JP2013006888A - Method of producing polymer for lithography, method of producing resist composition, and method of manufacturing substrate on which pattern is formed - Google Patents

Method of producing polymer for lithography, method of producing resist composition, and method of manufacturing substrate on which pattern is formed Download PDF

Info

Publication number
JP2013006888A
JP2013006888A JP2011138301A JP2011138301A JP2013006888A JP 2013006888 A JP2013006888 A JP 2013006888A JP 2011138301 A JP2011138301 A JP 2011138301A JP 2011138301 A JP2011138301 A JP 2011138301A JP 2013006888 A JP2013006888 A JP 2013006888A
Authority
JP
Japan
Prior art keywords
polymer
solvent
monomer
group
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011138301A
Other languages
Japanese (ja)
Other versions
JP5821317B2 (en
Inventor
Atsushi Yasuda
敦 安田
Tomoya Oshikiri
友也 押切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011138301A priority Critical patent/JP5821317B2/en
Publication of JP2013006888A publication Critical patent/JP2013006888A/en
Application granted granted Critical
Publication of JP5821317B2 publication Critical patent/JP5821317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a polymer for lithography, which can efficiently reduce a residual monomer contained in the polymer.SOLUTION: The method of producing the polymer for lithography includes: a step of radically polymerizing a monomer by using a polymerization initiator in the presence of a polymerization solvent to obtain a polymerization reaction solution having viscosity of >120 mPa s at 25°C; a step of diluting the polymerization reaction solution thus obtained, with a diluting solvent to obtain a post-dilution solution having viscosity of ≤120 mPa s at 25°C; and a step of dropping the post-dilution solution on a poor solvent for the polymer to precipitate the polymer in the post-dilution solution.

Description

本発明はリソグラフィー用重合体の製造方法、該製造方法で得られるリソグラフィー用重合体を用いてレジスト組成物を製造する方法、および該レジスト組成物を用いて、パターンが形成された基板を製造する方法に関する。   The present invention relates to a method for producing a lithography polymer, a method for producing a resist composition using the lithography polymer obtained by the production method, and a substrate on which a pattern is formed using the resist composition. Regarding the method.

近年、半導体素子、液晶素子等の製造工程において形成されるレジストパターンは、リソグラフィー技術の進歩により急速に微細化が進んでいる。微細化の手法としては、照射光の短波長化がある。具体的には、従来のg線(波長:438nm)、i線(波長:365nm)に代表される紫外線から、より短波長のDUV(Deep Ultra Violet)へと照射光が短波長化してきている。   In recent years, a resist pattern formed in a manufacturing process of a semiconductor element, a liquid crystal element, or the like has been rapidly miniaturized due to progress in lithography technology. As a technique for miniaturization, there is a reduction in wavelength of irradiation light. Specifically, the irradiation light has become shorter from conventional ultraviolet rays typified by g-line (wavelength: 438 nm) and i-line (wavelength: 365 nm) to shorter wavelength DUV (Deep Ultra Violet). .

最近では、KrFエキシマレーザー(波長:248nm)リソグラフィー技術が導入され、さらなる短波長化を図ったArFエキシマレーザー(波長:193nm)リソグラフィー技術およびEUV(波長:13.5nm)リソグラフィー技術が研究されている。さらに、これらの液浸リソグラフィー技術も研究されている。また、これらとは異なるタイプのリソグラフィー技術として、電子線リソグラフィー技術についても精力的に研究されている。   Recently, KrF excimer laser (wavelength: 248 nm) lithography technology has been introduced, and ArF excimer laser (wavelength: 193 nm) lithography technology and EUV (wavelength: 13.5 nm) lithography technology for further shortening the wavelength have been studied. . Furthermore, these immersion lithography techniques are also being studied. Also, as a different type of lithography technology, electron beam lithography technology has been energetically studied.

該短波長の照射光または電子線を用いたレジストパターンの形成に用いられる高感度のレジスト組成物として、光酸発生剤を含有する「化学増幅型レジスト組成物」が提唱され、現在、該化学増幅型レジスト組成物の改良および開発が進められている。
例えば、ArFエキシマレーザーリソグラフィーにおいて用いられる化学増幅型レジスト用重合体として、波長193nmの光に対して透明なアクリル系重合体が注目されている。該アクリル系重合体としては、例えば、エステル部にアダマンタン骨格を有する(メタ)アクリル酸エステルとエステル部にラクトン骨格を有する(メタ)アクリル酸エステルとの重合体が提案されている(特許文献1等)。
また、露光時に基板からの反射を防ぐ役割を果たすため、露光光に対する光線透過率が低い反射防止膜の開発が進められており、アクリル系重合体を用いた反射防止膜が提案されている(特許文献2、3等)。
A “chemically amplified resist composition” containing a photoacid generator has been proposed as a highly sensitive resist composition used for forming a resist pattern using the irradiation light or electron beam of the short wavelength. Improvement and development of amplification resist compositions are underway.
For example, as a chemically amplified resist polymer used in ArF excimer laser lithography, an acrylic polymer that is transparent with respect to light having a wavelength of 193 nm has attracted attention. As the acrylic polymer, for example, a polymer of (meth) acrylic acid ester having an adamantane skeleton in an ester portion and (meth) acrylic acid ester having a lactone skeleton in an ester portion has been proposed (Patent Document 1). etc).
In addition, in order to prevent reflection from the substrate at the time of exposure, development of an antireflection film having a low light transmittance with respect to exposure light has been advanced, and an antireflection film using an acrylic polymer has been proposed ( Patent Documents 2 and 3).

レジストパターンの微細化に伴って、リソグラフィー用重合体の品質への要求も厳しくなっている。例えば、優れたレジストパターンプロファイルを得るためにはリソグラフィー用重合体に含まれる残存単量体が低い方が良いことが知られている(特許文献4等)。また、残存単量体を低減させるために、重合反応溶液を貧溶媒に添加して重合体を析出させることによって精製する、再沈殿と呼ばれる手法が用いられることが一般的に知られている(特許文献5等)。   With the miniaturization of resist patterns, the demands on the quality of lithography polymers are becoming stricter. For example, it is known that in order to obtain an excellent resist pattern profile, it is better that the residual monomer contained in the polymer for lithography is low (Patent Document 4, etc.). Further, in order to reduce the residual monomer, it is generally known that a technique called reprecipitation, which is purified by adding a polymerization reaction solution to a poor solvent and precipitating a polymer, is used ( Patent Document 5).

特開平10−319595号公報JP 10-319595 A 特開2003−295456号公報JP 2003-295456 A 特開2004−31569号公報JP 2004-31569 A 特開2001−109153号公報JP 2001-109153 A 特開2003−215806号公報JP 2003-215806 A

しかし、従来の再沈殿による方法では必ずしも十分とは言えず、重合体中の残存単量体をさらに低減できる方法が望まれる。また再沈殿で得られる重合体を、再度、貧溶媒に添加して不純物を除去するリスラリ工程を行えば、残存単量体を低減することができるが、煩雑な操作が増え、製造効率が悪くなる。
本発明は前記事情に鑑みてなされたもので、重合体に含まれる残存単量体を効率良く低減できるようにした、リソグラフィー用重合体の製造方法、該製造方法で得られるリソグラフィー用重合体を含むレジスト組成物、および該レジスト組成物を用いて、パターンが形成された基板を製造する方法を提供することを目的とする。
However, the conventional reprecipitation method is not always sufficient, and a method capable of further reducing the residual monomer in the polymer is desired. In addition, if the polymer obtained by reprecipitation is added again to a poor solvent and subjected to a restructuring process to remove impurities, residual monomers can be reduced, but complicated operations increase and production efficiency is poor. Become.
The present invention has been made in view of the above circumstances, and a method for producing a lithography polymer capable of efficiently reducing the residual monomer contained in the polymer, and a lithography polymer obtained by the production method. It is an object of the present invention to provide a resist composition containing the same and a method for producing a substrate on which a pattern is formed using the resist composition.

前記課題を解決するために、本発明のリソグラフィー用重合体の製造方法は、重合溶媒の存在下に、重合開始剤を使用して、単量体をラジカル重合させて、25℃における粘度が120mPa・sより高い重合反応溶液を得る工程と、得られた重合反応溶液を希釈溶媒で希釈して、25℃における粘度が120mPa・s以下の希釈後溶液を得る工程と、前記希釈後溶液を重合体に対する貧溶媒中に滴下して、該希釈後溶液中の重合体を沈殿させる工程を含むことを特徴とする。
前記希釈溶媒が重合体に対する貧溶媒であることが好ましい。
In order to solve the above-mentioned problems, the method for producing a lithographic polymer according to the present invention comprises subjecting a monomer to radical polymerization using a polymerization initiator in the presence of a polymerization solvent, and having a viscosity at 25 ° C. of 120 mPa A step of obtaining a polymerization reaction solution higher than s; a step of diluting the obtained polymerization reaction solution with a diluting solvent to obtain a diluted solution having a viscosity at 25 ° C. of 120 mPa · s or less; It is characterized by including a step of dropping the polymer in a poor solvent for the coalescence to precipitate the polymer in the solution after the dilution.
The dilution solvent is preferably a poor solvent for the polymer.

本発明は、本発明のリソグラフィー用重合体の製造方法によりリソグラフィー用重合体を製造する工程と、得られた半導体リソグラフィー用重合体と、活性光線又は放射線の照射により酸を発生する化合物とを混合する工程を有する、レジスト組成物の製造方法を提供する。   The present invention comprises a step of producing a polymer for lithography by the method for producing a polymer for lithography of the present invention, and the obtained polymer for semiconductor lithography and a compound that generates an acid upon irradiation with actinic rays or radiation. A method for producing a resist composition is provided.

本発明は、本発明のレジスト組成物の製造方法によりレジスト組成物を製造する工程と、得られたレジスト組成物を基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む、パターンが形成された基板の製造方法を提供する。   The present invention includes a step of producing a resist composition by the method for producing a resist composition of the present invention, a step of coating the obtained resist composition on a work surface of a substrate to form a resist film, and the resist Provided is a method for manufacturing a substrate on which a pattern is formed, which includes a step of exposing a film and a step of developing the exposed resist film using a developer.

本発明のリソグラフィー用重合体の製造方法によれば、再沈殿により、重合反応溶液に含まれる未反応の単量体等を除去する際の除去効率を向上させることができる。これにより単量体の残存量が少なく、分子量分布が狭いリソグラフィー用重合体を効率良く製造することができる。このような単量体の残存量が少なく、分子量分布が狭いリソグラフィー用重合体は、レジスト組成物に用いた時の感度に優れる。
本発明のレジスト組成物の製造方法によれば、本発明の製造方法で製造したリソグラフィー用重合体を含み、感度に優れたレジスト組成物が得られる。
本発明の基板の製造方法によれば、感度に優れたレジスト組成物を用いて、高精度の微細レジストパターンを安定して形成できる。
According to the method for producing a polymer for lithography of the present invention, the removal efficiency when removing unreacted monomers and the like contained in the polymerization reaction solution can be improved by reprecipitation. Thereby, a polymer for lithography having a small residual amount of monomer and a narrow molecular weight distribution can be efficiently produced. Such a polymer for lithography with a small residual amount of monomer and a narrow molecular weight distribution is excellent in sensitivity when used in a resist composition.
According to the method for producing a resist composition of the present invention, a resist composition excellent in sensitivity can be obtained, which includes the lithography polymer produced by the production method of the present invention.
According to the substrate manufacturing method of the present invention, a highly accurate fine resist pattern can be stably formed using a resist composition having excellent sensitivity.

本明細書において、「(メタ)アクリル酸」は、アクリル酸またはメタクリル酸を意味し、「(メタ)アクリロイルオキシ」は、アクリロイルオキシまたはメタクリロイルオキシを意味する。
本明細書における溶液の粘度の値は、測定温度25℃にて、E型粘度計により測定した値である。
In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, and “(meth) acryloyloxy” means acryloyloxy or methacryloyloxy.
The value of the viscosity of the solution in this specification is a value measured with an E-type viscometer at a measurement temperature of 25 ° C.

<リソグラフィー用重合体>
本発明におけるリソグラフィー用重合体(以下、単に重合体ということもある。)は、リソグラフィー工程に用いられる重合体であれば、特に限定されずに適用することができる。例えば、レジスト膜の形成に用いられるレジスト用重合体、レジスト膜の上層に形成される反射防止膜(TARC)、またはレジスト膜の下層に形成される反射防止膜(BARC)の形成に用いられる反射防止膜用重合体、ギャップフィル膜の形成に用いられるギャップフィル膜重合体、トップコート膜の形成に用いられるトップコート膜用重合体が挙げられる。
<Polymer for lithography>
The polymer for lithography in the present invention (hereinafter sometimes simply referred to as polymer) is not particularly limited as long as it is a polymer used in the lithography process. For example, a resist polymer used for forming a resist film, an antireflection film (TARC) formed on the upper layer of the resist film, or a reflection used for forming an antireflection film (BARC) formed on the lower layer of the resist film. Examples thereof include a polymer for prevention film, a gap fill film polymer used for forming a gap fill film, and a polymer for top coat film used for forming a top coat film.

レジスト用重合体の例としては、酸脱離性基を有する構成単位の1種以上と、極性基を有する構成単位の1種以上とを含む共重合体が挙げられる。   Examples of the resist polymer include a copolymer containing at least one structural unit having an acid leaving group and at least one structural unit having a polar group.

反射防止膜用重合体の例としては、吸光性基を有する構成単位と、レジスト膜と混合を避けるため、硬化剤などと反応して硬化可能なアミノ基、アミド基、ヒドロキシル基、エポキシ基等の反応性官能基を有する構成単位とを含む共重合体が挙げられる。吸光性基とは、レジスト組成物中の感光成分が感度を有する波長領域の光に対して、高い吸収性能を有する基であり、具体例としては、アントラセン環、ナフタレン環、ベンゼン環、キノリン環、キノキサリン環、チアゾール環等の環構造(任意の置換基を有していてもよい。)を有する基が挙げられる。特に、照射光として、KrFレーザ光が用いられる場合には、アントラセン環又は任意の置換基を有するアントラセン環が好ましく、ArFレーザ光が用いられる場合には、ベンゼン環又は任意の置換基を有するベンゼン環が好ましい。   Examples of the polymer for antireflection film include a structural unit having a light-absorbing group and an amino group, an amide group, a hydroxyl group, an epoxy group, etc. that can be cured by reacting with a curing agent to avoid mixing with the resist film. And a copolymer containing a structural unit having a reactive functional group. The light-absorbing group is a group having high absorption performance with respect to light in a wavelength region where the photosensitive component in the resist composition is sensitive. Specific examples include an anthracene ring, naphthalene ring, benzene ring, quinoline ring. , A group having a ring structure (optionally substituted) such as a quinoxaline ring and a thiazole ring. In particular, when KrF laser light is used as irradiation light, an anthracene ring or an anthracene ring having an arbitrary substituent is preferable, and when ArF laser light is used, a benzene ring or a benzene having an arbitrary substituent A ring is preferred.

上記任意の置換基としては、フェノール性水酸基、アルコール性水酸基、カルボキシ基、カルボニル基、エステル基、アミノ基、又はアミド基等が挙げられる。これらのうち、吸光性基として、保護された又は保護されていないフェノール性水酸基を有するものが、良好な現像性・高解像性の観点から好ましい。上記吸光性基を有する構成単位・単量体として、例えば、ベンジル(メタ)アクリレート、p−ヒドロキシフェニル(メタ)アクリレート等が挙げられる。   Examples of the optional substituent include a phenolic hydroxyl group, an alcoholic hydroxyl group, a carboxy group, a carbonyl group, an ester group, an amino group, and an amide group. Among these, those having a protected or unprotected phenolic hydroxyl group as the light absorbing group are preferable from the viewpoint of good developability and high resolution. Examples of the structural unit / monomer having the light-absorbing group include benzyl (meth) acrylate and p-hydroxyphenyl (meth) acrylate.

ギャップフィル膜用重合体の例としては、狭いギャップに流れ込むための適度な粘度を有し、レジスト膜や反射防止膜との混合を避けるため、硬化剤などと反応して硬化可能な反応性官能基を有する構成単位を含む共重合体、具体的にはヒドロキシスチレンと、スチレン、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート等の
単量体との共重合体が挙げられる。
液浸リソグラフィーに用いられるトップコート膜用重合体の例としては、カルボキシル基を有する構成単位を含む共重合体、水酸基が置換したフッ素含有基を有する構成単位を含む共重合体等が挙げられる。
Examples of polymers for gap fill films are reactive functionalities that have a suitable viscosity for flowing into narrow gaps and can be cured by reacting with curing agents to avoid mixing with resist films and antireflection films. Examples thereof include a copolymer containing a structural unit having a group, specifically, a copolymer of hydroxystyrene and a monomer such as styrene, alkyl (meth) acrylate, or hydroxyalkyl (meth) acrylate.
Examples of the polymer for the topcoat film used in immersion lithography include a copolymer containing a structural unit having a carboxyl group, a copolymer containing a structural unit having a fluorine-containing group substituted with a hydroxyl group, and the like.

以下、リソグラフィー用重合体がレジスト用重合体である場合に、好適に用いられる構成単位およびそれに対応する単量体について説明する。
[極性基を有する構成単位]
レジスト用重合体は、極性基を有する構成単位を有することが好ましい。
「極性基」とは、極性を持つ官能基または極性を持つ原子団を有する基であり、具体例としては、ヒドロキシ基、シアノ基、アルコキシ基、カルボキシ基、アミノ基、カルボニル基、フッ素原子を含む基、硫黄原子を含む基、ラクトン骨格を含む基、アセタール構造を含む基、エーテル結合を含む基などが挙げられる。
これらのうちで、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト用重合体は、極性基を有する構成単位として、ラクトン骨格を有する構成単位を有することが好ましく、さらに後述の親水性基を有する構成単位を有することが好ましい。
Hereinafter, the structural unit and the monomer corresponding thereto that are suitably used when the lithography polymer is a resist polymer will be described.
[Structural unit having a polar group]
The resist polymer preferably has a structural unit having a polar group.
The “polar group” is a group having a polar functional group or a polar atomic group. Specific examples include a hydroxy group, a cyano group, an alkoxy group, a carboxy group, an amino group, a carbonyl group, and a fluorine atom. A group containing a sulfur atom, a group containing a lactone skeleton, a group containing an acetal structure, a group containing an ether bond, and the like.
Among these, the resist polymer applied to the pattern forming method that is exposed to light having a wavelength of 250 nm or less preferably has a structural unit having a lactone skeleton as the structural unit having a polar group, It is preferable to have a structural unit having a functional group.

(ラクトン骨格を有する構成単位・単量体)
ラクトン骨格としては、例えば、4〜20員環程度のラクトン骨格が挙げられる。ラクトン骨格は、ラクトン環のみの単環であってもよく、ラクトン環に脂肪族または芳香族の炭素環または複素環が縮合していてもよい。
重合体がラクトン骨格を有する構成単位を含む場合、その含有量は、基板等への密着性の点から、全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、感度および解像度の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
(Constitutional unit / monomer having a lactone skeleton)
Examples of the lactone skeleton include a lactone skeleton having about 4 to 20 members. The lactone skeleton may be a monocycle having only a lactone ring, or an aliphatic or aromatic carbocyclic or heterocyclic ring may be condensed with the lactone ring.
In the case where the polymer contains a structural unit having a lactone skeleton, the content thereof is preferably 20 mol% or more, more preferably 25 mol% or more of all structural units (100 mol%) from the viewpoint of adhesion to a substrate or the like. Is more preferable. Moreover, from the point of a sensitivity and resolution, 60 mol% or less is preferable, 55 mol% or less is more preferable, and 50 mol% or less is more preferable.

ラクトン骨格を有する単量体としては、基板等への密着性に優れる点から、置換あるいは無置換のδ−バレロラクトン環を有する(メタ)アクリル酸エステル、置換あるいは無置換のγ−ブチロラクトン環を有する単量体からなる群から選ばれる少なくとも1種が好ましく、無置換のγ−ブチロラクトン環を有する単量体が特に好ましい。   As a monomer having a lactone skeleton, a (meth) acrylic acid ester having a substituted or unsubstituted δ-valerolactone ring, a substituted or unsubstituted γ-butyrolactone ring is used because of its excellent adhesion to a substrate or the like. Preferably, at least one selected from the group consisting of monomers having it is preferred, and monomers having an unsubstituted γ-butyrolactone ring are particularly preferred.

ラクトン骨格を有する単量体の具体例としては、β−(メタ)アクリロイルオキシ−β−メチル−δ−バレロラクトン、4,4−ジメチル−2−メチレン−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−β−メチル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−γ−ブチロラクトン、2−(1−(メタ)アクリロイルオキシ)エチル−4−ブタノリド、(メタ)アクリル酸パントイルラクトン、5−(メタ)アクリロイルオキシ−2,6−ノルボルナンカルボラクトン、8−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン、9−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン等が挙げられる。また、類似構造を持つ単量体として、メタクリロイルオキシこはく酸無水物等も挙げられる。
ラクトン骨格を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a lactone skeleton include β- (meth) acryloyloxy-β-methyl-δ-valerolactone, 4,4-dimethyl-2-methylene-γ-butyrolactone, β- (meth) acryloyl. Oxy-γ-butyrolactone, β- (meth) acryloyloxy-β-methyl-γ-butyrolactone, α- (meth) acryloyloxy-γ-butyrolactone, 2- (1- (meth) acryloyloxy) ethyl-4-butanolide , (Meth) acrylic acid pantoyl lactone, 5- (meth) acryloyloxy-2,6-norbornanecarbolactone, 8-methacryloxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-3 - one, 9-methacryloxy-4-oxatricyclo [5.2.1.0 2, 6] cited decan-3-one and the like . Examples of the monomer having a similar structure include methacryloyloxysuccinic anhydride.
Monomers having a lactone skeleton may be used alone or in combination of two or more.

(親水性基を有する構成単位・単量体)
本明細書における「親水性基」とは、−C(CF−OH、ヒドロキシ基、シアノ基、メトキシ基、カルボキシ基およびアミノ基の少なくとも1種である。
これらのうちで、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト用重合体は、親水性基としてヒドロキシ基またはシアノ基を有することが好ましい。
重合体における親水性基を有する構成単位の含有量は、レジストパターン矩形性の点から、全構成単位(100モル%)のうち、5〜30モル%が好ましく、10〜25モル%がより好ましい。
(Structural unit / monomer having a hydrophilic group)
The “hydrophilic group” in the present specification is at least one of —C (CF 3 ) 2 —OH, a hydroxy group, a cyano group, a methoxy group, a carboxy group, and an amino group.
Among these, it is preferable that the resist polymer applied to the pattern forming method exposed to light having a wavelength of 250 nm or less has a hydroxy group or a cyano group as a hydrophilic group.
The content of the structural unit having a hydrophilic group in the polymer is preferably from 5 to 30 mol%, more preferably from 10 to 25 mol%, of the total structural units (100 mol%) from the viewpoint of the resist pattern rectangularity. .

親水性基を有する単量体としては、例えば、末端ヒドロキシ基を有する(メタ)アクリ酸エステル;単量体の親水性基上にアルキル基、ヒドロキシ基、カルボキシ基等の置換基を有する誘導体;環式炭化水素基を有する単量体(例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1−イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンチル、(メタ)アクリル酸2−メチル−2−アダマンチル、(メタ)アクリル酸2−エチル−2−アダマンチル等。)が置換基としてヒドロキシ基、カルボキシ基等の親水性基を有するもの;が挙げられる。   Examples of the monomer having a hydrophilic group include a (meth) acrylic acid ester having a terminal hydroxy group; a derivative having a substituent such as an alkyl group, a hydroxy group, or a carboxy group on the hydrophilic group of the monomer; Monomers having a cyclic hydrocarbon group (for example, cyclohexyl (meth) acrylate, 1-isobornyl (meth) acrylate, adamantyl (meth) acrylate, tricyclodecanyl (meth) acrylate, (meth) acrylic acid) Dicyclopentyl, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, etc.) having a hydrophilic group such as a hydroxy group or a carboxy group as a substituent; Can be mentioned.

親水性基を有する単量体の具体例としては、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシ−n−プロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が挙げられる。基板等に対する密着性の点から、(メタ)アクリル酸3−ヒドロキシアダマンチル、(メタ)アクリル酸3,5−ジヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が好ましい。
親水性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a hydrophilic group include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy- (meth) acrylate. -Propyl, 4-hydroxybutyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate, etc. Is mentioned. From the point of adhesion to a substrate or the like, 3-hydroxyadamantyl (meth) acrylate, 3,5-dihydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl- 2-adamantyl (meth) acrylate and the like are preferable.
The monomer which has a hydrophilic group may be used individually by 1 type, and may be used in combination of 2 or more type.

[酸脱離性基を有する構成単位]
レジスト用重合体は、レジスト用途に用いるために上述した極性基を有する構成単位以外に酸脱離性基を有する構成単位を有することが好ましく、この他に、必要に応じて公知の構成単位を有していてもよい。
「酸脱離性基」とは、酸により開裂する結合を有する基であり、該結合の開裂により酸脱離性基の一部または全部が重合体の主鎖から脱離する基である。
レジスト用組成物において、酸脱離性基を有する構成単位を有する重合体は、酸成分と反応してアルカリ性溶液に可溶となり、レジストパターン形成を可能とする作用を奏する。
酸脱離性基を有する構成単位の割合は、感度および解像度の点から、重合体を構成する全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、基板等への密着性の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
[Constitutional unit having acid leaving group]
The resist polymer preferably has a structural unit having an acid-leaving group in addition to the above-described structural unit having a polar group for use in resist applications. In addition to this, a known structural unit may be added if necessary. You may have.
The “acid leaving group” is a group having a bond that is cleaved by an acid, and a part or all of the acid leaving group is removed from the main chain of the polymer by cleavage of the bond.
In the resist composition, a polymer having a structural unit having an acid-eliminable group reacts with an acid component to become soluble in an alkaline solution, and has an effect of enabling resist pattern formation.
The proportion of the structural unit having an acid leaving group is preferably 20 mol% or more, more preferably 25 mol% or more, out of all the structural units (100 mol%) constituting the polymer from the viewpoint of sensitivity and resolution. . Moreover, 60 mol% or less is preferable from the point of the adhesiveness to a board | substrate etc., 55 mol% or less is more preferable, and 50 mol% or less is further more preferable.

酸脱離性基を有する単量体は、酸脱離性基および重合性多重結合を有する化合物であればよく、公知のものを使用できる。重合性多重結合とは重合反応時に開裂して共重合鎖を形成する多重結合であり、エチレン性二重結合が好ましい。
酸脱離性基を有する単量体の具体例として、炭素数6〜20の脂環式炭化水素基を有し、かつ酸脱離性基を有している(メタ)アクリル酸エステルが挙げられる。該脂環式炭化水素基は、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子と直接結合していてもよく、アルキレン基等の連結基を介して結合していてもよい。
該(メタ)アクリル酸エステルには、炭素数6〜20の脂環式炭化水素基を有するとともに、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子との結合部位に第3級炭素原子を有する(メタ)アクリル酸エステル、または、炭素数6〜20の脂環式炭化水素基を有するとともに、該脂環式炭化水素基に−COOR基(Rは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、またはオキセパニル基を表す。)が直接または連結基を介して結合している(メタ)アクリル酸エステルが含まれる。
The monomer having an acid leaving group may be any compound having an acid leaving group and a polymerizable multiple bond, and known ones can be used. The polymerizable multiple bond is a multiple bond that is cleaved during the polymerization reaction to form a copolymer chain, and an ethylenic double bond is preferable.
Specific examples of the monomer having an acid leaving group include (meth) acrylic acid esters having an alicyclic hydrocarbon group having 6 to 20 carbon atoms and having an acid leaving group. It is done. The alicyclic hydrocarbon group may be directly bonded to an oxygen atom constituting an ester bond of (meth) acrylic acid ester, or may be bonded via a linking group such as an alkylene group.
The (meth) acrylic acid ester has an alicyclic hydrocarbon group having 6 to 20 carbon atoms, and a tertiary carbon atom at the bonding site with the oxygen atom constituting the ester bond of the (meth) acrylic acid ester. A (meth) acrylic acid ester having an alicyclic group or an alicyclic hydrocarbon group having 6 to 20 carbon atoms and a -COOR group (R may have a substituent) on the alicyclic hydrocarbon group. (Meth) acrylic acid ester in which a tertiary hydrocarbon group, a tetrahydrofuranyl group, a tetrahydropyranyl group, or an oxepanyl group is bonded directly or via a linking group is included.

特に、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト組成物を製造する場合には、酸脱離性基を有する単量体の好ましい例として、例えば、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、1−(1’−アダマンチル)−1−メチルエチル(メタ)アクリレート、1−メチルシクロヘキシル(メタ)アクリレート、1−エチルシクロヘキシル(メタ)アクリレート、1−メチルシクロペンチル(メタ)アクリレート、1−エチルシクロペンチル(メタ)アクリレート、イソプロピルアダマンチル(メタ)アクリレート、1−エチルシクロオクチル(メタ)アクリレート等が挙げられる。
酸脱離性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In particular, in the case of producing a resist composition that is applied to a pattern forming method that is exposed to light having a wavelength of 250 nm or less, as a preferred example of a monomer having an acid leaving group, for example, 2-methyl-2- Adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, 1- (1′-adamantyl) -1-methylethyl (meth) acrylate, 1-methylcyclohexyl (meth) acrylate, 1-ethylcyclohexyl ( Examples include meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 1-ethylcyclopentyl (meth) acrylate, isopropyl adamantyl (meth) acrylate, 1-ethylcyclooctyl (meth) acrylate, and the like.
As the monomer having an acid leaving group, one type may be used alone, or two or more types may be used in combination.

<重合溶媒>
本発明において用いられる重合溶媒としては、例えば、下記のものが挙げられる。
エーテル類:鎖状エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル等。)、環状エーテル(テトラヒドロフラン(以下、「THF」と記す。)、1,4−ジオキサン等。)等。
エステル類:酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と記す。)、γ−ブチロラクトン等。
ケトン類:アセトン、メチルエチルケトン(以下、「MEK」と記す。)、メチルイソブチルケトン(以下、「MIBK」と記す。)、シクロヘキサノン等。
アミド類:N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等。
スルホキシド類:ジメチルスルホキシド等。
芳香族炭化水素:ベンゼン、トルエン、キシレン等。
脂肪族炭化水素:ヘキサン等。
脂環式炭化水素:シクロヘキサン等。
有機溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Polymerization solvent>
Examples of the polymerization solvent used in the present invention include the following.
Ethers: chain ether (diethyl ether, propylene glycol monomethyl ether, etc.), cyclic ether (tetrahydrofuran (hereinafter referred to as “THF”), 1,4-dioxane, etc.) and the like.
Esters: methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, propylene glycol monomethyl ether acetate (hereinafter referred to as “PGMEA”), γ-butyrolactone, and the like.
Ketones: acetone, methyl ethyl ketone (hereinafter referred to as “MEK”), methyl isobutyl ketone (hereinafter referred to as “MIBK”), cyclohexanone, and the like.
Amides: N, N-dimethylacetamide, N, N-dimethylformamide and the like.
Sulfoxides: dimethyl sulfoxide and the like.
Aromatic hydrocarbons: benzene, toluene, xylene and the like.
Aliphatic hydrocarbon: hexane and the like.
Alicyclic hydrocarbons: cyclohexane and the like.
An organic solvent may be used individually by 1 type, and may use 2 or more types together.

<重合開始剤>
本発明において用いられる重合開始剤としては、熱により効率的にラジカルを発生するものが好ましい。例えば、アゾ化合物(2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等。)、有機過酸化物(2,5−ジメチル−2,5−ビス(tert−ブチルパーオキシ)ヘキサン、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート等。)等が挙げられる。
<Polymerization initiator>
The polymerization initiator used in the present invention is preferably one that generates radicals efficiently by heat. For example, an azo compound (2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] Etc.), organic peroxides (2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, di (4-tert-butylcyclohexyl) peroxydicarbonate, etc.) and the like.

<貧溶媒>
本発明において再沈殿に用いられる貧溶媒は、重合体に対する貧溶媒である。すなわち目的の重合体を溶解させる能力が小さくて、該重合体が析出し得る溶媒である。重合体の組成に応じて、公知のものを適宜選択して使用できる。半導体リソグラフィー用重合体に用いられる未反応の単量体、重合開始剤等を効率的に取り除くことができる点で、メタノール、イソプロピルアルコール、ジイソプロピルエーテル、ヘプタン、または水が好ましい。貧溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Poor solvent>
The poor solvent used for reprecipitation in the present invention is a poor solvent for the polymer. That is, it is a solvent that has a small ability to dissolve the target polymer and from which the polymer can precipitate. According to the composition of the polymer, known ones can be appropriately selected and used. Methanol, isopropyl alcohol, diisopropyl ether, heptane, or water is preferable because unreacted monomers, polymerization initiators, and the like used in the polymer for semiconductor lithography can be efficiently removed. A poor solvent may be used individually by 1 type, and may use 2 or more types together.

<重合体の製造方法>
[重合工程]
重合方法としては、重合溶媒の存在下に重合開始剤を使用して単量体をラジカル重合させる溶液重合法を用いる。
溶液重合法においては、単量体および重合開始剤の重合容器への供給は、連続供給であってもよく、滴下供給であってもよい。溶液重合法としては、製造ロットの違いによる平均分子量、分子量分布等のばらつきが小さく、再現性のある重合体が簡便に得られる点から、単量体および重合開始剤を重合容器内に滴下する滴下重合法が好ましい。
<Method for producing polymer>
[Polymerization process]
As a polymerization method, a solution polymerization method in which a monomer is radically polymerized using a polymerization initiator in the presence of a polymerization solvent is used.
In the solution polymerization method, the monomer and the polymerization initiator may be supplied to the polymerization vessel either continuously or dropwise. As a solution polymerization method, a monomer and a polymerization initiator are dropped into a polymerization vessel from the viewpoint that a variation in average molecular weight and molecular weight distribution due to differences in production lots is small and a reproducible polymer can be easily obtained. The dropping polymerization method is preferred.

滴下重合法においては、重合容器内を所定の重合温度まで加熱した後、単量体および重合開始剤を、それぞれ独立に、または任意の組み合わせで、重合容器内に滴下する。
単量体は、単量体のみで滴下してもよく、単量体を重合溶媒に溶解させた単量体溶液として滴下してもよい。
重合溶媒及び/又は単量体をあらかじめ重合容器に仕込んでもよい。
重合開始剤は、単量体に直接に溶解させてもよく、単量体溶液に溶解させてもよく、重合溶媒のみに溶解させてもよい。
単量体および重合開始剤は、同じ貯槽内で混合した後、重合容器中に滴下してもよく;それぞれ独立した貯槽から重合容器中に滴下してもよく;それぞれ独立した貯槽から重合容器に供給する直前で混合し、重合容器中に滴下してもよい。
単量体および重合開始剤は、一方を先に滴下した後、遅れて他方を滴下してもよく、両方を同じタイミングで滴下してもよい。
滴下速度は、滴下終了まで一定であってもよく、単量体または重合開始剤の消費速度に応じて、多段階に変化させてもよい。
滴下は、連続的に行ってもよく、間欠的に行ってもよい。
重合温度は、50〜150℃が好ましい。
In the dropping polymerization method, the inside of the polymerization vessel is heated to a predetermined polymerization temperature, and then the monomer and the polymerization initiator are dropped into the polymerization vessel independently or in any combination.
A monomer may be dripped only with a monomer, and may be dripped as a monomer solution which melt | dissolved the monomer in the polymerization solvent.
A polymerization solvent and / or monomer may be charged into the polymerization vessel in advance.
The polymerization initiator may be dissolved directly in the monomer, may be dissolved in the monomer solution, or may be dissolved only in the polymerization solvent.
The monomer and the polymerization initiator may be dropped into the polymerization vessel after mixing in the same storage tank; they may be dropped into the polymerization container from each independent storage tank; They may be mixed immediately before the supply and dropped into the polymerization vessel.
One of the monomer and the polymerization initiator may be dropped first, and then the other may be dropped with a delay, or both may be dropped at the same timing.
The dropping rate may be constant until the end of dropping, or may be changed in multiple stages according to the consumption rate of the monomer or the polymerization initiator.
The dripping may be performed continuously or intermittently.
The polymerization temperature is preferably 50 to 150 ° C.

溶液重合法において、重合反応が行われる反応液の粘度は、単量体の重合反応が進むにしたがって上昇する。反応液の粘度が高くなりすぎると、重合反応が急速に進行する、いわゆる暴走反応が生じるおそれがある。
本発明において、重合溶媒の存在下に重合開始剤を使用して単量体を重合反応させ、冷却させるなどして重合反応を停止させた状態の反応液を、重合反応溶液という。
重合反応溶液の粘度は、重合反応に用いる重合溶媒の量が多いと低くなり、重合溶媒の使用量が少ないと高くなる。重合反応に用いる重合溶媒の量は、上記の暴走反応が生じない程度に反応液の粘度が低くなるように設定すればよく、重合溶媒の使用量が多いほど製造効率が悪くなる。
本発明において、重合反応溶液の25℃における粘度は、120mPa・sより高ければよいが、製造効率の点からは130mPa・s以上が好ましく、150mPa・s以上がより好ましく、200mPa・s以上、更には250mPa・s以上が特に好ましい。該重合反応溶液の粘度の上限は、前記暴走反応が生じない範囲であればよく、例えば10,000mPa・s以下が好ましく、9,000mPa・s以下がより好ましい。
In the solution polymerization method, the viscosity of the reaction solution in which the polymerization reaction is performed increases as the monomer polymerization reaction proceeds. If the viscosity of the reaction solution becomes too high, a so-called runaway reaction may occur in which the polymerization reaction proceeds rapidly.
In the present invention, a reaction solution in which the polymerization reaction is stopped by causing a polymerization reaction of the monomer using a polymerization initiator in the presence of a polymerization solvent and then cooling is referred to as a polymerization reaction solution.
The viscosity of the polymerization reaction solution decreases when the amount of the polymerization solvent used in the polymerization reaction is large, and increases when the amount of the polymerization solvent used is small. The amount of the polymerization solvent used for the polymerization reaction may be set so that the viscosity of the reaction solution is low enough to prevent the above-mentioned runaway reaction, and the production amount becomes worse as the amount of the polymerization solvent used increases.
In the present invention, the viscosity at 25 ° C. of the polymerization reaction solution may be higher than 120 mPa · s, but is preferably 130 mPa · s or more, more preferably 150 mPa · s or more, more preferably 200 mPa · s or more from the viewpoint of production efficiency. Is particularly preferably 250 mPa · s or more. The upper limit of the viscosity of the polymerization reaction solution is not limited as long as the runaway reaction does not occur, and is preferably 10,000 mPa · s or less, and more preferably 9,000 mPa · s or less.

[希釈工程]
本発明では、溶液重合法により得られた重合反応溶液を、再沈殿により精製する前に、25℃における粘度が120mPa・s以下となるように、希釈溶媒で希釈する。
本発明において、重合反応溶液に希釈溶媒を加えた溶液であって、貧溶媒中への最初の滴下に用いられる液を希釈後溶液という。該希釈後溶液の25℃における粘度は120mPa・s以下であり、100mPa・s以下が好ましく、90mPa・s以下が好ましく、80mPa・s以下が得に好ましい。該希釈後溶液の粘度が120mPa・s以下であると、再沈殿を行ったときの単量体の除去効率を充分に向上させることができる。
該希釈後溶液の粘度の下限は特に限定されないが、希釈後溶液の量が多くなり過ぎず、生産性を低下させない点で5mPa・s以上が好ましく、10mPa・s以上がより好ましい。
また、本発明において、重合体の種類や分子量、重合溶液の種類、重合反応溶液の濃度によって、重合反応溶液の粘度は変わるが、適宜希釈されれば良い。
[Dilution process]
In the present invention, the polymerization reaction solution obtained by the solution polymerization method is diluted with a diluting solvent so that the viscosity at 25 ° C. is 120 mPa · s or less before purification by reprecipitation.
In the present invention, a solution obtained by adding a diluting solvent to the polymerization reaction solution and used for the first dropping into the poor solvent is referred to as a solution after dilution. The viscosity at 25 ° C. of the diluted solution is 120 mPa · s or less, preferably 100 mPa · s or less, preferably 90 mPa · s or less, and more preferably 80 mPa · s or less. When the viscosity of the solution after dilution is 120 mPa · s or less, the monomer removal efficiency when reprecipitation is performed can be sufficiently improved.
The lower limit of the viscosity of the solution after dilution is not particularly limited, but is preferably 5 mPa · s or more and more preferably 10 mPa · s or more in terms of not increasing the amount of the solution after dilution and reducing the productivity.
In the present invention, the viscosity of the polymerization reaction solution varies depending on the type and molecular weight of the polymer, the type of the polymerization solution, and the concentration of the polymerization reaction solution, but may be diluted as appropriate.

希釈溶媒としては、前記重合溶媒として挙げた溶媒を用いてもよく、前記貧溶媒として挙げた溶媒を用いてもよく、これらを組み合わせてもよい。
希釈溶媒の具体例としては、1,4−ジオキサン、アセトン、THF、MEK、シクロペンタノン、シクロヘキサノン、MIBK、γ−ブチロラクトン、PGMEA、PGME、乳酸エチル、2−ヒドロキシイソ酪酸メチル、メタノール、エタノール、イソプロピルアルコール、水、ヘキサン、ヘプタン、ジイソプロピルエーテル、またはそれらの混合溶媒等を挙げることができる。
特に希釈溶媒として貧溶媒を用いると、後述する再沈殿工程における貧溶媒との溶解度パラメーターの差が小さくなり好ましい。
As a dilution solvent, the solvent mentioned as said polymerization solvent may be used, the solvent mentioned as said poor solvent may be used, and these may be combined.
Specific examples of the dilution solvent include 1,4-dioxane, acetone, THF, MEK, cyclopentanone, cyclohexanone, MIBK, γ-butyrolactone, PGMEA, PGME, ethyl lactate, methyl 2-hydroxyisobutyrate, methanol, ethanol, Examples thereof include isopropyl alcohol, water, hexane, heptane, diisopropyl ether, or a mixed solvent thereof.
In particular, when a poor solvent is used as a dilution solvent, the difference in solubility parameter from the poor solvent in the reprecipitation step described later is preferably reduced.

希釈後溶液中の溶媒(重合溶媒と希釈溶媒の混合物)の溶解度パラメーター(以下、SP値とも記す。)と、再沈殿に用いられる貧溶媒のSP値の差は、重合体溶液の良好な分散性が得られ、効率的に単量体を除去できる点で、小さい方が好ましい。
溶媒のSP値は、例えば、「ポリマーハンドブック(Polymer Handbook)」、第4版、VII−675頁〜VII−711頁に記載の方法により求めることができ、具体的には、表1(VII−683頁)、表7〜8(VII−688頁〜VII−711頁)に記載されている。また、複数の溶媒の混合溶媒におけるSP値は、公知の方法により求めることができる。例えば、混合溶媒のSP値は、加成性が成立するとして、各溶媒のSP値と体積分率との積の総和として求めることができる。
The difference between the solubility parameter (hereinafter also referred to as SP value) of the solvent (mixture of polymerization solvent and dilution solvent) in the solution after dilution and the SP value of the poor solvent used for reprecipitation is a good dispersion of the polymer solution. The smaller one is preferable from the viewpoint that the property can be obtained and the monomer can be efficiently removed.
The SP value of the solvent can be determined, for example, by the method described in “Polymer Handbook”, 4th edition, pages VII-675 to VII-711. Specifically, Table 1 (VII- 683), Tables 7 to 8 (VII-688 to VII-711). Further, the SP value in a mixed solvent of a plurality of solvents can be determined by a known method. For example, the SP value of the mixed solvent can be obtained as the sum of products of the SP value of each solvent and the volume fraction, assuming that additivity is established.

[再沈殿工程]
重合反応溶液を希釈溶媒で希釈して得られた希釈後溶液を、貧溶媒中に滴下し、重合反応溶液中の重合体を析出させる。この工程は、再沈殿と呼ばれ、重合体溶液中に残存する未反応単量体、重合開始剤等の不純物を取り除くために非常に有効である。未反応単量体は、そのまま残存しているとレジスト組成物として用いた場合に感度が低下するため、できるだけ取り除くことが好ましい。
希釈後溶液を貧溶媒中に滴下する際の貧溶媒の量は、特に限定されないが、未反応単量体をより低減しやすい点で、希釈後溶液と同質量以上が好ましく、質量基準で3倍以上が好ましく、4倍以上がより好ましく、5倍以上がさらに好ましく、6倍以上が特に好ましい。上限は、使用する貧溶媒の量が多過ぎず、生産性を低下させない点で、質量基準で10倍以下が好ましい。
[Reprecipitation process]
A diluted solution obtained by diluting the polymerization reaction solution with a diluting solvent is dropped into a poor solvent to precipitate a polymer in the polymerization reaction solution. This step is called reprecipitation and is very effective for removing impurities such as unreacted monomers and polymerization initiator remaining in the polymer solution. If the unreacted monomer remains as it is, the sensitivity decreases when used as a resist composition, so it is preferable to remove it as much as possible.
The amount of the poor solvent at the time of dropping the diluted solution into the poor solvent is not particularly limited, but is preferably equal to or more than that of the diluted solution in terms of easier reduction of unreacted monomers, and 3 on a mass basis. Is preferably 4 times or more, more preferably 4 times or more, still more preferably 5 times or more, and particularly preferably 6 times or more. The upper limit is preferably 10 times or less on a mass basis from the viewpoint that the amount of the poor solvent used is not too large and productivity is not lowered.

その後、貧溶媒中の析出物をろ別することにより、目的の重合体が湿粉の状態で得られる。
重合体中の単量体含有量は少ないほど好ましい。本発明によれば、再沈殿により精製して得られる重合体中の単量体含有量を0.5質量%以下、好ましくは0.2質量%以下、より好ましくは0.15質量%以下、特に好ましくは0.1質量%以下に低減することが可能である。
Then, the target polymer is obtained in the state of a wet powder by filtering the deposit in a poor solvent.
The smaller the monomer content in the polymer, the better. According to the present invention, the monomer content in the polymer obtained by purification by reprecipitation is 0.5% by mass or less, preferably 0.2% by mass or less, more preferably 0.15% by mass or less, Particularly preferably, it can be reduced to 0.1% by mass or less.

[後工程]
貧溶媒中の析出物をろ別して得られる湿粉を乾燥させることにより、目的の重合体の乾燥粉末が得られる。
または、ろ別した湿粉を再び貧溶媒に分散させて重合体分散液とした後にろ別する操作を繰り返すこともできる。この工程は、リスラリ工程と呼ばれ、重合体湿粉中に残存する未反応の単量体、重合開始剤等の不純物をより低減させるために有効である。
重合体を高い生産性を維持したまま取得できる点では、リスラリ工程を行わず、再沈殿工程のみで精製を行うことが好ましい。
[Post-process]
By drying the wet powder obtained by filtering the precipitate in the poor solvent, a dry powder of the target polymer can be obtained.
Alternatively, the operation of separating the filter after the filtered wet powder is again dispersed in a poor solvent to obtain a polymer dispersion can be repeated. This step is called a restructuring step and is effective for further reducing impurities such as unreacted monomers and polymerization initiator remaining in the polymer wet powder.
From the viewpoint that the polymer can be obtained while maintaining high productivity, it is preferable to perform the purification only by the reprecipitation step without performing the restructuring step.

また、湿粉は、乾燥せずに湿粉のまま適当な溶媒に溶解させて半導体リソグラフィー用組成物として用いてもよく、濃縮して低沸点化合物を除去してから半導体リソグラフィー用組成物として用いてもよい。その際、保存安定剤等の添加剤を適宜添加してもよい。
または、湿粉を乾燥させた後に適当な溶媒に溶解させ、さらに濃縮して低沸点化合物を除去してから半導体リソグラフィー用組成物として用いてもよい。その際も、保存安定剤等の添加剤を適宜添加してもよい。
Further, the wet powder may be used as a composition for semiconductor lithography by dissolving it in a suitable solvent without drying, and used as a composition for semiconductor lithography after concentration and removal of low boiling point compounds. May be. At that time, additives such as a storage stabilizer may be appropriately added.
Alternatively, the wet powder may be dried and then dissolved in a suitable solvent, and further concentrated to remove the low-boiling point compound, and then used as a composition for semiconductor lithography. At that time, additives such as a storage stabilizer may be added as appropriate.

<レジスト組成物の製造方法>
こうして得られる重合体と、活性光線又は放射線の照射により酸を発生する化合物を混合してレジスト組成物を製造する。該レジスト組成物は化学増幅型のレジスト組成物である。好ましくはレジスト溶媒に、該重合体と活性光線又は放射線の照射により酸を発生する化合物を溶解する。
<Method for producing resist composition>
The polymer thus obtained and a compound that generates an acid upon irradiation with actinic rays or radiation are mixed to produce a resist composition. The resist composition is a chemically amplified resist composition. Preferably, the polymer and a compound capable of generating an acid upon irradiation with actinic rays or radiation are dissolved in a resist solvent.

[レジスト溶媒]
レジスト溶媒としては、上記に重合溶媒として挙げた溶媒を用いることができる。
[活性光線又は放射線の照射により酸を発生する化合物]
活性光線又は放射線の照射により酸を発生する化合物は、化学増幅型レジスト組成物の光酸発生剤として使用可能なものの中から任意に選択できる。光酸発生剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
光酸発生剤としては、例えば、オニウム塩化合物、スルホンイミド化合物、スルホン化合物、スルホン酸エステル化合物、キノンジアジド化合物、ジアゾメタン化合物等が挙げられる。
光酸発生剤の使用量は、重合体100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。
[Resist solvent]
As the resist solvent, the solvents listed above as the polymerization solvent can be used.
[Compound that generates acid upon irradiation with actinic ray or radiation]
The compound that generates an acid upon irradiation with actinic rays or radiation can be arbitrarily selected from those that can be used as a photoacid generator for a chemically amplified resist composition. A photo-acid generator may be used individually by 1 type, and may use 2 or more types together.
Examples of the photoacid generator include onium salt compounds, sulfonimide compounds, sulfone compounds, sulfonic acid ester compounds, quinone diazide compounds, diazomethane compounds, and the like.
0.1-20 mass parts is preferable with respect to 100 mass parts of polymers, and, as for the usage-amount of a photo-acid generator, 0.5-10 mass parts is more preferable.

[含窒素化合物]
化学増幅型レジスト組成物は、含窒素化合物を含んでいてもよい。含窒素化合物を含むことにより、レジストパターン形状、引き置き経時安定性等がさらに向上する。つまり、レジストパターンの断面形状が矩形により近くなり、また、レジスト膜に光を照射し、ついでベーク(PEB)した後、次の現像処理までの間に数時間放置されることが半導体素子の量産ラインではあるが、そのような放置(経時)したときにレジストパターンの断面形状の劣化の発生がより抑制される。
含窒素化合物としては、アミンが好ましく、第2級低級脂肪族アミン、第3級低級脂肪族アミンがより好ましい。
含窒素化合物の量は、重合体100質量部に対して、0.01〜2質量部が好ましい。
[Nitrogen-containing compounds]
The chemically amplified resist composition may contain a nitrogen-containing compound. By including the nitrogen-containing compound, the resist pattern shape, the stability over time, and the like are further improved. That is, the cross-sectional shape of the resist pattern becomes closer to a rectangle, and the resist film is irradiated with light, then baked (PEB), and then left for several hours before the next development process. Although it is a line, the occurrence of the deterioration of the cross-sectional shape of the resist pattern is further suppressed when left as such (timed).
The nitrogen-containing compound is preferably an amine, more preferably a secondary lower aliphatic amine or a tertiary lower aliphatic amine.
As for the quantity of a nitrogen-containing compound, 0.01-2 mass parts is preferable with respect to 100 mass parts of polymers.

[有機カルボン酸、リンのオキソ酸またはその誘導体]
化学増幅型レジスト組成物は、有機カルボン酸、リンのオキソ酸またはその誘導体(以下、これらをまとめて酸化合物と記す。)を含んでいてもよい。酸化合物を含むことにより、含窒素化合物の配合による感度劣化を抑えることができ、また、レジストパターン形状、引き置き経時安定性等がさらに向上する。
有機カルボン酸としては、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が挙げられる。
リンのオキソ酸またはその誘導体としては、リン酸またはその誘導体、ホスホン酸またはその誘導体、ホスフィン酸またはその誘導体等が挙げられる。
酸化合物の量は、重合体100質量部に対して、0.01〜5質量部が好ましい。
[Organic carboxylic acid, phosphorus oxo acid or derivative thereof]
The chemically amplified resist composition may contain an organic carboxylic acid, an oxo acid of phosphorus, or a derivative thereof (hereinafter collectively referred to as an acid compound). By including an acid compound, it is possible to suppress deterioration in sensitivity due to the blending of the nitrogen-containing compound, and further improve the resist pattern shape, stability with time of leaving, and the like.
Examples of the organic carboxylic acid include malonic acid, citric acid, malic acid, succinic acid, benzoic acid, and salicylic acid.
Examples of phosphorus oxo acids or derivatives thereof include phosphoric acid or derivatives thereof, phosphonic acid or derivatives thereof, phosphinic acid or derivatives thereof, and the like.
The amount of the acid compound is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymer.

[添加剤]
本発明のレジスト組成物は、必要に応じて、界面活性剤、その他のクエンチャー、増感剤、ハレーション防止剤、保存安定剤、消泡剤等の各種添加剤を含んでいてもよい。該添加剤は、当該分野で公知のものであればいずれも使用可能である。また、これら添加剤の量は、特に限定されず、適宜決めればよい。
[Additive]
The resist composition of the present invention may contain various additives such as surfactants, other quenchers, sensitizers, antihalation agents, storage stabilizers, and antifoaming agents as necessary. Any additive can be used as long as it is known in the art. Further, the amount of these additives is not particularly limited, and may be determined as appropriate.

<微細パターンが形成された基板の製造方法>
本発明の、微細パターンが形成された基板の製造方法の一例について説明する。
まず、所望の微細パターンを形成しようとするシリコンウエハー等の被加工基板の表面に、本発明の製造方法で得られるレジスト組成物をスピンコート等により塗布する。そして、該レジスト組成物が塗布された被加工基板を、ベーキング処理(プリベーク)等で乾燥することにより、基板上にレジスト膜を形成する。
<Manufacturing method of substrate on which fine pattern is formed>
An example of the manufacturing method of the board | substrate with which the fine pattern was formed of this invention is demonstrated.
First, the resist composition obtained by the production method of the present invention is applied to the surface of a substrate to be processed such as a silicon wafer on which a desired fine pattern is to be formed by spin coating or the like. And the resist film is formed on a board | substrate by drying the to-be-processed board | substrate with which this resist composition was apply | coated by baking process (prebaking) etc.

ついで、レジスト膜に、フォトマスクを介して、250nm以下の波長の光を照射して潜像を形成する(露光)。照射光としては、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUVエキシマレーザーが好ましく、ArFエキシマレーザーが特に好ましい。また、電子線を照射してもよい。
また、該レジスト膜と露光装置の最終レンズとの間に、純水、パーフルオロ−2−ブチルテトラヒドロフラン、パーフルオロトリアルキルアミン等の高屈折率液体を介在させた状態で光を照射する液浸露光を行ってもよい。
Next, the resist film is irradiated with light having a wavelength of 250 nm or less through a photomask to form a latent image (exposure). As irradiation light, a KrF excimer laser, an ArF excimer laser, an F 2 excimer laser, and an EUV excimer laser are preferable, and an ArF excimer laser is particularly preferable. Moreover, you may irradiate an electron beam.
In addition, immersion in which light is irradiated with a high refractive index liquid such as pure water, perfluoro-2-butyltetrahydrofuran, or perfluorotrialkylamine interposed between the resist film and the final lens of the exposure apparatus. Exposure may be performed.

露光後、適宜熱処理(露光後ベーク、PEB)し、レジスト膜にアルカリ現像液を接触させ、露光部分を現像液に溶解させ、除去する(現像)。アルカリ現像液としては、公知のものが挙げられる。
現像後、基板を純水等で適宜リンス処理する。このようにして被加工基板上にレジストパターンが形成される。
After the exposure, heat treatment is appropriately performed (post-exposure baking, PEB), an alkali developer is brought into contact with the resist film, and the exposed portion is dissolved in the developer and removed (development). Examples of the alkaline developer include known ones.
After development, the substrate is appropriately rinsed with pure water or the like. In this way, a resist pattern is formed on the substrate to be processed.

レジストパターンが形成された基板は、適宜熱処理(ポストベーク)してレジストを強化し、レジストのない部分を選択的にエッチングする。
エッチング後、レジストを剥離剤によって除去することによって、微細パターンが形成された基板が得られる。
The substrate on which the resist pattern is formed is appropriately heat-treated (post-baked) to strengthen the resist and selectively etch the portion without the resist.
After the etching, the resist is removed with a release agent to obtain a substrate on which a fine pattern is formed.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。また、各実施例、比較例中「部」とあるのは、特に断りのない限り「質量部」を示す。測定方法および評価方法は以下の方法を用いた。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, “part” in each example and comparative example means “part by mass” unless otherwise specified. The measurement method and evaluation method used the following methods.

<重量平均分子量の測定>
重合体の重量平均分子量(Mw)および分子量分布(Mw/Mn)は、下記の条件(GPC条件)でゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算で求めた。
[GPC条件]
装置:東ソー社製、東ソー高速GPC装置 HLC−8220GPC(商品名)、
分離カラム:昭和電工社製、Shodex GPC K−805L(商品名)を3本直列に連結したもの、
測定温度:40℃、
溶離液:テトラヒドロフラン(THF)、
試料:重合体の約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液、
流量:1mL/分、
注入量:0.1mL、
検出器:示差屈折計。
<Measurement of weight average molecular weight>
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer were determined in terms of polystyrene by gel permeation chromatography under the following conditions (GPC conditions).
[GPC conditions]
Equipment: Tosoh Corporation, Tosoh High Speed GPC Equipment HLC-8220GPC (trade name),
Separation column: manufactured by Showa Denko, Shodex GPC K-805L (trade name) connected in series,
Measurement temperature: 40 ° C.
Eluent: Tetrahydrofuran (THF)
Sample: A solution in which about 20 mg of a polymer is dissolved in 5 mL of THF and filtered through a 0.5 μm membrane filter.
Flow rate: 1 mL / min,
Injection volume: 0.1 mL,
Detector: differential refractometer.

検量線I:標準ポリスチレンの約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液を用いて、上記の条件で分離カラムに注入し、溶出時間と分子量の関係を求めた。標準ポリスチレンは、下記の東ソー社製の標準ポリスチレン(いずれも商品名)を用いた。
F−80(Mw=706,000)、
F−20(Mw=190,000)、
F−4(Mw=37,900)、
F−1(Mw=10,200)、
A−2500(Mw=2,630)、
A−500(Mw=682、578、474、370、260の混合物)。
Calibration curve I: About 20 mg of standard polystyrene was dissolved in 5 mL of THF, and the solution was filtered through a 0.5 μm membrane filter and injected into a separation column under the above conditions, and the relationship between elution time and molecular weight was determined. As the standard polystyrene, the following standard polystyrene manufactured by Tosoh Corporation (both trade names) were used.
F-80 (Mw = 706,000),
F-20 (Mw = 190,000),
F-4 (Mw = 37,900),
F-1 (Mw = 10,200),
A-2500 (Mw = 2,630),
A-500 (mixture of Mw = 682, 578, 474, 370, 260).

<粘度の測定>
溶液の粘度は下記条件(粘度測定条件)でE型粘度計により測定した。
[粘度測定条件]
装置:東機産業製、E型粘度計 RE80R(商品名)、
コーン・ロータ:1°34’× R24(標準)、
測定温度:25℃、
サンプル量:1.2mL。
<Measurement of viscosity>
The viscosity of the solution was measured with an E-type viscometer under the following conditions (viscosity measurement conditions).
[Viscosity measurement conditions]
Equipment: E-type viscometer RE80R (trade name) manufactured by Toki Sangyo,
Cone rotor: 1 ° 34 'x R24 (standard),
Measurement temperature: 25 ° C.
Sample volume: 1.2 mL.

<重合体中の未反応の単量体の定量>
乾燥粉末状の重合体0.1gと、アセトニトリル4.0gを1時間攪拌混合し、得られた混合液を0.2μmのメンブレンフィルターで濾過し、東ソー社製、高速液体クロマトグラフHPLC−8020(製品名)を用いて、該重合体中の未反応の単量体含有量を、単量体ごとに求める。
<Quantification of unreacted monomer in polymer>
0.1 g of a dry powdery polymer and 4.0 g of acetonitrile were stirred and mixed for 1 hour, and the resulting mixture was filtered through a 0.2 μm membrane filter, and manufactured by Tosoh Corporation, high performance liquid chromatograph HPLC-8020 ( Product name), the unreacted monomer content in the polymer is determined for each monomer.

この測定において、分離カラムはジーエルサイエンス社製、Inertsil ODS−2(商品名)を1本使用し、移動相は水/アセトニトリルのグラジエント系、流量0.8mL/min、検出器は東ソー社製、紫外・可視吸光光度計UV−8020(商品名)、検出波長220nm、測定温度40℃、注入量4μLで測定する。なお、分離カラムであるInertsil ODS−2(商品名)は、シリカゲル粒径5μm、カラム内径4.6mm×カラム長さ450mmのものを使用する。また、移動相のグラジエント条件は、A液を水、B液をアセトニトリルとし、下記の通りとする。また、単量体含有量を定量するために、濃度の異なる3種類の各単量体溶液を標準液として用いる。   In this measurement, the separation column is manufactured by GL Sciences, using one Inertsil ODS-2 (trade name), the mobile phase is a water / acetonitrile gradient system, the flow rate is 0.8 mL / min, and the detector is manufactured by Tosoh Corporation. Measurement is performed with an ultraviolet / visible absorptiometer UV-8020 (trade name), a detection wavelength of 220 nm, a measurement temperature of 40 ° C., and an injection amount of 4 μL. As the separation column, Inertsil ODS-2 (trade name) having a silica gel particle diameter of 5 μm, a column inner diameter of 4.6 mm × column length of 450 mm is used. The gradient conditions of the mobile phase are as follows, with the liquid A being water and the liquid B being acetonitrile. In order to quantify the monomer content, three types of monomer solutions having different concentrations are used as standard solutions.

測定時間0〜3分:A液/B液=90体積%/10体積%。
測定時間3〜24分:A液/B液=90体積%/10体積%から、50体積%/50体積%まで。
測定時間24〜36.5分:A液/B液=50体積%/50体積%から、0体積%/100体積%まで。
測定時間36.5〜44分:A液/B液=0体積%/100体積%。
Measurement time 0 to 3 minutes: A liquid / B liquid = 90 vol% / 10 vol%.
Measurement time: 3 to 24 minutes: A liquid / B liquid = 90 volume% / 10 volume% to 50 volume% / 50 volume%.
Measurement time: 24 to 36.5 minutes: A liquid / B liquid = 50 volume% / 50 volume% to 0 volume% / 100 volume%.
Measurement time: 36.5 to 44 minutes: Liquid A / liquid B = 0 volume% / 100 volume%.

<重合体膜の光線透過率の測定>
重合体10部と、溶媒であるプロピレングリコールモノメチルエーテルアセテート(以下、PGMEAという。)42部とを混合して均一溶液とした後、孔径0.1μmのメンブレンフィルターで濾過し、重合体組成物溶液を調製した。
調製した重合体組成物溶液を石英ウエハー上にスピンコートし、ホットプレートを用いて120℃、60秒間プリベークを行い、膜厚1.0μmの重合体膜を製造した。
石英ウエハー上に製造された重合体膜を試料側に、未処理の石英ウエハーを参照側にそれぞれ設置し、島津製作所製、紫外・可視吸光光度計UV−3100(商品名)を用いて、波長範囲を192〜194nm、スキャンスピードを中速、サンプリングピッチを自動、スリット幅を2.0にそれぞれ設定して測定を行い、193nmにおける光線透過率(%)を求めた。
<Measurement of light transmittance of polymer film>
10 parts of a polymer and 42 parts of propylene glycol monomethyl ether acetate (hereinafter referred to as PGMEA) as a solvent are mixed to obtain a uniform solution, and then filtered through a membrane filter having a pore size of 0.1 μm to obtain a polymer composition solution. Was prepared.
The prepared polymer composition solution was spin-coated on a quartz wafer and prebaked at 120 ° C. for 60 seconds using a hot plate to produce a polymer film having a thickness of 1.0 μm.
The polymer film produced on the quartz wafer was placed on the sample side, and the untreated quartz wafer was placed on the reference side, respectively, and the wavelength was measured using an ultraviolet / visible absorptiometer UV-3100 (trade name) manufactured by Shimadzu Corporation. Measurement was carried out with the range set to 192 to 194 nm, the scan speed set to medium speed, the sampling pitch set to automatic, and the slit width set to 2.0 to determine the light transmittance (%) at 193 nm.

<レジスト組成物の評価>
[感度、現像コントラスト測定]
レジスト組成物を、6インチシリコンウエハー上に回転塗布し、ホットプレート上で120℃、60秒間プリベーク(PAB)して、厚さ300nmの薄膜を形成した。ArFエキシマレーザー露光装置(リソテックジャパン製、商品名:VUVES−4500)を用い、露光量を変えて10mm×10mmの18ショットを露光した。次いで110℃、60秒間のポストベーク(PEB)を行った後、レジスト現像アナライザー(リソテックジャパン製。商品名:RDA−800)を用い、23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で65秒間現像し、各露光量における現像中のレジスト膜厚の経時変化を測定した。
<Evaluation of resist composition>
[Sensitivity and development contrast measurement]
The resist composition was spin-coated on a 6-inch silicon wafer and prebaked (PAB) at 120 ° C. for 60 seconds on a hot plate to form a thin film having a thickness of 300 nm. Using an ArF excimer laser exposure apparatus (product name: VUVES-4500, manufactured by RISOTEC Japan), 18 shots of 10 mm × 10 mm 2 were exposed while changing the exposure amount. Then, after post-baking (PEB) at 110 ° C. for 60 seconds, 2.38 mass% tetramethylammonium hydroxide at 23 ° C. using a resist development analyzer (product name: RDA-800). Development was performed with an aqueous solution for 65 seconds, and the change with time in the resist film thickness during development at each exposure amount was measured.

[解析]
得られたデータを基に、露光量(mJ/cm)の対数と、初期膜厚に対する60秒間現像した時点での残存膜厚率(以下、残膜率という)(%)をプロットした曲線(以下、露光量−残膜率曲線という)を作成し、Eth感度(残膜率0%とするための必要露光量であり、感度を表す。)とγ値(露光量−残膜率曲線の接線の傾きであり、現像コントラストを表す。)を以下の通り求めた。Eth感度の値が小さいほどレジスト組成物の感度が高く、γ値の値が大きいほど現像コントラストが良好であることを示す。
Eth感度:露光量−残膜率曲線が残膜率0%と交わる露光量(mJ/cm)。
γ値:露光量−残膜率曲線の残膜率50%における露光量をE50(mJ/cm)、露光量−残膜率曲線のE50における接線が、残膜率100%の直線及び残膜率0%の直線と交わる露光量をそれぞれE100及びE0として、以下の計算式で求めた。
γ=1/{log(E0/E100)}
[analysis]
A curve plotting the logarithm of the exposure amount (mJ / cm 2 ) and the residual film thickness ratio (hereinafter referred to as the residual film ratio) (%) when developed for 60 seconds with respect to the initial film thickness, based on the obtained data (Hereinafter, exposure dose-residual film rate curve) is prepared, and Eth sensitivity (required exposure amount for setting the remaining film rate to 0%, which represents sensitivity) and γ value (exposure dose-residual film rate curve). (Denoting the development contrast). The smaller the Eth sensitivity value, the higher the sensitivity of the resist composition, and the larger the γ value, the better the development contrast.
Eth sensitivity: exposure amount (mJ / cm 2 ) at which the exposure amount-residual film rate curve intersects with a residual film rate of 0%.
γ value: E50 (mJ / cm 2 ) exposure amount at 50% of the remaining film rate of the exposure amount-residual film rate curve, and a tangent line at E50 of the exposure amount-residual film rate curve is a straight line with a remaining film rate of 100% The exposure amount intersecting with the straight line having a film rate of 0% was determined as E100 and E0, respectively, and the following formula was used.
γ = 1 / {log (E0 / E100)}

<実施例1>
窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えた容量1LのSUS製のフラスコに、乳酸エチル243.6gを入れた。フラスコ内を窒素で置換し、窒素雰囲気を保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物1を滴下漏斗より、4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
その後、25℃までフラスコ内の反応液を冷却して重合反応を停止させ、重合反応溶液を得た。
[混合物1]
下記式(m1)の単量体を95.20g、
下記式(m2)の単量体を131.04g、
下記式(m3)の単量体を66.08g、
乳酸エチル438.5g、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))8.649g。
各単量体の仕込み割合(モル%)を表1に示す。得られた重合反応溶液の25℃における粘度を測定した。その結果を表1に示す。
<Example 1>
243.6 g of ethyl lactate was placed in a 1 L SUS flask equipped with a nitrogen inlet, a stirrer, a condenser, a dropping funnel, and a thermometer. The inside of the flask was replaced with nitrogen, the flask was placed in a hot water bath while maintaining the nitrogen atmosphere, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 1 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours.
Then, the reaction liquid in a flask was cooled to 25 degreeC, the polymerization reaction was stopped, and the polymerization reaction solution was obtained.
[Mixture 1]
95.20 g of a monomer of the following formula (m1),
131.04 g of a monomer of the following formula (m2),
66.08 g of a monomer of the following formula (m3),
438.5 g of ethyl lactate,
8.649 g of dimethyl-2,2′-azobisisobutyrate (manufactured by Wako Pure Chemical Industries, Ltd., V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1. The viscosity at 25 ° C. of the obtained polymerization reaction solution was measured. The results are shown in Table 1.

Figure 2013006888
Figure 2013006888

次に、得られた重合反応溶液の100質量部に対して、50質量部の希釈溶媒を加えて、質量基準の希釈倍率が1.5倍となるように希釈し、希釈後溶液を得た。希釈溶媒としては乳酸エチルを用いた。得られた希釈後溶液の25℃における粘度を測定した。その結果を表1に示す。
得られた希釈後溶液を、10倍量の貧溶媒中に、該貧溶媒を攪拌しながら滴下し、重合体(白色の析出物)を沈殿させた。貧溶媒としてはメタノールを用いた。
沈殿を濾別し、重合体湿粉を得た。重合体湿粉を減圧下40℃で約40時間乾燥して、重合体の乾燥粉末を得た。
得られた重合体の重量平均分子量(Mw)、分子量分布(Mw/Mn)を測定した。重合体の単量体含有量を単量体ごとに求め、該単量体含有量の合計量が、重合体全体に占める割合を残存単量体量(単位:質量%)として求めた。重合体膜の光線透過率を測定した。その結果を表2に示す。
Next, with respect to 100 parts by mass of the obtained polymerization reaction solution, 50 parts by mass of a diluting solvent was added to dilute the mass-based dilution ratio to be 1.5 times to obtain a diluted solution. . Ethyl lactate was used as a dilution solvent. The viscosity at 25 ° C. of the obtained diluted solution was measured. The results are shown in Table 1.
The obtained diluted solution was dropped into a 10-fold amount of a poor solvent while stirring the poor solvent to precipitate a polymer (white precipitate). Methanol was used as the poor solvent.
The precipitate was filtered off to obtain a polymer wet powder. The polymer wet powder was dried under reduced pressure at 40 ° C. for about 40 hours to obtain a dry powder of the polymer.
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the obtained polymer were measured. The monomer content of the polymer was determined for each monomer, and the proportion of the total monomer content in the entire polymer was determined as the residual monomer amount (unit: mass%). The light transmittance of the polymer film was measured. The results are shown in Table 2.

[レジスト組成物の評価]
得られた重合体の100部と、光酸発生剤であるトリフェニルスルホニウムトリフレートの2部と、溶媒であるPGMEAとを、重合体濃度が12.5質量%になるように混合して均一溶液とした後、孔径0.1μmのメンブレンフィルターで濾過し、レジスト組成物を得た。得られたレジスト組成物についてEth感度およびγ値を測定した。結果を表2に示す。
[Evaluation of resist composition]
100 parts of the obtained polymer, 2 parts of triphenylsulfonium triflate as a photoacid generator, and PGMEA as a solvent were mixed uniformly so that the polymer concentration was 12.5% by mass. After preparing the solution, it was filtered through a membrane filter having a pore size of 0.1 μm to obtain a resist composition. Eth sensitivity and γ value of the obtained resist composition were measured. The results are shown in Table 2.

<実施例2、3、4>
希釈溶媒または希釈倍率を下記のように変更したほかは実施例1と同様に行った。結果を表1および表2に示す。
実施例2は希釈溶媒として乳酸エチルを用い、希釈倍率1.8倍になるように希釈した。
実施例3は希釈溶媒として乳酸エチルを用い、希釈倍率2.1倍になるように希釈した。
実施例4は希釈溶媒としてメタノールを用い、希釈倍率2.0倍になるように希釈した。
<Examples 2, 3, and 4>
The same procedure as in Example 1 was performed except that the dilution solvent or dilution ratio was changed as follows. The results are shown in Tables 1 and 2.
In Example 2, ethyl lactate was used as a dilution solvent, and diluted such that the dilution ratio was 1.8 times.
In Example 3, ethyl lactate was used as a diluent solvent, and diluted to a dilution ratio of 2.1.
In Example 4, methanol was used as a diluent solvent, and diluted so that the dilution ratio was 2.0 times.

<実施例5>
本例では、実施例1における式(m2)の単量体に代えて、下記式(m4)の単量体を用いた。
すなわち、実施例1と同じフラスコに、乳酸エチル225.9gを入れた。フラスコ内を窒素で置換し、窒素雰囲気下で保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物2を滴下漏斗より、4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
その後、25℃までフラスコ内の反応液を冷却して重合反応を停止させ、重合反応溶液を得た。
[混合物2]
下記式(m1)の単量体を95.20g、
下記式(m3)の単量体を66.08g、
下記式(m4)の単量体を109.76g、
乳酸エチル406.6g、
ジメチル−2,2’−アゾビスイソブチレート(前記V601(商品名))8.372g。
各単量体の仕込み割合(モル%)を表1に示す。得られた重合反応溶液の25℃における粘度を表1に示す。
<Example 5>
In this example, a monomer of the following formula (m4) was used in place of the monomer of the formula (m2) in Example 1.
That is, 225.9 g of ethyl lactate was placed in the same flask as in Example 1. The inside of the flask was replaced with nitrogen, and the flask was placed in a hot water bath while maintaining the nitrogen atmosphere, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 2 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours.
Then, the reaction liquid in a flask was cooled to 25 degreeC, the polymerization reaction was stopped, and the polymerization reaction solution was obtained.
[Mixture 2]
95.20 g of a monomer of the following formula (m1),
66.08 g of a monomer of the following formula (m3),
109.76 g of a monomer of the following formula (m4),
406.6 g of ethyl lactate,
8.372 g of dimethyl-2,2′-azobisisobutyrate (said V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1. Table 1 shows the viscosity of the obtained polymerization reaction solution at 25 ° C.

Figure 2013006888
Figure 2013006888

次に、実施例1と同様に、希釈溶媒として乳酸エチルを用いて希釈倍率1.5倍になるように希釈し、希釈後溶液を得た。その他は実施例1と同様に行った。結果を表1または表2に示す。   Next, in the same manner as in Example 1, it was diluted with ethyl lactate as a dilution solvent so that the dilution ratio was 1.5 times, and a diluted solution was obtained. Others were the same as in Example 1. The results are shown in Table 1 or Table 2.

<実施例6>
本例では、実施例1における式(m2)(m3)の単量体に代えて、下記式(m6)(m5)の単量体を用いた。また希釈溶媒としてメタノールを用い、貧溶媒として水を用いた。
すなわち、実施例1と同じフラスコに、乳酸エチル161.0gを入れた。フラスコ内を窒素で置換し、窒素雰囲気下で保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物3を滴下漏斗より、4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
その後、25℃までフラスコ内の反応液を冷却して重合反応を停止させ、重合反応溶液を得た。
[混合物3]
下記式(m1)の単量体を136.1g、
下記式(m5)の単量体を70.5g、
下記式(m6)の単量体を104.0g、
乳酸エチル310.6g、
ジメチル−2,2’−アゾビスイソブチレート(前記V601(商品名))16.56g。
各単量体の仕込み割合(モル%)を表1に示す。得られた重合反応溶液の25℃における粘度を表1に示す。
<Example 6>
In this example, monomers of the following formulas (m6) and (m5) were used in place of the monomers of the formulas (m2) and (m3) in Example 1. Further, methanol was used as a dilution solvent, and water was used as a poor solvent.
That is, 161.0 g of ethyl lactate was placed in the same flask as in Example 1. The inside of the flask was replaced with nitrogen, and the flask was placed in a hot water bath while maintaining the nitrogen atmosphere, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 3 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours.
Then, the reaction liquid in a flask was cooled to 25 degreeC, the polymerization reaction was stopped, and the polymerization reaction solution was obtained.
[Mixture 3]
136.1 g of the monomer of the following formula (m1),
70.5 g of a monomer of the following formula (m5),
104.0 g of the monomer of the following formula (m6),
310.6 g of ethyl lactate,
16.56 g of dimethyl-2,2'-azobisisobutyrate (said V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1. Table 1 shows the viscosity of the obtained polymerization reaction solution at 25 ° C.

Figure 2013006888
Figure 2013006888

次に、得られた重合反応溶液を、希釈溶媒としてメタノールを用い、希釈倍率2.0倍になるように希釈し、希釈後溶液を得た。その後は、貧溶媒として水を用いたほかは、実施例1と同様にして、重合体の乾燥粉末を得た。
実施例1と同様にして、得られた重合体のMw、Mw/Mn、残存単量体量、および光線透過率をそれぞれ測定した。その結果を表2に示す。
本例における重合体膜の光線透過率は顕著に低く、波長193nmの光を良好に吸収することから、ArFリソグラフィー用反射防止膜として好適に使用できることがわかる。そのためレジスト組成物としての評価(Eth感度およびγ値)は行わなかった。
Next, the obtained polymerization reaction solution was diluted with methanol as a dilution solvent so that the dilution ratio was 2.0 times, and a diluted solution was obtained. Thereafter, a dry powder of the polymer was obtained in the same manner as in Example 1 except that water was used as the poor solvent.
In the same manner as in Example 1, Mw, Mw / Mn, residual monomer amount, and light transmittance of the obtained polymer were measured. The results are shown in Table 2.
The light transmittance of the polymer film in this example is remarkably low, and it absorbs light with a wavelength of 193 nm well, so that it can be seen that it can be suitably used as an antireflection film for ArF lithography. Therefore, evaluation as a resist composition (Eth sensitivity and γ value) was not performed.

<比較例1>
重合反応溶液を希釈せず、そのまま貧溶媒中に滴下したほかは、実施例1と同様に行った。結果を表1および2に示す。
<比較例2>
重合反応溶液を希釈せず、そのまま貧溶媒中に滴下したほかは、実施例5と同様に行った。結果を表1および2に示す。
<比較例3>
重合反応溶液を希釈せず、そのまま貧溶媒中に滴下したほかは、実施例6と同様に行った。
重合反応溶液を貧溶媒に滴下したところ、析出した重合体同士が融着して均一なスラリーを得ることができず、釜尻からスラリーを排出して濾別することが出来なかった。そのため表2に示す項目の測定および評価は行わなかった。
<Comparative Example 1>
The same procedure as in Example 1 was performed, except that the polymerization reaction solution was not diluted and dropped directly into a poor solvent. The results are shown in Tables 1 and 2.
<Comparative example 2>
The same procedure as in Example 5 was carried out except that the polymerization reaction solution was not diluted and dropped directly into a poor solvent. The results are shown in Tables 1 and 2.
<Comparative Example 3>
The same procedure as in Example 6 was performed, except that the polymerization reaction solution was not diluted and dropped directly into a poor solvent.
When the polymerization reaction solution was dropped into a poor solvent, the precipitated polymers were fused together to obtain a uniform slurry, and the slurry could not be discharged from the bottom of the kettle and filtered. Therefore, the items shown in Table 2 were not measured and evaluated.

<比較例4>
実施例6と同様に重合反応溶液を得た。
次に、得られた重合反応溶液を、希釈溶媒としてメタノールを用い、希釈倍率1.8倍になるように希釈し、希釈後溶液を得た。その後は、実施例6と同様にして、重合体の乾燥粉末を得た。
実施例6と同様にして、得られた重合体のMw、Mw/Mn、残存単量体量、および光線透過率をそれぞれ測定した。その結果を表2に示す。
<Comparative example 4>
A polymerization reaction solution was obtained in the same manner as in Example 6.
Next, the obtained polymerization reaction solution was diluted with methanol as a dilution solvent so that the dilution ratio was 1.8 times, and a diluted solution was obtained. Thereafter, a polymer dry powder was obtained in the same manner as in Example 6.
In the same manner as in Example 6, Mw, Mw / Mn, residual monomer amount, and light transmittance of the obtained polymer were measured. The results are shown in Table 2.

Figure 2013006888
Figure 2013006888

Figure 2013006888
Figure 2013006888

表1、2の結果に示されるように、重合体反応溶液を希釈して120mPa・s以下の低粘度にして貧溶媒中に滴下した実施例1〜4は、同じ重合体反応溶液を希釈せずに貧溶媒中に滴下した比較例1よりも、得られた重合体中に残存する単量体の量が格段に少なく、分子量分布が狭い。また比較例1に比べて重合体膜の光線透過率が向上し、レジスト組成物の感度および現像コントラストが向上した。
同様に、重合体反応溶液を希釈して120mPa・s以下の低粘度にして貧溶媒中に滴下した実施例5は、同じ重合体反応溶液を希釈せずに貧溶媒中に滴下した比較例2よりも、得られた重合体中に残存する単量体の量が格段に少なく、分子量分布が狭く、重合体膜の光線透過率が向上し、レジスト組成物の感度および現像コントラストが向上した。
また、比較例4の結果より、重合体反応溶液を希釈してから貧溶媒中に滴下した場合であっても、滴下する希釈後溶液の粘度が120mPa・sよりも大きいと、実施例6に比べて重合体中に残存する単量体の量が格段に多くなってしまうことがわかる。
As shown in the results of Tables 1 and 2, Examples 1-4 in which the polymer reaction solution was diluted to a viscosity of 120 mPa · s or less and dropped into a poor solvent were diluted with the same polymer reaction solution. The amount of the monomer remaining in the obtained polymer is much smaller than that of Comparative Example 1 dropped in a poor solvent, and the molecular weight distribution is narrow. Further, compared with Comparative Example 1, the light transmittance of the polymer film was improved, and the sensitivity and development contrast of the resist composition were improved.
Similarly, Example 5 in which the polymer reaction solution was diluted to a viscosity of 120 mPa · s or less and dropped into a poor solvent was Comparative Example 2 in which the same polymer reaction solution was dropped into the poor solvent without dilution. As a result, the amount of monomer remaining in the obtained polymer was remarkably small, the molecular weight distribution was narrow, the light transmittance of the polymer film was improved, and the sensitivity and development contrast of the resist composition were improved.
Further, from the result of Comparative Example 4, even when the polymer reaction solution was diluted and then dropped into the poor solvent, when the viscosity of the diluted solution to be dropped was larger than 120 mPa · s, Example 6 In comparison, it can be seen that the amount of monomer remaining in the polymer is remarkably increased.

Claims (4)

重合溶媒の存在下に、重合開始剤を使用して、単量体をラジカル重合させて、25℃における粘度が120mPa・sより高い重合反応溶液を得る工程と、
得られた重合反応溶液を希釈溶媒で希釈して、25℃における粘度が120mPa・s以下の希釈後溶液を得る工程と、
前記希釈後溶液を重合体に対する貧溶媒中に滴下して、該希釈後溶液中の重合体を沈殿させる工程を含むことを特徴とするリソグラフィー用重合体の製造方法。
A step of radically polymerizing a monomer using a polymerization initiator in the presence of a polymerization solvent to obtain a polymerization reaction solution having a viscosity at 25 ° C. higher than 120 mPa · s;
A step of diluting the obtained polymerization reaction solution with a diluent solvent to obtain a diluted solution having a viscosity at 25 ° C. of 120 mPa · s or less,
A method for producing a polymer for lithography, comprising a step of dropping the diluted solution into a poor solvent for the polymer to precipitate the polymer in the diluted solution.
前記希釈溶媒が重合体に対する貧溶媒である、請求項1記載のリソグラフィー用重合体の製造方法。   The method for producing a lithography polymer according to claim 1, wherein the dilution solvent is a poor solvent for the polymer. 請求項1または2に記載の製造方法によりリソグラフィー用重合体を製造する工程と、得られた半導体リソグラフィー用重合体と、活性光線又は放射線の照射により酸を発生する化合物とを混合する工程を有する、レジスト組成物の製造方法。   A step of producing a polymer for lithography by the production method according to claim 1, a step of mixing the obtained polymer for semiconductor lithography and a compound that generates an acid upon irradiation with actinic rays or radiation. And a method for producing a resist composition. 請求項3に記載の製造方法によりレジスト組成物を製造する工程と、得られたレジスト組成物を基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む、パターンが形成された基板の製造方法。   A step of producing a resist composition by the production method according to claim 3, a step of applying the obtained resist composition on a work surface of a substrate to form a resist film, and the resist film, A method for producing a substrate on which a pattern is formed, comprising a step of exposing and a step of developing the exposed resist film using a developer.
JP2011138301A 2011-06-22 2011-06-22 Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method Active JP5821317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138301A JP5821317B2 (en) 2011-06-22 2011-06-22 Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138301A JP5821317B2 (en) 2011-06-22 2011-06-22 Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2013006888A true JP2013006888A (en) 2013-01-10
JP5821317B2 JP5821317B2 (en) 2015-11-24

Family

ID=47674513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138301A Active JP5821317B2 (en) 2011-06-22 2011-06-22 Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP5821317B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240480A (en) * 2013-05-17 2014-12-25 三菱レイヨン株式会社 Production method of polymer for lithography, production method of resist composition, and production method of patterned substrate
JP2017095578A (en) * 2015-11-24 2017-06-01 三菱ケミカル株式会社 Production method of polymer for semiconductor lithography, production method of resist composition, and method for manufacturing patterned substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243629A (en) * 1990-02-20 1991-10-30 New Japan Chem Co Ltd Production of polyimide-based resin powder of solvent-soluble type
JP2002167432A (en) * 2000-11-29 2002-06-11 Sumitomo Seika Chem Co Ltd Method for reducing residual alkylene oxide monomer content in polyalkylene oxide
JP2005320444A (en) * 2004-05-10 2005-11-17 Mitsubishi Rayon Co Ltd Manufacturing method of polymer for resist
WO2006025602A1 (en) * 2004-09-03 2006-03-09 Nippon Shokubai Co., Ltd. Process for producing positive electrode material composition for lithium secondary battery
JP2007051299A (en) * 2006-10-04 2007-03-01 Daicel Chem Ind Ltd Polymer compound for photoresist and resin composition for photoresist
JP2008138133A (en) * 2006-12-05 2008-06-19 Fujifilm Corp Method for manufacturing resist resin, resist resin manufactured by the manufacturing method, resist composition containing the resin and pattern-forming method using the same
WO2009116253A1 (en) * 2008-03-17 2009-09-24 ダイセル化学工業株式会社 Process for production of polymer
JP2010065235A (en) * 2009-12-20 2010-03-25 Nitto Denko Corp Pressure-sensitive adhesive sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243629A (en) * 1990-02-20 1991-10-30 New Japan Chem Co Ltd Production of polyimide-based resin powder of solvent-soluble type
JP2002167432A (en) * 2000-11-29 2002-06-11 Sumitomo Seika Chem Co Ltd Method for reducing residual alkylene oxide monomer content in polyalkylene oxide
JP2005320444A (en) * 2004-05-10 2005-11-17 Mitsubishi Rayon Co Ltd Manufacturing method of polymer for resist
WO2006025602A1 (en) * 2004-09-03 2006-03-09 Nippon Shokubai Co., Ltd. Process for producing positive electrode material composition for lithium secondary battery
JP2007051299A (en) * 2006-10-04 2007-03-01 Daicel Chem Ind Ltd Polymer compound for photoresist and resin composition for photoresist
JP2008138133A (en) * 2006-12-05 2008-06-19 Fujifilm Corp Method for manufacturing resist resin, resist resin manufactured by the manufacturing method, resist composition containing the resin and pattern-forming method using the same
WO2009116253A1 (en) * 2008-03-17 2009-09-24 ダイセル化学工業株式会社 Process for production of polymer
JP2010065235A (en) * 2009-12-20 2010-03-25 Nitto Denko Corp Pressure-sensitive adhesive sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240480A (en) * 2013-05-17 2014-12-25 三菱レイヨン株式会社 Production method of polymer for lithography, production method of resist composition, and production method of patterned substrate
JP2017095578A (en) * 2015-11-24 2017-06-01 三菱ケミカル株式会社 Production method of polymer for semiconductor lithography, production method of resist composition, and method for manufacturing patterned substrate

Also Published As

Publication number Publication date
JP5821317B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP6262416B2 (en) Lithographic polymer solution manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5821317B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6520054B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which a pattern is formed
JP5942562B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP5741814B2 (en) Polymer for semiconductor lithography and method for producing the same, resist composition, and method for producing substrate
JP2012087186A (en) Polymer for lithography and method for producing the same, and resist composition and method for producing substrate
JP5716943B2 (en) Polymer, resist composition, and method of manufacturing substrate on which pattern is formed
JP6439278B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP2015143363A (en) Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate
JP5707699B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate
JP6299076B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6369103B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5751487B2 (en) Method for producing resist polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP7127267B2 (en) Method for producing polymer solution for lithography, method for producing resist composition, and method for producing patterned substrate
JP6369156B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP2013127023A (en) Method for producing polymer used for lithography, polymer for lithography, resist composition and method for producing substrate
JP6439270B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5659570B2 (en) Method for producing polymer, polymer for semiconductor lithography, resist composition, and method for producing substrate on which pattern is formed
JP6212945B2 (en) Lithographic polymer manufacturing method, lithography polymer, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5793825B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
JP6481334B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which pattern is formed
JP6314786B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP2017119881A (en) Production method of polymer for lithography, production method of resist composition, and method for manufacturing patterned substrate
JP2023123014A (en) Method for producing polymer, method for producing resist composition, and method for producing patterned substrate
JP5942564B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R151 Written notification of patent or utility model registration

Ref document number: 5821317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250