WO2006025602A1 - Process for producing positive electrode material composition for lithium secondary battery - Google Patents

Process for producing positive electrode material composition for lithium secondary battery Download PDF

Info

Publication number
WO2006025602A1
WO2006025602A1 PCT/JP2005/016469 JP2005016469W WO2006025602A1 WO 2006025602 A1 WO2006025602 A1 WO 2006025602A1 JP 2005016469 W JP2005016469 W JP 2005016469W WO 2006025602 A1 WO2006025602 A1 WO 2006025602A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
polymer
positive electrode
material composition
electrode material
Prior art date
Application number
PCT/JP2005/016469
Other languages
French (fr)
Japanese (ja)
Inventor
Alan Vallee
Paul-Andre Lavoie
Fumihide Tamura
Izuho Okada
Kazuo Takei
Masamitsu Sasaki
Taketo Toba
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to JP2006532027A priority Critical patent/JPWO2006025602A1/en
Publication of WO2006025602A1 publication Critical patent/WO2006025602A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode material composition used for producing a positive electrode portion of a lithium secondary battery.
  • the positive electrode portion of the lithium secondary battery includes a polymer constituting the matrix structure, an electrode active material (metal oxide) for storing Li.sup. +, A conductive aid for assisting the movement of bright electrons, and an electrolyte.
  • the positive electrode portion of a lithium secondary battery is obtained through the process of preparing a material composition containing such components. Specifically, (i) the components are melt-kneaded, and (2) See, for example, Patent Documents 1 and 2. (ii) These components are mixed in the presence of a solvent, made into a slurry, cast into a mold of a predetermined shape, It is obtained by performing a method of volatilizing (see, for example, Patent Documents 3 and 4).
  • Patent Document 1 International Publication No. 0 3 7 5 3 7 5 Pamphlet
  • Patent Document 2 International Publication No. 0 3 Z 9 2 0 1 7 Pamphlet
  • Patent Document 3 Special Table 2 0 0 2-5 3 5 2 3 5
  • Patent Document 4 US Patent No. 5 7 5 5 8 5 5 Disclosure of the Invention Problems to be Solved by the Invention
  • lithium salts to be electrolyte salt compounds are other essential components. It was difficult to mix uniformly with the components. Therefore, in the conventional method, for example, the essential components other than the electrolyte salt compound are mixed in advance, and the lithium salt is melt-kneaded in the mixture when the mixture is extruded.
  • a polar solvent which is relatively easy to dissolve lithium salt or a mixed solvent containing a large amount of polar solvent specifically, a mixed solvent with a nonpolar solvent in which 85% by weight or more is a polar solvent
  • the problem to be solved by the present invention is to easily form a positive electrode portion of a lithium secondary battery that exhibits excellent battery performance, which contains a polymer, an electrode active material, a conductive auxiliary agent and an electrolytic salt compound. It is an object of the present invention to provide a method for producing a positive electrode material composition for lithium secondary battery, which can reliably obtain a positive electrode material composition which can be produced with good productivity. Means to solve the problem
  • the present inventors diligently studied to solve the above-mentioned problems.
  • the electrode active material, the conductive aid and the electrolyte salt compound, the electrolyte salt compound to the polymer, the electrode active material and the conductive aid are first mixed with the polymer only with the electrolyte salt compound.
  • a large amount of polar solvent is not used.
  • the lithium salt can be dissolved and then uniform mixing with other essential components can be easily achieved under relatively mild conditions.
  • the present invention was completed after confirming that the above problems could be solved at once.
  • a method of producing a positive electrode material composition for a lithium secondary battery comprises the steps of: obtaining a positive electrode material composition comprising a polymer, an electrolyte salt compound, an electrode active material and a conductive additive as essential components; The mixing of the electrolyte salt compound, the electrode active material and the conductive auxiliary agent with respect to the polymer is performed by first mixing only the electrolyte salt compound in a solution with the polymer (I) and mixing the electrolyte salt compound into the polymer It is characterized in that it is divided into the step (II) of mixing the active material and the conductive additive simultaneously or before or after. Effect of the invention
  • the positive electrode portion of a lithium secondary battery exhibiting excellent battery performance can be easily produced.
  • the method for producing the positive electrode material composition for a lithium secondary battery according to the present invention (hereinafter, sometimes referred to as “the production method of the present invention”) will be described in detail. There is no restriction, and modifications can be made as appropriate without departing from the spirit of the present invention other than the following examples.
  • a positive electrode material composition comprising a polymer, an electrolyte salt compound, an electrode active material and a conductive aid as essential components, the electrolyte salt compound for the polymer
  • step (I) first, only the electrolyte salt compound is dissolved and mixed in the polymer.
  • mixing in a solution state means that the electrolyte salt compound is dissolved in the polymer medium to make the electrolyte salt compound and the polymer in a uniform mixture.
  • the polymer medium specifically means a polymer solution or a polymer itself which has been heated and melted, and in the case of using the polymer solution as a medium, step (I) indicates the presence of a solvent. In the case where the molten polymer itself is used as the medium, step (I) is carried out in the absence of a solvent.
  • the polymer solution is a solution in which a polymer is dissolved in a solvent, and as the polymer solution, for example, a reaction solution after polymerization reaction obtained when a polymer is synthesized by a solution polymerization method, or A solution obtained by isolating a polymer synthesized by precipitation polymerization or the like and dissolving it in a solvent capable of dissolving it is preferably used.
  • the solution polymerization method is excellent in productivity and is also excellent in safety because it is easy to remove heat of reaction, it is more preferable to use the reaction solution obtained by the method as a polymer solution.
  • the solvent which can be used for the above polymer solution (for example, when the reaction solution obtained by the solution polymerization method is used as a polymer solution, the solvent which can be used for the polymerization reaction) reacts with the polymerization catalyst to cause a side reaction
  • a solvent which does not have active hydrogen which may adversely affect battery performance a functional group having a carbon atom which can be polarized and negative, etc.
  • Aromatic hydrocarbon solvents such as: heptane, octane
  • Aliphatic hydrocarbon solvents such as n-hexane, n-pentane and 2, 2, 4-trimethylpentane; alicyclic hydrocarbon solvents such as cyclohexane, cyclopentane and methylcyclohexane; Ether solvents such as dibutyl ether and methyl butyl ether; Solvents of ethylenediaryldialkyl ethers such as dimethoxetane; Cyclic ether solvents such as THF (tetrahydrofuran) and dioxan; Active solvents such as hydroxyl group such as hydroxyl group Among them, toluene and xylene are more preferable, and those containing no water are particularly preferable.
  • the content ratio of the polymer in the polymer solution is not limited, but is preferably 20% by weight or more, more preferably 25% by weight or more, still more preferably 30% by weight or more. If the content of the polymer is less than 20% by weight, the amount of polymer in the step (I) decreases, and in order to sufficiently mix the electrolyte salt compound in the step (I), the temperature or the temperature at that time It may be necessary to make conditions of time equal strictly or it may become difficult to dissolve the electrolyte salt compound even if the conditions are strict. Furthermore, for example, when the reaction solution obtained by the solution polymerization method or the like is used as a polymer solution, the productivity of the polymer and the productivity of the target positive electrode material composition may be extremely reduced.
  • the content of the solvent in the polymer solution is preferably, but not limited to, 80% by weight or less, more preferably 75% by weight. /.
  • the content is more preferably 70% by weight or less.
  • the content of the solvent exceeds 80% by weight, the amount of the solvent contained in the mixture obtained in step (I) increases, and in order to sufficiently mix the electrolyte salt compound in step (I), In such a case, it may be necessary to make conditions such as temperature and time stricter, or it may be difficult to dissolve the electrolytic salt compound even if the conditions are strict.
  • the productivity of the polymer, and hence the productivity of the intended positive electrode material composition may be extremely reduced.
  • the polymer solution may contain other components in addition to the polymer and the solvent, and examples thereof include an initiator, an antioxidant, a solubilizer and the like generally used in the polymerization reaction.
  • the above reaction initiator include alkaline catalysts such as sodium hydroxide, potassium hydroxide, potassium alcoholate, sodium alcoholate, potassium carbonate and sodium carbonate, and metals such as, for example, potassium metal and sodium metal, for example, water Aluminum oxide / calcined magnesium (Japanese Patent Application Laid-Open No. Hei 8-2 689 1 9 etc.), Metal-ion-added magnesium oxide (Japanese Patent Publication No. Hei 6-150 8, Japanese Patent Application Laid-Open No.
  • Hei 7-2 2 7 5 Catalysts such as A 1-M g-based composite oxide catalysts such as JP-A No. 40 and the like, and calcined hyd- ide-talcite (JP-A Nos. 2-7, 8 6- 3 3 4 7 8 2), iridium oxide, barium hydroxide (JP-A 5-54 1 5 8 7 etc.), layered compounds (Japanese Patent Publication 6- 5 0 5 5 9 8 6), Stronchi Oxides, strontium hydroxides (JP-B 6 3 3 0 5 5 etc.), calcium compounds (JP-A 2 3 4 3 6 6 etc), cesium compounds (JP-A 7- 7 7 Preferred examples thereof include complex metal cyanide complexes (Japanese Patent Application Laid-Open No. 5-33961 etc.), acid catalysts such as Lewis acids and Friedel-Crafts catalysts, and the like. These initiators and other components may be contained alone or in combination of two or more in the polymer solution, and
  • the viscosity of the polymer solution is not limited, it is preferable that the viscosity is 1, 000 to 60, 00 centi- ces at 95 ° C, and more preferably 10, 0 0 at 95 ° C. It is 0 to 4 5 0 0 0 0, preferably 15 0 0 to 0 3 5 0 0 0 0 0 centi- voise at 95 ° C.
  • the productivity of the polymer and thus the target positive electrode If the productivity of the material composition may be extremely reduced, and the temperature exceeds 600 centioise at 95 ° C., for example, the reaction solution obtained by the solution polymerization method is used as the polymer solution
  • the reaction solution obtained by the solution polymerization method is used as the polymer solution
  • the mixing when mixing the electrolyte salt compound with the polymer solution or the polymer itself in the molten state, the mixing may be difficult.
  • the procedure such as heating and the like is not particularly limited.
  • the polymer in the case of using a polymer solution as a medium, the polymer is dissolved in a solvent, and the electrolyte chloride is added and dissolved therein. May be, allowed to dissolve by the addition of pre electrolyte salt compound in a solvent, it may be dissolved by adding the polymer therein.
  • the polymer When the polymer itself which has been heated and melted is used as a medium, the polymer may be heated and brought into a molten state, and the electrolyte salt compound may be added and dissolved therein, or it may be previously solidified. After the electrolyte salt compound is mixed with the polymer of the body, it may be heated to simultaneously melt the polymer and dissolve the electrolyte salt compound.
  • the polymer solution when mixing the electrolyte salt compound with the polymer solution or the polymer itself in the molten state, the polymer solution is heated and melted in order to dissolve and mix more uniformly when using the polymer solution as a medium.
  • the polymer itself In the case where the polymer itself is used as a medium, it is preferable to appropriately heat and mix in order to maintain the molten state and to uniformly mix and mix.
  • the temperature during heating is If the lima solution is used as the medium, the boiling point of the solvent may be taken into consideration, and if the polymer itself in the molten state is used as the medium, the melting temperature of the polymer may be taken into consideration.
  • the mixing method in the step (I) is not particularly limited, and a mixing method using a conventionally known mixing apparatus or an apparatus capable of mixing is preferable.
  • a mixing apparatus etc. which can be used, what is necessary is just an apparatus capable of mixing and stirring the contents charged in the container, and an apparatus capable of carrying out mixing and stirring of contents under desired conditions by mounting a stirring blade is preferable.
  • a stirrer with an anchor blade a stirrer with a helical ribbon blade, a stirrer with a double helical ribbon blade, a stirrer with a helical screw blade with a draft tube, a super blend blade (inner blade: Max-blended wing, Max-blended wing (for example, Super Blend, manufactured by Sumitomo Heavy Industries, Ltd.), Max-blended wing (Sumitomo Heavy Industries, Ltd.) Stirring device equipped with a full zone wing (Shinko Pantech Co., Ltd.), stirring machine equipped with a super mix wing (Satake Chemical Machinery Co., Ltd.), 1 ⁇ _ mixer (Shonken Chemical Co., Ltd.) Stirrer equipped with a company), Stirrer equipped with a Sanmera wing (Mitsubishi Heavy Industries), Log bone (Shinko Pantech Co., Ltd.) Made of VCR (Mitsubishi Heavy Industries, Ltd.), torsion grid blades (manu).
  • a paddle-shaped concentric biaxial stirring device equipped with a super blend blade a stirring device equipped with a helicanolone blade, a stirring device equipped with a double helix ribbon blade, and a Max Blend blade More preferably, the stirring device equipped with the gimbal is mounted.
  • horizontal stirring-mixing devices equipped with a screw pattern for kneading for example, KRC kneader (manufactured by Kurimoto Co., Ltd.), twin-screw extruder (for example, Product name: SUPERTEX a II, manufactured by Japan Steel Works Co., Ltd .; Product name: BT-30-S 2, manufactured by Plastic Science Research Institute, and the like.
  • KRC kneader manufactured by Kurimoto Co., Ltd.
  • twin-screw extruder for example, Product name: SUPERTEX a II, manufactured by Japan Steel Works Co., Ltd .
  • Product name: BT-30-S 2 manufactured by Plastic Science Research Institute
  • the electrode active material and the conductive auxiliary agent are mixed with the mixture obtained by mixing the electrolyte salt compound with the polymer.
  • This step (II) may be performed after the above-mentioned step (I), and may be performed after the above-mentioned step (I), or may be performed after the above-mentioned step (I)
  • a step for example, a cooling / solidifying step described later, a granulation step, a drying and / or a humidity control step, etc. may be performed and then performed.
  • the mixture after the electrolyte salt compound is mixed with the above-mentioned polymer may be in a liquid state or in a solidified state, and if it is a liquid, it contains a solvent. It may or may not be contained.
  • the polymer in the mixture can be maintained in a molten state. It is preferable to use a solvent as described later.
  • the electrode active material and the conductive auxiliary agent When mixing the electrode active material and the conductive auxiliary agent into the mixture after mixing the polymer with the electrolyte salt compound in the step (II), the electrode active material and the conductive auxiliary agent should be mixed simultaneously or before or after the mixing.
  • the mixing procedure is not particularly limited.
  • the electrode active material and the conductive additive may be simultaneously added to the mixture and mixed, or the electrode active material and the conductive additive may be separately added to the mixture and mixed, or The electrode active material and the conductive additive may be mixed and then added to and mixed with the mixture.
  • a solvent can be used when mixing the electrode active material and the conductive aid.
  • a solvent which can be used by mixing of process (II) although limitation is not carried out, For example, What was mentioned above as a solvent which can be used for a polymer solution, etc. are mentioned.
  • a solvent is used in the mixing of step (II), for example, the force of adding the solvent to the electrode active material and / or the conductive aid, the solvent separately from the electrode active material and the conductive aid It may be added.
  • the amount thereof used is not limited, but the amount of solvent contained in the mixture obtained in step (II) (here, the amount of solvent is, for example, the polymer solution in step (I) When used as a medium, the total amount including the solvent in the polymer solution
  • step (II) it is preferable that 30) to 80% by weight, more preferably 35 to 75% by weight, and still more preferably 40 to 70% by weight. If the amount of solvent contained in the mixture obtained in step (II) is less than 30% by weight, the viscosity becomes high and mixing and stirring become difficult, and it is also difficult to send or transfer the liquid to the mixing apparatus itself. In addition, excessive shear may occur during mixing, which may promote polymer degradation and molecular weight reduction.
  • step (III) if it exceeds 80% by weight, the amount of solvent contained in the mixture obtained after step (II) increases, and even if each component can be sufficiently uniformly mixed in step (II), There is a risk of impairing productivity, for example, it takes a long time to devolatize the solvent in the subsequent steps such as step (III).
  • the production method of the present invention it is possible to uniformly disperse and mix the essential components, the polymer, the electrolyte salt compound, the electrode active material and the conductive auxiliary agent, to obtain excellent battery performance (for example, cycle characteristics (charge and discharge characteristics). And the like) is desirable in that it can obtain a positive electrode material composition that exhibits.
  • battery performance for example, cycle characteristics (charge and discharge characteristics).
  • the like is desirable in that it can obtain a positive electrode material composition that exhibits.
  • the polymer, the electrolyte salt compound, the electrode active material, and the conductive auxiliary agent are not uniformly dispersed and mixed, there is a problem that an extruder may cause clogging when forming a film of the obtained positive electrode material composition. It will also lead you.
  • the mixing of the step (I) mentioned above is to mix the electrolyte salt compound in a dissolved state with respect to the polymer, and although the mixture obtained by the mixing of the step (I) is uniform, the step (II)
  • the mixture obtained by mixing is usually in the form of a slurry. Therefore, in the production method of the present invention, when the electrode active material and the conductive auxiliary agent are mixed in the step (II), a uniform dispersed slurry state is obtained, in other words, the electrode active material and the conductive support agent. It is preferable to use a slurry that contains as little as possible of agent aggregates.
  • the amount of aggregates in the mixture obtained in step (II) is preferably 5% by weight or less, more preferably 3% by weight or less, and still more preferably 1% by weight or less. Good.
  • a method of evaluating whether or not a uniform dispersion state ⁇ Criteria and a method of measuring the content of aggregates will be described in the examples described later.
  • step (II) in order to obtain a slurry in a uniformly dispersed state, for example, by appropriately setting the use conditions (for example, the type of the stirring blade, the rotation speed, etc.) of the mixing device used for mixing, etc.
  • the electrode active material and the conductive aid are previously added to the solvent and uniformly dispersed (in other words, the aggregate is contained as much as possible). It can be easily achieved by putting it in the form of a slurry and mixing it with the mixture obtained in step (I).
  • the slurry-like premix prepared by adding the electrode active material and the conductive aid in advance to the solvent be in a uniform dispersed state (in other words, a state in which the aggregates are not contained as much as possible).
  • the concentrations of the electrode active material and the conductive aid in the pre-mixture are
  • the amount of the polymer solution previously mixed with the electrode active material and the conductive aid or the amount of the mixture obtained in step (I) is the polymer solution in the polymer solution or the mixture obtained in step (I)
  • the solid content is 0.1 to 10% by weight, preferably 0.5 to 7% by weight, with respect to the pre-blend. / 0, more preferably it is preferable to make a 2-7% by weight.
  • the mixing method in the step (II) is not particularly limited, and a mixing method using a conventionally known mixing apparatus or a compatible apparatus is preferable.
  • a mixing apparatus and the like that can be used any apparatus can be used as long as it can mix and stir the contents charged in the container, and an apparatus that can be equipped with a stirring blade and can mix and stir the contents arbitrarily under desired conditions is preferable.
  • a stirrer equipped with an anchor blade a mixer equipped with a helical ribbon blade, a stirrer equipped with a double helical ribbon blade, a mixer equipped with a helical screw blade with a draft channel, a super blend blade (inner blade: Matsux Blended wing, Outer wing: Spiral-type concentric twin-screw stirring device (for example, product name: Sue 'per blend, made by Sumitomo Heavy Industries, Ltd.), Max-blended wing (Sumitomo Heavy Industries) Stirring device equipped with a full zone wing (Shinko Pantech Co., Ltd.), Stirring device equipped with a super mix wing (Satake Chemical Machinery Co., Ltd.), Hi _ FS Kicer (Shonken Chemical Co., Ltd.) Stirrer equipped with a company), Stirrer equipped with a Sanmera wing (Mitsubishi Heavy Industries), Log bone (Shinko Pantec Stirring device with VCR (Mitsubishi Heavy Industries),
  • a paddle-shaped concentric biaxial stirring device equipped with a super-blend blade a stirring device equipped with a helical ribbon blade, a stirring device equipped with a double helix ribbon blade, and a Max blend blade are particularly preferred.
  • the mounted stirring apparatus and the stirring apparatus mounted with log bone are more preferable.
  • horizontal stirring-mixing devices equipped with a screw pattern for mixing such as KRC kneader (manufactured by Kurimoto R & D Co., Ltd.), twin-screw extruder (for example, Product name: SUPERTEX ⁇ II, manufactured by Japan Steel Works, Ltd .; Product name: BT-30_S2, manufactured by Plastic Engineering Research Institute, and the like.
  • the step (II) is carried out in the absence of a solvent (using the polymer itself brought into a molten state in the step (I) as a medium and carrying out the step (II) following the step (I) or In the case where the polymer solution is used as a medium, and the step (II) is carried out without using the solvent after the step (III) to be described later on after the step (I), etc.
  • the polymer used as an essential component in the present invention is not particularly limited, but is preferably a polyether polymer of ion conductivity.
  • the ionically conductive polyether polymer include ethylene oxide copolymers (nonionic alkylene oxide water soluble copolymers) and the like.
  • the polymers may be used alone or in combination of two or more.
  • the ethylene oxide-based copolymer is not limited as long as it is a polymer having mainly an ethylene oxide monomer-derived constituent component in its molecular structure and having an ether bond in the main chain.
  • ethylene oxide as a raw material monomer, ethylene oxide and the following structural formula (1):
  • Ra is any one of an alkyl group having 1 to 16 carbon atoms, a cycloalkyl group, a aryl group, an aryl group, a (meth) aryloyl group and an alkenyl group) others - CH 2 -0-Re-Ra group (Re is - 0) (p has the structure of p- integer) from 0 to 10 - (C3 ⁇ 4- CH 2) a substituted Okishiran compound represented by)
  • Polymers obtained by polymerizing comonomers containing are preferred. It is preferable that this polymerization be ring-opening polymerization of the oxsilane group of each raw material monomer.
  • the group in the above structural formula (1) is a substituent in the above-mentioned substituted oxylan compound.
  • the substituted oxysilane compound represented by the above structural formula (1) include propylene oxide, butylene oxide, 1, 2-epoxypentane, 1, Examples thereof include 2-epoxyhexane, 1,2-epoxyoctane, cyclohexenoxide and styrene oxide, or methyl glycidyl ether, hydroxyethyl glycidyl ether, ethylene glycol methyl glycidyl ether, etc.
  • a crosslinkable substituent that is, in the case where the substituent has an aryl group, an alkenyl group, an acryloyl group or a methacryloyl group, etc., epoxybutene, 3, 4 _ epoxy 1 pentene, 1, 2 _ epoxy one 5, 9-cyclo dodecadi 1, 3, 4-epoxy-1-vinylcyclohexene, 1, 2-epoxy-5-cyclo-Otaten, glycidyl acrylohydrate ⁇ ⁇ ⁇ ⁇ , glycidyl methacrylate, glycidyl sorbate and glycidyl -4-hexanoate, or vinylaldehyde Sidyl ether, aryl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, ⁇ -terpenyl dalysyl ether, cyclohexenyl methyl daricidyl ether, 4-vin
  • the weight average molecular weight (Mw) of the ethylene oxide copolymer is not limited, but is preferably 20,000 to 500,000, more preferably 30,000 to 300,000, still more preferably 40,000. It is 000-200,000. If the weight-average molecular weight is less than 20,000, the positive electrode material after molding may be tacked. If the weight-average molecular weight exceeds 500,000, the positive electrode material is difficult to be molded, and the processability and handling are low. There is a risk of
  • the molecular weight distribution (MwZMn) of the ethylene oxide copolymer is not limited, but is preferably 3 or less, more preferably 2 or less. If the molecular weight distribution is more than 3, tackiness may occur in the molded positive electrode material, handling may be deteriorated, and the content of low molecular weight substances may be increased to lower the battery performance.
  • the proportion of the polymer used is not limited, but is preferably 15 to 60% by weight, and more preferably 20 to 60% by weight, based on the total amount (total amount of all the raw materials used in mixing step (I)). It is 55 wt%, more preferably 25 to 50 wt%. If the amount of the polymer is too small, the productivity of the positive electrode material composition is extremely reduced, and in order to sufficiently mix the electrolyte salt compound in the step (I), the conditions such as temperature and time are strict.
  • the electrolyte salt compound used as an essential component in the present invention may be a lithium salt generally used for the positive electrode of a lithium secondary battery, and is not limited, for example, fluorine ion, chlorine ion, bromine ion, Iodine ion, heptafluoropropyl sulfonic acid ion, bis (trifluoromethanesulfonyl) imide ion, bis (hepta fluoropropyone / les norejo: ⁇ ⁇ ⁇ imide ion, trifno reo loth norephonide ion, tetraf / Leo-borate borate ion, nitrate ion, As F 6- , PF 6 , stearyl sulfonate ion, octyl sulfonate ion, dodecyl benzene sulfonate ion, naphthalene sulfonate
  • the use ratio of the electrolyte salt compound is not limited, for example, the molar ratio of the oxygen atom in the polymer (for example, the oxygen atom in the polyether skeleton) to the lithium atom in the electrolyte salt compound (lithium salt) OZL i) Power:! It is preferable to set to -36, more preferably 3 to 33, and still more preferably 6 to 30. If the amount of the electrolyte salt compound is too small, the ion conductivity may be lowered. On the other hand, if the amount of the electrolyte salt compound is too large, the effect of improving the ion conductivity can not be recognized even if it is added more.
  • the electrode active material used as an essential component in the present invention is a host that has an activity of accepting lithium ions as a guest in order to insert and desorb lithium ions. It means a compound, and an electromotive force, a reaction amount (energy 'density), reversibility required in a lithium secondary battery, and reversibility. It is an essential component to obtain ion conductivity.
  • Compounds that receive lithium ion as a guest include titanium sulfide (T i S 3 , T i S 2 ), vanadium oxide (V 2 0 5 ), manganese oxide (Mn 0 2 ), niobium selenide ((Nb S e 3 ), various complex oxides containing lithium as a metal element (L i C 0 0 2 , L i N i 0 2 , L i Mn 2 0 4 , L i F e 0 2 etc.), etc. may be mentioned.
  • the electrode active material that can be used in the mixing step in the step is not particularly limited as long as it is generally used for the positive electrode of a lithium secondary battery, but, for example, lithium vanadium composite oxide, lithium cobalt composite oxide, lithium Manganese complex oxides, lithium nickel complex oxides, vanadium oxide, etc.
  • the electrode active material may be used alone or in combination of two or more.
  • the electrode active material used is generally in the form of solid powder, and
  • the use ratio of the electrode active material is not limited, but is preferably, for example, 0.1 to 50 times by weight, more preferably 0.3 to 20 times, still more preferably, based on the weight of the polymer. Should be between 0.5 and 10 times. If the amount of the electrode active material is too small, the function as the positive electrode may not be sufficiently exhibited. On the other hand, if the amount of the electrode active material is too large, molding of the positive electrode material may be difficult.
  • the conductive assistant used as an essential component in the present invention may be any one as long as it is usually used for a positive electrode of a lithium secondary battery, and is not limited. For example, acetylene black, ketjen black, Graphite etc. It can be mentioned.
  • the conductive aid may be used alone or in combination of two or more.
  • the conductive aid to be used is generally in the form of a solid powder and is in the state of being dispersed in the mixture obtained after step (II).
  • the proportion of the conductive aid is not limited, but is preferably 0.1 to 20 parts by weight, more preferably 1 to 15 parts by weight, with respect to 100 parts by weight of the electrode active material. It is good to be. If the amount of the conductive additive is too small, the conductivity of the positive electrode may be insufficient. If the amount of the conductive additive is too large, the forming of the positive electrode material may be difficult.
  • step (I) it is preferable to carry out both or one of the step (I) and the step (II) in the presence of a solvent.
  • a solvent for example, the case of using a polymer solution as a medium can be mentioned.
  • step (II) is carried out in the presence of a solvent, for example, (i) when using the solvent in step (II) as described above, (ii) using the polymer solution as a medium in step (I) and In the case where the step (II) is carried out following the step (I) (in other words, the step (III) described later before the step (II) is not performed), (iii) the polymer solution is used as a medium in the step (I) Use and force to carry out step (III) to be described later prior to step (II) In the step (III), the solvent may not be completely volatilized.
  • a solvent for example, (i) when using the solvent in step (II) as described above, (ii) using the polymer solution as a medium in step (I) and In the case where the step (II) is carried out following the step (I) (in other words, the step (III) described later before the step (II) is not performed), (iii) the polymer solution is used as
  • step (III) of volatilizing the solvent this step (III) may also be referred to as a "volatilization step").
  • this step (III) may also be referred to as a "volatilization step”).
  • the solvent is evaporated from the mixture containing the solvent obtained in the step carried out in the presence of a solvent, for example, under the conditions of heating and the like to volatilize the solvent to obtain a fluidizable state. Degassing should be stopped when it is maintained.
  • the mixture obtained after volatilization may generally be one containing no solvent or one adjusted to a desired solvent concentration, and is not limited, but the latter is preferred.
  • an apparatus used for devolatilization and various conditions As a method of devolatilization, an apparatus used for devolatilization and various conditions, a method which can be taken during normal devolatilization, an apparatus which can be used, conditions to be set, etc. may be adopted, but there is no particular limitation. For example, as described below.
  • devolatilization As a method of devolatilization, usually, there are two steps of pre-volatilization and main devolatilization, and as a procedure of devolatilization, it is preferable to carry out the pre-volatilization after the pre-volatilization but this is not limited Alternatively, it may be carried out as a one-step process without distinction between pre-volatilization and full-volatilization.
  • the division into two stages is preferable because the efficiency of devolatilization (cost reduction, shortening of processing time, quality of polymer, etc.) becomes possible.
  • (a) It is possible to perform annealing and degassing after the solvent content contained in the mixture before degassing has been rapidly reduced to such an amount that the solvent can be efficiently removed.
  • the equipment size can be made smaller than in the case of single stage treatment by pressure degassing and subsequent vacuum (depressurization) degassing.
  • C At the time of devolatilization, viscosity may rapidly rise in a certain concentration range
  • the drive system can be made smaller than in the case of processing in a single stage, etc., it is theoretically preferable due to reasons such as, but depending on the type of mixture to be subjected to the degassing treatment (especially the type of polymer) Even the two-step process The same effect may be obtained, and it may be selected appropriately according to the object to be treated.
  • the device (degassing device) to be used for degassing is not limited.
  • stirring vessel evaporators Preferably, it is carried out using at least one device.
  • the usage conditions can be set appropriately depending on the device used.
  • Stirred tank evaporators are excellent in that they can cope with a wide range of viscosity and a wide range of residual solvent concentration.
  • a stirring tank equipped with a helical ribbon blade a stirred tank equipped with a double helical ribbon blade, a super blend blade ⁇ : Max blend wing, Outer wing: Helical deformation baffle
  • Vertical twin screw mixing tank for example, Product name: Super blend, made by Sumitomo Heavy Industries, Ltd.), VCR reverse conical ribbon wing reactor (Mitsubishi Heavy Industries Ltd. make) etc. are mentioned preferably. These can be used for both batch processing and continuous processing, but are more preferably used for batch processing.
  • the device because of the characteristics of the device, it takes a lot of time to discharge after treatment, so it is preferable to correspond to the process of accurately processing a small amount rather than the process of processing a large amount of polymer and the like. Also, if you use these, The heat transfer is performed by heat transfer surface renewal.
  • a multi-tubular heat exchanger type for example, product name: Sulza-I mixer, manufactured by Sumitomo Heavy Industries, Ltd .; product name: static mixer, manufactured by Noritake
  • plate heat exchange Container type for example, product name: Hiviscous Evaporator, manufactured by Mitsui Shipbuilding Co., Ltd.
  • They can be used for both batch and continuous processes, and both processes can be performed successfully.
  • the evaporation process is carried out by interface area expansion, and the corresponding maximum processing viscosity is preferably 5 0 0 0 0, and in the case of a plate heat exchanger type
  • the evaporation process is performed by heat transfer area expansion, and the corresponding maximum processing viscosity is preferably 10 0 0 0 0 boise.
  • the thin film evaporator is excellent in that a centrifugal force is exerted by a blade and a uniform liquid film can be formed.
  • a horizontal thin film evaporator for example, product name: Eva reactor, manufactured by Kansai Chemical Machinery Co., Ltd.
  • fixed Blade type vertical thin film evaporator for example, product name: EXEVA, manufactured by Shinko Pantec Co., Ltd.
  • movable blade type vertical thin film evaporator for example, product name: Wipelen, manufactured by Shinko Pantech Co., Ltd.
  • a tank type (mirror type) thin film evaporator for example, product name: recovery, manufactured by Kansai Chemical Machinery Co., Ltd.).
  • Horizontal type thin film evaporators are more difficult to cope with high viscosity on the discharge side than vertical type, so a blade with excellent discharge effect is used to be able to cope with high viscosity. Is preferably 500 boise.
  • the vertical thin film evaporator is a low viscosity liquid because it descends by its own weight. It is preferred that the higher maximum viscosity of the movable blade type is 1,200 Boise, although the higher viscosity liquid is more suitable.
  • the fixed blade is made to have a downward effect so as to correspond to a high viscosity, and the corresponding maximum processing viscosity is preferably 10 0 0 0 Boise.
  • the tank type thin film evaporator can suppress the short path of the low viscosity liquid by using a mirror, and the corresponding maximum processing viscosity is preferably 1,200 boise.
  • the surface renewal type polymerizer (horizontal type thin film polymerizer) is excellent in that it shows high degassing performance by the renewal of the gas and liquid surface.
  • a uniaxial surface type surface renewal type polymerizer a biaxial type surface renewal type polymerizer (For example, Product name: Bipolac, manufactured by Sumitomo Heavy Industries, Ltd. '; Product name: Hitachi glasses wing polymerizer, manufactured by Hitachi Ltd .; Product name: Hitachi grid wing polymerizer, manufactured by Hitachi Ltd., Product name: SC processor, manufactured by Kurimoto Co., Ltd., and the like.
  • These are not possible for batch processing, and all for continuous processing. Due to the characteristics of the equipment, the throughput of devolatilization is all dependent on the transfer rate of the substance in the equipment, and the evaporation process is carried out by gas-liquid surface renewal.
  • Kneader (For example, Product name: K R C kneader, manufactured by Kurimoto Koji Co., Ltd.), roll mixer
  • An intensive mixer (so-called Banbury-one mixer), like an extruder, is suitable for mixing high-viscosity melts and the like, and has a degassing ability as an additional function. These can be processed both batchwise and continuously. For these, it is preferred that the corresponding maximum processing viscosity is 10 0 0 0 Boise.
  • the single-shaft type exhibits high degassing performance because it can ensure efficient surface area, and the corresponding maximum processing viscosity is preferably 10 0 0 0 boise.
  • the biaxial type is excellent in self-creeping property and liquid retention control due to no dead space in the container and high biston flow property, and the corresponding maximum processing viscosity is 10 0 0 0 0 It is preferable to have one.
  • the extruder is suitable for mixing such as melt viscosity, and has an addition function of heating, melting, kneading and degassing ability.
  • a single-screw extruder, a twin-screw extruder for example, product name: SUPERTEX a II, manufactured by Japan Steel Works, Ltd .; Product name: BT-30-S 2, Plastics Research Institute, SCR self-cleaning reactor (Mitsubishi Heavy Industries Ltd.), etc. are preferably mentioned. . These can not be processed batchwise, and can be processed continuously.
  • the corresponding maximum processing viscosity is preferably 100, 00 Boise.
  • the preferred method of devolatilization can be exemplified by the method of volatilization after pre-volatilization, but among the above-mentioned various devolatilization apparatuses, those which can be preferably used for pre-volatilization are limited. Although it does not work, it has a stirring tank equipped with a helical ribbon blade, a mixing tank equipped with a double-helical ribbon blade, a vertical concentric biaxial mixing tank equipped with a super blend blade, a mixing tank equipped with a Max Blend blade, and a log bone blade. It includes a stirring vessel, a plate heat exchanger type downstream liquid column evaporator, and a fixed blade type vertical thin film evaporator.
  • what can be used for this devolatilization may be, but is not limited to, a twin-screw surface renewal type polymerizer, a kneader, a twin-screw extruder and the like.
  • the various degassing apparatuses listed above may be directly connected to the so-called upstream apparatus used in the step carried out immediately before the step (III) to carry out the degassing.
  • the concentration of the residual solvent in the mixture after volatilization is preferably 0.01 to 30% by weight, more preferably 0.5 to 20% by weight, and further preferably Or 0.1 to 10% by weight.
  • the residual solvent concentration is less than 0.01% by weight
  • the target positive electrode material composition may be tacked to cause blocking or the like, or the battery performance may be deteriorated.
  • the water content of the mixture after volatilization simultaneously with volatilizing the solvent is contained, for example, in the monomers and solvents used in the polymerization reaction. Specifically, it is preferable to adjust the water content to 5,00 0 p p m or less, more preferably 5 0 0 p p m or less, and still more preferably 2 0 0 p p m or less. When the water content exceeds the above range, the lithium salt may react with the water content when used in a lithium secondary battery, and the ion conductivity may not be sufficiently exhibited.
  • the means for adjusting the water content is not limited.
  • To increase the pressure means to lower the pressure, and to reduce the degree of pressure reduction means to increase the pressure.
  • the temperature is not limited, but if it is too low, it is not efficient because it is necessary to increase the degree of pressure reduction excessively, and it is too high Since heat deterioration of the mixture (especially polymer) obtained after volatilization may occur, these should be taken into consideration and appropriately set.
  • the degree of pressure reduction is not limited, but if it is too large, it is considered difficult in consideration of the sealing performance of the degassing apparatus. If it is too small, it may not be possible to control the water content to 200 ppm or less unless the temperature of volatilization is increased considerably. Therefore, set appropriately taking these into consideration.
  • the temperature is preferably 40 to 200 ° C, more preferably 55 to 175 ° C, still more preferably 70 ⁇ At 150.
  • the temperature is less than 40 ° C., the remaining solvent may increase. If the temperature exceeds 200 ° C., the mixture (particularly the polymer) obtained after devolatilization may be thermally degraded. There is.
  • the above-mentioned temperature means the temperature of the mixture when a stirred tank evaporator is used, and other devolatilizers (for example, a surface renewal type polymerizer, a kneader, and the like) When an extruder or the like is used, it is the temperature of the jacket of the degassing device and the heater portion.
  • devolatilizers for example, a surface renewal type polymerizer, a kneader, and the like
  • Degassing is preferably carried out under a pressure of 1,000 to 100,000 Pa, more preferably 2,500 to 70,000 Pa, still more preferably 5, 000 to 40, OOO Pa .
  • a pressure of 1,000 to 100,000 Pa, more preferably 2,500 to 70,000 Pa, still more preferably 5, 000 to 40, OOO Pa By degassing in this pressure range, after degassing, a mixture of the desired residual solvent concentration and the water content can be obtained. If the pressure is less than 1, OOOP a, the solvent may flash and foaming may occur, and if it exceeds 100, OOO Pa, the mixture (in particular, the polymer) obtained after devolatilization may be decomposed. In some cases, the temperature must be increased.
  • the pressure is the pressure in the tank of the degassing apparatus.
  • the viscosity of the mixture obtained after the degassing is such that the viscosity at 100 is 1,000 to 5,000 boise. It is preferable that the temperature is 100 ° C., preferably 5,000 to 4,000,000 Boise, and still more preferably 100, 10,000 to 30,000 Boise. When the viscosity is less than 1,000 at 100 ° C., the amount of the remaining solvent increases, and foaming and tack may occur when the target positive electrode material composition is formed. If it exceeds 000 000, degassing with the degassing apparatus may be difficult.
  • the step of cooling and solidifying the mixture to be the positive electrode material composition (this step is referred to as “cooling and solidifying step”), and the step of granulating the mixture (this step is It is preferable to also include at least one of the following steps: drying and / or conditioning the mixture (referred to as “drying and conditioning step”). Specifically, when one or both of the step (I) and the step (II) are performed in the presence of a solvent, at least one of the cooling and solidification step, the granulation step, and the drying / humidifying step is It may be performed at any time, but preferably after step (III).
  • step (I) and the step (II) are carried out in the absence of a solvent
  • at least one of the cooling and solidification step, the granulation step, the drying and humidity control step is the step I) and after step (II).
  • the cooling / solidifying step, the granulation step, and the drying Z humidity control step may be performed in any order, but are preferably performed in the order described.
  • the cooling and solidification process, the granulation process, the drying z humidity control process, and the processes associated with these processes will be described in detail.
  • the cooling and solidification step is for cooling and solidifying (hardening) the mixture to be the positive electrode material composition. Since the mixture to be subjected to the cooling and solidifying step is, for example, a mixture obtained after the step (III), degassing is generally performed under heating, the steps (I) and steps (B) performed in the absence of a solvent II) If the mixture obtained later is heated so as to maintain the molten state of the polymer, it is in a warm state and in a state of low shape retention ability, for example, the polymer in the mixture is melted and It can be considered that it is in a state of being dry, or a state in which such a mixture is merely shaped (a state in which the shape has been imparted but has not been solidified). Specifically, the mixture to be subjected to the cooling / solidifying step is preferably in the state of 40 to 200 ° C., more preferably in the state of 55 to 175, still more preferably 70 to 150 ° C. It is in the state of C.
  • the method of cooling and solidification in the cooling and solidification step is not limited, but, for example, the mixture Preferred is a method of cooling and solidifying by contacting with a metal plate, a method of cooling and solidifying by directly applying cold air to the mixture, or a method of using these in combination.
  • the metal plate which can be used is not limited, but, for example, a drum cooler (for example, TUBAKO KEICHI 's product, product name: COMPACT CONTI COOLER; Product name: Drum cooler DC; made by Modern Chemical Engineering Co., Ltd .; product name: Laminator) Single belt cooler (For example, product made by Sandvik, product name: Steel belt crusher; Nippon Steel Co., Ltd.) Conveyer Co., Ltd. product name: Steel belt single cooler) Double steel belt cooler (For example, Sandvik Co., Ltd.
  • a drum cooler for example, TUBAKO KEICHI 's product, product name: COMPACT CONTI COOLER; Product name: Drum cooler DC; made by Modern Chemical Engineering Co., Ltd .; product name: Laminator
  • Single belt cooler For example, product made by Sandvik, product name: Steel belt crusher; Nippon Steel Co., Ltd.) Conveyer Co., Ltd. product name: Steel belt single cooler
  • Double steel belt cooler For example, Sandvik Co., Ltd
  • the cooling temperature of the metal plate is not limited, and is preferably a temperature at which the polymer in the mixture to be solidified by cooling can be brought to a crystallization temperature and / or a temperature below the melting point, for example,
  • the temperature is preferably 25 to 40 ° C, more preferably one 20 to 30 ° C, and still more preferably one 15 to 25 ° C. The lower the cooling temperature, the better.
  • the temperature of the mixture to be solidified by cooling is preferably 50 ° C. or less, more preferably 45 ° C. or less, still more preferably 40 ° C. or less before cooling and solidifying.
  • the mixture may be positively cooled by application or the like, or may be cooled by leaving, and the cooling means is not limited.),
  • the mixture can be easily peeled off from the metal plate after cooling and solidification.
  • the cooled solidified product can be obtained in a stable yield.
  • the temperature and wind speed of the cold air are not limited, and the polymer in the mixture to be solidified by cooling is brought to a crystallization temperature and a temperature below melting point or melting point. It is preferable that the temperature and the wind speed can be used.
  • a sheet (plate) -like mixture for example, a shape such as 2 mm ⁇ 2 5 O mm ⁇ 2 5 mm
  • the cold wind at about 5 to 10 ° C. is applied at a wind speed of 1 to 15 seconds. It should be applied by the degree.
  • the mixture to be subjected to the cooling and solidification process is discharged onto a metal plate, a metal surface or the like, and then conveyed while being cooled and solidified.
  • a double steel belt cooler 1 a single belt cooler, a drum cooler and a rolling double roll (for example, Kansai Roll Co., Ltd. product name: 8 X 20 BOX type roll machine) were used.
  • the type of cooling belt temperature of refrigerant, choice of refrigerant type, and width of T-die and width of double steel, etc., it is possible to easily obtain the conditions of any production volume.
  • the mixture is formed into a sheet, a string (strand), a plate, a particle, a rod, a block (block) etc. in advance by an extruder or the like.
  • You A step of cooling with cold air (ii) a step of pouring the mixture into a container for forming a mold in advance, and a step of forming the mixture, and (iii) a mixture as it is on a metal plate for cooling and solidification.
  • a process of forming into a desired shape eg, granular form, sheet form, etc.
  • the mixture is charged into a cylindrical drum having a plurality of holes (desired hole diameter) opened on its side, and this drum is rotated with its central axis (circular axis) horizontal,
  • the process of forming into particles while cooling and solidifying can be mentioned by dripping from the holes onto a metal plate for cooling and solidifying.
  • step (i) in order to obtain a molded product of the mixture with high productivity, in the step (i), it was taken out as a rod directly through the cylindrical mold by the discharge force of the extruder etc. After that, cutting at relatively high temperature into a block (in the form of a block) or rolling two rolls at relatively high temperature (for example, Kansai Roll Co., Ltd. product name: 8 X 20) It is preferable to introduce the sheet into a box type roll machine) and make it into a sheet form.
  • the above-mentioned forming step in order to obtain sufficient cooling, it may be extruded and formed into a sheet shape, a plate shape, a rod shape, a block shape or the like in the step (i). Is preferred.
  • a method of extruding for example, an extruder, a polymer pump, a gear pump, etc. are attached to the outlet or outlet of the devolatilizer, and by further connecting an extruder, the mixture is extracted from the devolatilizer while the extruder is removed. Or the like may be adopted.
  • the extruder is not limited.
  • a single-screw extruder, a twin-screw extruder for example, product name: SUPERTEX a II, manufactured by Japan Steel Works, Ltd .; product name: BT — 30 — S 2. Plastics Science Research Institute), SCR self-tallying type reactor (Mitsubishi Heavy Industries, Ltd.), KRC Nidor (Kurimoto Co., Ltd.), etc. are preferably mentioned.
  • the thickness is generally in the range of 0.5 to 4 in consideration of the cooling efficiency in the subsequent cooling / solidifying step and the size when finally obtained by granulation. It is preferable to use a cold air to cool the extruded and formed mixture so as not to break the formed shape, which is preferably 1 mm, more preferably 1 to 3 mm, and still more preferably 1.5 to 2.5 mm. It is preferable to cool using such as.
  • the step (kneading step) of adding various stabilizers and the like to the mixture and kneading is performed before the cooling / solidifying step (or in the case of performing the above forming step beforehand). May be included.
  • the stabilizer examples include, but are not limited to, heat stabilizers, light stabilizers, ultraviolet light absorbers, antioxidants (antioxidants), preservatives, light resistance improvers, plasticizers (diocyl phthalate, Small molecule Amount of polyether compound etc.), filler (such as strong carbon), surfactant (such as ethylene oxide non-ionic surfactant), lubricant (such as calcium stearate), etc.
  • organic or inorganic fine particles low molecular weight compounds (having a boiling point of 300 ° C. or less) Low molecular weight compounds (solvents) are preferred.
  • organic or inorganic fine particles can exhibit functions such as blocking prevention depending on the use purpose and use form of the positive electrode material composition.
  • organic fine particles for example, fine particles of polystyrene, polyethylene and polypropylene are preferable, and as the inorganic fine particles, for example, fine particles of silica, alumina and zirconia or their composite oxides are preferable.
  • the kneading apparatus which can be used in the kneading step is not limited, but, for example, those exemplified as the mixing apparatus which can be used in the step (I) for the mixing and the step (I I) are preferable.
  • the kneading step is performed after the volatilization step, it is preferable that the kneader be connected from the volatilization device via a polymer pump, a gear pump or the like.
  • a polymer pump, a gear pump, etc. may be attached to the outlet or outlet of the kneading device, and it may be further connected to an extruder or the like.
  • the granulation step is to granulate (eg, pelletize) the mixture (preferably, the mixture obtained after the cooling and solidification step).
  • the apparatus that can be used in the granulation step is not limited, but, for example, a sheet pelletizer (for example, Holly Co., Ltd., product name: sheet pelletizer SG (E)-220), a classifier (for example, Holly Corporation) Product name: U-480 type), Strand cutter (manufactured by Isuzu Chemical Engineering Co., Ltd., Product name: SFC-1 0 0), and the like.
  • a sheet pelletizer is preferred in that the particle size of the obtained granular material is easy to be uniform.
  • the sheet pelletizer is not limited, but, for example, when cutting a material having a low pour point or cutting an adhesive material, the cutter portion, in particular, the slitter roll portion is cooled with a refrigerant.
  • the temperature of this cooling is not limited, and it is preferable that the mixture to be granulated (in particular, the polymer ⁇ ) be a crystallization temperature and / or a temperature that can be a temperature below the melting point, for example, _ 2 5 It is preferable that the temperature is -40 ° C, more preferably one 20 to 30 ° C, and still more preferably one 15 to 25 ° C.
  • various mixtures such as a stabilizer and the like can be used. It may include a step of adding an additive (eg, dust etc.).
  • an additive eg, dust etc.
  • the additive include, but are not limited to, heat stabilizers, light stabilizers, ultraviolet light absorbers, antioxidants, preservatives, light resistance improvers, plasticizers, various fillers, surfactants, lubricants, solid substances, etc.
  • an anti-caking agent for example, a product manufactured by Nippon Aerosil Co., Name: aerosil R 9 72 2, aerosil R 9 7 4) are preferred.
  • a table feeder or the like may be used to supply and dust the particulate mixture of the mixture on the vibrator, or may be provided to supply the mixture prior to the granulation step and the like. The method is mentioned.
  • a step of selecting particles having a desired particle diameter from the mixture after granulation, removing large particles generated in the granulation step and the drying step ) May be provided.
  • classification may be carried out using a generally known sieve, but in consideration of productivity, for example, the particles are flowed on a sieve of a metal inclined surface having irregularities while being vibrated. Sorting, vibrating the metal plate with holes in the horizontal direction for sorting, or the sieve itself is a trumpet-like and horizontal type, and the inclined surface of the sieve is rotated so that the particles rotate. And the like are preferable.
  • Examples of devices that can be used in the sorting step include various known devices that allow sorting of particles, such as a vibrating screen (manufactured by Seishin Enterprise Co., Ltd., product name: Rotex 1302 PSSSSL type). It can be mentioned. It is preferable that the sorting of the particles be performed by direct derivation to the sieve as described above. Before the sorting step, for example, any additive added to the mixture which is not sufficiently attached to the composition is subjected to vibration (horizontal direction or vertical direction), scraper, brush, etc. It may be equipped with a process of removing it by an external force, such as bringing it into contact and peeling it off or flying it with wind power. The sorting step may be performed after the drying step described later.
  • the drying step is to dry the mixture (preferably, the mixture obtained after the granulation step).
  • the drying step is a step of actively reducing the water content in the mixture, and differs from the moisture absorption preventing treatment described later in this point.
  • this drying step is particularly effective, for example, when an atmosphere using water (water for metal plate cooling) is directly present during the manufacturing step of the present invention (in particular, in the above-mentioned cooling / solidifying step). It is a process. If the mixture is treated under such an atmosphere of water, the water content will increase significantly more than usual.
  • the drying method in the drying step is not limited.
  • a mixture is injected into the mouth of a mixture, and then compressed air is blown from the top and bottom to circulate and dry;
  • the mixture is a conical dryer It is preferable to use a method of ventilating compressed air after drying, or (iii) a method of charging the mixture into a ventilated rotary dryer (eg, a rotary kiln etc.) and ventilating compressed air for drying.
  • the drying method may be performed alone or in combination of two or more.
  • the water content of the mixture can be reduced to a desired range by appropriately selecting and setting the various drying methods described above, the drying temperature, the drying time, etc. Specifically, the desired range to be described later It is preferable to reduce to (specifically, 300 ppm or less). Even if the water content of the mixture already satisfies the desired range (specifically, 300 ppm or less) described later, the drying process can be performed even if it is not.
  • the amount of water to be reduced in the drying step is not limited, it is preferable not to be too large in consideration of the cost and productivity of the drying process.
  • the reduction of the water content by the drying treatment is preferably 27 ppm or less, more preferably 7 ppm or less, and still more preferably 4,700 It is less than ppm. If the drying process exceeds this decrease range, the economy and productivity are inferior, and the polymer in the mixture is degraded, and finally the battery Performance may be adversely affected.
  • the above-mentioned drying step is not limited to the one performed on the mixture after the granulation step.
  • the above drying step is performed on the one after the cooling and solidification step. It can be performed between various processes or during various processes, and may be performed once or plural times in the whole manufacturing process.
  • the water content of the positive electrode material composition obtained by the production method of the present invention is preferably 300 ppm or less, more preferably 250 ppm or less, and still more preferably 200 ppm or less. .
  • the water content referred to here may be achieved for the finally obtained positive electrode material composition, and needs to be achieved in the mixture in part or all of the production process in the production method of the present invention. Not that. If the water content exceeds 300 ppm, the water content and the lithium salt react and the lithium ion is consumed as a hydroxide, so that the ion conductivity decreases. For example, the battery performance of the lithium secondary battery There is a risk that
  • the positive electrode material composition obtained by the production method of the present invention is introduced into an extruder or the like, melted and extruded, and used as a film-like positive electrode material
  • the positive electrode used in the extruder It is preferable that the water content of the material composition is relatively high because the film can be stably extruded by the plasticizing effect of the water.
  • a humidity control process is provided after the granulation process to adjust the humidity of the positive electrode material composition, and then, for example, a vent that can be drawn by pressure reduction is provided at the tip of an extruder etc.
  • Water may be removed immediately before the outlet, etc., and water may be removed immediately before film formation with an extruder or the like to make the water content in the above-mentioned range (300 ppm or less).
  • the water content of the positive electrode material composition after humidity control is less than 30,000 ppm, in consideration of the amount of water that can be removed immediately before film formation. It is preferable to
  • the method of controlling humidity in the humidity control step is not limited. For example, after a predetermined amount of water (preferably ion-exchanged water) is sprayed to the positive electrode material composition through a spray or spray nozzle etc.
  • the positive electrode material composition and the sprayed water may be adapted to each other by stirring or rotating using the above apparatus.
  • a step of preventing moisture absorption of the mixture may be provided.
  • the mixture is subjected to a treatment capable of reducing the amount of water taken from the production atmosphere, but it is not always necessary to completely suppress the increase in the amount of water contained in the treatment process.
  • the increase in water content should be suppressed as compared to the case where such treatment is not performed.
  • the moisture absorption preventing step can be performed instead of the drying step because the same effect as the drying step can be obtained in terms of controlling and managing the water content of the mixture. May be performed.
  • the moisture absorption preventing step can be performed between various steps in the manufacturing method of the present invention or during various steps, and may be performed once or plural times in the whole manufacturing process, and is not limited.
  • the treatment in the moisture absorption preventing step examples include so-called film-type dehumidifying treatment, freezing-type dehumidifying treatment, and adsorbent-type dehumidifying treatment.
  • the membrane-type dehumidifying process covers a desired region in a region including various devices / equipment used in the manufacturing method of the present invention, equipment, and a movement path of the mixture with a highly airtight material. Dry air obtained by absorbing moisture in compressed air (saturated air with a relative humidity of 100%) into the hollow fiber membrane is sent by a compressor to create a dry atmosphere.
  • This treatment can be performed, for example, using a hollow fiber membrane separation type compressed air dryer (manufactured by Toshiba Plant Construction Co., Ltd., product name: MA CDASS).
  • the compressed air is preferably at a dew point of 10 ° C. or less, more preferably at a dew point of 20 ° C. or less, still more preferably at a dew point of 30 ° C. or less. If the compressed air exceeds the dew point ⁇ 10, the water content of the mixture increases, which may cause a decrease in battery performance and the like.
  • an inert gas such as nitrogen can also be used.
  • the freezing and dehumidifying treatment is a treatment that cools compressed air with a refrigerator, condenses and discharges moisture in the compressed air to obtain dry air, and creates a dry atmosphere.
  • the adsorbent-type dehumidifying treatment is, specifically, a treatment in which moisture is adsorbed by an adsorbent such as activated alumina to obtain dry air, thereby creating a dry atmosphere.
  • the increase range of the moisture content of the mixture during the moisture absorption preventing treatment is preferably 250 ppm or less, more preferably 200 ppm or less, and still more preferably 15 It is less than 0 ppm. If the above increase exceeds 250 ppm, the water content of the mixture increases, which may cause a decrease in battery performance and the like. Further, when the moisture content of the mixture is within the desired range described later at the time of performing the moisture absorption preventing process, it is preferable to maintain the range after the process.
  • the positive electrode material composition (ie, the mixture finally obtained) obtained by the production method of the present invention may be introduced into an extruder or the like, melted and extruded, and used as a film-like positive electrode material.
  • the equipment to be supplied to the extruder may be appropriately selected and adopted according to the shape of the positive electrode material composition for the introduction into the extruder.
  • the shape of the composition when the shape of the composition is in the form of particles, it can be quantitatively supplied from the belt type feeder 1 to the first supply port on the motor 1 side of the extruder, in particular when it is in the form of pellets. It can be supplied quantitatively from a single screw or single screw type screw-up feeder.
  • composition When the composition is in the form of a block (in the form of a block), a hopper disk charger type one, a kneader one, etc. Melta one (manufactured by Moriyama Co., Ltd.) using a uniaxial or biaxial system or a combination of both systems. Product name: 2 TR-50 or 2 TR-75) can be melted and supplied quantitatively to the first supply port on the motor side of the extruder.
  • the positive electrode material composition may be a mixture obtained after step (II) (in this case, the polymer itself in the molten state is used as a medium in step (I)) or the solvent obtained after step (III) It is also possible to quantitatively feed the first feed port of the extruder in the molten state and without shape, as in the case of a mixture which contains no or almost nothing.
  • the inert gas atmosphere is a gas atmosphere containing at least 99% by volume of an inert gas.
  • the inert gas include nitrogen, argon and helium.
  • the gas containing the above-mentioned inert gas can be used to reduce the water content of the positive electrode material composition. It is preferable to use a low water content to keep it low (eg, 300 ppm or less, preferably 250 ppm or less, more preferably 200 ppm or less).
  • the method of performing the desired step under an inert gas atmosphere is not limited, but, for example, in the membrane-type dehumidifying treatment in the moisture absorption preventing step described above, a gas containing the above-mentioned inert gas is used instead of dry air.
  • the method used is preferably applicable.
  • the weight average molecular weight of the polymer used in the step (I) (here, the polymer before mixing) is Mw.
  • the weight average molecular weight reduction rate (D Mw ) determined by the following formula (1) is 10% or less. According to the production method of the present invention as described above, the reduction rate of the weight average molecular weight of the polymer can be easily set within the above range.
  • the D Mw is more preferably 7% or less, and still more preferably 5% or less.
  • the above-mentioned final step means the final step among all the steps carried out after step (I) and step (II) for mixing.
  • the positive electrode material composition obtained by the production method of the present invention is suitable as a material composition that can be used for the positive electrode portion of a lithium secondary battery.
  • the polymer in the polymer solution was dissolved by adding acetonitrile to the polymer solution so that the concentration of the polymer in the polymer solution was 1 wt%, and centrifuged at 2000 ppm for 3 minutes. The supernatant was added with a predetermined solvent (eluent (acetonitrile water Z anhydrous sodium acetate)) to dilute, and then measured.
  • a predetermined solvent eluent (acetonitrile water Z anhydrous sodium acetate)
  • an acetonitrile is added to the composition (or mixture) to make a 1 wt% solution of the composition (or mixture), and the solution is a Tatchich mixer. Stir well with a shaker to disperse the electrode active material and dissolve the polymer. Thereafter, the mixture was filtered through a filter (non-aqueous, opening: 45 / zm) to remove insolubles, and the filtrate was diluted with the above-mentioned eluent and then measured.
  • the mixture is centrifuged to precipitate the main insoluble matter, and the supernatant is sampled with a syringe for about 2 to 3 mL, and Karl Fischer moisture measuring instrument (Coulometric titration method, manufactured by Hiranuma Sangyo Co., Ltd., Product name: AQ-7)
  • the water content (p pm) in the solution was measured (Measurement A) using.
  • the water content (p pm) was measured (measurement B) using the same measuring instrument. From the water content according to measurement A, the water content according to measurement B was subtracted to obtain the water content (ppm) in the composition (or mixture).
  • a polymer solution or a composition (or mixture) solution in which acetonitrile is added and dissolved for a positive electrode material composition (or mixture) is weighed in a predetermined amount, and placed in a dryer, 110 ° C., 0.09 ⁇ 0. 1 OMP a for 20 minutes under vacuum heating. The weight after heating under reduced pressure was weighed, and the solid content (wt%) of the polymer solution or the composition (or mixture) solution was determined as the weight of the non-volatile component.
  • Ascetonitrile was added to the positive electrode material composition (or mixture) to make a 10 wt% solution of the composition (or mixture). This solution was filtered under reduced pressure with a membrane filter, and after that, acetonitrile was poured onto the filter to wash the filtrate and filtered under reduced pressure (in this case, the total concentration of polymer and electrolyte salt compound in the filtrate was about 1 Wash with an amount of wt% acetonitrile.
  • the composition (or mixture) is obtained from the intensity of Li measured by I CP -AES (Inductively coupled plasma emission spectrometry, manufactured by Seiko Instruments Inc., product name: SPS 4000) using the obtained filtrate as a sample.
  • concentration of the electrolyte salt compound in the solution is calculated, and the content ratio of the electrolyte salt compound in the composition (or mixture) in consideration of the concentration of the composition (or mixture) in the solution (wt% I asked for).
  • the residue obtained by the above two vacuum filtrations (the residue remaining on the filter) is dried at 110 ° C. under a vacuum heating of 0.0.09-0. 1 OMP a for 1 hour, and the total weight after drying The weight of the electrode active material containing the conductive aid was measured. From the weight and the weight of the positive electrode material composition (or mixture) used in the measurement, the content ratio (wt%) of the electrode active material containing the conductive auxiliary in the composition (or mixture) is determined.
  • the sum total of the polymer and electrolyte chloride in the positive electrode material composition used for measurement as solid content by applying the measurement method of solid content mentioned above By determining the content ratio (wt%) and subtracting the content ratio (wt%) of the electrolyte salt compound determined by the above-mentioned method from the total content ratio, the content of the polymer alone can be reduced.
  • the combination (W t%) was determined.
  • a positive electrode material composition (or mixture) is formed into a sheet having a thickness of 2 mm, and a circular sample having a diameter of 3 cm cut out from the sheet is measured by a fluorescent X-ray analyzer (PW-240 4 manufactured by PHILIPS, INC. Measure the strength of vanadium in the electrode active material. Then, the content ratio (wt%) of the electrode active material is calculated in advance from a calibration curve prepared for a sample of which the content of the electrode active material is known. Evaluation of dispersion after mixing
  • the slurry-like mixture in the stirring apparatus after the mixing step is sampled, and the degree to which the particulate matter can be visually confirmed in the sample is shown in Table 1 below as one element of evaluation of the dispersion state after mixing. Evaluated by criteria.
  • Max Blend Wing (Sumitomo Heavy Industries, Ltd.) and 1 L reactor equipped with an addition port
  • the solvent toluene
  • a 3-substitution operation (0.5MP a) was performed and nitrogen substitution was performed.
  • the maxblend blade is rotated at 90 rpm and the reactor is purged with nitrogen while stirring, and pressurized with nitrogen until the pressure in the reactor becomes 0.3MPa, and warm water is added to the jacket The temperature rose.
  • the ethylene oxide feed was started at a feed rate of 220.2 parts and was fed quantitatively for 40 minutes.
  • Twenty minutes after the start of ethylene oxide supply the supply of butylene oxide denatured by molecular sieve (water content: 400 ppm or less) was started at a supply rate of 48.9 parts Zh for 20 minutes quantitatively. Supplied.
  • Forty minutes after the start of ethylene oxide supply the solution was supplied quantitatively for 1 hour each at a supply rate of 14.46 parts Zh for ethylene oxide and 36. 6 parts for butylene oxide.
  • the hopper and the like were washed with 10.0 parts of toluene, and the inlet was closed.
  • the stirrer was operated (inner blade: 75 rpm, outer blade: 29 rpm), and mixed for 30 minutes with stirring to obtain a slurry.
  • the degassing operation of pressurizing the inside of the stirring apparatus to 1.6 kgzcm 2 with nitrogen and reducing the pressure to 10 O mmHg was repeated several times to remove excess water and dissolved oxygen in the system.
  • the mixture (11) had a solid content of 42.8 wt%, a polymer weight average molecular weight Mw of 123,000, and a content ratio of the electrode active material containing a conductive additive of 64. 6 wt%
  • the evaluation of the dispersion state after mixing was “ ⁇ ”.
  • stirring apparatus containing a mixture (11) (a vertical concentric biaxial stirring apparatus equipped with a super blend blade), an antioxidant (manufactured by AP Corporation, product name: Yoshinocks BB) 0. 057
  • a mixture (11) a vertical concentric biaxial stirring apparatus equipped with a super blend blade
  • an antioxidant manufactured by AP Corporation, product name: Yoshinocks BB 0. 057
  • the vacuum pump is also operated and the inside of the stirring device is gradually reduced to 70 Torr, and the internal temperature is 50 ° C (jacket Temperature: Approximately 81 ° C), then control is performed so that the internal temperature is 47 to 50 ° C (jacket temperature: 79 to 81), and the degree of pressure reduction is in the range of 62 to 70 Torr, and stay in the holder tank. Operation was carried out while checking the volume or weight of toluene discharged (target solid content: 70 wt%). After the operation, the inside of the stirrer was depressurized with nitrogen to a slight pressure of 1.0 kg / cm 2 . Thus, a mixture (12) was obtained.
  • the mixture (12) had a solid content of 71. O t t%, a polymer weight average molecular weight Mw of 122,000, and a content ratio of the electrode active material containing a conductive additive of 66.6 wt%
  • the main body, supply line and outlet line of KRC kneader (manufactured by Kurimoto Soken Co., Ltd.) are replaced with nitrogen, and the temperature is raised to 70 ° C. while circulating the heat medium of the jacket, and After steaming and warming the traces, the KRC KNIDAI's screen was operated at 38 rpm. After that, operate the above-mentioned stirring device containing the mixture (12) (inner blade: stop, outer blade: 10 rpm), open the flush valve connected to the bottom of the stirring device, and After the mixture (12) is supplied to the KRC kneader and it is confirmed that the mixture (12) is discharged from the outlet of the KRC aider, the vacuum pump is operated to reduce the pressure in the KRC damper.
  • KRC kneader manufactured by Kurimoto Soken Co., Ltd.
  • the pressure was reduced to 25 OT orr. After confirming that the distillation of toluene was sufficiently stabilized, the degree of pressure reduction was further increased, and the degree of pressure was 12 OTo rr, and the internal temperature was 68.9 ° C. (jacket temperature : 7 0. 0 ° C), from a single tube (diameter: 48 mm) at the outlet of the KRC kneader, a mixture of rods (cylindrical, diameter: 48 mm, length: 300 mm) under nitrogen stream (13) ) Got.
  • the mixture (13) had a solid content of 95.6 wt%, a polymer weight average molecular weight Mw of 120,000, and a content ratio of the electrode active material containing a conductive auxiliary was 65.6 wt% Met
  • the mixture (13) obtained after the volatilization was put in an aluminum laminate bag, sufficiently purged with nitrogen, sealed with a heat seal, and placed in a freezer at ⁇ 10 to -5 ° C to cool overnight.
  • the solid content was 96.0 wt%, and the weight average molecular weight of the polymer Mw was 12.6 thousand.
  • the inside of the conical dryer (Nikko Industry Co., Ltd. product name: vacuum tumble dryer) used as a dryer is sufficiently replaced with nitrogen or compressed air (dry air) in advance, and the jacket The heat medium was heated to 20 ° C. and the inside of the dryer was heated to 19 ° C.
  • the valve was checked for opening and closing, and the inside of the dryer was depressurized with a vacuum pump. After confirming that the degree of pressure reduction was 6 Torr or less (798 Pa) or less and that there were no leaks, nitrogen was circulated in the dryer at 5 LZ min. In this state (that is, in a state where the internal temperature is 20, the nitrogen flow S LZmin and the degree of reduced pressure 6 Torr or less (798 P a) or less), the powder is held for 12 hours or longer to dry the powder.
  • the pulverized product (the positive electrode material composition of the present invention) of the mixture (13) obtained by the drying treatment as described above has a water content of 170 ppm and a solid content of 100 wt%.
  • Weight average molecular weight Mw is 12.6 000
  • polymer molecular weight distribution (MwZMn) is 1.40
  • the content ratio of Li salt is 6. 8 wt%
  • electrode active material containing a conductive aid The content rate of the substance was 65.6 wt%.
  • a small amount of nitrogen is contained in a vertical twin screw system (product name: Super Blend, manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a super blend wing (inner wing: max blend wing, outer wing: spiral deformation puffle). While flowing, add 0. 076 parts of an antioxidant (manufactured by AP corporation, product name: Yoshinox BB) from the viewing window, then charge 30 parts of toluene, and further add carbon black as a conductive aid. From the hopper, 31. 68 parts of an electrode active material (US AVE STOR L LC, product name: lithium vanadium oxide Z carbon blend) containing ⁇ 8 wt% was charged.
  • the mixture (21) has a solid content of 52.1%, a polymer weight average molecular weight Mw of 123,000, and a content ratio of the electrode active material containing a conductive additive of 64. 6%, The evaluation of the dispersion state later was “ ⁇ ”, and the aggregate content rate after mixing was 12.9%.
  • heater 1 of a 30 mm ⁇ twin-screw extruder made by Plastic Engineering Laboratory, product name: BT-30-S 2
  • BT-30-S 2 Plastic Engineering Laboratory, product name: BT-30-S 2
  • Heat the vent, fifth vent, head die to 90 ° C.
  • the inside of the stirring device containing the slurry-like mixture (21) in the above mixing step is pressurized with nitrogen to 0.05MPa, and a gear pump installed between the stirring device and the first vent of the twin screw extruder. After filling the mixture (21) until just before the first vent, rotate the 2nd shaft at low speed, start supplying the mixture (21), and increase the rotation speed of the 2nd shaft to 100 r pm It was confirmed that the mixture (21) came out from the twin die. After that, start the vacuum pump and decompress the second vent to 349 Torr and the third vent to 69 Torr, and discharge it from the biaxial die with a rod volume of 6 kgzh (cylindrical, diameter: 25 mm A mixture of (23) was obtained.
  • the mixture (23) has a solid content of 98.6 wt%, a polymer weight average molecular weight Mw of 12,000, and a content ratio of the electrode active material containing a conductive additive is 64.6 wt%.
  • the mixture (23) obtained after this volatilization is kept at about 90, and a rolled double roll (Kansai Roll Co., Ltd., product name: 8 X 20 BOX type roll, temperature of front roll: 1 1 3 ° C, temperature of back roll: 1 1. 4 and guide width: 55 mm, rotation speed: 0.5 rpm), thickness 2.0 mm, width 76.5 mm, length about 10 m I made a sheet.
  • the obtained sheet is cooled to 15 ° C or less with a spot cooler, and the temperature is supplied to a sheet cutter (manufactured by Horai Co., Ltd., product name: SGE-220) at a temperature of 9 ° C.
  • the mixture was charged at k gZ min, and was cut at a vertical blade rotational speed of 59. 2 Hz and a horizontal blade rotational speed of 100. OHz to obtain a square pellet-like mixture.
  • the resulting angular pellet-like mixture had a thickness of 1.8 mm and a width of 4. O mm, and a length of 70% or more of the whole on the number basis satisfied a range of 3.7 ⁇ 0.5 mm.
  • the average weight of one tablet was 41. Omg, the water content was 2050 ppm, the solid content was 99.0 wt%, and the weight average molecular weight Mw of the polymer was 121,000.
  • the inside of the conical dryer (Nikko Industry Co., Ltd. product name: vacuum-type tumble dryer) used as a dryer is sufficiently placed in advance with nitrogen or compressed air (dry air), and the jacket is heated further.
  • the medium was heated to 20 ° C. and the inside of the dryer was heated to 19 ° C.
  • the valve was checked for opening and closing, and the inside of the dryer was depressurized with a vacuum pump. After confirming that the degree of pressure reduction was 6 Torr or less (798 Pa) or less and that there were no leaks, nitrogen was circulated in the dryer at 5 LZ min. In this state (that is, the state with an internal temperature of 20 ° C., a nitrogen flow S LZmin and a pressure reduction degree of 6 Torr or less (798 P a) or less), the angular pellet was dried for 12 hours or longer. .
  • the rectangular pellet-like mixture (positive electrode material composition of the present invention) obtained by the drying treatment as described above has a water content of 150 ppm and a solid content of 100 wt%, and the weight average of the polymer
  • the molecular weight Mw is 120,000
  • the molecular weight distribution (MwZMn) of the polymer I is 1.45
  • the content ratio of Li salt is 6. 8 wt%
  • the electrode active material containing a conductive aid Containing percentage The match was 65.6 wt%.
  • Example 10 In the same manner as in Example 1, a polymer solution (10) was obtained in which the weight average molecular weight Mw of the polymer is 124,000 and the solid content is 45.8 wt%.
  • Example 2 In the same manner as in Example 1, mixing of the polymer solution and the Li salt, and mixing with the electrode active material containing the conductive aid, the solid content is 42.8 wt%, and the weight average molecular weight of the polymer Thus, a slurry-like mixture (31) was obtained, in which the Mw was 123,000 and the content ratio of the electrode active material containing the conductive additive was 64.6%.
  • Mixture (31) was added to the above-mentioned stirring apparatus (a vertical twin screw stirring apparatus equipped with a super blend blade), an antioxidant (manufactured by AP Corporation, product name: Yoshinocks BB) 0. 057
  • the observation window was closed, connected to a pressure reduction line equipped with a vacuum pump, and cold water at 10 ° C. was passed through the condenser.
  • the vacuum pump is also operated and the pressure in the stirring device is gradually reduced to 70 Torr, and the internal temperature is 50 ° C ( After the jacket temperature is about 81 ° C, the internal temperature is 47 to 50 ° C (jacket temperature: 79 to 81 ° C), and the degree of pressure reduction is controlled to be in the range of 62 to 70 Torr. Operation was performed while checking the volume or weight of toluene distilled inside (target solid content: 70 wt%). After the operation, the inside of the stirring apparatus was depressurized with nitrogen to a slight pressure of 1.0 kg ⁇ cm 2 . Thus, a mixture (32) was obtained.
  • the mixture (32) had a solid content of 71. O t t%, a polymer weight-average molecular weight Mw of 122,000, and a content ratio of the electrode active material containing a conductive additive of 66.6 w t%
  • KRC kneader manufactured by Kurimoto Soken Co., Ltd.
  • the main body, supply line and outlet line of KRC kneader are replaced with nitrogen, and the temperature is raised to 70 ° C. while circulating the heat medium of the jacket, and After steam was flowed into the trace and warmed up, the KRC Kneader screw was operated at 38 rpm.
  • the mixture (33) has a solid content of 95.6 wt%, a weight average molecular weight Mw of polymer composition of 126,000, and a content ratio of the electrode active material containing a conductive additive of 65.6 wt%.
  • the obtained block-like mixture had a water content of 2 0 70 ppm, a solid content of 96.0 wt%, and a weight average molecular weight M w of the polymer ⁇ ! Of 1 2 6 0 0 0 .
  • the inside of the conical dryer (Nikko Industry Co., Ltd. product name: vacuum tumble dryer) used as a dryer is sufficiently replaced with nitrogen or compressed air (dry air) in advance, and the jacket is heated further.
  • the medium was heated to 20 ° C. and the inside of the dryer was heated to 19 ° C.
  • the obtained block mixture (38.0 kg) was put into the dryer from the inlet of the dryer and fully tightened with a bolt and sealed.
  • the valve was checked for opening and closing, and the inside of the dryer was depressurized with a vacuum pump. After confirming that the degree of pressure reduction was 6 Torr or less (79 8 Pa) or less and that there were no leaks, nitrogen was circulated in the dryer at 5 Lzmin. In this state (that is, the state where the internal temperature is 20 ° C., the flow of nitrogen 5 LZ min and the degree of reduced pressure 6 Torr or less (79 8 P a) or less), the mixture is held for 12 hours or longer. It was allowed to dry.
  • the block-like mixture (the positive electrode material composition of the present invention) obtained by the drying treatment as described above has a water content of 170 ppm and a solid content of 100 wt%.
  • the weight-average molecular weight Mw is 1,2600
  • the molecular weight distribution (MwZMn) of the polymer is 1.40
  • the content ratio of Li salt is 6. 9 wt%
  • the conductive auxiliary agent is used.
  • the content ratio of the electrode active material contained was 64.6 wt%.
  • Example 10 In the same manner as in Example 1, a polymer solution (10) was obtained in which the weight average molecular weight Mw of the polymer was 1,240, and the solid content was 45.8 wt%.
  • a 0. 0 7 L bowl-shaped concentric stirring device (product name: manufactured by Sumitomo Heavy Industries, Ltd.) equipped with Maxplend wings was preheated under heating at 150 ° C, under a nitrogen stream, except the water in the apparatus, purged with nitrogen (1. and a pressure of up to 5 kg / cm 2 to 0. 5 k gZcm 2 Kai ⁇ ) performed four times, the Jiyakketto temperature to 7 0 ° C The temperature rose.
  • the mixture (41) has a solid content of 44.6 wt%, a polymer weight average molecular weight Mw of 120,000, and a content ratio of the electrode active material containing a conductive additive of 63.5 wt%,
  • the content ratio of Li salt was 6.7 wt%, the evaluation of the dispersion state after mixing was “ ⁇ ”, and the aggregate content ratio after mixing was 1.0%.
  • the jacket heat medium of 44 mm ⁇ twin screw extruder (made by Japan Steel Works, product name: TEX44) is circulated, the heater is turned on, and the rear vent, the first vent to the fourth vent, the barrel, the head and the die are Heat to 110 ° C.
  • the inside of the stirring device containing the slurry-like mixture (41) in the above mixing step was pressurized to 0.05MPa with nitrogen, and a gear pump installed between the stirring device and the rear vent of the twin screw extruder After filling the mixture (41) until just before, rotate the 2 axes at a low speed and start supplying the mixture (41). Increase the rotation speed of 2 axes to 80 rpm and mix from the 2 die We confirmed that (41) came out.
  • the mixture (43) has a solid content of 98.8 wt%, a polymer weight average molecular weight Mw of 122,000, and a content ratio of an electrode active material containing a conductive additive of 63.5 wt%, The content ratio of Li salt was 6. 7 wt%.
  • the columnar mixture (43) obtained after volatilization is about 160 ° C. due to shear heat generated by biaxial rotation immediately after being extruded from a twin-screw die, but it is rolled at the same temperature. Two roll
  • Thickness 2 A sheet of 0 mm in width and 10 O mm wide.
  • the sheeted mixture (43) was fed to a 2 m long duct for 0.25 mZ, and a cold air at a temperature of 9 ° C was applied at a wind speed of 1 mZ second to cool the sheet to a temperature below 30 ° C. .
  • the sheet While cooling the obtained sheet to a temperature of 15 ° C. or less with a spot cooler at a temperature of 9, the sheet is supplied to a sheet cutter (manufactured by Horai Co., Ltd., product name: SGE-220 type) 0. The mixture was charged at 7 kg / min, and was cut at a vertical blade rotational speed of 59. 2 Hz and a horizontal blade rotational speed of 100. OH z to obtain a square pellet-like mixture.
  • a sheet cutter manufactured by Horai Co., Ltd., product name: SGE-220 type
  • the obtained square pellet-like mixture is passed through a vibrating sieving machine (manufactured by Seishin Planning Co., Ltd., product name: ROTEX 1 302) to remove large foreign matter such as strings, etc., while eliminating shingles crickets.
  • a vibrating sieving machine manufactured by Seishin Planning Co., Ltd., product name: ROTEX 1 302
  • Supply hydrophobic silica fine particles (Aerosil R 9 72, manufactured by Nippon Aerosil) from a U-type vibration filter, and shake it into a square pellet-like mixture by approx.
  • the obtained square pellet-like mixture is 1.8 mm in thickness and 4. O mm in width, and the length is 70% or more of the whole based on the number basis and satisfies the range of 3.7 ⁇ 0.5 mm,
  • the average weight of one tablet was 41. Omg, the water content was 2050 ppm, the solid content was 99.0 wt%, and the weight average molecular weight Mw of the polymer was 121,000.
  • the inside of the Nauta mixer (made by Shinko Environmental Solutions, product name: SV mixer) to be used as a humidity controller is fully replaced with nitrogen or compressed air (dry air) in advance, and the heat medium of the jacket is further 24 ° 50 kg of the mixture in the form of square pellets was put into this humidity controller heated to 25 ° C. by heating to 25 ° C. from the inlet of the humidity controller, and then fully tightened with a bolt. I closed tightly.
  • the square pellet-like mixture (the positive electrode material composition of the present invention) obtained by the drying and humidity control treatment as described above has a water content of 1 880 ppm and a solid content of 100 wt%.
  • the weight average molecular weight Mw of the polymer is 120, 000
  • the molecular weight distribution (MwZMn) of the polymer is 1. 38
  • the content ratio of Li salt is 6. 8 wt%
  • the conductive auxiliary agent is included.
  • the content ratio of the electrode active material was 64. 6 wt%.
  • Example 10 In the same manner as in Example 1, a polymer solution (10) was obtained in which the weight average molecular weight Mw of the polymer is 120,000 and the solid content is 45.8 wt%.
  • a 0. 07 L bowl-shaped concentric stirring device equipped with a Max Blend wing (Product name: Max Blend wing, manufactured by Sumitomo Heavy Industries, Ltd.) was previously heated under 150 ° C. under nitrogen flow.
  • Water was removed and replaced with nitrogen (1 to 5 k gZcm 0.
  • S k and a pressure of up to 2 gZcm 2 Kai ⁇ ) performed 4 times, and the temperature was raised to Jiyakketto temperature at 7 0.
  • the mixture (51) has a solid content of 5 3. 1 wt%, a polymer weight average molecular weight Mw of 120, 00 0, and a content ratio of the cathode active material containing a conductive additive is 6 4
  • the content of L i salt is 6.2 wt%, and the evaluation of dispersion state after mixing is “ ⁇ ”, and the content of aggregates after mixing is 1.2%. there were.
  • the pressure is increased to 0. 5MPa, and the gear pump installed between the stirring device and the first vent of the twin screw extruder fills the mixture (51) just before the first vent, and then the twin screw is operated at low speed. Then, the mixture (51) was supplied, the rotational speed of the two shafts was increased to 100 rpm, and it was confirmed that the mixture (51) came out of the twin shaft. After that, start the vacuum pump and reduce the pressure of the second vent to 3 4 9 Torr, and the third vent to 6 9 Torr, and discharge the rod from the biaxial die at 6 kg Zh (cylindrical, A mixture (5 3) of diameter: 25 mm) was obtained.
  • the compound (5 3) has a solid content of 98.5 wt%, and the weight average molecular weight Mw of the polymer is
  • the content ratio of the electrode active material containing the conductive additive is 6 3 6 wt%,
  • the content ratio of L i salt was 6.6 wt%.
  • a hot cutter capable of rotating a piano wire (wire diameter 0.3 mm, length 5 m) in about 1.7 mm Z seconds is installed at the end of the single tube at the outlet of the twin screw extruder, and discharge from the single tube
  • the mixture (53) of the rod-like body (25 mm in diameter) at 90 to 120: was cut into pieces of about 25 cm in length to obtain a block-like (bulk) mixture.
  • the obtained block mixture had a water content of 250 ppm, a solid content of 98.6 wt%, and a polymer weight average molecular weight Mw of 121,000.
  • the obtained block-like mixture (53) is dropped on a wire mesh belt, vibrated, and sent at 0.5 mz min. Cold air with a temperature of 5 to 10 ° C. at a wind speed of 1 to 1.5 mz seconds And cooled until the block temperature was below 30 ° C.
  • the inside of the metal hopper used for humidity control is fully replaced with compressed air with a dew point of 1 to 5 (dry air), and 50 kg of the block-like mixture is put in from the inlet and tightened with a bolt. It was sealed.
  • compressed air dry air having a dew point of 15 ° C. to 0 ° C. was flowed from the lower portion of the hopper for 4 hours to make the water content equilibrate, and the above block mixture was dried and moisture-conditioned.
  • the square pellet-like mixture (the positive electrode material composition of the present invention) obtained by the drying and moisture conditioning treatment as described above has a water content of 1620 ppm and a solid content of 100 wt%.
  • Weight average molecular weight Mw is 120, 000
  • polymer molecular weight distribution (Mw / Mn) is 1. 38
  • content ratio of Li salt is 6. 8 wt%
  • electrode active containing conductive auxiliary agent The substance content ratio was 64. 4 wt%.
  • Example 10 In the same manner as in Example 1, a polymer solution (10) was obtained in which the weight average molecular weight Mw of the polymer is 124,000 and the solid content is 45.8 wt%.
  • a 0. 07 L bowl-shaped concentric stirring device (product name: manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a Maxplindo wing was previously heated under 150 ° C under nitrogen flow. The water content in the apparatus was removed at this point, nitrogen substitution (pressurization to 1.5 kg zcm 2 and pressure release to 0.5 kg zcm 2 ) was performed four times, and the jacket temperature was raised to 70 ° C.
  • the mixture was stirred and mixed at an internal temperature of 35 (jacket temperature: 36) for 2 hours to obtain a slurry. Thereafter, the inside of the stirring apparatus was pressurized to 1.6 kg / cm 2 with nitrogen and depressurized to 10 O mmHg several times to repeat excess evaporation and remove excess water and dissolved oxygen in the system.
  • the slurry-like mixture (61) (the positive electrode material composition of the present invention) obtained as described above has a solid content of 44.6 wt%, a polymer weight average molecular weight Mw of 120,000, The content ratio of the electrode active material containing the auxiliary agent is 63.5 wt%, the content ratio of Li salt is 6.7 wt%, and the evaluation of the dispersion state after mixing is “ ⁇ ”.
  • the aggregate content of C was 0.2%.
  • a positive electrode of a lithium secondary battery was produced using the positive electrode material composition obtained in each of the above examples, and the battery performance was evaluated. As a result, lithium based on the positive electrode material composition obtained in any of the examples was used. The lithium battery also exhibited good performance. Industrial applicability
  • the production method of the present invention is suitable as a method for preparing a material composition that can be used for the positive electrode of a lithium secondary battery.

Abstract

A process for producing a positive electrode material composition for lithium secondary battery, in which a positive electrode material composition containing a polymer, an electrode active material, a conduction aid and an electrolyte salt compound and being capable of easily forming a positive electrode portion of lithium secondary battery exhibiting excellent battery performance can be obtained securely at high productivity. There is provided a process for producing a positive electrode material composition for lithium secondary battery, the positive electrode material composition comprising a polymer, an electrolyte salt compound, an electrode active material and a conduction aid as essential components, characterized in that mixing of the electrolyte salt compound, electrode active material and conduction aid with the polymer is carried out in two separate steps consisting of the step (I) of first mixing only the electrolyte salt compound in dissolved form in the polymer and the step (II) of in the mixture resulting from the mixing of the electrolyte salt compound in the polymer, simultaneously or sequentially mixing the electrode active material and the conduction aid.

Description

リチウム 2次電池用正極材料組成物の製造方法 技術分野  Method of manufacturing positive electrode material composition for lithium secondary battery
本発明は、 リチウム 2次電池の正極部分の作製に用いられる正極材料組成物の製造方法 に関する。 背景技術  The present invention relates to a method for producing a positive electrode material composition used for producing a positive electrode portion of a lithium secondary battery. Background art
リチウム 2次電池の正極部分は、 マトリクス構造を構成するポリマー、 L i +を蓄えて おくための電極活物質 (金属酸化物) 、明電子の移動を手助けする導電助剤、 および、 電解 質に解離させる L i +の供給源となるリチウム塩 (電解質塩化合物) を必須構成成分とす るものである。  The positive electrode portion of the lithium secondary battery includes a polymer constituting the matrix structure, an electrode active material (metal oxide) for storing Li.sup. +, A conductive aid for assisting the movement of bright electrons, and an electrolyte. A lithium salt (electrolyte salt compound), which is a source of L i + to be dissociated, is an essential component.
 book
一般に、 リチウム 2次電池の正極部分は、 このような構成成分を含む材料組成物を調製 する工程を経て得られており、 具体的には、 (i)これら構成成分を溶融混練し、 所定の形 状に押出し成形する方法 (例えば、 特許文献 1および 2参照。 ) や、 (ii)これら構成成分 を溶媒存在下で混合して一旦スラリー状にし、 所定の形状の型にキャストした後、 溶媒を 揮散させる方法 (例えば、 特許文献 3および 4参照。 ) を行うことにより得られている。  In general, the positive electrode portion of a lithium secondary battery is obtained through the process of preparing a material composition containing such components. Specifically, (i) the components are melt-kneaded, and (2) See, for example, Patent Documents 1 and 2. (ii) These components are mixed in the presence of a solvent, made into a slurry, cast into a mold of a predetermined shape, It is obtained by performing a method of volatilizing (see, for example, Patent Documents 3 and 4).
【特許文献 1】 国際公開第 0 3 7 5 3 7 5号パンフレット  [Patent Document 1] International Publication No. 0 3 7 5 3 7 5 Pamphlet
【特許文献 2】 国際公開第 0 3 Z 9 2 0 1 7号パンフレット  [Patent Document 2] International Publication No. 0 3 Z 9 2 0 1 7 Pamphlet
【特許文献 3】 特表 2 0 0 2— 5 3 5 2 3 5号公報  [Patent Document 3] Special Table 2 0 0 2-5 3 5 2 3 5
【特許文献 4】 米国特許第 5 7 5 5 9 8 5号明細書 発明の開示 発明が解決しようとする課題  [Patent Document 4] US Patent No. 5 7 5 5 8 5 5 Disclosure of the Invention Problems to be Solved by the Invention
ところで、 優れた電池性能を発揮させるためには前述した各構成成分どうしが十分均一 に混合されることが重要となるが、 一般に、 電解質塩化合物となるリチウム塩は、 これ以 外の他の必須構成成分と均一混合することが困難であった。 そのため、 従来の方法におい ては、 例えば、 電解質塩化合物以外の前記必須構成成分をあらかじめ混合しておき、 この 混合物を押出し成形する際に該混合物にリチウム塩を溶融混練するようにしていた。 しか し、 リチウム塩を均一に混合するには、 溶融混練を高熱量もしくは高せん断力といった過 酷な条件で行うことが必要となり、 過剰なシェアを生じさせてしまうため、 ポリマーの分 解劣化 (具体的には、 重量平均分子量の低下) が顕著となり、 結果として電池性能を低下 させるという問題があった。 また、 従来の方法においては、 比較的リチウム塩を溶解させ やすい極性溶媒もしくは極性溶媒を多量に含む混合溶媒 (具体的には、 8 5重量%以上が 極性溶媒である非極性溶媒との混合溶媒) にリチウム塩を溶解させた状態で他の必須構成 成分と混合するようにして均一化を図る試みもなされているが、 正極材料中に多量の極性 溶媒が混在すると電池性能が著しく低下するという問題があり、 この問題を回避するべく 、 混合したのちに極性溶媒の除去を厳密に行おうとすると、 時間的 · コスト的な面で大幅 に生産性を損なうこととなっていた。 By the way, in order to exhibit excellent battery performance, it is important that the above-mentioned respective components be sufficiently uniformly mixed, but generally, lithium salts to be electrolyte salt compounds are other essential components. It was difficult to mix uniformly with the components. Therefore, in the conventional method, for example, the essential components other than the electrolyte salt compound are mixed in advance, and the lithium salt is melt-kneaded in the mixture when the mixture is extruded. However, in order to mix lithium salt uniformly, it is necessary to carry out melt-kneading under severe conditions such as high heat quantity or high shear force, which causes an excessive shear, so polymer degradation and deterioration ( Specifically, there is a problem that the reduction of the weight average molecular weight becomes remarkable, and as a result, the battery performance is reduced. Also, in the conventional method, a polar solvent which is relatively easy to dissolve lithium salt or a mixed solvent containing a large amount of polar solvent (specifically, a mixed solvent with a nonpolar solvent in which 85% by weight or more is a polar solvent) An attempt has been made to achieve uniformity by mixing it with other essential components in a state in which the lithium salt is dissolved), but when a large amount of polar solvent is mixed in the positive electrode material, the battery performance is significantly reduced. There is a problem, if you try to remove polar solvent strictly after mixing to avoid this problem, time and cost will be significantly Productivity was to be lost.
そこで、 本発明が解決しょうとする課題は、 ポリマー、 電極活物質、 導電助剤および電 解質塩化合物を含み、 優れた電池性能を発揮するリチウム 2次電池の正極部分を容易に形 成することができる正極材料組成物を、 良好な生産性で確実に得ることができる、 リチウ ム 2次電池用正極材料組成物の製造方法を提供することにある。 課題を解決するための手段  Therefore, the problem to be solved by the present invention is to easily form a positive electrode portion of a lithium secondary battery that exhibits excellent battery performance, which contains a polymer, an electrode active material, a conductive auxiliary agent and an electrolytic salt compound. It is an object of the present invention to provide a method for producing a positive electrode material composition for lithium secondary battery, which can reliably obtain a positive electrode material composition which can be produced with good productivity. Means to solve the problem
本発明者は、 上記課題を解決するべく鋭意検討を行った。 その結果、 ポリマー、 電極活 物質、 導電助剤および電解質塩化合物を混合するにあたり、 前記ポリマーに対する前記電 解質塩化合物、 電極活物質および導電助剤の混合を、 ポリマーにまず電解質塩化合物のみ を溶解状に混合する工程 (I ) と、 ポリマーに電解質塩化合物を混合した混合物に電極活 物質および導電助剤を混合する工程 (I I ) とに分けて行うことにより、 多量の極性溶媒 を用いなくともリチウム塩を溶解させることができ、 その後、 比較的穏和な条件で他の必 須構成成分との均一混合化を容易に図ることができることを見出した。 そして、 このよう な方法によれば、 前記課題を一挙に解決できることを確認して、 本発明を完成した。  The present inventors diligently studied to solve the above-mentioned problems. As a result, when mixing the polymer, the electrode active material, the conductive aid and the electrolyte salt compound, the electrolyte salt compound to the polymer, the electrode active material and the conductive aid are first mixed with the polymer only with the electrolyte salt compound. By separately performing the step of mixing in a dissolved state (I) and the step of mixing the electrode active material and the conductive auxiliary agent into a mixture of the polymer and the electrolyte salt compound, a large amount of polar solvent is not used. It was also found that the lithium salt can be dissolved and then uniform mixing with other essential components can be easily achieved under relatively mild conditions. And, according to such a method, the present invention was completed after confirming that the above problems could be solved at once.
すなわち、 本発明にかかるリチウム 2次電池用正極材料組成物の製造方法は、 ポリマー 、 電解質塩化合物、 電極活物質および導電助剤を必須成分とする正極材料組成物を得る方 法において、 前記ポリマーに対する前記電解質塩化合物、 電極活物質および導電助剤の混 合は、 ポリマーにまず電解質塩化合物のみを溶解状に混合する工程 (I ) と、 ポリマーに 電解質塩化合物を混合したのちの混合物に電極活物質および導電助剤を同時または前後し て混合する工程 (I I ) とに分けて行う、 ことを特徴とする。 発明の効果  That is, a method of producing a positive electrode material composition for a lithium secondary battery according to the present invention comprises the steps of: obtaining a positive electrode material composition comprising a polymer, an electrolyte salt compound, an electrode active material and a conductive additive as essential components; The mixing of the electrolyte salt compound, the electrode active material and the conductive auxiliary agent with respect to the polymer is performed by first mixing only the electrolyte salt compound in a solution with the polymer (I) and mixing the electrolyte salt compound into the polymer It is characterized in that it is divided into the step (II) of mixing the active material and the conductive additive simultaneously or before or after. Effect of the invention
本発明によれば、 優れた電池性能を発揮するリチウム 2次電池の正極部分を容易に作製 することができる。 発明を実施するための最良の形態  According to the present invention, the positive electrode portion of a lithium secondary battery exhibiting excellent battery performance can be easily produced. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明にかかるリチウム 2次電池用正極材料組成物の製造方法 (以下、 「本発明 の製造方法」 と称することがある。 ) について詳しく説明するが、 本発明の範囲はこれら の説明に拘束されることはなく、 以下の例示以外についても、 本発明の趣旨を損なわない 範囲で適宜変更実施し得る。  Hereinafter, the method for producing the positive electrode material composition for a lithium secondary battery according to the present invention (hereinafter, sometimes referred to as “the production method of the present invention”) will be described in detail. There is no restriction, and modifications can be made as appropriate without departing from the spirit of the present invention other than the following examples.
本発明の製造方法においては、 前述したように、 ポリマー、 電解質塩化合物、 電極活物 質および導電助剤を必須成分とする正極材料組成物を得るにあたり、 前記ポリマーに対す る前記電解質塩化合物、 電極活物質および導電助剤の混合を、 ポリマーにまず電解質塩化 合物のみを溶解状に混合する工程 (I ) と、 ポリマーに電解質塩化合物を混合したのちの 混合物に電極活物質および導電助剤を同時または前後して混合する工程 (I I ) とに分け て行うことが重要である。  In the production method of the present invention, as described above, in obtaining a positive electrode material composition comprising a polymer, an electrolyte salt compound, an electrode active material and a conductive aid as essential components, the electrolyte salt compound for the polymer, The step (I) of mixing only the electrolyte chloride in solution with the mixture of the electrode active material and the conductive aid first in solution and the electrode active material and the conductive aid in the mixture after mixing the electrolyte salt compound with the polymer It is important to carry out separately in the step (II) of mixing simultaneously or back and forth.
以下、 まず、 本発明の製造方法において必須の工程となる工程 (I ) と工程 (I I ) に ついて詳しく説明し、 次いで、 本発明の製造方法において採用することができる各種工程 についても説明する。 〔工程 (I ) および工程 (I I ) 〕 Hereinafter, first, the step (I) and the step (II) which are essential steps in the production method of the present invention will be described in detail, and then various steps which can be adopted in the production method of the present invention will also be described. [Step (I) and Step (II)]
工程 (I ) においては、 ポリマーにまず電解質塩化合物のみを溶解状に混合する。 詳し くは、 溶解状に混合するとは、 電解質塩化合物がポリマー媒体中に溶解した状態とし、 電 解質塩化合物とポリマーとを均一な混合物にすることである。 ここで、 ポリマー媒体とは 、 具体的には、 ポリマー溶液、 もしくは加熱して溶融状態としたポリマ一自体を意味する ものであり、 ポリマー溶液を媒体とする場合には工程 (I ) は溶媒存在下で行うことにな り、 溶融状態としたポリマー自体を媒体とする場合には工程 (I ) は溶媒非存在下で行う ことになる。  In step (I), first, only the electrolyte salt compound is dissolved and mixed in the polymer. In detail, mixing in a solution state means that the electrolyte salt compound is dissolved in the polymer medium to make the electrolyte salt compound and the polymer in a uniform mixture. Here, the polymer medium specifically means a polymer solution or a polymer itself which has been heated and melted, and in the case of using the polymer solution as a medium, step (I) indicates the presence of a solvent. In the case where the molten polymer itself is used as the medium, step (I) is carried out in the absence of a solvent.
上記ポリマー溶液とは、 溶媒中にポリマーが溶解してなる溶液であり、 ポリマー溶液と しては、 例えば、 溶液重合法等によりポリマーを合成した際に得られる重合反応後の反応 溶液、 あるいは、 沈殿重合等により合成したポリマーを単離し、 それを溶解させ得る溶媒 に溶解させてなる溶液、 などが好ましく用いられる。 なかでも、 溶液重合法は、 生産性に 優れており反応熱を除熱しやすい等のため安全性にも優れるので、 該方法により得られた 反応溶液をポリマー溶液として用いることがより好ましい。  The polymer solution is a solution in which a polymer is dissolved in a solvent, and as the polymer solution, for example, a reaction solution after polymerization reaction obtained when a polymer is synthesized by a solution polymerization method, or A solution obtained by isolating a polymer synthesized by precipitation polymerization or the like and dissolving it in a solvent capable of dissolving it is preferably used. Among them, since the solution polymerization method is excellent in productivity and is also excellent in safety because it is easy to remove heat of reaction, it is more preferable to use the reaction solution obtained by the method as a polymer solution.
上記ポリマー溶液に用い得る溶媒 (例えば、 溶液重合法等により得られた反応溶液をポ リマー溶液とする場合には、 重合反応に用い得る溶媒) は、 重合触媒と反応して副反応を 起こしたり電池性能に悪影響を及ぼす恐れのある活性水素や、 分極し陰性を帯び得る炭素 原子を有する官能基等を有さない溶媒が好ましく、 具体的には、 例えば、 ベンゼン、 トル ェン、 キシレンおよびェチルベンゼンなどの芳香族炭化水素系溶媒;ヘプタン、 オクタン The solvent which can be used for the above polymer solution (for example, when the reaction solution obtained by the solution polymerization method is used as a polymer solution, the solvent which can be used for the polymerization reaction) reacts with the polymerization catalyst to cause a side reaction It is preferable to use a solvent which does not have active hydrogen which may adversely affect battery performance, a functional group having a carbon atom which can be polarized and negative, etc. Specifically, for example, benzene, toluene, xylene and ethylbenzene Aromatic hydrocarbon solvents such as: heptane, octane
、 n—へキサン、 n—ペンタン、 2 , 2, 4—トリメチルペンタンなどの脂肪族炭化水素 系溶媒;シクロへキサン、 シクロペンタン、 メチルシクロへキサンなどの脂環式炭化水素 系溶媒;ジェチルエーテル、 ジブチルエーテル、 メチルブチルエーテルなどのエーテル系 溶媒;ジメ トキシェタンなどのエチレンダリコールジアルキルエーテル類の溶媒; T H F (テトラヒドロフラン) 、 ジォキサンなどの環状エーテル系溶媒;などの水酸基等の活性 水素を含まない有機溶媒が好ましく、 なかでも、 トルエンおよぴキシレンがより好ましく 、 水を全く含まないものが特に好ましい。 Aliphatic hydrocarbon solvents such as n-hexane, n-pentane and 2, 2, 4-trimethylpentane; alicyclic hydrocarbon solvents such as cyclohexane, cyclopentane and methylcyclohexane; Ether solvents such as dibutyl ether and methyl butyl ether; Solvents of ethylenediaryldialkyl ethers such as dimethoxetane; Cyclic ether solvents such as THF (tetrahydrofuran) and dioxan; Active solvents such as hydroxyl group such as hydroxyl group Among them, toluene and xylene are more preferable, and those containing no water are particularly preferable.
上記ポリマー溶液中に占めるポリマーの含有割合は、 限定はされないが、 2 0重量%以 上であることが好ましく、 より好ましくは 2 5重量%以上、 さらに好ましくは 3 0重量% 以上である。 ポリマーの含有割合が 2 0重量%未満であると、 工程 (I ) におけるポリマ —量が少なくなり、 工程 (I ) で電解質塩化合物を充分に溶解状に混合するためにはその 際の温度や時間の等条件を厳しくすることが必要になったり、 条件を厳しくしても電解質 塩化合物を溶解状にすることが困難になったりするおそれがある。 さらに、 例えば、 溶液 重合法等により得られた反応溶液をポリマー溶液とする場合には、 ポリマーの生産性、 ひ いては目的とする正極材料組成物の生産性が極端に低下するおそれがある。  The content ratio of the polymer in the polymer solution is not limited, but is preferably 20% by weight or more, more preferably 25% by weight or more, still more preferably 30% by weight or more. If the content of the polymer is less than 20% by weight, the amount of polymer in the step (I) decreases, and in order to sufficiently mix the electrolyte salt compound in the step (I), the temperature or the temperature at that time It may be necessary to make conditions of time equal strictly or it may become difficult to dissolve the electrolyte salt compound even if the conditions are strict. Furthermore, for example, when the reaction solution obtained by the solution polymerization method or the like is used as a polymer solution, the productivity of the polymer and the productivity of the target positive electrode material composition may be extremely reduced.
上記ポリマー溶液中に占める溶媒の含有割合は、 限定はされないが、 8 0重量%以下で あることが好ましく、 より好ましくは 7 5重量。 /。以下、 さらに好ましくは 7 0重量%以下 である。 溶媒の含有割合が 8 0重量%を超えると、 工程 (I ) で得られる混合物に含まれ る溶媒の量が多くなり、 工程 (I ) で電解質塩化合物を充分に溶解状に混合するためには その際の温度や時間の等条件を厳しくすることが必要になったり、 条件を厳しくしても電 解質塩化合物を溶解状にすることが困難になったりするおそれがある。 さらに、 例えば、 溶液重合法等により得られた反応溶液をポリマー溶液とする場合には、 ポリマーの生産性 、 ひいては目的とする正極材料組成物の生産性が極端に低下するおそれがある。 The content of the solvent in the polymer solution is preferably, but not limited to, 80% by weight or less, more preferably 75% by weight. /. The content is more preferably 70% by weight or less. When the content of the solvent exceeds 80% by weight, the amount of the solvent contained in the mixture obtained in step (I) increases, and in order to sufficiently mix the electrolyte salt compound in step (I), In such a case, it may be necessary to make conditions such as temperature and time stricter, or it may be difficult to dissolve the electrolytic salt compound even if the conditions are strict. Furthermore, for example, When the reaction solution obtained by the solution polymerization method or the like is used as a polymer solution, the productivity of the polymer, and hence the productivity of the intended positive electrode material composition may be extremely reduced.
上記ポリマー溶液には、 ポリマーや溶媒以外に、 他の成分を含んでいてもよく、 例えば 、 重合反応において一般的に用いられる反応開始剤、 酸化防止剤および可溶化剤などが挙 げられる。 上記反応開始剤としては、 例えば、 水酸化ナトリウム、 水酸化カリウム、 カリ ゥムアルコラート、 ナトリウムアルコラート、 炭酸カリウムおよび炭酸ナトリウムなどの アルカリ性触媒や、 例えば、 金属カリウムおよび金属ナトリウムなどの金属、 例えば、 水 酸化アルミニウム ·マグネシウム焼成物 (特開平 8— 2 6 8 9 1 9号公報等) 、 金属ィォ ン添加酸化マグネシウム (特公平 6—1 5 0 3 8号公報、 特開平 7— 2 2 7 5 4 0号公報 等) および焼成ハイド口タルサイト (特開平 2— 7 1 8 4 4 1号公報等) 等の A 1— M g 系複合酸化物触媒あるいはそれらを表面改質した触媒 (特開平 6— 3 3 4 7 8 2号公報等 ) 、 ノ リゥム酸化物、 バリウム水酸化物 (特開昭 5 4— 7 5 1 8 7号公報等) 、 層状化合 物 (特表平 6— 5 0 5 9 8 6号公報等) 、 ストロンチウム酸化物、 ストロンチウム水酸化 物 (特公昭 6 3 _ 3 2 0 5 5号公報等) 、 カルシウム化合物 (特開平 2 _ 1 3 4 3 3 6号 公報等) 、 セシウム化合物 (特開平 7— 7 0 3 0 8号公報等) 、 複合金属シアン化錯体 ( 特開平 5— 3 3 9 3 6 1号公報等) 、 ルイス酸やフリーデルクラフツ触媒のような酸触媒 等が好ましく挙げられる。 これら反応開始剤やその他の成分は、 ポリマー溶液に、 1種の み含まれていても 2種以上含まれていてもよく、 限定はされない。  The polymer solution may contain other components in addition to the polymer and the solvent, and examples thereof include an initiator, an antioxidant, a solubilizer and the like generally used in the polymerization reaction. Examples of the above reaction initiator include alkaline catalysts such as sodium hydroxide, potassium hydroxide, potassium alcoholate, sodium alcoholate, potassium carbonate and sodium carbonate, and metals such as, for example, potassium metal and sodium metal, for example, water Aluminum oxide / calcined magnesium (Japanese Patent Application Laid-Open No. Hei 8-2 689 1 9 etc.), Metal-ion-added magnesium oxide (Japanese Patent Publication No. Hei 6-150 8, Japanese Patent Application Laid-Open No. Hei 7-2 2 7 5 Catalysts such as A 1-M g-based composite oxide catalysts such as JP-A No. 40 and the like, and calcined hyd- ide-talcite (JP-A Nos. 2-7, 8 6- 3 3 4 7 8 2), iridium oxide, barium hydroxide (JP-A 5-54 1 5 8 7 etc.), layered compounds (Japanese Patent Publication 6- 5 0 5 5 9 8 6), Stronchi Oxides, strontium hydroxides (JP-B 6 3 3 0 5 5 etc.), calcium compounds (JP-A 2 3 4 3 6 6 etc), cesium compounds (JP-A 7- 7 7 Preferred examples thereof include complex metal cyanide complexes (Japanese Patent Application Laid-Open No. 5-33961 etc.), acid catalysts such as Lewis acids and Friedel-Crafts catalysts, and the like. These initiators and other components may be contained alone or in combination of two or more in the polymer solution, and are not limited.
上記ポリマー溶液の粘度は、 限定はされないが、 9 5 °Cで 1, 0 0 0〜6 0, 0 0 0セ ンチボイズであることが好ましく、 より好ましくは 9 5 °Cで 1 0 , 0 0 0〜 4 5 , 0 0 0 センチボイズ、 さらに好ましくは 9 5 °Cで 1 5 , 0 0 0〜3 5 , 0 0 0センチボイズであ る。 上記粘度が、 9 5 °Cで 1 , 0 0 0センチボイズ未満であると、 例えば、 溶液重合法等 により得られた反応溶液をポリマー溶液とする場合に、 ポリマーの生産性、 ひいては目的 とする正極材料組成物の生産性の極端な低下を招くおそれがあり、 9 5 °Cで 6 0, 0 0 0 センチボイズを超えると、 例えば、 溶液重合法等により得られた反応溶液をポリマー溶液 とする場合に、 重合反応中からも粘度が高くなり過ぎて撹拌等が困難となるおそれがある 工程 (I ) において、 ポリマー溶液または溶融状態としたポリマー自体に電解質塩化合 物を混合する際には、 混合や加熱等の手順は特に制限されるものではなく、 例えば、 ポリ マー溶液を媒体とする場合には、 ポリマーを溶媒に溶解させておき、 その中に電解質塩化 合物を加えて溶解させるようにしてもよいし、 溶媒にあらかじめ電解質塩化合物を加えて 溶解させておき、 その中にポリマーを加えて溶解させるようにしてもよい。 また、 加熱し て溶融状態としたポリマー自体を媒体とする場合には、 ポリマーを加熱して溶融状態とし ておき、 その中に電解質塩化合物を加えて溶解させるようにしてもよいし、 あらかじめ固 体のポリマーに電解質塩化合物を混合しておいた後に、 これを加熱してポリマーの溶融と 電解質塩化合物の溶解とを同時に行うようにしてもよい。  Although the viscosity of the polymer solution is not limited, it is preferable that the viscosity is 1, 000 to 60, 00 centi- ces at 95 ° C, and more preferably 10, 0 0 at 95 ° C. It is 0 to 4 5 0 0 0 0, preferably 15 0 0 to 0 3 5 0 0 0 0 0 centi- voise at 95 ° C. When the above viscosity is less than 1,000 centipoise at 95 ° C., for example, when the reaction solution obtained by the solution polymerization method is used as a polymer solution, the productivity of the polymer and thus the target positive electrode If the productivity of the material composition may be extremely reduced, and the temperature exceeds 600 centioise at 95 ° C., for example, the reaction solution obtained by the solution polymerization method is used as the polymer solution In the process (I), when mixing the electrolyte salt compound with the polymer solution or the polymer itself in the molten state, the mixing may be difficult. The procedure such as heating and the like is not particularly limited. For example, in the case of using a polymer solution as a medium, the polymer is dissolved in a solvent, and the electrolyte chloride is added and dissolved therein. May be, allowed to dissolve by the addition of pre electrolyte salt compound in a solvent, it may be dissolved by adding the polymer therein. When the polymer itself which has been heated and melted is used as a medium, the polymer may be heated and brought into a molten state, and the electrolyte salt compound may be added and dissolved therein, or it may be previously solidified. After the electrolyte salt compound is mixed with the polymer of the body, it may be heated to simultaneously melt the polymer and dissolve the electrolyte salt compound.
工程 (I ) において、 ポリマー溶液または溶融状態としたポリマー自体に電解質塩化合 物を混合する際には、 ポリマー溶液を媒体とする場合にはより均一に溶解混合するために 、 加熱して溶融状態としたポリマー自体を媒体とする場合には溶融状態を維持し、 かつ均 一に溶解混合するために、 適宜加熱して混合することが好ましい。 加熱の際の温度は、 ポ リマ一溶液を媒体とする場合には溶媒の沸点等を考慮して、 溶融状態としたポリマー自体 を媒体とする場合にはポリマーの溶融温度等を考慮して、 適宜設定すればよいのであるがIn the step (I), when mixing the electrolyte salt compound with the polymer solution or the polymer itself in the molten state, the polymer solution is heated and melted in order to dissolve and mix more uniformly when using the polymer solution as a medium. In the case where the polymer itself is used as a medium, it is preferable to appropriately heat and mix in order to maintain the molten state and to uniformly mix and mix. The temperature during heating is If the lima solution is used as the medium, the boiling point of the solvent may be taken into consideration, and if the polymer itself in the molten state is used as the medium, the melting temperature of the polymer may be taken into consideration.
、 例えば、 3 0〜: I 1 0でとするのがよい。 For example, 3 0 to: I 10 should be good.
前記工程 (I ) における混合方法としては、 限定はされず、 従来公知の混合装置や混合 可能な機器を用いる混合方法が好ましい。 用い得る混合装置等としては、 容器内に仕込ん だ内容物を混合撹拌できる装置であればよく、 撹拌翼を搭載し内容物を任意に所望の条件 で混合撹拌できる装置が好ましい。 例えば、 アンカー翼を搭載した撹拌装置、 ヘリカルリ ボン翼を搭載した撹拌装置、 ダブルへリカルリボン翼を搭載した撹拌装置、 ドラフトチュ ーブ付きヘリカルスクリュー翼を搭載した撹拌装置、 スーパーブレンド翼 (内翼:マック スブレンド翼、 外翼:螺旋状変形バッフル) を搭載した竪型同心二軸撹拌装置 (例えば、 製品名 :スーパーブレンド、 住友重機械工業 (株) 製) 、 マックスブレンド翼 (住友重機 械工業 (株) 製) を搭載した撹拌装置、 フルゾーン翼 (神鋼パンテック社製) を搭載した 撹拌装置、 スーパーミックス翼 (佐竹化学機械社製) を搭載した撹拌装置、 1^ _ ミキ サー (綜研化学社製) を搭載した撹拌装置、 サンメーラ翼 (三菱重工社製) を搭載した撹 拌装置、 ログボーン (神鋼パンテック社製) を搭載した撹拌装置、 V C R (三菱重工社製 ) を搭載した撹拌装置、 ねじり格子翼 (日立製作所社製) 、 タービン翼、 パドル翼、 ファ ゥドラー翼、 ブルマージン翼およびプロペラ翼などを搭載した撹拌装置などが好ましく挙 げられ、 なかでも、 スーパーブレンド翼を搭載した竪型同心二軸撹拌装置、 ヘリカノレリボ ン翼を搭載した撹袢装置、 ダブルへリカノレリボン翼を搭載した撹拌装置およびマックスブ レンド翼を搭載した撹拌装置および口グボーンを搭載した撹拌装置がより好ましい。 また 、 これら竪型の撹拌装置に限らず、 混練用のスクリューパターンを搭載した横型の撹拌混 合装置、 例えば、 K R Cニーダー (栗本鐵ェ所 (株) 製) 、 二軸型押出機 (例えば、 製品 名 : SUPERTEX a II、 日本製鋼所 (株) 製;製品名: B T— 3 0— S 2、 プラスティックェ 学研究所製) なども好ましく挙げられる。 特に、 工程 (I ) を溶媒の非存在下 (媒体とし て溶融状態としたポリマー自体を用いる場合) で混合を行う際には、 押出機を用いること が好ましい。  The mixing method in the step (I) is not particularly limited, and a mixing method using a conventionally known mixing apparatus or an apparatus capable of mixing is preferable. As a mixing apparatus etc. which can be used, what is necessary is just an apparatus capable of mixing and stirring the contents charged in the container, and an apparatus capable of carrying out mixing and stirring of contents under desired conditions by mounting a stirring blade is preferable. For example, a stirrer with an anchor blade, a stirrer with a helical ribbon blade, a stirrer with a double helical ribbon blade, a stirrer with a helical screw blade with a draft tube, a super blend blade (inner blade: Max-blended wing, Max-blended wing (for example, Super Blend, manufactured by Sumitomo Heavy Industries, Ltd.), Max-blended wing (Sumitomo Heavy Industries, Ltd.) Stirring device equipped with a full zone wing (Shinko Pantech Co., Ltd.), stirring machine equipped with a super mix wing (Satake Chemical Machinery Co., Ltd.), 1 ^ _ mixer (Shonken Chemical Co., Ltd.) Stirrer equipped with a company), Stirrer equipped with a Sanmera wing (Mitsubishi Heavy Industries), Log bone (Shinko Pantech Co., Ltd.) Made of VCR (Mitsubishi Heavy Industries, Ltd.), torsion grid blades (manufactured by Hitachi, Ltd.), turbine blades, paddle blades, fadler blades, bull margin blades, propeller blades, etc. Among them, a paddle-shaped concentric biaxial stirring device equipped with a super blend blade, a stirring device equipped with a helicanolone blade, a stirring device equipped with a double helix ribbon blade, and a Max Blend blade More preferably, the stirring device equipped with the gimbal is mounted. In addition to horizontal-type stirring devices, horizontal stirring-mixing devices equipped with a screw pattern for kneading, for example, KRC kneader (manufactured by Kurimoto Co., Ltd.), twin-screw extruder (for example, Product name: SUPERTEX a II, manufactured by Japan Steel Works Co., Ltd .; Product name: BT-30-S 2, manufactured by Plastic Science Research Institute, and the like. In particular, when mixing is carried out in the absence of a solvent (when the polymer itself used as a medium is used as the medium), it is preferable to use an extruder.
工程 (I I ) においては、 ポリマーに電解質塩化合物を混合したのちの混合物に電極活 物質および導電助剤を混合する。 この工程 (I I ) は、 前記工程 (I ) ののちに行うので あればよく、 前記工程 (I ) に引き続き行ってもよいし、 前記工程 (I ) に引き続き後述 する工程 (I I I ) やその他の工程 (例えば、 後述する冷却固化工程、 粒状化工程、 乾燥 およぴ または調湿工程など) を行い、 その後に行ってもよい。 言い換えれば、 前述のポ リマーに電解質塩化合物を混合したのちの混合物は、 液状であってもよいし、 固化した形 態であってもよく、 液状である場合には溶媒を含有するものであってもよいし含有しない ものであってもよいのである。 ただし、 前記混合物が固化した形態である場合には、 電極 活物質および導電助剤を均一に混合するために、 工程 (I I ) においては、 前記混合物中 のポリマーの溶融状態を維持しうるよう加温して行う力 後述するように溶媒を用いるこ とが好ましい。  In the step (I I), the electrode active material and the conductive auxiliary agent are mixed with the mixture obtained by mixing the electrolyte salt compound with the polymer. This step (II) may be performed after the above-mentioned step (I), and may be performed after the above-mentioned step (I), or may be performed after the above-mentioned step (I) A step (for example, a cooling / solidifying step described later, a granulation step, a drying and / or a humidity control step, etc.) may be performed and then performed. In other words, the mixture after the electrolyte salt compound is mixed with the above-mentioned polymer may be in a liquid state or in a solidified state, and if it is a liquid, it contains a solvent. It may or may not be contained. However, when the mixture is in a solidified form, in order to uniformly mix the electrode active material and the conductive auxiliary, in the step (II), the polymer in the mixture can be maintained in a molten state. It is preferable to use a solvent as described later.
前記工程 (I I ) において、 ポリマーに電解質塩化合物を混合したのちの混合物に電極 活物質および導電助剤を混合するに際には、 電極活物質および導電助剤は同時または前後 して混合することができ、 その混合手順は特に制限されるものでない。 例えば、 前記混合 物に電極活物質および導電助剤を同時に添加して混合するようにしてもよいし、 前記混合 物に電極活物質および導電助剤を別々に添加して混合するようにしてもよいし、 あらかじ め電極活物質および導電助剤を混合しておき、 これを前記混合物に添加し混合するように してもよい。 When mixing the electrode active material and the conductive auxiliary agent into the mixture after mixing the polymer with the electrolyte salt compound in the step (II), the electrode active material and the conductive auxiliary agent should be mixed simultaneously or before or after the mixing. The mixing procedure is not particularly limited. For example, The electrode active material and the conductive additive may be simultaneously added to the mixture and mixed, or the electrode active material and the conductive additive may be separately added to the mixture and mixed, or The electrode active material and the conductive additive may be mixed and then added to and mixed with the mixture.
工程 (I I ) において、 電極活物質および導電助剤を混合する際には、 溶媒を用いるこ とができる。 工程 (I I ) の混合で用い得る溶媒としては、 限定はされないが、 例えば、 ポリマー溶液に用い得る溶媒として前述したもの等が挙げちれる。 工程 (I I ) の混合で 溶媒を用いる場合には、 例えば、 電極活物質と導電助剤の両方もしくは一方に溶媒を添加 しておく力、、 電極活物質および導電助剤とは別個に溶媒を添加するようにすればよい。 工程 (I I ) において、 溶媒を用いる場合、 その使用量は限定されないが、 工程 (I I ) で得られる混合物に含まれる溶媒量 (ここで言う溶媒量は、 例えば、 工程 (I ) でポリ マー溶液を媒体として用いた場合には、 該ポリマー溶液中の溶媒をも含めた合計量である In the step (I I), a solvent can be used when mixing the electrode active material and the conductive aid. As a solvent which can be used by mixing of process (II), although limitation is not carried out, For example, What was mentioned above as a solvent which can be used for a polymer solution, etc. are mentioned. When a solvent is used in the mixing of step (II), for example, the force of adding the solvent to the electrode active material and / or the conductive aid, the solvent separately from the electrode active material and the conductive aid It may be added. When a solvent is used in step (II), the amount thereof used is not limited, but the amount of solvent contained in the mixture obtained in step (II) (here, the amount of solvent is, for example, the polymer solution in step (I) When used as a medium, the total amount including the solvent in the polymer solution
) が 3 0 ~ 8 0重量%となるようにすることが好ましく、 より好ましくは 3 5〜 7 5重量 %、 さらに好ましくは 4 0〜 7 0重量%である。 工程 (I I ) で得られる混合物に含まれ る溶媒量が 3 0重量%未満であると、 粘度が高くなり混合 ·撹拌が困難となるほか、 混合 装置への送液 ·移送等自体も困難となるおそれがあり、 また、 混合時に過剰なシェアが生 じ、 ポリマーの劣化や分子量低下を促進させるおそれがある。 一方、 8 0重量%を超える と、 工程 (I I ) 後に得られる混合物中に含まれる溶媒の量が多くなり、 工程 (I I ) で 各成分を充分均一に混合することができたとしても、 後述する工程 (I I I ) などその後 の工程等において溶媒を除こうとする際に脱揮に長時間を要するなど、 生産性を損なうお それがある。 It is preferable that 30) to 80% by weight, more preferably 35 to 75% by weight, and still more preferably 40 to 70% by weight. If the amount of solvent contained in the mixture obtained in step (II) is less than 30% by weight, the viscosity becomes high and mixing and stirring become difficult, and it is also difficult to send or transfer the liquid to the mixing apparatus itself. In addition, excessive shear may occur during mixing, which may promote polymer degradation and molecular weight reduction. On the other hand, if it exceeds 80% by weight, the amount of solvent contained in the mixture obtained after step (II) increases, and even if each component can be sufficiently uniformly mixed in step (II), There is a risk of impairing productivity, for example, it takes a long time to devolatize the solvent in the subsequent steps such as step (III).
本発明の製造方法においては、 必須成分である、 ポリマー、 電解質塩化合物、 電極活物 質および導電助剤を、 均一に分散混合させることが、 優れた電池性能 (例えば、 サイクル 特性 (充放電特性) 等) を発揮させる正極材料組成物を得ることができる点で望ましい。 また、 ポリマー、 電解質塩化合物、 電極活物質および導電助剤が均一に分散混合されてい ない場合、 得られた正極材料組成物をフィルム化する際に押出し機で詰まりが生じたりす るという問題を招くことにもなる。 前述した工程 (I ) の混合は、 ポリマーに対して電解 質塩化合物を溶解状に混合するものであり、 工程 (I ) の混合で得られる混合物は均一に なっているが、 工程 (I I ) の混合で得られる混合物は通常、 スラリー状となる。 したが つて、 本発明の製造方法においては、 工程 (I I ) で電極活物質と導電助剤を混合する際 に、 均一な分散状態のスラリー状とすること、 言い換えれば、 電極活物質および導電助剤 の凝集物を極力含まないスラリー状とすること、 が好ましいのである。 具体的には、 工程 ( I I ) で得られた混合物中の凝集物が 5重量%以下とすることが好ましく、 より好まし くは 3重量%以下、 さらに好ましくは 1重量%以下とするのがよい。 本発明においては、 均一な分散状態であるか否かの評価方法 ·基準や、 凝集物の含有量の測定方法については 、 後述する実施例において説明するようにする。  In the production method of the present invention, it is possible to uniformly disperse and mix the essential components, the polymer, the electrolyte salt compound, the electrode active material and the conductive auxiliary agent, to obtain excellent battery performance (for example, cycle characteristics (charge and discharge characteristics). And the like) is desirable in that it can obtain a positive electrode material composition that exhibits. In addition, when the polymer, the electrolyte salt compound, the electrode active material, and the conductive auxiliary agent are not uniformly dispersed and mixed, there is a problem that an extruder may cause clogging when forming a film of the obtained positive electrode material composition. It will also lead you. The mixing of the step (I) mentioned above is to mix the electrolyte salt compound in a dissolved state with respect to the polymer, and although the mixture obtained by the mixing of the step (I) is uniform, the step (II) The mixture obtained by mixing is usually in the form of a slurry. Therefore, in the production method of the present invention, when the electrode active material and the conductive auxiliary agent are mixed in the step (II), a uniform dispersed slurry state is obtained, in other words, the electrode active material and the conductive support agent. It is preferable to use a slurry that contains as little as possible of agent aggregates. Specifically, the amount of aggregates in the mixture obtained in step (II) is preferably 5% by weight or less, more preferably 3% by weight or less, and still more preferably 1% by weight or less. Good. In the present invention, a method of evaluating whether or not a uniform dispersion state · Criteria and a method of measuring the content of aggregates will be described in the examples described later.
工程 (I I ) において、 均一な分散状態のスラリー状とするには、 例えば、 混合に用い る混合装置等の使用条件 (例えば、 攪拌翼の種類や回転速度など) 等を適宜設定すること などによっても達成することがでぎるが、 特に、 工程 (I I ) において、 電極活物質およ び導電助剤をあらかじめ溶媒中に添加して均一に分散した (言い換えば、 凝集物を極力含 まない) スラリー状としておき、 これを工程 (I) で得られた混合物と混合することによ つて容易に達成することができる。 ここで、 重要となるのは、 電極活物質および導電助剤 をあらかじめ溶媒中に添加してなるスラリー状の予備混合物を、 均一な分散状態 (言い換 えば、 凝集物を極力含まない状態) にしておくことであり、 そのためには、 ( i) 前記予 備混合物中の電極活物質および導電助剤の濃度を調整すること、 ( i i) 工程 (I) にお いてポリマー溶液を媒体とし、 該ポリマー溶液もしくは工程 (I) で得られた混合物の一 部をあらかじめ電極活物質および導電助剤と混合することにより、 電極活物質および導電 助剤と溶媒との相溶性を向上させておくこと、 または ( i) と ( i i) を併用することが 有効である。 ( i) においては、 前記予備混合物中の電極活物質および導電助剤の濃度はIn the step (II), in order to obtain a slurry in a uniformly dispersed state, for example, by appropriately setting the use conditions (for example, the type of the stirring blade, the rotation speed, etc.) of the mixing device used for mixing, etc. In the step (II), in particular, the electrode active material and the conductive aid are previously added to the solvent and uniformly dispersed (in other words, the aggregate is contained as much as possible). It can be easily achieved by putting it in the form of a slurry and mixing it with the mixture obtained in step (I). Here, it is important that the slurry-like premix prepared by adding the electrode active material and the conductive aid in advance to the solvent be in a uniform dispersed state (in other words, a state in which the aggregates are not contained as much as possible). For this purpose, (i) adjusting the concentration of the electrode active material and the conductive aid in the above-mentioned mixture, (ii) using the polymer solution as a medium in the step (I), Improving the compatibility between the electrode active material and the conductive aid and the solvent by mixing the polymer solution or a part of the mixture obtained in step (I) with the electrode active material and the conductive aid in advance; Or it is effective to use (i) and (ii) together. In (i), the concentrations of the electrode active material and the conductive aid in the pre-mixture are
、 25〜 55重量%とするのが好ましく、 より好ましくは 30〜50重量%、 さらに好ま しくは 35〜45重量%とするのがよい。 ( i i ) においては、 あらかじめ電極活物質お よび導電助剤と混合するポリマー溶液もしくは工程 (I) で得られた混合物の量は、 その ポリマー溶液もしくは工程 (I) で得られた混合物中のポリマー固形分量が、 前記予備混 合物に対して 0. 1〜10重量%、 よ 好ましくは 0. 5〜7重量。 /0、 さらに好ましくは 2〜 7重量%となるようにするのがよい。 It is preferably 25 to 55% by weight, more preferably 30 to 50% by weight, and still more preferably 35 to 45% by weight. In (ii), the amount of the polymer solution previously mixed with the electrode active material and the conductive aid or the amount of the mixture obtained in step (I) is the polymer solution in the polymer solution or the mixture obtained in step (I) The solid content is 0.1 to 10% by weight, preferably 0.5 to 7% by weight, with respect to the pre-blend. / 0, more preferably it is preferable to make a 2-7% by weight.
前記工程 (I I) における混合方法としては、 限定はされず、 従来公知の混合装置や混 合可能な機器を用いる混合方法が好ましい。 用い得る混合装置等としては、 容器内に仕込 んだ内容物を混合撹拌できる装置であればよく、 撹拌翼を搭載し内容物を任意に所望の条 件で混合撹拌できる装置が好ましい。 例えば、 アンカー翼を搭載した撹拌装置、 ヘリカル リボン翼を搭載した撹拌装置、 ダブルへリカルリボン翼を搭載した撹拌装置、 ドラフトチ ユーブ付きヘリカルスクリュー翼を搭載した撹拌装置、 スーパーブレンド翼 (内翼:マツ クスブレンド翼、 外翼:螺旋状変形バッフル) を搭載した竪型同心二軸撹拌装置 (例えば 、 製品名: スー'パーブレンド、 住友重機械工業 (株) 製) 、 マックスブレンド翼 (住友重 機械工業 (株) 製) を搭載した撹拌装置、 フルゾーン翼 (神鋼パンテック社製) を搭載し た撹拌装置、 スーパーミックス翼 (佐竹化学機械社製) を搭載した撹拌装置、 H i _FS キサー (綜研化学社製) を搭載した撹拌装置、 サンメーラ翼 (三菱重工社製) を搭載した 撹拌装置、 ログボーン (神鋼パンテック社製) を搭載した撹拌装置、 VCR (三菱重工社 製) を搭載した撹拌装置、 ねじり格子翼 (日立製作所社製) 、 タービン翼、 パドル翼、 フ ァゥドラー翼、 ブルマージン翼およびプロペラ翼などを搭載した撹拌装置などが好ましく 挙げられ、 なかでも、 スーパ一ブレンド翼を搭載した竪型同心二軸撹拌装置、 ヘリカルリ ボン翼を搭載した撹拌装置、 ダブルへリカノレリボン翼を搭載した撹拌装置およびマックス ブレンド翼を搭載した撹拌装置およびログボーンを搭載した撹拌装置がより好ましい。 ま た、 これら竪型の撹拌装置に限らず、 混練用のスクリューパターンを搭載した横型の撹拌 混合装置、 例えば、 KRCニーダー (栗本鐵ェ所 (株) 製) 、 二軸型押出機 (例えば、 製 品名: SUPERTEX α II、 日本製鋼所 (株) 製;製品名: BT— 30_S 2、 プラスティック 工学研究所製) なども好ましく挙げられる。 特に、 工程 (I I) を溶媒の非存在下 (工程 (I) で溶融状態としたポリマー自体を媒体として用い、 該工程 (I) に引き続き工程 ( I I) を行う場合や、 工程 (I) でポリマー溶液を媒体として用い、 該工程 (I) に引き 続き後述する工程 (I I I) を行ったのちに溶媒を用いずに工程 (I I) を行う場合など The mixing method in the step (II) is not particularly limited, and a mixing method using a conventionally known mixing apparatus or a compatible apparatus is preferable. As a mixing apparatus and the like that can be used, any apparatus can be used as long as it can mix and stir the contents charged in the container, and an apparatus that can be equipped with a stirring blade and can mix and stir the contents arbitrarily under desired conditions is preferable. For example, a stirrer equipped with an anchor blade, a mixer equipped with a helical ribbon blade, a stirrer equipped with a double helical ribbon blade, a mixer equipped with a helical screw blade with a draft channel, a super blend blade (inner blade: Matsux Blended wing, Outer wing: Spiral-type concentric twin-screw stirring device (for example, product name: Sue 'per blend, made by Sumitomo Heavy Industries, Ltd.), Max-blended wing (Sumitomo Heavy Industries) Stirring device equipped with a full zone wing (Shinko Pantech Co., Ltd.), Stirring device equipped with a super mix wing (Satake Chemical Machinery Co., Ltd.), Hi _ FS Kicer (Shonken Chemical Co., Ltd.) Stirrer equipped with a company), Stirrer equipped with a Sanmera wing (Mitsubishi Heavy Industries), Log bone (Shinko Pantec Stirring device with VCR (Mitsubishi Heavy Industries, Ltd.), twisting grid blade (Hitachi, Ltd.), turbine blade, paddle blade, paddle roller blade, bull margin blade, propeller blade, etc. Among them, a paddle-shaped concentric biaxial stirring device equipped with a super-blend blade, a stirring device equipped with a helical ribbon blade, a stirring device equipped with a double helix ribbon blade, and a Max blend blade are particularly preferred. The mounted stirring apparatus and the stirring apparatus mounted with log bone are more preferable. In addition to horizontal-type stirring devices, horizontal stirring-mixing devices equipped with a screw pattern for mixing, such as KRC kneader (manufactured by Kurimoto R & D Co., Ltd.), twin-screw extruder (for example, Product name: SUPERTEX α II, manufactured by Japan Steel Works, Ltd .; Product name: BT-30_S2, manufactured by Plastic Engineering Research Institute, and the like. In particular, the step (II) is carried out in the absence of a solvent (using the polymer itself brought into a molten state in the step (I) as a medium and carrying out the step (II) following the step (I) or In the case where the polymer solution is used as a medium, and the step (II) is carried out without using the solvent after the step (III) to be described later on after the step (I), etc.
) で混合を行う際には押出機を用いることが好ましい。 本発明において必須成分として用いるポリマーは、 特に ^限されないが、 イオン導電性 のポリエーテル重合体であることが好ましい。 イオン導電性のポリエーテル重合体として は、 例えば、 エチレンォキシド系共重合体 (ノニオン性アルキレンォキシド系水溶性共重 合体) などが挙げられる。 前記ポリマーは、 1種のみ用いてもよいし 2種以上を併用して もよい。 It is preferable to use an extruder at the time of performing the mixing in the above. The polymer used as an essential component in the present invention is not particularly limited, but is preferably a polyether polymer of ion conductivity. Examples of the ionically conductive polyether polymer include ethylene oxide copolymers (nonionic alkylene oxide water soluble copolymers) and the like. The polymers may be used alone or in combination of two or more.
エチレンォキシド系共重合体は、 その分子構造中にエチレンォキシドモノマ一由来の構 成成分を主として含んでなり、 主鎖にエーテル結合を有するポリマーであれば、 限定され るわけではないが、 例えば、 原料モノマーとして、 エチレンォキシドと、 下記構造式 (1 ) :  The ethylene oxide-based copolymer is not limited as long as it is a polymer having mainly an ethylene oxide monomer-derived constituent component in its molecular structure and having an ether bond in the main chain. For example, as a raw material monomer, ethylene oxide and the following structural formula (1):
Figure imgf000010_0001
Figure imgf000010_0001
(ただし、 は、 Ra (Raは、炭素数 1〜16の、アルキル基、 シクロアルキル基、 ァリール基、 ァ ラルキル基、 (メタ) ァクリロイル基およびアルケニル基の中のいずれかの基である)ま たは- CH2-0-Re-Ra基 (Reは、 - (C¾- CH2- 0) p-の構造を有する(pは 0から 10までの整数))) で示される置換ォキシラン化合物とを含むコモノマーを重合してなるポリマーが好ましい 。 この重合は、 各原料モノマーのォキシラン基の開環重合であることが好ましい。 (Wherein, Ra is any one of an alkyl group having 1 to 16 carbon atoms, a cycloalkyl group, a aryl group, an aryl group, a (meth) aryloyl group and an alkenyl group) others - CH 2 -0-Re-Ra group (Re is - 0) (p has the structure of p- integer) from 0 to 10 - (C¾- CH 2) a substituted Okishiran compound represented by) Polymers obtained by polymerizing comonomers containing are preferred. It is preferable that this polymerization be ring-opening polymerization of the oxsilane group of each raw material monomer.
上記構造式 (1 ) における 基は、 上記置換ォキシラン化合物における置換基である 上記構造式 (1 ) で示される置換ォキシラン化合物としては、 例えば、 プロピレンォキ シド、 ブチレンォキシド、 1, 2—エポキシペンタン、 1, 2—エポキシへキサン、 1 , 2—エポキシオクタン、 シクロへキセンォキシドおよびスチレンォキシド、 または、 メチ ルグリシジルエーテル、 ェチルダリシジルエーテルおよびエチレングリコールメチルグリ シジルエーテルなどを挙げることができ、 さらに、 置換基 が架橘性の置換基である場 合、 つまり、 置換基 がァリール基、 アルケニル基、 ァクリロイル基おょぴメタクリロ ィル基などを有する場合として、 エポキシブテン、 3 , 4 _エポキシ一 1—ペンテン、 1 , 2 _エポキシ一 5, 9—シクロ ドデカジエン、 3, 4—エポキシ一 1—ビニルシクロへ キセン、 1, 2—エポキシ一 5—シクロオタテン、 ァクリノレ酸グリシジ Λ^、 メタクリノレ酸 グリシジル、 ソルビン酸グリシジルおよびグリシジル一4—へキサノエート、 または、 ビ ニルダリシジルエーテル、 ァリルグリシジルエーテル、 4 -ビニルシクロへキシルグリシ ジルエーテル、 α—テルぺニルダリシジルエーテル、 シクロへキセニルメチルダリシジル エーテル、 4—ビニルベンジルグリシジルエーテルおよび 4—ァリルべンジルグリシジル エーテルなども挙げることができる。 原料モノマーとして用いる置換ォキシラン化合物は 、 1種のみ用いてもよいし 2種以上を併用してもよい。  The group in the above structural formula (1) is a substituent in the above-mentioned substituted oxylan compound. Examples of the substituted oxysilane compound represented by the above structural formula (1) include propylene oxide, butylene oxide, 1, 2-epoxypentane, 1, Examples thereof include 2-epoxyhexane, 1,2-epoxyoctane, cyclohexenoxide and styrene oxide, or methyl glycidyl ether, hydroxyethyl glycidyl ether, ethylene glycol methyl glycidyl ether, etc. In the case of a crosslinkable substituent, that is, in the case where the substituent has an aryl group, an alkenyl group, an acryloyl group or a methacryloyl group, etc., epoxybutene, 3, 4 _ epoxy 1 pentene, 1, 2 _ epoxy one 5, 9-cyclo dodecadi 1, 3, 4-epoxy-1-vinylcyclohexene, 1, 2-epoxy-5-cyclo-Otaten, glycidyl acrylohydrate グ リ シ ジ, glycidyl methacrylate, glycidyl sorbate and glycidyl -4-hexanoate, or vinylaldehyde Sidyl ether, aryl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, α-terpenyl dalysyl ether, cyclohexenyl methyl daricidyl ether, 4-vinyl benzyl glycidyl ether, 4-aryl benzyl glycidyl ether, etc. Can also be mentioned. The substituted oxylan compounds used as the raw material monomers may be used alone or in combination of two or more.
上記置換ォキシラン化合物としては、 上記架橘性の置換基を有する (置換基 R ,が架橘 性置換基である) 置換ォキシラン化合物を必須に用いることが、 エチレンォキシド系共重 合体を架橋体にして用いるためには好ましい。 エチレンォキシド系共重合体の重量平均分子量 (Mw) は、 限定はされないが、 20, 000〜500, 000であることが好ましく、 より好ましくは 30, 000〜 300, 000、 さらに好ましくは 40, 000〜200, 000である。 上記重量平均分子量が 20, 000未満の場合は、 成形後の正極材料にタックが生じるおそれがあり、 500, 000を超える場合は、 正極材料の成形が困難となり、 加工性およびハンドリング性が低 下するおそれがある。 As the above-mentioned substituted oxylan compound, it is essential to use a substituted oxylan compound having the above-mentioned cross-linking substituent (substituent R 1 is a cross-linking substituent), and it is possible to cross-link the ethylene oxide copolymer Preferred for use in The weight average molecular weight (Mw) of the ethylene oxide copolymer is not limited, but is preferably 20,000 to 500,000, more preferably 30,000 to 300,000, still more preferably 40,000. It is 000-200,000. If the weight-average molecular weight is less than 20,000, the positive electrode material after molding may be tacked. If the weight-average molecular weight exceeds 500,000, the positive electrode material is difficult to be molded, and the processability and handling are low. There is a risk of
エチレンォキシド系共重合体の分子量分布 (MwZMn) は、 限定はされないが、 3以 下であることが好ましく、 より好ましくは 2以下である。 上記分子量分布が 3を超える場 合は、 成形後の正極材料にタックが生じ、 ハンドリングが悪くなるうえ、 低分子量物の含 有量が増えることで電池性能が低下するおそれがある。  The molecular weight distribution (MwZMn) of the ethylene oxide copolymer is not limited, but is preferably 3 or less, more preferably 2 or less. If the molecular weight distribution is more than 3, tackiness may occur in the molded positive electrode material, handling may be deteriorated, and the content of low molecular weight substances may be increased to lower the battery performance.
ポリマーの使用割合は、 限定はされないが、 例えば、 仕込み全量 (混合工程 (I) で用 いる全原料の合計量) に対して、 15〜60重量%であることが好ましく、 より好ましく は 20〜55重量%、 さらに好ましくは 25〜50重量%である。 ポリマーが少なすぎる と、 正極材料組成物の生産性が極端に低下したり、 工程 (I) で電解質塩化合物を充分に 溶解状に混合するためにはその際の温度や時間の等条件を厳しくすることが必要になつた り、 条件を厳しくしても電解質塩化合物を溶解状にすることが困難になったりするおそれ があり、 一方、 ポリマーが多すぎると、 電解活物質や電解質塩化合物の均一分散性が低下 するおそれや、 粘度が高くなり混合 ·撹拌が困難となるおそれがある。  The proportion of the polymer used is not limited, but is preferably 15 to 60% by weight, and more preferably 20 to 60% by weight, based on the total amount (total amount of all the raw materials used in mixing step (I)). It is 55 wt%, more preferably 25 to 50 wt%. If the amount of the polymer is too small, the productivity of the positive electrode material composition is extremely reduced, and in order to sufficiently mix the electrolyte salt compound in the step (I), the conditions such as temperature and time are strict. It is possible that it may be difficult to dissolve the electrolyte salt compound even if the conditions are strict, but if the amount of the polymer is too large, the electrolyte active material or the electrolyte salt compound may There is a risk that the uniform dispersion may decrease, and the viscosity may increase, which may make it difficult to mix and stir.
本発明において必須成分として用いる電解質塩化合物としては、 リチウム 2次電池の正 極に通常用いられているリチウム塩であればよく、 限定はされないが、 例えば、 フッ素ィ オン、 塩素イオン、 臭素イオン、 ヨウ素イオン、 ヘプタフルォロプロピルスルホン酸ィォ ン、 ビス (トリフルォロメタンスルホニル) イミ ドイオン、 ビス (ヘプタフルォロプロピ /レスノレホ: ^Λ イミ ドイオン、 トリフノレオロスノレホンイミ ドイオン、 テトラフ/レオ口ホウ 素酸イオン、 硝酸イオン、 As F6-、 PF6 、 ステアリルスルホン酸イオン、 ォクチル スルホン酸イオン、 ドデシルベンゼンスルホン酸イオン、 ナフタレンスルホン酸イオン、 ドデシルナフタレンスルホン酸イオンおよび 7, 7, 8, 8—テトラシァノー p—キノジ メタンイオンからなる群より選ばれる少なくとも 1種の陰イオンと、 陽イオンとしてのリ チウムイオン (L i +) とからなる塩等が好ましく挙げられ、 なかでも、 L i BF4、 L i PF6、 L i CF3S03、 L i C4F9S03、 L i N (CF3S02) 2および L i N (C2 F6S02) 2がより好ましい。 電解質塩化合物は、 1種のみ用いてもよいし 2種以上を併 用してもよい。 The electrolyte salt compound used as an essential component in the present invention may be a lithium salt generally used for the positive electrode of a lithium secondary battery, and is not limited, for example, fluorine ion, chlorine ion, bromine ion, Iodine ion, heptafluoropropyl sulfonic acid ion, bis (trifluoromethanesulfonyl) imide ion, bis (hepta fluoropropyone / les norejo: ^ イ ミ imide ion, trifno reo loth norephonide ion, tetraf / Leo-borate borate ion, nitrate ion, As F 6- , PF 6 , stearyl sulfonate ion, octyl sulfonate ion, dodecyl benzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion and 7, 7, 8 , 8-Tetrasiano p-quinodi Methane ion And at least one anion selected from the group consisting, salts consisting of a lithium ion (L i +) as the cation are preferably mentioned, among others, L i BF 4, L i PF 6, L i CF 3 S0 3, L i C 4 F 9 S0 3, L i N (CF 3 S0 2) 2 and L i N (C 2 F 6 S0 2) 2 are more preferred. electrolyte salt compound is used alone You may use two or more kinds together.
電解質塩化合物の使用割合は、 限定はされないが、 例えば、 前記ポリマー中の酸素原子 (例えばポリエーテル骨格中の酸素原子) と、 電解質塩化合物 (リチウム塩) 中のリチウ ム原子とのモル比 (OZL i) 力 :!〜 36となるようにすることが好ましく、 より好ま しくは 3〜33、 さらに好ましくは 6〜30である。 電解質塩化合物が少なすぎると、 ィ オン伝導性の低下を招くおそれがあり、 一方、 電解質塩化合物が多すぎると、 それ以上添 加してもイオン伝導性を高める効果が認められず、 経済性に劣ることとなるおそれがある 本発明において必須成分として用いる電極活物質とは、 一般的には、 リチウムイオンの 挿入や脱離を行うため、 リチウムイオンをゲストとして受け入れる活性を有するホスト化 合物のことを言い、 リチウム 2次電池において必要とされる起電力 ·反応量 (エネルギー '密度) ·可逆性.イオン伝導度を得させるために必須の成分である。 リチウムイオンをゲ ストとして受け入れる化合物としては、 硫化チタン (T i S3、 T i S2) 、 酸化バナジゥ ム (V205) 、 酸化マンガン (Mn02) 、 セレン化ニオブ ( (Nb S e 3) 、 金属元素 としてリチウムを含む各種複合酸化物 (L i C o 02、 L i N i 02、 L i Mn204、 L i F e〇2等) 等が挙げられる。 本発明における混合工程に用い得る電極活物質としては 、 リチウム 2次電池の正極に通常用いられているものであればよく、 限定はされないが、 例えば、 リチウムバナジウム複合酸化物、 リチウムコバルト複合酸化物、 リチウムマンガ ン複合酸化物、 リチウムニッケル複合酸化物、 酸化バナジウム等が挙げられるが、 なかで も、 リチウムバナジウム複合酸化物、 すなわち、 L i xVyOz (ただし、 x、 yおよび z は、 それぞれ互いに独立、 かつ、 0<x≤ 2、 y = (mx + 2 z ) Znおよび z = (mx + n y) /2 (ただし、 mは L iの価数であり、 nは Vの価数で 4以上の実数である。 ) を満足する実数である。 ) 力 リチウムイオンの導入 ·脱離をより効率的に行い、 大容量Although the use ratio of the electrolyte salt compound is not limited, for example, the molar ratio of the oxygen atom in the polymer (for example, the oxygen atom in the polyether skeleton) to the lithium atom in the electrolyte salt compound (lithium salt) OZL i) Power:! It is preferable to set to -36, more preferably 3 to 33, and still more preferably 6 to 30. If the amount of the electrolyte salt compound is too small, the ion conductivity may be lowered. On the other hand, if the amount of the electrolyte salt compound is too large, the effect of improving the ion conductivity can not be recognized even if it is added more. In general, the electrode active material used as an essential component in the present invention is a host that has an activity of accepting lithium ions as a guest in order to insert and desorb lithium ions. It means a compound, and an electromotive force, a reaction amount (energy 'density), reversibility required in a lithium secondary battery, and reversibility. It is an essential component to obtain ion conductivity. Compounds that receive lithium ion as a guest include titanium sulfide (T i S 3 , T i S 2 ), vanadium oxide (V 2 0 5 ), manganese oxide (Mn 0 2 ), niobium selenide ((Nb S e 3 ), various complex oxides containing lithium as a metal element (L i C 0 0 2 , L i N i 0 2 , L i Mn 2 0 4 , L i F e 0 2 etc.), etc. may be mentioned. The electrode active material that can be used in the mixing step in the step is not particularly limited as long as it is generally used for the positive electrode of a lithium secondary battery, but, for example, lithium vanadium composite oxide, lithium cobalt composite oxide, lithium Manganese complex oxides, lithium nickel complex oxides, vanadium oxide, etc. may be mentioned, but among them, lithium vanadium complex oxides, that is, Li x V y O z (where x, y and z are respectively Each other alone , And 0 <x y 2, y = (mx + 2 z) Zn and z = (mx + ny) / 2 (where m is the valence of Li, n is the valence of V and is 4 or more) It is a real number of) It is a real number that satisfies) Force) Introduction of lithium ion · Desorption is performed more efficiently, and large capacity
(高エネルギー密度) である点で特に好ましい。 電極活物質は、 1種のみ用いてもよいし 2種以上を併用してもよい。 用いる電極活物質は、 一般的には、 固体粉末状であり、 工程(High energy density) is particularly preferred. The electrode active material may be used alone or in combination of two or more. The electrode active material used is generally in the form of solid powder, and
(I I) 後に得られる混合物中に分散した状態となる。 (I I) It will be in the state of being dispersed in the mixture obtained later.
電極活物質の使用割合は、 限定はされないが、 例えば、 前記ポリマーに対して、 重量基 準で 0. 1~50倍であることが好ましく、 より好ましくは 0. 3〜20倍、 さらに好ま しくは 0. 5〜 1 0倍であるのがよい。 電極活物質が少なすぎると、 正極としての機能が 充分に発揮されないおそれがあり、 一方、 電極活物質が多すぎると、 正極材料の成形が困 難となるおそれがある。  The use ratio of the electrode active material is not limited, but is preferably, for example, 0.1 to 50 times by weight, more preferably 0.3 to 20 times, still more preferably, based on the weight of the polymer. Should be between 0.5 and 10 times. If the amount of the electrode active material is too small, the function as the positive electrode may not be sufficiently exhibited. On the other hand, if the amount of the electrode active material is too large, molding of the positive electrode material may be difficult.
本発明において必須成分として用いる導電助剤としては、 リチウム 2次電池の正極に通 常用いられているものであればよく、 限定はされないが、 例えば、 アセチレンブラック、 ケッチェンブラック、 グラフアイト等が挙げられる。 導電助剤は、 1種のみ用いてもよい し 2種以上を併用してもよい。 用いる導電助剤は、 一般的には、 固体粉末状であり、 工程 (I I) 後に得られる混合物中に分散した状態となる。  The conductive assistant used as an essential component in the present invention may be any one as long as it is usually used for a positive electrode of a lithium secondary battery, and is not limited. For example, acetylene black, ketjen black, Graphite etc. It can be mentioned. The conductive aid may be used alone or in combination of two or more. The conductive aid to be used is generally in the form of a solid powder and is in the state of being dispersed in the mixture obtained after step (II).
導電助剤の使用割合は、 限定はされないが、 例えば、 前記電極活物質 1 00重量部に対 して、 0. 1〜20重量部であることが好ましく、 より好ましくは 1~1 5重量部である のがよい。 導電助剤が少なすぎると、 正極の導電性が不充分となるおそれがあり、 一方、 導電助剤が多すぎると、 正極材料の成形が困難となるおそれがある。  The proportion of the conductive aid is not limited, but is preferably 0.1 to 20 parts by weight, more preferably 1 to 15 parts by weight, with respect to 100 parts by weight of the electrode active material. It is good to be. If the amount of the conductive additive is too small, the conductivity of the positive electrode may be insufficient. If the amount of the conductive additive is too large, the forming of the positive electrode material may be difficult.
本発明の製造方法においては、 前記工程 (I) および前記工程 (I I) の両方または一 方を溶媒存在下で行うことが好ましい。 これにより、 容易に均一な混合を行うことができ る。 詳しくは、 工程 (I ) を溶媒存在下で行う場合としては、 例えば、 ポリマー溶液を媒 体として用いる場合が挙げられる。 工程 (I I) を溶媒存在下で行う場合としては、 例え ば、 ( i ) 前述したように工程 ( I I ) において溶媒を用いる場合、 ( i i ) 工程 (I) においてポリマー溶液を媒体として用い、 かつ該工程 (I) に引き続き工程 (I I) を行 う (言い換えれば、 工程 (I I ) の前に後述する工程 (I I I ) を行わない) 場合、 ( i i i) 工程 (I) においてポリマー溶液を媒体として用い、 かつ工程 (I I) を行う前に 後述する工程 (I I I) を行う力 該工程 (I I I ) において溶媒を完全に揮発させない ようにしておく場合が挙げられる。 前記工程 (I ) および前記工程 (I I ) の両方または一方を溶媒存在下で行う場合、 溶 媒存在下で行う工程ののちに、 得られた混合物が流動性を失わない程度で該混合物中の溶 媒を揮発させる工程 (I I I ) (該工程 (I I I ) を 「脱揮工程」 と称すこともある。 :) をも備えることが好ましい。 以下、 脱揮工程について詳しく説明する。 In the production method of the present invention, it is preferable to carry out both or one of the step (I) and the step (II) in the presence of a solvent. This makes it possible to perform uniform mixing easily. Specifically, when the step (I) is carried out in the presence of a solvent, for example, the case of using a polymer solution as a medium can be mentioned. When step (II) is carried out in the presence of a solvent, for example, (i) when using the solvent in step (II) as described above, (ii) using the polymer solution as a medium in step (I) and In the case where the step (II) is carried out following the step (I) (in other words, the step (III) described later before the step (II) is not performed), (iii) the polymer solution is used as a medium in the step (I) Use and force to carry out step (III) to be described later prior to step (II) In the step (III), the solvent may not be completely volatilized. When both or one of the step (I) and the step (II) is carried out in the presence of a solvent, the mixture obtained after the step carried out in the presence of a solvent does not lose fluidity. It is preferable to also include a step (III) of volatilizing the solvent (this step (III) may also be referred to as a "volatilization step"). Hereinafter, the degassing step will be described in detail.
〔工程 (ι ι ι ) 〕  [Process (ι ι ι〕)]
工程 (I I I ) においては、 溶媒存在下で行う工程で得られた溶媒を含む混合物から、 例えば加温下等の条件下で脱揮を行うことで、 溶媒を揮発させ、 流動性を有する状態を保 つている時点で脱揮を止めるようにすればよい。 脱揮後に得られる混合物は、 一般には、 溶媒を全く含まないものであっても、 所望の溶媒濃度に調整されたものであってもよく、 限定はされないが、 後者が好ましい。  In the step (III), the solvent is evaporated from the mixture containing the solvent obtained in the step carried out in the presence of a solvent, for example, under the conditions of heating and the like to volatilize the solvent to obtain a fluidizable state. Degassing should be stopped when it is maintained. The mixture obtained after volatilization may generally be one containing no solvent or one adjusted to a desired solvent concentration, and is not limited, but the latter is preferred.
脱揮の方法、 脱揮する際に用いる装置および各種条件としては、 通常の脱揮の際に採り 得る方法、 使用可能な装置および設定される条件等を採用すればよく、 特に限定はないが 、 例えば、 以下に説明する通りである。  As a method of devolatilization, an apparatus used for devolatilization and various conditions, a method which can be taken during normal devolatilization, an apparatus which can be used, conditions to be set, etc. may be adopted, but there is no particular limitation. For example, as described below.
脱揮の方法としては、 通常、 プレ脱揮と本脱揮との二段階があり、 脱揮の手順としては 、 プレ脱揮の後に本脱揮を行うことが好ましいが、 限定されるわけではなく、 プレ脱揮と 本脱揮を区別せずに一段階の工程として行ってもよい。 二段階に分けて行うことが好まし いのは、 脱揮の効率アップ (コストダウン、 処理時間の短縮、 重合体の品質など) が可能 となるからであり、 具体的には、 (a)脱揮前の混合物に多く含まれる溶媒を効率良く脱揮 処理が行える程度の溶媒量にまで急速に減らしておいた後にゆつくりと脱揮処理を行うこ とができる、 (b)前段を常圧脱揮とし後段を真空 (減圧) 脱揮とすることによって一段で 処理する場合より機器サイズを小さくすることができる、 (c)脱揮時にはある濃度域で急 激に粘度上昇することがあり一段で処理する場合より駆動系を小さくできる、 などの理由 により理論的にも好適であるが、 脱揮処理に供する混合物の種類 (特に、 ポリマーの種類 ) 等によっては、 上記した一段階の処理であっても二段階の処理と同様に行うことができ 、 同様の効果を得ることができる場合があるので、 処理対象に応じ、 適宜選択すればよい 脱揮する際に用いる装置 (脱揮装置) としては、 限定されるわけではないが、 撹拌槽蒸 発器、 下流液柱蒸発器、 薄膜蒸発器、 表面更新型重合器、 ニーダー、 ロールミキサー、 ィ ンテンシブミキサー (いわゆるバンバリ一ミキサー) 、 押出機などが好ましく挙げられ、 これら装置のうち少なくとも 1つの装置を用いて行うことが好ましい。 また、 用いる装置 によって適宜使用条件を設定することができる。  As a method of devolatilization, usually, there are two steps of pre-volatilization and main devolatilization, and as a procedure of devolatilization, it is preferable to carry out the pre-volatilization after the pre-volatilization but this is not limited Alternatively, it may be carried out as a one-step process without distinction between pre-volatilization and full-volatilization. The division into two stages is preferable because the efficiency of devolatilization (cost reduction, shortening of processing time, quality of polymer, etc.) becomes possible. Specifically, (a) It is possible to perform annealing and degassing after the solvent content contained in the mixture before degassing has been rapidly reduced to such an amount that the solvent can be efficiently removed. The equipment size can be made smaller than in the case of single stage treatment by pressure degassing and subsequent vacuum (depressurization) degassing. (C) At the time of devolatilization, viscosity may rapidly rise in a certain concentration range Although the drive system can be made smaller than in the case of processing in a single stage, etc., it is theoretically preferable due to reasons such as, but depending on the type of mixture to be subjected to the degassing treatment (especially the type of polymer) Even the two-step process The same effect may be obtained, and it may be selected appropriately according to the object to be treated. The device (degassing device) to be used for degassing is not limited. Among them are stirring vessel evaporators, downstream liquid column evaporators, thin film evaporators, surface renewal type polymerizers, kneaders, roll mixers, intensive mixers (so-called Banbury-one mixers), extruders, etc. Preferably, it is carried out using at least one device. In addition, the usage conditions can be set appropriately depending on the device used.
撹拌槽蒸発器は、 広範囲な粘度、 広範囲な残留溶媒濃度に対応できる点で優れており、 例えば、 ヘリカルリボン翼を搭載した撹拌槽、 ダブルへリカルリボン翼を搭載した撹拌槽 、 スーパーブレンド翼 (内冀:マックスブレンド翼、 外翼:螺旋状変形バッフル) を搭載 した竪型同心二軸撹拌槽 (例えば、 製品名 :スーパーブレンド、 住友重機械工業 (株) 製 ) 、 V C R逆円錐リボン翼式リアクター (三菱重工 (株) 製) などが好ましく挙げられる 。 これらは、 バッチ式での処理および連続式での処理の両方に用いることができるが、 バ ツチ式での処理に用いることがより好ましい。 また、 装置の特性上、 処理後の排出の際に 多くの時間を必要とするので、 大量の重合体等を処理するというプロセスよりも、 少量を 正確に処理するプロセスに好ましく対応している。 また、 これらを用いた場合、 蒸発プロ セスは伝熱面更新により行われる。 Stirred tank evaporators are excellent in that they can cope with a wide range of viscosity and a wide range of residual solvent concentration. For example, a stirring tank equipped with a helical ribbon blade, a stirred tank equipped with a double helical ribbon blade, a super blend blade冀: Max blend wing, Outer wing: Helical deformation baffle) Vertical twin screw mixing tank (for example, Product name: Super blend, made by Sumitomo Heavy Industries, Ltd.), VCR reverse conical ribbon wing reactor (Mitsubishi Heavy Industries Ltd. make) etc. are mentioned preferably. These can be used for both batch processing and continuous processing, but are more preferably used for batch processing. In addition, because of the characteristics of the device, it takes a lot of time to discharge after treatment, so it is preferable to correspond to the process of accurately processing a small amount rather than the process of processing a large amount of polymer and the like. Also, if you use these, The heat transfer is performed by heat transfer surface renewal.
上記各種撹拌槽蒸発器のなかでも、 特に、 竪型同心二軸撹拌槽については、 以下(i)〜 Among the various stirring vessel evaporators described above, in particular, with regard to a bowl-shaped concentric twin-screw stirring vessel, the following (i)
(vi)のような優れた特徴を挙げることができる。 (i)処理粘度領域が広範囲であり、 1〜 1 0, 0 0 0ボイズの粘度領域で優れた混合性能を発揮することができる、 (i i)槽内の急 激な粘度変化に追従して、 内 ·外翼の混合機能が自然に変化 ·対応するため、 良好な流動 状態を保持することができる、 (i ii)槽内壁面およぴ槽内中心部での液流速を均一にする ことができるため、 高い温度均一性を保つことができ、 ポリマーの品質劣化を低減できる 、 (iv)高粘度流体上での低粘度液の滑りおよび滞留が解消し、 リフラックス還流液および 重合後の各種添加剤等の分散性を向上させることができる、 (V)高濃度スラリー処理時の 槽壁およびバッフル部への付着 ·堆積を解消することができ、 良好なスラリー分散性を示 す、 (vi)外翼が槽壁面に近接して回転することによる安定した壁面流速により、 内壁部の 付着および槽内洗浄時間 ·回数を低減することができる。 Excellent features such as (vi) can be mentioned. (I) The treatment viscosity range is wide, and it is possible to exhibit excellent mixing performance in the viscosity range of 1 to 10 0 0 0 0, (ii) following the rapid viscosity change in the tank Because the mixing function of the inner and outer wings changes naturally, it is possible to maintain a good flow state because it responds. (I ii) uniform the liquid flow velocity on the inner wall of the tank and the inner center of the tank Can maintain high temperature uniformity and reduce the degradation of polymer quality, (iv) the slippage and retention of low viscosity liquid on high viscosity fluid are eliminated, reflux reflux liquid and after polymerization Can improve the dispersibility of various additives, etc., (V) can prevent adhesion and deposition on the tank wall and baffle part during high concentration slurry processing, and show good slurry dispersibility, (Vi) Stable wall velocity by rotating the outer wing close to the tank wall As a result, the adhesion of the inner wall and the cleaning time in the tank can be reduced.
下流液柱蒸発器としては、 多管式熱交換器型 (例えば、 製品名: スルザ一ミキサー、 住 友重機械工業 (株) 製;製品名:スタテックミキサー、 ノリタケ社製) 、 プレート熱交換 器型 (例えば、 製品名 : Hiviscous Evaporator, 三井造船 (株) 製) などが好ましく挙げ られる。 これらは、 バッチ式での処理および連続式での処理の両方に用いることができ、 どちらの処理も良好に行うことができる。 また、 装置の特性上、 これらによる脱揮は、 加 熱を顕熱で行い、 その後減圧下で顕熱を潜熱に転換して蒸発させるため、 脱揮できる量は 顕熱加熱量 (潜熱として伝達し得る熱量) に依存することとなる。 よって、 顕熱加熱量に 対応した処理量とするプロセス.が好ましいが、 多管式熱交換器型では、 スティックミキサ 一によつて伝熱を促進させることができるため、 広範囲な処理量のプロセスにも対応でき る。 また、 多管式熱交換器型の場合は、 蒸発プロセスは界面積拡大により行われ、 対応最 大処理粘度は 5 0, 0 0 0ボイズであることが好ましく、 プレート熱交換器型の場合は、 蒸発プロセスは伝熱面積拡大により行われ、 対応最大処理粘度は 1 0 , 0 0 0ボイズであ ることが好ましい。  As a downstream liquid column evaporator, a multi-tubular heat exchanger type (for example, product name: Sulza-I mixer, manufactured by Sumitomo Heavy Industries, Ltd .; product name: static mixer, manufactured by Noritake), plate heat exchange Container type (for example, product name: Hiviscous Evaporator, manufactured by Mitsui Shipbuilding Co., Ltd.) is preferably mentioned. They can be used for both batch and continuous processes, and both processes can be performed successfully. Furthermore, due to the characteristics of the device, devolatization by these causes sensible heat to be applied, and then converts the sensible heat into latent heat under reduced pressure to evaporate, so the amount that can be volatilized is sensible heat heating (transfer as latent heat It depends on the amount of heat that can be Therefore, a process with a throughput corresponding to the amount of sensible heat is preferable. However, in the multi-tubular heat exchanger type, since the heat transfer can be promoted by a stick mixer, a process with a wide range of throughputs is possible. It is also possible to Moreover, in the case of a multi-tubular heat exchanger type, the evaporation process is carried out by interface area expansion, and the corresponding maximum processing viscosity is preferably 5 0 0 0 0, and in the case of a plate heat exchanger type The evaporation process is performed by heat transfer area expansion, and the corresponding maximum processing viscosity is preferably 10 0 0 0 0 boise.
薄膜蒸発器は、 ブレードにより遠心力が働き、 均一な液膜が形成できる点で優れており 、 例えば、 横型薄膜蒸発器 (例えば、 製品名:ェバリアクター、 関西化学機械製作 (株) 製) 、 固定ブレード式の竪型薄膜蒸発器 (例えば、 製品名: E X E V A、 神鋼パンテック (株) 製) 、 可動ブレード式の竪型薄膜蒸発器 (例えば、 製品名: ワイプレン、 神鋼パン テック (株) 製) 、 槽型 (鏡型) 薄膜蒸発器 (例えば、 製品名 : リカバリー、 関西化学機 械製作 (株) 製) などが好ましく挙げられる。 これらについて、 バッチ式での処理に関し ては、 横型おょぴ槽型のものは一般的ではないが可能であり、 竪型のものは固定ブレード 式、 可動ブレード式に関わらず不可能である。 また、 連続式での処理に関してはすべて可 能である。 装置の特性上、 これらはすべて、 脱揮は、 加熱を顕熱で行い、 その後減圧下で 顕熱を潜熱に転換して蒸発させるため、 脱揮できる量は顕熱加熱量 (潜熱として伝達し得 る熱量) に依存することとなる。 よって、 顕熱加熱量に対応した処理量とするプロセスが 好ましい。 また、 これらはすべて、 蒸発プロセスは伝達面更新により行われる。  The thin film evaporator is excellent in that a centrifugal force is exerted by a blade and a uniform liquid film can be formed. For example, a horizontal thin film evaporator (for example, product name: Eva reactor, manufactured by Kansai Chemical Machinery Co., Ltd.), fixed Blade type vertical thin film evaporator (for example, product name: EXEVA, manufactured by Shinko Pantec Co., Ltd.), movable blade type vertical thin film evaporator (for example, product name: Wipelen, manufactured by Shinko Pantech Co., Ltd.) Preferred are a tank type (mirror type) thin film evaporator (for example, product name: recovery, manufactured by Kansai Chemical Machinery Co., Ltd.). With regard to batch processing, it is possible to use horizontal type or tank type ones, though it is not common, and wedge type ones are not possible regardless of fixed blade type or movable blade type. Also, all continuous processing is possible. Due to the characteristics of the equipment, all of these degassing is performed by heating with sensible heat and then converting the sensible heat to latent heat under reduced pressure to evaporate, so the amount that can be devolatilized is transferred as the sensible heat heating amount It depends on the amount of heat to be obtained. Therefore, it is preferable to use a process with a throughput corresponding to the amount of sensible heat. And all this, the evaporation process is done by the transfer surface renewal.
横型薄膜蒸発器は、 竪型に比べ排出面で高粘度への対応が困難であるため、 排出効果に 優れたブレードを使用し、 高粘度にも対応できるようになつており、 対応最大処理粘度は 5 0 0ボイズであることが好ましい。 竪型薄膜蒸発器は、 自重で下降するため低粘度液よ りも高粘度液のほうが適しているといえ、 可動ブレード式の対応最大処理粘度は 1 , 0 0 0ボイズであることが好ましい。 また、 固定ブレード式では固定翼に搔き下げ効果を持た せることで高粘度に対応させており、 対応最大処理粘度は 1 0, 0 0 0ボイズであること が好ましい。 槽型薄膜蒸発器は、 鏡を利用することにより低粘度液のショートパスを抑え ることができ、 対応最大処理粘度は 1 , 0 0 0ボイズであることが好ましい。 Horizontal type thin film evaporators are more difficult to cope with high viscosity on the discharge side than vertical type, so a blade with excellent discharge effect is used to be able to cope with high viscosity. Is preferably 500 boise. The vertical thin film evaporator is a low viscosity liquid because it descends by its own weight. It is preferred that the higher maximum viscosity of the movable blade type is 1,200 Boise, although the higher viscosity liquid is more suitable. In addition, in the fixed blade type, the fixed blade is made to have a downward effect so as to correspond to a high viscosity, and the corresponding maximum processing viscosity is preferably 10 0 0 0 Boise. The tank type thin film evaporator can suppress the short path of the low viscosity liquid by using a mirror, and the corresponding maximum processing viscosity is preferably 1,200 boise.
表面更新型重合器 (横型薄膜重合器) は、 気液表面の更新によって高い脱揮性能を示す 点で優れており、 例えば、 単軸型表面更新型重合器、 二軸型表面更新型重合器 (例えば、 製品名 :バイポラック、 住友重機械工業 (株) 製';製品名: 日立メガネ翼重合機、 (株) 日立製作所製;製品名: 日立格子翼重合機、 (株) 日立製作所製;製品名: S Cプロセッ サ、 栗本鐵ェ所 (株) 製) などが好ましく挙げられる。 これらは、 バッチ式での処理に関 しては不可能であり、 連続式での処理に関してはすべて可能である。 装置の特性上、 これ らはすべて、 脱揮の処理量は装置内の物質の移動速度に依存しており、 蒸発プロセスは気 液面更新により行われる。  The surface renewal type polymerizer (horizontal type thin film polymerizer) is excellent in that it shows high degassing performance by the renewal of the gas and liquid surface. For example, a uniaxial surface type surface renewal type polymerizer, a biaxial type surface renewal type polymerizer (For example, Product name: Bipolac, manufactured by Sumitomo Heavy Industries, Ltd. '; Product name: Hitachi glasses wing polymerizer, manufactured by Hitachi Ltd .; Product name: Hitachi grid wing polymerizer, manufactured by Hitachi Ltd. Product name: SC processor, manufactured by Kurimoto Co., Ltd., and the like. These are not possible for batch processing, and all for continuous processing. Due to the characteristics of the equipment, the throughput of devolatilization is all dependent on the transfer rate of the substance in the equipment, and the evaporation process is carried out by gas-liquid surface renewal.
ニーダー (例えば、 製品名: K R Cニーダー、 栗本鐡ェ所 (株) 製) 、 ロールミキサー Kneader (For example, Product name: K R C kneader, manufactured by Kurimoto Koji Co., Ltd.), roll mixer
、 インテンシブミキサー (いわゆるバンバリ一ミキサー) は、 押出機と同様、 高粘度融体 などの混合に適し、 付加機能として脱揮能力を備えるものである。 これらは、 バッチ式で の処理も連続式での処理もすベて可能である。 これらについては、 その対応最大処理粘度 は 1 0, 0 0 0ボイズであることが好ましい。 An intensive mixer (so-called Banbury-one mixer), like an extruder, is suitable for mixing high-viscosity melts and the like, and has a degassing ability as an additional function. These can be processed both batchwise and continuously. For these, it is preferred that the corresponding maximum processing viscosity is 10 0 0 0 Boise.
単軸型のものは、 効率的な表面積の確保が可能なため高い脱揮性能を示し、 その対応最 大処理粘度は 1 0, 0 0 0ボイズであることが好ましい。 また、 二軸型のものは、 容器内 のデッドスペースの無さや高いビストンフロー性によりセルフクリーユング性および液の 滞留抑制に優れており、 その対応最大処理粘度は 1 0 , 0 0 0ボイズであることが好まし い。  The single-shaft type exhibits high degassing performance because it can ensure efficient surface area, and the corresponding maximum processing viscosity is preferably 10 0 0 0 boise. The biaxial type is excellent in self-creeping property and liquid retention control due to no dead space in the container and high biston flow property, and the corresponding maximum processing viscosity is 10 0 0 0 0 It is preferable to have one.
押出機は、 髙粘度融体などの混合に適し、 付加機能として加熱、 溶融、 混練とともに脱 揮能力を備えるものであり、 例えば、 単軸型押出機、 二軸型押出機 (例えば、 製品名 : S U P E R T E X a I I、 日本製鋼所 (株) 製;製品名: B T— 3 0— S 2、 プラステイツ ク工学研究所製) 、 S C Rセルフクリーニング式リアクター (三菱重工 (株) 製) などが 好ましく挙げられる。 これらは、 バッチ式での処理は不可能であり、 連続式での処理はす ベて可能である。 装置の特性上、 これらは、 上述のように、 非常に粘度の高いものを対象 に脱揮処理するプロセスに好適であり、 蒸発プロセスは混練および蒸発等により行われる 。 押出機においては、 単軸型のもの、 二軸型のもの共に、 その対応最大処理粘度は 1 0 0 , 0 0 0ボイズであることが好ましい。  The extruder is suitable for mixing such as melt viscosity, and has an addition function of heating, melting, kneading and degassing ability. For example, a single-screw extruder, a twin-screw extruder (for example, product name) : SUPERTEX a II, manufactured by Japan Steel Works, Ltd .; Product name: BT-30-S 2, Plastics Research Institute, SCR self-cleaning reactor (Mitsubishi Heavy Industries Ltd.), etc. are preferably mentioned. . These can not be processed batchwise, and can be processed continuously. Due to the characteristics of the apparatus, as described above, these are suitable for the process of degassing the object with very high viscosity, and the evaporation process is performed by kneading and evaporation. In the extruder, both of the single-screw type and the twin-screw type, the corresponding maximum processing viscosity is preferably 100, 00 Boise.
前述したように、 好ましい脱揮方法として、 プレ脱揮の後に本脱揮する方法を挙げるこ とができるが、 上記各種脱揮装置のうち、 プレ脱揮に好ましく用いることのできるものは 、 限定はされないが、 ヘリカルリボン翼を搭載した撹拌槽、 ダブルへリカルリボン翼を搭 載した撹拌槽、 スーパーブレンド翼を搭載した竪型同心二軸撹拌槽、 マックスブレンド翼 を搭載した撹拌槽、 ログボーン翼を搭載した撹拌槽、 プレート熱交換器型の下流液柱蒸発 器および固定ブレード式の竪型薄膜蒸発器などが挙げられる。 また、 本脱揮に ^ましく用 いることのできるものは、 限定はされないが、 二軸型表面更新型重合器、 ニーダー、 二軸 型押出機などが挙げられる。 工程 (I I I ) で脱揮を行う場合は、 該工程 (I I I ) の直前に行った工程で用いたい わゆる前段装置に上記列挙した各種脱揮装置を直結させて脱揮を行ってもよいし、 該工程As described above, the preferred method of devolatilization can be exemplified by the method of volatilization after pre-volatilization, but among the above-mentioned various devolatilization apparatuses, those which can be preferably used for pre-volatilization are limited. Although it does not work, it has a stirring tank equipped with a helical ribbon blade, a mixing tank equipped with a double-helical ribbon blade, a vertical concentric biaxial mixing tank equipped with a super blend blade, a mixing tank equipped with a Max Blend blade, and a log bone blade. It includes a stirring vessel, a plate heat exchanger type downstream liquid column evaporator, and a fixed blade type vertical thin film evaporator. In addition, what can be used for this devolatilization may be, but is not limited to, a twin-screw surface renewal type polymerizer, a kneader, a twin-screw extruder and the like. In the case of carrying out the degassing in the step (III), the various degassing apparatuses listed above may be directly connected to the so-called upstream apparatus used in the step carried out immediately before the step (III) to carry out the degassing. The process
( I I I ) の直前に行った工程で用いた前段装置から送液や移送を介した上で各種脱揮装 置により脱揮を行ってもよい。 前者については、 例えば、 前段装置と脱揮装置とを各種送 液ポンプ (ギアポンプ (例えば、 商品名:ギアポンプ、 (株) 島津製作所製) 、 モーノポ ンプ (例えば、 製品名:モーノポンプ、 兵神装備 (株) 製) ) を介して直結させる形態等 が挙げられる。 後者については、 例えば、 前段装置から脱揮装置までの間が送液ラインで 連結されているような形態や、 前段装置から脱揮装置までの間にジャケットゃ撹拌機を備 えた中間槽タンク (クッションタンク) を設けた形態等が挙げられる。 It is also possible to carry out the devolatilization by various devolatilizers after liquid transfer or transfer from the pre-stage apparatus used in the step performed immediately before (I I I). For the former, for example, various liquid transfer pumps (eg gear pump (trade name: gear pump, manufactured by Shimadzu Corp.), mono pump) (eg product name: mono pump, hijishin equipment And the like)). As for the latter, for example, there is a form in which a liquid transfer line is connected between the pre-stage device and the degassing device, and an intermediate tank tank equipped with a jacket and a stirrer between the pre-stage device and the degassing device The form etc. which provided the cushion tank are mentioned.
工程(I I I )においては、 脱揮後の混合物における残存溶媒濃度が 0 . 0 1〜3 0重量 %となるようにすることが好ましく、 より好ましくは 0 . 0 5〜2 0重量%、 さらに好ま しくは 0 . 1〜1 0重量%である。 上記残存溶媒濃度が 0 . 0 1重量%未満である場合は In the step (III), the concentration of the residual solvent in the mixture after volatilization is preferably 0.01 to 30% by weight, more preferably 0.5 to 20% by weight, and further preferably Or 0.1 to 10% by weight. When the residual solvent concentration is less than 0.01% by weight,
、 脱揮条件を厳しくする必要があるため、 脱揮後に得られる混合物 (特にポリマー) の熱 劣化につながり、 ひいては目的とする正極材料組成物により作製された電池の電池性能が 低下するおそれがあり、 3 0重量%を超える場合は、 目的とする正極材料組成物にタック が生じ、 ブロッキングなどが生じるおそれや、 電池性能を低下させるおそれがある。 Since it is necessary to make the conditions for volatilization stricter, it may lead to thermal degradation of the mixture (especially polymer) obtained after volatilization, which may in turn reduce the battery performance of the battery produced by the intended positive electrode material composition. If the amount is more than 30% by weight, the target positive electrode material composition may be tacked to cause blocking or the like, or the battery performance may be deteriorated.
工程(I I I )においては、 脱揮後の混合物の含有水分量を、 溶媒を揮発させると同時に 調整することが好ましい。 水分は、 例えば、 重合反応時に用いたモノマーや溶媒などに含 まれる。 具体的には、 上記含有水分量を 5, 0 0 0 p p m以下に調整することが好ましく 、 より好ましくは 5 0 0 p p m以下、 さらに好ましくは 2 0 0 p p m以下である。 上記含 有水分量が上記範囲を超えると、 リチウム 2次電池に用いた場合に、 リチウム塩が含有水 分と反応してしまい、 イオン伝導性を充分に発揮できないおそれがある。  In the step (II I), it is preferable to adjust the water content of the mixture after volatilization simultaneously with volatilizing the solvent. Water is contained, for example, in the monomers and solvents used in the polymerization reaction. Specifically, it is preferable to adjust the water content to 5,00 0 p p m or less, more preferably 5 0 0 p p m or less, and still more preferably 2 0 0 p p m or less. When the water content exceeds the above range, the lithium salt may react with the water content when used in a lithium secondary battery, and the ion conductivity may not be sufficiently exhibited.
上記含有水分量を調整する手段としては、 限定はされないが、 例えば、 脱揮温度を高く すること、 およびノまたは、 脱揮処理時の減圧度を大きくすることが好ましい (なお、 減 圧度を大きくすることは圧力を低くすることを意味し、 減圧度を小さくすることは圧力を 高くすることを意味する。 ) 。 脱揮温度を高くして含有水分量の調整をする場合、 その温 度は、 限定はされないが、 低すぎると、 減圧度を過剰に大きくしなければならないため効 率的ではなく、 高すぎると、 脱揮後に得られる混合物 (特にポリマー) の熱劣化が生じる こととなるおそれがあるため、 これらを考慮し適宜設定するようにする。 また、 脱揮の減 圧度を大きくして含有水分量の調整をする場合、 その減圧度は、 限定はされないが、 大き すぎると、 脱揮装置の密閉性を考慮すると困難であると考えられ、 小さすぎると、 脱揮温 度をかなり上昇させないと含有水分量を 2 0 0 p p m以下にコントロールできないおそれ があるため、 これらを考慮し適宜設定するようにする。  The means for adjusting the water content is not limited. For example, it is preferable to increase the devolatilization temperature and to increase the degree of pressure reduction during the devolatization treatment (note that the degree of pressure reduction is not limited). To increase the pressure means to lower the pressure, and to reduce the degree of pressure reduction means to increase the pressure.) When adjusting the water content by raising the volatilization temperature, the temperature is not limited, but if it is too low, it is not efficient because it is necessary to increase the degree of pressure reduction excessively, and it is too high Since heat deterioration of the mixture (especially polymer) obtained after volatilization may occur, these should be taken into consideration and appropriately set. In addition, when adjusting the water content by increasing the degree of pressure reduction for volatilization, the degree of pressure reduction is not limited, but if it is too large, it is considered difficult in consideration of the sealing performance of the degassing apparatus. If it is too small, it may not be possible to control the water content to 200 ppm or less unless the temperature of volatilization is increased considerably. Therefore, set appropriately taking these into consideration.
脱揮工程を、 加温下の条件下で行う場合、 その温度は 4 0〜2 0 0 °Cであることが好ま しく、 より好ましくは 5 5〜 1 7 5 °C、 さらに好ましくは 7 0〜 1 5 0でである。 この温 度範囲で脱揮を行うことによって、 脱揮後に、 上述した所望の残存溶媒濃度および含有水 分量の混合物とすることができる。 上記温度が 4 0 °C未満の場合は、 残存する溶媒が多く なるおそれがあり、 2 0 0 °Cを超える場合は、 脱揮後に得られる混合物 (特にポリマー) が熱劣化 '熱分解するおそれがある。 ここで、 上記温度とは、 撹拌槽蒸発器を用いた場合 は混合物の温度であり、 その他の脱揮装置 (例えば、 表面更新型重合器、 ニーダーおよび 押出機等) を用いた場合は脱揮装置のジャケットゃヒーター部分の温度であるとする。 When the degassing step is carried out under heating conditions, the temperature is preferably 40 to 200 ° C, more preferably 55 to 175 ° C, still more preferably 70 ~ At 150. By degassing in this temperature range, after degassing, a mixture of the desired residual solvent concentration and the water content can be obtained. If the temperature is less than 40 ° C., the remaining solvent may increase. If the temperature exceeds 200 ° C., the mixture (particularly the polymer) obtained after devolatilization may be thermally degraded. There is. Here, the above-mentioned temperature means the temperature of the mixture when a stirred tank evaporator is used, and other devolatilizers (for example, a surface renewal type polymerizer, a kneader, and the like) When an extruder or the like is used, it is the temperature of the jacket of the degassing device and the heater portion.
脱揮は、 1, 000〜 100, 000 P aの圧力下で行うことが好ましく、 より好まし くは 2, 500〜 70, 000 P a、 さらに好ましくは 5, 000〜 40, O O O P aで ある。 この圧力範囲で脱揮を行うことによって、 脱揮後に、 上述した所望の残存溶媒濃度 および含有水分量の混合物とすることができる。 上記圧力が 1, O O O P a未満の場合は 、 溶媒がフラッシュしてしまいフォ一ミングが起こるおそれがあり、 100, O O O Pa を超える場合は、 脱揮後に得られる混合物 (特にポリマー) が分解するぐらいまで温度を かけなければならない場合が生じる。 ここで、 上記圧力とは、 脱揮装置の槽内圧力である 工程 (I I I) においては、 脱揮後に得られる混合物の粘度が、 100でで1, 000 〜5, 000, 000ボイズとなるようにすることが好ましく、 より好ましくは 100°C で 5, 000〜4, 000, 000ボイズ、 さらに好ましくは 100 で 10, 000〜 3, 000, 000ボイズである。 上記粘度について、 100°Cで 1, 000ボイズ未満 の場合は、 残存する溶媒が多くなり、 目的とする正極材料組成物を成形したときに発泡お よびタックが生じるおそれがあり、 100 で 5, 000, 000ボイズを超える場合は 、 脱揮装置での脱揮が困難になるおそれがある。  Degassing is preferably carried out under a pressure of 1,000 to 100,000 Pa, more preferably 2,500 to 70,000 Pa, still more preferably 5, 000 to 40, OOO Pa . By degassing in this pressure range, after degassing, a mixture of the desired residual solvent concentration and the water content can be obtained. If the pressure is less than 1, OOOP a, the solvent may flash and foaming may occur, and if it exceeds 100, OOO Pa, the mixture (in particular, the polymer) obtained after devolatilization may be decomposed. In some cases, the temperature must be increased. Here, the pressure is the pressure in the tank of the degassing apparatus. In step (III), the viscosity of the mixture obtained after the degassing is such that the viscosity at 100 is 1,000 to 5,000 boise. It is preferable that the temperature is 100 ° C., preferably 5,000 to 4,000,000 Boise, and still more preferably 100, 10,000 to 30,000 Boise. When the viscosity is less than 1,000 at 100 ° C., the amount of the remaining solvent increases, and foaming and tack may occur when the target positive electrode material composition is formed. If it exceeds 000 000, degassing with the degassing apparatus may be difficult.
本発明の製造方法においては、 さらに、 正極材料組成物となる混合物を冷却し固化させ る工程 (該工程を 「冷却固化工程」 と称す。 ) 、 混合物を粒状化する工程 (該工程を 「粒 状化工程」 と称す。 ) 、 および、 混合物を乾燥および/または調湿する工程 (該工程を 「 乾燥 調湿工程」 と称す。 ) のうちの少なくとも 1つをも備えることが好ましい。 具体的 には、 前記工程 (I) および前記工程 (I I) の両方または一方を溶媒存在下で行う場合 には、 これら冷却固化工程、 粒状化工程、 乾燥ノ調湿工程の少なくとも 1つは、 どの時点 で行ってもよいのであるが、 好ましくは工程 (I I I) を終えたのちに行うのがよい。 他 方、 前記工程 (I) および前記工程 (I I) の両方を溶媒非存在下で行う場合には、 これ ら冷却固化工程、 粒状化工程、 乾燥 調湿工程の少なくとも 1つは、 前記工程 (I) およ ぴ工程 (I I) ののちに行う。 なお、 冷却固化工程、 粒状化工程、 乾燥 Z調湿工程は、 ど のような順序で行ってもよいが、 記載の順序に従い行うのが好ましい。 以下、 冷却固化工 程、 粒状化工程、 乾燥 z調湿工程、 これら工程に付随する工程について詳しく説明する。  In the production method of the present invention, the step of cooling and solidifying the mixture to be the positive electrode material composition (this step is referred to as “cooling and solidifying step”), and the step of granulating the mixture (this step is It is preferable to also include at least one of the following steps: drying and / or conditioning the mixture (referred to as “drying and conditioning step”). Specifically, when one or both of the step (I) and the step (II) are performed in the presence of a solvent, at least one of the cooling and solidification step, the granulation step, and the drying / humidifying step is It may be performed at any time, but preferably after step (III). On the other hand, when both the step (I) and the step (II) are carried out in the absence of a solvent, at least one of the cooling and solidification step, the granulation step, the drying and humidity control step is the step I) and after step (II). The cooling / solidifying step, the granulation step, and the drying Z humidity control step may be performed in any order, but are preferably performed in the order described. Hereinafter, the cooling and solidification process, the granulation process, the drying z humidity control process, and the processes associated with these processes will be described in detail.
〔冷却固化工程〕  [Cooling and solidification process]
冷却固化工程は、 正極材料組成物となる混合物を、 冷却し固化 (硬化) させるものであ る。 冷却固化工程に供される混合物は、 例えば、 工程 (I I I) 後に得られる混合物であ れば脱揮が一般に加温下で行われるため、 溶媒非存在下で行った工程 (I) および工程 ( I I) 後に得られる混合物であればポリマーの溶融状態を維持しうるように加温されてい るため、 温かい状態であって形状保持能の低い状態であり、 例えば、 混合物中のポリマー が溶融している状態や、 このような混合物を賦形しただけの状態 (形状は付与したが (成 形はしたが) 固化させてはいない状態) などであることが考えられる。 冷却固化工程に供 される混合物としては、 具体的には、 その温度が 40〜200°Cの状態のものが好ましく 、 より好ましくは 55〜175での状態のもの、 さらに好ましくは 70〜150°Cの状態 のものである。  The cooling and solidification step is for cooling and solidifying (hardening) the mixture to be the positive electrode material composition. Since the mixture to be subjected to the cooling and solidifying step is, for example, a mixture obtained after the step (III), degassing is generally performed under heating, the steps (I) and steps (B) performed in the absence of a solvent II) If the mixture obtained later is heated so as to maintain the molten state of the polymer, it is in a warm state and in a state of low shape retention ability, for example, the polymer in the mixture is melted and It can be considered that it is in a state of being dry, or a state in which such a mixture is merely shaped (a state in which the shape has been imparted but has not been solidified). Specifically, the mixture to be subjected to the cooling / solidifying step is preferably in the state of 40 to 200 ° C., more preferably in the state of 55 to 175, still more preferably 70 to 150 ° C. It is in the state of C.
冷却固化工程における冷却固化の方法としては、 限定はされないが、 例えば、 混合物を 金属板に接触させることにより冷却し固化させる方法や、 混合物に直接冷風を当てること により冷却固化させる方法、 もしくはこれらを併用する方法等が好ましい。 The method of cooling and solidification in the cooling and solidification step is not limited, but, for example, the mixture Preferred is a method of cooling and solidifying by contacting with a metal plate, a method of cooling and solidifying by directly applying cold air to the mixture, or a method of using these in combination.
冷却固化工程を金属板に接触させることにより行う場合、 用い得る金属板としては、 限 定はされないが、 例えば、 ドラムクーラー (例えば、 ツバコー ·ケ一 'アイ社製、 製品名 : COMPACT CONTI COOLER;三菱化学エンジニアリング社製、 製品名: ドラムクーラー D C ;モダンマシナリ" (株) 製、 製品名:ラミネーター) 、 シングルベルトクーラー (例え ば、 サンドビック社製、 製品名:スチールベルトク一ラー; 日本スチールコンベア (株) 製、 製品名 :スチールベルトシングルクーラー) 、 ダブルスチールベルトクーラー (例え ば、 サンドビック社製、 製品名:ダブルスチールベルトクーラー) 、 圧延二本ロール (例 えば、 関西ロール (株) 製、 製品名 : 8 X 2 0 B O X型ロール機) 等の冷却装置における 、 混合物と接触させ得る金属板 ·金属面が好ましい。 この金属板 ·金属面は、 所望の温度 に冷却しておくことが好ましく、 例えば、 金属板 ·金属面の裏側から冷媒を吹き付けるこ とにより冷却しておくことができる。  When the cooling and solidification process is performed by contacting with a metal plate, the metal plate which can be used is not limited, but, for example, a drum cooler (for example, TUBAKO KEICHI 's product, product name: COMPACT CONTI COOLER; Product name: Drum cooler DC; made by Modern Chemical Engineering Co., Ltd .; product name: Laminator) Single belt cooler (For example, product made by Sandvik, product name: Steel belt crusher; Nippon Steel Co., Ltd.) Conveyer Co., Ltd. product name: Steel belt single cooler) Double steel belt cooler (For example, Sandvik Co., Ltd. Product name: Double steel belt cooler) Rolled double roll (For example, Kansai Roll Co., Ltd.) Product name: 8 x 20 box type roll machine), etc. It is preferable to cool the metal plate / metal surface to a desired temperature, for example, by spraying a coolant from the back side of the metal plate / metal surface. be able to.
上記金属板の冷却温度は、 限定はされず、 冷却固化しょうとする混合物中のポリマーを 、 結晶化温度および または融点以下の温度にすることができる温度であることが好まし く、 例えば、 一 2 5 ~ 4 0 °Cであることが好ましく、 より好ましくは一 2 0〜3 0 °C、 さ らに好ましくは一 1 5〜2 5 °Cである。 なお、 冷却温度はより低いほど好ましい。 さらに 、 冷却固化しょうとする混合物そのものの温度を、 冷却固化させる前に、 好ましくは 5 0 で以下、 より好ましくは 4 5 °C以下、 さらに好ましくは 4 0 °C以下にしておく (冷風を吹 き付けること等により積極的に冷却してもよいし、 放置により冷却してもよく、 冷却手段 は限定されない。 ) ことにより、 例えば、 冷却固化後に金属板から上記混合物を容易に剥 がし取ることができ、 安定した収率で冷却固化物を得ることができる。  The cooling temperature of the metal plate is not limited, and is preferably a temperature at which the polymer in the mixture to be solidified by cooling can be brought to a crystallization temperature and / or a temperature below the melting point, for example, The temperature is preferably 25 to 40 ° C, more preferably one 20 to 30 ° C, and still more preferably one 15 to 25 ° C. The lower the cooling temperature, the better. Furthermore, the temperature of the mixture to be solidified by cooling is preferably 50 ° C. or less, more preferably 45 ° C. or less, still more preferably 40 ° C. or less before cooling and solidifying. The mixture may be positively cooled by application or the like, or may be cooled by leaving, and the cooling means is not limited.), For example, the mixture can be easily peeled off from the metal plate after cooling and solidification. The cooled solidified product can be obtained in a stable yield.
冷却固化工程を直接冷風を当てることにより行う場合、 該冷風の温度や風速は、 限定は されず、 冷却固化しょうとする混合物中のポリマーを、 結晶化温度およびノまたは融点以 下の温度にすることができる温度や風速であることが好ましい。 例えば、 シート (板) 状 の混合物 (例えば、 2 mm X 2 5 O mm X 2 5 mmのような形状) であれば'、 9 °C程度と した冷風を風速 l mZ秒程度で当てればよく、 ブロック (塊、 円柱) 状の混合物 (例えば 、 直径 2 5 mm X 1 0 0 mmのような形状) であれば、 5〜 1 0 °C程度とした冷風を風速 1〜; I . 5 秒程度で当てればよい。  When the cooling and solidification step is performed by direct application of cold air, the temperature and wind speed of the cold air are not limited, and the polymer in the mixture to be solidified by cooling is brought to a crystallization temperature and a temperature below melting point or melting point. It is preferable that the temperature and the wind speed can be used. For example, in the case of a sheet (plate) -like mixture (for example, a shape such as 2 mm × 2 5 O mm × 2 5 mm), it is preferable to apply a cold wind of about 9 ° C. at a wind speed of about 1 mZ seconds. If the mixture is in the form of blocks (lumps, cylinders) (for example, a shape with a diameter of 25 mm x 100 mm), the cold wind at about 5 to 10 ° C. is applied at a wind speed of 1 to 15 seconds. It should be applied by the degree.
冷却固化工程に供される混合物は、 金属板 ·金属面などの上に吐出された後、 搬送され つつ冷却固化されることになる。 上記冷却装置のなかでも、 ダブルスチールベルトクーラ 一、 シングルベルトクーラー、 ドラムクーラーおよび圧延二本ロール (例えば、 関西ロー ル (株) 製、 製品名 : 8 X 2 0 B O X型ロール機) を用いた場合、 冷却ベルト、 冷媒の温 度、 冷媒の種類の選択、 および、 Tダイスの幅やダブルスチールの幅などの選択により、 任意の生産量の条件を容易に得ることができる。  The mixture to be subjected to the cooling and solidification process is discharged onto a metal plate, a metal surface or the like, and then conveyed while being cooled and solidified. Among the above cooling devices, a double steel belt cooler 1, a single belt cooler, a drum cooler and a rolling double roll (for example, Kansai Roll Co., Ltd. product name: 8 X 20 BOX type roll machine) were used. In the case of selecting the type of cooling belt, temperature of refrigerant, choice of refrigerant type, and width of T-die and width of double steel, etc., it is possible to easily obtain the conditions of any production volume.
本発明の製造方法においては、 冷却固化工程を行うにあたり、 冷却固化する前に予め、 冷却固化に供する混合物を成形しておく力 または、 冷却固化するのと同時に成形するェ 程 (成形工程) を備えていてもよい。  In the production method of the present invention, in performing the cooling and solidification step, the force to form the mixture to be subjected to cooling and solidification in advance before cooling and solidification, or the molding step at the same time as cooling and solidification (forming step) You may have.
上記成形工程の具体例としては、 例えば、 (i) 混合物を、 押出機等で、 予め、 シート状 、 ひも状 (ストランド状) 、 板状、 粒状、 棒状および塊状 (ブロック状) 等に成形してお き、 冷風等で冷却する工程や、 (i i) 混合物を、 予め、 成形用の型となる容器等に流し込 んで成形しておく工程や、 (i i i) 混合物をそのまま冷却固化用の金属板に接触させ、 接触 させると同時に所望の形状 (例えば、 粒状やシート状等) に成形する工程、 などが挙げら れる。 上記(i i i)の工程の一例としては、 混合物を、 側面に複数の孔 (所望の孔径) の開 いた円筒ドラムに仕込み、 このドラムを中心軸 (円軸) を水平にして回転させ,、 その孔か ら冷却固化用の金属板上に滴下することで、 冷却固化しながら粒状に成形する工程、 が挙 げられる。 As a specific example of the above-mentioned forming step, for example, (i) The mixture is formed into a sheet, a string (strand), a plate, a particle, a rod, a block (block) etc. in advance by an extruder or the like. You A step of cooling with cold air, (ii) a step of pouring the mixture into a container for forming a mold in advance, and a step of forming the mixture, and (iii) a mixture as it is on a metal plate for cooling and solidification. A process of forming into a desired shape (eg, granular form, sheet form, etc.) simultaneously with making contact and making contact, and the like can be mentioned. As an example of the step (iii), the mixture is charged into a cylindrical drum having a plurality of holes (desired hole diameter) opened on its side, and this drum is rotated with its central axis (circular axis) horizontal, The process of forming into particles while cooling and solidifying can be mentioned by dripping from the holes onto a metal plate for cooling and solidifying.
上記成形工程の具体例のなかでも、 生産性よく混合物の成形体を得るためには、 上記 (i)の工程において、 押出機等自身の排出力で直接円筒状の型を通して棒状として取り出 した後、 比較的温度の高いうちに切断して塊状 (ブロック状) にすることや、 比較的温度 の高い状態で圧延二本ロール (例えば、 関西ロール (株) 製、 製品名 : 8 X 2 0 B O X型 ロール機) に投入しシート状ゃ板状にすることが好ましい。  Among the specific examples of the above-mentioned forming step, in order to obtain a molded product of the mixture with high productivity, in the step (i), it was taken out as a rod directly through the cylindrical mold by the discharge force of the extruder etc. After that, cutting at relatively high temperature into a block (in the form of a block) or rolling two rolls at relatively high temperature (for example, Kansai Roll Co., Ltd. product name: 8 X 20) It is preferable to introduce the sheet into a box type roll machine) and make it into a sheet form.
また、 上記成形工程の具体例のなかでも、 充分に冷却するためには、 上記(i)の工程に よりシート状、 板状、 棒状および塊状 (ブロック状) 等に押出して成形しておくことが好 ましい。 押出す方法としては、 例えば、 脱揮装置の出口や排出口にェクス トルーダー、 ポ リマーポンプ、 ギアポンプなどを取り付け、 さらに押出機を連結しておくことで、 混合物 を脱揮装置から抜き取りつつ、 押出機で所望の形状に押出す方法等を採用してもよい。  Further, among the specific examples of the above-mentioned forming step, in order to obtain sufficient cooling, it may be extruded and formed into a sheet shape, a plate shape, a rod shape, a block shape or the like in the step (i). Is preferred. As a method of extruding, for example, an extruder, a polymer pump, a gear pump, etc. are attached to the outlet or outlet of the devolatilizer, and by further connecting an extruder, the mixture is extracted from the devolatilizer while the extruder is removed. Or the like may be adopted.
押出機としては、 限定はされず、 例えば、 単軸型押出機、 二軸型押出機 (例えば、 製品 名 : SUPERTEX a II、 日本製鋼所 (株) 製;製品名: B T _ 3 0— S 2、 プラスティックェ 学研究所製) 、 S C Rセルフタリ一ニング式リアクター (三菱重工 (株) 製) 、 K R C二 ーダー (栗本鐵ェ所 (株) 製) などが好ましく挙げられる。 一定の厚さのシート状または 板状に押出すためには、 押出機に Tダイを設置して押出す方法や、 押出機自身の排出力で 直接円筒状の型を通して棒状として取り出した後、 比較的温度の高い状態で圧延二本ロー ル (例えば、 関西ロール (株) 製、 製品名: 8 X 2 0 B O X型ロール機) に投入する方法 等を行うことが好ましい。 また、 粒状に押出すためには、 押出機にドロップフォーマー ( 製品名: ロートフォーム、 サンドビック社製) を設置して押出す方法等を行うことが好ま しく、 塊状 (ブロック状) に押出すためには、 押出機自身の排出力で直接円筒状の型を通 して棒状として取り出した後、 比較的温度の高いうちに切断する方法等を行うことが好ま しい。  The extruder is not limited. For example, a single-screw extruder, a twin-screw extruder (for example, product name: SUPERTEX a II, manufactured by Japan Steel Works, Ltd .; product name: BT — 30 — S 2. Plastics Science Research Institute), SCR self-tallying type reactor (Mitsubishi Heavy Industries, Ltd.), KRC Nidor (Kurimoto Co., Ltd.), etc. are preferably mentioned. In order to extrude in the form of a sheet or plate of a fixed thickness, insert a T-die into the extruder and extrude it, or after it is taken out as a rod directly through a cylindrical mold by the exhaust force of the extruder itself, It is preferable to carry out a method such as loading into a rolling double roll (for example, Kansai Roll Co., Ltd. product name: 8 X 20 BOX type roll machine) in a relatively high temperature state. In addition, in order to extrude into granular form, it is preferable to install a drop former (product name: Roth foam, manufactured by Sandvik Co., Ltd.) in an extruder and extruding, etc. In order to discharge, it is preferable to carry out a method such as cutting in a relatively high temperature after taking it out as a rod directly through a cylindrical mold by the discharge force of the extruder itself.
一定の厚みで押出す場合、 その厚みは、 一般的には、 引き続き行う冷却固化工程での冷 却効率と、 最終的に粒状化して得る場合のサイズ等も考慮して、 0 . 5〜4 mmであるこ とが好ましく、 より好ましくは l〜3 mm、 さらに好ましくは 1 . 5〜2 . 5 mmである 押出しして成形した混合物を、 成形した形状を崩さないように冷却するには、 冷風等を 用いて冷却することが好ましい。  In the case of extrusion with a constant thickness, the thickness is generally in the range of 0.5 to 4 in consideration of the cooling efficiency in the subsequent cooling / solidifying step and the size when finally obtained by granulation. It is preferable to use a cold air to cool the extruded and formed mixture so as not to break the formed shape, which is preferably 1 mm, more preferably 1 to 3 mm, and still more preferably 1.5 to 2.5 mm. It is preferable to cool using such as.
本発明の製造方法においては、 上記冷却固化工程を行うまでに (予め上記成形工程を行 う場合はそれまでに) 、 混合物に各種安定剤などを添加し混練しておく工程 (混練工程) を含んでいてもよい。 、  In the production method of the present invention, the step (kneading step) of adding various stabilizers and the like to the mixture and kneading is performed before the cooling / solidifying step (or in the case of performing the above forming step beforehand). May be included. ,
上記安定剤としては、 限定はされず、 例えば、 熱安定剤、 光安定剤、 紫外線吸収剤、 抗 酸化剤 (酸化防止剤) 、 防腐剤、 耐光性向上剤、 可塑剤 (ジォクチルフタレート、 低分子 量ポリエーテル化合物等) 、 フイラ一 (力一ボン等) 、 界面活性剤 (エチレンォキシド系 非イオン性活性剤等) 、 滑剤 (ステアリン酸カルシウム等) などを挙げることができるが 、 一般には、 (i)本発明の製造方法において必要であるとして前記脱揮工程以前から添加 していた安定剤であって脱揮するとともに減少 ·除去されてしまったものや、 (ii)本発明 の製造方法において必要であるとして前記脱揮工程の後で添加を予定していた安定剤、 が 好ましい。 Examples of the stabilizer include, but are not limited to, heat stabilizers, light stabilizers, ultraviolet light absorbers, antioxidants (antioxidants), preservatives, light resistance improvers, plasticizers (diocyl phthalate, Small molecule Amount of polyether compound etc.), filler (such as strong carbon), surfactant (such as ethylene oxide non-ionic surfactant), lubricant (such as calcium stearate), etc. i) Stabilizers added prior to the degassing step as required in the production method of the present invention, which have been reduced and removed while degassing, (ii) in the production method of the present invention Stabilizers, which were scheduled to be added after the degassing step as necessary, are preferred.
混練工程においては、 上記安定剤以外にも、 必要に応じて各種添加物を添加 ·混練して もよく、 例えば、 有機質または無機質の微粒子や、 低分子化合物 (沸点が 3 0 0 °C以下の 低分子量化合物 (溶媒) ) が好ましい。 なかでも、 有機質または無機質の微粒子は、 正極 材料組成物の使用目的や使用形態に応じて、 ブロッキング防止等の機能を発揮し得る。 有 機質の微粒子としては、 .例えば、 ポリスチレン、 ポリエチレンおよびポリプロピレン等の 微粒子が好ましく、 無機質の微粒子としては、 例えば、 シリカ、 アルミナおよびジルコ二 ァまたはこれらの複合酸化物等の微粒子が好ましい。  In the kneading step, various additives may be added / kneaded as necessary, in addition to the above-mentioned stabilizers. For example, organic or inorganic fine particles, low molecular weight compounds (having a boiling point of 300 ° C. or less) Low molecular weight compounds (solvents) are preferred. Among them, organic or inorganic fine particles can exhibit functions such as blocking prevention depending on the use purpose and use form of the positive electrode material composition. As the organic fine particles, for example, fine particles of polystyrene, polyethylene and polypropylene are preferable, and as the inorganic fine particles, for example, fine particles of silica, alumina and zirconia or their composite oxides are preferable.
混練工程で用い得る混練装置としては、 限定はされないが、 例えば、 前記混合のための 工程 (I ) および工程 (I I ) で用い得る混合装置として例示したものが好ましい。 脱揮 工程後に混練工程を行う場合には、 混練装置は、 脱揮装置からポリマーポンプやギアボン プ等を介して連結しておくことが好ましい。  The kneading apparatus which can be used in the kneading step is not limited, but, for example, those exemplified as the mixing apparatus which can be used in the step (I) for the mixing and the step (I I) are preferable. When the kneading step is performed after the volatilization step, it is preferable that the kneader be connected from the volatilization device via a polymer pump, a gear pump or the like.
混練工程後に上記成形工程を行う場合は、 混練装置の出口や排出口にポリマーポンプや ギアポンプ等を取り付け、 さらに押出機等に連結しておけばよい。  In the case of performing the above-mentioned forming step after the kneading step, a polymer pump, a gear pump, etc. may be attached to the outlet or outlet of the kneading device, and it may be further connected to an extruder or the like.
〔粒状化工程〕  Granulation step
粒状化工程は、 混合物 (好ましくは、 前記冷却固化工程後に得られた混合物) を粒状化 (例えばペレッ ト化) するものである。  The granulation step is to granulate (eg, pelletize) the mixture (preferably, the mixture obtained after the cooling and solidification step).
粒状化工程において用い得る装置としては、 限定はされないが、 例えば、 シートペレタ ィザー (例えば、 ホーライ社製、 製品名:シートペレタイザ S G ( E ) - 2 2 0 ) 、 クラ ッシヤー (例えば、 ホーライ社製、 製品名: U— 4 8 0型) 、 ストランドカッター (いす ず化工機械社製、 製品名: S F C— 1 0 0 ) 等が挙げられる。 なかでも、 得られる粒状体 の粒度が揃いやすいという点で、 シートペレタイザ一が好ましい。 シートペレタイザ一と しては、 限定はされないが、 例えば、 流動点の低いものを切断する場合や付着性を有する ものを切断する場合、 カッター部分、 特にスリツターロール部分を冷媒で冷却したり、 そ れら部分において樹脂を冷風で冷却したりすることができる機能を有するものが好ましい 。 この冷却の温度は、 限定されるわけではなく、 粒状化する混合物 (特にポリマー^ ) 結晶化温度および/"または融点以下の温度にすることができる温度であることが好ましく 、 例えば、 _ 2 5〜4 0 °Cであることが好ましく、 より好ましくは一 2 0〜3 0 °C、 さら に好ましくは一 1 5〜2 5 °Cである。  The apparatus that can be used in the granulation step is not limited, but, for example, a sheet pelletizer (for example, Holly Co., Ltd., product name: sheet pelletizer SG (E)-220), a classifier (for example, Holly Corporation) Product name: U-480 type), Strand cutter (manufactured by Isuzu Chemical Engineering Co., Ltd., Product name: SFC-1 0 0), and the like. Among them, a sheet pelletizer is preferred in that the particle size of the obtained granular material is easy to be uniform. The sheet pelletizer is not limited, but, for example, when cutting a material having a low pour point or cutting an adhesive material, the cutter portion, in particular, the slitter roll portion is cooled with a refrigerant. Those having a function capable of cooling the resin with cold air in those parts are preferable. The temperature of this cooling is not limited, and it is preferable that the mixture to be granulated (in particular, the polymer ^) be a crystallization temperature and / or a temperature that can be a temperature below the melting point, for example, _ 2 5 It is preferable that the temperature is -40 ° C, more preferably one 20 to 30 ° C, and still more preferably one 15 to 25 ° C.
本発明の製造方法においては、 粒状化工程後や、 粒状化工程前 (すなわち、 前記冷却固 化工程と粒状化工程との間や、 前記冷却固化工程前) に、 混合物に安定剤等の各種添加剤 を添加する (例えば、 まぶす等) 工程を含んでいてもよい。 上記添加剤としては、 限定は されず、 例えば、 熱安定剤、 光安定剤、 紫外線吸収剤、 酸化防止剤、 防腐剤、 耐光性向上 剤、 可塑剤、 各種フィラー、 界面活性剤、 滑剤、 固結防止剤、 流動性改善剤等が挙げられ るが、 なかでも特に、 固結防止剤や、 流動性改善剤 (例えば、 日本ァエロジル社製、 製品 名 :ァエロジル R 9 7 2, ァエロジル R 9 7 4 ) が好ましい。 各種添加剤を添加する方法 としては、 テーブルフィーダ一等を用い、 振動機上の混合物の粒状成形体に供給してまぶ したり、 粒状化工程前の混合物に供給してまぶしたりする等の方法が挙げられる。 In the production method of the present invention, after the granulation step or before the granulation step (that is, between the cooling and solidification step and the granulation step, and before the cooling and solidification step), various mixtures such as a stabilizer and the like can be used. It may include a step of adding an additive (eg, dust etc.). Examples of the additive include, but are not limited to, heat stabilizers, light stabilizers, ultraviolet light absorbers, antioxidants, preservatives, light resistance improvers, plasticizers, various fillers, surfactants, lubricants, solid substances, etc. An anti-caking agent, a flowability improver, etc. may be mentioned, but among them, an anti-caking agent, a flowability improvement agent (for example, a product manufactured by Nippon Aerosil Co., Name: aerosil R 9 72 2, aerosil R 9 7 4) are preferred. As a method of adding various additives, a table feeder or the like may be used to supply and dust the particulate mixture of the mixture on the vibrator, or may be provided to supply the mixture prior to the granulation step and the like. The method is mentioned.
本発明の製造方法においては、 粒状化後の混合物に対して、 所望の粒子径のものを選別 したり、 前記粒状化工程や前記乾燥工程で発生する大きな粒状物を取り除いたりする工程 (選別工程) を備えていてもよい。 この選別工程では、 通常公知のふるいを用いた分級処 理を行えばよいが、 生産性を考慮すれば、 例えば、 振動を与えながら凹凸を有する金属製 の傾斜面のふるいの上で粒子を流動させて選別を行うことや、 穴の空いた金属板を水平方 向に振動させて選別を行うことや、 ふるいそのものがラッパ状かつ横型で、 ふるいの傾斜 面を粒子が回転するようにして選別を行うこと等が好ましい。 選別工程で使用できる機器 としては、 例えば、 振動篩い機 ( (株) セイシン企業製、 製品名:ローテックス 1 3 0 2 P S S S S L型) 等の、 粒子の選別が可能とされる公知の各種機器が挙げられる。 粒子 の選別は、 上述したようなふるいに直接誘導して行うことが好ましい。 この選別工程の前 後に、 例えば、 混合物に添加した各種添加剤のうち該組成物に充分に付着せずにある余分 なものを、 振動 (水平方向や垂直方向) を与えたり、 スクレーパーおよび刷毛等を接触さ せて剥がし取ったり、 風力で飛ばしたりする等の、 外的な力により除く工程を備えていて もよい。 なお、 選別工程は、 後述する乾燥工程の後に行ってもよい。  In the production method of the present invention, a step of selecting particles having a desired particle diameter from the mixture after granulation, removing large particles generated in the granulation step and the drying step ) May be provided. In this sorting step, classification may be carried out using a generally known sieve, but in consideration of productivity, for example, the particles are flowed on a sieve of a metal inclined surface having irregularities while being vibrated. Sorting, vibrating the metal plate with holes in the horizontal direction for sorting, or the sieve itself is a trumpet-like and horizontal type, and the inclined surface of the sieve is rotated so that the particles rotate. And the like are preferable. Examples of devices that can be used in the sorting step include various known devices that allow sorting of particles, such as a vibrating screen (manufactured by Seishin Enterprise Co., Ltd., product name: Rotex 1302 PSSSSL type). It can be mentioned. It is preferable that the sorting of the particles be performed by direct derivation to the sieve as described above. Before the sorting step, for example, any additive added to the mixture which is not sufficiently attached to the composition is subjected to vibration (horizontal direction or vertical direction), scraper, brush, etc. It may be equipped with a process of removing it by an external force, such as bringing it into contact and peeling it off or flying it with wind power. The sorting step may be performed after the drying step described later.
〔乾燥工程 調湿工程〕  [Drying process, humidity control process]
乾燥工程は、 混合物 (好ましくは、 粒状化工程後に得られた混合物) を乾燥するもので ある。 なお、 乾燥工程は、 混合物中の含有水分量を積極的に減少させる工程であり、 この 点で、 後述する吸湿防止処理とは異なる。 また、 この乾燥工程は、 本発明の製造工程中 ( 特に上記冷却固化工程中) で、 直接、 水 (金属板冷却用の水) を用いた雰囲気下が存在し た場合等に、 特に有効な工程である。 そのような水を用いた雰囲気下で混合物を扱った場 合は、 通常よりも顕著に含有水分量が増加するからである。  The drying step is to dry the mixture (preferably, the mixture obtained after the granulation step). The drying step is a step of actively reducing the water content in the mixture, and differs from the moisture absorption preventing treatment described later in this point. In addition, this drying step is particularly effective, for example, when an atmosphere using water (water for metal plate cooling) is directly present during the manufacturing step of the present invention (in particular, in the above-mentioned cooling / solidifying step). It is a process. If the mixture is treated under such an atmosphere of water, the water content will increase significantly more than usual.
乾燥工程における乾燥方法としては、 限定はされないが、 例えば、 (i) 混合物を、 サイ 口に投入後、 圧縮空気を上下から吹きかけ、 循環させて乾燥させる方法や、 (i i) 混合物 を、 コニカルドライヤーに投入後、 圧縮空気を通気させて乾燥させる方法や、 (iii) 混合 物を、 通気回転乾燥機 (例えばロータリーキルン等) に投入後、 圧縮空気を通気させて乾 燥させる方法などが好ましく、 これら乾燥方法は 1種のみ行ってもよいし 2種以上を併せ て行ってもよい。  The drying method in the drying step is not limited. For example, (i) a mixture is injected into the mouth of a mixture, and then compressed air is blown from the top and bottom to circulate and dry; (ii) the mixture is a conical dryer It is preferable to use a method of ventilating compressed air after drying, or (iii) a method of charging the mixture into a ventilated rotary dryer (eg, a rotary kiln etc.) and ventilating compressed air for drying. The drying method may be performed alone or in combination of two or more.
乾燥工程においては、 上述した各種乾燥方法や、 乾燥温度、 乾燥時間などを適宜選択- 設定することにより、 混合物の含有水分量を所望の範囲まで減らすことができ、 詳しくは 、 後述する所望の範囲 (具体的には 3 0 0 p p m以下) まで減らすことが好ましい。 混合 物の含有水分量が後述する所望の範囲 (具体的には 3 0 0 p p m以下) を既に満たしてい る状態であっても、 そうでなくても、 乾燥処理を施すことができる。 乾燥工程において減 ちす水分量は、 限定はされないが、 乾燥処理にかかるコストや生産性を考慮して、 あまり 多くなり過ぎないようにするのがよい。 具体的には、 乾燥処理による含有水分量の減少幅 が、 2 7, 0 0 0 p p m以下であることが好ましく、 より好ましくは 7, 0 0 0 p p m以 下、 さらに好ましくは 4, 7 0 0 p p m以下である。 この減少幅を超える乾燥処理である と、 経済性や生産性に劣るほか、 混合物中のポリマーが劣化するなどして、 最終的に電池 性能等に悪影響を及ぼすおそれがある。 In the drying step, the water content of the mixture can be reduced to a desired range by appropriately selecting and setting the various drying methods described above, the drying temperature, the drying time, etc. Specifically, the desired range to be described later It is preferable to reduce to (specifically, 300 ppm or less). Even if the water content of the mixture already satisfies the desired range (specifically, 300 ppm or less) described later, the drying process can be performed even if it is not. Although the amount of water to be reduced in the drying step is not limited, it is preferable not to be too large in consideration of the cost and productivity of the drying process. Specifically, the reduction of the water content by the drying treatment is preferably 27 ppm or less, more preferably 7 ppm or less, and still more preferably 4,700 It is less than ppm. If the drying process exceeds this decrease range, the economy and productivity are inferior, and the polymer in the mixture is degraded, and finally the battery Performance may be adversely affected.
本発明の製造方法においては、 上記乾燥工程は、 粒状化工程後の混合物に対して行うこ とに限定はされず、 例えば、 冷却固化工程後のそれに対して行うなど、 本発明の製造方法 における各種工程間または各種工程中に行うことができ、 製造過程全体において 1回行つ ても複数回行ってもよい。  In the production method of the present invention, the above-mentioned drying step is not limited to the one performed on the mixture after the granulation step. For example, the above drying step is performed on the one after the cooling and solidification step. It can be performed between various processes or during various processes, and may be performed once or plural times in the whole manufacturing process.
本発明の製造方法により得られる正極材料組成物は、 その含有水分量が 3 0 0 p p m以 下であることが好ましく、 より好ましくは 2 5 0 p p m以下、 さらに好ましくは 2 0 0 p p m以下である。 ここでいう含有水分量は、 最終的に得られる正極材料組成物に関して達 成されていればよく、 本発明の製造方法における製造途中の一部分または全てにおける混 合物において達成されていることが必要というわけではない。 上記含有水分量が 3 0 0 p p mを超えると、 含有水分とリチウム塩が反応しリチウムイオンが水酸化物となって消費 されるため、 イオン伝導度が低下するなど、 リチウム 2次電池の電池性能が低下するおそ れがある。  The water content of the positive electrode material composition obtained by the production method of the present invention is preferably 300 ppm or less, more preferably 250 ppm or less, and still more preferably 200 ppm or less. . The water content referred to here may be achieved for the finally obtained positive electrode material composition, and needs to be achieved in the mixture in part or all of the production process in the production method of the present invention. Not that. If the water content exceeds 300 ppm, the water content and the lithium salt react and the lithium ion is consumed as a hydroxide, so that the ion conductivity decreases. For example, the battery performance of the lithium secondary battery There is a risk that
ただし、 本発明の製造方法により得られる正極材料組成物が、 後述するように、 押出機 等に投入し溶融させて押出し、 フィルム状の正極材料として使用される場合には、 押出し 機に供する正極材料組成物の含有水分量がある程度高い方が、 水分の可塑効果により安定 的にフィルムを押し出すことができ、 好ましい。 このような場合、 粒状化工程以後に調湿 工程を設けて、 正極材料組成物を調湿しておき、 その後、 例えば、 押出し機等の先端に減 圧で引けるベントを設け、 押出し機等の出口直前で水分を除去するなどして、 押出機等で フィルム化する直前に水分を除去して、 前記範囲の含有水分量 (3 0 0 p p m以下) にす ればよい。 なお、 調湿工程において調湿する場合であっても、 フィルム化する直前に除去 し得る水分量を考慮すると、 調湿後の正極材料組成物の含有水分量が 3 , 0 0 0 p p m以 下とすることが好ましい。  However, as described later, when the positive electrode material composition obtained by the production method of the present invention is introduced into an extruder or the like, melted and extruded, and used as a film-like positive electrode material, the positive electrode used in the extruder It is preferable that the water content of the material composition is relatively high because the film can be stably extruded by the plasticizing effect of the water. In such a case, a humidity control process is provided after the granulation process to adjust the humidity of the positive electrode material composition, and then, for example, a vent that can be drawn by pressure reduction is provided at the tip of an extruder etc. Water may be removed immediately before the outlet, etc., and water may be removed immediately before film formation with an extruder or the like to make the water content in the above-mentioned range (300 ppm or less). In addition, even when humidity control is performed in the humidity control process, the water content of the positive electrode material composition after humidity control is less than 30,000 ppm, in consideration of the amount of water that can be removed immediately before film formation. It is preferable to
調湿工程において調湿する方法としては、 限定されないが、 例えば、 正極材料組成物に 所定量の水 (好ましくはイオン交換水) を霧吹きやスプレーノズル等を通して噴霧したの ち、 例えば乾燥工程で例示した装置等を用いて攪拌や回転を行うことにより、 正極材料組 成物と噴霧した水とを馴染ませるようにすればよい。  The method of controlling humidity in the humidity control step is not limited. For example, after a predetermined amount of water (preferably ion-exchanged water) is sprayed to the positive electrode material composition through a spray or spray nozzle etc. The positive electrode material composition and the sprayed water may be adapted to each other by stirring or rotating using the above apparatus.
本発明の製造方法においては、 混合物の吸湿を防止する工程 (吸湿防止工程) を備えて いてもよい。 この工程では、 混合物が、 その製造雰囲気中から取り込む水分量を低減させ 得る処理を施すようにするが、 処理を施した過程において含有水分量の増加を完全に抑え ることは必ずしも必要とされず、 このような処理を施さなかった場合に比べて含有水分量 の増加を抑えていればよいものとする。 以下、 吸湿防止工程について詳しく説明する。  In the production method of the present invention, a step of preventing moisture absorption of the mixture (hygroscopicity preventing step) may be provided. In this step, the mixture is subjected to a treatment capable of reducing the amount of water taken from the production atmosphere, but it is not always necessary to completely suppress the increase in the amount of water contained in the treatment process. The increase in water content should be suppressed as compared to the case where such treatment is not performed. Hereinafter, the moisture absorption preventing step will be described in detail.
〔吸湿防止工程〕  Moisture absorption prevention process
吸湿防止工程は、 混合物の含有水分量を制御 ·管理するという点では、 前記乾燥工程と 同様の効果を得ることができるので、 乾燥工程の代わりに行うようにしてもよいし、 乾燥 工程と併せて行うようにしてもよい。 また吸湿防止工程は、 本発明の製造方法における各 種工程間または各種工程中に行うことができ、 製造過程全体において 1回行っても複数回 行ってもよく、 限定はされない。  The moisture absorption preventing step can be performed instead of the drying step because the same effect as the drying step can be obtained in terms of controlling and managing the water content of the mixture. May be performed. The moisture absorption preventing step can be performed between various steps in the manufacturing method of the present invention or during various steps, and may be performed once or plural times in the whole manufacturing process, and is not limited.
吸湿防止工程における処理としては、 例えば、 いわゆる膜式の除湿処理、 冷凍式の除湿 処理、 吸着剤式の除湿処理などが挙げられる。 膜式の除湿処理とは、 具体的には、 本発明の製造方法で用いる各種装置 ·機器および混 合物の移動経路などを含む領域中の所望の領域を、 気密性の高い材料で覆い、 その中に中 空糸膜に圧縮空気 (飽和相対湿度 1 0 0 %の飽和空気) 中の水分を吸収させて得た乾燥空 気をコンプレッサーで送り込んで、 乾燥雰囲気を作り出す処理である。 この処理は、 例え ば、 中空糸膜分離方式圧縮空気用ドライヤー (東芝プラント建設 (株) 製、 製品名 : MA C D A S S ) を用いて行うことができる。 また、 上記圧縮空気は、 露点一 1 0 °C以下であ ることが好ましく、 より好ましくは露点 _ 2 0で以下、 さらに好ましくは露点一 3 0 °C以 下である。 上記圧縮空気が、 露点— 1 0でを超える場合は、 混合物の含有水分量が多くな り電池性能等の低下を引き起こすおそれがある。 また、 上述の乾燥空気以外に、 窒素等の 不活性ガスを用いることもできる。 Examples of the treatment in the moisture absorption preventing step include so-called film-type dehumidifying treatment, freezing-type dehumidifying treatment, and adsorbent-type dehumidifying treatment. Specifically, the membrane-type dehumidifying process covers a desired region in a region including various devices / equipment used in the manufacturing method of the present invention, equipment, and a movement path of the mixture with a highly airtight material. Dry air obtained by absorbing moisture in compressed air (saturated air with a relative humidity of 100%) into the hollow fiber membrane is sent by a compressor to create a dry atmosphere. This treatment can be performed, for example, using a hollow fiber membrane separation type compressed air dryer (manufactured by Toshiba Plant Construction Co., Ltd., product name: MA CDASS). The compressed air is preferably at a dew point of 10 ° C. or less, more preferably at a dew point of 20 ° C. or less, still more preferably at a dew point of 30 ° C. or less. If the compressed air exceeds the dew point −10, the water content of the mixture increases, which may cause a decrease in battery performance and the like. In addition to the dry air described above, an inert gas such as nitrogen can also be used.
冷凍式の除湿処理とは、 具体的には、 冷凍機で圧縮空気を冷却し、 圧縮空気中の水分を 凝縮排水して乾燥空気を得、 乾燥雰囲気を作り出す処理である。  Specifically, the freezing and dehumidifying treatment is a treatment that cools compressed air with a refrigerator, condenses and discharges moisture in the compressed air to obtain dry air, and creates a dry atmosphere.
' 吸着剤式の除湿処理とは、 具体的には、 活性アルミナ等の吸着剤に水分を吸着させて乾 燥空気を得、 乾燥雰囲気を作り出す処理である。  The adsorbent-type dehumidifying treatment is, specifically, a treatment in which moisture is adsorbed by an adsorbent such as activated alumina to obtain dry air, thereby creating a dry atmosphere.
吸湿防止工程においては、 吸湿防止処理を施した間の、 混合物の含有水分の増加幅が、 2 5 0 p p m以下であることが好ましく、 より好ましくは 2 0 0 p p m以下、 さらに好ま しくは 1 5 0 p p m以下である。 上記増加幅が 2 5 0 p p mを超える場合は、 混合物の含 有水分量が多くなり電池性能等の低下を引き起こすおそれがある。 また、 吸湿防止処理を 行う時点で、 混合物の含有水分量が後述する所望の範囲内となっている場合、 処理後もそ の範囲を維持させることが好ましい。  In the moisture absorption preventing step, the increase range of the moisture content of the mixture during the moisture absorption preventing treatment is preferably 250 ppm or less, more preferably 200 ppm or less, and still more preferably 15 It is less than 0 ppm. If the above increase exceeds 250 ppm, the water content of the mixture increases, which may cause a decrease in battery performance and the like. Further, when the moisture content of the mixture is within the desired range described later at the time of performing the moisture absorption preventing process, it is preferable to maintain the range after the process.
本発明の製造方法により得られる正極材料組成物 (すなわち、 最終的に得られた混合物 ) は、 押出機等に投入し溶融させて押出し、 フィルム状の正極材料として使用される場合 がある。 その際、 押出機への投入は、 正極材料組成物の形状に応じて押出機への供給機器 を適宜選択し採用すればよい。 例えば、 該組成物の形状が粒子状の場合は、 ベルト型フィ ーダ一から押出機のモータ一側の第一供給口へ定量的に供給することができ、 特にペレツ ト状である場合は、 一軸または二軸タイプのスクリユー型フィーダ一から定量的に供給す ることができる。 また、 該組成物の形状が塊状 (ブロック状) の場合は、 一軸または二軸 あるいは両方のシステムを併用したホッパーデイスチャージヤータイプのフイダールーダ 一やニーダールーダ一等のメルタ一 ( (株) モリヤマ製、 製品名: 2 T R— 5 0や 2 T R - 7 5 ) で溶融させて、 押出機のモーター側の第一供給口へ定量的に供給することができ る。 また、 正極材料組成物を、 工程(I I )ののちに得られた混合物 (この場合、 工程 (I ) では溶融状態としたポリマー自体を媒体とする) もしくは工程 (I I I ) 後に得られた 溶媒を全くもしくはほとんど含まない混合物のように、 溶融状態で形状のない状態のまま 、 押出し機の第一供給口に定量的に供給することも可能である。  The positive electrode material composition (ie, the mixture finally obtained) obtained by the production method of the present invention may be introduced into an extruder or the like, melted and extruded, and used as a film-like positive electrode material. At that time, the equipment to be supplied to the extruder may be appropriately selected and adopted according to the shape of the positive electrode material composition for the introduction into the extruder. For example, when the shape of the composition is in the form of particles, it can be quantitatively supplied from the belt type feeder 1 to the first supply port on the motor 1 side of the extruder, in particular when it is in the form of pellets. It can be supplied quantitatively from a single screw or single screw type screw-up feeder. When the composition is in the form of a block (in the form of a block), a hopper disk charger type one, a kneader one, etc. Melta one (manufactured by Moriyama Co., Ltd.) using a uniaxial or biaxial system or a combination of both systems. Product name: 2 TR-50 or 2 TR-75) can be melted and supplied quantitatively to the first supply port on the motor side of the extruder. Further, the positive electrode material composition may be a mixture obtained after step (II) (in this case, the polymer itself in the molten state is used as a medium in step (I)) or the solvent obtained after step (III) It is also possible to quantitatively feed the first feed port of the extruder in the molten state and without shape, as in the case of a mixture which contains no or almost nothing.
本発明の製造方法においては、 前述した各種製造工程のうちの少なくとも一つの工程を 不活性ガス雰囲気下で行うようにすることが好ましい。 不活性ガス雰囲気下で行うことに より、 混合物中のポリマーの分解を抑制し得るほか、 吸湿を抑制する効果が得られる。 な お、 上記不活性ガス雰囲気としては、 不活性ガスを 9 9容量%以上含むガスの雰囲気であ ることが好ましい。 上記不活性ガスとしては、 例えば、 窒素、 アルゴンおよびヘリウムな どが挙げられる。 上記不活性ガスを含むガスは、 正極材料組成物の含有水分量を低いレべ ル (例えば 300 p pm以下、 好ましくは 250 p p m以下、 より好ましくは 200 p p m以下) に保つように、 低含有水分量のガ とすることが好ましい。 In the production method of the present invention, it is preferable to perform at least one of the various production steps described above in an inert gas atmosphere. By performing the reaction under an inert gas atmosphere, decomposition of the polymer in the mixture can be suppressed, and an effect of suppressing moisture absorption can be obtained. Preferably, the inert gas atmosphere is a gas atmosphere containing at least 99% by volume of an inert gas. Examples of the inert gas include nitrogen, argon and helium. The gas containing the above-mentioned inert gas can be used to reduce the water content of the positive electrode material composition. It is preferable to use a low water content to keep it low (eg, 300 ppm or less, preferably 250 ppm or less, more preferably 200 ppm or less).
所望の工程を不活性ガス雰囲気下で行う方法としては、 限定はされないが、 例えば、 前 述した吸湿防止工程での膜式の除湿処理において、 乾燥空気の代わりに上記不活性ガスを 含むガスを用いる方法が好ましく適用できる。  The method of performing the desired step under an inert gas atmosphere is not limited, but, for example, in the membrane-type dehumidifying treatment in the moisture absorption preventing step described above, a gas containing the above-mentioned inert gas is used instead of dry air. The method used is preferably applicable.
本発明の製造方法は、 前記工程 (I) に用いるポリマー (ここでは混合前のポリマーを 言う。 ) の重量平均分子量を Mw。とし、 最終工程後の混合物中のポリマーの重量平均分 子量を Mwとしたときに、 下記式 (1) により求められる重量平均分子量減少率 (DMw) が 10%以下であることが好ましい。 前述したような本発明の製造方法によれば、 容易に ポリマーの重量平均分子量の減少率を上記範囲に納めることができる。 In the production method of the present invention, the weight average molecular weight of the polymer used in the step (I) (here, the polymer before mixing) is Mw. When the weight average molecular weight of the polymer in the mixture after the final step is Mw, it is preferable that the weight average molecular weight reduction rate (D Mw ) determined by the following formula (1) is 10% or less. According to the production method of the present invention as described above, the reduction rate of the weight average molecular weight of the polymer can be easily set within the above range.
DMw (%) = 〔 (Mw。一 Mw) /Mw0] X I 00 (1) D Mw (%) = [(Mw. 1 Mw) / Mw 0 ] XI 00 (1)
上記 DMwは、 より好ましくは 7%以下、 さらに好ましくは 5%以下である。 上記 DMw が 10%を超え'ると、 電池性能を低下させるおそれがあるほか、 安定した電池性能を発揮 させ得る正極材料組成物とならないおそれがある。 なお、 上記最終工程とは、 混合のため の工程 (I) および工程 (I I) 後に行った全ての工程のうちの最終の工程を意味するも のである。 The D Mw is more preferably 7% or less, and still more preferably 5% or less. When the D Mw exceeds 10%, there is a possibility that the battery performance may be lowered, and there is also a possibility that the positive electrode material composition can not exhibit stable battery performance. The above-mentioned final step means the final step among all the steps carried out after step (I) and step (II) for mixing.
本発明の製造方法により得られる正極材料組成物は、 前述したように、 リチウム 2次電 池の正極部分に用い得る材料組成物として好適である。 実施例  As described above, the positive electrode material composition obtained by the production method of the present invention is suitable as a material composition that can be used for the positive electrode portion of a lithium secondary battery. Example
以下に、 実施例および比較例によって本発明をより具体的に説明するが、 本発明はこれ らに限定されるものではない。 以下では、 便宜上、 「重量部」 を単に 「部」 と、 「リット ル」 を単に 「L」 と記すことがある。 また、 「重量%」 を 「wt%」 と記すことがある。 実施例および比較例における、 測定方法および評価方法について以下に説明する。  EXAMPLES The present invention will be more specifically described below by Examples and Comparative Examples, but the present invention is not limited thereto. In the following, for convenience, “parts by weight” may be described simply as “parts” and “liters” may be simply described as “L”. Also, "wt%" may be described as "wt%". The measurement method and evaluation method in Examples and Comparative Examples will be described below.
ぐ重量平均分子量 (Mw) 、 多分散度 (分子量分布) (Mw/Mn) の測定 >  Measurement of weight average molecular weight (Mw) and degree of polydispersity (molecular weight distribution) (Mw / Mn)>
ポリエチレンォキシドの標準分子量サンプルを用いて検量線を作成した G PC装置 (東 ソ一社製、 製品名: I I LC—8120GPC) により測定した。  It measured by the GPC apparatus (The Tosoh company make, product name: I LC-8120GPC) which prepared the calibration curve using the standard molecular weight sample of polyethylene oxide.
ポリマー溶液中のポリマーについては、 ポリマー溶液に、 該ポリマー溶液中のポリマー 濃度が 1 w t %となるようにァセトニトリルを加えて溶解させたのち、 2000 p pmで 3分間遠心分離を施し、 得られた上澄み液に所定の溶媒 (溶離液 (ァセトニトリル 水 Z 無水酢酸ナトリウム) ) を加えて希釈した後、 測定した。  The polymer in the polymer solution was dissolved by adding acetonitrile to the polymer solution so that the concentration of the polymer in the polymer solution was 1 wt%, and centrifuged at 2000 ppm for 3 minutes. The supernatant was added with a predetermined solvent (eluent (acetonitrile water Z anhydrous sodium acetate)) to dilute, and then measured.
正極材料組成物 (または混合物) 中のポリマーについては、 該組成物 (または混合物) に、 ァセトニトリルを加えて、 該組成物 (または混合物) の 1 w t %溶液となるようにし 、 該溶液をタツチミキサーおよびシェーカーで十分に撹拌して電極活物質を分散させ、 ポ リマーを溶解させる。 その後、 フィルター (非水系、 目開き : 45 /zm) でろ過して不溶 物を除き、 ろ液に前記溶離液を加えて希釈した後、 測定した。  As for the polymer in the positive electrode material composition (or mixture), an acetonitrile is added to the composition (or mixture) to make a 1 wt% solution of the composition (or mixture), and the solution is a Tatchich mixer. Stir well with a shaker to disperse the electrode active material and dissolve the polymer. Thereafter, the mixture was filtered through a filter (non-aqueous, opening: 45 / zm) to remove insolubles, and the filtrate was diluted with the above-mentioned eluent and then measured.
<含有水分量の測定 >  <Measurement of water content>
正極材料組成物 (または混合物) に、 脱水ァセトニトリル (モレキュラーシーブ (ュニ オン昭和社製、 製品名:タイプ 4A, 1 , 6) を 10w t %添加し、 含有水分量が 25 p pm以下となるように脱水処理したもの) を加えて、 該組成物 (または混合物) の 5〜3 0 w t %溶液となるようにし、 該溶液を強力な ターラーで撹拌して十分に電極活物質を 分散させ、 ポリマーを溶解させる。 その後、 遠心分離処理して主な不溶分を沈降させ、 上 澄み液をシリンジで約 2〜3mLサンプリングし、 カールフィッシャー水分測定器 (電量 滴定法、 平沼産業社製、 製品名 : AQ— 7) を用いて、 前記溶液中の含有水分量 (p pm ) を測定 (測定 A) した。 別途、 溶媒として用いた脱水ァセトニトリルについても、 その 含有水分量 (p pm) について、 同様の測定器を用いて測定 (測定 B) した。 測定 Aによ る含有水分量から、 測定 Bによる含有水分量を差し引いて、 前記組成物 (または混合物) 中の含有水分量 (p pm) を求めた。 10 wt% of dehydrated acetonitrile (Molecular sieve (manufactured by UNION SHOWA, product name: type 4A, 1, 6) is added to the positive electrode material composition (or mixture), and the water content becomes 25 ppm or less (As dewatered) to add 5 to 3 of the composition (or mixture) The solution is adjusted to a 0 wt% solution, and the solution is stirred with a strong stirrer to sufficiently disperse the electrode active material and dissolve the polymer. After that, the mixture is centrifuged to precipitate the main insoluble matter, and the supernatant is sampled with a syringe for about 2 to 3 mL, and Karl Fischer moisture measuring instrument (Coulometric titration method, manufactured by Hiranuma Sangyo Co., Ltd., Product name: AQ-7) The water content (p pm) in the solution was measured (Measurement A) using. Separately, with regard to dehydrated acetonitrile used as a solvent, the water content (p pm) was measured (measurement B) using the same measuring instrument. From the water content according to measurement A, the water content according to measurement B was subtracted to obtain the water content (ppm) in the composition (or mixture).
<固形分の測定 >  <Measurement of solid content>
ポリマー溶液、 または、 正極材料組成物 (または混合物) についてはァセトニトリルを 加えて溶解させた組成物 (または混合物) 溶液を、 所定量枰量し、 乾燥機内に入れ、 11 0°C、 0. 09〜0. 1 OMP aで 20分間減圧加温した。 減圧加温後の重量を秤量し、 これを不揮発分重量として、 ポリマー溶液または前記組成物 (または混合物) 溶液の固形 分 (wt%) を求めた。  A polymer solution or a composition (or mixture) solution in which acetonitrile is added and dissolved for a positive electrode material composition (or mixture) is weighed in a predetermined amount, and placed in a dryer, 110 ° C., 0.09 ~ 0. 1 OMP a for 20 minutes under vacuum heating. The weight after heating under reduced pressure was weighed, and the solid content (wt%) of the polymer solution or the composition (or mixture) solution was determined as the weight of the non-volatile component.
<電解質塩化合物の含有割合の測定 >  <Measurement of Proportion of Electrolytic Salt Compound>
正極材料組成物 (または混合物) に、 ァセトニトリルを加えて、 該組成物 (または混合 物) の 10 w t %溶液となるようにした。 この溶液をメンブランフィルターで減圧ろ過し 、 その後さらに、 ろ物を洗浄するため該フィルター上にァセトニトリルを注いで減圧ろ過 した (この際、 ろ液中におけるポリマーと電解質塩化合物との合計濃度が約 1 w t %とな る量のァセトニトリルを使用して洗浄する。 ) 。 得られたろ液をサンプルとして、 I CP -AES (誘導結合プラズマ発光分光分析装置、 セイコー電子工業社製、 製品名: SPS 4000) により測定される L iの強度から、 前記組成物 (または混合物) 溶液中の電解 質塩化合物の濃度を算出し、 さらに該溶液中の前記組成物 (または混合物) の濃度を考慮 して、 前記組成物 (または混合物) 中の電解質塩化合物の含有割合 (w t%) を求めた。  Ascetonitrile was added to the positive electrode material composition (or mixture) to make a 10 wt% solution of the composition (or mixture). This solution was filtered under reduced pressure with a membrane filter, and after that, acetonitrile was poured onto the filter to wash the filtrate and filtered under reduced pressure (in this case, the total concentration of polymer and electrolyte salt compound in the filtrate was about 1 Wash with an amount of wt% acetonitrile. The composition (or mixture) is obtained from the intensity of Li measured by I CP -AES (Inductively coupled plasma emission spectrometry, manufactured by Seiko Instruments Inc., product name: SPS 4000) using the obtained filtrate as a sample The concentration of the electrolyte salt compound in the solution is calculated, and the content ratio of the electrolyte salt compound in the composition (or mixture) in consideration of the concentration of the composition (or mixture) in the solution (wt% I asked for).
<導電助剤を含む電極活物質の含有割合の測定〉  <A measurement of the content rate of the electrode active material containing a conductive support agent>
次の (A) または (B) のいずれかの方法で測定した。  It measured by either method of following (A) or (B).
(A) 正極材料組成物 (または混合物) に、 ァセトニトリルを加えて、 該組成物 (また は混合物) の 7〜1 Ow t%溶液となるようにし、 該溶液をスターラーで撹拌した後、 遠 心分離処理して不溶分を沈降させ、 上澄みのみをメンブランフィルターで減圧ろ過する。 別途、 沈降した不溶分については、 再度ァセトニトリルを加えて、 スターラーで撹拌した 後、 同様にメンブランフィルターで減圧ろ過する。  (A) To a positive electrode material composition (or a mixture), add acetonitrile to make a 7 to 1 wt% solution of the composition (or a mixture), stir the solution with a stirrer, and then centrifuge it. The separation treatment is carried out to precipitate insolubles, and only the supernatant is vacuum filtered using a membrane filter. Separately, for precipitated insoluble matter, add acetonitrile again, stir with a stirrer, and filter under reduced pressure with a membrane filter in the same manner.
上記 2回の減圧ろ過で得られた残渣 (フィルター上に残った残留物) を、 110°C 、 0. 09-0. 1 OMP aの減圧加熱下で 1時間乾燥し、 乾燥後の合計重量を測定して 、 導電助剤を含む電極活物質の重量とした。 該重量と、 測定に用いた正極材料組成物 (ま たは混合物) の重量とから、 該組成物 (または混合物) 中の、 導電助剤を含む電極活物質 の含有割合 (w t %) を求めた。  The residue obtained by the above two vacuum filtrations (the residue remaining on the filter) is dried at 110 ° C. under a vacuum heating of 0.0.09-0. 1 OMP a for 1 hour, and the total weight after drying The weight of the electrode active material containing the conductive aid was measured. From the weight and the weight of the positive electrode material composition (or mixture) used in the measurement, the content ratio (wt%) of the electrode active material containing the conductive auxiliary in the composition (or mixture) is determined. The
上記 2回の減圧ろ過で得られたろ液については、 前述した固形分の測定方法を適用 することにより、 固形分として、 測定に用いた正極材料組成物中のポリマーと電解質塩化 合物との合計含有割合 (w t%) を求め、 合計含有割合から、 前述した方法により求めら れる電解質塩化合物の含有割合 (w t%) を差し引くことにより、 ポリマーのみの含有割 合 (W t %) を求めた。 About the filtrate obtained by the said 2 times vacuum filtration, the sum total of the polymer and electrolyte chloride in the positive electrode material composition used for measurement as solid content by applying the measurement method of solid content mentioned above By determining the content ratio (wt%) and subtracting the content ratio (wt%) of the electrolyte salt compound determined by the above-mentioned method from the total content ratio, the content of the polymer alone can be reduced. The combination (W t%) was determined.
(B) 正極材料組成物 (または混合物) を厚み 2mmのシート状にし、 該シートから切 り出した直径 3 c mの円形試料を、 蛍光 X線分析装置 (フィ リ ップス社製、 PW— 240 4型) にかけて、 電極活物質中のバナジウムの強度を測定する。 そして、 あらかじめ、 電 極活物質の含有量が既知のサンプルで作製した検量線から、 電極活物質の含有割合 (w t %) を算出する。 ' ぐ混合後の分散状態の評価〉  (B) A positive electrode material composition (or mixture) is formed into a sheet having a thickness of 2 mm, and a circular sample having a diameter of 3 cm cut out from the sheet is measured by a fluorescent X-ray analyzer (PW-240 4 manufactured by PHILIPS, INC. Measure the strength of vanadium in the electrode active material. Then, the content ratio (wt%) of the electrode active material is calculated in advance from a calibration curve prepared for a sample of which the content of the electrode active material is known. Evaluation of dispersion after mixing
混合工程後の撹拌装置内のスラリー状の混合物をサンプリングし、 該サンプル中に目視 により粒状物がどの程度確認できるかについて、 混合後の分散状態の評価の一要素として 、 以下の表 1に示す基準により評価した。  The slurry-like mixture in the stirring apparatus after the mixing step is sampled, and the degree to which the particulate matter can be visually confirmed in the sample is shown in Table 1 below as one element of evaluation of the dispersion state after mixing. Evaluated by criteria.
別途、 撹拌装置内のスラリー状の混合物から、 数ケ所 (撹拌装置内のジャケット側や中 心部 (撹拌棒付近) 等から 2〜3ケ所) サンプリングし、 前述した方法により、 各サンプ ルについて電解質塩化合物の含有割合、 および、 導電助剤を含む電極活物質の含有割合を 測定した。 各サンプル間での各測定値の振れについて、 各サンプル間での各測定値の最大 差に着目して、 混合後の分散状態の評価の一要素として、 以下の表 1に示す基準により評 価した。  Separately, from the slurry-like mixture in the stirring device, several places (2 to 3 locations from the jacket side and the central part (near the stirring rod) in the stirring device etc.) are sampled, and electrolyte for each sample by the above-mentioned method The content ratio of the salt compound and the content ratio of the electrode active material containing the conductive aid were measured. Regarding the fluctuation of each measured value among each sample, paying attention to the maximum difference of each measured value among each sample, it is evaluated according to the criteria shown in Table 1 below as one factor of evaluation of the dispersion state after mixing. did.
【表 1】 【table 1】
Figure imgf000026_0001
Figure imgf000026_0001
<混合後の凝集物の含有率〉 <Content of aggregate after mixing>
ガラス容器にあらかじめクロ口ホルム 50部を仕込み、 その中にスラリ一状の混合物を 固形分で 3〜4部に相当する量だけ精枰して投入し (この重量を X ( g ) とし、 該 X ( g ) のスラリー状混合物中に含まれる固形分量を X (g) とする) 、 その後、 クロ口ホルム 80部をさらに投入した。 その後、 ガラス容器に冷却管を取り付け、 55°Cで 2時間加温 してスラリー状の混合物を溶解させたのち、 冷却し、 ガラス容器の内容物を金属製メッシ ュ (SUS 316製、 線径 0. 06、 150 m/ s , オープニング 0. 109 mm) 上に 流し込み、 少量のクロ口ホルムでガラス容器の洗浄と金属製メッシュ上の残渣の洗浄を行 つた。 金属製メッシュ上の残渣を室温下で一昼夜減圧乾燥して揮発成分を除去したのち、 得られた残渣の重量を精枰した (この重量を y (g) とする) 。 そして、 (yZX) X I 00で求められる値を、 凝集物含有率 (%) とした。  Into a glass container, 50 parts of crotch form is previously charged, and into this, a mixture of slurry is refined and charged in an amount corresponding to 3 to 4 parts in solid content (this weight is X (g), The amount of solid content contained in the slurry-like mixture of X (g) is represented by X (g)), and then 80 parts of chloroform was further added. Then attach a cooling pipe to the glass container, heat at 55 ° C for 2 hours to dissolve the slurry-like mixture, cool, and let the contents of the glass container be made of metal mesh (made of SUS 316, wire diameter The sample was poured on top of 0. 06, 150 m / s, opening 0. 109 mm), and the glass container was washed and the residue on the metal mesh was washed with a small amount of flask. The residue on the metal mesh was dried at room temperature overnight under reduced pressure to remove volatile components, and then the weight of the obtained residue was refined (this weight is referred to as y (g)). And the value calculated | required by (yZX) X I 00 was made into aggregate content rate (%).
〔実施例 1〕  [Example 1]
《ポリマー溶液の調製〉〉  << Preparation of Polymer Solution >>
マックスブレンド翼 (住友重機械工業 (株) 製) および添加口を備えた 1 Lの反応器に 、 溶媒 (トルエン) 1 7 1 0部を投入し 7 0°Cで 3時間撹拌して、 該反応器内を洗浄した 後、 該溶媒を抜き取って加熱乾燥し、 その後、 反応器内を窒素により 3回置換操作 (0. 5MP a) を行い、 窒素置換した。 この反応器に、 モレキュラーシーブにより脱水処理を 施したトルエン (含有水分量: 20 p pm以下) 94 1部と、 反応開始剤としての t—ブ トキシカリウム (20 w t %テトラヒドロフラン溶液) 1. 7 9部とを順次投入した。 投 入後、 マックスブレンド翼を 90 r pmで回転させて撹拌しながら、 反応器内の窒素置換 を行い、 反応器内の圧力が 0. 3MP aになるまで窒素で加圧し、 ジャケットに温水を流 し昇温した。 Max Blend Wing (Sumitomo Heavy Industries, Ltd.) and 1 L reactor equipped with an addition port The solvent (toluene) was charged with 170 parts and stirred at 70 ° C. for 3 hours to wash the inside of the reactor, and then the solvent was removed and dried by heating, and then the inside of the reactor was flushed with nitrogen. A 3-substitution operation (0.5MP a) was performed and nitrogen substitution was performed. In this reactor, 1 part of toluene (water content: not more than 20 ppm) 94 dewatered with molecular sieve and t-butoxide potassium as a reaction initiator (20 wt% tetrahydrofuran solution) 1. 7 9 We put in department and sequentially. After the introduction, the maxblend blade is rotated at 90 rpm and the reactor is purged with nitrogen while stirring, and pressurized with nitrogen until the pressure in the reactor becomes 0.3MPa, and warm water is added to the jacket The temperature rose.
反応器の内温が 9 0°Cになったことを確認した後、 エチレンォキシドの供給を 2 20. 2部 の供給速度で開始し、 40分間定量的に供給した。 エチレンォキシドの供給開始 から 20分後、 モレキュラーシーブにより脱水処理を施したブチレンォキシド (含有水分 量: 400 ppm以下) の供給を 48. 9部 Z hの供給速度で開始し、 20分間定量的に 供給した。 エチレンォキシドの供給開始から 40分後、 エチレンォキシドについては 1 4 6. 4部 Zh、 ブチレンォキシドについては 3 2. 6部 の供給速度で、 それぞれ更に 1時間定量的に供給した。 エチレンォキシドの供給開始から 1時間 40分後、 エチレンォ キシドについては 1 0 9. 8部/ h、 ブチレンォキシドについては 24. 48部 Zhの供 給速度で、 それぞれ更に 1時間 20分定量的に供給した。 エチレンォキシドの供給開始か ら 3時間後、 エチレンォキシドについて 7 3. 2部 の供給速度で、 更に 2時間定量的 に供給した。 エチレンォキシドの供給開始から 5時間後、 エチレンォキシドについて 5 8 . 8部 Zhの供給速度で、 更に 2. 5時間定量的に供給した (エチレンォキシドの供給量 :計 7 3 3部、 ブチレンォキシドの供給量:計 8 1. 4部) 。 供給中、 重合熱による内温 上昇および内圧上昇を監視 ·制御しながら、 1 00°C± 5°Cで反応を行った。  After confirming that the internal temperature of the reactor had reached 90 ° C., the ethylene oxide feed was started at a feed rate of 220.2 parts and was fed quantitatively for 40 minutes. Twenty minutes after the start of ethylene oxide supply, the supply of butylene oxide denatured by molecular sieve (water content: 400 ppm or less) was started at a supply rate of 48.9 parts Zh for 20 minutes quantitatively. Supplied. Forty minutes after the start of ethylene oxide supply, the solution was supplied quantitatively for 1 hour each at a supply rate of 14.46 parts Zh for ethylene oxide and 36. 6 parts for butylene oxide. One hour and 40 minutes after the supply start of ethylene oxide, 100 parts / h for ethylene oxide and 24.48 parts for butylene oxide, respectively, supply is continued for an additional one hour and 20 minutes, respectively. did. Three hours after the start of ethylene oxide supply, it was quantitatively supplied for another two hours at a supply rate of 73.2 parts of ethylene oxide. Five hours after the start of the supply of ethylene oxide, ethylene oxide was supplied quantitatively at a supply rate of 58.8 parts Zh for 2.5 hours (supply amount of ethylene oxide: total 7 3 parts of ethylene oxide, Supply of butylene oxide: Total 8 1. 4). The reaction was carried out at 100 ° C ± 5 ° C while monitoring and controlling internal temperature rise and internal pressure rise due to heat of polymerization during supply.
供給終了後、 さらに 1 00°C± 5°Cで 2時間保持して熟成させた。  After the end of the feeding, it was aged by further holding at 100 ° C. ± 5 ° C. for 2 hours.
以上の操作により、 ポリマーの重量平均分子量 Mwが 1 24, 000であり、 固形分が 45. 8w t %である、 ポリマー溶液 (1 0) を得た。  By the above operation, a polymer solution (10) having a weight-average molecular weight Mw of 12.4 000 and a solid content of 45.8 w t% was obtained.
《混合工程》  << Mixing process >>
(ポリマ一溶液と L i塩との混合)  (Mixture of polymer solution and Li salt)
マックスブレンド翼を搭載した竪型同心撹拌装置 (製品名:マックスプレンド翼、 住友 重機械工業 (株) 製) を、 予め、 1 50°Cでの加温下、 窒素流通下で装置内の水分を除き 、 窒素置換 (1. 5 k gZcm2までの加圧と 0. 5 k gZcm2までの解圧) を 4回行い 、 ジャッケット温度を 70 °Cに昇温した。 The water content in the unit under nitrogen flow, with the vertical mixing agitator equipped with Max Blend wings (product name: Max Prand Wing, manufactured by Sumitomo Heavy Industries, Ltd.), preheated at 150 ° C and flowing nitrogen except, substituted by nitrogen (1 to 5 k gZcm pressurized with 0. 5 k gZcm 2 up 2 Kai圧) performed 4 times, it was raised jacket temperature to 70 ° C.
予め約 80°Cに加温保温しておいたポリマー溶液 (1 0) 3 3. 30部を、 窒素加圧 ( 0. 5 k g/cm2) により、 撹拌装置へ投入した。 The polymer solution (10) 3 3. 30 parts which had been preheated and kept at about 80 ° C. was charged into a stirring apparatus by nitrogen pressure (0.5 kg / cm 2 ).
さらに、 予め窒素置換しておいた L i塩 3. 28部を、 ホッパーから、 ベントを開いて 、 撹拌装置へ投入した。 その後、 トルエン 6. 00部で該ホッパー等を洗浄し、 洗浄後、 撹拌機を稼動 (マックスブレンド翼: 90 r pm) させ、 内温を 70. 2。C (ジヤッケッ ト温度: 7 1°C) にして、 2時間撹拌混合した。  Further, 3.28 parts of L i salt previously purged with nitrogen were fed from the hopper to the stirring device with the vent opened. Thereafter, the hopper and the like are washed with 6,000 parts of toluene, and after washing, the stirrer is operated (Max blend wing: 90 rpm) and the internal temperature is 70.2. C (jacket temperature: 71 ° C.) and stirred for 2 hours.
(導電助剤を含む電極活物質と混合)  (Mixed with electrode active material containing conductive aid)
スーパーブレンド翼 (内翼:マックスブレンド翼、 外翼:螺旋状変形バッフル) を搭載 した竪型同心二軸撹拌装置 (製品名 : スーパーブレンド、 住友重機械工業 (株) 製) に、 窒素を少量流しながら、 酸化防止剤 ( (株) エーピーアイコーポレーション製、 製品名: ヨシノックス BB) 0. 076部をのぞき窓から投入後、 トルエン 30部を仕込み、 さら に、 導電助剤としてのカーボンブラックを l〜8w t%含む電極活物質 (US AVE S TOR LLC社製、 製品名 : リチォ化酸化バナジウムノカーボンブレンド) 31. 68 部を、 ホッパーから投入した。 その後、 トルエン 10. 0部で該ホッパー等を洗浄し、 投 入口を閉じた。 該洗浄後、 撹拌装置を稼動 (内翼: 75 r pm、 外翼: 29 r pm) させ 、 30分間撹拌混合し、 スラリーを得た。 撹拌終了後、 窒素により撹拌装置内を 1. 6 k gZcm2まで加圧し 10 OmmHgまで減圧する脱揮操作を数回繰り返し、 系内の余分 な水分および溶存酸素を除いた。 In a vertical twin screw system (product name: Super Blend, manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a super blend wing (inner wing: max blend wing, outer wing: spiral deformation baffle) While flowing a small amount of nitrogen, add antioxidant (O.I.I.P., product name: Yoshinox BB) 0. 076 parts into the observation window, charge 30 parts of toluene, and further, add carbon as a conductive aid From the hopper, 31. 68 parts of an electrode active material containing 1 to 8 wt% of black (US AVE STOR LLC, product name: lithiated vanadium oxide carbon blend) was charged. Thereafter, the hopper and the like were washed with 10.0 parts of toluene, and the inlet was closed. After the washing, the stirrer was operated (inner blade: 75 rpm, outer blade: 29 rpm), and mixed for 30 minutes with stirring to obtain a slurry. After completion of the stirring, the degassing operation of pressurizing the inside of the stirring apparatus to 1.6 kgzcm 2 with nitrogen and reducing the pressure to 10 O mmHg was repeated several times to remove excess water and dissolved oxygen in the system.
前述の、 ポリマー溶液と L i塩との混合物 42. 58部を、 前記マックスブレンド翼を 搭載した竪型同心撹拌装置から、 前記ス一パーブレンド翼を搭載した竪型同心二軸撹拌装 置へ、 両撹拌装置に接続させた配管から、 窒素圧 1. 0 k g/cm2、 配管温度約 100 でで投入した。 その後、 撹拌装置を稼動 (内翼: 75 r pm、 外翼: 29 r pm) させ、 常圧下、 内温を 50. 5°C (ジャケット温度: 50. 8°C) にし、 2時間撹拌混合し、 ス ラリーを得た。 From 42.58 parts of the mixture of the polymer solution and Li salt described above, from the vertical concentric stirring device equipped with the Max Blend wing, to the vertical twin screw agitation type with the Spearper Blend wing mounted A nitrogen pressure of 1.0 kg / cm 2 and a pipe temperature of about 100 were introduced through a pipe connected to both stirrers. After that, operate the stirring device (inner blade: 75 rpm, outer blade: 29 rpm), adjust the internal temperature to 50.5 ° C (jacket temperature: 58.0 ° C) under normal pressure, and mix for 2 hours with stirring And I got a gallery.
このようにしてスラリー状の混合物 (11) を得た。  Thus, a slurry-like mixture (11) was obtained.
混合物 (1 1) は、 固形分が 42. 8w t%であり、 ポリマーの重量平均分子量 Mwが 123, 000であり、 導電助剤を含む電極活物質の含有割合が 64. 6 w t %であり、 混合後の分散状態の評価は 「◎」 であった。  The mixture (11) had a solid content of 42.8 wt%, a polymer weight average molecular weight Mw of 123,000, and a content ratio of the electrode active material containing a conductive additive of 64. 6 wt% The evaluation of the dispersion state after mixing was “◎”.
くく脱揮工程》  Vacuum degassing process
(プレ脱揮)  (Pre-volatilization)
混合物 (11) が入った上記撹拌装置 (スーパーブレンド翼を搭載した竪型同心ニ軸撹 拌装置) に、 酸化防止剤 ( (株) エーピーアイコーポレーション製、 製品名: ヨシノック ス BB) 0. 057部をのぞき窓から投入後、 該のぞき窓を閉め、 真空ポンプを備えた減 圧ラインに接続しコンデンサに 10°Cの冷水を流した。 その後、 撹拌装置を稼動 (内翼: 75 r pm、 外翼: 29 r p m) させながら、 真空ポンプも稼動させ撹拌装置内を徐々に 70To r rに減圧し、 内温をー且 50 °C (ジャケット温度:約 81°C) にした後、 内温 が 47〜 50 °C (ジャケット温度: 79〜 81で) 、 減圧度が 62〜70To r rの範囲 に納まるように制御し、 ホルダータンク内に留出したトルエンの容量または重量を確認し ながら (目標固形分: 70w t%) 運転した。 該運転後、 撹拌装置内を窒素により解圧し 、 1. 0 k g/ cm2の微加圧状態とした。 このようにして混合物 (12) を得た。 In the above-mentioned stirring apparatus containing a mixture (11) (a vertical concentric biaxial stirring apparatus equipped with a super blend blade), an antioxidant (manufactured by AP Corporation, product name: Yoshinocks BB) 0. 057 After the parts were put in from the observation window, the observation window was closed, connected to a pressure reduction line equipped with a vacuum pump, and cold water at 10 ° C. was passed through the condenser. After that, while operating the stirring device (inner blade: 75 rpm, outer blade: 29 rpm), the vacuum pump is also operated and the inside of the stirring device is gradually reduced to 70 Torr, and the internal temperature is 50 ° C (jacket Temperature: Approximately 81 ° C), then control is performed so that the internal temperature is 47 to 50 ° C (jacket temperature: 79 to 81), and the degree of pressure reduction is in the range of 62 to 70 Torr, and stay in the holder tank. Operation was carried out while checking the volume or weight of toluene discharged (target solid content: 70 wt%). After the operation, the inside of the stirrer was depressurized with nitrogen to a slight pressure of 1.0 kg / cm 2 . Thus, a mixture (12) was obtained.
混合物 (12) は、 固形分が 71. Ow t%であり、 ポリマーの重量平均分子量 Mwが 122, 000であり、 導電助剤を含む電極活物質の含有割合が 66. 6 w t %であった  The mixture (12) had a solid content of 71. O t t%, a polymer weight average molecular weight Mw of 122,000, and a content ratio of the electrode active material containing a conductive additive of 66.6 wt%
(本脱揮) (This degassing)
KRCニーダー (栗本鐵ェ所 (株) 製) の本体、 供給ラインおよび出口ラインを窒素置 換し、 ジャケットの熱媒を循環させながら加温し 70°Cにし、 KRCニーダ一の出口配管 のスチームトレースに蒸気を流し加温した後、 KRCニーダ一のスクリユーを 38 r pm で稼動させた。 その後、 混合物 (12) が入った上記撹拌装置を稼動 (内翼:停止、 外翼 : 10 r pm) させ、 該撹拌装置の底に接続しているフラッシュ弁を開き、 キアポンプを 稼動させ、 混合物 (1 2) を KRCニーダ一へ供給し、 KRCエーダーの出口から混合物 (1 2) が出てぐることを確認した後、 真空ポンプを稼動させて KRC二一ダ一内の減圧 を開始して 25 OT o r rまで減圧し、 トルエンの留出が十分に安定したことを確認後、 さらに減圧度を上げ、 減圧度が 1 2 OTo r r、 内温が 68. 9°C (ジャケット温度: 7 0. 0°C) で、 KRCニーダ一の出口の単管 (直径: 48mm) から、 窒素気流下、 棒状 体 (円柱状、 直径: 48 mm, 長さ: 300 mm) の混合物 (13) を得た。 The main body, supply line and outlet line of KRC kneader (manufactured by Kurimoto Soken Co., Ltd.) are replaced with nitrogen, and the temperature is raised to 70 ° C. while circulating the heat medium of the jacket, and After steaming and warming the traces, the KRC KNIDAI's screen was operated at 38 rpm. After that, operate the above-mentioned stirring device containing the mixture (12) (inner blade: stop, outer blade: 10 rpm), open the flush valve connected to the bottom of the stirring device, and After the mixture (12) is supplied to the KRC kneader and it is confirmed that the mixture (12) is discharged from the outlet of the KRC aider, the vacuum pump is operated to reduce the pressure in the KRC damper. The pressure was reduced to 25 OT orr. After confirming that the distillation of toluene was sufficiently stabilized, the degree of pressure reduction was further increased, and the degree of pressure was 12 OTo rr, and the internal temperature was 68.9 ° C. (jacket temperature : 7 0. 0 ° C), from a single tube (diameter: 48 mm) at the outlet of the KRC kneader, a mixture of rods (cylindrical, diameter: 48 mm, length: 300 mm) under nitrogen stream (13) ) Got.
混合物 (1 3) は、 固形分が 95. 6w t %であり、 ポリマーの重量平均分子量 Mwが 1 26, 000であり、 導電助剤を含む電極活物質の含有割合が 6 5. 6w t %であった  The mixture (13) had a solid content of 95.6 wt%, a polymer weight average molecular weight Mw of 120,000, and a content ratio of the electrode active material containing a conductive auxiliary was 65.6 wt% Met
《冷却固化工程》 << Cooling and Solidification Process >>
本脱揮後に得られた混合物 (1 3) を、 アルミラミネート袋に入れ十分に窒素置換した 後、 ヒートシールで密封し、 _ 10〜― 5 °Cの冷凍庫内に入れ一昼夜冷却した。  The mixture (13) obtained after the volatilization was put in an aluminum laminate bag, sufficiently purged with nitrogen, sealed with a heat seal, and placed in a freezer at ― 10 to -5 ° C to cool overnight.
《粒状化工程》  Granulation process
冷却後の混合物 (1 3) を、 スポットクーラーで 1 5°C以下に冷却しながら、 粉碎機 ( ホーライ社製、 製品名: U— 480型) に供給速度 0. 55 k g/m i nで供給し、 粉砕 した。  While cooling the mixture (13) after cooling to below 15 ° C with a spot cooler, it is supplied to a powder mill (manufactured by Holley, product name: U-480 type) at a supply rate of 0.55 kg / min. It was crushed.
得られた混合物 (1 3) の粉砕品は、 目開き 1. 00〜3. 34mmのメッシュを通過 するものが個数基準で全体の 80%以上を占め、 含有水分量が 2, 065 p pmで、 固形 分が 96. 0w t %、 ポリマーの重量平均分子量 Mwが 1 26, 000であった。  The ground product of the obtained mixture (1 3), passing through a mesh with an opening of 1. 00 to 3. 34 mm occupies 80% or more of the whole on a number basis, and the water content is 2065 ppm. The solid content was 96.0 wt%, and the weight average molecular weight of the polymer Mw was 12.6 thousand.
《乾燥工程》  << Drying process >>
予め、 乾燥機として用いるコニカルドライヤー (日空工業 (株) 製、 製品名:バキュ一 ムタンブルドライヤー) の内部を、 窒素または圧縮空気 (ドライエアー) により十分に置 換しておき、 さらにジャケットの熱媒を 20°Cに加温して上記乾燥機内部を 1 9°Cに昇温 しておいた。  The inside of the conical dryer (Nikko Industry Co., Ltd. product name: vacuum tumble dryer) used as a dryer is sufficiently replaced with nitrogen or compressed air (dry air) in advance, and the jacket The heat medium was heated to 20 ° C. and the inside of the dryer was heated to 19 ° C.
この乾燥機に、 混合物 (1 3) の粉碎品 38. 0 k gを、 乾燥機の投入口から入れ、 ボ ルトで十分に締め密閉した。  Into this dryer, 38.0 kg of the powder of the mixture (1 3) was put from the inlet of the dryer, and tightly closed with a bolt.
次いで、 バルブの開閉確認をして、 真空ポンプにて乾燥機内を減圧した。 減圧度が 6 T o r r (798 P a) 以下で安定し、 漏れがないことを確認した後、 乾燥機内部に窒素を 5 LZm i nで流通させた。 この状態 (すなわち内部温度 20で、 窒素の流通 S LZm i nおよび減圧度 6 T o r r (798 P a) 以下の状態) で、 1 2時間以上保持し、 上記粉 砕品を乾燥させた。  Next, the valve was checked for opening and closing, and the inside of the dryer was depressurized with a vacuum pump. After confirming that the degree of pressure reduction was 6 Torr or less (798 Pa) or less and that there were no leaks, nitrogen was circulated in the dryer at 5 LZ min. In this state (that is, in a state where the internal temperature is 20, the nitrogen flow S LZmin and the degree of reduced pressure 6 Torr or less (798 P a) or less), the powder is held for 12 hours or longer to dry the powder.
このように乾燥処理を施して得られた混合物 (1 3) の粉砕品 (本発明の正極材料組成 物) は、 含有水分量が 1 70 p p mであり、 固形分が 100 w t %であり、 ポリマーの重 量平均分子量 Mwが 1 26, 000であり、 ポリマーの分子量分布 (MwZMn) が 1. 40であり、 L i塩の含有割合は 6. 8w t %であり、 導電助剤を含む電極活物質の含有 割合が 65. 6 w t %であった。  The pulverized product (the positive electrode material composition of the present invention) of the mixture (13) obtained by the drying treatment as described above has a water content of 170 ppm and a solid content of 100 wt%. Weight average molecular weight Mw is 12.6 000, polymer molecular weight distribution (MwZMn) is 1.40, the content ratio of Li salt is 6. 8 wt%, and electrode active material containing a conductive aid The content rate of the substance was 65.6 wt%.
〔実施例 2〕  [Example 2]
《ポリマー溶液の調製》  << Preparation of polymer solution >>
実施例 1と同様にして、 ポリマーの重量平均分子量 Mwが 1 24, 000であり、 固形 分が 45. 8w t%である、 ポリマー溶液 (10) を得た。 《混合工程》 In the same manner as in Example 1, a polymer solution (10) was obtained in which the weight average molecular weight Mw of the polymer is 120,000 and the solid content is 45.8 wt%. << Mixing process >>
(ポリマー溶液と L i塩との混合)  (Mixture of polymer solution and Li salt)
マックスブレンド翼を搭載した竪型同心撹拌装置 (製品名:マックスブレンド翼、 住友 重機械工業 (株) 製) を、 予め、 150ででの加温下、 窒素流通下で装置内の水分を除き 、 窒素置換 (1. 5 k gZcm2までの加圧と 0. 5 k gZcm2までの解圧) を 4回行い 、 ジャッケット温度を 70 °Cに昇温した。 Remove the moisture in the unit under nitrogen flow beforehand by heating at 150 in a box-shaped concentric stirring device (product name: Max Blend wing, manufactured by Sumitomo Heavy Industries, Ltd.) equipped with Max Blend wings. , purged with nitrogen (1 to 5 k gZcm pressurized with 0. 5 k gZcm 2 up 2 Kai圧) performed 4 times, was raised jacket temperature to 70 ° C.
予め約 8 に加温保温しておいたポリマー溶液 (10) 33. 30部を、 窒素加圧 ( 0. 5 k g/cm2) により、 撹拌装置へ投入した。 33. 30 parts of the polymer solution (10), which had been preheated to about 8 and heated, was charged into a stirring apparatus by nitrogen pressure (0.5 kg / cm 2 ).
さらに、 予め窒素置換しておいた L i塩 3. 28部を、 ホッパーから、 ベントを開いて 、 撹拌装置へ投入した。 その後、 トルエン 6. 00部で該ホッパー等を洗浄し、 洗浄後、 撹拌機を稼動 (マックスブレンド翼: 90 r pm) させ、 内温を 70. 2°C (ジヤッケッ ト温度: 71°C) 〖こして、 2時間撹拌混合した。  Further, 3.28 parts of L i salt previously purged with nitrogen were fed from the hopper to the stirring device with the vent opened. After that, the hopper etc. are washed with toluene 6.00 parts, and after washing, the agitator is operated (Max blend wing: 90 rpm) and the internal temperature is 70.2 ° C. (jacket temperature: 71 ° C.) The mixture was stirred and mixed for 2 hours.
(導電助剤を含む電極活物質と混合)  (Mixed with electrode active material containing conductive aid)
スーパーブレンド翼 (内翼:マックスブレンド翼、 外翼:螺旋状変形パッフル) を搭載 した竪型同心二軸撹拌装置 (製品名 :スーパーブレンド、 住友重機械工業 (株) 製) に、 窒素を少量流しながら、 酸化防止剤 ( (株) エーピーアイコーポレーション製、 製品名: ヨシノックス BB) 0. 076部をのぞき窓から投入後、 トルエン 30部を仕込み、 さら に、 導電助剤としてのカーボンブラックを l〜8w t%含む電極活物質 (US AVE S TOR L LC社製、 製品名 : リチォ化酸化バナジウム Zカーボンブレンド) 31. 68 部を、 ホッパーから投入した。 その後、 トルエン 1 0. 0部で該ホッパー等を洗浄し、 投 入口を閉じた。 該洗浄後、 撹拌装置を稼動 (内翼: 75 r pm、 外翼: 29 r pm) させ 、 30分間撹拌混合し、 スラリーを得た。 撹拌終了後、 窒素により撹拌装置内を 1. 6 k §//2まで加圧し1 0 OmmHgまで減圧する脱揮操作を数回繰り返し、 系内の余分 な水分およ.び溶存酸素を除いた。 A small amount of nitrogen is contained in a vertical twin screw system (product name: Super Blend, manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a super blend wing (inner wing: max blend wing, outer wing: spiral deformation puffle). While flowing, add 0. 076 parts of an antioxidant (manufactured by AP corporation, product name: Yoshinox BB) from the viewing window, then charge 30 parts of toluene, and further add carbon black as a conductive aid. From the hopper, 31. 68 parts of an electrode active material (US AVE STOR L LC, product name: lithium vanadium oxide Z carbon blend) containing ̃8 wt% was charged. Thereafter, the hopper and the like were washed with 10.0 parts of toluene, and the inlet was closed. After the washing, the stirrer was operated (inner blade: 75 rpm, outer blade: 29 rpm), and mixed for 30 minutes with stirring to obtain a slurry. Except After stirring, stirring in the apparatus 1. several times de揮操operation to vacuum up to 6 k § / / Ji 2 pressed 1 0 OmmHg by nitrogen, excess moisture Oyo. Beauty dissolved oxygen in the system The
前述の、'ポリマー溶液と L i塩との混合物 42. 58部を、 前記マックスブレンド翼を 搭載した竪型同心撹拌装置から、 前記スーパープレンド翼を搭載した竪型同心二軸撹拌装 置へ、 両撹拌装置に接続させた配管から、 窒素圧 1. 0 k gZcm2、 配管温度約 1 00 °Cで投入した。 その後、 撹拌装置を稼動 (内翼: 75 r pm、 外翼: 29 r p m) させ、 常圧下、 内温を 50. 5で (ジャケット温度: 50. 8°C) にし、 2時間撹拌混合し、 ス ラリーを得た。 42. 58 parts of the mixture of 'polymer solution and Li salt described above, from a paddle type concentric stirring device equipped with the Max Blend wing, to a boat type concentric biaxial stirring device loaded with the Superprendo blade, From a pipe connected to both stirrers, a nitrogen pressure of 1.0 kgzcm 2 and a pipe temperature of about 100 ° C. were introduced. After that, operate the stirring device (inner blade: 75 rpm, outer blade: 29 rpm), adjust the internal temperature to 50. 5 (jacket temperature: 50. 8 ° C) under normal pressure, stir and mix for 2 hours, I got a gallery.
このようにしてスラリー状の混合物 (21) を得た。  Thus, a slurry-like mixture (21) was obtained.
混合物 (21) は、 固形分が 52. 1 1%であり、 ポリマーの重量平均分子量 Mwが 123, 000であり、 導電助剤を含む電極活物質の含有割合が 64. 6%であり、 混合 後の分散状態の評価は 「◎」 であり、 混合後の凝集物含有率は、 12. 9%であった。  The mixture (21) has a solid content of 52.1%, a polymer weight average molecular weight Mw of 123,000, and a content ratio of the electrode active material containing a conductive additive of 64. 6%, The evaluation of the dispersion state later was “◎”, and the aggregate content rate after mixing was 12.9%.
《脱揮工程》  << Degassing process >>
30 mm φ二軸押出機 (プラスティック工学研究所製、 製品名: BT— 30— S 2) の ヒータ一を ONにし、 第 1ベント、 第 2ベントおよび第 3ベントでは 100°Cに、 第 4ベ ント、 第 5ベント、 ヘッドおょぴダイを 90°Cに加熱する。  Turn on heater 1 of a 30 mm φ twin-screw extruder (made by Plastic Engineering Laboratory, product name: BT-30-S 2) and set the temperature to 100 ° C for the 1st, 2nd and 3rd vents. Heat the vent, fifth vent, head die to 90 ° C.
上記混合工程におけるスラリー状の混合物 (21) の入った撹拌装置内を、 窒素で 0. 05MP aに加圧し、 該撹拌装置と二軸押出機の第 1ベントとの間に設置したギアポンプ により、 第 1ベントの直前まで混合物 (2 1) を満たすようにした後、 二軸を低速で回転 させ、 混合物 (21) の供給を開始し、 二軸の回転数を 1 00 r pmまで上げ、 二軸のダ ィから混合物 (21) が出てくることを確認した。 その後、 真空ポンプを起動させ、 第 2 ベントを 349 T o r rまで、 第 3ベントを 6 9 T o r rまで減圧して、 二軸のダイから 吐出量 6 k gZhで棒状体 (円柱状、 直径: 25mm) の混合物 (23) を得た。 The inside of the stirring device containing the slurry-like mixture (21) in the above mixing step is pressurized with nitrogen to 0.05MPa, and a gear pump installed between the stirring device and the first vent of the twin screw extruder. After filling the mixture (21) until just before the first vent, rotate the 2nd shaft at low speed, start supplying the mixture (21), and increase the rotation speed of the 2nd shaft to 100 r pm It was confirmed that the mixture (21) came out from the twin die. After that, start the vacuum pump and decompress the second vent to 349 Torr and the third vent to 69 Torr, and discharge it from the biaxial die with a rod volume of 6 kgzh (cylindrical, diameter: 25 mm A mixture of (23) was obtained.
混合物 (23) は、 固形分が 98. 6w t %であり、 ポリマーの重量平均分子量 Mwが 1 21, 000であり、 導電助剤を含む電極活物質の含有割合が 64. 6w t %であった  The mixture (23) has a solid content of 98.6 wt%, a polymer weight average molecular weight Mw of 12,000, and a content ratio of the electrode active material containing a conductive additive is 64.6 wt% The
《冷却固化工程》 << Cooling and Solidification Process >>
.本脱揮後に得られた混合物 (23) を、 約 90でのまま、 圧延二本ロール (関西ロール (株) 製、 製品名: 8 X 20 BOX型ロール機、 前ロールの温度: 1 1. 3°C、 後ロール の温度: 1 1. 4で、 ガイド幅: 55 mm, 回転数: 0. 5 r p m) により、 厚み 2. 0 mm、 幅 76. 5 mm, 長さ約 10 mのシート状にした。  .The mixture (23) obtained after this volatilization is kept at about 90, and a rolled double roll (Kansai Roll Co., Ltd., product name: 8 X 20 BOX type roll, temperature of front roll: 1 1 3 ° C, temperature of back roll: 1 1. 4 and guide width: 55 mm, rotation speed: 0.5 rpm), thickness 2.0 mm, width 76.5 mm, length about 10 m I made a sheet.
シート状にした混合物 (23) を、 アルミラミネート袋に入れ十分に窒素置換した後、 ヒートシールで密封し、 一昼夜以上、 室温下で放置して冷却した。 , 《粒状化工程》  The sheeted mixture (23) was placed in an aluminum laminate bag, thoroughly purged with nitrogen, sealed with a heat seal, and allowed to cool at room temperature overnight. , << Granulation process >>
得られたシートをスポットクーラーで 1 5°C以下に冷却しながら、 9°Cの温度下で、 シ 一トカッター ( (株) ホーライ製、 製品名 : SGE— 220型) に供給速度 0. 7 k gZ m i nで投入し、 縦刃回転数 59. 2 H z、 横刃回転数 1 00. OHzで切断して、 角ぺ レツト状の混合物を得た。  The obtained sheet is cooled to 15 ° C or less with a spot cooler, and the temperature is supplied to a sheet cutter (manufactured by Horai Co., Ltd., product name: SGE-220) at a temperature of 9 ° C. The mixture was charged at k gZ min, and was cut at a vertical blade rotational speed of 59. 2 Hz and a horizontal blade rotational speed of 100. OHz to obtain a square pellet-like mixture.
得られた角ペレッ ト状の混合物は、 厚み 1. 8mm、 幅 4. Ommであり、 長さは個数 基準で全体の 70%以上が 3. 7±0. 5 mmの範囲を満たすものであり、 1粒の平均重 量が 41. Omgであり、 含有水分量が 2050 p pmで、 固形分が 99. 0 w t %で、 ポリマーの重量平均分子量 Mwが 1 21, 000であった。  The resulting angular pellet-like mixture had a thickness of 1.8 mm and a width of 4. O mm, and a length of 70% or more of the whole on the number basis satisfied a range of 3.7 ± 0.5 mm. The average weight of one tablet was 41. Omg, the water content was 2050 ppm, the solid content was 99.0 wt%, and the weight average molecular weight Mw of the polymer was 121,000.
《乾燥工程》  << Drying process >>
予め、 乾燥機として用いるコニカルドライヤー (日空工業 (株) 製、 製品名 :バキュー ムタンブルドライヤー) の内部を、 窒素または圧縮空気 (ドライエアー) により十分に置 换しておき、 さらにジャケットの熱媒を 20°Cに加温して上記乾燥機内部を 1 9°Cに昇温 しておいた。  The inside of the conical dryer (Nikko Industry Co., Ltd. product name: vacuum-type tumble dryer) used as a dryer is sufficiently placed in advance with nitrogen or compressed air (dry air), and the jacket is heated further. The medium was heated to 20 ° C. and the inside of the dryer was heated to 19 ° C.
この乾燥機に、 角ペレッ ト状の混合物 38. 0 k gを、 乾燥機の投入口から入れ、 ボル トで十分に締め密閉した。  Into this dryer, 38.0 kg of the mixture in the form of a square pellet was placed from the inlet of the dryer, and tightly tightened with a bolt.
次いで、 バルブの開閉確認をして、 真空ポンプにて乾燥機内を減圧した。 減圧度が 6 T o r r (798 P a) 以下で安定し、 漏れがないことを確認した後、 乾燥機内部に窒素を 5 LZm i nで流通させた。 この状態 (すなわち内部温度 20 °C、 窒素の流通 S LZm i nおよび減圧度 6 T o r r (798 P a) 以下の状態) で、 1 2時間以上保持し、 上記角 ペレツト状の混合物を乾燥させた。  Next, the valve was checked for opening and closing, and the inside of the dryer was depressurized with a vacuum pump. After confirming that the degree of pressure reduction was 6 Torr or less (798 Pa) or less and that there were no leaks, nitrogen was circulated in the dryer at 5 LZ min. In this state (that is, the state with an internal temperature of 20 ° C., a nitrogen flow S LZmin and a pressure reduction degree of 6 Torr or less (798 P a) or less), the angular pellet was dried for 12 hours or longer. .
このように乾燥処理を施して得られた角ペレツト状の混合物 (本発明の正極材料組成物 ) は、 含有水分量が 1 50 p p mであり、 固形分が 100 w t %であり、 ポリマーの重量 平均分子量 Mwが 1 20, 000であり、 ポリマ一の分子量分布 (MwZMn) が 1. 4 5であり、 L i塩の含有割合は 6. 8 w t %であり、 導電助剤を含む電極活物質の含有割 合が 65. 6 w t %であった。 The rectangular pellet-like mixture (positive electrode material composition of the present invention) obtained by the drying treatment as described above has a water content of 150 ppm and a solid content of 100 wt%, and the weight average of the polymer The molecular weight Mw is 120,000, the molecular weight distribution (MwZMn) of the polymer I is 1.45, the content ratio of Li salt is 6. 8 wt%, and the electrode active material containing a conductive aid Containing percentage The match was 65.6 wt%.
〔実施例 3〕  [Example 3]
《ポリマー溶液の調製》  << Preparation of polymer solution >>
実施例 1と同様にして、 ポリマーの重量平均分子量 Mwが 124, 000であり、 固形 分が 45. 8wt%である、 ポリマー溶液 (10) を得た。  In the same manner as in Example 1, a polymer solution (10) was obtained in which the weight average molecular weight Mw of the polymer is 124,000 and the solid content is 45.8 wt%.
《混合工程》  << Mixing process >>
(ポリマー溶液と L i塩との混合)  (Mixture of polymer solution and Li salt)
実施例.1と同様にして、 ポリマー溶液と L i塩との混合、 さらに、 導電助剤を含む電極 活物質と混合を行い、 固形分が 42. 8w t%であり、 ポリマーの重量平均分子量 Mwが 123, 000であり、 導電助剤を含む電極活物質の含有割合が 64. 6%であるこのよ うにしてスラリー状の混合物 (31) を得た。  In the same manner as in Example 1, mixing of the polymer solution and the Li salt, and mixing with the electrode active material containing the conductive aid, the solid content is 42.8 wt%, and the weight average molecular weight of the polymer Thus, a slurry-like mixture (31) was obtained, in which the Mw was 123,000 and the content ratio of the electrode active material containing the conductive additive was 64.6%.
《脱揮工程》  << Degassing process >>
(プレ脱揮)  (Pre-volatilization)
混合物 (31) が入った上記撹拌装置 (スーパーブレンド翼を搭載した竪型同心ニ軸撹 拌装置) に、 酸化防止剤 ( (株) エーピーアイコーポレーション製、 製品名 : ヨシノック ス BB) 0. 057部をのぞき窓から投入後、 該のぞき窓を閉め、 真空ポンプを備えた減 圧ラインに接続しコンデンサに 10°Cの冷水を流した。 その後、 撹拌装置を稼動 (内翼: 75 r pm、 外翼: 29 r pm) させながら、 真空ポンプも稼動させ撹拌装置内を徐々に 70To r rに減圧し、 内温をー且 50 °C (ジャケット温度:約 81 °C) にした後、 内温 が 47〜 50 °C (ジャケット温度: 79〜 81 °C) 、 減圧度が 62〜70To r rの範囲 に納まるように制御し、 ホルダ一タンク内に留出したトルエンの容量または重量を確認し ながら (目標固形分: 70w t%) 運転した。 該運転後、 撹拌装置内を窒素により解圧し 、 1. 0 k gノ cm2の微加圧状態とした。 このようにして混合物 (32) を得た。 Mixture (31) was added to the above-mentioned stirring apparatus (a vertical twin screw stirring apparatus equipped with a super blend blade), an antioxidant (manufactured by AP Corporation, product name: Yoshinocks BB) 0. 057 After the parts were put in from the observation window, the observation window was closed, connected to a pressure reduction line equipped with a vacuum pump, and cold water at 10 ° C. was passed through the condenser. After that, while operating the stirring device (inner blade: 75 rpm, outer blade: 29 rpm), the vacuum pump is also operated and the pressure in the stirring device is gradually reduced to 70 Torr, and the internal temperature is 50 ° C ( After the jacket temperature is about 81 ° C, the internal temperature is 47 to 50 ° C (jacket temperature: 79 to 81 ° C), and the degree of pressure reduction is controlled to be in the range of 62 to 70 Torr. Operation was performed while checking the volume or weight of toluene distilled inside (target solid content: 70 wt%). After the operation, the inside of the stirring apparatus was depressurized with nitrogen to a slight pressure of 1.0 kg · cm 2 . Thus, a mixture (32) was obtained.
混合物 (32) は、 固形分が 71. Ow t%であり、 ポリマーの重量平均分子量 Mwが 122, 000であり、 導電助剤を含む電極活物質の含有割合が 66. 6w t%であった  The mixture (32) had a solid content of 71. O t t%, a polymer weight-average molecular weight Mw of 122,000, and a content ratio of the electrode active material containing a conductive additive of 66.6 w t%
(本脱揮) (This degassing)
KRCニーダー (栗本鐵ェ所 (株) 製) の本体、 供給ラインおよび出口ラインを窒素置 換し、 ジャケットの熱媒を循環させながら加温し 70°Cにし、 KRCニーダ一の出口配管 のスチームトレースに蒸気を流し加温した後、 KRCニーダ一のスクリュ一を 38 r pm で稼動させた。 その後、 混合物 (32) が入った上記撹拌装置を稼動 (内翼:停止、 外翼 : l O r pm) させ、 該撹拌装置の底に接続しているフラッシュ弁を開き、 キアポンプを 稼動させ、 混合物 (32) を KRCニーダ一へ供給し、 KRCニーダ一の出口から混合物 (32) が出てくることを確認した後、 真空ポンプを稼動させて KRCニーダー内の減圧 を開始して 25 OT o r rまで減圧し、 トルエンの留出が十分に安定したことを確認後、 さらに減圧度を上げ、 減圧度が 120To r r、 内温が 68. 9°C (ジャケット温度: 7 0. 0°C) で、 KRCニーダ一の出口の単管 (直径: 50mm) から、 窒素気流下、 棒状 体 (円柱状、 直径: 48mm、 長さ : 300 mm) の混合物 (33) を得た。  The main body, supply line and outlet line of KRC kneader (manufactured by Kurimoto Soken Co., Ltd.) are replaced with nitrogen, and the temperature is raised to 70 ° C. while circulating the heat medium of the jacket, and After steam was flowed into the trace and warmed up, the KRC Kneader screw was operated at 38 rpm. After that, operate the above-mentioned stirring device containing the mixture (32) (inner blade: stop, outer blade: l Or pm), open the flush valve connected to the bottom of the stirring device, operate the Kier pump, The mixture (32) is supplied to the KRC kneader, and after confirming that the mixture (32) comes out from the outlet of the KRC kneader, the vacuum pump is operated to start reducing the pressure in the KRC kneader, and 25 OT orr The pressure was reduced until the distillation of toluene was confirmed to be sufficiently stable, and then the degree of pressure was increased to a pressure of 120 Torr and an internal temperature of 68.9 ° C. (jacket temperature: 70 ° C.). A mixture (33) of rod-like bodies (cylindrical, diameter: 48 mm, length: 300 mm) was obtained from a single tube (diameter: 50 mm) at the outlet of the KRC kneader under nitrogen stream.
混合物 (33) は、 固形分が 95. 6w t%であり、 ポリマー成 の重量平均分子量 M wが 126, 000であり、 導電助剤を含む電極活物質の含有割合が 65. 6 w t %であ つた。 The mixture (33) has a solid content of 95.6 wt%, a weight average molecular weight Mw of polymer composition of 126,000, and a content ratio of the electrode active material containing a conductive additive of 65.6 wt%. Ah It was
《粒状化工程》  Granulation process
KRCニーダ一の出口の単管に沿わせて S US製ワイヤーを直接当て、 該単管から吐出 させた 8 0〜9 0°Cの棒状体の混合物 (3 3) を、 長さ 2〜3 0 c mずつに切断し、 プロ ック状 (塊状) の混合物を得た。  Apply a S-US wire directly along a single tube at the outlet of KRC kneader, and let the mixture (3 3) of rod-shaped bodies discharged at 80 to 90 ° C from the single tube have a length 2-3 It was cut into 0 cm pieces to obtain a block-like (bulk) mixture.
得られたブロック状の混合物は、 含有水分量が 2 0 7 0 p p mで、 固形分が 9 6. 0 w t %で、 ポリマー^! の重量平均分子量 Mwが 1 2 6 , 0 0 0であった。  The obtained block-like mixture had a water content of 2 0 70 ppm, a solid content of 96.0 wt%, and a weight average molecular weight M w of the polymer ^! Of 1 2 6 0 0 0 .
《乾燥工程》  << Drying process >>
予め、 乾燥機として用いるコニカルドライヤー (日空工業 (株) 製、 製品名:バキュー ムタンブルドライヤー) の内部を、 窒素または圧縮空気 (ドライエアー) により十分に置 換しておき、 さらにジャケットの熱媒を 2 0°Cに加温して上記乾燥機内部を 1 9°Cに昇温 しておいた。  The inside of the conical dryer (Nikko Industry Co., Ltd. product name: vacuum tumble dryer) used as a dryer is sufficiently replaced with nitrogen or compressed air (dry air) in advance, and the jacket is heated further. The medium was heated to 20 ° C. and the inside of the dryer was heated to 19 ° C.
この乾燥機に、 得られたブロック状の混合物 3 8. 0 k gを、 乾燥機の投入口から入れ 、 ボルトで十分に締め密閉した。  The obtained block mixture (38.0 kg) was put into the dryer from the inlet of the dryer and fully tightened with a bolt and sealed.
次いで、 バルブの開閉確認をして、 真空ポンプにて乾燥機内を減圧した。 減圧度が 6 T o r r ( 7 9 8 P a ) 以下で安定し、 漏れがないことを確認した後、 乾燥機内部に窒素を 5 LZm i nで流通させた。 この状態 (すなわち内部温度 2 0 °C、 窒素の流通 5 LZm i nおよび減圧度 6 T o r r ( 7 9 8 P a ) 以下の状態) で、 1 2時間以上保持し、 上記ブ ロック状の混合物を乾燥させた。  Next, the valve was checked for opening and closing, and the inside of the dryer was depressurized with a vacuum pump. After confirming that the degree of pressure reduction was 6 Torr or less (79 8 Pa) or less and that there were no leaks, nitrogen was circulated in the dryer at 5 Lzmin. In this state (that is, the state where the internal temperature is 20 ° C., the flow of nitrogen 5 LZ min and the degree of reduced pressure 6 Torr or less (79 8 P a) or less), the mixture is held for 12 hours or longer. It was allowed to dry.
このように乾燥処理を施して得られたプロック状の混合物 (本発明の正極材料組成物) は、 含有水分量が 1 7 0 p p mであり、 固形分が 1 0 0 w t %であり、 ポリマーの重量平 均分子量 Mwが 1 2 6, 0 0 0であり、 ポリマーの分子量分布 (MwZMn) が 1. 4 0 であり、 L i塩の含有割合は 6. 9 w t %であり、 導電助剤を含む電極活物質の含有割合 が 6 4. 6 w t %であった。  The block-like mixture (the positive electrode material composition of the present invention) obtained by the drying treatment as described above has a water content of 170 ppm and a solid content of 100 wt%. The weight-average molecular weight Mw is 1,2600, the molecular weight distribution (MwZMn) of the polymer is 1.40, and the content ratio of Li salt is 6. 9 wt%, and the conductive auxiliary agent is used. The content ratio of the electrode active material contained was 64.6 wt%.
〔実施例 4〕  [Example 4]
《ポリマー溶液の調製》  << Preparation of polymer solution >>
実施例 1と同様にして、 ポリマーの重量平均分子量 Mwが 1 2 4, 0 0 0であり、 固形 分が 4 5. 8 w t %である、 ポリマー溶液 (1 0) を得た。  In the same manner as in Example 1, a polymer solution (10) was obtained in which the weight average molecular weight Mw of the polymer was 1,240, and the solid content was 45.8 wt%.
《混合工程》  << Mixing process >>
(ポリマー溶液と L i塩との混合)  (Mixture of polymer solution and Li salt)
マックスプレンド翼を搭載した 0. 0 7 Lの竪型同心撹拌装置 (製品名:マックスブレ ンド翼、 住友重機械工業 (株) 製) を、 予め、 1 5 0°Cでの加温下、 窒素流通下で装置内 の水分を除き、 窒素置換 (1. 5 k g/cm2までの加圧と 0. 5 k gZcm2までの解圧 ) を 4回行い、 ジヤッケット温度を 7 0°Cに昇温した。 A 0. 0 7 L bowl-shaped concentric stirring device (product name: manufactured by Sumitomo Heavy Industries, Ltd.) equipped with Maxplend wings was preheated under heating at 150 ° C, under a nitrogen stream, except the water in the apparatus, purged with nitrogen (1. and a pressure of up to 5 kg / cm 2 to 0. 5 k gZcm 2 Kai圧) performed four times, the Jiyakketto temperature to 7 0 ° C The temperature rose.
予め約 8 0°Cに加温保温しておいたポリマー溶液 (1 0) 2 5. 4 1部を、 窒素加圧 ( 0. 5 k g/c m2) により、 撹拌装置へ投入した。 One part of the polymer solution (10) 25 4. 4 which had been heated and kept at about 80 ° C. in advance was charged into a stirrer by nitrogen pressure (0.5 kg / cm 2 ).
さらに、 予め窒素置換しておいた L i塩 2. 4 8部を、 ホッパーから、 ベントを開いて 、 撹拌装置へ投入した。 その後、 撹拌機を稼動 (マックスブレンド翼: 2 0 r pm) させ 、 内温を 7 1°C (ジヤッケット温度: 7 2°C) にして、 5時間撹拌混合した。  Further, 2.48 parts of Li salt, which had been previously purged with nitrogen, was fed from the hopper to the stirring device with the vent opened. Thereafter, the stirrer was operated (Max blend wing: 20 rpm), and the internal temperature was changed to 71 ° C. (jacket temperature: 72 ° C.), and the mixture was stirred for 5 hours.
(導電助剤を含む電極活物質と混合) マックスブレンド翼を搭載した 0. 07 Lの竪型同心撹拌装置 (製品名:マックスブレ ンド翼、 住友重機械工業 (株) 製) に、 窒素を少量流しながら、 トルエン 32. 84部お よび前述の (ポリマー溶液と L i塩との混合) で得られた溶液 (ポリマー溶液と L i塩と の混合物) 2. 40部を仕込み、 撹拌装置を稼動 (125 r p m) させた。 次いで、 導電 助剤としてのカーボンブラックを 1〜 8 w t %含む電極活物質 (US AVE S TOR LLC社製、 製品名: リチォ化酸化バナジウム/カーボンブレンド) 20. 53部を 5回 に分けて 7分間かけてホッパーから投入した。 その後、 内温を 35で (ジヤッケット温度 : 36°C) にして、 2時間撹拌混合し、 スラリーを得た。 撹拌終了後、 窒素により撹拌装 置内を 1. 6 k g cm2まで加圧しl 0 OmmHgまで減圧する脱揮操作を数回繰り返 し、 系内の余分な水分および溶存酸素を除いた。 (Mixed with electrode active material containing conductive aid) 32. 84 parts of toluene and the aforementioned while flowing a small amount of nitrogen to a 0. 07 L vertical concentric stirring device (product name: Max Blend wings manufactured by Sumitomo Heavy Industries, Ltd.) equipped with Max Blend wings 2. 40 parts of the solution (mixture of polymer solution and L i salt) obtained in (mixture of polymer solution and L i salt) was charged, and the stirrer was operated (125 rpm). Next, divide the 20.53 parts of the electrode active material (made by US AVE STOR LLC, product name: vanadium oxide oxide / carbon blend) containing 1 to 8 wt% of carbon black as a conductive additive into five parts. Charged from the hopper for a minute. Thereafter, the internal temperature was adjusted to 35 (jacket temperature: 36 ° C.), and stirring was carried out for 2 hours to obtain a slurry. After completion of the stirring, the degassing operation of pressurizing the inside of the stirring apparatus to 1.6 kg cm 2 with nitrogen and reducing the pressure to 10 O mmHg was repeated several times to remove excess water and dissolved oxygen in the system.
前述の、 ポリマー溶液と L i塩との混合物 21. 68部を、 ポリマー溶液と L i塩との 混合に用いた竪型同心撹拌装置から、 前記マックスブレンド翼を搭載した 0. 07 Lの竪 型同心撹拌装置へ、 両撹拌装置に接続させた配管から、 窒素圧 1. O k gZcm2 配管 温度約 100°Cで投入した。 その後、 撹拌装置を稼動 (125 r pm) させ、 常圧下、 内 温を 50°C (ジャケット温度: 52°C) にし、 5時間撹拌混合し、 スラリーを得た。 From the vertical concentric stirring device in which 21.68 parts of the mixture of the polymer solution and the Li salt described above were used for mixing the polymer solution and the Li salt, the 0. 07 L crucible equipped with the Max Blend wing was used. Nitrogen pressure 1. O kgzcm 2 piping The temperature was about 100 ° C. through a pipe connected to the two concentric stirrers. Thereafter, the stirrer was operated (125 rpm), the internal temperature was set to 50 ° C. (jacket temperature: 52 ° C.) under normal pressure, and the mixture was stirred for 5 hours to obtain a slurry.
このようにしてスラリー状の混合物 (41) を得た。  Thus, a slurry-like mixture (41) was obtained.
混合物 (41) は、 固形分が 44. 6w t%であり、 ポリマーの重量平均分子量 Mwが 120, 000であり、 導電助剤を含む電極活物質の含有割合が 63. 5 w t %であり、 L i塩の含有割合が 6. 7w t%であり、 混合後の分散状態の評価は 「◎」 であり、 混合 後の凝集物含有率は、 1. 0%であった。  The mixture (41) has a solid content of 44.6 wt%, a polymer weight average molecular weight Mw of 120,000, and a content ratio of the electrode active material containing a conductive additive of 63.5 wt%, The content ratio of Li salt was 6.7 wt%, the evaluation of the dispersion state after mixing was “◎”, and the aggregate content ratio after mixing was 1.0%.
《脱揮工程》  << Degassing process >>
44 mm ψ二軸押出機 (日本製鋼所製、 製品名 : TEX44) のジャケッ ト熱媒を循環 させヒーターを ONにし、 リアベント、 第 1ベントから第 4ベント、 バレル、 ヘッドおよ びダイまでを 110°Cに加熱する。  The jacket heat medium of 44 mm 媒 twin screw extruder (made by Japan Steel Works, product name: TEX44) is circulated, the heater is turned on, and the rear vent, the first vent to the fourth vent, the barrel, the head and the die are Heat to 110 ° C.
上記混合工程におけるスラリー状の混合物 (41) の入った撹拌装置内を、 窒素で 0. 05MP aに加圧し、 該撹拌装置と二軸押出機のリアベントとの間に設置したギアポンプ により、 リアベントの直前まで混合物 (41) を満たすようにした後、 二軸を低速で回転 させ、 混合物 (41) の供給を開始し、. 二軸の回転数を 80 r pmまで上げ、 二軸のダイ から混合物 (41) が出てくることを確認した。 その後、 真空ポンプを起動させ、 リアべ ントを 420To r rまで、 第 1ベントを 120 To r まで、 第 2ベントから第 4ベン トを 200 T o r rまで減圧して、 二軸のダイから吐出量 15. 3 k gZhで棒状体 (円 柱状、 直径: 2.8mm) の混合物 (43) を得た。  The inside of the stirring device containing the slurry-like mixture (41) in the above mixing step was pressurized to 0.05MPa with nitrogen, and a gear pump installed between the stirring device and the rear vent of the twin screw extruder After filling the mixture (41) until just before, rotate the 2 axes at a low speed and start supplying the mixture (41). Increase the rotation speed of 2 axes to 80 rpm and mix from the 2 die We confirmed that (41) came out. After that, start the vacuum pump, depressurize the retentate to 420 Torr, the 1st vent to 120 Torr, and the 2nd to 4th vents to 200 Torr, and then discharge from the biaxial die 15 A mixture (43) of rod-shaped bodies (circular column, diameter: 2.8 mm) was obtained at 3 kgzh.
混合物 (43) は、 固形分が 98. 8w t%であり、 ポリマーの重量平均分子量 Mwが 122, 000であり、 導電助剤を含む電極活物質の含有割合が 63. 5 w t %であり、 L i塩の含有割合が 6. 7 w t %であった。  The mixture (43) has a solid content of 98.8 wt%, a polymer weight average molecular weight Mw of 122,000, and a content ratio of an electrode active material containing a conductive additive of 63.5 wt%, The content ratio of Li salt was 6. 7 wt%.
《冷却固化工程》  << Cooling and Solidification Process >>
脱揮後に得られた円柱状の混合物 (43) は、 二軸のダイから押出された直後、 二軸の 回転で生じるせん断熱により約 160°Cとなっているが、 同温度のまま、 圧延二本ロール The columnar mixture (43) obtained after volatilization is about 160 ° C. due to shear heat generated by biaxial rotation immediately after being extruded from a twin-screw die, but it is rolled at the same temperature. Two roll
(関西ロール (株) 製、 製品名: 8 X 20 BOX型ロール機、 前ロールの温度: 10°C、 後ロールの温度: 10°C、 ガイド幅: 55mm、 回転数: 1. 0 r p m) により、 厚み 2 . 0 mm、 幅 10 Ommのシート状にした。 (Kansai Roll Co., Ltd., Product name: 8 x 20 BOX type roll, temperature of front roll: 10 ° C, temperature of back roll: 10 ° C, guide width: 55 mm, rotation speed: 1.0 rpm) Thickness 2 A sheet of 0 mm in width and 10 O mm wide.
シート状にした混合物 (43) を、 長さ 2mのダク トに 0. 25mZ分で送り、 温度 9 °Cの冷風を風速 lmZ秒で当て、 シートの温度が 30°C以下になるまで冷却した。  The sheeted mixture (43) was fed to a 2 m long duct for 0.25 mZ, and a cold air at a temperature of 9 ° C was applied at a wind speed of 1 mZ second to cool the sheet to a temperature below 30 ° C. .
《粒状化工程》  Granulation process
得られたシ トをスポットク一ラーで 1 5°C以下に冷却しながら、 9での温度下で、 シ ートカッター ( (株) ホーライ製、 製品名 : SGE— 220型) に供給速度 0. 7 k g/ m i nで投入し、 縦刃回転数 59. 2 H z、 横刃回転数 1 00. OH zで切断して、 角ぺ レツト状の混合物を得た。  While cooling the obtained sheet to a temperature of 15 ° C. or less with a spot cooler at a temperature of 9, the sheet is supplied to a sheet cutter (manufactured by Horai Co., Ltd., product name: SGE-220 type) 0. The mixture was charged at 7 kg / min, and was cut at a vertical blade rotational speed of 59. 2 Hz and a horizontal blade rotational speed of 100. OH z to obtain a square pellet-like mixture.
得られた角ペレツト状の混合物を、 振動篩い機 ( (株) セイシン企画製、 製品名 : ロー テックス 1 302) にかけて、 紐状物のような切断不充分の大きな異物を除きながら、 シ ングルスクリユータイプの振動フィルターから疎水性シリカ微粒子 (日本ァエロジル製、 ァエロジル R 9 72) を供給し、 振動させながら角ペレット状の混合物に約 0. l w t % *Γ*し /こ。  The obtained square pellet-like mixture is passed through a vibrating sieving machine (manufactured by Seishin Planning Co., Ltd., product name: ROTEX 1 302) to remove large foreign matter such as strings, etc., while eliminating shingles crickets. Supply hydrophobic silica fine particles (Aerosil R 9 72, manufactured by Nippon Aerosil) from a U-type vibration filter, and shake it into a square pellet-like mixture by approx.
得られた角ペレット状の混合物は、 厚み 1. 8mm、 幅 4. Ommであり、 長さは個数 基準で全体の 70%以上が 3. 7±0. 5 mmの範囲を満たすものであり、 1粒の平均重 量が 41. Omgであり、 含有水分量が 2050 p p mで、 固形分が 99. 0 w t %で、 ポリマーの重量平均分子量 Mwが 121, 000であった。  The obtained square pellet-like mixture is 1.8 mm in thickness and 4. O mm in width, and the length is 70% or more of the whole based on the number basis and satisfies the range of 3.7 ± 0.5 mm, The average weight of one tablet was 41. Omg, the water content was 2050 ppm, the solid content was 99.0 wt%, and the weight average molecular weight Mw of the polymer was 121,000.
《乾燥 ·調湿工程》  << Drying / humidity control process >>
予め、 調湿機として用いるナウターミキサー (神鋼環境ソリューション製、 製品名 : S Vミキサー) の内部を、 窒素または圧縮空気 (ドライエアー) により十分に置換しておき 、 さらにジャケットの熱媒を 24 °Cに加温して上記調湿機内部を 25 °Cに昇温しておいた この調湿機に、 角ペレット状の混合物 50 k gを、 調湿機の投入口から入れ、 ボルトで 十分に締め密閉した。  The inside of the Nauta mixer (made by Shinko Environmental Solutions, product name: SV mixer) to be used as a humidity controller is fully replaced with nitrogen or compressed air (dry air) in advance, and the heat medium of the jacket is further 24 ° 50 kg of the mixture in the form of square pellets was put into this humidity controller heated to 25 ° C. by heating to 25 ° C. from the inlet of the humidity controller, and then fully tightened with a bolt. I closed tightly.
次いで、 ナウターミキサーを攪拌しながらスプレーノズルから水分 1 500 p pm相当 の水 (約 75 g) を噴霧し、 噴霧後、 約 1 0分間攪拌混合した。 その後、 4時間静置して 水分量が平衡に達するようにし、 上記角ペレツト状の混合物を乾燥 ·調湿させた。  Next, while stirring the Nauta mixer, water (about 75 g) equivalent to water of 1 500 ppm was sprayed from the spray nozzle, and after spraying, it was stirred and mixed for about 10 minutes. Thereafter, the mixture was allowed to stand for 4 hours so that the water content could reach equilibrium, and the above rectangular pellet-like mixture was dried and conditioned.
このように乾燥 ·調湿処理を施して得られた角ペレツト状の混合物 (本発明の正極材料 組成物) は、 含有水分量が 1 880 p pmであり、 固形分が 1 00 w t %であり、 ポリマ 一の重量平均分子量 Mwが 1 20, 000であり、 ポリマーの分子量分布 (MwZMn) が 1. 38であり、 L i塩の含有割合は 6. 8 w t %であり、 導電助剤を含む電極活物質 の含有割合が 64. 6 w t %であった。  The square pellet-like mixture (the positive electrode material composition of the present invention) obtained by the drying and humidity control treatment as described above has a water content of 1 880 ppm and a solid content of 100 wt%. The weight average molecular weight Mw of the polymer is 120, 000, the molecular weight distribution (MwZMn) of the polymer is 1. 38, the content ratio of Li salt is 6. 8 wt%, and the conductive auxiliary agent is included. The content ratio of the electrode active material was 64. 6 wt%.
〔実施例 5〕  [Example 5]
《ポリマー溶液の調製》  << Preparation of polymer solution >>
実施例 1と同様にして、 ポリマーの重量平均分子量 Mwが 1 24, 000であり、 固形 分が 45. 8w t%である、 ポリマー溶液 (10) を得た。  In the same manner as in Example 1, a polymer solution (10) was obtained in which the weight average molecular weight Mw of the polymer is 120,000 and the solid content is 45.8 wt%.
《混合工程》  << Mixing process >>
(ポリマー溶液と L i塩との混合)  (Mixture of polymer solution and Li salt)
マックスブレンド翼を搭載した 0. 07 Lの竪型同心撹拌装置 (製品名 :マックスブレ ンド翼、 住友重機械工業 (株) 製) を、 予め、 150°Cでの加温下、 窒素流通下で装置内 の水分を除き、 窒素置換 (1. 5 k gZcm2までの加圧と 0. S k gZcm2までの解圧 ) を 4回行い、 ジヤッケット温度を 7 0でに昇温した。 A 0. 07 L bowl-shaped concentric stirring device equipped with a Max Blend wing (Product name: Max Blend wing, manufactured by Sumitomo Heavy Industries, Ltd.) was previously heated under 150 ° C. under nitrogen flow. In the device Water was removed and replaced with nitrogen (1 to 5 k gZcm 0. S k and a pressure of up to 2 gZcm 2 Kai圧) performed 4 times, and the temperature was raised to Jiyakketto temperature at 7 0.
予め約 8 0°Cに加温保温しておいたポリマー溶液 (1 0) 2 5. 4 1部を、 窒素加圧 ( 0. 5 k gZcm2) により、 撹拌装置へ投入した。 . One part of the polymer solution (10) 25 4. 4 which had been heated and kept at about 80 ° C. in advance was charged into a stirring apparatus by nitrogen pressure (0.5 kg z cm 2 ). .
さらに、 予め窒素置換しておいた L i塩 2. 4 8部を、 ホッパーから、 ベントを開いて 、 撹拌装置へ投入した。 その後、 撹拌機を稼動 (マックスブレンド翼: 2 0 r pm) させ 、 内温を 7 1°C (ジヤッケット温度: 7 2°C) にして、 5時間撹拌混合した。  Further, 2.48 parts of Li salt, which had been previously purged with nitrogen, was fed from the hopper to the stirring device with the vent opened. Thereafter, the stirrer was operated (Max blend wing: 20 rpm), and the internal temperature was changed to 71 ° C. (jacket temperature: 72 ° C.), and the mixture was stirred for 5 hours.
(導電助剤を含む電極活物質と混合)  (Mixed with electrode active material containing conductive aid)
ログボーン翼 (神鋼環境ソリューション社製、 製品名: ログボーン) を搭載した 0. 0 7 Lの竪型同心撹拌装置に、 窒素を少量流しながら、 トルエン 2 4. 0 2部およびポリマ 一溶液 (1 0) 1. 0 7部を仕込み、 撹拌装置を稼動 (5 2 r p m) させた。 次いで、 導 電助剤としてのカーボンブラックを l〜8 w t %含む電極活物質 (U S AVE S TOR L L C社製、 製品名: リチォ化酸化バナジウムノカーボンブレンド) 2 7. 4 9部を 5回 に分けて 1 0分間かけてホッパーから投入した。 その後、 内温を 2 5°C (ジヤッケット温 度: 2 4°C) にして、 2時間撹拌混合し、 スラリーを得た。 撹拌終了後、 窒素により撹拌 装置内を 1 . 6 k gZcm2まで加圧し 1 0 O mmH gまで減圧する脱揮操作を数回繰り 返し、 系内の余分な水分および溶存酸素を除いた。 A small amount of nitrogen was allowed to flow through a 0.70 L type concentric stirring apparatus equipped with a log bone wing (product name: Log bone) manufactured by Shinko Environmental Solutions Co., Ltd. Toluene 2 4.0 2 parts and a polymer solution (10 1. 7. 7 parts were charged and the stirrer was operated (52 rpm). Then, an electrode active material containing 1 to 8 wt% of carbon black as a conductivity assistant (US AVE S TOR LLC, product name: Lithovanadium oxide carbon blend) 2 7. 4 9 parts in 5 times Divided and charged from the hopper over 10 minutes. Thereafter, the internal temperature was changed to 25 ° C. (jacket temperature: 24 ° C.), and stirring was performed for 2 hours to obtain a slurry. After completion of the stirring, nitrogen was used to pressurize the inside of the stirring apparatus to 1.6 kgzcm 2 and decompress the pressure to 10 0 mm H g several times to repeat excess evaporation and remove excess water and dissolved oxygen in the system.
前述の、 ポリマー溶液と L i塩との混合物 3 1. 1 7部を、 ポリマー溶液と L i塩との 混合に用いた竪型同心撹拌装置から、 前記ログボーン翼を搭載した 0. 0 7 Lの竪型同心 撹拌装置へ、 両撹拌装置に接続させた配管から、 窒素圧 1. 0 k g/cm2、 配管温度約 1 0 0°Cで投入した。 その後、 撹拌装置を稼動 (3 0 r p m) させ、 常圧下、 内温を 5 0 °C (ジャケット温度: 5 2 ) にし、 3時間撹拌混合し、 スラリーを得た。 From the vertical concentric stirring device in which the above-mentioned mixture of polymer solution and Li salt 31 1.17 parts was used for mixing the polymer solution and Li salt, the logbone wing was mounted. 0.70 L Nitrogen pressure of 1.0 kg / cm 2 and a pipe temperature of about 100 ° C. were introduced into a vertical concentric stirrer from a pipe connected to both stirrers. Thereafter, the stirrer was operated (30 rpm), the internal temperature was adjusted to 50 ° C. (jacket temperature: 52) under normal pressure, and stirring was carried out for 3 hours to obtain a slurry.
このようにしてスラリー状の混合物 (5 1 ) を得た。  Thus, a slurry-like mixture (5 1) was obtained.
混合物 (5 1 ) は、 固形分が 5 3. l w t %であり、 ポリマーの重量平均分子量 Mwが 1 2 0, 0 0 0であり、 導電助剤を含む亀極活物質の含有割合が 6 4. 3 w t %であり、 L i塩の含有割合が 6. 2 w t %であり、 混合後の分散状態の評価は 「◎」 であり、 混合 後の凝集物含有率は、 1. 2%であった。  The mixture (51) has a solid content of 5 3. 1 wt%, a polymer weight average molecular weight Mw of 120, 00 0, and a content ratio of the cathode active material containing a conductive additive is 6 4 The content of L i salt is 6.2 wt%, and the evaluation of dispersion state after mixing is “◎”, and the content of aggregates after mixing is 1.2%. there were.
《脱揮工程》  << Degassing process >>
3 0 mm φ二軸押出機 (プラスティック工学研究所製、 製品名: B T— 3 0— S 2) の ヒーターを ONにし、 第 1ベント、 第 2ベントおよび第 3ベントでは 1 0 0°Cに、 第 4ベ ント、 第 5ベント、 ヘッドおよびダイを 9 0°Cに加熱する。  Turn on the heater of a 30 mm φ twin-screw extruder (manufactured by Plastic Engineering Laboratory, product name: BT-30-S 2) and set the temperature to 100 ° C for the first, second and third vents. Heat the 4th vent, 5th vent, the head and the die to 90 ° C.
上記混合工程におけるスラリー状の混合物 (5 1 ) の入った撹拌装置内を、 窒素で 0. The inside of the stirrer containing the slurry-like mixture (5 1) in the above mixing step was changed to
0 5MP aに加圧し、 該撹拌装置と二軸押出機の第 1ベントとの間に設置したギアポンプ により、 第 1ベントの直前まで混合物 (5 1 ) を満たすようにした後、 二軸を低速で回転 させ、 混合物 (5 1 ) の供給を開始し、 二軸の回転数を 1 0 0 r p mまで上げ、 二軸のダ ィから混合物 (5 1 ) が出てくることを確認した。 その後、 真空ポンプを起動させ、 第 2 ベン卜を 3 4 9 T o r rまで、 第 3ベントを 6 9 T o r rまで減圧して、 二軸のダイから 吐出量 6 k g Zhで棒状体 (円柱状、 直径: 2 5 mm) の混合物 (5 3) を得た。 The pressure is increased to 0. 5MPa, and the gear pump installed between the stirring device and the first vent of the twin screw extruder fills the mixture (51) just before the first vent, and then the twin screw is operated at low speed. Then, the mixture (51) was supplied, the rotational speed of the two shafts was increased to 100 rpm, and it was confirmed that the mixture (51) came out of the twin shaft. After that, start the vacuum pump and reduce the pressure of the second vent to 3 4 9 Torr, and the third vent to 6 9 Torr, and discharge the rod from the biaxial die at 6 kg Zh (cylindrical, A mixture (5 3) of diameter: 25 mm) was obtained.
合物 (5 3 ) は、 固形分が 9 8. 5 w t %であり、 ポリマーの重量平均分子量 Mwが The compound (5 3) has a solid content of 98.5 wt%, and the weight average molecular weight Mw of the polymer is
1 2 1 , 0 0 0であり、 導電助剤を含む電極活物質の含有割合が 6 3. 6 w t %であり、 L i塩の含有割合が 6. 6 w t %であった。 1 2 1 00 0, and the content ratio of the electrode active material containing the conductive additive is 6 3 6 wt%, The content ratio of L i salt was 6.6 wt%.
《粒状化工程》  Granulation process
二軸押出し機の出口の単管の先端部分に、 ピアノ線 (線径 0. 3mm, 長さ 5m) を約 1. 7mmZ秒で回転させることができるホットカッターを設置し、 該単管から吐出させ た 90〜: 120での棒状体 (直径 25 mm) の混合物 (53) を、 長さ約 25 c mずつに 切断し、 ブロック状 (塊状) の混合物を得た。  A hot cutter capable of rotating a piano wire (wire diameter 0.3 mm, length 5 m) in about 1.7 mm Z seconds is installed at the end of the single tube at the outlet of the twin screw extruder, and discharge from the single tube The mixture (53) of the rod-like body (25 mm in diameter) at 90 to 120: was cut into pieces of about 25 cm in length to obtain a block-like (bulk) mixture.
得られたブロック状の混合物は、 含有水分量が 250 p p mで、 固形分が 98. 6 w t %で、 ポリマーの重量平均分子量 Mwが 121, 000であった。  The obtained block mixture had a water content of 250 ppm, a solid content of 98.6 wt%, and a polymer weight average molecular weight Mw of 121,000.
《冷却固化工程》  << Cooling and Solidification Process >>
得られたブロック状の混合物 (53) を、 金網状のベルトの上に落とし、 振動させなが ら、 0. 25mZ分で送り、 温度 5〜10°Cの冷風を風速 1〜1. 5mZ秒で当て、 ブロ ックの温度が 30 °C以下になるまで冷却した。  The obtained block-like mixture (53) is dropped on a wire mesh belt, vibrated, and sent at 0.5 mz min. Cold air with a temperature of 5 to 10 ° C. at a wind speed of 1 to 1.5 mz seconds And cooled until the block temperature was below 30 ° C.
《乾燥 ·調湿工程〉〉  << Drying / humidity control process>
予め、 調湿に用いる金属製のホッパーの内部を露点一 5〜0 の圧縮空気 (ドライエア 一) により十分に置換しておき、 プロック状の混合物 50 k gを投入口から入れ、 ボルト で十分に締め密閉した。 次いで、 ホッパーの下部から、 露点一 5〜0°Cの圧縮空気 (ドラ ィエアー) を 4時間流し、 水分量が平衡に達するようにし、 上記ブロック状の混合物を乾 燥 ·調湿させた。  The inside of the metal hopper used for humidity control is fully replaced with compressed air with a dew point of 1 to 5 (dry air), and 50 kg of the block-like mixture is put in from the inlet and tightened with a bolt. It was sealed. Next, compressed air (dry air) having a dew point of 15 ° C. to 0 ° C. was flowed from the lower portion of the hopper for 4 hours to make the water content equilibrate, and the above block mixture was dried and moisture-conditioned.
このように乾燥 ·調湿処理を施して得られた角ペレツト状の混合物 (本発明の正極材料 組成物) は、 含有水分量が 1620 p p mであり、 固形分が 100 w t %であり、 ポリマ 一の重量平均分子量 Mwが 120, 000であり、 ポリマーの分子量分布 (Mw/Mn) が 1. 38であり、 L i塩の含有割合は 6. 8 w t %であり、 導電助剤を含む電極活物質 の含有割合が 64. 4 w t %であった。  The square pellet-like mixture (the positive electrode material composition of the present invention) obtained by the drying and moisture conditioning treatment as described above has a water content of 1620 ppm and a solid content of 100 wt%. Weight average molecular weight Mw is 120, 000, polymer molecular weight distribution (Mw / Mn) is 1. 38, content ratio of Li salt is 6. 8 wt%, electrode active containing conductive auxiliary agent The substance content ratio was 64. 4 wt%.
〔実施例 6〕  [Example 6]
《ポリマー溶液の調製》  << Preparation of polymer solution >>
実施例 1と同様にして、 ポリマーの重量平均分子量 Mwが 124, 000であり、 固形 分が 45. 8wt%である、 ポリマー溶液 (10) を得た。  In the same manner as in Example 1, a polymer solution (10) was obtained in which the weight average molecular weight Mw of the polymer is 124,000 and the solid content is 45.8 wt%.
《混合工程》  << Mixing process >>
(ポリマー溶液と L i塩との混合)  (Mixture of polymer solution and Li salt)
マックスプレンド翼を搭載した 0. 07 Lの竪型同心撹拌装置 (製品名:マックスブレ ンド翼、 住友重機械工業 (株) 製) を、 予め、 150°Cでの加温下、 窒素流通下で装置内 の水分を除き、 窒素置換 (1. 5 k gZcm2までの加圧と 0. 5 k gZcm2までの解圧 ) を 4回行い、 ジヤッケット温度を 70°Cに昇温した。 A 0. 07 L bowl-shaped concentric stirring device (product name: manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a Maxplindo wing was previously heated under 150 ° C under nitrogen flow. The water content in the apparatus was removed at this point, nitrogen substitution (pressurization to 1.5 kg zcm 2 and pressure release to 0.5 kg zcm 2 ) was performed four times, and the jacket temperature was raised to 70 ° C.
予め約 80でに加温保温しておいたポリマー溶液 (10) 27. 76部を、 窒素加圧 ( 0. 5 k g/cm2) により、 撹拌装置へ投入した。 27. 76 parts of the polymer solution (10) which had been preheated and kept at about 80 was charged into a stirring apparatus by nitrogen pressure (0.5 kg / cm 2 ).
さらに、 予め窒素置換しておいた L i塩 3. 33部を、 ホッパーから、 ベントを開いて 、 撹拌装置へ投入した。 その後、 撹拌機を稼動 (マックスブレンド翼: 20 r pm) させ 、 内温を 70°C (ジヤッケット温度: 71°C) にして、 6時間撹拌混合した。  Further, 3.33 parts of L i salt previously purged with nitrogen were fed from the hopper into the stirring device with the vent opened. Thereafter, the stirrer was operated (Max Blend wing: 20 rpm), the internal temperature was set to 70 ° C. (jacket temperature: 71 ° C.), and stirring was carried out for 6 hours.
(導電助剤を含む電極活物質と混合)  (Mixed with electrode active material containing conductive aid)
マックスブレンド翼を搭載した 0. 07 Lの竪型同心撹拌装置 (製品名:マックスブレ ンド翼、 住友重機械工業 (株) 製) に、 窒素を少量流しながら、 トルエン 32. 80部お よびポリマ一溶液 (10) 4. 38部を仕込み、 撹拌装置を稼動 (125 r pm) させ、 内温を 35°C (ジヤッケット温度: 36°C) にして、 1時間撹拌混合した。 次いで、 導電 助剤としてのカーボンブラックを 1〜 8 w t %含む電極活物質 (US AVE S TOR LLC社製、 製品名 : リチォ化酸化バナジウム < /カーボンブレンド) 20. 53部を 5回 に分けて 11分間かけてホッパーから投入した。 その後、 内温を 35 (ジヤッケット温 度: 36で) で、 2時間撹拌混合し、 スラリーを得た。 その後、 窒素により撹拌装置内を 1. 6 k g/cm2まで加圧し 10 OmmHgまで減圧する脱揮操作を数回繰り返し、 系 内の余分な水分および溶存酸素を除いた。 0. 07 L bowl-shaped concentric stirring device equipped with Max Blend wings (Product name: Max Bure 32. 80 parts of toluene and 4.38 parts of the polymer solution (10) were charged into a wing of Sumitomo Heavy Industries, Ltd., while flowing a small amount of nitrogen, and the stirrer was operated (125 rpm). The internal temperature was 35 ° C. (jacket temperature: 36 ° C.), and the mixture was stirred for 1 hour. Then, an electrode active material containing 1 to 8 wt% of carbon black as a conductive additive (US AVE S TOR LLC, product name: vanadium oxide oxide <carbon blend) 20. 53 parts in five divided portions Charged from the hopper over 11 minutes. Thereafter, the mixture was stirred and mixed at an internal temperature of 35 (jacket temperature: 36) for 2 hours to obtain a slurry. Thereafter, the inside of the stirring apparatus was pressurized to 1.6 kg / cm 2 with nitrogen and depressurized to 10 O mmHg several times to repeat excess evaporation and remove excess water and dissolved oxygen in the system.
前述の、 ポリマー溶液と L i塩との混合物 19. 74部を、 ポリマー溶液と L i塩との 混合に用いた竪型同心撹拌装置から、 前記マックスブレンド翼を搭載した 0. 07 Lの竪 型同心撹拌装置へ、 両撹拌装置に接続させた配管から、 窒素圧 1. 0 k g/Cm2、 配管 温度約 100°Cで投入した。 その後、 撹拌装置を稼動 (125 r pm) させ、 常圧下、 内 温を 49°C (ジャケット温度: 50°C) にし、 5時間撹拌混合して、 スラリー状の混合物 (61) を得た。 From the vertical concentric stirring device in which 19.74 parts of the mixture of the polymer solution and the Li salt described above were used for mixing the polymer solution and the Li salt, a 0. 07 L crucible equipped with the Max Blend wing was used. Nitrogen pressure was 1.0 kg / C m 2 and piping temperature was about 100 ° C from a pipe connected to a concentric stirring device. Thereafter, the stirrer was operated (125 rpm), the internal temperature was adjusted to 49 ° C. (jacket temperature: 50 ° C.) under normal pressure, and stirring was carried out for 5 hours to obtain a slurry mixture (61).
のようにして得られたスラリー状の混合物 (61) (本発明の正極材料組成物) は、 固形分が 44. 6 w t%であり、 ポリマーの重量平均分子量 Mwが 120, 000であり 、 導電助剤を含む電極活物質の含有割合が 63. 5 w t %であり、 L i塩の含有割合が 6 . 7w t%であり、 混合後の分散状態の評価は 「◎」 であり、 混合後の凝集物含有率は、 0. 2%であった。  The slurry-like mixture (61) (the positive electrode material composition of the present invention) obtained as described above has a solid content of 44.6 wt%, a polymer weight average molecular weight Mw of 120,000, The content ratio of the electrode active material containing the auxiliary agent is 63.5 wt%, the content ratio of Li salt is 6.7 wt%, and the evaluation of the dispersion state after mixing is “◎”. The aggregate content of C was 0.2%.
以上の各実施例で得られた正極材料組成物を用いて、 リチウム 2次電池の正極を作製し 、 その電池性能を評価したところ、 いずれの実施例で得られた正極材料組成物に基づくリ チウム電池も、 良好な性能を発揮するものであった。 産業上の利用可能性  A positive electrode of a lithium secondary battery was produced using the positive electrode material composition obtained in each of the above examples, and the battery performance was evaluated. As a result, lithium based on the positive electrode material composition obtained in any of the examples was used. The lithium battery also exhibited good performance. Industrial applicability
本発明の製造方法は、 リチウム 2次電池の正極に用い得る材料用組成物を調製する方法 として好適である。  The production method of the present invention is suitable as a method for preparing a material composition that can be used for the positive electrode of a lithium secondary battery.

Claims

請 求 の 範 囲 The scope of the claims
1. ポリマー、 電解質塩化合物、 電極活物質および導電助剤を必須成分とする正極材料 組成物を得る方法において、 前記ポリマーに対する前記電解質塩化合物、 電極活物質およ び導電助剤の混合は、 ポリマーにまず電解質塩化合物のみを溶解状に混合する工程 (I) と、 ポリマーに電解質塩化合物を混合したのちの混合物に電極活物質および導電助剤を同 時または前後して混合する工程 (I I) とに分けて行う、 ことを特徴とするリチウム 2次 電池用正極材料組成物の製造方法。 1. In a method of obtaining a positive electrode material composition comprising a polymer, an electrolyte salt compound, an electrode active material and a conductive aid as an essential component, mixing of the electrolyte salt compound, the electrode active material and the conductive aid with the polymer is The step (I) of mixing only the electrolyte salt compound into a solution in a dissolved state first, and the step of mixing the electrode active material and the conductive aid simultaneously or before or after the mixture after mixing the electrolyte salt compound into the polymer (II A method of producing a positive electrode material composition for a lithium secondary battery, characterized in that the method is carried out separately.
2. 前記工程 (I ) と前記工程 (I I) の両方または一方を溶媒存在下で行う、 請求項 1に記載のリチウム 2次電池用正極材料組成物の製造方法。 2. The method for producing a positive electrode material composition for a lithium secondary battery according to claim 1, wherein both or one of the step (I) and the step (II) is performed in the presence of a solvent.
3. 溶媒存在下で行う工程ののちに、 得られた混合物が流動性を失わない程度で該混合 物中の溶媒を揮発させる工程 (I I I ) をも備える、 請求項 2に記載のリチウム 2次電池 用正極材料組成物の製造方法。 3. The lithium secondary according to claim 2, further comprising the step of volatilizing the solvent in the mixture to the extent that the obtained mixture does not lose fluidity after the step performed in the presence of a solvent. The manufacturing method of the positive electrode material composition for batteries.
4. 正極材料組成物となる混合物を冷却し固化させる工程、 混合物を粒状化する工程、 および、 混合物を乾燥おょぴ または調湿する工程のうちの少なくとも 1つをも備える、 請求項 2または 3に記載のリチウム 2次電池用正極材料組成物の製造方法。 4. At least one of the steps of cooling and solidifying the mixture to be the positive electrode material composition, granulating the mixture, and drying or conditioning the mixture. 3. The manufacturing method of the positive electrode material composition for lithium secondary batteries as described in 3.
5. 前記工程 (I) と前記工程 (I I) の両方を溶媒の非存在下で行い、 前記工程 (I ) および工程 (I I) ののち、 正極材料組成物となる混合物を冷却し固化させる工程、 混 合物を粒状化する工程、 および、 混合物を乾燥および Zまたは調湿する工程のうちの少な くとも 1つをも備える、 請求項 1に記載のリチウム 2次電池用正極材料組成物の製造方法 5. A step of cooling both the step (I) and the step (II) in the absence of a solvent, and cooling and solidifying the mixture to be the positive electrode material composition after the step (I) and the step (II) The positive electrode material composition for a lithium secondary battery according to claim 1, further comprising the steps of: granulating the mixture; and at least one of the steps of drying and Z or conditioning the mixture. Production method
6. 少なくとも一つの工程を不活性ガス雰囲気下で行う、 請求項 1から 5までのいずれ かに記載のリチウム 2次電池用正極材料組成物の製造方法。 6. The method for producing a positive electrode material composition for a lithium secondary battery according to any one of claims 1 to 5, wherein at least one step is performed under an inert gas atmosphere.
7. 前記ポリマーの重量平均分子量を Mw。とし、 最終工程後の混合物中のポリマーの 重量平均分子量を Mwとしたときに、 下記式 (1) により求められる重量平均分子量減少 率 (DMw) が 1 0%以下である、 請求項 1から 6までのいずれかに記載のリチウム 2次電 池用正極材料組成物の製造方法。 7. The weight average molecular weight of the polymer is Mw. When the weight average molecular weight of the polymer in the mixture after the final step is Mw, the weight average molecular weight reduction rate (D Mw ) determined by the following formula (1) is 10% or less. A method for producing a positive electrode material composition for a lithium secondary battery according to any one of the above 6.
DMw (%) = 〔 (Mw0-Mw) /Mw0] X I 00 (1) D Mw (%) = [(Mw 0- Mw) / Mw 0 ] XI 00 (1)
. .
8. 前記電極活物質が、 L i xVyOz (ただし、 x、 yおよび zは、 それぞれ互いに独 立、 かつ、 0く x≤ 2、 y = (mx + 2 z ) /nおよび z = (mx + n y) / 2 (ただし 、 mは L iの価数であり、 nは Vの価数で 4以上の実数である。 ) を満足する実数である 。 ) である、 請求項 1から 7までのいずれかに記載のリチウム 2次電池用正極材料組成物 の製造方法。 - 8. The electrode active material is L i x V y O z (where x, y and z are each independent of each other, and 0 x く 2, y = (mx + 2 z) / n and z = (mx + ny) / 2 (where, m is a valence number of Li and n is a valence number of V and is a real number of 4 or more)). 7. A method of producing a positive electrode material composition for a lithium secondary battery according to any one of 7 to 7. -
9 . 前記ポリマーがイオン導電性のポリエーテル重合体である、 請求項 1から 8までの レ、ずれかに記載のリチウム 2次電池用正極材料組成物の製造方法。 9. The method for producing a positive electrode material composition for a lithium secondary battery according to any one of claims 1 to 8, wherein the polymer is an ionically conductive polyether polymer.
PCT/JP2005/016469 2004-09-03 2005-09-01 Process for producing positive electrode material composition for lithium secondary battery WO2006025602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006532027A JPWO2006025602A1 (en) 2004-09-03 2005-09-01 Method for producing positive electrode material composition for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004257146 2004-09-03
JP2004-257146 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006025602A1 true WO2006025602A1 (en) 2006-03-09

Family

ID=36000230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016469 WO2006025602A1 (en) 2004-09-03 2005-09-01 Process for producing positive electrode material composition for lithium secondary battery

Country Status (2)

Country Link
JP (1) JPWO2006025602A1 (en)
WO (1) WO2006025602A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009445A (en) * 2007-02-05 2012-01-12 Lg Chem Ltd Organic/inorganic composite separation film coated with porous active layer, and electrochemical element with the same
JP2013006888A (en) * 2011-06-22 2013-01-10 Mitsubishi Rayon Co Ltd Method of producing polymer for lithography, method of producing resist composition, and method of manufacturing substrate on which pattern is formed
JP2015018712A (en) * 2013-07-11 2015-01-29 トヨタ自動車株式会社 Method for manufacturing slurry for electrode formation
KR101511022B1 (en) 2012-04-16 2015-04-10 주식회사 엘지화학 Moisture-Limited Electrode Active Material, Moisture-Limited Electrode and Lithium Secondary Battery Comprising The Same
KR101603648B1 (en) * 2013-12-26 2016-03-16 주식회사 포스코 Device for manufacturing anode active material for lithium battery
DE102018218616A1 (en) 2018-10-31 2020-04-30 Robert Bosch Gmbh Process for the production of electrode materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707383B (en) * 2019-10-22 2021-01-29 哈尔滨理工大学 Preparation method and use method of amorphous vanadium oxide/carbon fiber material for lithium-sulfur battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307663A (en) * 1987-06-05 1988-12-15 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPH04500883A (en) * 1989-07-20 1992-02-13 ドウティー エレクトロニック コンポーネンツ リミテッド Batteries containing lithium vanadium oxide as active material
JPH0729605A (en) * 1993-07-14 1995-01-31 Fuji Photo Film Co Ltd Non-aqueous secondary battery and manufacture thereof
JP2002319434A (en) * 2001-04-20 2002-10-31 Sharp Corp Lithium polymer secondary cell
JP2002352799A (en) * 2001-05-30 2002-12-06 Hitachi Ltd Method for manufacturing nonaqueous electrolyte secondary battery
WO2003094262A1 (en) * 2002-05-03 2003-11-13 3M Innovative Properties Company Method for making electrode
JP2004259635A (en) * 2003-02-27 2004-09-16 Nippon Zeon Co Ltd Method for manufacturing solid polyelectrolyte cathode film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307663A (en) * 1987-06-05 1988-12-15 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPH04500883A (en) * 1989-07-20 1992-02-13 ドウティー エレクトロニック コンポーネンツ リミテッド Batteries containing lithium vanadium oxide as active material
JPH0729605A (en) * 1993-07-14 1995-01-31 Fuji Photo Film Co Ltd Non-aqueous secondary battery and manufacture thereof
JP2002319434A (en) * 2001-04-20 2002-10-31 Sharp Corp Lithium polymer secondary cell
JP2002352799A (en) * 2001-05-30 2002-12-06 Hitachi Ltd Method for manufacturing nonaqueous electrolyte secondary battery
WO2003094262A1 (en) * 2002-05-03 2003-11-13 3M Innovative Properties Company Method for making electrode
JP2004259635A (en) * 2003-02-27 2004-09-16 Nippon Zeon Co Ltd Method for manufacturing solid polyelectrolyte cathode film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009445A (en) * 2007-02-05 2012-01-12 Lg Chem Ltd Organic/inorganic composite separation film coated with porous active layer, and electrochemical element with the same
JP2013006888A (en) * 2011-06-22 2013-01-10 Mitsubishi Rayon Co Ltd Method of producing polymer for lithography, method of producing resist composition, and method of manufacturing substrate on which pattern is formed
KR101511022B1 (en) 2012-04-16 2015-04-10 주식회사 엘지화학 Moisture-Limited Electrode Active Material, Moisture-Limited Electrode and Lithium Secondary Battery Comprising The Same
US11024845B2 (en) 2012-04-16 2021-06-01 Lg Chem, Ltd. Moisture-limited electrode active material, moisture-limited electrode and lithium secondary battery comprising the same
JP2015018712A (en) * 2013-07-11 2015-01-29 トヨタ自動車株式会社 Method for manufacturing slurry for electrode formation
KR101603648B1 (en) * 2013-12-26 2016-03-16 주식회사 포스코 Device for manufacturing anode active material for lithium battery
DE102018218616A1 (en) 2018-10-31 2020-04-30 Robert Bosch Gmbh Process for the production of electrode materials

Also Published As

Publication number Publication date
JPWO2006025602A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006025602A1 (en) Process for producing positive electrode material composition for lithium secondary battery
EP1568728A2 (en) Water soluble non-ionic alkylene oxide resin and production process therefor
CN1084056C (en) Method of producing cathode mixture for batteries
WO2005013394A1 (en) Cathode material for polymer batteries and method of preparing same
EP3564295A1 (en) Method for preparing super absorbent polymer
WO2006025600A1 (en) Method for maintaining positive electrode material composition for lithium secondary battery
EP1327650B1 (en) Production process for ethylene oxide copolymer
WO2006025604A1 (en) Process for producing positive electrode material composition for lithium secondary battery
JPH07187998A (en) Production of tablet
US11433364B2 (en) Slurry production apparatus
JP2006335905A (en) Manufacturing method of pelletized nonionic alkylene oxide-based resin
JP3920224B2 (en) Method for producing ethylene oxide resin
JP5695479B2 (en) Manufacturing method of resin pellets
JPWO2005001963A1 (en) Active material for cathode film, polyether polymer composition for cathode film, cathode film, and method for producing cathode film
JP4081510B2 (en) Regeneration treatment system for reclaimable polystyrene resin particles and treatment method thereof
JP4289890B2 (en) Process for producing ethylene oxide copolymer
WO2006025374A1 (en) Process for producing particle-containing ethylene oxide copolymer resin and method of packaging
EP2876131B1 (en) Method for producing resin composition containing active particles
JP3120383B2 (en) Method for producing granulated polyarylene sulfide resin
JP2007031618A (en) Method for transporting polyalkylene oxide-based water-soluble resin
WO2005001964A1 (en) Compounding agent composition for cathode film, polyether polymer composition for cathode film
JP5432437B2 (en) Polyether polymer pellets and classification method
JP2005232376A (en) Polyether polymer composition for solid electrolyte
JP2005232415A (en) Transportation method of nonionic alkylene oxide-based water-soluble resin
CN114181436A (en) Novel powdered water-absorbing master batch and preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532027

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase