WO2006025600A1 - Method for maintaining positive electrode material composition for lithium secondary battery - Google Patents

Method for maintaining positive electrode material composition for lithium secondary battery Download PDF

Info

Publication number
WO2006025600A1
WO2006025600A1 PCT/JP2005/016466 JP2005016466W WO2006025600A1 WO 2006025600 A1 WO2006025600 A1 WO 2006025600A1 JP 2005016466 W JP2005016466 W JP 2005016466W WO 2006025600 A1 WO2006025600 A1 WO 2006025600A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
material composition
polymer
composition
Prior art date
Application number
PCT/JP2005/016466
Other languages
French (fr)
Japanese (ja)
Inventor
Alan Vallee
Paul-Andre Lavoie
Kazuhiko Murata
Fumihide Tamura
Hiromoto Katsuyama
Taketo Toba
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to JP2006532025A priority Critical patent/JPWO2006025600A1/en
Publication of WO2006025600A1 publication Critical patent/WO2006025600A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of storing a positive electrode material composition used for producing a lithium secondary battery. Specifically, when transporting and storing the positive electrode material composition for a lithium secondary battery, the positive electrode material composition such that the battery performance of the lithium secondary battery produced by the positive electrode material composition is not deteriorated. On how to save Ming background technology
  • the positive electrode used in the lithium secondary battery includes: a polymer as a matrix, an electrolyte salt for transporting ions, an electrode active material for storing ions, a conductive aid, and a solvent, if necessary.
  • a polymer as a matrix an electrolyte salt for transporting ions
  • an electrode active material for storing ions a conductive aid
  • a solvent if necessary.
  • it is generally manufactured using a composition obtained by kneading as a material, and so far, various batteries using a positive electrode formed using such a composition as a material have been proposed (for example, a patent) Reference 1 to 4).
  • the positive electrode is produced by extruding the composition as described above, or by casting it by solution casting and devolatizing the solvent.
  • Patent Document 1 Special Table 2 0 0 2-5 3 5 2 3 5
  • Patent Document 2 US Patent No. 5 7 5 5 9 8 5
  • Patent Document 3 International Publication No. 0 3 Z 7 5 3 7 5 Breadlet
  • Patent Document 4 International Publication No. 0 3 Z 9 2 0 1 7 Pamphlet Abstract of the Invention Problems to be Solved by the Invention
  • one or all of the electrolyte salt, the electrode active material and the conductive additive are mixed (kneaded) in a polymer in advance.
  • the battery performance is significantly inferior to the case where a battery is manufactured using a positive electrode obtained by individually procuring each raw material and mixing (kneading) immediately before molding.
  • Such problems usually occur when a polymer as a matrix is previously mixed (kneaded) with other raw materials and stored for a certain period before being used for molding for transportation or storage.
  • the problem to be solved by the present invention is that, in transporting and storing the positive electrode material composition, the battery performance of the lithium secondary battery using the positive electrode produced by the positive electrode material composition is not deteriorated.
  • An object of the present invention is to provide a method of storing a positive electrode material composition for a lithium secondary battery, which can store the positive electrode material composition. Means to solve the problem
  • the present inventors diligently studied to solve the above-mentioned problems.
  • the molecular weight of the polymer serving as the matrix tends to slightly decrease in the coexistence of the electrode active material and the conductive aid, and it is a minor level that does not cause any problems in applications other than such applications of the positive electrode material.
  • the decrease in molecular weight of the polymer has a significant adverse effect on cell performance in the positive electrode material for lithium secondary batteries.
  • the degree of molecular weight reduction of the polymer is acceptable so long as the battery performance is not adversely affected.
  • the first method for storing a positive electrode material composition for a lithium secondary battery according to the present invention is a method for storing a positive electrode material composition that essentially includes a polymer, an electrode active material and a conductive additive, Mw weight average molecular weight of the polymer in the previous composition.
  • Mw weight average molecular weight of the polymer in the composition when stored for 18 days
  • D Mw reduction rate of the weight average molecular weight represented by the following formula (1) is 10% or less It is characterized by
  • a second method of storing a positive electrode material composition for a lithium secondary battery according to the present invention is a method of storing a positive electrode material composition that essentially includes a polymer, an electrode active material, and a conductive additive, and includes an inert gas atmosphere. It is characterized in that temperature control is performed to 5 or less under an atmosphere.
  • a third method of storing a positive electrode material composition for a lithium secondary battery according to the present invention is a method of storing a positive electrode material composition that essentially includes a polymer, an electrode active material, and a conductive support agent, and is performed under an air atmosphere. Temperature control to 5 ° C or less. Effect of the invention
  • the decrease in molecular weight of the polymer in the positive electrode material composition is suppressed at the time of transportation, storage and the like, and the positive electrode manufactured by the positive electrode material composition.
  • the battery performance of the lithium secondary battery can be prevented from being degraded.
  • the storage method according to the present invention the method for storing the positive electrode material composition for a lithium secondary battery according to the present invention (hereinafter sometimes referred to as “the storage method according to the present invention”) will be described in detail.
  • the present invention is not bound to be clear, and modifications can be made as appropriate without departing from the spirit of the present invention other than the following examples.
  • the positive electrode material composition for a lithium secondary battery to be stored in the storage method of the present invention is a composition essentially comprising a polymer, an electrode active material and a conductive auxiliary.
  • the polymer which is an essential component of the positive electrode material composition is not particularly limited as long as it is usually used as a matrix of a positive electrode material for a lithium secondary battery, and is an ion conductive polyether polymer. Is preferred.
  • the polymer is an ethylene oxide-based polymer in that the battery performance as a positive electrode material can be further improved.
  • the ethylene oxide-based polymer suitable as the polymer is, for example, ethylene oxide. Structural formula below (1)
  • R a (where R a represents a carbon number of 1 to 16, any of alkyl group, cycloalkyl group, aryl group, aralkyl group, (meth) ataryloyl group and alkenyl group) Or a single CH 2 — O— R e — R a group (where R e is a single (CH 2 — CH 2 — 0) p — structure (p is an integer from 0 to 10)) It can be obtained by polymerizing a mixture of monomers essentially comprising the substituted oxylan compound shown in the above).
  • the monomer mixture may contain other monomers in addition to ethylene oxide and the substituted alkoxy compound.
  • the proportion of each monomer in the monomer mixture is not particularly limited and may be set appropriately.
  • Examples of the substituted oxylan compound represented by the above structural formula (1) include propylene oxide, butylene oxide, 1,2- epoxypentane, 1,2-epoxyhexane, 1,2-epoxyoctane, cyclohexoxide and styrene oxide. Or methyl glycidyl ether, cetyl dalysidyl ether, ethylene glycol methyl glycidyl ether and the like.
  • the substituent is a crosslinkable substituent, for example, epoxy butene, 3, 4-epoxy 1 1-pentene, 1, 2-epoxy 1, 5 9-cyclododecadiene, 3, 4- Epoxy, 1-butyl cyclohexene, 1, 2-epoxy, 5-cyclo-Otene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate and glycidyl 1 ⁇ xanoate or or buli glycidyl ether, aryl Glycidyl ether, 4-vinylcyclohexyl glycidyl ether, a -terpenyl glycidyl ether, cyclohexenyl methyl dalysyl ether, 4-vinylbenzyl glycidyl ether, 4-arylbenzyl glycidyl ether.
  • a crosslinkable substituent for example, epoxy butene, 3, 4-
  • Sylkyl ether ethylene glycol palyl glycidyl ether, ethylene glycol vinyl glycidyl ether, diethylene glycol palyl glycidyl ether, diethylene glycol vinyl dalysyl ether, triethylene glycol palyl glycidyl ether, triethylene glycol vinyl dalysyl ether, oligo Examples thereof include ethylene glycol glycidyl ether and oligoethylene glycalyl vinyl dalysyl ether.
  • the number of substituted oxylan compounds may be one or two or more.
  • the monomer mixture may be polymerized while stirring in a solvent.
  • the method for such polymerization is not particularly limited, but preferred examples include a solution polymerization method and a precipitation polymerization method. Among them, the solution polymerization method is more preferable because it has excellent productivity.
  • a solution polymerization method in which polymerization is performed while supplying each monomer as a raw material to a previously charged solvent is particularly preferable because of safety such as easy removal of heat of reaction.
  • a commonly used polymerization initiator, an antioxidant (for example, a general-purpose phenol-based antioxidant etc.), a solubilizer, etc. may be added. ,.
  • the solvent examples include aromatic hydrocarbon solvents such as benzene, toluene, xylene and ethylbenzene; and aliphatic hydrocarbons such as heptane, octane, n-hexane, n-pentane and 2, 2, 4-trimethylpentane.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene and ethylbenzene
  • aliphatic hydrocarbons such as heptane, octane, n-hexane, n-pentane and 2, 2, 4-trimethylpentane.
  • Solvents Alicyclic hydrocarbon solvents such as cyclohexane and methylcyclohexane; Ether solvents such as jetyl ether, dibutyl ether and methyl butyl ether; Solvents for ethylene diallyl dialkyl ethers such as dimethoxetane; THF Organic solvents which do not contain active hydrogen such as hydroxyl groups such as cyclic ether solvents such as (tetrahydrofuran) and dioxan are preferable, and toluene, xylene and n-hexane are more preferable.
  • the solvent is an organic solvent which does not contain water at all, but the problem is that the hydroxide formed by the reaction of water and metal ions etc. becomes an insulating layer and the cycle characteristics of the battery are deteriorated. It is preferable to avoid it.
  • the weight average molecular weight (Mw) of the polymer is not particularly limited, but is preferably 2 0 0 0 5-5 0 0 0 0 0, more preferably 3 0 0 0 0 3 0 0 , 0 0 0, and more preferably 4 0, 0 0 0 to 2 0 0, 0 0 0. If the weight average molecular weight is less than 20, 00, there is a risk that tack will occur when forming into a positive electrode, while if it exceeds 500, the forming itself becomes difficult, Processability and handling may be reduced.
  • the molecular weight distribution (MwZMn) of the polymer is not particularly limited, but is preferably 3 or less, more preferably 2 or less. When the molecular weight distribution is more than 3, there is a risk that tackiness may occur during molding to form a positive electrode, or poor and indling properties may deteriorate.
  • the electrode active material which is an essential component of the positive electrode material composition, has an electrochemical effect on the insertion and desorption of Li ions, and is generally used to form a positive electrode.
  • the electrode active material may be only one type, or two or more types.
  • the proportion of the electrode active material in the positive electrode material composition is not particularly limited, but is preferably, for example, 0.1 to 50 times by weight the polymer, and more preferably 0.3 to 2 times. It is preferable that it is 0 times, more preferably 0.5 to 10 times. If the amount of the electrode active material is too small, the function as the positive electrode may not be sufficiently exhibited. On the other hand, if the amount of the electrode active material is too large, molding may be difficult.
  • the conductive auxiliary agent which is an essential component of the positive electrode material composition, is not particularly limited as long as it is generally used to form a positive electrode, and examples thereof include acetylene black, ketjen black, Graphite, etc. Can be mentioned.
  • the conductivity assistant may be only one kind or two or more kinds.
  • the proportion of the conductive auxiliary agent in the positive electrode material composition is not particularly limited, but is preferably 1 to 20 parts by weight, more preferably 2 parts by weight with respect to 100 parts by weight of the electrode active material, for example. It should be about 15 parts by weight. If the amount of the conductive additive is too small, the conductivity of the positive electrode may be insufficient. If the amount of the conductive additive is too large, molding may be difficult.
  • the positive electrode material composition preferably also contains an electrolyte salt required to form a positive electrode.
  • the electrolyte salt is not particularly limited as long as it is usually used to form a positive electrode, and examples thereof include, but are not limited to, for example, fluorine ion, chloride ion, bromine ion, iodine ion, heptafluoropropyl Sulfonate ion, bis (trifluoromethanesulfonyl) imide ion, bis (heptafluoropropione les / lephoni imidate ion, trifnoleoporte sulfonate ion, tetrafluoroboronate ion, nitrate ion, As s F 6- , PF 6- , stearyl sulfonate ion, octyl sulfonate ion, dodecyl benzene sulfonate ion
  • L i BF 4, L i PF 6, L i CF 3 S 0 3, L i C 4 F 9 S_ ⁇ 3, L i N (CF 3 S 0 2) 2 , L i N (C 2 F 6 S 0 2 ) 2 is more preferable
  • the number of electrolyte salts may be only one, and may be two or more.
  • the proportion is not particularly limited, but for example, when the polymer is a polyether polymer, the total number of moles of ether oxygen in the polyether polymer and the value of the number of moles of the electrolyte salt are 1 to 36. It is preferable that the ratio be 3 to 3, more preferably 6 to 3.
  • the amount of the electrolyte salt is too small, the ion conductivity may be reduced, On the other hand, even if the amount of electrolyte salt is too large, the effect of improving ion conductivity corresponding to the amount of electrolyte salt does not appear, which is economically disadvantageous. It is
  • the positive electrode material composition may contain a solvent.
  • the solvent is one that is finally removed by means such as degassing when molded into a positive electrode, but by including the solvent in the composition, the polymer such as the electrolyte salt etc. can be obtained.
  • the components that are difficult to dissolve can be dissolved in a solvent to facilitate mixing of the components, or the viscosity can be adjusted so that they can be easily handled during transport and storage.
  • the solvent is not particularly limited, and can be used, for example, when obtaining the above-mentioned ethylene oxide polymer. .
  • the proportion of the solvent in the positive electrode material composition is not particularly limited, and may be set as appropriate.
  • the polymerization reaction solution contains the solvent, so the polymerization reaction solution is used as it is for the positive electrode material. It may be mixed as a component of the composition, or after the solvent is once removed from the polymerization reaction solution, another solvent may be added as a component of the positive electrode material composition.
  • the positive electrode material composition further comprises, if necessary, for example, an antioxidant, a light stabilizer, a lubricant, an antistatic agent, a reinforcing agent, a filler, an antioxidant (for example, a general-purpose phenol-based antioxidant etc.), etc.
  • the additive may be suitably contained in the range which does not impair the effect of the present invention.
  • the positive electrode material composition may contain, for example, a component contained in a polymerization reaction solution obtained by polymerization when obtaining the polymer.
  • the positive electrode material composition to be stored in the storage method of the present invention is, for example, a solution, a slurry, a solution, particles, pellets, fine particles, a desired shape (a size larger than particles or pellets).
  • the polymer, the electrode active material and the conductive auxiliary agent may be mixed or kneaded, if necessary, to volatilize, granulate, dry, adjust, etc. It is obtained by applying moisture and the like. From the viewpoint of ease of handling, etc., the solidified material obtained by mixing or kneading each component and removing the solvent by devolatilization (particulate, pellet, fine particles, lump of desired shape, etc.
  • the water content in the positive electrode material composition is to avoid the problem that the hydroxide layer formed by the reaction of water and metal ion becomes an insulating layer and the cycle characteristics of the battery are deteriorated.
  • the lower one is preferable, and from this point of view, the composition obtained through at least one of devolatilization, drying and humidity control is said to be preferable.
  • the method of devolatilization For the method of mixing or kneading the above-described components that essentially contain the polymer, the electrode active material, and the conductive auxiliary agent, the method of devolatilization, the method of granulation, the method of drying, the method of humidity control, etc. A conventionally known method may be adopted as appropriate.
  • the weight average molecular weight of the polymer in the positive electrode material composition is Mw.
  • the reduction rate (D Mw ) of the weight average molecular weight represented by the following formula (1) is 10% or less It is characterized by Preferably, the reduction rate (D Mw ) when stored for 18 days is 5% or less.
  • the reduction rate (D Mw ) is 10% or less
  • a positive electrode material is prepared, and lithium is produced using the positive electrode material. Even when a secondary battery is manufactured, good battery performance can be exhibited.
  • the reduction rate (D Mw ) it is preferable to adopt the second or third storage method of the present invention described later.
  • the storage method in which the inert gas in the second storage method of the present invention described later is replaced with dry air having a dew point of 40 ° C. or less, preferably 50 ° C. or less is preferable.
  • the reduction rate (D Mw ) when stored for 18 days as described above is 10%.
  • the reduction rate of the molecular weight when stored for 3 days (when the weight average molecular weight of the polymer in the composition when stored for 3 days is Mw, it is represented by the above formula (1)
  • the weight-average molecular weight reduction rate is preferably 10% or less, preferably 5% or less.
  • the positive electrode material composition is stored in a space filled with an inert gas and temperature-controlled to 50 ° C. or less.
  • the space filled with the inert gas ie, the inert gas atmosphere
  • the composition is stored.
  • the space is filled with an inert gas such that the oxygen concentration in the space to be reduced is 15 V o 1% or less, more preferably 10 V o 1% or less, and even more preferably 7 V o 1% or less.
  • the flow rate, time, and the like at the time of filling the inert gas may be appropriately set so that the oxygen concentration in the space falls within the above range, in consideration of the size of the space and the like.
  • a mixed gas of an inert gas and air may be filled so that the oxygen concentration in the space falls within the above range.
  • the inert gas is not particularly limited, and examples thereof include nitrogen gas, argon gas, and helium gas.
  • the inert gas may be only one kind or two or more kinds.
  • the positive electrode material composition is stored in a space filled with air and temperature-controlled to 5 ° C. or less.
  • the air filled in the space for storing the positive electrode material composition may be dry air having a low dew point (for example, a dew point of 40 ° C. or less) or normal air (a dew point is not high yet). It may be dry air). That is, if the temperature exceeds 5 ° C. (for example, room temperature), as described above, the space for storing the positive electrode material composition by filling with an inert gas or the following dry air with a dew point of 140 or the like.
  • the positive electrode material composition may be stored as it is, for example, in an apparatus used for preparing a composition such as mixing, kneading, devolatilization, drying, conditioning, granulation, etc.
  • the container or bag may be filled and stored, and the storage form is not limited, but in the first storage method, the inert gas atmosphere, ie, the space filled with the inert gas is maintained It is preferable to store in a sealed device, container, bag, etc.
  • a device in the case of storage with a device, it may be stored in a batch type storage device such as a hopper or silo, and in the case of storage in a container, it may be stored in a metal drum or container, etc.
  • a metal drum or container if you do, you may use an aluminum foil bag or a multilayer film bag containing an aluminum foil layer (in particular, in consideration of heat sealability, a bag made by laminating aluminum foil on resin film such as polyethylene or polypropylene) It is good if it preserve
  • the positive electrode material composition is a solidified material
  • the solidified materials adhere to each other and not form a lump, even if a plurality of such materials are stored.
  • the solidified material is not in the form of a solution or paste, but is, for example, in the form of particles, pellets, or lumps of a desired form.
  • a plurality of positive electrode material compositions which are in a solidified state are usually stored in a single container, bag or the like, in which case the solidified bodies adhere to each other to form a lump (so-called blocking) Easily).
  • the melting point of the composition is lowered compared to the case where the composition does not contain an electrolyte salt. It becomes easy to become.
  • the positive electrode material composition is in a so-called blocking state, the deflection when supplying the composition from the feeder 1 to the extruder becomes large when it is molded to produce a positive electrode, and stable feeding can not be performed, and molding is performed. The problem arises that the dimensions and the like of the subsequent molded product are not uniform. In order to make the solidified products of the composition adhere to each other and not form a lump, it is preferable that fine particles are added during storage.
  • the fine particles were attached to the surface of the positive electrode material composition which is a solidified product by adding and mixing it in a space (apparatus, container, bag, etc.) for storing the fine particles together with the solidified positive electrode material composition. If it is stored as a state, or when a positive electrode material composition which is a solidified product is obtained, fine particles are also added together with the above-mentioned components so as to be stored as a state in which fine particles are contained inside the positive electrode material composition. do it.
  • the fine particles are not particularly limited as long as the specific surface area of the particles is 10 m 2 / g or more in nitrogen adsorption specific surface area (BET method).
  • the specific surface area of the fine particles is a nitrogen adsorption specific surface area (BET method), preferably 2 O m 2 g or more, more preferably 40 m 2 / g or more, and further preferably 10 O n ⁇ Z g It is good that it is above. If the specific surface area of the fine particles is less than 10 m 2 Z g in nitrogen adsorption ratio surface area (BET method), the adhesion preventing effect of the solidified positive electrode material compositions is reduced, so the effect is sufficient. However, if the amount of the fine particles added is increased excessively, the battery characteristics will be impaired.
  • the fine particles for example, silica particles, carbon particles, alumina particles, titanium particles, magnesia particles and the like can be used. Among them, it is particularly preferable to use a silica particle from the viewpoint of having the least electrical influence and easy dissolution uniformly in the positive electrode material composition.
  • the silica particles are not particularly limited, but those having a particle diameter of less than 60 / im are preferable.
  • the silica particles are preferably hydrophobic, and for example, “Aerosil R 9 2 2” or “Aerosil R 9 7 4” manufactured by Nippon Aerosil Co., Ltd. is preferably used as a commercial product.
  • the addition amount of the fine particles is not particularly limited, for example, it is preferable to be 0.1 to 1% by weight with respect to the positive electrode material composition.
  • the positive electrode material composition stored by the storage method of the present invention may be formed according to the usual method after blending the components required for the positive electrode material as necessary, for example, including it if it does not contain an electrolyte salt. Can be used as the positive electrode.
  • the lithium battery produced by the usual method using the positive electrode obtained in this manner can be used in various batteries such as short test, cycle characteristics, etc. Example that becomes excellent in performance
  • the molecular weight reduction rate in the comparative example is Mw the initial weight average molecular weight of the polymer in the positive electrode material composition before storage.
  • the weight-average molecular weight of the polymer in the composition after storage is M w, which is calculated based on the following formula.
  • the weight average molecular weight of the polymer in the positive electrode material composition was measured as follows. That is, acetonitrile is added to the composition to make a 1% solution, and after sufficiently stirring with a Tutch mixer and shaker to dissolve the polymer component, the insoluble matter is filtered by a filter (non-aqueous system, 0.45 ⁇ ). The resulting filtrate is diluted with an eluent (acetonitrile / water-water-sodium borate mixture solution) to give a sample, and a GPC apparatus (Tosoh “HCL_8120GPC”) is used as a sample, and a standard molecular weight sample of polyethylene oxide. It calculated
  • this reactor After replacing the air in a 100 L reactor (this reactor is called “Reactor A”) equipped with Max Blend wings, a hot water jacket, and an addition port with nitrogen gas, the hot water jacket temperature is raised to 70 ° C.
  • Polymer Ethylene butylene butylene oxide copolymer: weight average molecular weight (Mw) 124, 000, molecular weight distribution (MwZMn) 1 which had been warmed and kept at 80 ° C. in advance. 33. 30 parts of a solution of 45) in toluene (solid content 45.8%) was added.
  • Li 3 N (CF 3 S 0 2 ) 2 lithium bis (trifluoromethanesulfone) imide
  • Reactor B this reactor is referred to as “Reactor B”) equipped with a stirring blade (“Super blend wing”, Sumitomo Heavy Industries, Ltd.), a warm water jacket, and an addition port.
  • the reactor is replaced with nitrogen, and then, in the reactor, 0.50 076 parts of a phenol-based antioxidant (“Cysnox BB” manufactured by AP Corporation, 30 parts of toluene, and a mixture of an electrode active material and a conductive aid (“L um oxide / carbonblend "(US AVE S TOR LLC) 31. 68 parts were introduced one by one. After that, the residue remaining in the hopper and piping etc.
  • the piping of the reactor A is made via the piping previously attached to connect the reactor A and the reactor B.
  • Contents (mixed solution of polymer and lithium salt) 42. 58 parts are charged into reactor B, then heated with a water jacket and stirred at 50 for 2 hours to obtain a uniform slurry solution did.
  • BT_30-S 2 manufactured by BLASTIC INSTRUMENT RESEARCH INSTITUTE
  • the above reactor via a gear pump at a biaxial rotation speed of 100 rpm and an internal temperature of 100 ° C.
  • the slurry solution was fed, and degassing was applied under a reduced pressure of 349 Torr, and the solvent (toluene) was distilled off. Then, the rod-like body extruded from the outlet of the twin-screw extruder is formed into a sheet of 2 mm in thickness using a rolling two-roll ("8 x 20 BOX type roll machine" manufactured by Kansai Roll Co., Ltd.). The sheet was placed in a nitrogen-replaced bag, heat sealed, and stored in a refrigerator at 10 ° C. or less overnight. Next, the sheet material cooled to 9 ° C.
  • a phenol-based antioxidant (“Y-Sinox BB” manufactured by AP Corporation) was charged into the reactor. After that, connect a pressure reduction line to the reactor, and apply a pressure reduction of 60 to 69 Torr at 47 to 49 ° C while stirring with inner blade rotation 75 rpm and outer blade rotation 29 rpm to distill off toluene. The mixture was de-pressurized with nitrogen to form a slurry solution having a solid content of about 64. 4%.
  • the melt extruded from the outlet of the KRC kneader is sent to the strand die (2 mm in diameter, 2 holes) via a gear pump, The mixture was extruded into a stream to obtain a 3 mm-diameter string.
  • the string-like material is first placed on a belt conveyor ("San Ye concha SJ Y_15-200" manufactured by Sanei Mfg. Co., Ltd.) installed under a nitrogen stream at room temperature, allowed to cool, and then surfaced under a nitrogen stream. It was placed on a single-belt crater at a temperature of 10 ° C. (“Steel-belt single cooler” manufactured by Nippon Steel Conveyor Co., Ltd.) and cooled, and then allowed to stand overnight under nitrogen flow for drying.
  • the obtained string was cut into a round pellet having a length of about 3.65 mm using a strand cutter ("SFC-100” manufactured by Izu Chemical Co., Ltd.).
  • the pellet is placed in a conical dryer ("vacuum tumble dryer” manufactured by Nissan Kogyo Co., Ltd.)
  • a sealable container (volume 30 OmL) equipped with a thermometer, a gas inlet and a valve outlet, and a lid, close the lid, and open the gas inlet and outlet valves.
  • nitrogen gas is introduced into the vessel from the inlet at a flow rate of 1 O OmL Z minutes for 3.5 minutes to replace the air in the vessel with nitrogen gas, and then the gas outlet valve is closed immediately and the inlet valve is closed. Closed and sealed the container.
  • the container was placed in a thermostat so as to maintain the temperature in the container at 25 ⁇ 5 ° C. (room temperature), and stored for 18 days.
  • the composition in the container was immediately analyzed by a GPC apparatus which prepared a calibration curve using a standard molecular weight sample of polyethylene oxide, and the weight average molecular weight of the polymer in the composition was measured to be 122,000. There was a molecular weight reduction rate of 1.6% with respect to the initial weight average molecular weight of 14,000 of the polymer in the positive electrode material composition (A).
  • Example 1 2 The positive electrode material composition (A) was stored in the same manner as in Example 1-1 except that nitrogen gas was changed to argon gas. Thereafter, in the same manner as in Example 1-1, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured to be 123,000, indicating that the positive electrode material composition (A) The molecular weight reduction rate was 0.8% with respect to the initial weight-average molecular weight of 124,000 of the polymer contained therein.
  • the positive electrode material composition (A) Place the positive electrode material composition (A) in a sealable container (volume 30 OmL) equipped with a thermometer and a lid, close the lid, and close the container without replacing the inside of the container with nitrogen gas (at this time,
  • the water content of the air in the container was about 6000 ppm) and the container was placed in a thermostat so as to maintain the temperature in the container at 25 ⁇ 5 ° C. (room temperature), and stored for 18 days.
  • the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured in the same manner as in Example 11 and found to be 111,000, and the positive electrode material composition (A).
  • the molecular weight reduction rate to the initial weight average molecular weight 124,000 of the polymer contained was 10.5%.
  • the positive electrode material composition (B) placed in a sealable container (volume 30 OmL) equipped with a thermometer, a gas inlet with a valve and a gas outlet, and a lid, close the lid, and open the valves for the gas inlet and outlet.
  • nitrogen gas is introduced into the vessel from the inlet at a flow rate of 1 O OmL Z minutes for 3.5 minutes to replace the air in the vessel with nitrogen gas, and then the gas outlet valve is closed immediately and then the inlet Closed the container and sealed the container.
  • the container was placed in a thermostat so as to maintain the temperature in the container at 25 ⁇ 5 ° C. (room temperature), and stored for 18 B.
  • Example 1-1 Thereafter, in the same manner as in Example 1-1, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured, to be 119,000.
  • Cathode Material Composition (B) The molecular weight reduction rate with respect to the initial weight average molecular weight of 124,000 of the polymer in was 4.0%.
  • the weight average molecular weight of the polymer in the composition when stored for 3 days was measured to be 123,000, and the percentage reduction in molecular weight relative to the initial weight average molecular weight 124,000 of the polymer in the positive electrode material composition (B) was 0.8%.
  • the positive electrode material composition (B) was stored in the same manner as in Example 1-3 except that nitrogen gas was changed to argon gas. Thereafter, in the same manner as in Example 11, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured, and it was 123,000, and the positive electrode material composition (B) The molecular weight reduction rate was 0.8% with respect to the initial weight-average molecular weight of 124,000 of the polymer contained therein.
  • the weight average molecular weight of the polymer in the composition when stored for 3 days and 16 days was measured, it was 124,000 in each case, and the initial weight of the polymer in the positive electrode material composition (B) was measured.
  • the rate of decrease in molecular weight relative to the average molecular weight of 124,000 was all at 0. 0%.
  • the positive electrode material composition (B) Place the positive electrode material composition (B) in a sealable container (volume 300 mL) equipped with a thermometer and a lid, close the lid, and immediately seal the container without replacing the inside of the container with nitrogen gas (at this time, The water content of the air in the container was about 6000 ppm), the container was placed in a thermostat so that the temperature in the container was maintained at 25 ⁇ 5 ° C. (room temperature), and stored for 16. days did. Thereafter, in the same manner as in Example 11, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured to be 98,000. In the positive electrode material composition (B) The molecular weight reduction rate was 21.0% relative to the initial weight average molecular weight of 124,000 of the polymer.
  • the positive electrode material composition (B) was stored in the same manner as Comparative Example 1-2 except that the storage period was changed from 16 days to 9 days. Thereafter, the composition in the container was immediately analyzed in the same manner as in Example 1-1, and the weight average molecular weight of the polymer in the composition was measured to be 104,000, and it was found in the positive electrode material composition (B). The rate of decrease in molecular weight relative to the initial weight average molecular weight of 124,000 of the polymer was 16.1%.
  • the positive electrode material composition (A) was stored in the same manner as in Example 11 except that nitrogen gas was changed to dry air with a dew point of 50 ° C. (content of water content: 39 ppm). Thereafter, in the same manner as in Example 11, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured, to be 118, 000, and the positive electrode material composition (A) The molecular weight reduction rate was 4.8% with respect to the initial weight-average molecular weight of 124,000 of the polymer contained therein.
  • the positive electrode material composition (A) is placed in a sealable container (volume 300 mL) equipped with a thermometer and a lid and the lid is closed, and the container is closed (at this time, the amount of ice contained in the container is about ice) 3000
  • the container was put in a thermostat so that the temperature in the container was maintained at 0 to 5 ° C., and stored for 18 days. Thereafter, in the same manner as in Example 11, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured, and it was 123,000. The molecular weight reduction rate was 0.8% with respect to the initial weight average molecular weight of 124,000 of the polymer in.
  • Example 1_1 Thereafter, in the same manner as in Example 1_1, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured to be 122,000.
  • the polymer in the positive electrode material composition (A) The molecular weight reduction rate to an initial weight average molecular weight of 120,000 was 1.6%.
  • the positive electrode material composition (B) is placed in a sealable container (volume 300 mL) equipped with a thermometer and a lid, the lid is closed, and the container is closed (at this time, the moisture content of the air in the container is about
  • the container was placed in a thermostat so that the temperature in the container was maintained at 0-5 ° C., and stored for 18 days. Thereafter, the composition in the container was immediately analyzed and the weight average molecular weight of the polymer in the composition was measured in the same manner as in Example 11 and found to be 118, 000.
  • the positive electrode material composition (B) The decrease in molecular weight was 4.8% relative to the initial weight-average molecular weight of 124,00 ° of the polymer contained therein.
  • the positive electrode material compositions lightly adhere to each other and maintain the shape as they were in the container, but when lightly adhere, they easily separate.
  • the positive electrode material composition adheres firmly to each other and maintains its shape as it was in the container, and it does not easily come apart even if it slightly sticks
  • a sealable container volume 300 mm
  • the lid closed and with the gas inlet and outlet valves open, introduce nitrogen gas into the vessel from the inlet at a flow rate of 1 OO m LZ minutes for 3.5 minutes to make the air in the vessel nitrogen
  • the gas outlet valve was closed and the inlet valve was closed to seal the vessel.
  • the container was placed in a thermostat so that the temperature in the container was maintained at 40 ° C., and stored for 18 days.
  • Example 1_1 the composition in the container was immediately analyzed in the same manner as in Example 1_1, and the weight average molecular weight of the polymer in the composition was measured to be 1 18, 00, and the composition of the positive electrode material was The molecular weight reduction rate with respect to the initial weight average molecular weight 1 2 4 0 0 0 0 of the polymer in substance ( ⁇ ') was 4 8%.
  • Example 3-1 In the same manner as in Example 3-1, a mixture of positive electrode material composition ( ⁇ ') particles and silica particles was obtained.
  • Example 3-1 In the sealable glove box, put together with the above-mentioned mixture, a balance, a cylindrical container, a plastic bag with a chuck, a weight, etc. necessary for the subsequent operation, and adjust the temperature in a thermostat at 20 ° C.
  • the same procedure as in Example 3-1 was performed except that the battery was placed in a constant temperature bath at 0 ° C. and stored for 9 days, and the positive electrode material composition ( ⁇ ') was stored. Thereafter, in the same manner as in Example 3-1, the state of blocking was evaluated. The result was ⁇ .
  • the close the lid put, 3 nitrogen gas into the container from the conductor inlet in a state of spaced valve of the gas inlet and outlet flow rate 1 0 0 m L / / min. introduced in the container 5 minutes
  • the gas outlet valve was closed and the inlet valve was closed to seal the container.
  • the container was placed in a thermostat so that the temperature in the container was maintained at 20 ° C., and stored for 18 days.
  • composition (A The molecular weight reduction rate to the initial weight average molecular weight of 1,204, 0 0 0 of the polymer in b) was 1.6%.
  • Example 3-1 In the same manner as in Example 3-1, a mixture of positive electrode material composition ( ⁇ ') particles and silica particles was obtained.
  • the items required for the subsequent operation such as Tendon, cylindrical container, plastic bag with chuck, weight, etc. From this point on, carry out the operation of circulating nitrogen gas in the glove box. Do not do this (at this time, the amount of moisture contained in the air in the glove box was about 100 ppm), and the temperature in 0 to 5 ° C and the temperature in 0 to 5 ° C.
  • the same procedure as in Example 3-1 was carried out except that the inside was changed to storage for 9 days, and the state of blocking was evaluated. The result was ⁇ .
  • the mixture of the positive electrode material composition ( ⁇ ′) particles and the silica particles described above is put into a sealable container (volume 300 mm) equipped with a thermometer and a lid, the lid is closed, and the container is sealed. After that (at this time, the moisture content of the air in the container was about 100 ppm), the container was placed in a thermostat so that the temperature in the container was maintained at 0 to 5 ° C. It was stored for 18 days. Thereafter, the composition in the container was immediately analyzed in the same manner as in Example 1-1, and the weight average molecular weight of the polymer in the composition was measured. The molecular weight reduction rate with respect to the initial weight average molecular weight of the polymer in the substance ( ⁇ ') was 1024%.
  • the positive electrode material composition ( ⁇ ′) 68.5 g) was changed to weighing), and that the temperature was controlled in a constant temperature bath at 23.degree. C., and it was put in a constant temperature bath at 23.degree. C. and stored for eight days.
  • the state of blocking was evaluated in the same manner as in 3-1. The result was X.
  • Example 3-4 the positive electrode was prepared in the same manner as in Example 3-4, except that the temperature was controlled in a thermostat of 13.degree. C., and then stored in a thermostat of 13.degree. C. for 8 days.
  • the material composition ( ⁇ ') was saved. Thereafter, in the same manner as in Example 3-1, the state of blocking was evaluated. The result was ⁇ ⁇ > ⁇ .
  • Example 3-4 the operation of circulating nitrogen gas in the glove box was not performed (at this time, the water content of the air in the glove box was about 150 ppm), and
  • the positive electrode material composition ( ⁇ ′) was prepared in the same manner as in Example 3-4 except that the temperature was controlled in a thermostat of 5 ° C., and stored in a thermostat of 0 to 5 ° C. and stored for 8 days. Saved. Thereafter, in the same manner as in Example 3-1, the state of blocking was evaluated. The result was ⁇ .
  • Example 3-6 In the same manner as in Example 3-6 except that the temperature was controlled in a thermostat at 110 ° C., and the temperature was changed to storage for 10 days in a thermostat at 110 ° C. , The positive electrode material composition (A,) was stored. Thereafter, in the same manner as in Example 3-1, the state of blocking was evaluated. The result was ⁇ . Above example ⁇ Table 1 summarizes the results for the comparative example,
  • the positive electrode material compositions (A) and ( ⁇ ′) of the positive electrode material compositions stored in each of the above Examples and Comparative Examples are used as they are as lithium salt in the positive electrode material composition ( ⁇ ) as an electrolyte salt.
  • a cathode was prepared by adding a methanemethane) imide (L i N (CF 3 S 0 2 ) 2 ) so that the amount of the electrolyte salt was 7% by weight in the composition (B), and forming immediately. Then, a lithium battery is produced using the positive electrode, and the performance of the obtained battery (short test and And all the batteries based on the positive electrode material composition stored in each example exhibited better performance than the batteries based on the positive electrode material composition stored in each comparative example. It is hot. Industrial applicability
  • the method of storing a positive electrode material composition of a lithium secondary battery according to the present invention can be used when transporting or storing a material for producing a positive electrode used for a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is a method for maintaining a positive electrode material composition for lithium secondary batteries during transportation/storage which enables to maintain the positive electrode material composition in such a condition that the battery performance of a lithium secondary battery which uses a positive electrode produced from the positive electrode material composition is prevented from deterioration. Specifically disclosed is a first method for maintaining a positive electrode material composition for lithium secondary batteries, namely a method for maintaining a positive electrode material composition which essentially contains apolymer, an electrode active material and a conductive assistant. This method is characterized in that when the weight average molecular weight of the polymer in the composition before storage is represented by Mw0 and the weight average molecular weight of the polymer in the composition after storage of 18 days is represented by Mw, the decrease rate (DMw) of the weight average molecular weight represented by the formula (1) below is not more than 10%. DMw(%) = [(Mw0 - Mw)/Mw0] × 100 (1)

Description

リチウム 2次電池用正極材料組成物の保存方法 技術分野  Method of storing positive electrode material composition for lithium secondary battery
本発明は、 リチウム 2次電池の作製に用いられる正極材料組成物の保存方法に関する。 詳しくは、 リチウム 2次電池用正極材料組成物を輸送 ·貯蔵するにあたり、 該正極材料組 成物により作製されたリチウム 2次電池の電池性能が低下することのないように該正極材 料組成物を保存する方法に関する。 明背景技術  The present invention relates to a method of storing a positive electrode material composition used for producing a lithium secondary battery. Specifically, when transporting and storing the positive electrode material composition for a lithium secondary battery, the positive electrode material composition such that the battery performance of the lithium secondary battery produced by the positive electrode material composition is not deteriorated. On how to save Ming background technology
リチウム 2次電池に用いられる正極は;.マ田トリックスとしてのポリマー、 イオンを運ぶ ための電解質塩、 イオンを蓄えておくための電極活物質、 および導電助剤と、 必要に応じ て溶媒とを混練してなる組成物を材料として作製されるのが一般的であり、 これまでに、 そのような組成物を材料として形成された正極を用いた電池が種々提案されている (例え ば、 特許文献 1〜 4参照) 。 詳しくは、 正極は、 前記のような組成物を押し出し成形する 方法か、 もしくは溶液キャストしたのちに溶媒を脱揮する方法で成形することにより作製 されている。  The positive electrode used in the lithium secondary battery includes: a polymer as a matrix, an electrolyte salt for transporting ions, an electrode active material for storing ions, a conductive aid, and a solvent, if necessary. In general, it is generally manufactured using a composition obtained by kneading as a material, and so far, various batteries using a positive electrode formed using such a composition as a material have been proposed (for example, a patent) Reference 1 to 4). Specifically, the positive electrode is produced by extruding the composition as described above, or by casting it by solution casting and devolatizing the solvent.
ところで、 従来、 工業的に正極を製造する際には、 ポリマー、 電解質塩、 電極活物質お よび導電助剤などを混合する工程と、 得られた混合物を成形する工程とは引き続き行なう のが通常であった。 すなわち、 正極の原料となるポリマー、 電解質塩、 電極活物質および 導電助剤などは正極の成形の直前に混合されているのであり、 正極を製造する際に用いる 各原料は、 通常それぞれ個別に調達されている。  By the way, conventionally, when manufacturing a positive electrode industrially, it is normal to continue the step of mixing the polymer, the electrolyte salt, the electrode active material, the conductive auxiliary agent and the like, and the step of forming the obtained mixture. Met. That is, the polymer serving as the raw material of the positive electrode, the electrolyte salt, the electrode active material, the conductive auxiliary agent and the like are mixed immediately before molding of the positive electrode, and each raw material used in manufacturing the positive electrode is usually procured individually. It is done.
【特許文献 1】 特表 2 0 0 2— 5 3 5 2 3 5号公報  [Patent Document 1] Special Table 2 0 0 2-5 3 5 2 3 5
【特許文献 2】 米国特許第 5 7 5 5 9 8 5号明細書  [Patent Document 2] US Patent No. 5 7 5 5 9 8 5
【特許文献 3】 国際公開第 0 3 Z 7 5 3 7 5号パンフレツト  [Patent Document 3] International Publication No. 0 3 Z 7 5 3 7 5 Breadlet
【特許文献 4】 国際公開第 0 3 Z 9 2 0 1 7号パンフレツト 発明の開示 発明が解決しょうとする課題  [Patent Document 4] International Publication No. 0 3 Z 9 2 0 1 7 Pamphlet Abstract of the Invention Problems to be Solved by the Invention
しかしながら、 正極製造時の工程の簡略化等を考慮し、 前述した正極の原料のうち電解 質塩、 電極活物質および導電助剤の 1つもしくは全部をあらかじめマトリックスとするポ リマーに混合 (混練)' したものを原料として調達する形態が採用されることがある。 とこ ろが、 そのような調達形態を採用すると、 各原料をそれぞれ個別に調達し成形直前に混合 (混練) して得た正極を用いて電池を作製した場合に比べ、 電池性能が著しく劣るという 問題が起こることがあった。 このような問題が起こるのは、 大抵、 マトリ ックスとするポ リマーにあらかじめ他の原料を混合 (混練) したものが、 輸送や貯蔵のため成形に供する までに一定期間保存されていた場合であつたことから、 これが電池性能の低下の原因にな つていると考えられる。 そこで、 本発明が解決しょうとする課題は、 正極材料組成物を輸送 ·貯蔵するにあたり 、 該正極材料組成物により作製された正極を用いたリチウム 2次電池の電池性能が低下す ることのないように該正極材料組成物を保存することができる、 リチウム 2次電池用正極 材料組成物の保存方法を提供することにある。 課題を解決するための手段 However, in consideration of simplification of the process of manufacturing the positive electrode, etc., among the above-mentioned raw materials of the positive electrode, one or all of the electrolyte salt, the electrode active material and the conductive additive are mixed (kneaded) in a polymer in advance. In some cases, it takes a form of procuring products as raw materials. However, when such a procurement form is adopted, the battery performance is significantly inferior to the case where a battery is manufactured using a positive electrode obtained by individually procuring each raw material and mixing (kneading) immediately before molding. There was a problem sometimes. Such problems usually occur when a polymer as a matrix is previously mixed (kneaded) with other raw materials and stored for a certain period before being used for molding for transportation or storage. Therefore, this is considered to be the cause of the decrease in battery performance. Therefore, the problem to be solved by the present invention is that, in transporting and storing the positive electrode material composition, the battery performance of the lithium secondary battery using the positive electrode produced by the positive electrode material composition is not deteriorated. An object of the present invention is to provide a method of storing a positive electrode material composition for a lithium secondary battery, which can store the positive electrode material composition. Means to solve the problem
本発明者は、 上記課題を解決するべく鋭意検討を行った。 その結果、 電極活物質および 導電助剤が共存する状態ではマトリックスとするポリマーの分子量が僅かながら低下する 傾向があり、 このような正極材料用途以外の他の用途では大して問題にならない程度の僅 かなポリマーの分子量低下が、 リチウム 2次電池用の正極材料においては電池性能に大き な悪影響を及ぼすことを見出した。 そして、 この知見に基づき、 ポリマー、 電極活物質お よび導電助剤を必須とする正極材料組成物を保存するにあたり、 電池性能に悪影響を及ぼ さない範囲で許容されるポリマーの分子量低下の度合いを検討した結果、 前記組成物を 1 8日間保存したときの組成物中のポリマーの重量平均分子量の減少率が 1 0 %以下である と、 その後、 同条件でさらに保存 (輸送 ·貯蔵) したのち正極材料を作製し、 該正極材料 を用いてリチウム 2次電池を作製したときにも、 電池性能にほぼ影響を及ぼさないことを 見出し、 さらに、 このように 1 8日間保存したときのポリマーの重量平均分子量の減少率 を 1 0 %以下とするためには、 不活性ガス雰囲気下では 5 0 °C以下に、 空気雰囲気下では 5 °C以下に温度制御して保存すればょレ、ことを見出し、 本発明を完成した。  The present inventors diligently studied to solve the above-mentioned problems. As a result, the molecular weight of the polymer serving as the matrix tends to slightly decrease in the coexistence of the electrode active material and the conductive aid, and it is a minor level that does not cause any problems in applications other than such applications of the positive electrode material. It has been found that the decrease in molecular weight of the polymer has a significant adverse effect on cell performance in the positive electrode material for lithium secondary batteries. Then, based on this finding, when storing a positive electrode material composition that essentially contains a polymer, an electrode active material and a conductive support agent, the degree of molecular weight reduction of the polymer is acceptable so long as the battery performance is not adversely affected. As a result of examination, when the reduction rate of the weight average molecular weight of the polymer in the composition when the composition is stored for 18 days is 10% or less, after further storing (transporting and storing) under the same conditions, It has been found that even when a positive electrode material is produced and a lithium secondary battery is produced using the positive electrode material, the battery performance is hardly affected, and furthermore, the weight of the polymer when stored for 18 days in this way In order to reduce the average molecular weight to 10% or less, temperature control should be performed at 50 ° C or less in an inert gas atmosphere and at 5 ° C or less in an air atmosphere. Headline, The present invention has been completed.
すなわち、 本発明にかかる第 1のリチウム 2次電池用正極材料組成物の保存方法は、 ポ リマー、 電極活物質および導電助剤を必須とする正極材料組成物の保存方法であって、 保 存前の組成物中のポリマーの重量平均分子量を Mw。とし、 1 8日間保存したときの組成 物中のポリマーの重量平均分子量を Mwとしたときに、 下記式 (1 ) により表される重量 平均分子量の減少率 (DMw) が 1 0 %以下であることを特徴とする。 That is, the first method for storing a positive electrode material composition for a lithium secondary battery according to the present invention is a method for storing a positive electrode material composition that essentially includes a polymer, an electrode active material and a conductive additive, Mw weight average molecular weight of the polymer in the previous composition. When the weight average molecular weight of the polymer in the composition when stored for 18 days is Mw, the reduction rate (D Mw ) of the weight average molecular weight represented by the following formula (1) is 10% or less It is characterized by
DMw (%) = 〔 (Mw。― Mw) ZMw 0〕 X I 0 0 ( 1 ) D Mw (%) = [(Mw.-Mw) ZMw 0 ] XI 0 0 (1)
本発明にかかる第 2のリチウム 2次電池用正極材料組成物の保存方法は、 ポリマー、 電 極活物質および導電助剤を必須とする正極材料組成物の保存方法であつて、 不活性ガス雰 囲気下で 5 以下に温度制御する、 ことを特徴とする。  A second method of storing a positive electrode material composition for a lithium secondary battery according to the present invention is a method of storing a positive electrode material composition that essentially includes a polymer, an electrode active material, and a conductive additive, and includes an inert gas atmosphere. It is characterized in that temperature control is performed to 5 or less under an atmosphere.
本発明にかかる第 3のリチウム 2次電池用正極材料組成物の保存方法は、 ポリマー、 電 極活物質および導電助剤を必須とする正極材料組成物の保存方法であって、 空気雰囲気下 で 5 °C以下に温度制御する、 ことを特徴とする。 発明の効果  A third method of storing a positive electrode material composition for a lithium secondary battery according to the present invention is a method of storing a positive electrode material composition that essentially includes a polymer, an electrode active material, and a conductive support agent, and is performed under an air atmosphere. Temperature control to 5 ° C or less. Effect of the invention
本発明のリチウム 2次電池用正極材料組成物の保存方法によれば、 輸送時や貯蔵時など に正極材料組成物中のポリマーの分子量低下を抑制し、 該正極材料組成物により作製され た正極を用レ、たリチウム 2次電池の電池性能が低下するのを防ぐことができる。 発明を実施するための最良の形態  According to the storage method of the positive electrode material composition for a lithium secondary battery of the present invention, the decrease in molecular weight of the polymer in the positive electrode material composition is suppressed at the time of transportation, storage and the like, and the positive electrode manufactured by the positive electrode material composition. The battery performance of the lithium secondary battery can be prevented from being degraded. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明にかかるリチウム 2次電池用正極材料組成物の保存方法 (以下 「本発明の 保存方法」 と称することもある) について詳しく説明するが、 本発明の範囲はこれらの説 明に拘束されることはなく、 以下の例示以外についても、 本発明の趣旨を損なわない範囲 で適宜変更実施し得る。 Hereinafter, the method for storing the positive electrode material composition for a lithium secondary battery according to the present invention (hereinafter sometimes referred to as “the storage method according to the present invention”) will be described in detail. The present invention is not bound to be clear, and modifications can be made as appropriate without departing from the spirit of the present invention other than the following examples.
〔リチウム 2次電池用正極材料組成物〕  [Positive material composition for lithium secondary battery]
本発明の保存方法において保存対象となるリチウム 2次電池用正極材料組成物は、 ポリ マ一、電極活物質およぴ導電助剤を必須とする組成物である。  The positive electrode material composition for a lithium secondary battery to be stored in the storage method of the present invention is a composition essentially comprising a polymer, an electrode active material and a conductive auxiliary.
正極材料組成物の必須成分である前記ポリマーは、 リチウム 2次電池用正極材料のマト リックスとして通常使用されているものであればよく、 特に制限されないが、 イオン導電 性のポリエーテル重合体であることが好ましい。 特に、 前記ポリマーがエチレンォキシド 系ポリマーであることが正極材料としてより優れた電池性能を発現しうる点で好適である 前記ポリマーとして好適なエチレンォキシド系ポリマーは、 例えば、 エチレンォキシド と、 下記構造式 (1 )  The polymer which is an essential component of the positive electrode material composition is not particularly limited as long as it is usually used as a matrix of a positive electrode material for a lithium secondary battery, and is an ion conductive polyether polymer. Is preferred. In particular, it is preferable that the polymer is an ethylene oxide-based polymer in that the battery performance as a positive electrode material can be further improved. The ethylene oxide-based polymer suitable as the polymer is, for example, ethylene oxide. Structural formula below (1)
Figure imgf000004_0001
Figure imgf000004_0001
(ただし、 は、 R a ( R aは、炭素数 1〜 1 6の、アルキル基、 シクロアルキル基、 ァリ ール基、 ァラルキル基、 (メタ) アタリロイル基およびアルケニル基の中のいずれかの基 である) または一 C H 2— O— R e— R a基(R eは、一(C H 2— C H 2— 0) p—の構造を 有する( pは 0から 1 0までの整数)))で示される置換ォキシラン化合物とを必須とする単 量体混合物を重合させることにより得ることができる。 前記単量体混合物は、 エチレンォ キシドおよび前記置換ォキシラン化合物のほかに、 他の単量体を含んでいてもよい。 なお、 前記単量体混合物中に占める各モノマーの割合は、 特に制限されるものではなく適宜設定 すればよい。 (Wherein, R a (where R a represents a carbon number of 1 to 16, any of alkyl group, cycloalkyl group, aryl group, aralkyl group, (meth) ataryloyl group and alkenyl group) Or a single CH 2 — O— R e — R a group (where R e is a single (CH 2 — CH 2 — 0) p — structure (p is an integer from 0 to 10)) It can be obtained by polymerizing a mixture of monomers essentially comprising the substituted oxylan compound shown in the above). The monomer mixture may contain other monomers in addition to ethylene oxide and the substituted alkoxy compound. The proportion of each monomer in the monomer mixture is not particularly limited and may be set appropriately.
前記構造式 (1 ) で示される置換ォキシラン化合物としては、 例えば、 プロピレンォキ シド、 ブチレンォキシド、 1 , 2—エポキシペンタン、 1, 2—エポキシへキサン、 1, 2 _エポキシオクタン、 シクロへキセンォキシドおよびスチレンォキシド、 または、 メチ ルグリシジルエーテル、 ェチルダリシジルエーテル、 エチレングリコールメチルグリシジ ルエーテル等を挙げることができる。 また、 置換基 が架橘性の置換基であるものとし ては、 例えば、 エポキシブテン、 3, 4—エポキシ一 1 —ペンテン、 1, 2—エポキシ一 5, 9—シクロ ドデカジエン、 3, 4—エポキシ一 1—ビュルシクロへキセン、 1, 2— エポキシ一 5—シクロオタテン、 アクリル酸グリシジル、 メタクリル酸グリシジル、 ソル ビン酸グリシジルおよびグリシジル一 4 ·キサノエ一ト、 または、 ビュルグリシジルェ. 一テル、 ァリルグリシジルエーテル、 4—ビニルシクロへキシルグリシジルエーテル、 a —テルぺニルグリシジルエーテル、 シクロへキセニルメチルダリシジルエーテル、 4一ビ ニルベンジルグリシジルエーテル、 4—ァリルベンジルグリシジルエーテル. ァリノレグリ シジルエーテル、 エチレングリコールァリルグリシジルエーテル、 エチレングリコールビ ニルダリシジルエーテル、 ジエチレングリコールァリルグリシジルエーテル、 ジエチレン グリコールビニルダリシジルエーテル、 トリエチレングリコールァリルグリシジルエーテ ル、 トリエチレングリ コールビニルダリシジルエーテル、 オリゴエチレングリ コールァリ ルグリシジルエーテルおよびオリゴエチレンダリコールビニルダリシジルエーテル等が挙 げられる。 置換ォキシラン化合物は、 1種のみであっても 2種以上であってもよい。 Examples of the substituted oxylan compound represented by the above structural formula (1) include propylene oxide, butylene oxide, 1,2- epoxypentane, 1,2-epoxyhexane, 1,2-epoxyoctane, cyclohexoxide and styrene oxide. Or methyl glycidyl ether, cetyl dalysidyl ether, ethylene glycol methyl glycidyl ether and the like. Also, assuming that the substituent is a crosslinkable substituent, for example, epoxy butene, 3, 4-epoxy 1 1-pentene, 1, 2-epoxy 1, 5 9-cyclododecadiene, 3, 4- Epoxy, 1-butyl cyclohexene, 1, 2-epoxy, 5-cyclo-Otene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate and glycidyl 1 · xanoate or or buli glycidyl ether, aryl Glycidyl ether, 4-vinylcyclohexyl glycidyl ether, a -terpenyl glycidyl ether, cyclohexenyl methyl dalysyl ether, 4-vinylbenzyl glycidyl ether, 4-arylbenzyl glycidyl ether. Sylkyl ether, ethylene glycol palyl glycidyl ether, ethylene glycol vinyl glycidyl ether, diethylene glycol palyl glycidyl ether, diethylene glycol vinyl dalysyl ether, triethylene glycol palyl glycidyl ether, triethylene glycol vinyl dalysyl ether, oligo Examples thereof include ethylene glycol glycidyl ether and oligoethylene glycalyl vinyl dalysyl ether. The number of substituted oxylan compounds may be one or two or more.
前記エチレンォキシド系ポリマーを得るに際しては、 前記単量体混合物を溶媒の.中で撹 拌しながら重合するようにすればよい。 このような重合の方法としては、 特に限定はされ ないが、 例えば、 溶液重合法や沈殿重合法などを好ましく挙げることができ、 なかでも、 溶液重合法が生産性に優れているためより好ましく、 予め仕込んだ溶媒に原料となる各モ ノマーを供給しながら重合を行う溶液重合法が、 反応熱を除熱しやすいなどの安全性のた め、 特に好ましい。 なお、 前記重合においては、 通常用いられている重合開始剤、 酸化防 止剤 (例えば、 汎用のフエノール系酸化防止剤等) 、 可溶化剤などを添カ卩して用いるよう にしてもよレ、。  In order to obtain the ethylene oxide-based polymer, the monomer mixture may be polymerized while stirring in a solvent. The method for such polymerization is not particularly limited, but preferred examples include a solution polymerization method and a precipitation polymerization method. Among them, the solution polymerization method is more preferable because it has excellent productivity. A solution polymerization method in which polymerization is performed while supplying each monomer as a raw material to a previously charged solvent is particularly preferable because of safety such as easy removal of heat of reaction. In addition, in the above-mentioned polymerization, a commonly used polymerization initiator, an antioxidant (for example, a general-purpose phenol-based antioxidant etc.), a solubilizer, etc. may be added. ,.
前記溶媒としては、 例えば、 ベンゼン、 トルエン、 キシレンおよびェチルベンゼンなど の芳香族炭化水素系溶媒;ヘプタン、 オクタン、 n—へキサン、 n—ペンタン、 2 , 2 , 4—トリメチルペンタンなどの脂肪族炭化水素系溶媒; シクロへキサン、 メチルシクロへ キサンなどの脂環式炭化水素系溶媒; ジェチルエーテル、 ジブチルエーテル、 メチルプチ ルエーテルなどのエーテル系溶媒; ジメ トキシェタンなどのエチレンダリコールジアルキ ルエーテル類の溶媒; T H F (テトラヒ ドロフラン) 、 ジォキサンなどの環状エーテル系 溶媒;等の水酸基等の活性水素を含まない有機溶媒が好ましく、 トルエン、 キシレン、 n —へキサンがより好ましい。 さらに、 前記溶媒は、 水を全く含まない有機溶媒であること が、 水分と金属イオン分などとが反応して生成する水酸化物等が絶縁層となり電池のサイ クル特性が悪化するという問題を回避するうえでは、 好ましい。  Examples of the solvent include aromatic hydrocarbon solvents such as benzene, toluene, xylene and ethylbenzene; and aliphatic hydrocarbons such as heptane, octane, n-hexane, n-pentane and 2, 2, 4-trimethylpentane. Solvents; Alicyclic hydrocarbon solvents such as cyclohexane and methylcyclohexane; Ether solvents such as jetyl ether, dibutyl ether and methyl butyl ether; Solvents for ethylene diallyl dialkyl ethers such as dimethoxetane; THF Organic solvents which do not contain active hydrogen such as hydroxyl groups such as cyclic ether solvents such as (tetrahydrofuran) and dioxan are preferable, and toluene, xylene and n-hexane are more preferable. Furthermore, the solvent is an organic solvent which does not contain water at all, but the problem is that the hydroxide formed by the reaction of water and metal ions etc. becomes an insulating layer and the cycle characteristics of the battery are deteriorated. It is preferable to avoid it.
前記ポリマーの重量平均分子量 (Mw) は、 特に限定はされないが、 2 0, 0 0 0〜5 0 0, 0 0 0であることが好ましく、 より好ましくは 3 0, 0 0 0〜 3 0 0, 0 0 0、 さ らに好ましくは 4 0, 0 0 0〜2 0 0 , 0 0 0である。 重量平均分子量が 2 0 , 0 0 0未 満であると、 成形して正極とする際にタックが生じるおそれがあり、 一方、 5 0 0, 0 0 0を超えると、 成形自体が困難となり、 加工性およびハンドリング性が低下するおそれが ある。  The weight average molecular weight (Mw) of the polymer is not particularly limited, but is preferably 2 0 0 0 5-5 0 0 0 0 0, more preferably 3 0 0 0 0 3 0 0 , 0 0 0, and more preferably 4 0, 0 0 0 to 2 0 0, 0 0 0. If the weight average molecular weight is less than 20, 00, there is a risk that tack will occur when forming into a positive electrode, while if it exceeds 500, the forming itself becomes difficult, Processability and handling may be reduced.
前記ポリマーの分子量分布 (MwZM n ) は、 特に限定はされないが、 3以下であるこ とが好ましく、 より好ましくは 2以下である。 分子量分布が 3を超えると、 成形して正極 とする際にタックが生じたり、 ノ、ンドリング性が悪くなるおそれがある。  The molecular weight distribution (MwZMn) of the polymer is not particularly limited, but is preferably 3 or less, more preferably 2 or less. When the molecular weight distribution is more than 3, there is a risk that tackiness may occur during molding to form a positive electrode, or poor and indling properties may deteriorate.
正極材料組成物の必須成分である前記電極活物質は、 L iイオンの挿入 ·脱離に対して 電気化学的効果があるものであり、 正極を形成するのに通常用いられているものであれば よく、 特に制限されないが、 例えば、 リチウムバナジウム複合酸化物、 リチウムコバルト 複合酸化物、 リチウムマンガン複合酸化物、 リチウムニッケル複合酸化物、 酸化バナジゥ ム等が挙げられ、 中でも、 L i x V y O z (ただし、 x、 yおよび zは、 それぞれ互いに 独立、 かつ、 0く x≤ 2、 y = (m x + 2 z ) ノ n、 および z = (m x + n y ) / 2 (た だし、 mは L iの価数であり、 nは Vの価数で 4以上の実数ある。 ) を満足する実数であ る。 ) であることが、 L iイオンの挿入.脱離をより効果的に行なえることから特に好ま しい。 電極活物質は 1種のみであってもよいし、 2種以上であってもよい。 The electrode active material, which is an essential component of the positive electrode material composition, has an electrochemical effect on the insertion and desorption of Li ions, and is generally used to form a positive electrode. No particular limitation is imposed, and examples thereof include lithium vanadium complex oxide, lithium cobalt complex oxide, lithium manganese complex oxide, lithium nickel complex oxide, vanadium oxide and the like, among which L ix V y O z (However, x, y and z are each independent of each other, and 0 x ≤ 2, y = (mx + 2 z) n, and z = (mx + ny) / 2 (where m is L i is a valence of i, n is a valence of V and there is a real number of 4 or more. Ru. It is particularly preferable that L i) can more effectively insert and desorb L i ions. The electrode active material may be only one type, or two or more types.
正極材料組成物に占める前記電極活物質の割合は、 特に制限されないが、 例えば、 前記 ポリマーに対して重量基準で 0 . 1〜5 0倍であることが好ましく、 より好ましくは 0 . 3〜2 0倍、 さらに好ましくは 0 . 5〜1 0倍であるのがよい。 電極活物質が少なすぎる と、 正極としての機能が充分に発揮されない恐れがあり、 一方、 電極活物質が多すぎると 、 成形が困難となる恐れがある。  The proportion of the electrode active material in the positive electrode material composition is not particularly limited, but is preferably, for example, 0.1 to 50 times by weight the polymer, and more preferably 0.3 to 2 times. It is preferable that it is 0 times, more preferably 0.5 to 10 times. If the amount of the electrode active material is too small, the function as the positive electrode may not be sufficiently exhibited. On the other hand, if the amount of the electrode active material is too large, molding may be difficult.
正極材料組成物の必須成分である前記導電助剤としては、 正極を形成するのに通常用い られているものであればよく、 特に制限されないが、 例えば、 アセチレンブラック、 ケッ チェンブラック、 グラフアイト等が挙げられる。 導電助剤は 1種のみであってもよいし、 2種以上であってもよい。  The conductive auxiliary agent, which is an essential component of the positive electrode material composition, is not particularly limited as long as it is generally used to form a positive electrode, and examples thereof include acetylene black, ketjen black, Graphite, etc. Can be mentioned. The conductivity assistant may be only one kind or two or more kinds.
正極材料組成物に占める前記導電助剤の割合は、 特に制限されないが、 例えば、 前記電 極活物質 1 0 0重量部に対して 1〜2 0重量部であることが好ましく、 より好ましくは 2 〜1 5重量部であるのがよい。 導電助剤が少なすぎると、 正極の導電性が不充分となる恐 れがあり、 一方、 導電助剤が多すぎると、 成形が困難となる恐れがある。  The proportion of the conductive auxiliary agent in the positive electrode material composition is not particularly limited, but is preferably 1 to 20 parts by weight, more preferably 2 parts by weight with respect to 100 parts by weight of the electrode active material, for example. It should be about 15 parts by weight. If the amount of the conductive additive is too small, the conductivity of the positive electrode may be insufficient. If the amount of the conductive additive is too large, molding may be difficult.
正極材料組成物は、 正極を形成するのに必要となる電解質塩をも含有していることが好 ましい。 前記電解質塩としては、 正極を形成するのに通常用いられているものであればよ く、 特に制限されないが、 例えば、 フッ素イオン、 塩素イオン、 臭素イオン、 ヨウ素ィォ ン、 ヘプタフルォロプロピルスルホン酸イオン、 ビス (トリフルォロメタンスルホニル) イミ ドイオン、 ビス (ヘプタフノレォロプロピ^レス/レホニ イミ ドイオン、 トリフノレオ口 スルホンィミ ドイオン、 テトラフルォロホウ素酸イオン、 硝酸イオン、 A s F 6—、 P F 6 ―、 ステアリルスルホン酸イオン、 ォクチルスルホン酸イオン、 ドデシルベンゼンスルホ ン酸イオン、 ナフタレンスルホン酸イオン、 ドデシルナフタレンスルホン酸イオン、 およ び 7, 7, 8 , 8—テトラシァノ一 p—キノジメタンイオンからなる群より選ばれた陰ィ オンと、 L iイオンとからなる塩等が挙げられる。 これらの中でも、 L i B F 4、 L i P F 6、 L i C F 3 S 0 3、 L i C 4 F 9 S〇3、 L i N ( C F 3 S 0 2 ) 2、 L i N ( C 2 F 6 S 02) 2がより好ましい。 電解質塩は 1種のみであってもよいし、 2種以上であってもよい 正極材料組成物に占める前記電解質塩の割合は、 特に制限されないが、 例えば、 前記ポ リマーがポリエーテル重合体である場合、 該ポリエーテル重合体中のエーテル酸素の総モ ル数 Z電解質塩のモル数の値が 1〜 3 6となるようにするのが好ましく、 より好ましくは 3〜3 3、 さらに好ましくは 6〜3 0となるようにするのがよい。 電解質塩が少なすぎる と、 イオン電導性の低下を招く恐れがあり、 一方、 電解質塩が多すぎても、 電解質塩の增 量に見合うだけのィォン電導性の向上効果が現れず、 経済的に不利となるだけである。 The positive electrode material composition preferably also contains an electrolyte salt required to form a positive electrode. The electrolyte salt is not particularly limited as long as it is usually used to form a positive electrode, and examples thereof include, but are not limited to, for example, fluorine ion, chloride ion, bromine ion, iodine ion, heptafluoropropyl Sulfonate ion, bis (trifluoromethanesulfonyl) imide ion, bis (heptafluoropropione les / lephoni imidate ion, trifnoleoporte sulfonate ion, tetrafluoroboronate ion, nitrate ion, As s F 6- , PF 6- , stearyl sulfonate ion, octyl sulfonate ion, dodecyl benzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion, and 7,7,8,8-tetracyanol p-quinodimethane ion Anions selected from the group consisting of A salt, and the like. Among these, L i BF 4, L i PF 6, L i CF 3 S 0 3, L i C 4 F 9 S_〇 3, L i N (CF 3 S 0 2) 2 , L i N (C 2 F 6 S 0 2 ) 2 is more preferable The number of electrolyte salts may be only one, and may be two or more. The proportion is not particularly limited, but for example, when the polymer is a polyether polymer, the total number of moles of ether oxygen in the polyether polymer and the value of the number of moles of the electrolyte salt are 1 to 36. It is preferable that the ratio be 3 to 3, more preferably 6 to 3. If the amount of the electrolyte salt is too small, the ion conductivity may be reduced, On the other hand, even if the amount of electrolyte salt is too large, the effect of improving ion conductivity corresponding to the amount of electrolyte salt does not appear, which is economically disadvantageous. It is
正極材料組成物は、 溶媒を含有するものであってもよい。 溶媒は、 成形して正極とする 際には最終的に脱揮などの手段によって除去されるものであるが、 組成物中に溶媒を含有 させておくことにより、 電解質塩等のように前記ポリマーには溶解しにくい成分を溶媒に 溶解させて各成分の混合を容易にしたり、 輸送 ·貯蔵などの際に取扱い易いよう粘度を調 整したりすることができる。 溶媒としては、 特に制限はないが、 例えば、 前記エチレンォ キシド系ポリマーを得る際に用いることのできる.溶媒として前述したもの等が挙げられる 。 正極材料組成物に占める前記溶媒の割合は、 特に制限されず、 適宜設定すればよい。 な お、 前述したエチレンォキシド系ポリマーのように前記ポリマーを溶媒を用いた重合法で 得る場合には、 重合反応液中に溶媒が含まれているので、 該重合反応液をそのまま正極材 料組成物の成分として混合するようにしてもよいし、 重合反応液から一旦溶媒を除去した のちに正極材料組成物の成分として他の溶媒を加えるようにしてもよレ、。 The positive electrode material composition may contain a solvent. The solvent is one that is finally removed by means such as degassing when molded into a positive electrode, but by including the solvent in the composition, the polymer such as the electrolyte salt etc. can be obtained. The components that are difficult to dissolve can be dissolved in a solvent to facilitate mixing of the components, or the viscosity can be adjusted so that they can be easily handled during transport and storage. The solvent is not particularly limited, and can be used, for example, when obtaining the above-mentioned ethylene oxide polymer. . The proportion of the solvent in the positive electrode material composition is not particularly limited, and may be set as appropriate. When the polymer is obtained by a polymerization method using a solvent as in the case of the above-mentioned ethylene oxide-based polymer, the polymerization reaction solution contains the solvent, so the polymerization reaction solution is used as it is for the positive electrode material. It may be mixed as a component of the composition, or after the solvent is once removed from the polymerization reaction solution, another solvent may be added as a component of the positive electrode material composition.
正極材料組成物は、 さらに必要に応じて、 例えば、 老化防止剤、 光安定剤、 滑剤、 帯電 防止剤、 補強剤、 充填剤、 酸化防止剤 (例えば、 汎用のフユノール系酸化防止剤等) 等の 添加剤を、 本発明の効果を損なわない範囲で適宜含有していてもよい。 また、 正極材料組 成物は、 例えば、 前記ポリマーを得る際の重合で得られた重合反応液に含まれる成分を含 有していてもよい。  The positive electrode material composition further comprises, if necessary, for example, an antioxidant, a light stabilizer, a lubricant, an antistatic agent, a reinforcing agent, a filler, an antioxidant (for example, a general-purpose phenol-based antioxidant etc.), etc. The additive may be suitably contained in the range which does not impair the effect of the present invention. In addition, the positive electrode material composition may contain, for example, a component contained in a polymerization reaction solution obtained by polymerization when obtaining the polymer.
本発明の保存方法において保存対象となる正極材料組成物は、 例えば、 溶液状、 スラリ 一溶液状、 粒子状、 ペレット状、 微粒子状、 所望の形 (粒子やペレットよりもさらに大き い形) の塊状など、 いかなる形態であってもよく、 前記ポリマー、 前記電極活物質および 前記導電助剤を必須とする前述した各成分を混合もしくは混練し、 必要に応じて脱揮、 造 粒、 乾燥、 調湿などを施して得られる。 取扱い易さなどの点からは、 各成分を混合もしく は混練したのち、 脱揮により溶媒を除去して得られた固化物 (粒子状、 ペレット状、 微粒 子状、 所望の形の塊状など) であることが好ましく、 さらに好ましくは、 粒子状、 ペレツ ト状、 塊状に造粒して得られたものであることが好ましい。 また、 正極材料組成物中の水 分含有量は、 水分と金属ィオン分などとが反応して生成する水酸化物等が絶縁層となり電 池のサイクル特性が悪化するという問題を回避するうえでは、 より低い方が好ましく、 こ の点からは、 脱揮、 乾燥、 調湿のうちの少なくとも 1つを経て得られた組成物は好ましい と言える。  The positive electrode material composition to be stored in the storage method of the present invention is, for example, a solution, a slurry, a solution, particles, pellets, fine particles, a desired shape (a size larger than particles or pellets). The polymer, the electrode active material and the conductive auxiliary agent may be mixed or kneaded, if necessary, to volatilize, granulate, dry, adjust, etc. It is obtained by applying moisture and the like. From the viewpoint of ease of handling, etc., the solidified material obtained by mixing or kneading each component and removing the solvent by devolatilization (particulate, pellet, fine particles, lump of desired shape, etc. And the like, and more preferably one obtained by granulating in the form of particles, pellets, or mass. Further, the water content in the positive electrode material composition is to avoid the problem that the hydroxide layer formed by the reaction of water and metal ion becomes an insulating layer and the cycle characteristics of the battery are deteriorated. The lower one is preferable, and from this point of view, the composition obtained through at least one of devolatilization, drying and humidity control is said to be preferable.
前記ポリマー、 前記電極活物質および前記導電助剤を必須とする前述した各成分を混合 もしくは混練する方法、 脱揮の方法、 造粒の方法、 乾燥の方法、 調湿の方法などについて は、 各々、 従来公知の方法を適宜採用すればよい。  For the method of mixing or kneading the above-described components that essentially contain the polymer, the electrode active material, and the conductive auxiliary agent, the method of devolatilization, the method of granulation, the method of drying, the method of humidity control, etc. A conventionally known method may be adopted as appropriate.
〔本発明の保存方法〕  [Preservation method of the present invention]
本発明の保存方法のうち第 1の保存方法は、 保存前 前記正極材料組成物中のポリマー の重量平均分子量を Mw。とし、 1 8日間保存したときの組成物中のポリマーの重量平均 分子量を Mwとしたときに、 下記式 (1 ) により表される重量平均分子量の減少率 (DMw ) が 1 0 %以下であることを特徴とする。 好ましくは 1 8日間保存したときの前記減少率 (DMw) は 5 %以下であるのがよい。 According to the first storage method of the storage method of the present invention, before storage, the weight average molecular weight of the polymer in the positive electrode material composition is Mw. When the weight average molecular weight of the polymer in the composition when stored for 18 days is Mw, the reduction rate (D Mw ) of the weight average molecular weight represented by the following formula (1) is 10% or less It is characterized by Preferably, the reduction rate (D Mw ) when stored for 18 days is 5% or less.
DMw (%) = [ (Mw。一 Mw) /Mwo) X I 0 0 ( 1 ) D Mw (%) = [(Mw. 1 Mw) / Mwo) XI 0 0 (1)
このように前記減少率 (DMw) が 1 0 %以下となる保存方法であれば、 その後、 同条件で さらに保存 (輸送 ·貯蔵) したのち正極材料を作製し、 該正極材料を用いてリチウム 2次 電池を作製したときにも、 良好な電池性能を発現させることができる。 前記減少率 (DMw ) が 1 0 %以下となるようにするには、 例えば、 後述する本発明の第 2または第 3の保存 方法を採用することが好ましい。 また、 例えば、 後述する本発明の第 2の保存方法におけ る不活性ガスを、 露点一 4 0 °C以下、 好ましくは露点一 5 0 °C以下の乾燥空気に置き換え た保存方法も、 前記減少率 (DMw) が 1 0 %以下となるようにする手段として有効である また、 第 1の保存方法において、 特に、 前記正極材料組成物が前記電解質塩を含有しな いものである場合には、 前述した 1 8日間保存したときの減少率 (DMw) が 1 0 %以下で あるという要件に加えて、 3日間保存したときの分子量の減少率 (3日間保存したときの 組成物中のポリマーの重量平均分子量を Mwとしたときに、 前記式 (1 ) により表される 重量平均分子量の減少率) が 1 0 %以下、 好ましくは 5 %以下であることが好ましレ、。 本発明の保存方法のうち第 2の保存方法においては、 不活性ガス雰囲気下で 5 0 °C以下 に温度制御することが重要である。 すなわち、 正極材料組成物は、 不活性ガスが充填され 、 かつ 5 0 °C以下に温度制御された空間に保存するのである。 ここで、 不活性ガスが充填 された空間 (すなわち、 不活性ガス雰囲気) は、 必ずしもその 1 0 0 V o 1 %が不活性ガ スである必要はなく、 具体的には、 組成物を保存する空間の酸素濃度が 1 5 V o 1 %以下 、 より好ましくは 1 0 V o 1 %以下、 さらに好ましくは 7 V o 1 %以下となるように、 不 活性ガスが充填された空間であればよい。 不活性ガスを充填する際の流量や時間などは、 空間の大きさ等を考慮して、 該空間内の酸素濃度が前記範囲となるように、 適宜設定すれ ばよい。 また、 不活性ガスと空気との混合ガスを充填して、 空間内の酸素濃度が前記範囲 となるようにしてもよい。 不活性ガスとしては、 特に制限はないが、 例えば、 窒素ガス、 アルゴンガス、 ヘリウムガス等が挙げられる。 不活性ガスは 1種のみでもよいし、 2種以 上であってもよい。 Thus, if it is a storage method in which the reduction rate (D Mw ) is 10% or less, then after further storing (transporting and storing) under the same conditions, a positive electrode material is prepared, and lithium is produced using the positive electrode material. Even when a secondary battery is manufactured, good battery performance can be exhibited. In order for the reduction rate (D Mw ) to be 10% or less, for example, it is preferable to adopt the second or third storage method of the present invention described later. Also, for example, the storage method in which the inert gas in the second storage method of the present invention described later is replaced with dry air having a dew point of 40 ° C. or less, preferably 50 ° C. or less is preferable. It is effective as a means to make the reduction rate (D Mw ) 10% or less In the first storage method, in particular, when the positive electrode material composition does not contain the electrolyte salt, the reduction rate (D Mw ) when stored for 18 days as described above is 10%. In addition to the requirement that it is the following, the reduction rate of the molecular weight when stored for 3 days (when the weight average molecular weight of the polymer in the composition when stored for 3 days is Mw, it is represented by the above formula (1) The weight-average molecular weight reduction rate is preferably 10% or less, preferably 5% or less. In the second storage method of the storage methods of the present invention, it is important to control the temperature to 50 ° C. or lower in an inert gas atmosphere. That is, the positive electrode material composition is stored in a space filled with an inert gas and temperature-controlled to 50 ° C. or less. Here, the space filled with the inert gas (ie, the inert gas atmosphere) does not necessarily have to have 100% of the inert gas, and specifically, the composition is stored. If the space is filled with an inert gas such that the oxygen concentration in the space to be reduced is 15 V o 1% or less, more preferably 10 V o 1% or less, and even more preferably 7 V o 1% or less. Good. The flow rate, time, and the like at the time of filling the inert gas may be appropriately set so that the oxygen concentration in the space falls within the above range, in consideration of the size of the space and the like. Alternatively, a mixed gas of an inert gas and air may be filled so that the oxygen concentration in the space falls within the above range. The inert gas is not particularly limited, and examples thereof include nitrogen gas, argon gas, and helium gas. The inert gas may be only one kind or two or more kinds.
本発明の保存方法のうち第 3の保存方法においては、 空気雰囲気下で 5 °C以下に温度制 御することが重要である。 すなわち、 正極材料組成物は、 空気が充填され、 かつ 5 °C以下 に温度制御された空間に保存するのである。 ここで、 正極材料組成物を保存する空間に充 填された空気は、 露点が低い乾燥空気 (例えば露点一 4 0 °C以下) であってもよいし、 通 常の空気 (露点が高い未乾燥の空気) であってもよい。 すなわち、 5 °Cを超える温度 (例 えば室温) であれば、 前述したように不活性ガスや露点一 4 0で以下の乾燥空気を充填す るなどして正極材料組成物を保存する空間の含有水分量を低減することが前記減少率 (D MW) を抑えるうえで重要となるが、 5 °C以下に温度制御する第 3の保存方法においては、 正極材料組成物を保存する空間の含有水分量が前記減少率 (DMw) に影響を及ぼすことは なく、 乾燥空気であっても通常の空気であっても前記減少率 (DMw) に大差が生じること はないのである。 In the third storage method of the storage methods of the present invention, it is important to control the temperature to 5 ° C. or less in an air atmosphere. That is, the positive electrode material composition is stored in a space filled with air and temperature-controlled to 5 ° C. or less. Here, the air filled in the space for storing the positive electrode material composition may be dry air having a low dew point (for example, a dew point of 40 ° C. or less) or normal air (a dew point is not high yet). It may be dry air). That is, if the temperature exceeds 5 ° C. (for example, room temperature), as described above, the space for storing the positive electrode material composition by filling with an inert gas or the following dry air with a dew point of 140 or the like. Although it is important to reduce the water content to suppress the reduction rate (D MW), in the third storage method in which the temperature is controlled to 5 ° C. or less, the inclusion of a space for storing the positive electrode material composition never water content affects the rate of decrease (D Mw), is the great difference in the reduction rate even be a dry air a normal air (D Mw) does not occur.
本発明の保存方法において、 正極材料組成物は、 例えば、 混合や混練、 脱揮、 乾燥、 調 湿、 造粒など組成物を調製するのに用いた装置内でそのまま保存するようにしてもよいし 、 容器や袋などに充填して保存するようにしてもよく、 その保存形態は問わないが、 第 1 の保存方法においては、 不活性ガス雰囲気下、 すなわち不活性ガスを充填した空間を維持 する必要があるため、 密閉状態とした装置、 容器、 袋などで保存することが好ましい。 ま た、 正極材料組成物を保存する装置、 容器、 袋などを選択する際には、 ガス透過性や吸湿 性ができるだけ小さい材質からなるものを選択することが好ましい。 例えば、 装置で保存 する場合には、 ホッパー、 サイロ等のバッチ式の保存装置で保存すればよく、 容器で保存 する場合には、 金属製のドラムやコンテナ等で保存すればよく、 袋で保存する場合には、 アルミ箔製の袋やアルミ箔層を含む多層フィルム製の袋 (特に、 ヒートシール性を考慮す ると、 ポリエチレンやポリプロピレン等の樹脂フィルムにアルミ箔をラミネ一トした袋が 好ましい) 等で保存すればよい。 また、 組成物を充填した袋を容器に入れるなど、 容器と 袋を組み合わせることも、 ガス透過性や吸湿性を抑制するうえで有効である。 本発明の保存方法においては、 前記正極材料組成物が固化物である場合、 該固化物はそ の複数個を保存しても互いに付着して塊を形成しない状態であることが好ましい。 ここで 、 固化物とは、 溶液状やペースト状ではなく、 例えば、 粒子状、 ペレット状、 所望の形の 塊状などの状態のものである。 固化物の状態である正極材料組成物は、 通常複数個を 1つ の容器や袋などに入れて保存されるが、 その場合、 固化物同士が互いに付着して塊を形成 した状態 (いわゆるブロッキングした状態) になりやすい。 特に、 電解質塩を含有する組 成物である場合には、 電解質塩を含有しない場合に比べて組成物の融点が低下することに なるので、 より固化物同士が互いに付着してブロッキングした状態になりやすくなる。 正 極材料組成物がいわゆるブロッキングした状態になると、 成形して正極を作製する際に、 フィーダ一から押し出し機へ組成物を供給するときの振れが大きくなり、 安定したフィー ドが行なえず、 成形後の成形体の寸法等が均一にならないなどの間題が生じることになる 。 前記組成物の固化物同士が互いに付着して塊を形成しない状態になるようにするには、 保存の際に微粒子が添加されている状態とすることが好ましい。 具体的には、 固化した正 極材料組成物とともに微粒子を保存する空間 (装置、 容器、 袋など) に添加し混ぜあわせ ることにより固化物である正極材料組成物の表面に微粒子を付着させた状態として保存す るか、 固化物である正極材料組成物を得る際に前述した各成分とともに微粒子をも添加す ることにより正極材料組成物の内部に微粒子を含有させた状態として保存するようにすれ ばよい。 In the storage method of the present invention, the positive electrode material composition may be stored as it is, for example, in an apparatus used for preparing a composition such as mixing, kneading, devolatilization, drying, conditioning, granulation, etc. The container or bag may be filled and stored, and the storage form is not limited, but in the first storage method, the inert gas atmosphere, ie, the space filled with the inert gas is maintained It is preferable to store in a sealed device, container, bag, etc. In addition, when selecting an apparatus, container, bag, etc. for storing the positive electrode material composition, it is preferable to select one made of a material having the lowest gas permeability and hygroscopicity. For example, in the case of storage with a device, it may be stored in a batch type storage device such as a hopper or silo, and in the case of storage in a container, it may be stored in a metal drum or container, etc. If you do, you may use an aluminum foil bag or a multilayer film bag containing an aluminum foil layer (in particular, in consideration of heat sealability, a bag made by laminating aluminum foil on resin film such as polyethylene or polypropylene) It is good if it preserve | saves with preferable etc. Also, put a bag filled with the composition into a container, etc. Combining bags is also effective in reducing gas permeability and hygroscopicity. In the storage method of the present invention, in the case where the positive electrode material composition is a solidified material, it is preferable that the solidified materials adhere to each other and not form a lump, even if a plurality of such materials are stored. Here, the solidified material is not in the form of a solution or paste, but is, for example, in the form of particles, pellets, or lumps of a desired form. A plurality of positive electrode material compositions which are in a solidified state are usually stored in a single container, bag or the like, in which case the solidified bodies adhere to each other to form a lump (so-called blocking) Easily). In particular, in the case of a composition containing an electrolyte salt, the melting point of the composition is lowered compared to the case where the composition does not contain an electrolyte salt. It becomes easy to become. When the positive electrode material composition is in a so-called blocking state, the deflection when supplying the composition from the feeder 1 to the extruder becomes large when it is molded to produce a positive electrode, and stable feeding can not be performed, and molding is performed. The problem arises that the dimensions and the like of the subsequent molded product are not uniform. In order to make the solidified products of the composition adhere to each other and not form a lump, it is preferable that fine particles are added during storage. Specifically, the fine particles were attached to the surface of the positive electrode material composition which is a solidified product by adding and mixing it in a space (apparatus, container, bag, etc.) for storing the fine particles together with the solidified positive electrode material composition. If it is stored as a state, or when a positive electrode material composition which is a solidified product is obtained, fine particles are also added together with the above-mentioned components so as to be stored as a state in which fine particles are contained inside the positive electrode material composition. do it.
前記微粒子としては、 粒子の比表面積が窒素吸着比表面積 (B E T法) で 1 0 m 2/ g 以上であれば、 特に制限されるものではない。 前記微粒子の比表面積は、 窒素吸着比表面 積 (B E T法) で、 好ましくは 2 O m 2ノ g以上、 より好ましくは 4 0 m 2/ g以上、 さら に好ましくは 1 0 O n^Z g以上であるのがよい。 前記微粒子の比表面積が窒素吸着比表 面積 (B E T法) で 1 0 m 2Z g未満である場合、 固化物である正極材料組成物同士の付 着防止効果が小さくなるので、 その効果を充分に得るためには添加量を増やさなければな らないが、 むやみに前記微粒子の添加量を增やすと、 電池特性を損なうこととなるからで ある。 The fine particles are not particularly limited as long as the specific surface area of the particles is 10 m 2 / g or more in nitrogen adsorption specific surface area (BET method). The specific surface area of the fine particles is a nitrogen adsorption specific surface area (BET method), preferably 2 O m 2 g or more, more preferably 40 m 2 / g or more, and further preferably 10 O n ^ Z g It is good that it is above. If the specific surface area of the fine particles is less than 10 m 2 Z g in nitrogen adsorption ratio surface area (BET method), the adhesion preventing effect of the solidified positive electrode material compositions is reduced, so the effect is sufficient. However, if the amount of the fine particles added is increased excessively, the battery characteristics will be impaired.
前記微粒子の具体例としては、 例えば、 シリカ粒子、 カーボン粒子、 アルミナ粒子、 チ タニア粒子、 マグネシア粒子等を用いることができる。 これらの中でも特に、 電気的な影 響が最も少なく、 正極材料組成物に均一に溶解させやすいなどの点から、 シリカ粒子を用 いることが好ましい。 シリカ粒子としては、 特に制限はないが、 その粒子径が 6 0 /i m未 満であるものが好ましい。 また、 前記シリカ粒子は疎水性であることが好ましく、 市販品 では、 例えば、 日本ァエロジル (株) 製の 「ァエロジル R 9 7 2」 や 「ァエロジル R 9 7 4」 等が好ましく用いられる。  As specific examples of the fine particles, for example, silica particles, carbon particles, alumina particles, titanium particles, magnesia particles and the like can be used. Among them, it is particularly preferable to use a silica particle from the viewpoint of having the least electrical influence and easy dissolution uniformly in the positive electrode material composition. The silica particles are not particularly limited, but those having a particle diameter of less than 60 / im are preferable. The silica particles are preferably hydrophobic, and for example, “Aerosil R 9 2 2” or “Aerosil R 9 7 4” manufactured by Nippon Aerosil Co., Ltd. is preferably used as a commercial product.
前記微粒子の添加量は、 特に制限されないが、 例えば、 正極材料組成物に対して 0 . 1 〜 1重量%とすることが好ましい。  Although the addition amount of the fine particles is not particularly limited, for example, it is preferable to be 0.1 to 1% by weight with respect to the positive electrode material composition.
本発明の保存方法で保存された正極材料組成物は、 電解質塩を含有しない場合にはこれ を含有させるなど必要に応じてさらに正極材料に要する成分を配合したのち、 通常の方法 で成形することによって正極とすることができる。 このようにして得られた正極を用いて 通常の方法で作製されたリチウム電池は、 ショートテストゃサイクル特性などの各種電池 性能に優れたものとなる 実施例 The positive electrode material composition stored by the storage method of the present invention may be formed according to the usual method after blending the components required for the positive electrode material as necessary, for example, including it if it does not contain an electrolyte salt. Can be used as the positive electrode. The lithium battery produced by the usual method using the positive electrode obtained in this manner can be used in various batteries such as short test, cycle characteristics, etc. Example that becomes excellent in performance
以下に、 実施例および比較例によって本発明をより具体的に説明するが、 本発明はこれ らに限定されるものではない。 以下では、 特に断りのない限り、 「%」 は 「重量%」 を、 「部」 は 「重量部」 を、 示すものとする。  EXAMPLES The present invention will be more specifically described below by Examples and Comparative Examples, but the present invention is not limited thereto. In the following, “%” means “% by weight” and “parts” means “parts by weight” unless otherwise noted.
下記の実施例 ·比較例における分子量減少率は、 保存前の正極材料組成物中のポリマー の初期重量平均分子量を Mw。とし、 保存後の組成物中のポリマーの重量平均分子量を M wとして、 下記式に基づき算出したものである。  The following examples · The molecular weight reduction rate in the comparative example is Mw the initial weight average molecular weight of the polymer in the positive electrode material composition before storage. The weight-average molecular weight of the polymer in the composition after storage is M w, which is calculated based on the following formula.
分子量減少率 (%) = 〔 (Mw。一 Mw) /Mw。〕 X I 00  Molecular weight reduction rate (%) = [(Mw. 1 Mw) / Mw. ] X I 00
なお、 正極材料組成物中のポリマーの重量平均分子量は、 次のようにして測定した。 すな わち、 組成物にァセトニトリルを加えて 1 %溶液とし、 タツチミキサーおよびシェーカー にて充分に攪拌してポリマー分を溶解させたのち、 フィルター (非水系、 0. 45μπι) で不溶物を濾過し、 得られた濾液を溶離液 (ァセトニトリル/水 Ζ無水齚酸ナトリウム混 合溶液) で希釈して試料とし、 GPC装置 (東ソー製 「HCL_8120GPC」 ) を用 レ、、 ポリエチレンォキシドの標準分子量サンプルを用いて作製した検量線により求めた。 The weight average molecular weight of the polymer in the positive electrode material composition was measured as follows. That is, acetonitrile is added to the composition to make a 1% solution, and after sufficiently stirring with a Tutch mixer and shaker to dissolve the polymer component, the insoluble matter is filtered by a filter (non-aqueous system, 0.45 μπι). The resulting filtrate is diluted with an eluent (acetonitrile / water-water-sodium borate mixture solution) to give a sample, and a GPC apparatus (Tosoh “HCL_8120GPC”) is used as a sample, and a standard molecular weight sample of polyethylene oxide. It calculated | required by the calibration curve produced using.
〔製造例 1—電解質塩を含有する正極材料組成物 (A) の調製〕  Production Example 1 Preparation of Positive Electrode Material Composition (A) Containing Electrolyte Salt
マックスブレンド翼、 温水ジャケット、 添加口を備えた 100 Lの反応器 (該反応器を 「反応器 A」 とする) 内の空気を窒素ガスで置換したのち、 温水ジャケット温度を 70°C まで昇温しておき、 その中に、 あらかじめ 80°Cに加温保温しておいた、 ポリマー (ェチ レンォキシド ブチレンォキシド共重合体:重量平均分子量 (Mw) 124, 000、 分 子量分布 (MwZMn) 1. 45) のトルエン溶液 (固形分 45. 8%) 33. 30部を 投入した。 次いで、 リチウム塩としてリチウムビス (トリフルォロメタンスルホン) イミ ド (L i N (CF3S02) 2) 3. 28部をホッパーから反応器へ投入した。 その後、 ホ ッパーや配管等に残った残存物をトルエン 6. 00部で反応器内に洗い流したのち、 内温 70で、 冀回転 90 r pmで 2時間攪拌した。 After replacing the air in a 100 L reactor (this reactor is called “Reactor A”) equipped with Max Blend wings, a hot water jacket, and an addition port with nitrogen gas, the hot water jacket temperature is raised to 70 ° C. Polymer (Ethylene butylene butylene oxide copolymer: weight average molecular weight (Mw) 124, 000, molecular weight distribution (MwZMn) 1 which had been warmed and kept at 80 ° C. in advance. 33. 30 parts of a solution of 45) in toluene (solid content 45.8%) was added. Next, 3.28 parts of lithium bis (trifluoromethanesulfone) imide (Li 3 N (CF 3 S 0 2 ) 2 ) was introduced into the reactor from the hopper as a lithium salt. Thereafter, the residue remaining in the hopper or piping was washed away with 6,000 parts of toluene into the reactor, and then stirred at an internal temperature of 70 and a 90 rpm rotation for 2 hours.
次に、 攪拌翼 ( 「スーパーブレンド翼」 住友重機械工業 (株) 製) 、 温水ジャケット、 添加口を備えた 100 Lの反応器 (該反応器を 「反応器 B」 とする) 内の空気を窒素置換 したのち、 該反応器に、 フヱノール系酸化防止剤 (エーピーアイコーポレーション製 「ョ シノックス BB」 ) 0. 076部、 トルエン 30部、 電極活物質と導電助剤との混合物 ( 「L i t h i a t e d v n a d i um o x i d e/ c a r b o n b l e n d」 U S AVE S TOR LLC社製) 31. 68部を順次投入した。 その後、 ホッパーや配 管等に残った残存物をトルエン 10. 0部で反応器内に洗い流したのち、 常温、 常圧で 3 0分間、 内翼回転 75 r pm、 外翼回転 29 r pmで攪拌し、 均一に混合した。 その後、 窒素により反応器内を 1. 6 k g/ cm2まで加圧し 10 OmmHgまで減圧する操作を 数回繰り返し、 系内の余分な水分および溶存酸素を除いた。 Next, air in a 100 L reactor (this reactor is referred to as “Reactor B”) equipped with a stirring blade (“Super blend wing”, Sumitomo Heavy Industries, Ltd.), a warm water jacket, and an addition port. The reactor is replaced with nitrogen, and then, in the reactor, 0.50 076 parts of a phenol-based antioxidant (“Cysnox BB” manufactured by AP Corporation, 30 parts of toluene, and a mixture of an electrode active material and a conductive aid (“L um oxide / carbonblend "(US AVE S TOR LLC) 31. 68 parts were introduced one by one. After that, the residue remaining in the hopper and piping etc. is washed away with 10.0 parts of toluene into the reactor, and then the inner blade rotation is 75 rpm and the outer blade rotation is 29 rpm at normal temperature and pressure for 30 minutes. Stir and mix uniformly. After that, the operation of pressurizing the inside of the reactor to 1.6 kg / cm 2 with nitrogen and depressurizing to 10 O mmHg was repeated several times to remove excess water and dissolved oxygen in the system.
次いで、 反応器 B内を、 内翼回転 75 r pm、 外翼回転 29 r pmで攪拌しながら、 反 応器 Aと反応器 Bを繋ぐようあらかじめ付設した配管を経由して、 反応器 Aの内容物 (ポ リマーとリチウム塩との混合溶液) 42. 58部を反応器 Bへ投入したのち、 瘟水ジャケ ットで昇温し、 50でで 2時間攪拌して、 均一なスラリー溶液とした。 次に、 30 mm ψ二軸押出機 (ブラスティック工学研究所製 「BT_30— S 2」 ) を 用い、 二軸回転数 1 00 r pm、 内温 100°Cで、 前記反応器からギヤポンプを介して前 記スラリー溶液をフィードして、 349 T o r rの減圧をかけて脱揮を行い、 溶媒 (トル ェン) を留去した。 そして、 二軸押出機の出口から押し出された棒状体を、 圧延二本ロー ル (関西ロール (株) 製 「8 X 20 BOX型ロール機」 ) にて厚み 2 mmのシート状物に し、 該シート状物を内部を窒素置換した袋内に入れてヒートシールし、 一昼夜 1 0°C以下 の冷蔵庫で保管した。 次いで、 9°Cに冷やされたシート状物を、 シートカッター ( (株) ホーライ製 「30£— 220型」 ) を用いて幅 4mmX長さ 3. 7mm程度に切断し、 角 状のペレッ トとした。 該ペレッ トをコニカルドライヤー (日空工業 (株) 製 「バキューム タンブルドライヤー」 ) の中に入れ、 流量 5 LZ分で窒素を流通させた状態で、 20 、 減圧度 6 To r rの条件で 1 2時間以上乾燥し、 ペレツト状の正極材料組成物 (A) を得 た。 Next, while stirring the inside of the reactor B with the inner blade rotation 75 rpm and the outer blade rotation 29 rpm, the piping of the reactor A is made via the piping previously attached to connect the reactor A and the reactor B. Contents (mixed solution of polymer and lithium salt) 42. 58 parts are charged into reactor B, then heated with a water jacket and stirred at 50 for 2 hours to obtain a uniform slurry solution did. Next, using a 30 mm ψ twin-screw extruder ("BT_30-S 2" manufactured by BLASTIC INSTRUMENT RESEARCH INSTITUTE), the above reactor via a gear pump at a biaxial rotation speed of 100 rpm and an internal temperature of 100 ° C. The slurry solution was fed, and degassing was applied under a reduced pressure of 349 Torr, and the solvent (toluene) was distilled off. Then, the rod-like body extruded from the outlet of the twin-screw extruder is formed into a sheet of 2 mm in thickness using a rolling two-roll ("8 x 20 BOX type roll machine" manufactured by Kansai Roll Co., Ltd.). The sheet was placed in a nitrogen-replaced bag, heat sealed, and stored in a refrigerator at 10 ° C. or less overnight. Next, the sheet material cooled to 9 ° C. is cut into a width of 4 mm and a length of about 3.7 mm using a sheet cutter (“30 £ -220 type” manufactured by Horai Co., Ltd.), and a square pellet is obtained. And The pellet is placed in a conical dryer (“vacuum tumble dryer” manufactured by Nissan Kogyo Co., Ltd.), and nitrogen is allowed to flow at a flow rate of 5 LZ, under conditions of 20 and a degree of vacuum of 6 Torr. After drying for a longer time, a pellet-like positive electrode material composition (A) was obtained.
〔製造例 2 _電解質塩を含有しない正極材料組成物 (B) の調製〕  Production Example 2 Preparation of Positive Electrode Material Composition (B) Containing No Electrolyte Salt
攪拌翼 ( 「スーパーブレンド翼 j 住友重機械工業 (株) 製) 、 温水ジャケット、 添加口 を備えた 1 00 Lの反応器内の空気を窒素置換したのち、 該反応器に、 フエノール系酸化 防止剤 (エーピーアイコーポレーション製 「ヨシノックス BB」 ) 0. 057部、 トルェ ン 30部、 電極活物質と導電助剤との混合物 ( 「L i t h i a t e d v a n a d i um o x i d e/c a r b o n b l e n d」 US AVE S TOR L L C社製) 23. 7 6部を順次投入した。 その後、 ホッパーや配管等に残った残存物をトルエン 5. 0部で反 応器内に洗い流したのち、 常温、 常圧で 30分間、 内翼回転 75 r pm、 外翼回転 29 r pmで攪拌し、 均一に混合した。 その後、 窒素により反応器内を 1. 6 k gZcm2まで 加圧し 10 OmmHgまで減圧する操作を数回繰り返し、 系内の余分な水分および溶存酸 素を除いた。 次いで、 あらかじめ 80°Cに加温保温しておいた、 ポリマー (エチレンォキ シド ブチレンォキシド共重合体:重量平均分子量 (Mw) 1 24, 000、 分子量分布After stirring air in a 100 L reactor equipped with a stirring blade ("Super Blend Blade j Sumitomo Heavy Industries, Ltd."), a warm water jacket, and an addition port, the air in the reactor is replaced with nitrogen, Agent ("Yoshinox BB", manufactured by AP Corporation), 30 parts of Toluen, a mixture of an electrode active material and a conductive auxiliary ("Lithated vanadium oxide / carbonblend", manufactured by US AVE S TOR LLC) 23. 7 6 copies were introduced one by one. After that, the residue remaining in the hopper and piping etc. is washed away with 5.0 parts of toluene into the reactor and stirred at normal temperature, normal pressure for 30 minutes, inner blade rotation 75 rpm, outer blade rotation 29 rpm And mixed uniformly. Then, the operation of pressurizing the inside of the reactor to 1.6 kgzcm 2 with nitrogen and depressurizing to 10 O mmHg was repeated several times to remove excess water and dissolved oxygen in the system. Then, a polymer (ethylene oxide butylene oxide copolymer: weight average molecular weight (Mw) 1 24,000, molecular weight distribution, which has been prewarmed to 80 ° C.
(Mw/Mn) 1. 45) のトルエン溶液 (固形分 45. 8%) 25部を投入したのち、 温水ジャケットで昇温し、 常圧下 49°Cで 1時間、 内翼回転 75 r pm、 外翼回転 29 r pmで攪拌して、 均一なスラリー溶液とした。 その後、 両翼の回転数を、 内翼 50 r pm 、 外翼 24 r pmとし、 温水ジャケットの加温を停止した状態で一昼夜保持した。 一昼夜 後のスラリー溶液の温度は 36. 2°Cになっていた。 After 25 parts of a toluene solution (Mw / Mn) 1. 45) (solid content: 45.8%) was added, the temperature was raised with a warm water jacket, and internal blade rotation 75 rpm, normal pressure at 49 ° C for 1 hour. The mixture was stirred at an outer blade rotation of 29 rpm to obtain a uniform slurry solution. After that, the number of revolutions of both wings was set to 50 rpm for the inner wing and 24 rpm for the outer wing, and the heating of the hot water jacket was stopped overnight. The temperature of the slurry solution after one day was 36.2 ° C.
次いで、 前記反応器にフエノール系酸化防止剤 (エーピーアイコーポレーション製 「ョ シノックス BB」 ) 0. 057部を投入した。 その後、 反応器に減圧ラインを接続し、 内 翼回転 75 r pm、 外翼回転 29 r pmで攪拌しながら、 47~49°Cで 60〜69 T o r rの減圧をかけて、 トルエンを留去させたのち、 窒素で解圧して、 固形分約 6 7. 4% のスラリー溶液とした。  Next, 0.50 parts of a phenol-based antioxidant (“Y-Sinox BB” manufactured by AP Corporation) was charged into the reactor. After that, connect a pressure reduction line to the reactor, and apply a pressure reduction of 60 to 69 Torr at 47 to 49 ° C while stirring with inner blade rotation 75 rpm and outer blade rotation 29 rpm to distill off toluene. The mixture was de-pressurized with nitrogen to form a slurry solution having a solid content of about 64. 4%.
次に、 KRCニーダー (栗本鐡ェ所 (株) 製) 本体、 供給ラインおよび出口ラインの空 気を窒素ガスで置換したのち、 ニーダーを 38 r pmで回転させながら内温を 89°Cに設 定しておき、 前記反応器からギヤポンプを介してニーダー本体に前記スラリー溶液をフィ ードし、 まず 27 OTo r rまで減圧しトルエンが安定して留出することを確認したのち 、 26 7 T o r rの減圧をかけて脱揮を行った。 そして、 K R Cニーダ一の出口から押出 された溶融物をギアポンプを介してス トランドダイ (直径 2mm、 2孔) に送り、 窒素気 流下に押出して、 直径 3 mmのひも状物を得た。 次いで、 該ひも状物を、 まず室温で窒素 気流下に設置したベルトコンベア ( (株) 三栄製作所製 「サンェイコンべャ S J Y_ 15 — 200Ν」 ) にのせて放冷したのち、 窒素気流下で表面温度 10°Cのシングルベルトク 一ラー (日本スチールコンベア (株) 製 「スチールベルトシングルクーラー」 ) にのせて 冷却し、 その後、 窒素流通下で一昼夜放置して、 乾燥させた。 Next, after replacing the air of the KRC kneader (made by Kurimoto Koji Co., Ltd.) main body, supply line and outlet line with nitrogen gas, set the internal temperature to 89 ° C while rotating the kneader at 38 rpm. Set the slurry solution in the kneader main body from the reactor via a gear pump, first reduce the pressure to 27 OTo rr, and confirm that the toluene is stably distilled. Then, 26 7 T orr Degassing was applied under reduced pressure. Then, the melt extruded from the outlet of the KRC kneader is sent to the strand die (2 mm in diameter, 2 holes) via a gear pump, The mixture was extruded into a stream to obtain a 3 mm-diameter string. Next, the string-like material is first placed on a belt conveyor ("San Ye concha SJ Y_15-200" manufactured by Sanei Mfg. Co., Ltd.) installed under a nitrogen stream at room temperature, allowed to cool, and then surfaced under a nitrogen stream. It was placed on a single-belt crater at a temperature of 10 ° C. (“Steel-belt single cooler” manufactured by Nippon Steel Conveyor Co., Ltd.) and cooled, and then allowed to stand overnight under nitrogen flow for drying.
次いで、 得られたひも状物を、 ス トランドカッター (いずず化工機械社製 「SFC— 1 00」 ) を用いて長さ 3. 65 mm程度に切断し、 丸状のペレッ トとした。 該ペレッ トを コニカルドライヤー (日空工業 (株) 製 「バキュームタンブルドライヤー」 ) の中に入れ Next, the obtained string was cut into a round pellet having a length of about 3.65 mm using a strand cutter ("SFC-100" manufactured by Izu Chemical Co., Ltd.). The pellet is placed in a conical dryer ("vacuum tumble dryer" manufactured by Nissan Kogyo Co., Ltd.)
、 流量 5 LZ分で窒素を流通させた状態で、 30°C、 減圧度 1 lTo r r以下の条件で 1 7時間以上乾燥し、 ペレット状の正極材料組成物 (B) を得た。 After passing nitrogen at a flow rate of 5 LZ, drying was carried out for more than 17 hours under conditions of 30 ° C. and a degree of vacuum of 1 l Torr, to obtain a pellet-like positive electrode material composition (B).
〔実施例 1— 1〕  Example 1-1
温度計、 バルブを有するガス導入口およびガス出口、 蓋を備えた密閉可能な容器 (容量 30 OmL) に正極材料組成物 (A) を入れて蓋を閉め、 ガス導入口および出口のバルブ を空けた状態で該導入口から容器内に窒素ガスを流量 1 O OmLZ分で 3. 5分間導入し て容器内の空気を窒素ガスで置換したのち、 直ちにガス出口のバルブを閉め次いで導入口 のバルブを閉じて、 容器を密閉した。 そして、 該容器内の温度が 25± 5°C (室温) を維 持するように該容器を恒温槽に入れ、 18日間保存した。 その後、 直ちに容器内の組成物 をポリエチレンォキシドの標準分子量サンプルを用いて検量線を作製した G P C装置で分 析し、 該組成物中のポリマーの重量平均分子量を測定したところ、 122, 000であり 、 正極材料組成物 (A) 中のポリマーの初期重量平均分子量 124, 000に対する分子 量減少率は 1. 6%であった。  Place the positive electrode material composition (A) in a sealable container (volume 30 OmL) equipped with a thermometer, a gas inlet and a valve outlet, and a lid, close the lid, and open the gas inlet and outlet valves. In this state, nitrogen gas is introduced into the vessel from the inlet at a flow rate of 1 O OmL Z minutes for 3.5 minutes to replace the air in the vessel with nitrogen gas, and then the gas outlet valve is closed immediately and the inlet valve is closed. Closed and sealed the container. Then, the container was placed in a thermostat so as to maintain the temperature in the container at 25 ± 5 ° C. (room temperature), and stored for 18 days. After that, the composition in the container was immediately analyzed by a GPC apparatus which prepared a calibration curve using a standard molecular weight sample of polyethylene oxide, and the weight average molecular weight of the polymer in the composition was measured to be 122,000. There was a molecular weight reduction rate of 1.6% with respect to the initial weight average molecular weight of 14,000 of the polymer in the positive electrode material composition (A).
〔実施例 1一 2〕 . 窒素ガスをアルゴンガスに変更したこと以外は実施例 1— 1と同様に、 正極材料組成物 (A) を保存した。 その後、 実施例 1—1と同様に、 直ちに容器内の組成物を分析し、 該 組成物中のポリマーの重量平均分子量を測定したところ、 123, 000であり、 正極材 料組成物 (A) 中のポリマーの初期重量平均分子量 124, 000に対する分子量減少率 は 0. 8%であった。  Example 1 2 The positive electrode material composition (A) was stored in the same manner as in Example 1-1 except that nitrogen gas was changed to argon gas. Thereafter, in the same manner as in Example 1-1, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured to be 123,000, indicating that the positive electrode material composition (A) The molecular weight reduction rate was 0.8% with respect to the initial weight-average molecular weight of 124,000 of the polymer contained therein.
〔比較例 1一 1〕  [Comparative Example 1 1 1]
温度計、 蓋を備えた密閉可能な容器 (容量 30 OmL) に正極材料組成物 (A) を入れ て蓋を閉め、 該容器内を窒素ガスで置換することなく容器を密閉し (このとき、 容器内の 空気の含有水分量は約 6000 p pmであった) 、 該容器内の温度が 25± 5°C (室温) を維持するように該容器を恒温槽に入れ、 18日間保存した。 実施例 1一 1と同様に、 直 ちに容器内の組成物を分析し、 該組成物中のポリマーの重量平均分子量を測定したところ 、 11 1, 000であり、 正極材料組成物 (A) 中のポリマーの初期重量平均分子量 12 4, 000に対する分子量減少率は 10. 5 %であった。  Place the positive electrode material composition (A) in a sealable container (volume 30 OmL) equipped with a thermometer and a lid, close the lid, and close the container without replacing the inside of the container with nitrogen gas (at this time, The water content of the air in the container was about 6000 ppm) and the container was placed in a thermostat so as to maintain the temperature in the container at 25 ± 5 ° C. (room temperature), and stored for 18 days. The composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured in the same manner as in Example 11 and found to be 111,000, and the positive electrode material composition (A). The molecular weight reduction rate to the initial weight average molecular weight 124,000 of the polymer contained was 10.5%.
〔実施例 1一 3〕  [Example 1 1 3]
温度計、 バルブを有するガス導入口およびガス出口、 蓋を備えた密閉可能な容器 (容量 30 OmL) に正極材料組成物 (B) を入れて蓋を閉め、 ガス導入口および出口のバルブ を空けた状態で該導入口から容器内に窒素ガスを流量 1 O OmLZ分で 3. 5分間導入し て容器内の空気を窒素ガスで置換したのち、 直ちにガス出口のバルブを閉め次いで導入口 のバルブを閉じて、 容器を密閉した。 そして、 該容器内の温度が 25± 5°C (室温) を維 持するように該容器を恒温槽に入れ、 18 B間保存した。 その後、 実施例 1—1と同様に 、 直ちに容器内の組成物を分析し、 該組成物中のポリマーの重量平均分子量を測定したと ころ、 119, 000であり、 正極材料組成物 (B) 中のポリマーの初期重量平均分子量 124, 000に対する分子量減少率は 4. 0%であった。 Place the positive electrode material composition (B) in a sealable container (volume 30 OmL) equipped with a thermometer, a gas inlet with a valve and a gas outlet, and a lid, close the lid, and open the valves for the gas inlet and outlet. In this condition, nitrogen gas is introduced into the vessel from the inlet at a flow rate of 1 O OmL Z minutes for 3.5 minutes to replace the air in the vessel with nitrogen gas, and then the gas outlet valve is closed immediately and then the inlet Closed the container and sealed the container. Then, the container was placed in a thermostat so as to maintain the temperature in the container at 25 ± 5 ° C. (room temperature), and stored for 18 B. Thereafter, in the same manner as in Example 1-1, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured, to be 119,000. Cathode Material Composition (B) The molecular weight reduction rate with respect to the initial weight average molecular weight of 124,000 of the polymer in was 4.0%.
なお、 3日間保存したときの組成物中のポリマーの重量平均分子量を測定したところ、 123, 000であり、 正極材料組成物 (B) 中のポリマーの初期重量平均分子量 124 , 000に対する分子量減少率は 0. 8 %であった。  The weight average molecular weight of the polymer in the composition when stored for 3 days was measured to be 123,000, and the percentage reduction in molecular weight relative to the initial weight average molecular weight 124,000 of the polymer in the positive electrode material composition (B) Was 0.8%.
〔実施例 1一 4〕  [Example 1 1 4]
窒素ガスをアルゴンガスに変更したこと以外は実施例 1— 3と同様に、 正極材料組成物 (B) を保存した。 その後、 実施例 1一 1と同様に、 直ちに容器内の組成物を分析し、 該 組成物中のポリマーの重量平均分子量を測定したところ、 123, 000であり、 正極材 料組成物 (B) 中のポリマーの初期重量平均分子量 124, 000に対する分子量減少率 は 0. 8%であった。  The positive electrode material composition (B) was stored in the same manner as in Example 1-3 except that nitrogen gas was changed to argon gas. Thereafter, in the same manner as in Example 11, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured, and it was 123,000, and the positive electrode material composition (B) The molecular weight reduction rate was 0.8% with respect to the initial weight-average molecular weight of 124,000 of the polymer contained therein.
なお、 3日間おょぴ 16日間保存したときの組成物中のポリマーの重量平均分子量を測 定したところ、 いずれも 124, 000であり、 正極材料組成物 (B) 中のポリマーの初 期重量平均分子量 124, 000に対する分子量減少率はいずれも 0. 0 %であった。  In addition, when the weight average molecular weight of the polymer in the composition when stored for 3 days and 16 days was measured, it was 124,000 in each case, and the initial weight of the polymer in the positive electrode material composition (B) was measured. The rate of decrease in molecular weight relative to the average molecular weight of 124,000 was all at 0. 0%.
〔比較例 1一 2〕  [Comparative example 1 1 2]
温度計、 蓋を備えた密閉可能な容器 (容量 300mL) に正極材料組成物 (B) を入れ て蓋を閉め、 該容器内を窒素ガスで置換することなく直ちに容器を密閉し (このとき、 容 器内の空気の含有水分量は約 6000 p pmであった) 、 該容器内の温度が 25± 5°C ( 室温) を維持するように該容器を恒温槽に入れ、 16.日間保存した。 その後、 実施例 1一 1と同様に、 直ちに容器内の組成物を分析し、 該組成物中のポリマーの重量平均分子量を 測定したところ、 98, 000であり、 正極材料組成物 (B) 中のポリマーの初期重量平 均分子量 124, 000に対する分子量減少率は 21. 0 %であった。  Place the positive electrode material composition (B) in a sealable container (volume 300 mL) equipped with a thermometer and a lid, close the lid, and immediately seal the container without replacing the inside of the container with nitrogen gas (at this time, The water content of the air in the container was about 6000 ppm), the container was placed in a thermostat so that the temperature in the container was maintained at 25 ± 5 ° C. (room temperature), and stored for 16. days did. Thereafter, in the same manner as in Example 11, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured to be 98,000. In the positive electrode material composition (B) The molecular weight reduction rate was 21.0% relative to the initial weight average molecular weight of 124,000 of the polymer.
〔比較例 1一 3〕  [Comparative Example 1 1 3]
保存期間を 16日間から 9日間に変更したこと以外は比較例 1— 2と同様に、 正極材料 組成物 (B) を保存した。 その後、 実施例 1—1と同様に、 直ちに容器内の組成物を分析 し、 該組成物中のポリマーの重量平均分子量を測定したところ、 104, 000であり、 正極材料組成物 (B) 中のポリマーの初期重量平均分子量 124, 000に対する分子量 減少率は 16. 1 %であった。  The positive electrode material composition (B) was stored in the same manner as Comparative Example 1-2 except that the storage period was changed from 16 days to 9 days. Thereafter, the composition in the container was immediately analyzed in the same manner as in Example 1-1, and the weight average molecular weight of the polymer in the composition was measured to be 104,000, and it was found in the positive electrode material composition (B). The rate of decrease in molecular weight relative to the initial weight average molecular weight of 124,000 of the polymer was 16.1%.
〔実施例 1一 5〕  [Example 1 1 5]
窒素ガスを露点一 50°Cの乾燥空気 (含有水分量 39 p p m) に変更したこと以外は実 施例 1一 1と同様に、 正極材料組成物 (A) を保存した。 その後、 実施例 1一 1と同様に 、 直ちに容器内の組成物を分析し、 該組成物中のポリマーの重量平均分子量を測定したと ころ、 118, 000であり、 正極材料組成物 (A) 中のポリマーの初期重量平均分子量 124, 000に対する分子量減少率は 4. 8%であった。  The positive electrode material composition (A) was stored in the same manner as in Example 11 except that nitrogen gas was changed to dry air with a dew point of 50 ° C. (content of water content: 39 ppm). Thereafter, in the same manner as in Example 11, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured, to be 118, 000, and the positive electrode material composition (A) The molecular weight reduction rate was 4.8% with respect to the initial weight-average molecular weight of 124,000 of the polymer contained therein.
〔実施例 2— 1〕  [Example 2-1]
温度計、 蓋を備えた密閉可能な容器 (容量 300mL) に正極材料組成物 (A) を入れ て蓋を閉め、 該容器を密閉したのち (このとき、 容器内の空気の含有氷分量は約 3000 p pmであった) 、 該容器内の温度が 0〜5°Cを維持するように該容器を恒温槽に入れ、 18日間保存した。 その後、 実施例 1一 1と同様に、 直ちに容器内の組成物を分析し、 該 組成物中のポリマ一の重量平均分子量を測定したところ、 123, 000であり、 正極材 料組成物 (A) 中のポリマーの初期重量平均分子量 124, 000に対する分子量減少率 は 0. 8%であった。 The positive electrode material composition (A) is placed in a sealable container (volume 300 mL) equipped with a thermometer and a lid and the lid is closed, and the container is closed (at this time, the amount of ice contained in the container is about ice) 3000 The container was put in a thermostat so that the temperature in the container was maintained at 0 to 5 ° C., and stored for 18 days. Thereafter, in the same manner as in Example 11, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured, and it was 123,000. The molecular weight reduction rate was 0.8% with respect to the initial weight average molecular weight of 124,000 of the polymer in.
〔実施例 2— 2〕  [Example 2-2]
温度計、 蓋を備えた密閉可能な容器 (容量 300mL) に正極材料組成物 (A) を入れ て蓋を閉め、 該容器内に露点一 50°Cの乾燥空気 (含有水分量 39 p pm) を流量 100 mLZ分で 3. 5分間充填して容器内の空気を乾燥空気で完全に置換したのち (このとき 、 容器内の空気の含有水分量は約 130 p pmであった) 、 直ちに容器を密閉し、 該容器 内の温度が 0〜5°Cを維持するように該容器を恒温槽に入れ、 18日間保存した。 その後 、 実施例 1_1と同様に、 直ちに容器内の組成物を分析し、 該組成物中のポリマーの重量 平均分子量を測定したところ、 122, 000であり、 正極材料組成物 (A) 中のポリマ 一の初期重量平均分子量 124, 000に対する分子量減少率は 1. 6 %であった。  Place the positive electrode material composition (A) in a sealable container (volume 300 mL) equipped with a thermometer and a lid, close the lid, and dry air at a dew point of 50 ° C in the container (water content: 39 ppm) After filling the container with a flow rate of 100 mL for 3.5 minutes and completely replacing the air in the container with dry air (at this time, the water content of the air in the container was about 130 ppm), immediately The container was sealed, and the container was placed in a thermostat so that the temperature in the container was maintained at 0 to 5 ° C., and stored for 18 days. Thereafter, in the same manner as in Example 1_1, the composition in the container was immediately analyzed, and the weight average molecular weight of the polymer in the composition was measured to be 122,000. The polymer in the positive electrode material composition (A) The molecular weight reduction rate to an initial weight average molecular weight of 120,000 was 1.6%.
〔実施例 2— 3〕  [Example 2-3]
温度計、 蓋を備えた密閉可能な容器 (容量 300mL) に正極材料組成物 (B) を入れ て蓋を閉め、 該容器を密閉したのち (このとき、 容器内の空気の含有水分量は約 4000 p pmであった) 、 該容器内の温度が 0〜5°Cを維持するように該容器を恒温槽に入れ、 18日間保存した。 その後、 実施例 1一 1と同様に、 直ちに容器内の組成物を分析し、 該 組成物中のポリマーの重量平均分子量を測定したところ、 118, 000であり、 正極材 料組成物 (B) 中のポリマーの初期重量平均分子量 124, 00◦に対する分子量減少率 は 4. 8%であった。  The positive electrode material composition (B) is placed in a sealable container (volume 300 mL) equipped with a thermometer and a lid, the lid is closed, and the container is closed (at this time, the moisture content of the air in the container is about The container was placed in a thermostat so that the temperature in the container was maintained at 0-5 ° C., and stored for 18 days. Thereafter, the composition in the container was immediately analyzed and the weight average molecular weight of the polymer in the composition was measured in the same manner as in Example 11 and found to be 118, 000. The positive electrode material composition (B) The decrease in molecular weight was 4.8% relative to the initial weight-average molecular weight of 124,00 ° of the polymer contained therein.
〔製造例 3 _電解質塩を含有する粒子状の正極材料組成物 (Α' ) の調製〕  Production Example 3 Preparation of Particulate Positive Electrode Material Composition (Α ′) Containing Electrolyte Salt
製造例 1と同様にして、 乾燥前の角状のペレットを得、 これを粉砕機 ( (株) ホーライ 製 「U— 480型」 ) に投入して粉砕し、 1. 00〜3. 34mmメッシュオンが 80% の粒子状物とした。 該粒子状物をコニカルドライヤー (日空工業 (株) 製 「バキュームタ ンブルドライヤー」 ) の中に入れ、 流量 5 L/分で窒素を流通させた状態で、 20°C、 減 圧度 6 To r rの条件で 12時間以上乾燥し、 粒子状の正極材料組成物 (Α' ) を得た。  In the same manner as in Production Example 1, square shaped pellets before drying were obtained, charged into a grinder ("U-480 type" manufactured by Horai Co., Ltd.) and crushed, and 1.00 to 3.34 mm mesh The particle size was 80% on. The particulate matter is placed in a conical dryer ("Vacuum tumble dryer" manufactured by Nisso Industries Co., Ltd.), and nitrogen is allowed to flow at a flow rate of 5 L / min. Drying was performed for 12 hours or more under the conditions of rr to obtain a particulate positive electrode material composition (Α ′).
〔実施例 3— 1〕  [Example 3-1]
チャック付ビニール袋に正極材料組成物 (A' ) 390 gとシリカ粒子 (日本ァエロジ ル (株) 製 「ァエロジル R 972」 :粒子径約 16 nm、 粒子の比表面積 (BET法) 1 1 OmVg) 1. 95 gとを入れ、 5分間上下左右によく振って正極材料組成物 (A, ) 粒子とシリカ粒子とを混ぜ合わせ、 正極材料組成物 (Α' ) 粒子とシリカ粒子との混合 物を得た。  In a plastic bag with a chuck, 390 g of the positive electrode material composition (A ') and silica particles (“Aerosil R 972” manufactured by Nippon Aerosil Co., Ltd .: particle diameter about 16 nm, specific surface area of particles (BET method) 1 1 OmVg) 1. Add 95 g and shake well for up to 5 minutes to mix the positive electrode material composition (A,) particles with the silica particles, and mix the positive electrode material composition (粒子 ') particles with the silica particles. Obtained.
密閉可能なグローブボックス内に、 前記混合物とともに、 天枰、 円柱型容器、 チャック 付ビニール袋、 錘など以降の操作に必要なものを入れ、 該グローブボックス内に窒素ガス' を流量 50 LZ分で 4日間流通させ、 グローブボックス内の空気の露点が一 40°C (含有 水分量 127 p pm) となるようにした。 該グローブボックス内で、 円柱型容器 (容量 1 2 QmL、 内径 5 cm) に前記混合物 68. 5 gを枰量し、 該混合物の上に 200 gの円 柱型錘 (内径 4. 9 cm) を載せたのち直ちに逆さにして錘を下にした状態 (錘の荷重が 混合物にかからない状態) とし、 この状態を維持したまま、 チャック付ビニール袋に入れ てチャックを閉め、 次いでグローブボックスから取り出したのち直ちにチヤックと平行に ヒートシールを施して密閉した。 次いで、 この密閉したビニール袋 (内部に入れた前記混 合物は錘の上にあり、 錘の荷重は混合物にかからない状態になっている) を 4 0での恒温 槽に 2時間入れて調温したのち、 直ちにビニール袋内部の混合物と錘とを逆さにして錘が 混合物の上になるようにし、 錘の荷重が混合物にかかる状態で前記ビニール袋を 4 0 °Cの 恒温槽内に入れて 9日間保存した。 その後、 直ちにビニール袋を開封して円柱型容器から 静かに正極材料組成物を取り出し、 ブロッキングの状態を下記の基準で評価した。 結果は 〇であった。 Put together with the above-mentioned mixture in a sealable glove box, put in place what is necessary for the subsequent operation such as Tendon, a cylindrical container, a plastic bag with a chuck, a weight etc. It was circulated for 4 days so that the dew point of the air in the glove box would be 40 ° C (water content: 127 ppm). In the glove box, weigh 68.5 g of the mixture in a cylindrical container (volume 12 QmL, inner diameter 5 cm), and place 200 g of cylindrical weights (inner diameter 4.9 cm) on the mixture. Immediately after placing the weight, turn the weight upside down (the weight of the weight While keeping this condition, the product was put in a plastic bag with a chuck and closed, and then taken out of the glove box and immediately heat sealed in parallel with the chuck for sealing. Next, this sealed plastic bag (the mixture placed inside is on the weight, and the weight load is not applied to the mixture) is placed in a thermostatic bath at 40 ° C for 2 hours to control the temperature. After that, the mixture inside the plastic bag and the weight are immediately inverted so that the weight is on the mixture, and the plastic bag is placed in a 40 ° C. constant temperature bath with the weight load applied to the mixture. It was stored for 9 days. Thereafter, the plastic bag was immediately opened and the positive electrode material composition was gently removed from the cylindrical container, and the state of blocking was evaluated according to the following criteria. The result was o.
〇:正極材料組成物は完全にバラけた状態になっている  :: The positive electrode material composition is completely separated
△:正極材料組成物は互いに軽く付着して容器に入っていたときの形状を保っているが 、 軽く突付くと容易にバラけた状態になる  :: The positive electrode material compositions lightly adhere to each other and maintain the shape as they were in the container, but when lightly adhere, they easily separate.
X :正極材料組成物は互いに強固に付着して容器に入っていたときの形状を保っており 、 軽く突付いても容易にバラけた状態にはならない  X: The positive electrode material composition adheres firmly to each other and maintains its shape as it was in the container, and it does not easily come apart even if it slightly sticks
他方、 温度計、 バルブを有するガス導入口およびガス出口、 蓋を備えた密閉可能な容器 (容量 3 0 0 m L ) に、 前述した正極材料組成物 (Α ' ) 粒子とシリカ粒子との混合物を 入れて蓋を閉め、 ガス導入口および出口のバルブを空けた状態で該導入口から容器内に窒 素ガスを流量 1 O O m L Z分で 3 . 5分間導入して容器内の空気を窒素ガスで置換したの ち、 直ちにガス出口のバルブを閉め次いで導入口のバルブを閉じて、 容器を密閉した。 そ して、 該容器内の温度が 4 0 °Cを維持するように該容器を恒温槽に入れ、 1 8日間保存し た。 その後、 実施例 1 _ 1と同様に、 直ちに容器内の組成物を分析し、 該組成物中のポリ マーの重量平均分子量を測定したところ、 1 1 8 , 0 0 0であり、 正極材料組成物 (Α ' ) 中のポリマーの初期重量平均分子量 1 2 4 , 0 0 0に対する分子量減少率は 4 . 8 %で あった。  On the other hand, a mixture of the cathode material composition (Α ') particles and the silica particles described above in a sealable container (volume 300 mm) equipped with a thermometer, a gas inlet and a valve outlet, and a lid With the lid closed and with the gas inlet and outlet valves open, introduce nitrogen gas into the vessel from the inlet at a flow rate of 1 OO m LZ minutes for 3.5 minutes to make the air in the vessel nitrogen Immediately after gas replacement, the gas outlet valve was closed and the inlet valve was closed to seal the vessel. Then, the container was placed in a thermostat so that the temperature in the container was maintained at 40 ° C., and stored for 18 days. Thereafter, the composition in the container was immediately analyzed in the same manner as in Example 1_1, and the weight average molecular weight of the polymer in the composition was measured to be 1 18, 00, and the composition of the positive electrode material was The molecular weight reduction rate with respect to the initial weight average molecular weight 1 2 4 0 0 0 0 0 of the polymer in substance (Α ') was 4 8%.
〔実施例 3— 2〕  [Example 3-2]
実施例 3— 1と同様にして、 正極材料組成物 (Α ' ) 粒子とシリカ粒子との混合物を得 た。  In the same manner as in Example 3-1, a mixture of positive electrode material composition (Α ') particles and silica particles was obtained.
密閉可能なグローブボックス内に、 前記混合物とともに、 天秤、 円柱型容器、 チャック 付ビニール袋、 錘など以降の操作に必要なものを入れ、 これ以降、 2 0 °Cの恒温槽で調温 し 2 0 °Cの恒温槽内に入れて 9日間保存するように変更したこと以外は実施例 3— 1と同 様の操作を行い、 正極材料組成物 (Α ' ) を保存した。 その後、 実施例 3— 1と同様に、 ブロッキングの状態を評価した。 結果は〇であった。  In the sealable glove box, put together with the above-mentioned mixture, a balance, a cylindrical container, a plastic bag with a chuck, a weight, etc. necessary for the subsequent operation, and adjust the temperature in a thermostat at 20 ° C. The same procedure as in Example 3-1 was performed except that the battery was placed in a constant temperature bath at 0 ° C. and stored for 9 days, and the positive electrode material composition (Α ') was stored. Thereafter, in the same manner as in Example 3-1, the state of blocking was evaluated. The result was 〇.
他方、 温度計、 バルブを有するガス導入口およびガス出口、 蓋を備えた密閉可能な容器 (容量 3 0 0 m L ) に、 前述した正極材料組成物 (A, ) 粒子とシリカ粒子との混合物を 入れて蓋を閉め、 ガス導入口および出口のバルブを空けた状態で該導入口から容器内に窒 素ガスを流量 1 0 0 m L / /分で 3 . 5分間導入して容器内の空気を窒素ガスで置換したの ち、 直ちにガス出口のバルブを閉め次いで導入口のバルブを閉じて、 容器を密閉した。 そ して、 該容器内の温度が 2 0 °Cを維持するように該容器を恒温槽に入れ、 1 8日間保存し た。 その後、 実施例 1一 1と同様に、 直ちに容器内の組成物を分析し、 該組成物中のポリ マ一の重量平均分子量を測定したところ、 1 2 2 , 0 0 0であり、 正極材料組成物 (A, ) 中のポリマーの初期重量平均分子量 1 2 4 , 0 0 0に対する分子量减少率は 1 . 6 %で あった。 On the other hand, a mixture of particles of the positive electrode material composition (A,) and silica particles described above in a sealable container (volume 300 mm) equipped with a thermometer, a gas inlet having a valve and a gas outlet, and a lid. the close the lid put, 3 nitrogen gas into the container from the conductor inlet in a state of spaced valve of the gas inlet and outlet flow rate 1 0 0 m L / / min. introduced in the container 5 minutes Immediately after replacing the air with nitrogen gas, the gas outlet valve was closed and the inlet valve was closed to seal the container. Then, the container was placed in a thermostat so that the temperature in the container was maintained at 20 ° C., and stored for 18 days. Thereafter, the composition in the container was immediately analyzed and the weight average molecular weight of the polymer in the composition was measured in the same manner as in Example 11 and it was 12 2 00, and the positive electrode material was obtained. Composition (A, The molecular weight reduction rate to the initial weight average molecular weight of 1,204, 0 0 0 of the polymer in b) was 1.6%.
〔実施例 3— 3〕  [Example 3-3]
実施例 3— 1と同様にして、 正極材料組成物 (Α ' ) 粒子とシリカ粒子との混合物を得 た。  In the same manner as in Example 3-1, a mixture of positive electrode material composition (Α ') particles and silica particles was obtained.
密閉可能なグローブボックス内に、 前記混合物とともに、 天枰、 円柱型容器、 チャック 付ビニール袋、 錘など以降の操作に必要なものを入れ、 これ以降、 グローブボックス内に 窒素ガスを流通させる操作を行なわないこと (このとき、 グローブボックス内の空気の含 有水分量は約 1 0 0 0 p p mであった) 、 および、 0〜5 °じの恒温槽で調温し0 ~ 5での 恒温槽内に入れて 9日間保存するように変更したこと以外は実施例 3— 1と同様の操作を 行い、 ブロッキングの状態を評価した。 結果は〇であった。  Put together with the above-mentioned mixture, in the sealable glove box, the items required for the subsequent operation such as Tendon, cylindrical container, plastic bag with chuck, weight, etc. From this point on, carry out the operation of circulating nitrogen gas in the glove box. Do not do this (at this time, the amount of moisture contained in the air in the glove box was about 100 ppm), and the temperature in 0 to 5 ° C and the temperature in 0 to 5 ° C. The same procedure as in Example 3-1 was carried out except that the inside was changed to storage for 9 days, and the state of blocking was evaluated. The result was 〇.
他方、 温度計、 蓋を備えた密閉可能な容器 (容量 3 0 0 m L ) に前述した正極材料組成 物 (Α ' ) 粒子とシリカ粒子との混合物を入れて蓋を閉め、 該容器を密閉したのち (この とき、 容器内の空気の含有水分量は約 1 0 0 0 p p mであった) 、 該容器内の温度が 0〜 5 °Cを維持するように該容器を恒温槽に入れ、 1 8日間保存した。 その後、 実施例 1—1 と同様に、 直ちに容器内の組成物を分析し、 該組成物中のポリマーの重量平均分子量を測 定したところ、 1 2 3 , 0 0 0であり、 正極材料組成物 (Α ' ) 中のポリマーの初期重量 平均分子量 1 2 4, 0 0 0に対する分子量減少率は 0 . 8 %であった。  On the other hand, the mixture of the positive electrode material composition (Α ′) particles and the silica particles described above is put into a sealable container (volume 300 mm) equipped with a thermometer and a lid, the lid is closed, and the container is sealed. After that (at this time, the moisture content of the air in the container was about 100 ppm), the container was placed in a thermostat so that the temperature in the container was maintained at 0 to 5 ° C. It was stored for 18 days. Thereafter, the composition in the container was immediately analyzed in the same manner as in Example 1-1, and the weight average molecular weight of the polymer in the composition was measured. The molecular weight reduction rate with respect to the initial weight average molecular weight of the polymer in the substance (Α ') was 1024%.
〔実施例 3— 4〕 '  [Example 3-4] '
正極材料組成物 (Α ' ) 粒子とシリカ粒子との混合物に変えて正極材料組成物 (Α ' ) のみを用いる (グローブボックス内で円柱型容器に正極材料組成物 (Α ' ) 6 8 . 5 gを 秤量する) ように変更したこと、 および、 2 3 °Cの恒温槽で調温し 2 3 °Cの恒温槽内に入 れて 8日間—保存するように変更したこと以外は実施例 3— 1と同様に、 ブロッキングの状 態を評価した。 結果は Xであった。  Using only the positive electrode material composition (Α ′) instead of the mixture of the positive electrode material composition (Α ′) particles and the silica particles (in a glove box, the positive electrode material composition (Α ′) 68.5 g) was changed to weighing), and that the temperature was controlled in a constant temperature bath at 23.degree. C., and it was put in a constant temperature bath at 23.degree. C. and stored for eight days. The state of blocking was evaluated in the same manner as in 3-1. The result was X.
〔実施例 3— 5〕  [Example 3-5]
実施例 3—4において、 1 3 °Cの恒温槽で調温し 1 3 °Cの恒温槽内に入れて 8日間保存 するように変更したこと以外は実施例 3 _ 4と同様に、 正極材料組成物 (Α ' ) を保存し た。 その後、 実施例 3—1と同様に、 ブロッキングの状態を評価した。 結果は△〜><であ つた。  In Example 3-4, the positive electrode was prepared in the same manner as in Example 3-4, except that the temperature was controlled in a thermostat of 13.degree. C., and then stored in a thermostat of 13.degree. C. for 8 days. The material composition (Α ') was saved. Thereafter, in the same manner as in Example 3-1, the state of blocking was evaluated. The result was 〜 ~> <.
〔実施例 3— 6〕  [Example 3-6]
実施例 3 _ 4において、 グローブボックス内に窒素ガスを流通させる操作を行なわない こと (このとき、 グローブボックス内の空気の含有水分量は約 1 5 0 0 p p mであった) 、 および、 0〜5 °Cの恒温槽で調温し 0〜5 °Cの恒温槽内に入れて 8日間保存するように 変更したこと以外は実施例 3— 4と同様に、 正極材料組成物 (Α ' ) を保存した。 その後 、 実施例 3—1と同様に、 ブロッキングの状態を評価した。 結果は△であった。  In Example 3-4, the operation of circulating nitrogen gas in the glove box was not performed (at this time, the water content of the air in the glove box was about 150 ppm), and The positive electrode material composition (Α ′) was prepared in the same manner as in Example 3-4 except that the temperature was controlled in a thermostat of 5 ° C., and stored in a thermostat of 0 to 5 ° C. and stored for 8 days. Saved. Thereafter, in the same manner as in Example 3-1, the state of blocking was evaluated. The result was Δ.
〔実施例 3— 7〕  [Example 3-7]
実施例 3 _ 6において、 一 1 0 °Cの恒温槽で調温し一 1 0 °Cの恒温槽内に入れて 8日間 保存するように変更したこと以外は実施例 3— 6と同様に、 正極材料組成物 (A, ) を保 存した。 その後、 実施例 3— 1と同様に、 ブロッキングの状態を評価した。 結果は△であ つた。 以上の実施例 ·比較例についての結果を表 1に纏めて示す, Example 3-6 In the same manner as in Example 3-6 except that the temperature was controlled in a thermostat at 110 ° C., and the temperature was changed to storage for 10 days in a thermostat at 110 ° C. , The positive electrode material composition (A,) was stored. Thereafter, in the same manner as in Example 3-1, the state of blocking was evaluated. The result was △. Above example · Table 1 summarizes the results for the comparative example,
【表 1】【table 1】
Figure imgf000017_0001
Figure imgf000017_0001
<電池性能〉 <Battery performance>
以上の実施例および比較例においてそれぞれ保存した正極材料組成物について、 正極材 料組成物 (A) および (Α' ) はそのまま、 正極材料組成物 (Β) には電解質塩としてリ チウムビス (トリフルォロメタンスルホン) イミ ド (L i N (CF3S02) 2) を該電解 質塩が組成物 (B) 中 7重量%となるように加えて、 直ちに成形して正極を作製した。 そ して、 該正極を用いてリチウム電池を作製し、 得られた電池の性能 (ショートテストおよ びサイクル特性) を比較したところ、 各実施例において保存した正極材料組成物に基づく 電池はいずれも、 各比較例において保存した正極材料組成物に基づく電池よりも良好な性 能を発揮するものであつだ。 産業上の利用可能性 The positive electrode material compositions (A) and (Α ′) of the positive electrode material compositions stored in each of the above Examples and Comparative Examples are used as they are as lithium salt in the positive electrode material composition (Β) as an electrolyte salt. A cathode was prepared by adding a methanemethane) imide (L i N (CF 3 S 0 2 ) 2 ) so that the amount of the electrolyte salt was 7% by weight in the composition (B), and forming immediately. Then, a lithium battery is produced using the positive electrode, and the performance of the obtained battery (short test and And all the batteries based on the positive electrode material composition stored in each example exhibited better performance than the batteries based on the positive electrode material composition stored in each comparative example. It is hot. Industrial applicability
本発明にかかるリチウム 2次電池の正極材料組成物の保存方法は、 リチウム 2次電池に 用いる正極を作製するための材料を輸送や貯蔵する際に利用することができる。  The method of storing a positive electrode material composition of a lithium secondary battery according to the present invention can be used when transporting or storing a material for producing a positive electrode used for a lithium secondary battery.

Claims

請 求 の 範 囲 The scope of the claims
1. ポリマー、 電極活物質および導電助剤を必須とする正極材料組成物の保存方法であ つて、 保存前の組成物中のポリマーの重量平均分子量を Mw。とし、 1 8日間保存したと きの組成物中のポリマーの重量平均分子量を Mwとしたときに、 下記式 (1) により表さ れる重量平均分子量の減少率 (DMw) が 1 0%以下である、 ことを特徴とするリチウム 2 次電池用正極材料組成物の保存方法。 1. A method for storing a positive electrode material composition, which essentially comprises a polymer, an electrode active material and a conductive auxiliary, wherein Mw is the weight average molecular weight of the polymer in the composition before storage. When the weight average molecular weight of the polymer in the composition when stored for 18 days is Mw, the reduction rate (D Mw ) of the weight average molecular weight represented by the following formula (1) is 10% or less A method of storing a positive electrode material composition for a lithium secondary battery, characterized in that
DMw (%) = 〔 (Mw。― Mw) /Mw0 X I 00 (1) D Mw (%) = [(Mw.-Mw) / Mw 0 XI 00 (1)
2. ポリマー、 電極活物質および導電助剤を必須とする正極材料組成物の保存方法であ つて、 不活性ガス雰囲気下で 50°C以下に温度制御する、 ことを特徴とするリチウム 2次, 電池用正極材料組成物の保存方法。 2. A method of storing a positive electrode material composition which essentially comprises a polymer, an electrode active material and a conductive auxiliary, wherein the temperature is controlled to 50 ° C. or less under an inert gas atmosphere. The preservation | save method of the positive electrode material composition for batteries.
3. ポリマー、 電極活物質および導電助剤を必須とする正極材料組成物の保存方法であ つて、 空気雰囲気下で 5 °C以下に温度制御する、 ことを特徴とするリチウム 2次電池用正 極材料組成物の保存方法。 3. A method for storing a positive electrode material composition, which essentially comprises a polymer, an electrode active material and a conductive support agent, comprising controlling the temperature to 5 ° C. or less in an air atmosphere, and characterized in that it is positive for lithium secondary batteries. Method of storage of polar material composition.
4. 前記組成物が固化物であり、 該固化物はその複数個を保存しても互いに付着して塊 を形成しない状態である、 請求項 1から 3までのいずれかに記載のリチウム 2次電池用正 極材料組成物の保存方法。 4. The lithium secondary according to any one of claims 1 to 3, wherein the composition is a solidified material, and the solidified materials do not adhere to each other to form a lump, even if a plurality of the compositions are stored. A method of storing a positive electrode material composition for a battery.
5. 微粒子が添加されている、 請求項 4に記載のリチウム 2次電池用正極材料組成物の 保存方法。 5. The method for storing a positive electrode material composition for a lithium secondary battery according to claim 4, wherein fine particles are added.
6. 前記電極活物質が、 L i xVyO z (ただし、 x、 yおよび zは、 それぞれ互いに 独立、 かつ、 0く x 2、 y = (mx + 2 z ) Zn、 および z = (mx + n y) /2 (た だし、 mは L iの価数であり、 nは Vの価数で 4以上の実数である。 ) を満足する実数で ある。 ) である、 請求項 1から 5までのいずれかに記載のリチウム 2次電池用正極材料組 成物の保存方法。 6. The electrode active material is L i x V y O z (where x, y and z are each independent of each other and 0 x 2 y = (mx + 2 z) Zn, and z = (mx + ny) A real number satisfying / 2 (however, m is a valence number of Li and n is a valence number of V and is a real number of 4 or more)). The storage method of the positive electrode material composition for lithium secondary batteries as described in any of the above.
7. 前記ポリマーがイオン導電性のポリエーテル重合体である、 請求項 1から 6までの いずれかに記載のリチウム 2次電池用正極材料組成物の保存方法。 7. The method for storing a positive electrode material composition for a lithium secondary battery according to any one of claims 1 to 6, wherein the polymer is an ionically conductive polyether polymer.
PCT/JP2005/016466 2004-09-03 2005-09-01 Method for maintaining positive electrode material composition for lithium secondary battery WO2006025600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006532025A JPWO2006025600A1 (en) 2004-09-03 2005-09-01 Method for storing positive electrode material composition for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004257144 2004-09-03
JP2004-257144 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006025600A1 true WO2006025600A1 (en) 2006-03-09

Family

ID=36000228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016466 WO2006025600A1 (en) 2004-09-03 2005-09-01 Method for maintaining positive electrode material composition for lithium secondary battery

Country Status (2)

Country Link
JP (1) JPWO2006025600A1 (en)
WO (1) WO2006025600A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251776A (en) * 2007-03-30 2008-10-16 Nippon Zeon Co Ltd Method for manufacturing electrode for electrochemical element
JP2011513924A (en) * 2008-03-07 2011-04-28 バシウム・カナダ・インコーポレーテッド Method for producing electrode for lithium-based electrochemical cell
JP2011093753A (en) * 2009-10-30 2011-05-12 Murata Mfg Co Ltd Method for manufacturing lithium transition metal complex oxide
JP2011154915A (en) * 2010-01-28 2011-08-11 Panasonic Corp Dry air supplying method and apparatus
WO2015029835A1 (en) * 2013-08-29 2015-03-05 日本ゼオン株式会社 Method for preserving aqueous binder composition for lithium secondary cell
JP2018088306A (en) * 2016-11-28 2018-06-07 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte containing sheet, all-solid type secondary battery, and manufacturing method of solid electrolyte containing sheet and all-solid type secondary battery
US20220199963A1 (en) * 2020-12-23 2022-06-23 Volkswagen Aktiengesellschaft Method for the production of an electrode powder mixture for a battery cell
WO2023059273A1 (en) * 2021-10-04 2023-04-13 İzmi̇r Eği̇ti̇m Sağlik Sanayi̇ Yatirim A.Ş. Thermoplastic based composite single layer anode in secondary batteries

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124053A (en) * 1984-11-19 1986-06-11 Sanyo Electric Co Ltd Conservation of cadmium negative pole for alkaline storage battery
JPS63307663A (en) * 1987-06-05 1988-12-15 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPH04500883A (en) * 1989-07-20 1992-02-13 ドウティー エレクトロニック コンポーネンツ リミテッド Batteries containing lithium vanadium oxide as active material
JPH07176305A (en) * 1993-12-21 1995-07-14 Toshiba Battery Co Ltd Storing method for paste type hydrogen storage alloy negative electrode for alkaline secondary battery
JPH09245773A (en) * 1996-03-13 1997-09-19 Toshiba Corp Manufacture of electrode for non-aqueous solvent secondary battery
JPH11147716A (en) * 1997-11-18 1999-06-02 Matsushita Electric Ind Co Ltd Barium titanate powder, ceramic composition by using the same and laminated ceramic capacitor by using the same
JP2000260424A (en) * 1999-03-12 2000-09-22 Asahi Chem Ind Co Ltd Preserving method of coating liquid
JP2002319434A (en) * 2001-04-20 2002-10-31 Sharp Corp Lithium polymer secondary cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124053A (en) * 1984-11-19 1986-06-11 Sanyo Electric Co Ltd Conservation of cadmium negative pole for alkaline storage battery
JPS63307663A (en) * 1987-06-05 1988-12-15 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPH04500883A (en) * 1989-07-20 1992-02-13 ドウティー エレクトロニック コンポーネンツ リミテッド Batteries containing lithium vanadium oxide as active material
JPH07176305A (en) * 1993-12-21 1995-07-14 Toshiba Battery Co Ltd Storing method for paste type hydrogen storage alloy negative electrode for alkaline secondary battery
JPH09245773A (en) * 1996-03-13 1997-09-19 Toshiba Corp Manufacture of electrode for non-aqueous solvent secondary battery
JPH11147716A (en) * 1997-11-18 1999-06-02 Matsushita Electric Ind Co Ltd Barium titanate powder, ceramic composition by using the same and laminated ceramic capacitor by using the same
JP2000260424A (en) * 1999-03-12 2000-09-22 Asahi Chem Ind Co Ltd Preserving method of coating liquid
JP2002319434A (en) * 2001-04-20 2002-10-31 Sharp Corp Lithium polymer secondary cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251776A (en) * 2007-03-30 2008-10-16 Nippon Zeon Co Ltd Method for manufacturing electrode for electrochemical element
JP2011513924A (en) * 2008-03-07 2011-04-28 バシウム・カナダ・インコーポレーテッド Method for producing electrode for lithium-based electrochemical cell
JP2011093753A (en) * 2009-10-30 2011-05-12 Murata Mfg Co Ltd Method for manufacturing lithium transition metal complex oxide
JP2011154915A (en) * 2010-01-28 2011-08-11 Panasonic Corp Dry air supplying method and apparatus
WO2015029835A1 (en) * 2013-08-29 2015-03-05 日本ゼオン株式会社 Method for preserving aqueous binder composition for lithium secondary cell
JPWO2015029835A1 (en) * 2013-08-29 2017-03-02 日本ゼオン株式会社 Storage method of aqueous binder composition for lithium secondary battery
JP2018088306A (en) * 2016-11-28 2018-06-07 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte containing sheet, all-solid type secondary battery, and manufacturing method of solid electrolyte containing sheet and all-solid type secondary battery
US20220199963A1 (en) * 2020-12-23 2022-06-23 Volkswagen Aktiengesellschaft Method for the production of an electrode powder mixture for a battery cell
WO2023059273A1 (en) * 2021-10-04 2023-04-13 İzmi̇r Eği̇ti̇m Sağlik Sanayi̇ Yatirim A.Ş. Thermoplastic based composite single layer anode in secondary batteries

Also Published As

Publication number Publication date
JPWO2006025600A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006025600A1 (en) Method for maintaining positive electrode material composition for lithium secondary battery
EP3370288B1 (en) Binder for nonaqueous electrolyte secondary cell electrode, method for producing binder, and use thereof
EP2747173B1 (en) Porous film and secondary battery electrode
EP3288105B1 (en) Binder for nonaqueous electrolyte secondary battery electrodes and use of same
KR100436712B1 (en) Cathode electrode, method for manufacturing the same, and lithium battery containing the same
CA2534155C (en) Cathode material for polymer batteries and method of preparing same
EP1568728A2 (en) Water soluble non-ionic alkylene oxide resin and production process therefor
EP2463940A1 (en) Stabilized lithium metal powder for lithium-ion applications, composition and production process
CN108602686A (en) Alumina powder, alumina slurry, the coating containing aluminium oxide, stacking seperation film and secondary cell
US11177478B2 (en) Crosslinked polymer binder from crosslinkable monomer for nonaqueous electrolyte secondary battery and use thereof
WO2006025602A1 (en) Process for producing positive electrode material composition for lithium secondary battery
JP5694402B2 (en) Method for producing polyalkylene oxide resin material
WO2006025601A1 (en) Positive electrode material composition for lithium secondary battery
CN112533981B (en) Brittle bag
EP4015544A1 (en) Composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
JP6015441B2 (en) Nonaqueous secondary battery positive electrode binder resin, nonaqueous secondary battery positive electrode, and nonaqueous secondary battery
JP2006335905A (en) Manufacturing method of pelletized nonionic alkylene oxide-based resin
WO2006025374A1 (en) Process for producing particle-containing ethylene oxide copolymer resin and method of packaging
KR20090125277A (en) Treated active material, method for treating thereof, and paste containing the treated active material
US10374226B2 (en) Coated lithium-nickel composite oxide particles, and method for producing coated lithium-nickel composite oxide particles
CN111704781A (en) Preparation method of lithium battery thin film, lithium battery thin film and application of lithium battery thin film
JP5695479B2 (en) Manufacturing method of resin pellets
US5856044A (en) High capacity electrode paste and process for fabrication
WO2006025604A1 (en) Process for producing positive electrode material composition for lithium secondary battery
CN116217765B (en) Polytetrafluoroethylene dispersion resin for dry electrode binder and preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532025

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase