JP2015143363A - Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate - Google Patents

Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate Download PDF

Info

Publication number
JP2015143363A
JP2015143363A JP2015037205A JP2015037205A JP2015143363A JP 2015143363 A JP2015143363 A JP 2015143363A JP 2015037205 A JP2015037205 A JP 2015037205A JP 2015037205 A JP2015037205 A JP 2015037205A JP 2015143363 A JP2015143363 A JP 2015143363A
Authority
JP
Japan
Prior art keywords
polymer
polymerization reaction
reaction vessel
polymerization
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015037205A
Other languages
Japanese (ja)
Inventor
敦 安田
Atsushi Yasuda
敦 安田
友也 押切
Tomoya Oshikiri
友也 押切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015037205A priority Critical patent/JP2015143363A/en
Publication of JP2015143363A publication Critical patent/JP2015143363A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a polymer for semiconductor lithography, by which variations in polymers among production lots can be decreased.SOLUTION: The production method of a polymer for semiconductor lithography comprises dropping a monomer and a polymerization initiator from a reservoir into a polymerization reaction vessel and radically polymerizing the monomer in the presence of a polymerization solvent in the polymerization reaction vessel. The method includes the following gas purge step after preliminarily charging the polymerization reaction vessel with at least a part of the polymerization solvent and/or a part of the monomer and before starting the polymerization reaction. In the gas purge step, the polymerization reaction vessel is evacuated down to 20 kPa or less while the gas in the reservoir is not replaced by inert gas, and then the gas in the polymerization reaction vessel is replaced by inert gas.

Description

本発明は半導体リソグラフィー用重合体の製造方法、該製造方法により得られる半導体リソグラフィー用重合体、該半導体リソグラフィー用重合体を用いたレジスト組成物、および該レジスト組成物を用いて、パターンが形成された基板を製造する方法に関する。   The present invention provides a method for producing a polymer for semiconductor lithography, a polymer for semiconductor lithography obtained by the production method, a resist composition using the polymer for semiconductor lithography, and a pattern formed using the resist composition. The present invention relates to a method for manufacturing a substrate.

近年、半導体素子、液晶素子等の製造工程において形成されるレジストパターンは、半導体リソグラフィー技術の進歩により急速に微細化が進んでいる。微細化の手法としては、照射光の短波長化がある。具体的には、従来のg線(波長:438nm)、i線(波長:365nm)に代表される紫外線から、より短波長のDUV(Deep Ultra Violet)へと照射光が短波長化してきている。   In recent years, a resist pattern formed in a manufacturing process of a semiconductor element, a liquid crystal element, or the like has been rapidly miniaturized due to advances in semiconductor lithography technology. As a technique for miniaturization, there is a reduction in wavelength of irradiation light. Specifically, the irradiation light has become shorter from conventional ultraviolet rays typified by g-line (wavelength: 438 nm) and i-line (wavelength: 365 nm) to shorter wavelength DUV (Deep Ultra Violet). .

最近では、KrFエキシマレーザー(波長:248nm)リソグラフィー技術が導入され、さらなる短波長化を図ったArFエキシマレーザー(波長:193nm)リソグラフィー技術およびEUV(波長:13.5nm)リソグラフィー技術が研究されている。さらに、これらの液浸リソグラフィー技術も研究されている。また、これらとは異なるタイプのリソグラフィー技術として、電子線リソグラフィー技術についても精力的に研究されている。   Recently, KrF excimer laser (wavelength: 248 nm) lithography technology has been introduced, and ArF excimer laser (wavelength: 193 nm) lithography technology and EUV (wavelength: 13.5 nm) lithography technology for further shortening the wavelength have been studied. . Furthermore, these immersion lithography techniques are also being studied. Also, as a different type of lithography technology, electron beam lithography technology has been energetically studied.

該短波長の照射光または電子線を用いたレジストパターンの形成に用いられる高感度のレジスト組成物として、光酸発生剤を含有する「化学増幅型レジスト組成物」が提唱され、現在、該化学増幅型レジスト組成物の改良および開発が進められている。
例えば、ArFエキシマレーザーリソグラフィーにおいて用いられる化学増幅型レジスト用重合体として、波長193nmの光に対して透明なアクリル系重合体が注目されている。該アクリル系重合体としては、例えば、エステル部にアダマンタン骨格を有する(メタ)アクリル酸エステルとエステル部にラクトン骨格を有する(メタ)アクリル酸エステルとの重合体が提案されている(特許文献1等)。
A “chemically amplified resist composition” containing a photoacid generator has been proposed as a highly sensitive resist composition used for forming a resist pattern using the irradiation light or electron beam of the short wavelength. Improvement and development of amplification resist compositions are underway.
For example, as a chemically amplified resist polymer used in ArF excimer laser lithography, an acrylic polymer that is transparent with respect to light having a wavelength of 193 nm has attracted attention. As the acrylic polymer, for example, a polymer of (meth) acrylic acid ester having an adamantane skeleton in an ester portion and (meth) acrylic acid ester having a lactone skeleton in an ester portion has been proposed (Patent Document 1). etc).

レジストパターンの微細化に伴って、半導体リソグラフィー用重合体の品質への要求も厳しくなっている。例えば、半導体リソグラフィー用重合体の製造上のロットバラツキが現像時に微少な欠陥を発生させ、デバイス設計における欠陥の原因となる場合がある。
下記特許文献2には、ロットの違いによる分子量分布の変動を小さくする方法として、リビングラジカル重合開始剤を用いて、酸解離性基を有する樹脂を合成する方法が記載されている。
With the miniaturization of resist patterns, demands for quality of polymers for semiconductor lithography have become stricter. For example, a lot variation in manufacturing a polymer for semiconductor lithography may cause a minute defect during development, which may cause a defect in device design.
Patent Document 2 listed below describes a method of synthesizing a resin having an acid-dissociable group using a living radical polymerization initiator as a method for reducing fluctuations in molecular weight distribution due to lot differences.

特開平10−319595号公報JP 10-319595 A 特開2009−175746号公報JP 2009-175746 A

しかし、特許文献2に記載の方法では特定の重合開始剤を用いることが必要であり、重合開始剤の変更に伴う製造条件の適正化も必要となる。
本発明は前記事情に鑑みてなされたもので、特許文献2に記載の従来法とは異なる方法で、重合体のロット間のバラツキを低減することができる、半導体リソグラフィー用重合体の製造方法、該製造方法により得られる半導体リソグラフィー用重合体、該半導体リソグラフィー用重合体を用いたレジスト組成物、および該レジスト組成物を用いて、パターンが形成された基板を製造する方法を提供することを目的とする。
However, in the method described in Patent Document 2, it is necessary to use a specific polymerization initiator, and it is also necessary to optimize the manufacturing conditions accompanying the change of the polymerization initiator.
The present invention has been made in view of the above circumstances, and a method for producing a polymer for semiconductor lithography, which can reduce variation between lots of polymers in a method different from the conventional method described in Patent Document 2, It is an object to provide a polymer for semiconductor lithography obtained by the production method, a resist composition using the polymer for semiconductor lithography, and a method for producing a substrate on which a pattern is formed using the resist composition. And

本発明者等は、重合反応を開始する前、反応容器内に不活性ガスをパージする際の条件を制御することによって、ロット間バラツキを低減できることを見出して、本発明に至った。   The inventors of the present invention have found that variation between lots can be reduced by controlling the conditions for purging the inert gas in the reaction vessel before starting the polymerization reaction, and have reached the present invention.

本発明の半導体リソグラフィー用重合体の製造方法は、単量体および重合開始剤を貯槽から重合反応容器内に滴下し、該重合反応容器内にて、重合溶媒の存在下で、単量体をラジカル重合させて重合体を製造する方法であって、予め、前記重合反応容器内に、重合溶媒の少なくとも一部および/または単量体の一部を仕込んだ後、重合反応を開始する前に、前記貯槽内の気体は不活性ガスで置換せず、前記重合反応容器内を20kPa以下まで減圧した後に該重合反応容器内の気体を不活性ガスで置換するガスパージ工程を有することを特徴とする。
前記ガスパージ工程において、重合反応容器内を減圧した後、不活性ガスを供給する操作を2回以上繰り返すことが好ましい。
In the method for producing a polymer for semiconductor lithography of the present invention, a monomer and a polymerization initiator are dropped from a storage tank into a polymerization reaction vessel, and the monomer is added in the presence of a polymerization solvent in the polymerization reaction vessel. A method for producing a polymer by radical polymerization, wherein at least a part of a polymerization solvent and / or a part of a monomer is charged in the polymerization reaction vessel in advance and before a polymerization reaction is started. The gas in the storage tank is not replaced with an inert gas, and after the pressure in the polymerization reaction vessel is reduced to 20 kPa or less, the gas purge step is performed to replace the gas in the polymerization reaction vessel with an inert gas. .
In the gas purge step, it is preferable to repeat the operation of supplying the inert gas after depressurizing the inside of the polymerization reaction vessel twice or more.

本発明は、本発明の製造方法により半導体リソグラフィー用重合体を製造する工程と、
得られた半導体リソグラフィー用重合体と、活性光線又は放射線の照射により酸を発生する化合物とを混合する工程を有する、レジスト組成物の製造方法を提供する。
本発明は、本発明のレジスト組成物の製造方法により得られるレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む、パターンが形成された基板の製造方法を提供する。
The present invention comprises a step of producing a polymer for semiconductor lithography by the production method of the present invention,
Provided is a method for producing a resist composition, comprising a step of mixing the obtained polymer for semiconductor lithography with a compound that generates an acid upon irradiation with actinic rays or radiation.
The present invention includes a step of applying a resist composition obtained by the method for producing a resist composition of the present invention on a work surface of a substrate to form a resist film, and a step of exposing the resist film. And a step of developing the exposed resist film using a developer, and a method for producing a substrate on which a pattern is formed.

本発明によれば、ロット間バラツキが小さい半導体リソグラフィー用重合体が得られる。
本発明の半導体リソグラフィー用重合体を用いたレジスト組成物は、重合体のロット間バラツキが小さいため、性能の安定性に優れる。
本発明の基板の製造方法によれば、高精度の微細なパターンを安定して形成できる。
According to the present invention, a polymer for semiconductor lithography having a small lot-to-lot variation can be obtained.
The resist composition using the polymer for semiconductor lithography of the present invention is excellent in stability of performance because the lot-to-lot variation of the polymer is small.
According to the substrate manufacturing method of the present invention, a highly accurate fine pattern can be stably formed.

本明細書においては、「(メタ)アクリル酸」は、アクリル酸またはメタクリル酸を意味し、「(メタ)アクリロイルオキシ」は、アクリロイルオキシまたはメタクリロイルオキシを意味する。
<重合体>
[構成単位(a)]
本発明の半導体リソグラフィー用重合体(以下、単に重合体ということもある。)は、極性基を有する構成単位(a)を有することが好ましい。
「極性基」とは、極性を持つ官能基または極性を持つ原子団を有する基であり、具体例としては、ヒドロキシ基、シアノ基、アルコキシ基、カルボキシ基、アミノ基、カルボニル基、フッ素原子を含む基、硫黄原子を含む基、ラクトン骨格を含む基、アセタール構造を含む基、エーテル結合を含む基などが挙げられる。
これらのうちで、波長250nm以下の光で露光するパターン形成方法におけるレジスト組成物に用いられる重合体は、極性基を有する構成単位として、ラクトン骨格を有する構成単位を有することが好ましく、さらに後述の親水性基を有する構成単位を有することが好ましい。
In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, and “(meth) acryloyloxy” means acryloyloxy or methacryloyloxy.
<Polymer>
[Structural unit (a)]
The polymer for semiconductor lithography of the present invention (hereinafter sometimes simply referred to as a polymer) preferably has a structural unit (a) having a polar group.
The “polar group” is a group having a polar functional group or a polar atomic group. Specific examples include a hydroxy group, a cyano group, an alkoxy group, a carboxy group, an amino group, a carbonyl group, and a fluorine atom. A group containing a sulfur atom, a group containing a lactone skeleton, a group containing an acetal structure, a group containing an ether bond, and the like.
Among these, the polymer used in the resist composition in the pattern forming method of exposing with light having a wavelength of 250 nm or less preferably has a structural unit having a lactone skeleton as the structural unit having a polar group, and further described below. It is preferable to have a structural unit having a hydrophilic group.

(ラクトン骨格を有する構成単位・単量体)
ラクトン骨格としては、例えば、4〜20員環程度のラクトン骨格が挙げられる。ラクトン骨格は、ラクトン環のみの単環であってもよく、ラクトン環に脂肪族または芳香族の炭素環または複素環が縮合していてもよい。
重合体がラクトン骨格を有する構成単位を含む場合、その含有量は、基板等への密着性の点から、全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、感度および解像度の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
(Constitutional unit / monomer having a lactone skeleton)
Examples of the lactone skeleton include a lactone skeleton having about 4 to 20 members. The lactone skeleton may be a monocycle having only a lactone ring, or an aliphatic or aromatic carbocyclic or heterocyclic ring may be condensed with the lactone ring.
In the case where the polymer contains a structural unit having a lactone skeleton, the content thereof is preferably 20 mol% or more, more preferably 25 mol% or more of all structural units (100 mol%) from the viewpoint of adhesion to a substrate or the like. Is more preferable. Moreover, from the point of a sensitivity and resolution, 60 mol% or less is preferable, 55 mol% or less is more preferable, and 50 mol% or less is further more preferable.

ラクトン骨格を有する単量体としては、基板等への密着性に優れる点から、置換あるいは無置換のδ−バレロラクトン環を有する(メタ)アクリル酸エステル、置換あるいは無置換のγ−ブチロラクトン環を有する単量体からなる群から選ばれる少なくとも1種が好ましく、無置換のγ−ブチロラクトン環を有する単量体が特に好ましい。   As a monomer having a lactone skeleton, a (meth) acrylic acid ester having a substituted or unsubstituted δ-valerolactone ring, a substituted or unsubstituted γ-butyrolactone ring is used because of its excellent adhesion to a substrate or the like. Preferably, at least one selected from the group consisting of monomers having it is preferred, and monomers having an unsubstituted γ-butyrolactone ring are particularly preferred.

ラクトン骨格を有する単量体の具体例としては、β−(メタ)アクリロイルオキシ−β−メチル−δ−バレロラクトン、4,4−ジメチル−2−メチレン−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−β−メチル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−γ−ブチロラクトン、2−(1−(メタ)アクリロイルオキシ)エチル−4−ブタノリド、(メタ)アクリル酸パントイルラクトン、5−(メタ)アクリロイルオキシ−2,6−ノルボルナンカルボラクトン、8−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン、9−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン等が挙げられる。また、類似構造を持つ単量体として、メタクリロイルオキシこはく酸無水物等も挙げられる。
ラクトン骨格を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a lactone skeleton include β- (meth) acryloyloxy-β-methyl-δ-valerolactone, 4,4-dimethyl-2-methylene-γ-butyrolactone, β- (meth) acryloyl. Oxy-γ-butyrolactone, β- (meth) acryloyloxy-β-methyl-γ-butyrolactone, α- (meth) acryloyloxy-γ-butyrolactone, 2- (1- (meth) acryloyloxy) ethyl-4-butanolide , (Meth) acrylic acid pantoyl lactone, 5- (meth) acryloyloxy-2,6-norbornanecarbolactone, 8-methacryloxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-3 - one, 9-methacryloxy-4-oxatricyclo [5.2.1.0 2, 6] cited decan-3-one and the like . Examples of the monomer having a similar structure include methacryloyloxysuccinic anhydride.
Monomers having a lactone skeleton may be used alone or in combination of two or more.

(親水性基を有する構成単位・単量体)
本明細書における「親水性基」とは、−C(CF−OH、ヒドロキシ基、シアノ基、メトキシ基、カルボキシ基およびアミノ基の少なくとも1種である。
これらのうちで、波長250nm以下の光で露光するパターン形成方法におけるレジスト組成物に用いられる重合体は、親水性基としてヒドロキシ基またはシアノ基を有することが好ましい。
重合体における親水性基を有する構成単位の含有量は、レジストパターン矩形性の点から、全構成単位(100モル%)のうち、5〜30モル%が好ましく、10〜25モル%がより好ましい。
(Structural unit / monomer having a hydrophilic group)
The “hydrophilic group” in the present specification is at least one of —C (CF 3 ) 2 —OH, a hydroxy group, a cyano group, a methoxy group, a carboxy group, and an amino group.
Among these, it is preferable that the polymer used for the resist composition in the pattern formation method exposed with light having a wavelength of 250 nm or less has a hydroxy group or a cyano group as a hydrophilic group.
The content of the structural unit having a hydrophilic group in the polymer is preferably from 5 to 30 mol%, more preferably from 10 to 25 mol%, of the total structural units (100 mol%) from the viewpoint of the resist pattern rectangularity. .

親水性基を有する単量体としては、例えば、末端ヒドロキシ基を有する(メタ)アクリ酸エステル;単量体の親水性基上にアルキル基、ヒドロキシ基、カルボキシ基等の置換基を有する誘導体;環式炭化水素基を有する単量体(例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1−イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンチル、(メタ)アクリル酸2−メチル−2−アダマンチル、(メタ)アクリル酸2−エチル−2−アダマンチル等。)が置換基としてヒドロキシ基、カルボキシ基等の親水性基を有するもの;が挙げられる。   Examples of the monomer having a hydrophilic group include a (meth) acrylic acid ester having a terminal hydroxy group; a derivative having a substituent such as an alkyl group, a hydroxy group, or a carboxy group on the hydrophilic group of the monomer; Monomers having a cyclic hydrocarbon group (for example, cyclohexyl (meth) acrylate, 1-isobornyl (meth) acrylate, adamantyl (meth) acrylate, tricyclodecanyl (meth) acrylate, (meth) acrylic acid) Dicyclopentyl, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, etc.) having a hydrophilic group such as a hydroxy group or a carboxy group as a substituent; Can be mentioned.

親水性基を有する単量体の具体例としては、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシ−n−プロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が挙げられる。基板等に対する密着性の点から、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が好ましい。
親水性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a hydrophilic group include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy- (meth) acrylate. -Propyl, 4-hydroxybutyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate, etc. Is mentioned. From the viewpoint of adhesion to a substrate or the like, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate and the like are preferable.
The monomer which has a hydrophilic group may be used individually by 1 type, and may be used in combination of 2 or more type.

[構成単位(a)]
本発明の重合体は、レジスト用途に用いる場合は上述した極性基を有する構成単位(a)以外に酸脱離性基を有する構成単位(b)を有することが好ましく、この他に、必要に応じて公知の構成単位を有していてもよい。
「酸脱離性基」とは、酸により開裂する結合を有する基であり、該結合の開裂により酸脱離性基の一部または全部が重合体の主鎖から脱離する基である。
レジスト組成物において、酸脱離性基を有する構成単位を有する重合体は、酸成分と反応してアルカリ性溶液に可溶となり、レジストパターン形成を可能とする作用を奏する。
酸脱離性基を有する構成単位の割合は、感度および解像度の点から、重合体を構成する全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、基板等への密着性の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
[Structural unit (a)]
The polymer of the present invention preferably has a structural unit (b) having an acid-eliminable group in addition to the above-mentioned structural unit (a) having a polar group when used for resist applications. Accordingly, it may have a known structural unit.
The “acid leaving group” is a group having a bond that is cleaved by an acid, and a part or all of the acid leaving group is removed from the main chain of the polymer by cleavage of the bond.
In the resist composition, a polymer having a structural unit having an acid-eliminable group reacts with an acid component to become soluble in an alkaline solution, and has an effect of enabling formation of a resist pattern.
The proportion of the structural unit having an acid leaving group is preferably 20 mol% or more, more preferably 25 mol% or more, out of all the structural units (100 mol%) constituting the polymer from the viewpoint of sensitivity and resolution. . Moreover, 60 mol% or less is preferable from the point of the adhesiveness to a board | substrate etc., 55 mol% or less is more preferable, and 50 mol% or less is further more preferable.

酸脱離性基を有する単量体は、酸脱離性基および重合性多重結合を有する化合物であればよく、公知のものを使用できる。重合性多重結合とは重合反応時に開裂して共重合鎖を形成する多重結合であり、エチレン性二重結合が好ましい。
酸脱離性基を有する単量体の具体例として、炭素数6〜20の脂環式炭化水素基を有し、かつ酸脱離性基を有している(メタ)アクリル酸エステルが挙げられる。該脂環式炭化水素基は、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子と直接結合していてもよく、アルキレン基等の連結基を介して結合していてもよい。
該(メタ)アクリル酸エステルには、炭素数6〜20の脂環式炭化水素基を有するとともに、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子との結合部位に第3級炭素原子を有する(メタ)アクリル酸エステル、または、炭素数6〜20の脂環式炭化水素基を有するとともに、該脂環式炭化水素基に−COOR基(Rは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、またはオキセパニル基を表す。)が直接または連結基を介して結合している(メタ)アクリル酸エステルが含まれる。
The monomer having an acid leaving group may be any compound having an acid leaving group and a polymerizable multiple bond, and known ones can be used. The polymerizable multiple bond is a multiple bond that is cleaved during the polymerization reaction to form a copolymer chain, and an ethylenic double bond is preferable.
Specific examples of the monomer having an acid leaving group include (meth) acrylic acid esters having an alicyclic hydrocarbon group having 6 to 20 carbon atoms and having an acid leaving group. It is done. The alicyclic hydrocarbon group may be directly bonded to an oxygen atom constituting an ester bond of (meth) acrylic acid ester, or may be bonded via a linking group such as an alkylene group.
The (meth) acrylic acid ester has an alicyclic hydrocarbon group having 6 to 20 carbon atoms, and a tertiary carbon atom at the bonding site with the oxygen atom constituting the ester bond of the (meth) acrylic acid ester. A (meth) acrylic acid ester having an alicyclic group or an alicyclic hydrocarbon group having 6 to 20 carbon atoms and a -COOR group (R may have a substituent) on the alicyclic hydrocarbon group. (Meth) acrylic acid ester in which a tertiary hydrocarbon group, a tetrahydrofuranyl group, a tetrahydropyranyl group, or an oxepanyl group is bonded directly or via a linking group is included.

特に、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト組成物を製造する場合には、酸脱離性基を有する単量体の好ましい例として、例えば、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、1−(1’−アダマンチル)−1−メチルエチル(メタ)アクリレート、1−メチルシクロヘキシル(メタ)アクリレート、1−エチルシクロヘキシル(メタ)アクリレート、1−メチルシクロペンチル(メタ)アクリレート、1−エチルシクロペンチル(メタ)アクリレート、イソプロピルアダマンチル(メタ)アクリレート、1−エチルシクロオクチル(メタ)アクリレート等が挙げられる。
酸脱離性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In particular, in the case of producing a resist composition that is applied to a pattern forming method that is exposed to light having a wavelength of 250 nm or less, as a preferred example of a monomer having an acid leaving group, for example, 2-methyl-2- Adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, 1- (1′-adamantyl) -1-methylethyl (meth) acrylate, 1-methylcyclohexyl (meth) acrylate, 1-ethylcyclohexyl ( Examples include meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 1-ethylcyclopentyl (meth) acrylate, isopropyl adamantyl (meth) acrylate, 1-ethylcyclooctyl (meth) acrylate, and the like.
As the monomer having an acid leaving group, one type may be used alone, or two or more types may be used in combination.

<重合体の製造方法>
本発明の重合体の製造方法は、重合溶媒の存在下に、重合開始剤を使用して、単量体をラジカル重合させる溶液重合法である。
溶液重合法において、単量体および重合開始剤の重合反応容器への供給は、連続供給であってもよく、滴下供給であってもよい。製造ロットの違いによる平均分子量、分子量分布等のばらつきが小さく、再現性の良い重合体が得られやすい点から、単量体および重合開始剤を含む滴下溶液を重合反応容器内に滴下する、滴下重合法が好ましい。
<Method for producing polymer>
The method for producing a polymer of the present invention is a solution polymerization method in which a monomer is radically polymerized using a polymerization initiator in the presence of a polymerization solvent.
In the solution polymerization method, the monomer and the polymerization initiator may be supplied to the polymerization reaction vessel either continuously or dropwise. Dropping a dropping solution containing a monomer and a polymerization initiator into a polymerization reaction vessel from the point that dispersion of average molecular weight, molecular weight distribution, etc. due to differences in production lots is small and a polymer having good reproducibility is easily obtained. A polymerization method is preferred.

重合溶媒としては、例えば、下記のものが挙げられる。
エーテル類:鎖状エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル(以下、「PGME」と記す。)等。)、環状エーテル(テトラヒドロフラン(以下、「THF」と記す。)、1,4−ジオキサン等。)等。
エステル類:酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と記す。)、γ−ブチロラクトン等。
ケトン類:アセトン、メチルエチルケトン(以下、「MEK」と記す。)、メチルイソブチルケトン(以下、「MIBK」と記す。)等。
アミド類:N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等。
スルホキシド類:ジメチルスルホキシド等。
芳香族炭化水素:ベンゼン、トルエン、キシレン等。
脂肪族炭化水素:ヘキサン等。
脂環式炭化水素:シクロヘキサン等。
重合溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the polymerization solvent include the following.
Ethers: chain ether (diethyl ether, propylene glycol monomethyl ether (hereinafter referred to as “PGME”), etc.), cyclic ether (tetrahydrofuran (hereinafter referred to as “THF”), 1,4-dioxane, etc. )etc.
Esters: methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, propylene glycol monomethyl ether acetate (hereinafter referred to as “PGMEA”), γ-butyrolactone, and the like.
Ketones: acetone, methyl ethyl ketone (hereinafter referred to as “MEK”), methyl isobutyl ketone (hereinafter referred to as “MIBK”), and the like.
Amides: N, N-dimethylacetamide, N, N-dimethylformamide and the like.
Sulfoxides: dimethyl sulfoxide and the like.
Aromatic hydrocarbons: benzene, toluene, xylene and the like.
Aliphatic hydrocarbon: hexane and the like.
Alicyclic hydrocarbons: cyclohexane and the like.
A polymerization solvent may be used individually by 1 type, and may use 2 or more types together.

重合開始剤としては、熱により効率的にラジカルを発生するものが好ましい。該重合開始剤としては、例えば、アゾ化合物(2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等。)、有機過酸化物(2,5−ジメチル−2,5−ビス(tert−ブチルパーオキシ)ヘキサン、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート等。)等が挙げられる。   As the polymerization initiator, those that generate radicals efficiently by heat are preferable. Examples of the polymerization initiator include azo compounds (2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate, 2,2′-azobis [2- (2-imidazoline). -2-yl) propane], etc.), organic peroxides (2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, di (4-tert-butylcyclohexyl) peroxydicarbonate, etc. Etc.).

本発明の製造方法においては、予め、重合反応容器内に、重合溶媒の少なくとも一部および/または単量体の少なくとも一部を仕込んでおく。
重合溶媒は、その一部を予め重合反応容器内に入れ、残りは滴下溶液の溶媒として重合反応容器内に供給することが好ましい。
単量体を予め重合反応容器内に仕込む場合は、重合反応に用いる全単量体のうちの一部を重合反応容器内に入れ、残りは滴下溶液に含有させて重合反応容器内に供給することが好ましい。
予め重合反応容器内に、重合溶媒のみを入れておいてもよく、単量体のみを入れておいてもよく、これらの混合物を入れておいてもよい。
このように、重合反応容器内に、予め、重合溶媒の少なくとも一部および/または単量体の少なくとも一部を仕込んだ状態で、ガスパージ工程を行うことにより、重合反応容器内の気層部だけでなく、重合溶媒および/または単量体からなる液層中の酸素も効率よく除去できる。
In the production method of the present invention, at least a part of the polymerization solvent and / or at least a part of the monomer are charged in advance into the polymerization reaction vessel.
It is preferable that a part of the polymerization solvent is put in the polymerization reaction vessel in advance, and the rest is supplied into the polymerization reaction vessel as a solvent for the dropping solution.
When the monomer is charged into the polymerization reaction vessel in advance, a part of the total monomer used for the polymerization reaction is put into the polymerization reaction vessel, and the remainder is added to the dropping solution and supplied into the polymerization reaction vessel. It is preferable.
In the polymerization reaction vessel, only the polymerization solvent may be put in advance, only the monomer may be put, or a mixture thereof may be put.
In this way, by performing the gas purging step in a state in which at least a part of the polymerization solvent and / or at least a part of the monomer is charged in advance in the polymerization reaction container, only the gas layer part in the polymerization reaction container is obtained. In addition, oxygen in the liquid layer composed of the polymerization solvent and / or monomer can also be efficiently removed.

本発明の製造方法においては、重合合反応に用いられる容器は圧力制御ができる点で耐圧製反応容器が好ましく、熱伝導性に優れ反応温度制御が容易になり反応のロット間バラツキを抑制できる点で耐圧製金属反応容器がより好ましい。金属としては耐食性が高く重合体への金属不純物の混入が低減できる点でステンレス鋼(以下、SUSとも言う)が好ましい。   In the production method of the present invention, a pressure-resistant reaction vessel is preferable in that the vessel used for the polymerization reaction can be pressure-controlled, and it has excellent thermal conductivity and can easily control reaction temperature and suppress variation between lots of the reaction. A pressure-resistant metal reaction vessel is more preferable. As the metal, stainless steel (hereinafter also referred to as SUS) is preferable because it has high corrosion resistance and can reduce the mixing of metal impurities into the polymer.

重合反応容器内に重合溶媒及び/又は単量体を仕込んだ後であって、重合反応を開始する前の工程として、重合反応容器内を所定の圧力(以下、「到達減圧度」ということもある。)にまで減圧した後、重合反応容器内の気体を不活性ガスで置換するガスパージ工程を行う。
具体的には、重合反応容器内を到達減圧度まで減圧した後に、該重合反応容器内に不活性ガスを供給する操作(以下、「減圧後パージ操作」ということもある。)を行う。不活性ガスを供給することにより、重合反応容器内は昇圧する。
不活性ガスは、ラジカルに対して不活性なガスを用いる。具体例としては、窒素または希ガス元素が好ましく、工業的に一般的に用いられていることから窒素またはアルゴンがより好ましい。
After charging the polymerization solvent and / or monomer into the polymerization reaction vessel and before starting the polymerization reaction, the polymerization reaction vessel is filled with a predetermined pressure (hereinafter referred to as “final pressure reduction degree”). After that, the gas purge step is performed to replace the gas in the polymerization reaction vessel with an inert gas.
Specifically, after depressurizing the inside of the polymerization reaction vessel to an ultimate pressure reduction degree, an operation of supplying an inert gas into the polymerization reaction vessel (hereinafter sometimes referred to as “purging operation after depressurization”) is performed. By supplying an inert gas, the pressure in the polymerization reaction vessel is increased.
As the inert gas, a gas inert to radicals is used. As a specific example, nitrogen or a rare gas element is preferable, and nitrogen or argon is more preferable because it is generally used industrially.

ガスパージ工程において、重合反応容器内を減圧して脱気した後に、不活性ガスを供給することにより、重合反応容器内に存在していた空気が不活性ガスに効率良く置換されるため、ラジカル捕捉剤の一つである酸素を効率良く除去できる。
重合反応容器内のラジカル捕捉剤を低減することによって、ラジカル重合反応の再現性が向上し、ロット間や製造スケールが違った場合でも重合体の分子量バラツキを小さくすることができる。
到達減圧度は20kPa以下であり、15kPa以下が好ましく、10kPa以下がより好ましい。ガスパージ工程において、重合反応容器内を20kPa以下に減圧して脱気することにより、重合体の分子量バラツキを小さくする効果が良好に得られる。到達減圧度が低いほど該重合体の分子量バラツキがより小さくなる。到達減圧度の下限値は特に限定されないが、所望の減圧度に到達するまでの時間が短時間で実施できる点からは0.01kPa以上が好ましい。
In the gas purging step, the inside of the polymerization reaction vessel is decompressed and degassed, and then the inert gas is supplied to efficiently replace the air present in the polymerization reaction vessel with the inert gas. Oxygen, one of the agents, can be removed efficiently.
By reducing the radical scavenger in the polymerization reaction vessel, the reproducibility of the radical polymerization reaction is improved, and the molecular weight variation of the polymer can be reduced even when lots or production scales are different.
The ultimate reduced pressure is 20 kPa or less, preferably 15 kPa or less, and more preferably 10 kPa or less. In the gas purging step, the inside of the polymerization reaction vessel is depressurized to 20 kPa or less and degassed, so that the effect of reducing the molecular weight variation of the polymer can be favorably obtained. The lower the ultimate pressure reduction, the smaller the molecular weight variation of the polymer. The lower limit value of the ultimate pressure reduction degree is not particularly limited, but is preferably 0.01 kPa or more from the viewpoint that the time required to reach the desired pressure reduction degree can be implemented in a short time.

ガスパージ工程において、重合反応容器内の酸素をより低減させるために、重合反応容器内を減圧した後、不活性ガスを供給する操作(減圧後パージ操作)を2回以上繰り返すことが好ましく、3回以上繰り返すのがより好ましく、4回以上繰り返すのがさらに好ましい。
減圧後パージ操作を繰り返して行う場合、毎回の到達減圧度は均一であってもよく、変動してもよいが、全ての回の到達減圧度が20kPa以下であることが好ましい。
In the gas purge step, in order to further reduce the oxygen in the polymerization reaction vessel, it is preferable to repeat the operation of supplying an inert gas after depressurizing the inside of the polymerization reaction vessel (purging operation after depressurization) two or more times. It is more preferable to repeat the above, and it is more preferable to repeat four or more times.
When the purge operation after pressure reduction is repeated, the ultimate pressure reduction every time may be uniform or may vary, but it is preferable that the ultimate pressure reduction at all times is 20 kPa or less.

ガスパージ工程において、減圧後に、不活性ガスを供給して昇圧する際の昇圧の程度(到達昇圧度)は特に限定されないが、ガスパージ工程後に重合反応を開始する際には、重合反応容器内の圧力が、重合反応を行う圧力(重合圧力)となるように調整する。
重合圧力が変動すると、重合溶媒および/または単量体の溶液沸点が変動し、重合反応時の反応温度が安定しないため、一定範囲内の重合圧力となることが好ましい。好ましい重合圧力は、70〜130kPaであり、より好ましくは90〜110kPaである。
減圧と昇圧を繰り返して行う場合、毎回の到達昇圧度は均一であってもよく、変動してもよいが、全ての回の到達昇圧度が重合圧力と同程度かそれより低いことが好ましく、重合圧力と同程度であることがより好ましい。具体的には、重合圧力±30kPaの範囲内であることがより好ましい。
In the gas purge step, the degree of pressure increase (attainment pressure increase degree) when the inert gas is supplied to increase the pressure after the pressure reduction is not particularly limited, but when starting the polymerization reaction after the gas purge step, the pressure in the polymerization reaction vessel However, it adjusts so that it may become the pressure (polymerization pressure) which performs a polymerization reaction.
When the polymerization pressure varies, the boiling point of the solution of the polymerization solvent and / or monomer varies, and the reaction temperature during the polymerization reaction is not stable. Therefore, the polymerization pressure is preferably within a certain range. A preferable polymerization pressure is 70 to 130 kPa, more preferably 90 to 110 kPa.
When the pressure reduction and pressure increase are repeated, the ultimate pressure increase every time may be uniform or may vary, but it is preferable that the ultimate pressure increase of all times is equal to or lower than the polymerization pressure, More preferably, it is about the same as the polymerization pressure. Specifically, the polymerization pressure is more preferably within a range of ± 30 kPa.

ガスパージ工程の後、重合反応を開始する。具体的には、重合反応容器内に予め仕込んだ液(重合溶媒および/または単量体)を所定の重合温度まで加熱し、単量体の存在下に、重合開始剤を供給することにより、重合反応が開始される。重合温度は50〜150℃が好ましい。   After the gas purge step, the polymerization reaction is started. Specifically, by heating a liquid (polymerization solvent and / or monomer) charged in advance in the polymerization reaction vessel to a predetermined polymerization temperature, and supplying a polymerization initiator in the presence of the monomer, The polymerization reaction is started. The polymerization temperature is preferably 50 to 150 ° C.

滴下重合法において、単量体を滴下する方法は、単量体のみで滴下してもよく、単量体を重合溶媒に溶解させた単量体溶液として滴下してもよい。
重合開始剤は、単量体に直接に溶解させたて滴下してもよく、単量体溶液に溶解させて滴下してもよく、重合溶媒のみに溶解させて滴下してもよい。
単量体および重合開始剤を、同じ貯槽内で混合した後、重合反応容器中に滴下してもよく;それぞれ独立した貯槽から重合反応容器中に滴下してもよく;それぞれ独立した貯槽から重合反応容器に供給する直前で混合し、重合反応容器中に滴下してもよい。
単量体および重合開始剤は、一方を先に滴下した後、遅れて他方を滴下してもよく、両方を同じタイミングで滴下してもよい。
滴下速度は、滴下終了まで一定であってもよく、単量体または重合開始剤の消費速度に応じて、多段階に変化させてもよい。
滴下は、連続的に行ってもよく、間欠的に行ってもよい。
In the dropping polymerization method, the monomer may be dropped only with the monomer or may be dropped as a monomer solution in which the monomer is dissolved in the polymerization solvent.
The polymerization initiator may be dropped directly after being dissolved in the monomer, may be dropped after being dissolved in the monomer solution, or may be dropped after being dissolved only in the polymerization solvent.
The monomer and the polymerization initiator may be mixed in the same storage tank and then dropped into the polymerization reaction container; they may be dropped from the independent storage tank into the polymerization reaction container; respectively, polymerization from the independent storage tank They may be mixed immediately before being supplied to the reaction vessel and dropped into the polymerization reaction vessel.
One of the monomer and the polymerization initiator may be dropped first, and then the other may be dropped with a delay, or both may be dropped at the same timing.
The dropping rate may be constant until the end of dropping, or may be changed in multiple stages according to the consumption rate of the monomer or the polymerization initiator.
The dripping may be performed continuously or intermittently.

所定量の単量体および重合開始剤を供給し、所定の時間、重合反応させた後、反応液を冷却して重合反応を停止させ、重合体溶液を得る。
得られた重合体溶液は、必要に応じて精製を行う。例えば、1,4−ジオキサン、アセトン、THF、MEK、MIBK、γ−ブチロラクトン、PGMEA、PGME、乳酸エチル等の希釈溶媒で適当な溶液粘度に希釈した後、メタノール、エタノール、イソプロピルアルコール、水、ヘキサン、ヘプタン、ジイソプロピルエーテル、またはそれらの混合溶媒等の貧溶媒中に滴下し、重合体を析出させる。この工程は再沈殿工程と呼ばれ、重合体溶液中に残存する未反応の単量体、重合開始剤等を取り除くために非常に有効である。未反応単量体は、そのまま残存しているとレジスト組成物として用いた場合に感度が低下するため、できるだけ取り除くことが好ましい。重合体中の不純物としての単量体含有量は2.0質量%以下がより好ましく、1.0質量%以下がさらに好ましく、0.29質量%以下が特に好ましく、0.25質量%以下が最も好ましい。
A predetermined amount of a monomer and a polymerization initiator are supplied and a polymerization reaction is performed for a predetermined time. Then, the reaction solution is cooled to stop the polymerization reaction, thereby obtaining a polymer solution.
The obtained polymer solution is purified as necessary. For example, after diluting to an appropriate solution viscosity with a diluting solvent such as 1,4-dioxane, acetone, THF, MEK, MIBK, γ-butyrolactone, PGMEA, PGME, ethyl lactate, methanol, ethanol, isopropyl alcohol, water, hexane In a poor solvent such as heptane, diisopropyl ether, or a mixed solvent thereof, the polymer is precipitated. This process is called a reprecipitation process, and is very effective for removing unreacted monomers, polymerization initiators and the like remaining in the polymer solution. If the unreacted monomer remains as it is, the sensitivity decreases when used as a resist composition, so it is preferable to remove it as much as possible. The monomer content as an impurity in the polymer is more preferably 2.0% by mass or less, further preferably 1.0% by mass or less, particularly preferably 0.29% by mass or less, and 0.25% by mass or less. Most preferred.

貧溶媒としては、製造する重合体が溶解せずに析出する溶媒であればよく、公知のものを使用できるが、半導体リソグラフィー用重合体に用いられる未反応の単量体、重合開始剤等を効率的に取り除くことができる点で、メタノール、イソプロピルアルコール、ジイソプロピルエーテル、ヘプタン、水、またはそれらの混合溶媒が好ましい。
使用する貧溶媒の量は残存する未反応単量体をより低減できるため、重合体溶液と同質量以上用いることができ、3倍以上が好ましく、4倍以上がより好ましく、5倍以上がさらに好ましく、6倍以上が特に好ましい。
As the poor solvent, any solvent may be used as long as the polymer to be produced is not dissolved, and any known solvent can be used, but unreacted monomers, polymerization initiators and the like used in the polymer for semiconductor lithography can be used. Methanol, isopropyl alcohol, diisopropyl ether, heptane, water, or a mixed solvent thereof is preferable because it can be efficiently removed.
Since the amount of the poor solvent used can further reduce the remaining unreacted monomer, it can be used in the same mass or more as the polymer solution, preferably 3 times or more, more preferably 4 times or more, and further more preferably 5 times or more. Preferably, 6 times or more is particularly preferable.

その後、析出物をろ別し、湿粉を得る。
また、湿粉を再び貧溶媒に分散させて重合体分散液を得た後、重合体をろ別する操作を繰り返すこともできる。この工程は、リスラリ工程と呼ばれ、重合体湿粉中に残存する未反応の単量体、重合開始剤等をより低減させるために非常に有効である。
重合体を高い生産性を維持したまま取得できる点ではリスラリ工程を行わず、再沈殿工程のみで重合体を精製することが好ましい。
Thereafter, the precipitate is filtered off to obtain a wet powder.
Further, after the wet powder is dispersed again in a poor solvent to obtain a polymer dispersion, an operation of filtering the polymer can be repeated. This step is called a restructuring step and is very effective for further reducing unreacted monomers, polymerization initiators and the like remaining in the polymer wet powder.
It is preferable to purify the polymer only by the reprecipitation step without performing the restructuring step in that the polymer can be obtained while maintaining high productivity.

得られた湿粉は、十分に乾燥して、乾燥粉末状の重合体を得ることができる。
また、ろ別した後、乾燥せずに湿粉のまま適当な溶媒に溶解させて半導体リソグラフィー用組成物として用いてもよく、濃縮して低沸点化合物を除去してから半導体リソグラフィー用組成物として用いてもよい。その際、保存安定剤等の添加剤を適宜添加してもよい。
また、乾燥させた後に適当な溶媒に溶解させ、さらに濃縮して低沸点化合物を除去してから半導体リソグラフィー用組成物として用いてもよい。その際、保存安定剤等の添加剤を適宜添加してもよい。
The obtained wet powder can be sufficiently dried to obtain a dry powder polymer.
In addition, after filtration, it may be used as a composition for semiconductor lithography by dissolving it in a suitable solvent without drying and as a composition for semiconductor lithography. After concentration to remove low-boiling compounds, the composition for semiconductor lithography is used. It may be used. At that time, additives such as a storage stabilizer may be appropriately added.
Further, after drying, it may be dissolved in an appropriate solvent and further concentrated to remove the low boiling point compound, and then used as a composition for semiconductor lithography. At that time, additives such as a storage stabilizer may be appropriately added.

<レジスト組成物>
本発明のレジスト組成物は、本発明の製造方法で得られる重合体と、活性光線又は放射線の照射により酸を発生する化合物(以下、「光酸発生剤」ということもある。)とを含有する、化学増幅型レジスト組成物である。
本発明のレジスト組成物は、重合体と、活性光線又は放射線の照射により酸を発生する化合物とをレジスト溶媒に溶解させて得られる。
<Resist composition>
The resist composition of the present invention contains a polymer obtained by the production method of the present invention and a compound that generates an acid upon irradiation with actinic rays or radiation (hereinafter sometimes referred to as “photoacid generator”). A chemically amplified resist composition.
The resist composition of the present invention is obtained by dissolving a polymer and a compound that generates an acid upon irradiation with actinic rays or radiation in a resist solvent.

[レジスト溶媒]
レジスト溶媒としては、前記重合溶媒と同様の溶媒が挙げられる。
[活性光線又は放射線の照射により酸を発生する化合物(光酸発生剤)]
光酸発生剤は、化学増幅型レジスト組成物の光酸発生剤として公知のものを適宜選択して用いることができる。光酸発生剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
光酸発生剤としては、例えば、オニウム塩化合物、スルホンイミド化合物、スルホン化合物、スルホン酸エステル化合物、キノンジアジド化合物、ジアゾメタン化合物等が挙げられる。
レジスト組成物における光酸発生剤の含有量は、重合体100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。
[Resist solvent]
Examples of the resist solvent include the same solvents as the polymerization solvent.
[Compound that generates acid upon irradiation with actinic ray or radiation (photoacid generator)]
As the photoacid generator, known photoacid generators for the chemically amplified resist composition can be appropriately selected and used. A photo-acid generator may be used individually by 1 type, and may use 2 or more types together.
Examples of the photoacid generator include onium salt compounds, sulfonimide compounds, sulfone compounds, sulfonic acid ester compounds, quinone diazide compounds, diazomethane compounds, and the like.
0.1-20 mass parts is preferable with respect to 100 mass parts of polymers, and, as for content of the photo-acid generator in a resist composition, 0.5-10 mass parts is more preferable.

[含窒素化合物]
化学増幅型レジスト組成物は、含窒素化合物を含んでいてもよい。含窒素化合物を含むことにより、レジストパターン形状、引き置き経時安定性等がさらに向上する。つまり、レジストパターンの断面形状が矩形により近くなり、また、レジスト膜に光を照射し、ついでベーク(PEB)した後、次の現像処理までの間に数時間放置されることが半導体素子の量産ラインではあるが、そのような放置(経時)したときにレジストパターンの断面形状の劣化の発生がより抑制される。
[Nitrogen-containing compounds]
The chemically amplified resist composition may contain a nitrogen-containing compound. By including the nitrogen-containing compound, the resist pattern shape, the stability over time, and the like are further improved. That is, the cross-sectional shape of the resist pattern becomes closer to a rectangle, and the resist film is irradiated with light, then baked (PEB), and then left for several hours before the next development process. Although it is a line, the occurrence of the deterioration of the cross-sectional shape of the resist pattern is further suppressed when left as such (timed).

含窒素化合物としては、アミンが好ましく、第2級低級脂肪族アミン、第3級低級脂肪族アミンがより好ましい。
含窒素化合物の量は、重合体100質量部に対して、0.01〜2質量部が好ましい。
The nitrogen-containing compound is preferably an amine, more preferably a secondary lower aliphatic amine or a tertiary lower aliphatic amine.
As for the quantity of a nitrogen-containing compound, 0.01-2 mass parts is preferable with respect to 100 mass parts of polymers.

[有機カルボン酸、リンのオキソ酸またはその誘導体]
化学増幅型レジスト組成物は、有機カルボン酸、リンのオキソ酸またはその誘導体(以下、これらをまとめて酸化合物と記す。)を含んでいてもよい。酸化合物を含むことにより、含窒素化合物の配合による感度劣化を抑えることができ、また、レジストパターン形状、引き置き経時安定性等がさらに向上する。
[Organic carboxylic acid, phosphorus oxo acid or derivative thereof]
The chemically amplified resist composition may contain an organic carboxylic acid, an oxo acid of phosphorus, or a derivative thereof (hereinafter collectively referred to as an acid compound). By including an acid compound, it is possible to suppress deterioration in sensitivity due to the blending of the nitrogen-containing compound, and further improve the resist pattern shape, stability with time of leaving, and the like.

有機カルボン酸としては、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が挙げられる。
リンのオキソ酸またはその誘導体としては、リン酸またはその誘導体、ホスホン酸またはその誘導体、ホスフィン酸またはその誘導体等が挙げられる。
酸化合物の量は、重合体100質量部に対して、0.01〜5質量部が好ましい。
Examples of the organic carboxylic acid include malonic acid, citric acid, malic acid, succinic acid, benzoic acid, and salicylic acid.
Examples of phosphorus oxo acids or derivatives thereof include phosphoric acid or derivatives thereof, phosphonic acid or derivatives thereof, phosphinic acid or derivatives thereof, and the like.
The amount of the acid compound is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymer.

[添加剤]
本発明のレジスト組成物は、必要に応じて、界面活性剤、その他のクエンチャー、増感剤、ハレーション防止剤、保存安定剤、消泡剤等の各種添加剤を含んでいてもよい。該添加剤は、当該分野で公知のものであればいずれも使用可能である。また、これら添加剤の量は、特に限定されず、適宜決めればよい。
[Additive]
The resist composition of the present invention may contain various additives such as surfactants, other quenchers, sensitizers, antihalation agents, storage stabilizers, and antifoaming agents as necessary. Any additive can be used as long as it is known in the art. Further, the amount of these additives is not particularly limited, and may be determined as appropriate.

<微細パターンが形成された基板の製造方法>
本発明の、微細パターンが形成された基板の製造方法は、本発明のレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む。
以下、該基板の製造方法の一例について説明する。
<Manufacturing method of substrate on which fine pattern is formed>
The method for producing a substrate on which a fine pattern is formed according to the present invention comprises a step of applying a resist composition of the present invention on a processed surface of a substrate to form a resist film, and exposing the resist film to the substrate. And a step of developing the exposed resist film using a developer.
Hereinafter, an example of the manufacturing method of the substrate will be described.

まず、所望の微細パターンを形成しようとするシリコンウエハー等の被加工基板の表面(被加工面)に、本発明のレジスト組成物をスピンコート等により塗布する。そして、該レジスト組成物が塗布された被加工基板を、ベーキング処理(プリベーク)等で乾燥することにより、基板上にレジスト膜を形成する。   First, the resist composition of the present invention is applied by spin coating or the like to the surface (processed surface) of a substrate to be processed such as a silicon wafer on which a desired fine pattern is to be formed. And the resist film is formed on a board | substrate by drying the to-be-processed board | substrate with which this resist composition was apply | coated by baking process (prebaking) etc.

次いで、レジスト膜に、フォトマスクを介して、250nm以下の波長の光を照射して潜像を形成する(露光)。照射光としては、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUVエキシマレーザーが好ましく、ArFエキシマレーザーが特に好ましい。また、電子線を照射してもよい。
また、該レジスト膜と露光装置の最終レンズとの間に、純水、パーフルオロ−2−ブチルテトラヒドロフラン、パーフルオロトリアルキルアミン等の高屈折率液体を介在させた状態で光を照射する液浸露光を行ってもよい。
Next, the resist film is irradiated with light having a wavelength of 250 nm or less through a photomask to form a latent image (exposure). As irradiation light, a KrF excimer laser, an ArF excimer laser, an F 2 excimer laser, and an EUV excimer laser are preferable, and an ArF excimer laser is particularly preferable. Moreover, you may irradiate an electron beam.
In addition, immersion in which light is irradiated with a high refractive index liquid such as pure water, perfluoro-2-butyltetrahydrofuran, or perfluorotrialkylamine interposed between the resist film and the final lens of the exposure apparatus. Exposure may be performed.

露光後、適宜熱処理(露光後ベーク、PEB)し、レジスト膜にアルカリ現像液を接触させ、露光部分を現像液に溶解させ、除去する(現像)。アルカリ現像液としては、公知のものを用いることができる。
現像後、基板を純水等で適宜リンス処理する。このようにして被加工基板上にレジストパターンが形成される。
After exposure, heat treatment is appropriately performed (post-exposure baking, PEB), an alkali developer is brought into contact with the resist film, and the exposed portion is dissolved in the developer and removed (development). A well-known thing can be used as an alkali developing solution.
After development, the substrate is appropriately rinsed with pure water or the like. In this way, a resist pattern is formed on the substrate to be processed.

レジストパターンが形成された基板は、適宜熱処理(ポストベーク)してレジストを強化し、レジストのない部分を選択的にエッチングする。
エッチング後、レジストを剥離剤によって除去することによって、パターンが形成された基板が得られる。
The substrate on which the resist pattern is formed is appropriately heat-treated (post-baked) to strengthen the resist and selectively etch the portion without the resist.
After the etching, the resist is removed with a release agent to obtain a substrate on which a pattern is formed.

本発明の製造方法により得られる半導体リソグラフィー用重合体は、ロット間における分子量のばらつきや、製造スケールが違うことによる重合体の分子量バラツキが小さく抑えられている。
本発明のレジスト組成物は、該レジスト組成物に含まれる半導体リソグラフィー用重合体の分子量バラツキが小さいため、感度および現像コントラスト等のレジスト性能の安定性に優れる。
したがって本発明の基板の製造方法によれば、本発明のレジスト組成物を用いることによって、高精度の微細なレジストパターンを安定して形成できる。また、高感度のレジスト組成物の使用が要求される、波長250nm以下の露光光を用いるフォトリソグラフィーまたは電子線リソグラフィー、例えばArFエキシマレーザー(193nm)を使用するリソグラフィーによる、パターン形成にも好適に用いることができる。
In the polymer for semiconductor lithography obtained by the production method of the present invention, variations in molecular weight among lots and variations in the molecular weight of the polymer due to different production scales are suppressed.
The resist composition of the present invention is excellent in stability of resist performance such as sensitivity and development contrast because the molecular weight variation of the polymer for semiconductor lithography contained in the resist composition is small.
Therefore, according to the substrate manufacturing method of the present invention, a highly accurate fine resist pattern can be stably formed by using the resist composition of the present invention. In addition, it is also suitable for pattern formation by photolithography using exposure light having a wavelength of 250 nm or less or lithography using electron beam lithography such as ArF excimer laser (193 nm), which requires use of a highly sensitive resist composition. be able to.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。また、各実施例、比較例中「部」とあるのは、特に断りのない限り「質量部」を示す。測定方法および評価方法は以下の方法を用いた。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, “part” in each example and comparative example means “part by mass” unless otherwise specified. The measurement method and evaluation method used the following methods.

<重量平均分子量の測定>
重合体の重量平均分子量(Mw)および分子量分布(Mw/Mn)は、下記の条件(GPC条件)でゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算で求めた。
[GPC条件]
装置:東ソー社製、東ソー高速GPC装置 HLC−8220GPC(商品名)、
分離カラム:昭和電工社製、Shodex GPC K−805L(商品名)を3本直列に連結したもの、
測定温度:40℃、
溶離液:テトラヒドロフラン(THF)、
試料:重合体の約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液、
流量:1mL/分、
注入量:0.1mL、
検出器:示差屈折計。
<Measurement of weight average molecular weight>
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer were determined in terms of polystyrene by gel permeation chromatography under the following conditions (GPC conditions).
[GPC conditions]
Equipment: Tosoh Corporation, Tosoh High Speed GPC Equipment HLC-8220GPC (trade name),
Separation column: manufactured by Showa Denko, Shodex GPC K-805L (trade name) connected in series,
Measurement temperature: 40 ° C.
Eluent: Tetrahydrofuran (THF)
Sample: A solution in which about 20 mg of a polymer is dissolved in 5 mL of THF and filtered through a 0.5 μm membrane filter.
Flow rate: 1 mL / min,
Injection volume: 0.1 mL,
Detector: differential refractometer.

検量線I:標準ポリスチレンの約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液を用いて、上記の条件で分離カラムに注入し、溶出時間と分子量の関係を求めた。標準ポリスチレンは、下記の東ソー社製の標準ポリスチレン(いずれも商品名)を用いた。
F−80(Mw=706,000)、
F−20(Mw=190,000)、
F−4(Mw=37,900)、
F−1(Mw=10,200)、
A−2500(Mw=2,630)、
A−500(Mw=682、578、474、370、260の混合物)。
Calibration curve I: About 20 mg of standard polystyrene was dissolved in 5 mL of THF, and the solution was filtered through a 0.5 μm membrane filter and injected into a separation column under the above conditions, and the relationship between elution time and molecular weight was determined. As the standard polystyrene, the following standard polystyrene manufactured by Tosoh Corporation (both trade names) were used.
F-80 (Mw = 706,000),
F-20 (Mw = 190,000),
F-4 (Mw = 37,900),
F-1 (Mw = 10,200),
A-2500 (Mw = 2,630),
A-500 (mixture of Mw = 682, 578, 474, 370, 260).

<感度、現像コントラスト測定>
レジスト組成物を、6インチシリコンウエハー上に回転塗布し、ホットプレート上で120℃、60秒間プリベーク(PAB)して、厚さ300nmの薄膜を形成した。ArFエキシマレーザー露光装置(リソテックジャパン製 VUVES−4500)を用い、露光量を変えて10mm×10mmの18ショットを露光した。次いで110℃、60秒間ポストベーク(PEB)した後、レジスト現像アナライザー(リソテックジャパン製RDA−800)を用い、23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で65秒間現像し、各露光量における現像中のレジスト膜厚の経時変化を測定した。
<Sensitivity and development contrast measurement>
The resist composition was spin-coated on a 6-inch silicon wafer and prebaked (PAB) at 120 ° C. for 60 seconds on a hot plate to form a thin film having a thickness of 300 nm. Using an ArF excimer laser exposure apparatus (VUVES-4500, manufactured by RISOTEC Japan), 18 shots of 10 mm × 10 mm 2 were exposed while changing the exposure amount. Next, after post-baking (PEB) at 110 ° C. for 60 seconds, using a resist development analyzer (RDA-800 manufactured by RISOTEC Japan), development is performed with an aqueous 2.38 mass% tetramethylammonium hydroxide solution at 23 ° C. for 65 seconds. The change with time of the resist film thickness during development at each exposure amount was measured.

[解析]
得られたデータを基に、露光量(mJ/cm)の対数と、初期膜厚に対する60秒間現像した時点での残存膜厚率(以下、残膜率という)(%)をプロットした曲線(以下、露光量−残膜率曲線という)を作成し、Eth感度(残膜率0%とするための必要露光量であり、感度を表す。)とγ値(露光量−残膜率曲線の接線の傾きであり、現像コントラストを表す。)を以下の通り求めた。
Eth感度:露光量−残膜率曲線が残膜率0%と交わる露光量(mJ/cm
γ値:露光量−残膜率曲線の残膜率50%における露光量をE50(mJ/cm)、露光量−残膜率曲線のE50における接線が、残膜率100%の線及び残膜率0%の線と交わる露光量をそれぞれE100及びE0として、以下の計算式で求めた。
γ=1/{log(E0/E100)}
[analysis]
A curve plotting the logarithm of the exposure amount (mJ / cm 2 ) and the residual film thickness ratio (hereinafter referred to as the residual film ratio) (%) when developed for 60 seconds with respect to the initial film thickness, based on the obtained data (Hereinafter, exposure dose-residual film rate curve) is prepared, and Eth sensitivity (required exposure amount for setting the remaining film rate to 0%, which represents sensitivity) and γ value (exposure dose-residual film rate curve). (Denoting the development contrast).
Eth sensitivity: exposure amount (mJ / cm 2 ) at which the exposure amount-residual film rate curve intersects with the residual film rate 0%
γ value: exposure amount at an exposure amount-residual film rate curve at a residual film rate of 50% is E50 (mJ / cm 2 ), and tangent line at E50 of the exposure amount-residual film rate curve is a line with a residual film rate of 100% The exposure amount intersecting with the line having a film rate of 0% was determined as E100 and E0, respectively, and the following calculation formula was used.
γ = 1 / {log (E0 / E100)}

[重量平均分子量のロット間差]
各実施例において、同一の条件で半導体リソグラフィー用重合体を5回合成し、それぞれ得られた重合体の重量平均分子量を測定した。測定数5の標準偏差を求め、重量平均分子量のロット間差とした。該ロット間差の値が小さいほど、重合反応の再現性に優れ、重量平均分子量のロット間バラツキが小さいことを示す。
[Difference in weight average molecular weight between lots]
In each example, a polymer for semiconductor lithography was synthesized five times under the same conditions, and the weight average molecular weight of each polymer obtained was measured. The standard deviation of the number of measurements 5 was determined and used as the difference between the lots in the weight average molecular weight. The smaller the difference between lots, the better the reproducibility of the polymerization reaction, and the smaller the lot-to-lot variation in the weight average molecular weight.

[実施例1]
窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えた容量1LのSUS製のフラスコに、重合溶媒として乳酸エチル243.6gを入れた。フラスコ内を18kPa(到達減圧度)まで減圧した後、窒素ガスを供給して101kPaまで昇圧した(ガスパージ工程)。すなわち、ガスパージ工程において、重合反応容器内を減圧した後不活性ガスを供給する操作(以下、減圧後パージ操作という)を1回だけ行った。重合圧力は常圧(101kPa)である。
次いで、フラスコ内を窒素雰囲気下に保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
続いて、下記混合物1を滴下漏斗より、4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。その後、25℃まで反応液を冷却し、重合反応を停止させて、重合体溶液を得た。
[Example 1]
243.6 g of ethyl lactate was added as a polymerization solvent to a 1 L SUS flask equipped with a nitrogen inlet, a stirrer, a condenser, one dropping funnel, and a thermometer. After reducing the pressure in the flask to 18 kPa (final pressure reduction degree), nitrogen gas was supplied to increase the pressure to 101 kPa (gas purge step). That is, in the gas purge step, an operation of supplying an inert gas after depressurizing the inside of the polymerization reaction vessel (hereinafter referred to as a purge operation after depressurization) was performed only once. The polymerization pressure is normal pressure (101 kPa).
Next, the flask was placed in a hot water bath while keeping the inside of the flask in a nitrogen atmosphere, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Subsequently, the following mixture 1 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours. Thereafter, the reaction solution was cooled to 25 ° C., the polymerization reaction was stopped, and a polymer solution was obtained.

(混合物1)
下記式(m1)の単量体を95.20g、
下記式(m2)の単量体を131.04g、
下記式(m3)の単量体を66.08g、
乳酸エチル438.5g、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))8.649g。
各単量体の仕込み割合(モル%)を表1に示す。
(Mixture 1)
95.20 g of a monomer of the following formula (m1),
131.04 g of a monomer of the following formula (m2),
66.08 g of a monomer of the following formula (m3),
438.5 g of ethyl lactate,
8.649 g of dimethyl-2,2′-azobisisobutyrate (manufactured by Wako Pure Chemical Industries, Ltd., V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1.

Figure 2015143363
Figure 2015143363

得られた重合体溶液を7.0倍量の、メタノール及び水の混合溶媒(メタノール/水=95/5容量比)に撹拌しながら滴下し、白色の析出物(重合体P1)の沈殿を得た。沈殿を濾別し、重合体湿粉を得た。重合体湿粉を減圧下40℃で約40時間乾燥した。得られた重合体P1の重量平均分子量(Mw)、分子量分布(Mw/Mn)を表2に示す。   The obtained polymer solution was dropped into 7.0 times of a mixed solvent of methanol and water (methanol / water = 95/5 volume ratio) with stirring, and a white precipitate (polymer P1) was precipitated. Obtained. The precipitate was filtered off to obtain a polymer wet powder. The polymer powder was dried at 40 ° C. under reduced pressure for about 40 hours. Table 2 shows the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the obtained polymer P1.

重合体P1の100部と、光酸発生剤であるトリフェニルスルホニウムトリフレートの2部と、溶媒であるPGMEAとを、重合体濃度が12.5質量%になるように混合して均一溶液とした後、孔径0.1μmのメンブレンフィルターで濾過し、レジスト組成物を得た。得られたレジスト組成物の感度(Eth)、現像コントラスト(γ値)を評価した。結果を表2に示す。   100 parts of the polymer P1, 2 parts of triphenylsulfonium triflate as a photoacid generator, and PGMEA as a solvent are mixed so that the polymer concentration becomes 12.5% by mass to obtain a uniform solution. And filtered through a membrane filter having a pore size of 0.1 μm to obtain a resist composition. The sensitivity (Eth) and development contrast (γ value) of the obtained resist composition were evaluated. The results are shown in Table 2.

同一の条件で重合体P1の製造を5回(製造1〜5)行った。各回で得られた重合体の重量平均分子量(Mw)、分子量分布(Mw/Mn)を測定した。製造1〜5の重合平均分子量の標準偏差を求め、重量平均分子量(Mw)のロット間差とした。
各回で得られた重合体をそれぞれ用い、同一の条件でレジスト組成物を調製し、感度(Eth)および現像コントラスト(γ値)を評価した。
主な製造条件(重合反応容器の材質および容量、到達減圧度、減圧パージ操作の回数)を表1に示し、結果を表2に示す。
The polymer P1 was manufactured five times (manufacturing 1 to 5) under the same conditions. The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer obtained each time were measured. The standard deviation of the polymerization average molecular weight of production 1-5 was calculated | required, and it was set as the difference between lots of a weight average molecular weight (Mw).
A resist composition was prepared using the polymer obtained in each round under the same conditions, and the sensitivity (Eth) and development contrast (γ value) were evaluated.
Table 1 shows the main production conditions (material and volume of the polymerization reaction vessel, degree of ultimate pressure reduction, number of vacuum purge operations), and Table 2 shows the results.

[実施例2、3]
表1に示す通りに条件を変えたほかは、実施例1と同様にして重合体を製造し、評価した。
すなわち、実施例2は、減圧到達度を10kPaに変更した。
実施例3は、減圧後パージ操作を2回繰り返して行った。1回目の減圧時の到達減圧度、および2回目の減圧時の到達減圧度はいずれも5kPaとした。減圧後に窒素ガスを供給して昇圧させる際の到達昇圧度は、1回目、2回目のいずれも101kPaとした。
主な製造条件を表1に示し、結果を表2に示す(以下、同様)。
[Examples 2 and 3]
A polymer was produced and evaluated in the same manner as in Example 1 except that the conditions were changed as shown in Table 1.
That is, in Example 2, the degree of pressure reduction was changed to 10 kPa.
In Example 3, the purge operation after depressurization was repeated twice. The ultimate reduced pressure during the first decompression and the ultimate reduced pressure during the second decompression were both 5 kPa. The ultimate pressure increase when the pressure was increased by supplying nitrogen gas after depressurization was 101 kPa for both the first time and the second time.
The main production conditions are shown in Table 1, and the results are shown in Table 2 (hereinafter the same).

[実施例4]
実施例1において、重合反応容器を容量100Lのものに変更した。各原材料の使用量は全て質量基準で100倍にスケールアップした。そのほかは、実施例1と同様にして重合体を製造し、評価した。
すなわち、重合反応容器に予め仕込む乳酸エチルは24360g、混合物1における配合量は、式(m1)の単量体が9520g、式(m2)の単量体が13104g、式(m3)の単量体が6608g、乳酸エチルが43850g、ジメチル−2,2’−アゾビスイソブチレートが864.9gとした。
[Example 4]
In Example 1, the polymerization reaction vessel was changed to a 100 L capacity. The amount of each raw material used was scaled up 100 times on a mass basis. Otherwise, the polymer was produced and evaluated in the same manner as in Example 1.
That is, 24360 g of ethyl lactate previously charged in the polymerization reaction vessel, and the blending amount in the mixture 1 is 9520 g of the monomer of the formula (m1), 13104 g of the monomer of the formula (m2), and the monomer of the formula (m3) Was 6608 g, ethyl lactate was 43850 g, and dimethyl-2,2′-azobisisobutyrate was 864.9 g.

[実施例5]
本例では、容量100Lの重合反応容器を用い、式(m2)の単量体に変えて、下記式(m4)の単量体を用いた。また減圧後パージ操作を3回繰り返し、1回目〜3回目の到達減圧度はいずれも4kPa、到達昇圧度はいずれも101kPaとした。
すなわち、窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えた容量100LのSUS製のフラスコに、乳酸エチル2.259kgを入れた。フラスコ内を4kPaまで減圧した後、窒素ガスを供給して101kPaまで昇圧させる操作を3回繰り返し行った。フラスコ内を窒素雰囲気下で保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物2を滴下漏斗より、4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。その後、25℃まで反応液を冷却し、重合反応を停止させて、重合体溶液を得た。
[Example 5]
In this example, a polymerization reaction vessel having a capacity of 100 L was used, and a monomer of the following formula (m4) was used instead of the monomer of the formula (m2). Further, the purge operation after depressurization was repeated three times, and the first to third ultimate pressure reductions were all 4 kPa, and the ultimate pressure increase was 101 kPa.
That is, 2.259 kg of ethyl lactate was placed in a 100 L SUS flask equipped with a nitrogen inlet, a stirrer, a condenser, one dropping funnel, and a thermometer. After reducing the pressure in the flask to 4 kPa, the operation of supplying nitrogen gas and increasing the pressure to 101 kPa was repeated three times. The flask was placed in a hot water bath while keeping the inside of the flask under a nitrogen atmosphere, and the temperature of the hot water bath was raised to 80 ° C. while stirring the flask.
Thereafter, the following mixture 2 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours. Thereafter, the reaction solution was cooled to 25 ° C., the polymerization reaction was stopped, and a polymer solution was obtained.

(混合物2)
下記式(m1)の単量体を9520g、
下記式(m3)の単量体を6608g、
下記式(m4)の単量体を10976g、
乳酸エチル40660g、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))837.2g。
各単量体の仕込み割合(モル%)を表1に示す。
(Mixture 2)
9520 g of a monomer of the following formula (m1),
6608 g of a monomer of the following formula (m3),
10976 g of a monomer of the following formula (m4),
40660 g of ethyl lactate,
Dimethyl-2,2′-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)) 837.2 g.
The charge ratio (mol%) of each monomer is shown in Table 1.

Figure 2015143363
Figure 2015143363

得られた重合体溶液を7.0倍量のメタノール及び水の混合溶媒(メタノール/水=80/20容量比)に撹拌しながら滴下し、白色の析出物(重合体P5)の沈殿を得た。沈殿を濾別し、重合体湿粉を得た。重合体湿粉を減圧下40℃で約40時間乾燥した。得られた重合体P5の重量平均分子量(Mw)、分子量分布(Mw/Mn)を表21に示す。
また、実施例1と同様の評価を行った。
The obtained polymer solution was added dropwise to a 7.0 times amount of methanol and water mixed solvent (methanol / water = 80/20 volume ratio) with stirring to obtain a white precipitate (polymer P5). It was. The precipitate was filtered off to obtain a polymer wet powder. The polymer powder was dried at 40 ° C. under reduced pressure for about 40 hours. Table 21 shows the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the obtained polymer P5.
Moreover, the same evaluation as Example 1 was performed.

[比較例1、2]
表1に示す通りに条件を変えたほかは、実施例1と同様にして重合体を製造し、評価した。
すなわち、比較例1は、減圧到達度を35kPaに変更し、比較例2は、減圧到達度を55kPaに変更した。
[Comparative Examples 1 and 2]
A polymer was produced and evaluated in the same manner as in Example 1 except that the conditions were changed as shown in Table 1.
That is, Comparative Example 1 changed the degree of pressure reduction to 35 kPa, and Comparative Example 2 changed the degree of pressure reduction to 55 kPa.

[比較例3]
本例では、ガスパージ工程において減圧を行わず、常圧(101kPa)下で窒素ガスを供給する方法で、重合反応容器内の気体を窒素ガスで置換した。
すなわち、窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えた容量1Lのガラス製のフラスコに、重合溶媒として乳酸エチル243.6gを入れた。次いで、常圧(101kPa)下でフラスコ内に窒素ガスを、200ml/分の流量で、10分間流入させて、窒素ガスパージを行った。
次いで、フラスコ内を窒素雰囲気下に保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。この後は実施例1と同様にして重合体を製造し、評価した。
[Comparative Example 3]
In this example, the gas in the polymerization reaction vessel was replaced with nitrogen gas by supplying nitrogen gas under normal pressure (101 kPa) without reducing pressure in the gas purge step.
That is, 243.6 g of ethyl lactate as a polymerization solvent was placed in a glass flask having a capacity of 1 L equipped with a nitrogen inlet, a stirrer, a condenser, one dropping funnel, and a thermometer. Next, nitrogen gas was purged by flowing nitrogen gas into the flask at a flow rate of 200 ml / min for 10 minutes under normal pressure (101 kPa).
Next, the flask was placed in a hot water bath while keeping the inside of the flask in a nitrogen atmosphere, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask. Thereafter, a polymer was produced and evaluated in the same manner as in Example 1.

Figure 2015143363
Figure 2015143363

Figure 2015143363
Figure 2015143363

表1、2の結果より、重合反応を開始する前に、重合反応容器内を20kPa以下まで減圧した後、窒素ガスを供給して昇圧する操作(減圧後パージ操作)を行った実施例1〜5では、重合平均分子量のロット間差が小さい重合体が得られた。また該重合体を用いて調製したレジスト組成物の感度および現像コントラストについても、ロット間のバラツキが小さく安定したレジスト性能が得られた。
また実施例4では、重合反応容器の容量を100Lにスケールアップしても、得られた重合体の分子量(MwおよびMw/Mn)は実施例1〜3と同等であり、レジスト性能も実施例1〜3と同等であった。このことから重合反応のスケールが変化しても、重合反応の再現性が良好であることがわかる。
一方、減圧後パージ操作を行ったものの、到達減圧度が20kPaより大きい比較例1、2は、実施例1〜5に比べて、重合平均分子量のロット間差が格段に大きく、レジスト組成物の感度および現像コントラストにおいても、ロット間のバラツキが大きかった。
また、重合反応容器内の減圧を行わずに窒素ガスパージを行った比較例3も、重合平均分子量のロット間差が大きかった。
From the results of Tables 1 and 2, Examples 1 to 1 in which the pressure inside the polymerization reaction vessel was reduced to 20 kPa or less and the pressure was increased by supplying nitrogen gas before starting the polymerization reaction (purging operation after pressure reduction). In No. 5, a polymer having a small difference in lot of polymerization average molecular weight was obtained. In addition, the resist composition prepared using the polymer also exhibited stable resist performance with small lot-to-lot variations and sensitivity.
Further, in Example 4, even when the capacity of the polymerization reaction vessel was scaled up to 100 L, the molecular weight (Mw and Mw / Mn) of the obtained polymer was equivalent to those in Examples 1 to 3, and the resist performance was also in Example. It was equivalent to 1-3. This shows that the reproducibility of the polymerization reaction is good even when the scale of the polymerization reaction changes.
On the other hand, although the purge operation was performed after depressurization, Comparative Examples 1 and 2 having an ultimate depressurization degree of greater than 20 kPa had a much larger difference in lot of polymerization average molecular weight than Examples 1 to 5, and the resist composition Also in the sensitivity and the development contrast, the variation between lots was large.
Further, Comparative Example 3 in which the nitrogen gas purge was performed without reducing the pressure in the polymerization reaction vessel also had a large lot-to-lot difference in polymerization average molecular weight.

Claims (4)

単量体および重合開始剤を貯槽から重合反応容器内に滴下し、該重合反応容器内にて、重合溶媒の存在下で、単量体をラジカル重合させて重合体を製造する方法であって、
予め、前記重合反応容器内に、重合溶媒の少なくとも一部および/または単量体の一部を仕込んだ後、重合反応を開始する前に、
前記貯槽内の気体は不活性ガスで置換せず、前記重合反応容器内を20kPa以下まで減圧した後に該重合反応容器内の気体を不活性ガスで置換するガスパージ工程を有する、半導体リソグラフィー用重合体の製造方法。
A method for producing a polymer by dropping a monomer and a polymerization initiator from a storage tank into a polymerization reaction vessel and radically polymerizing the monomer in the presence of a polymerization solvent in the polymerization reaction vessel. ,
Prior to starting the polymerization reaction after charging at least part of the polymerization solvent and / or part of the monomer in the polymerization reaction vessel in advance,
A polymer for semiconductor lithography, which has a gas purge step of replacing the gas in the polymerization reaction vessel with an inert gas after the pressure in the polymerization reaction vessel is reduced to 20 kPa or less without replacing the gas in the storage tank with an inert gas. Manufacturing method.
前記ガスパージ工程において、重合反応容器内を減圧した後、不活性ガスを供給する操作を2回以上繰り返す、請求項1記載の半導体リソグラフィー用重合体の製造方法。   2. The method for producing a polymer for semiconductor lithography according to claim 1, wherein in the gas purging step, after the pressure in the polymerization reaction vessel is reduced, the operation of supplying the inert gas is repeated twice or more. 請求項1または2に記載の製造方法により半導体リソグラフィー用重合体を製造する工程と、
得られた半導体リソグラフィー用重合体と、活性光線又は放射線の照射により酸を発生する化合物とを混合する工程を有する、レジスト組成物の製造方法。
A step of producing a polymer for semiconductor lithography by the production method according to claim 1,
The manufacturing method of a resist composition which has the process of mixing the obtained polymer for semiconductor lithography, and the compound which generate | occur | produces an acid by irradiation of actinic light or a radiation.
請求項3に記載のレジスト組成物の製造方法により得られるレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む、パターンが形成された基板の製造方法。   Applying a resist composition obtained by the method for producing a resist composition according to claim 3 on a work surface of a substrate to form a resist film; and exposing the resist film; And a step of developing the exposed resist film using a developing solution.
JP2015037205A 2015-02-26 2015-02-26 Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate Pending JP2015143363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015037205A JP2015143363A (en) 2015-02-26 2015-02-26 Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037205A JP2015143363A (en) 2015-02-26 2015-02-26 Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011050169A Division JP5741814B2 (en) 2011-03-08 2011-03-08 Polymer for semiconductor lithography and method for producing the same, resist composition, and method for producing substrate

Publications (1)

Publication Number Publication Date
JP2015143363A true JP2015143363A (en) 2015-08-06

Family

ID=53888599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037205A Pending JP2015143363A (en) 2015-02-26 2015-02-26 Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate

Country Status (1)

Country Link
JP (1) JP2015143363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095578A (en) * 2015-11-24 2017-06-01 三菱ケミカル株式会社 Production method of polymer for semiconductor lithography, production method of resist composition, and method for manufacturing patterned substrate
WO2020203254A1 (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Method for producing active light ray-sensitive or radiation-sensitive resin composition, method for forming pattern, and method for producing electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149806A (en) * 1997-08-01 1999-02-23 Nippon Zeon Co Ltd Production of (meth)acrylic ester copolymer
JP2002201223A (en) * 2000-12-20 2002-07-19 Samsung Electronics Co Ltd Photosensitive polymer having both phenyl ring and lactone group and resist composition
JP2003221403A (en) * 2002-01-29 2003-08-05 Daicel Chem Ind Ltd Method for manufacturing polymer for photoresist
JP2008260931A (en) * 2007-03-20 2008-10-30 Fujifilm Corp Resin for making resist surface hydrophobic, its producing method and positive type resist composition containing resin
JP5741814B2 (en) * 2011-03-08 2015-07-01 三菱レイヨン株式会社 Polymer for semiconductor lithography and method for producing the same, resist composition, and method for producing substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149806A (en) * 1997-08-01 1999-02-23 Nippon Zeon Co Ltd Production of (meth)acrylic ester copolymer
JP2002201223A (en) * 2000-12-20 2002-07-19 Samsung Electronics Co Ltd Photosensitive polymer having both phenyl ring and lactone group and resist composition
JP2003221403A (en) * 2002-01-29 2003-08-05 Daicel Chem Ind Ltd Method for manufacturing polymer for photoresist
JP2008260931A (en) * 2007-03-20 2008-10-30 Fujifilm Corp Resin for making resist surface hydrophobic, its producing method and positive type resist composition containing resin
JP5741814B2 (en) * 2011-03-08 2015-07-01 三菱レイヨン株式会社 Polymer for semiconductor lithography and method for producing the same, resist composition, and method for producing substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095578A (en) * 2015-11-24 2017-06-01 三菱ケミカル株式会社 Production method of polymer for semiconductor lithography, production method of resist composition, and method for manufacturing patterned substrate
WO2020203254A1 (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Method for producing active light ray-sensitive or radiation-sensitive resin composition, method for forming pattern, and method for producing electronic device

Similar Documents

Publication Publication Date Title
JP6262416B2 (en) Lithographic polymer solution manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5741814B2 (en) Polymer for semiconductor lithography and method for producing the same, resist composition, and method for producing substrate
JP2015143363A (en) Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate
JP6520054B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which a pattern is formed
JP5456365B2 (en) Polymer, resist composition, and method for producing substrate having fine pattern formed
JP5942562B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP6244756B2 (en) Lithographic copolymer production method, resist composition production method, and substrate production method
JP5942563B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP6439278B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6369103B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5716943B2 (en) Polymer, resist composition, and method of manufacturing substrate on which pattern is formed
JP5821317B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6657846B2 (en) Method for producing polymer for semiconductor lithography, method for producing resist composition, and method for producing substrate on which pattern is formed
JP6299076B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5751487B2 (en) Method for producing resist polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP5660483B2 (en) Resist polymer composition, resist composition, and method for producing substrate on which pattern is formed
JP5793825B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
JP5942564B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP7127267B2 (en) Method for producing polymer solution for lithography, method for producing resist composition, and method for producing patterned substrate
JP6439270B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP2010132752A (en) Method for producing copolymer for resist
JP6481334B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which pattern is formed
JP5659570B2 (en) Method for producing polymer, polymer for semiconductor lithography, resist composition, and method for producing substrate on which pattern is formed
JP2023123014A (en) Method for producing polymer, method for producing resist composition, and method for producing patterned substrate
JP6074834B2 (en) Evaluation method of resist material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160809