention (Echantillon 1) . Cette caractéristique permet de pouvoir travailler avec des compositions beaucoup plus concentrées. Des fils de bobinage sont ensuite réalisés en utilisant comme vernis d'émaillage les compositions correspondant aux échantillons 1 et 2. Concrètement, des couches de vernis sont appliquées en nombre déterminé, par passes successives et à vitesse donnée, sur des fils conducteurs de diamètres identiques. La surépaisseur de vernis, ainsi que son aspect en surface, sont alors évalués pour chaque fil émaillé.
Des tests de caractérisation standards sont alors menés pour déterminer les propriétés essentielles des deux types de fils bobinage (en accord avec la norme internationale IEC 60317) . Il s'agit classiquement de tests de flexibilité, de choc thermique à 2000C, et de brasabilité à 4750C. A l'aide d'un appareil de marque Dansk et de type TD300, on détermine par ailleurs une valeur bien connue dans le domaine de l'émaillage, à savoir la tangente delta.
Le tableau 3 rassemble à la fois les caractéristiques structurelles des deux types de fils émaillés, et leurs propriétés caractéristiques propres .
Tableau 3
Figure imgf000011_0001
On observe que les résultats d'émaillage sont tout à fait équivalents. Cela signifie que, comparé à un mélange solvant de l'état de la technique, un mélange solvant à base de lactate n'altère en rien les performances d'un vernis d'émaillage à base de polyester imide.
Exemple II
Les échantillons 3 et 4 concernent tous deux des compositions à base de polyester imide modifié par du THEIC. Ils sont respectivement relatifs à une composition conforme à l'invention, c'est-à-dire dont le mélange solvant est pourvue de lactate, et à une composition de référence, c'est-à-dire dont le mélange solvant est à base uniquement de solvants classiques . La préparation de l'échantillon 3 débute par l'introduction de 190g d' éthylène glycol et de 435g de trishydroxyéthyle isocyanurate (THEIC) dans un réacteur à température ambiante. Le mélange est ensuite chauffé à 12O0C. A cette température, 122g de diamine de diphényle méthane (MDA) , 270g de diméthoxy terephtalate, 277g d'anhydride triméllitique, et 13g de Xylène sont introduits dans le réacteur. 2g de Titanate sont ensuite ajoutés avant de chauffer le mélange sous forte agitation jusqu'à 22O0C. 140g de distillât sont alors recueillis. 927g de Lactate d'éthyle, 82g d'Alcool benzylique, 44g d' éthylène glycol et 326g de Solvesso 150 (marque de la société Exxon) sont alors ajoutés au vernis. A 6O0C, 46g de Titanate et 80g de résine phénolique sont ajoutés au vernis. Le vernis obtenu est d'extrait sec 44% et de viscosité à 2O0C de 860 mPa.s"1. L'échantillon 4 est quant à lui préparé en introduisant 190g d' éthylène glycol et 435g de trishydroxyéthyle isocyanurate (THEIC) dans un réacteur à température ambiante. Le mélange est ensuite chauffé à 12O0C. A cette température, 122g de diamine de diphényle méthane, 270g de diméthoxy terephtalate, 277g d'anhydride triméllitique, et 13g de Xylène sont introduits dans le réacteur. Ensuite, 2g de Titanate sont à leur tour ajoutés avant de chauffer le mélange sous forte agitation jusqu'à 22O0C. 140g de distillât sont alors recueilli. 463g de crésol, 463 g de phénol, 82g d'Alcool benzylique, 44g d' éthylène glycol et 326g de Solvesso 150 sont alors ajoutés au vernis. A 6O0C, 46g de Titanate et 80g de résine phénolique sont ajoutés au vernis. Le vernis obtenu est d'extrait sec 44% et de viscosité à 2O0C de 1300 mPa.s"1.
Il est à noter que la résine phénolique permet d'améliorer l'applicabilité du vernis et surtout d'augmenter sa résistance chimique et thermique. Pour plus de clarté, le tableau 4 résume les différences de compositions entre les mélanges solvants des échantillons 3 et 4.
Tableau 4
Figure imgf000013_0001
Des mesures de la concentration en extrait sec après séchage d'ig de produit pendant 1 heure à 18O0C, ainsi que de la viscosité à 2O0C, sont réalisées sur chaque échantillon afin de pouvoir comparer les propriétés caractéristiques des vernis d'émaillage préalablement préparés. Le tableau 5 regroupe les résultats des mesures en question.
Tableau 5
Ech.3 Ech.4
Extrait sec (Ih, Ig, 44% 44% 18O0C)
Viscosité à 20 0C 860 mPa.s 1300 mPa.s
On observe également dans cet exemple que les propriétés caractéristiques des deux types de vernis d'émaillage sont directement comparables. On note aussi que la présence de lactate fait chuter la viscosité dans le cas de la composition conforme à l'invention (Echantillon 3) , permettant ainsi avantageusement de pouvoir travailler avec des compositions beaucoup plus concentrées.
Les fils de bobinage sont ensuite réalisés en utilisant comme vernis d'émaillage les compositions correspondant aux échantillons 3 et 4. Concrètement, des couches de vernis sont appliquées en nombre déterminé, par passes successives et à vitesse donnée, sur des fils conducteurs de diamètres identiques. La surépaisseur de vernis, ainsi que son aspect en surface, sont alors évalués pour chaque fil émaillé .
Des tests de caractérisation standards sont alors menés pour déterminer les propriétés essentielles des deux types de fils bobinage. Il s'agit classiquement de tests de flexibilité et de choc thermique à 2000C. Comme dans l'exemple I, la tangente delta est déterminée en utilisant un appareil de type TD300 de la marque Dansk.
Le tableau 6 rassemble à la fois les caractéristiques structurelles des deux types de fils émaillés, ainsi que leurs propriétés caractéristiques propres.
Tableau 6
Figure imgf000014_0001
Figure imgf000015_0001
On observe que les résultats d'émaillage sont tout à fait équivalents. Cela signifie que, comparé à un mélange solvant de l'état de la technique, un mélange solvant à base de lactate n'altère en rien les performances d'un vernis d'émaillage à base de polyester imide modifié par du THEIC.
Exemple III
Les échantillons 5 et 6 concernent tous deux des compositions à base de polyuréthane . Ils sont respectivement relatifs à une composition conforme à l'invention, c'est-à-dire dont le mélange solvant est pourvue de lactate, et à une composition de référence, c'est-à-dire dont le mélange solvant est à base uniquement de solvants classiques.
La préparation de l'échantillon 5 débute par l'introduction de 416.5g de Crésol, 544g de Lactate d'éthyle et 55.4g de Xylène dans le réacteur. A 6O0C, sont ajoutés 120g de triméthylolpropane (TMP) et 26g de trishydroxyéthyle isocyanurate (THEIC) . Le mélange est chauffé jusqu'à distillation total du Xylène. Après refroidissement, 835g de diisocyanate de diphényl méthane et 1.5g de catalyseur sont introduits. Le vernis est ensuite chauffé sous forte agitation jusqu'à 14O0C. A cette température 412g de solvant aromatique (Solvesso 100 - Exxon) , 388.7g de Xylène et 256g de lactate d'éthyle sont ajoutés afin d'obtenir un polyisocyanate isocyanate bloqué en solution. Dans un second temps, 3000 g de polyisocyanate isocyanate bloqué en solution et 5858g de polyester imide contenant du lactate d' éthyle (Echantillon 1) sont introduits dans un réacteur. A 5O0C, 7g de catalyseur sont ajoutés au mélange. Pour atteindre un extrait sec de 40%, 100g de Crésol puis 68g de solvant aromatique (Solvesso 100 - Exxon) sont ajoutés au vernis.
L'échantillon 6 est quant à lui préparé en introduisant 960.5g de crésol et 55.4g de Xylène dans le réacteur. A 6O0C, 120g de triméthylolpropane (TMP) et 26g de trishydroxyéthyle isocyanurate (THEIC) sont ajoutés. Le mélange est chauffé jusqu'à distillation totale du Xylène. Après refroidissement, 835g de diisocyanate de diphényl méthane et 1.5g de catalyseur sont introduits. Le vernis est ensuite chauffé sous forte agitation jusqu'à 14O0C. A cette température 412g de solvant aromatique, en l'occurrence du Solvesso 100 de la société Exxon, 388.7g de Xylène et 256g de Phénol sont ajoutés afin d'obtenir un polyisocyanate isocyanate bloqué en solution.
Dans un second temps, 3000 g de polyisocyanate isocyanate bloqué en solution et 5858g de polyester imide (Echantillon 2) sont introduits dans un réacteur. A 5O0C, 7g de catalyseur sont ajoutés au mélange. Pour atteindre un extrait sec de 40%, 100g de Crésol puis 68g de solvant aromatique (Solvesso 100 - Exxon) sont ajoutés au vernis. Pour plus de clarté, le tableau 7 résume les différences de compositions entre les mélanges solvants des échantillons 5 et 6.
Tableau 7
Figure imgf000017_0001
Des mesures de la concentration en extrait sec après séchage d'ig de produit pendant 1 heure à 18O0C, ainsi que de la viscosité à 2O0C, sont réalisées sur chaque échantillon afin de pouvoir comparer les propriétés caractéristiques des vernis d'émaillage préalablement préparés. Le tableau 8 regroupe les résultats des mesures en question.
Tableau 8
Ech.5 Ech.6
Extrait sec (Ih, Ig, 40% 40% 18O0C)
Viscosité à 20 0C 1 050 mPa. s 1820 mPa.s
On observe encore dans cet exemple que les propriétés caractéristiques des deux types de vernis d'émaillage sont directement comparables. On note là aussi que la présence de lactate fait avantageusement chuter la viscosité dans le cas de la composition conforme à l'invention (Echantillon 5), offrant ainsi la possibilité de pouvoir travailler avec des compositions beaucoup plus concentrées .
Des fils de bobinage sont ensuite réalisés en utilisant comme vernis d'émaillage les compositions correspondant aux échantillons 5 et 6. Concrètement, des couches de vernis sont appliquées en nombre déterminé, par passes successives et à vitesse donnée, sur des fils conducteurs de diamètres identiques. La surépaisseur de vernis, ainsi que son aspect en surface, sont alors évalués pour chaque fil émaillé .
Des tests de caractérisation standards sont alors menés pour déterminer les propriétés essentielles des deux types de fils bobinage. Il s'agit classiquement de tests de flexibilité, de choc thermique à 2000C, et de soudabilité à 39O0C. A l'aide d'un appareil de marque Dansk et de type TD300, on détermine par ailleurs la valeur de la tangente delta.
Le tableau 9 rassemble à la fois les caractéristiques structurelles des deux types de fils émaillés, ainsi que leurs propriétés caractéristiques propres.
Tableau 9
Figure imgf000018_0001
Figure imgf000019_0001
De manière analogue aux exemples précédents, on observe que les résultats d'émaillage sont tout à fait équivalents. Cela signifie ici que, comparé à un mélange solvant de l'état de la technique, un mélange solvant à base de lactate n'altère en rien les performances d'un vernis d'émaillage à base de polyuréthane .
Exemple IV
Les échantillons 7 et 8 concernent tous deux des compositions à base d' acétoformal de polyvinyle (PVF) . Ils sont respectivement relatifs à une composition conforme à l'invention, c'est-à-dire dont le mélange solvant est pourvue de lactate, et à une composition de référence, c'est-à-dire dont le mélange solvant est à base uniquement de solvants classiques . La préparation de l'échantillon 7 débute par le chargement à froid de 755g de lactate d'éthyle, de 799g de solvant aromatique (Solvesso 100), et de 278.5g de Xylène . A 9O0C, 429g de poudre d' acétoformal de polyvinyle sont à leur tour chargées. Le mélange est maintenu à 9O0C pendant 1 heure puis refroidi. 61.2g de polyisocyanate bloqué Desmodur AP (marque de la société Bayer) sont introduits à 8O0C et le vernis est maintenu à cette température pendant 1 heure et jusqu'à parfaite limpidité. Le mélange est ensuite refroidit à 5O0C en ajoutant 255g de Xylène. Après une bonne agitation 306g de résine phénolique, 37g de résine mélamine sont ajoutés au vernis. Le vernis est enfin dilué avec 2.5g de solvant aromatique (Solvesso 100) et 69g de Lactate d'éthyle pour atteindre un extrait sec de 19.5% et une viscosité de 5200 mPa.s.
L'échantillon 8 est quant à lui préparé en chargeant à froid 528.5g de Crésol, 226.5g de Phénol, 799g de solvant aromatique (Solvesso 100 - Exxon) , et 278.5g de Xylène . A 9O0C, 429g de poudre d ' acétoformal de polyvinyle sont à leur tour chargées. Le mélange est maintenu à 9O0C pendant 1 heure puis refroidi. 61.2g de Desmodur AP sont introduits à 8O0C et le vernis est maintenu à cette température pendant 1 heure et jusqu'à parfaite limpidité. Le mélange est ensuite refroidit à 5O0C en ajoutant 255g de Xylène. Après une bonne agitation 306g de résine phénolique, 37g de résine mélamine sont ajoutés au vernis. Le vernis est enfin dilué avec 2.5g de solvant aromatique (Solvesso 100 de la société Exxon) et 69g de Crésol pour atteindre un extrait sec de 19.7% et une viscosité de 6450 mPa . s .
Il est à noter que la résine phénolique permet ici d'apporter une bonne résistance à l'hydrolyse, et que la résine mélamine autorise quant à elle une amélioration de la tenue chimique. Pour plus de clarté, le tableau 10 résume les différences de compositions entre les mélanges solvants des échantillons 7 et 8.
Tableau 10
Figure imgf000020_0001
Figure imgf000021_0001
Des mesures de la concentration en extrait sec après séchage d'ig de produit pendant 1 heure à
18O0C, ainsi que de la viscosité 2O0C, sont réalisées sur chaque échantillon afin de pouvoir comparer les propriétés caractéristiques des vernis d'émaillage préalablement préparés. Le tableau 11 regroupe les résultats des mesures en question.
Tableau 11
Ech.7 Ech.8
Extrait sec ( Ih, Ig, Ii 30 0C ) 19.5% 19.7%
Viscosité à 2 O0C 52 00 mPa. s 64 50 mPa . s
Là encore, on observe que les propriétés caractéristiques des deux types de vernis d'émaillage sont directement comparables et que la présence de lactate fait avantageusement chuter la viscosité dans le cas de la composition conforme à l'invention (Echantillon 7) .
Des fils de bobinage sont ensuite réalisés en utilisant comme vernis d'émaillage les compositions correspondant aux échantillons 7 et 8. Concrètement, des couches de vernis sont appliquées en nombre déterminé, par passes successives et à vitesse donnée, sur des fils conducteurs de diamètres identiques. La surépaisseur de vernis, ainsi que son aspect en surface, sont alors évalués pour chaque fil émaillé.
Des tests de caractérisation standards sont alors menés pour déterminer les propriétés essentielles des deux types de fils bobinage. Il s'agit classiquement de tests de flexibilité, de choc thermique à 16O0C pendant 30 minutes, d'abrasion unidirectionnelle et de tension de claquage .
Le tableau 3 rassemble à la fois les caractéristiques structurelles des deux types de fils émaillés, ainsi que leurs propriétés caractéristiques propres.
Tableau 12
Figure imgf000022_0001
On observe toujours que les résultats d'émaillage sont tout à fait équivalents. Cela signifie pour cet exemple, que comparé à un mélange solvant de l'état de la technique, un mélange solvant à base de lactate n'altère en rien les performances d'un vernis d'émaillage à base d' acétoformal de polyvinyle.
Exemple V Les échantillons 9 et 10 concernent tous deux des compositions à base de polyamide imide (PAI) . Ils sont respectivement relatifs à une composition conforme à l'invention, c'est-à-dire dont le mélange solvant est pourvue de lactate, et à une composition de référence, c'est-à-dire dont le mélange solvant est à base uniquement de solvants classiques.
La préparation de l'échantillon 9 débute par l'introduction à 6O0C de 2420g de N-méthyl pyrrolidone, de 30.4g d'agent bloquant, de 836g d'anhydride triméllitique, de 81g d'acide téréphtalique, de 580g de solvant aromatique
(Solvesso 100 de la société Exxon) et de 1258g de diisocyanate de diphényl méthane. Le mélange réactionnel est chauffé à 14O0C en 5 heures et l'évolution de la réaction est suivie en mesurant la viscosité et en observant le dégagement de CO2. Lorsque la viscosité visée est atteinte, le réacteur est refroidi en ajoutant 712g de N-méthyl pyrrolidone et 1200g de Lactate d'éthyle. Un vernis d'émaillage d'extrait sec 30% et de viscosité à 2O0C de 2080 mPa.s est alors obtenu.
L'échantillon 10 est quant à lui préparé en introduisant à 6O0C, 2420g de N-méthyl pyrrolidone, 30.4g d'agent bloquant, 836g d'anhydride triméllitique, 81 g d'acide téréphtalique, 580g de solvant aromatique (Solvesso 100) et 1258g de diisocyanate de diphényl méthane. Le mélange réactionnel est chauffé à 14O0C en 5 heures et l'évolution de la réaction est suivie en mesurant la viscosité et en observant le dégagement de CO2. Lorsque la viscosité visée est atteinte, le réacteur est refroidi en ajoutant 1212g de N-méthyl pyrrolidone et 700g de solvant aromatique (Solvesso 100) . Un vernis d' émaillage d'extrait sec 30% et de viscosité à 2O0C de 2820 mPa.s est alors obtenu.
Pour plus de clarté, le tableau 13 résume les différences de compositions entre les mélanges solvants des échantillons 9 et 10.
Tableau 13
Mélange solvant Echantillon 9 Echantillon 10
NMP 63.8% 74%
Lactate d' éthyle 24.4% 0
Solvesso 100 11.8% 26%
Des mesures de la concentration en extrait sec après séchage d'ig de produit pendant 1 heure à 18O0C, ainsi que de la viscosité à 2O0C, sont réalisées sur chaque échantillon afin de pouvoir comparer les propriétés caractéristiques des vernis d'émaillage préalablement préparés. Le tableau 14 regroupe les résultats des mesures en question.
Tableau 14
Figure imgf000024_0001
On observe une fois encore que les propriétés caractéristiques des deux types de vernis d'émaillage sont directement comparables et que la présence de lactate fait à nouveau chuter la viscosité dans le cas de la composition conforme à l'invention (Echantillon 9) . Des fils de bobinage sont ensuite réalisés en utilisant comme vernis d'émaillage les compositions correspondant aux échantillons 9 et 10. Concrètement, des couches de vernis sont appliquées en nombre déterminé, par passes successives et à vitesse donnée, sur des fils conducteurs de diamètres identiques. La surépaisseur de vernis, ainsi que son aspect en surface, sont alors évalués pour chaque fil émaillé. Des tests de caractérisation standards sont alors menés pour déterminer les propriétés essentielles des deux types de fils bobinage. Il s'agit classiquement de tests de flexibilité et de choc thermique à 22O0C. A l'aide d'un appareil TD300 de marque Dansk, on détermine par ailleurs la tangente delta.
Le tableau 15 rassemble à la fois les caractéristiques structurelles des deux types de fils émaillés, ainsi que leurs propriétés caractéristiques propres.
Tableau 15
Figure imgf000026_0001
On observe une nouvelle fois que les résultats d'émaillage sont tout à fait équivalents. Cela signifie que, comparé à un mélange solvant de l'état de la technique, un mélange solvant à base de lactate n'altère en rien les performances d'un vernis d'émaillage à base de polyamide imide .

Claims

REVENDICATIONS
1. Composition de vernis d'émaillage notamment pour fil de bobinage, caractérisée en ce qu'elle comporte une résine polymère et un lactate d'alkyle, et en ce que la résine polymère est choisie parmi le groupe des polyesters, des polyesters imides, des polyesters imides modifiés par du THEIC, des polyuréthanes, des polyamides, des polyamides imides, des acétoformals de polyvinyle, ou un mélange quelconque de ces composés.
2. Composition selon la revendication 1, caractérisée en ce que le lactate d'alkyle est choisi parmi le lactate de méthyle, le lactate d'éthyle, le lactate de propyle, le lactate de butyle, ou un mélange quelconque de ces composés.
3. Composition selon l'une des revendications 1 ou 2, caractérisé en ce que la résine polymère étant choisie parmi le groupe des polyesters, des polyesters imides, des polyesters imides modifiés par du THEIC, des polyuréthanes, des acétoformals de polyvinyle, ou un mélange quelconque de ces composés, ladite composition comporte 5 à 100% en poids de lactate d'alkyle par rapport à la quantité totale de solvants, et de préférence 10 à 70%.
4. Composition selon la revendication 3, caractérisée en ce qu'elle comporte en outre au moins un solvant crésylique.
5. Composition selon l'une des revendications 1 ou 2, caractérisée en ce que la résine polymère étant choisie parmi le groupe des polyamides, des polyamides imides, ou un mélange quelconque de ces composés, ladite composition comporte 5 à 70% en poids de lactate d'alkyle par rapport à la quantité totale de solvants, et de préférence 10 à 40%.
6. Composition selon la revendication 5, caractérisée en ce qu'elle comporte en outre de la N-méthyl pyrollidone.
7. Composition selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comporte en outre au moins un hydrocarbure aromatique .
8. Composition selon la revendication 7, caractérisée en ce qu'elle comporte 10 à 50% en poids d'hydrocarbure aromatique, par rapport à la quantité totale de solvants.
9. Fil de bobinage comportant un élément conducteur recouvert d'une couche isolante, caractérisé en ce que la couche isolante est réalisée à partir d'une composition de vernis d'émaillage selon l'une quelconque des revendications précédentes.
PCT/FR2005/050691 2004-08-30 2005-08-30 Composition de vernis d'emaillage notamment pour fil de bobinage WO2006027524A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05797537A EP1786874A1 (fr) 2004-08-30 2005-08-30 Composition de vernis d'emaillage notamment pour fil de bobinage
US11/660,189 US20070248821A1 (en) 2004-08-30 2005-08-30 Enameling Varnish Composition, in Particular for Magnet Wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0451933 2004-08-30
FR0451933A FR2874615B1 (fr) 2004-08-30 2004-08-30 Composition de vernis d'emaillage notamment pour fil de bobinage

Publications (1)

Publication Number Publication Date
WO2006027524A1 true WO2006027524A1 (fr) 2006-03-16

Family

ID=34948648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/050691 WO2006027524A1 (fr) 2004-08-30 2005-08-30 Composition de vernis d'emaillage notamment pour fil de bobinage

Country Status (5)

Country Link
US (1) US20070248821A1 (fr)
EP (1) EP1786874A1 (fr)
CN (1) CN101010389A (fr)
FR (1) FR2874615B1 (fr)
WO (1) WO2006027524A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5979015B2 (ja) * 2013-01-16 2016-08-24 日立金属株式会社 絶縁電線の製造方法およびその製造装置
CN103773187A (zh) * 2014-01-20 2014-05-07 南通钰成光电科技有限公司 一种电器用漆包线涂料及其制备方法
CN104293172A (zh) * 2014-09-17 2015-01-21 明光市锐创电气有限公司 一种变压器绝缘漆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2495172A (en) * 1946-03-27 1950-01-17 Westinghouse Electric Corp Synthetic wire enamels and conductors insulated therewith
EP0844283A1 (fr) * 1996-11-20 1998-05-27 Japan Synthetic Rubber Co., Ltd. Compositions de résine durcissable et produits réticulés
US20030099844A1 (en) * 2000-04-04 2003-05-29 Hiroyuki Hanahata Coating composition for the production of insulating thin films
US20040138406A1 (en) * 2001-03-30 2004-07-15 Marcus Halik Coating material for electronic components

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209967A (en) * 1981-06-18 1982-12-23 Sumitomo Electric Ind Ltd Insulated wire
US5066484A (en) * 1990-04-30 1991-11-19 Revlon, Inc. Nail enamels containing glyceryl, glycol or citrate esters
TW313582B (fr) * 1994-03-25 1997-08-21 Chisso Corp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2495172A (en) * 1946-03-27 1950-01-17 Westinghouse Electric Corp Synthetic wire enamels and conductors insulated therewith
EP0844283A1 (fr) * 1996-11-20 1998-05-27 Japan Synthetic Rubber Co., Ltd. Compositions de résine durcissable et produits réticulés
US20030099844A1 (en) * 2000-04-04 2003-05-29 Hiroyuki Hanahata Coating composition for the production of insulating thin films
US20040138406A1 (en) * 2001-03-30 2004-07-15 Marcus Halik Coating material for electronic components

Also Published As

Publication number Publication date
US20070248821A1 (en) 2007-10-25
CN101010389A (zh) 2007-08-01
FR2874615A1 (fr) 2006-03-03
EP1786874A1 (fr) 2007-05-23
FR2874615B1 (fr) 2006-10-27

Similar Documents

Publication Publication Date Title
KR101727188B1 (ko) 환경친화적인 납땜 가능한 와이어 에나멜
FR2503171A1 (fr) Resine resistante a la chaleur, son procede de preparation et son utilisation dans une composition isolante pour fils electriques
WO2006027524A1 (fr) Composition de vernis d'emaillage notamment pour fil de bobinage
RU2174993C2 (ru) Средство покрытия проводов и способ его получения
FR2516523A1 (fr) Email de polyamide-imide a forte teneur en solides pour fils magnetiques, procede de preparation et utilisation dans un procede pour recouvrir des fils conducteurs
EP1195775A1 (fr) Composition de vernis, procédé de fabrication de cette composition, fil de bobinage revetu et bobine resultant
FR2482608A1 (fr) Procede de preparation de resines de polyester-imides
EP1546270B1 (fr) Procede de fabrication d'un diisocyanate modifie, procede de fabrication d'un vernis d'emaillage autolubrifiant, procede de fabrication d'un conducteur electrique emaille
FR2503723A1 (fr) Composition de resine resistante a la chaleur et fils isoles avec cette composition
MXPA04007979A (es) Esmaltes para alambre que carecen o tienen bajo contenido de cresol.
US4609702A (en) Ether modified polyesterimide resins
EP1323797A1 (fr) Procédé de fabrication d'un vernis d'emaillage ayant un faible coefficient de frottement et conducteur électrique revêtu d'un tel vernis
JPH08507561A (ja) 錫めっき可能な電線被覆剤並びに電線の連続的被覆法
FR2677033A1 (fr) Procede de fabrication d'un vernis d'emaillage a base de polyamide-imide a solvant polaire aprotique et vernis d'emaillage obtenu par ce procede.
BE837599A (fr) Composition a base de polyurethanne pour le revetement de surfaces
FR2460530A1 (fr) Article electrique comportant un isolant a base de polyester, de polyester-imide ou de polyester-amide-imide recouvert d'une couche de polyether-imide
EP0461500A2 (fr) Revêtement et son utilisation pour revêtir des substrats résistants à la chaleur
EP0315925A1 (fr) Vernis à base de polyamide-imide modifié et son procédé de fabrication
BE667766A (fr)
JPS6341168B2 (fr)
FR2677032A1 (fr) Procede de fabrication d'un vernis d'emaillage a base de polyamide-imide et vernis d'emaillage obtenu par ce procede.
BE567081A (fr)
WO2009090261A1 (fr) Vernis électroisolant résistant aux température élevées
CH349730A (fr) Composition de revêtement, procédé de préparation et utilisation de cette composition
FR2756839A1 (fr) Vernis polyesterimidiques, leur procede d'obtention et leur utilisation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005797537

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580029200.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005797537

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11660189

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11660189

Country of ref document: US