JPH11147716A - Barium titanate powder, ceramic composition by using the same and laminated ceramic capacitor by using the same - Google Patents

Barium titanate powder, ceramic composition by using the same and laminated ceramic capacitor by using the same

Info

Publication number
JPH11147716A
JPH11147716A JP9316769A JP31676997A JPH11147716A JP H11147716 A JPH11147716 A JP H11147716A JP 9316769 A JP9316769 A JP 9316769A JP 31676997 A JP31676997 A JP 31676997A JP H11147716 A JPH11147716 A JP H11147716A
Authority
JP
Japan
Prior art keywords
barium titanate
titanium
mol
coated
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9316769A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kita
弘行 喜多
Kazuyuki Okano
和之 岡野
Tsutomu Nishimura
勉 西村
Hideaki Omura
秀明 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9316769A priority Critical patent/JPH11147716A/en
Publication of JPH11147716A publication Critical patent/JPH11147716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a barium titanate powder having improved reduction resistance, sintering properties and dielectric constant by coating the surface of barium titanate particles having a specific average particle diameter with titanium oxide. SOLUTION: This barium titanate powder coated with titanium oxide is obtained by adding barium titanate particles having 0.1-1 μm average particle diameters and 0.997-1.003 molar ratios of Ba/Ti to a solution obtained by dissolving 0.0001-0.1 mol titanium alkoxide expressed in terms of titanium atom based on 1 mol barium titanate in an organic solvent and mixing the added product, drying the organic solvent of the obtained mixture, heat-treating the dried material to provide the barium titanate coated with the titanium oxide in a ratio of 0.0001-0.1 mol of titanium oxide per mol of the barium titanate. The reduction resistant ceramic composition is obtained by adding 0.1-3 mol magnesium oxide based on 100 mol barium titanate to the barium titanate coated with the titanium oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チタン酸バリウム
粉体、およびチタン酸バリウム粉体を主原料とする耐還
元性磁器組成物、ならびにチタン酸バリウムを主原料と
する卑金属内部電極型積層セラミックコンデンサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a barium titanate powder, a reduction-resistant porcelain composition containing barium titanate powder as a main raw material, and a base metal internal electrode type multilayer ceramic containing barium titanate as a main raw material. Related to capacitors.

【0002】[0002]

【従来の技術】ニッケル内部電極型積層セラミックコン
デンサ製造の焼成工程は還元雰囲気中でおこなわれる。
これは、焼成による内部電極の酸化を防ぐためである。
このとき誘電体層の絶縁抵抗が還元によって低下しすぎ
ては問題となる。誘電体層の絶縁抵抗を維持する方法の
ひとつとして、マンガンまたはクロムを添加することが
知られているが、この添加量が多いと経時安定性が悪く
なる。この添加量を微小にするために、誘電体層の主原
料であるチタン酸バリウム粉体として耐還元性の高い粉
体を使用する方法がある。具体的には、結晶性の高さ、
Ba/Ti(モル比)の高さが耐還元性に寄与する。し
かしこのような耐還元性の高いチタン酸バリウム粉体は
焼結性が悪く、緻密に焼結させるためには、より多くの
焼結助剤に頼ることになる。焼結助剤としては二酸化け
い素やけい酸塩が広く用いられているが、このとき、誘
電率の低下、絶縁抵抗の低下が発生する。
2. Description of the Related Art A firing process for manufacturing a nickel internal electrode type multilayer ceramic capacitor is performed in a reducing atmosphere.
This is to prevent oxidation of the internal electrodes due to firing.
At this time, there is a problem if the insulation resistance of the dielectric layer is excessively reduced by the reduction. It is known to add manganese or chromium as one of the methods for maintaining the insulation resistance of the dielectric layer. However, when the amount of manganese or chromium added is large, the stability over time deteriorates. In order to minimize the amount of addition, there is a method of using a powder having high resistance to reduction as barium titanate powder which is a main raw material of the dielectric layer. Specifically, high crystallinity,
The height of Ba / Ti (molar ratio) contributes to the reduction resistance. However, such barium titanate powder having high reduction resistance has poor sinterability, and more sintering aids are required for dense sintering. Silicon dioxide or silicate is widely used as a sintering aid, but at this time, a decrease in dielectric constant and a decrease in insulation resistance occur.

【0003】[0003]

【発明が解決しようとする課題】チタン酸バリウム粉体
は耐還元性が高いほど焼結性が低く、粒成長させずに緻
密な磁器を得るためにはより多くの二酸化けい素やけい
酸塩が必要となる。しかし、二酸化けい素やけい酸塩は
焼結性以外の特性については有害な効果を示す。このた
め、二酸化けい素やけい酸塩が少なくても十分な焼結を
得ることが課題となる。酸化チタンを二酸化けい素やけ
い酸塩の代替物として利用するには、チタンの分散性が
課題となる。単に酸化チタン粉体として添加したので
は、チタンの偏在が起こり、焼成時にチタン酸バリウム
粒子の異常粒成長や局所的な絶縁抵抗の劣化が課題とな
る。これは、チタン酸バリウムをあまり粒成長させない
ことを特徴とする材料系、例えば静電容量の温度特性が
X7RやBを満たす積層セラミックコンデンサ用の材料
系では欠点となる。
The barium titanate powder has a lower sintering property as the reduction resistance is higher, and in order to obtain a dense porcelain without grain growth, more silicon dioxide and silicate are required. Is required. However, silicon dioxide and silicates have a detrimental effect on properties other than sinterability. For this reason, it is an issue to obtain sufficient sintering even with a small amount of silicon dioxide or silicate. In order to utilize titanium oxide as a substitute for silicon dioxide or silicate, the dispersibility of titanium becomes an issue. If it is simply added as titanium oxide powder, uneven distribution of titanium occurs, and abnormal grain growth of barium titanate particles and local deterioration of insulation resistance during firing become problems. This is a disadvantage in a material system characterized in that barium titanate does not grow much, for example, a material system for a multilayer ceramic capacitor in which the temperature characteristic of capacitance satisfies X7R or B.

【0004】近年要望が高い温度特性、バイアス特性が
良好で、かつ安価であるニッケル内部電極型積層セラミ
ックコンデンサは、焼成時に主原料であるチタン酸バリ
ウム粒子がほとんど粒成長しないことを特徴としてお
り、このため、前記理由により焼結助剤として酸化チタ
ン粉体は使用されておらず、二酸化けい素やけい酸塩が
重量で数パーセント添加されている。この二酸化けい素
やけい酸塩添加量が多くなるほど、誘電率と絶縁抵抗の
低下がおこる。近年、より大容量のコンデンサが求めら
れており、このため誘電率を高くすることが要求されて
いる。もし異常粒成長や局所的な絶縁抵抗の低下を防ぐ
ことができるなら、酸化チタン添加は、二酸化けい素や
けい酸塩添加ほど特性に悪影響を与えない焼結助剤とな
りうる。そしてこの利用により従来よりも誘電率の高い
材料を得ることができ、近年の大容量コンデンサの要望
に寄与することができる。
A low-cost nickel internal electrode type multilayer ceramic capacitor, which has recently been demanded with good temperature characteristics and good bias characteristics and is inexpensive, is characterized in that barium titanate particles as a main material hardly grow during firing. For this reason, titanium oxide powder is not used as a sintering aid for the above reasons, and silicon dioxide and silicate are added by a few percent by weight. As the amount of addition of silicon dioxide or silicate increases, the dielectric constant and the insulation resistance decrease. In recent years, a capacitor having a larger capacity has been demanded, and therefore, a higher dielectric constant has been demanded. Titanium oxide addition can be a sintering aid that does not adversely affect properties as much as silicon dioxide or silicate addition, if abnormal grain growth and local decrease in insulation resistance can be prevented. By using this material, a material having a higher dielectric constant than before can be obtained, which can contribute to the recent demand for large-capacity capacitors.

【0005】[0005]

【課題を解決するための手段】この課題を解決するため
に本発明は、チタン酸バリウム粒子の表面を酸化チタン
で被覆したチタン被覆チタン酸バリウム粉体を提供す
る。
According to the present invention, there is provided a titanium-coated barium titanate powder in which the surface of barium titanate particles is coated with titanium oxide.

【0006】また、前記チタン被覆チタン酸バリウムを
利用する耐還元性磁器組成物を提供する。
Another object of the present invention is to provide a reduction-resistant porcelain composition using the titanium-coated barium titanate.

【0007】さらに、上記耐還元性磁器組成物を誘電体
層として利用した卑金属内部電極型積層セラミックコン
デンサを提供する。
Further, there is provided a base metal internal electrode type multilayer ceramic capacitor using the above-mentioned reduction-resistant ceramic composition as a dielectric layer.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】(実施の形態1)本発明のチタン被覆チタ
ン酸バリウム粉体について説明する。
(Embodiment 1) A titanium-coated barium titanate powder of the present invention will be described.

【0010】本発明のチタン被覆チタン酸バリウム粉体
は、チタン酸バリウム粉体粒子に酸化チタンの被膜を施
したものである。このとき被覆されるチタン酸バリウム
の平均粒径としては0.1〜1μmのものを用いる。
0.1μm以下であると、凝集等の問題で粉体としての
取扱いが困難となる。また、焼結体の誘電率が低くな
る。1μm以上であると、十分な焼結が得られなくな
る。またBa/Ti(モル比)は0.997〜1.00
3のものを用いる。0.997以下では、粒成長しやす
く、耐還元性が低下する。また1.003以上では焼結
性が低下してしまう。また、結晶性については、目的と
する耐還元性磁器組成物の特性に応じて選択することが
できる。例えば、温度特性の平坦な磁器を得る場合に
は、水熱合成法により作製されたチタン酸バリウム粉体
など結晶性の高いものが望ましい。この場合、結晶性が
低いと、チタン酸バリウム粒子が粒成長しやすく温度特
性が悪くなり、また耐還元性が低く焼結後の絶縁抵抗が
低くなる。
The titanium-coated barium titanate powder of the present invention is obtained by coating a barium titanate powder particle with a coating of titanium oxide. At this time, the average particle size of the barium titanate to be coated is 0.1 to 1 μm.
When the thickness is 0.1 μm or less, handling as a powder becomes difficult due to problems such as aggregation. In addition, the dielectric constant of the sintered body decreases. If it is 1 μm or more, sufficient sintering cannot be obtained. Ba / Ti (molar ratio) is 0.997 to 1.00.
Use three. When it is 0.997 or less, the grains grow easily and the reduction resistance is reduced. On the other hand, if it is 1.003 or more, the sinterability is reduced. In addition, the crystallinity can be selected according to the intended characteristics of the reduction-resistant porcelain composition. For example, when obtaining a porcelain having a flat temperature characteristic, a highly crystalline material such as barium titanate powder produced by a hydrothermal synthesis method is desirable. In this case, if the crystallinity is low, the barium titanate particles are likely to grow and have poor temperature characteristics, and also have low reduction resistance and low insulation resistance after sintering.

【0011】次にこのチタン酸バリウムに対して酸化チ
タンの被膜を形成するプロセスを説明する。まずチタン
のアルコキシドを有機溶媒に溶解させておく。このアル
コキシドは、被膜形成プロセスの条件に応じて、自由に
選択することができる。次にこの溶液を前記チタン酸バ
リウム粉体と混合する。このときアルコキシドは分解さ
れる。この後、有機溶媒を乾燥させれば、チタン被覆チ
タン酸バリウム粉体が得られる。このアルコキシド添加
量はチタン酸バリウム1モルに対して、チタン原子換算
にして0.0001〜0.1モルとする。0.0001
モル以下であると、本発明の効果が十分得られない。ま
た0.1モルを越えると、焼成時に著しい粒成長や還元
が発生してしまう。
Next, a process for forming a film of titanium oxide on the barium titanate will be described. First, an alkoxide of titanium is dissolved in an organic solvent. This alkoxide can be freely selected according to the conditions of the film forming process. Next, this solution is mixed with the barium titanate powder. At this time, the alkoxide is decomposed. Thereafter, the organic solvent is dried to obtain a titanium-coated barium titanate powder. The added amount of the alkoxide is 0.0001 to 0.1 mol in terms of titanium atom per 1 mol of barium titanate. 0.0001
If the amount is less than the mole, the effect of the present invention cannot be sufficiently obtained. On the other hand, if it exceeds 0.1 mol, remarkable grain growth and reduction occur during firing.

【0012】酸化チタン被膜とチタン酸バリウムとの結
合を強化するめには熱処理を施せばよい。このときの温
度は500℃〜1200℃、好ましくは700℃〜11
00℃とする。500℃以下であると、熱処理の効果が
なく、1200℃以上であると、チタン酸バリウム粒子
同士がかなり焼結してしまい、細かな粉体が得られな
い。以上の要件を満たしたチタン被覆チタン酸バリウム
粉体は焼結性と結晶粒内部の耐還元性を兼ね備えること
ができる。
Heat treatment may be applied to strengthen the bond between the titanium oxide film and barium titanate. The temperature at this time is 500 ° C to 1200 ° C, preferably 700 ° C to 11 ° C.
Set to 00 ° C. If the temperature is lower than 500 ° C., the effect of the heat treatment is not obtained. If the temperature is higher than 1200 ° C., the barium titanate particles are considerably sintered, and a fine powder cannot be obtained. The titanium-coated barium titanate powder satisfying the above requirements can have both sinterability and resistance to reduction inside crystal grains.

【0013】(実施の形態2)本発明の耐還元性磁器組
成物について説明する。
(Embodiment 2) A reduction resistant porcelain composition of the present invention will be described.

【0014】誘電体磁器の主原料として、実施の形態1
で述べたチタン被膜チタン酸バリウムを用意する。これ
に酸化マグネシウム、あるいは炭酸マグネシウム、もし
くは水酸化マグネシウム等のマグネシウム含有物を混合
する。配合はチタン酸バリウム100モルに対してマグ
ネシウム原子換算で0.1〜3モルとする。0.1モル
以下では磁器の結晶粒界の絶縁抵抗が低くなってしま
う。また3モル以上であると、かえって絶縁抵抗が低下
したり、また焼結性や誘電率の低下が発生する。以上の
二つの原料のほかに、必要に応じて焼結性を高めるため
の二酸化けい素やけい酸塩を加えても良い。この量は本
発明のチタン被膜チタン酸バリウムを利用することによ
り従来量より少なくて済む。この他に磁器全体の絶縁抵
抗を高めるためにマンガンやクロムを添加しても良い。
また、チタン酸バリウムの粒成長を抑えるために希土類
やカルシウムを添加しても良い。以上の原料粉体の混合
粉体が誘電体磁器の原料粉体となる。この後、この原料
粉体を円板状に成形して、酸素分圧10-7〜10-12
圧の還元雰囲気下、1100〜1350℃、好ましくは
1200℃〜1325℃で焼成する。酸素分圧が10-7
気圧以上であると、本発明品が有する耐還元性の利点が
特に必要ではなくなる。また10-12気圧以下である
と、還元が強すぎて、絶縁抵抗の劣化が起こる。また、
焼成温度が1100℃以下であると十分な焼結が得られ
ず、1350℃以上であると、チタン酸バリウムの粒成
長が発生してしまう。
Embodiment 1 As a main raw material of dielectric porcelain,
The titanium-coated barium titanate described in the above section is prepared. A magnesium-containing substance such as magnesium oxide, magnesium carbonate, or magnesium hydroxide is mixed with the mixture. The compounding ratio is 0.1 to 3 mol in terms of magnesium atom per 100 mol of barium titanate. If it is less than 0.1 mol, the insulation resistance at the crystal grain boundaries of the porcelain will be low. On the other hand, when the amount is 3 mol or more, the insulation resistance is reduced, and the sinterability and the dielectric constant are lowered. In addition to the above two raw materials, if necessary, silicon dioxide or silicate for improving sinterability may be added. This amount can be smaller than the conventional amount by utilizing the titanium-coated barium titanate of the present invention. In addition, manganese or chromium may be added to increase the insulation resistance of the whole porcelain.
Further, rare earth or calcium may be added to suppress the grain growth of barium titanate. The mixed powder of the above raw material powders becomes the raw material powder for the dielectric porcelain. Thereafter, the raw material powder is formed into a disk shape and fired at 1100 to 1350 ° C, preferably 1200 to 1325 ° C in a reducing atmosphere having an oxygen partial pressure of 10 -7 to 10 -12 atm. Oxygen partial pressure is 10 -7
When the pressure is higher than the atmospheric pressure, the advantage of the reduction resistance of the product of the present invention is not particularly required. If the pressure is lower than 10 -12 atm, the reduction is too strong and the insulation resistance is deteriorated. Also,
If the firing temperature is 1100 ° C or lower, sufficient sintering cannot be obtained, and if the firing temperature is 1350 ° C or higher, barium titanate grain growth occurs.

【0015】なお、上記説明ではチタン酸バリウム粉体
にチタン被膜を形成した粉体を用意してから、マグネシ
ウムなど他の添加物と混合する実施の形態を示したが、
チタン被膜の形成時期はこれに限るものではない。主原
料であるチタン酸バリウム粉体とマグネシウムなどの添
加物を混合してしまってから、あるいは混合と同時にチ
タン被膜を形成しても、本発明の効果が得られる。
In the above description, an embodiment in which a powder in which a titanium coating is formed on barium titanate powder is prepared and then mixed with other additives such as magnesium is shown.
The formation time of the titanium coating is not limited to this. The effects of the present invention can be obtained even after mixing the barium titanate powder, which is the main raw material, with an additive such as magnesium or forming a titanium film simultaneously with the mixing.

【0016】(実施の形態3)本発明の卑金属内部電極
型積層セラミックコンデンサの作製方法について概説す
る。原料粉体の混合粉体の作製までは実施の形態2と同
一である。続いて、前記混合粉体と有機バインダーから
なるシートを作製する。一方で、卑金属粉体と有機バイ
ンダーからなるシートも作製しておく。この2種のシー
トを交互に積層し、図1のような断面構造をもつように
する。次に適当な雰囲気、温度の熱処理により、この構
造体中の有機バインダーを除去する。続いて実施の形態
2と同様の条件で焼成する。その後、図1における両端
部分に外部電極を取り付ける。
(Embodiment 3) A method for manufacturing a base metal internal electrode type multilayer ceramic capacitor of the present invention will be outlined. Embodiment 2 is the same as Embodiment 2 up to the production of the mixed powder of the raw material powder. Subsequently, a sheet comprising the mixed powder and an organic binder is prepared. On the other hand, a sheet composed of a base metal powder and an organic binder is also prepared. These two types of sheets are alternately laminated to have a cross-sectional structure as shown in FIG. Next, the organic binder in this structure is removed by heat treatment in an appropriate atmosphere and temperature. Subsequently, firing is performed under the same conditions as in the second embodiment. Thereafter, external electrodes are attached to both end portions in FIG.

【0017】このように作製された積層セラミックコン
デンサは、従来品に比べて、二酸化けい素やけい酸塩が
少なくても緻密に焼結するので、誘電率が高くなる。
The multilayer ceramic capacitor manufactured as described above has a higher dielectric constant since it is densely sintered even if the amount of silicon dioxide or silicate is small, as compared with conventional products.

【0018】なお、上記説明ではまず実施の形態2にお
いて説明したチタン被覆を施したチタン酸バリウム粉体
を用意してから、後の製造工程に入る方法を示したが、
チタン被覆を施す時期についてはこの限りではない。原
料の混合時や、あるいは原料と有機バインダーとの混合
工程時にチタン被覆をほどこしても本発明の効果が得ら
れる。
In the above description, a method has been described in which barium titanate powder coated with titanium as described in the second embodiment is first prepared and then the subsequent manufacturing steps are performed.
The timing for applying the titanium coating is not limited to this. The effect of the present invention can be obtained even if titanium coating is applied at the time of mixing the raw materials or during the mixing step of the raw materials and the organic binder.

【0019】[0019]

【実施例】以下に実施例を用いて本発明を詳しく説明す
る。
The present invention will be described below in detail with reference to examples.

【0020】(実施例1)以下の液体を混合する。(Example 1) The following liquids are mixed.

【0021】チタニウムテトライソプロポキシド(関東
化学製):1.42g 酢酸ブチル(関東化学製):98.5g なおチタニウムテトライソプロポキシドは空気中で分解
してしまうので、混合は窒素雰囲気中でおこなう。以上
で0.005モルのチタン原子を含む溶液約100gが
できる。
Titanium tetraisopropoxide (manufactured by Kanto Kagaku): 1.42 g Butyl acetate (manufactured by Kanto Kagaku): 98.5 g Note that titanium tetraisopropoxide is decomposed in the air, so mixing is performed in a nitrogen atmosphere. Do it. Thus, about 100 g of a solution containing 0.005 mol of titanium atoms is obtained.

【0022】また、平均粒径が0.5μm、Ba/Ti
(モル比)が1.000で、水熱合成法により作製され
たチタン酸バリウム(堺化学工業株式会社製BT−0
5)を チタン酸バリウム:117g 酢酸ブチル170g で混合しておく。
The average particle diameter is 0.5 μm, and Ba / Ti
(Molar ratio) is 1.000 and barium titanate (BT-0 manufactured by Sakai Chemical Industry Co., Ltd.) produced by a hydrothermal synthesis method.
5) is mixed with barium titanate: 117 g and butyl acetate 170 g.

【0023】このチタン酸バリウム粉体と酢酸ブチルの
混合物に、上記で作成しておいたチタニウムテトライソ
プロポキシドの酢酸ブチル溶液を30g追加する。これ
により、チタン酸バリウム1モルに対して、0.003
モルのチタン原子が追加されたことになる。以上の混合
物を直径5mmの安定化ジルコニア製ボール200gと
共に直径10cm、容積500mlのポリポットに入
れ、毎分100回転で1時間混合した。その後ジルコニ
ア製ボールをふるいで除き、さらに乾燥器で200℃5
時間乾燥し、酢酸ブチルを完全に揮発させた。続いて、
900℃で4時間熱処理をおこなった。昇降温は毎時2
00℃/時とした。
To the mixture of the barium titanate powder and butyl acetate, 30 g of the titanium tetraisopropoxide butyl acetate solution prepared above is added. Thereby, 0.003 to 1 mol of barium titanate was obtained.
This means that moles of titanium atoms have been added. The above mixture was placed in a polypot having a diameter of 10 cm and a volume of 500 ml together with 200 g of a stabilized zirconia ball having a diameter of 5 mm and mixed at 100 rpm for 1 hour. Thereafter, the zirconia balls are removed by a sieve, and further dried at 200 ° C 5 ° C.
After drying for an hour, the butyl acetate was completely evaporated. continue,
Heat treatment was performed at 900 ° C. for 4 hours. Temperature rise / fall 2 per hour
00 ° C./hour.

【0024】以上により酸化チタンで被覆されたチタン
酸バリウム粉体を得た。 (実施例2)A、B、C、D4通りの秤量を下記のよう
におこなった。
Thus, barium titanate powder coated with titanium oxide was obtained. (Example 2) A, B, C and D four types of weighing were performed as follows.

【0025】混合粉体Aの秤量 上記実施例1により処理されたチタン酸バリウム:10
0g MgO:0.115g CaCO3:0.573g SiO2:0.172g 混合粉体Bの秤量 通常のチタン酸バリウム(Ba/Ti比1.000):
100g TiO2:0.103g MgO:0.115g CaCO3:0.573g SiO2:0.172g 混合粉体Cの秤量 通常のチタン酸バリウム(Ba/Ti比1.000):
100g MgO:0.115g CaCO3:0.573g SiO2:0.172g 混合粉体Dの秤量 通常のチタン酸バリウム(Ba/Ti比0.997):
100g MgO:0.115g CaCO3:0.573g SiO2:0.172g 以上A、B、C、Dの秤量した誘電体材料それぞれにつ
いて、直径5mmの安定化ジルコニア製ボール200g
と蒸留水200mlと共に500mlで直径10cmの
ポリポットに入れ、毎分100回転で20時間回転混合
した。その後、ジルコニア製ボールを取り除き、混合物
をステンレス製容器に入れ、200℃で約15時間保持
し乾燥して、混合粉体を得た。
Weighing of mixed powder A Barium titanate treated according to Example 1 above: 10
0 g MgO: 0.115 g CaCO3: 0.573 g SiO2: 0.172 g Weighing of mixed powder B Ordinary barium titanate (Ba / Ti ratio: 1.000):
100 g TiO2: 0.103 g MgO: 0.115 g CaCO3: 0.573 g SiO2: 0.172 g Weighing of mixed powder C Normal barium titanate (Ba / Ti ratio: 1.000):
100 g MgO: 0.115 g CaCO3: 0.573 g SiO2: 0.172 g Weighing of mixed powder D Normal barium titanate (Ba / Ti ratio 0.997):
100 g MgO: 0.115 g CaCO3: 0.573 g SiO2: 0.172 g For each of the weighed dielectric materials A, B, C, and D, 200 g of stabilized zirconia balls having a diameter of 5 mm.
And 500 ml of distilled water together with 200 ml of distilled water in a polypot having a diameter of 10 cm, and rotationally mixed at 100 rotations per minute for 20 hours. Thereafter, the zirconia balls were removed, and the mixture was placed in a stainless steel container, kept at 200 ° C. for about 15 hours, and dried to obtain a mixed powder.

【0026】この混合粉体A、B、Dは原子の比という
意味ではまったく同一の秤量となる。相違点は、余剰の
チタン原子が、Aはチタン酸バリウム粉体表面に、Bは
最初から独立した粉体として、Dはチタン酸バリウム粉
体粒内に均等に存在している点である。またCは余剰の
チタンが存在しない状態である。
The mixed powders A, B, and D have exactly the same weight in terms of the ratio of atoms. The difference is that the surplus titanium atoms are uniformly present in the barium titanate powder particles, A is present on the surface of the barium titanate powder, B is present as an independent powder from the beginning. C is a state in which no excess titanium exists.

【0027】この混合粉体にバインダーとしてセラモP
B15(第一工業製薬製)を純水で2倍希釈したものを
約10ml加え、ライカイ機で10分間混合し、その後
32メッシュのナイロン製のふるいを通して造粒粉とし
た。次に造粒粉を直径13mmの金型に詰め、プレスし
た。プレス加重は1トンとした。次にこの成形体の脱バ
インダーをおこなった。脱バインダー条件は700℃で
2時間(昇降温100℃/時)空気中とした。次に焼成
は箱型の雰囲気電気炉を用い1325℃で6時間(昇降
温200℃/時)行った。焼成雰囲気は、キャリアガス
として窒素ガスを1分間に5リットル流し、酸素分圧が
10-9気圧になるように10%グリーンガス(水素を1
0%含有する窒素ガス)の流量を制御して調節した。ち
なみに酸素ガスを特に流さなくても、酸素分圧が存在す
るのは、キャリアガスおよびグリーンガス中に微量酸素
が不純物として存在するからである。続いて、得られた
焼結体表面にクロムを下地にして金を蒸着した後、円筒
曲面を紙やすり(粗さ#320)で研磨し、円形の対向
電極のみを残した。このようにして準備した単層コンデ
ンサの、誘電率、誘電損失、絶縁抵抗、温度特性を測定
した。誘電率及び誘電損失はLCRメータ(ヒューレッ
トパッカード社製)を用い、1kHz、1V、室温で測
定した。絶縁抵抗は絶縁抵抗計(ヒューレットパッカー
ド社製)を用いて測定した。さらに誘電率の温度変化は
−55℃から+130℃まで測定した。また、焼結体の
直径をノギスで測定し、焼結収縮率を測定した。それら
をあわせて(表1)に示した。誘電率については室温の
値のみ記してあるが、A、B、C、Dともに静電容量の
温度特性X7RおよびBを満足するものである。
Ceramo P is used as a binder in this mixed powder.
About 15 ml of B15 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) diluted twice with pure water was added and mixed for 10 minutes with a raikai machine, and then granulated through a 32 mesh nylon sieve. Next, the granulated powder was packed in a mold having a diameter of 13 mm and pressed. The press load was 1 ton. Next, the binder was removed from the molded body. The binder was removed in air at 700 ° C. for 2 hours (temperature rise / fall 100 ° C./hour). Next, baking was performed at 1325 ° C. for 6 hours (200 ° C./hour) using a box-type atmosphere electric furnace. The firing atmosphere was such that a nitrogen gas as a carrier gas was flowed at a rate of 5 liters per minute, and a 10% green gas (1% hydrogen was added) so that the oxygen partial pressure was 10 -9 atm.
The flow rate of nitrogen gas containing 0% was controlled and adjusted. Incidentally, the reason why the oxygen partial pressure exists even when the oxygen gas is not particularly supplied is that a trace amount of oxygen exists as an impurity in the carrier gas and the green gas. Subsequently, gold was deposited on the surface of the obtained sintered body using chromium as a base, and the cylindrical curved surface was polished with sandpaper (roughness # 320) to leave only a circular counter electrode. The dielectric constant, dielectric loss, insulation resistance, and temperature characteristics of the single-layer capacitor thus prepared were measured. The dielectric constant and the dielectric loss were measured at 1 kHz, 1 V and room temperature using an LCR meter (manufactured by Hewlett Packard). The insulation resistance was measured using an insulation resistance meter (manufactured by Hewlett-Packard Company). Further, the temperature change of the dielectric constant was measured from -55 ° C to + 130 ° C. Further, the diameter of the sintered body was measured with a vernier caliper, and the sintering shrinkage was measured. They are shown in Table 1 together. As for the dielectric constant, only the value at room temperature is described, but A, B, C, and D all satisfy the temperature characteristics X7R and B of the capacitance.

【0028】[0028]

【表1】 [Table 1]

【0029】(表1)より明らかなように、本発明のチ
タン被覆チタン酸バリウムを使用した磁器組成物は、誘
電率、誘電損失、CR積(静電容量と絶縁抵抗の積)、
焼結性すべての面で、通常のチタン酸バリウム使用の場
合より優れていることがわかる。特にAとBとDの三種
の磁器は、バリウム原子とチタン原子の比については同
一であり、その物理的、化学的構造が異なるのみであ
る。このことから、チタン酸バリウムにチタンが被覆さ
れている本発明特有の構造をもつチタン酸バリウム粉体
が、それを用いた磁器の特性に寄与しているといえる。
As is clear from Table 1, the porcelain composition using the titanium-coated barium titanate of the present invention has a dielectric constant, a dielectric loss, a CR product (a product of capacitance and insulation resistance),
It can be seen that all aspects of sintering are superior to those using ordinary barium titanate. In particular, the three types of porcelains A, B and D have the same ratio of barium atoms to titanium atoms, but differ only in their physical and chemical structures. From this, it can be said that barium titanate powder having a structure unique to the present invention in which barium titanate is coated with titanium contributes to the characteristics of porcelain using the barium titanate powder.

【0030】(実施例3)次に実施例2と同様の誘電体
材料組成A、B、C、Dを用い、ニッケル内部電極型積
層セラミックコンデンサの作製を行った。以下に作製方
法について詳しく述べる。原料混合粉体としては実施例
2と同じようにして準備したものを用いた。それらを無
機成分とし、有機バインダーとしてポリビニルブチラー
ル樹脂、可塑剤としてDBP(ジブチルフタレート)、
溶剤として、1.1.1.トリクロロエタン、酢酸ブチ
ルを加え、ボールミルにて混合しスラリーを調製した。
なお、スラリー化の条件は、無機成分100gに対し
て、ポリビニルブチラール樹脂8g、DBP4g、1.
1.1.トリクロロエタン50g、酢酸ブチル35gと
した。このようにして調製したスラリーを真空脱泡の後
ドクターブレード法によりフィルム状に造膜しグリーン
シートを作製した。ブレードのギャップは200μmと
した。乾燥後のグリーンシートの厚みは約35μmであ
った。次に内部電極用卑金属ペーストとしては、市販の
ニッケルペースト(住友金属鉱山製)を用いた。次に上
記ニッケルペーストを用いてグリーンシート上に所望の
パターンをスクリーン印刷(印刷乾燥後約5μm)し
た。このようにして得られた電極パターン形成済みグリ
ーンシートを、内部電極パターンが対向するように11
枚重ね合わせ(すなわち、有効層は10層)、熱圧着し
て一体化した。そしてさらに3.8mmx1.9mmの
寸法に切断して未焼結積層体を準備した。この未焼結積
層体の厚みは約1mmとなるように有効層の両側に各3
00μmの無効層を設けた。図1にその断面図を示す。
図1において、1は誘電体層(無効層)、2は誘電体層
(有効層)、3は内部電極層を示している。次に、この
未焼結積層体の脱バインダーを行なう。脱バインダーに
は箱型の電気炉を使用し、窒素中で行なった。昇温速度
は15℃/時、最高温度400℃で2時間保持した後、
100℃/時で降温した。なお、脱バインダーの目的は
有機バインダーの除去にあり、それらが充分に除去でき
るのであればこの方法に限るものではない。このように
して準備された脱バインダー済み試料を焼成した。焼成
温度及び焼成雰囲気は実施例2と同じ条件で行った。続
いて、焼成によって得られた焼結体の端面に、外部電極
として市販の900℃窒素雰囲気焼成用銅ペーストを塗
布し、連続ベルト炉によって焼き付けをおこない、特性
評価用試料とした。評価結果を(表2)に示した。
Example 3 Next, using the same dielectric material compositions A, B, C, and D as in Example 2, a nickel internal electrode type multilayer ceramic capacitor was manufactured. Hereinafter, the manufacturing method will be described in detail. As the raw material mixed powder, one prepared in the same manner as in Example 2 was used. Using them as inorganic components, polyvinyl butyral resin as an organic binder, DBP (dibutyl phthalate) as a plasticizer,
As a solvent, 1.1.1. Trichloroethane and butyl acetate were added and mixed by a ball mill to prepare a slurry.
The conditions for slurrying were as follows: 100 g of the inorganic component, 8 g of polyvinyl butyral resin, 4 g of DBP, 1.
1.1. The amount was 50 g of trichloroethane and 35 g of butyl acetate. The slurry thus prepared was subjected to vacuum defoaming and then formed into a film by a doctor blade method to produce a green sheet. The blade gap was 200 μm. The thickness of the green sheet after drying was about 35 μm. Next, as the base metal paste for the internal electrode, a commercially available nickel paste (manufactured by Sumitomo Metal Mining) was used. Next, a desired pattern was screen-printed (about 5 μm after printing and drying) on the green sheet using the nickel paste. The green sheet on which the electrode pattern has been formed in this manner is placed on an 11
The sheets were laminated (that is, the effective layer was 10 layers), and were integrated by thermocompression bonding. And it cut | disconnected further to the dimension of 3.8 mm x 1.9 mm, and the unsintered laminated body was prepared. The thickness of this green laminate is 3 mm on each side of the effective layer so as to be about 1 mm.
An invalid layer of 00 μm was provided. FIG. 1 shows a cross-sectional view thereof.
In FIG. 1, 1 indicates a dielectric layer (ineffective layer), 2 indicates a dielectric layer (effective layer), and 3 indicates an internal electrode layer. Next, the binder is removed from the unsintered laminate. A box-type electric furnace was used for debinding in nitrogen. After heating at a rate of 15 ° C / hour and a maximum temperature of 400 ° C for 2 hours,
The temperature was lowered at 100 ° C./hour. The purpose of the binder removal is to remove the organic binder, and it is not limited to this method as long as they can be sufficiently removed. The binder-free sample thus prepared was fired. The firing temperature and the firing atmosphere were the same as in Example 2. Subsequently, a commercially available copper paste for sintering in a nitrogen atmosphere at 900 ° C. was applied as an external electrode to the end face of the sintered body obtained by sintering, and baked in a continuous belt furnace to obtain a sample for property evaluation. The evaluation results are shown in (Table 2).

【0031】[0031]

【表2】 [Table 2]

【0032】(表2)より明らかなように、実施例2の
磁器組成物の場合と同様に、積層セラミックコンデンサ
の場合でも、チタン被覆チタン酸バリウムを使用した場
合が、誘電率、誘電損失、CR積(静電容量と絶縁抵抗
の積)すべての面で優れていることがわかる。
As is clear from Table 2, similarly to the case of the porcelain composition of Example 2, even in the case of the multilayer ceramic capacitor, when the titanium-coated barium titanate was used, the dielectric constant, the dielectric loss, It can be seen that the product is excellent in all aspects of CR product (product of capacitance and insulation resistance).

【0033】なお上記実施例では積層セラミックコンデ
ンサの内部電極としてニッケルを利用したが、銅、ある
いはニッケルと銅を主成分とする合金を利用することも
できる。
In the above embodiment, nickel is used as the internal electrode of the multilayer ceramic capacitor. However, copper or an alloy containing nickel and copper as main components may be used.

【0034】[0034]

【発明の効果】本発明の誘電体磁器組成物および積層セ
ラミックコンデンサは、耐還元性と焼結性と高い誘電率
を両立させる方法を提供した。この方法は、焼成雰囲気
が還元雰囲気下で、チタン酸バリウムをあまり粒成長さ
せてはならず、しかも高い誘電率が要求される温度特性
X7RやBなどのニッケル内部電極型積層セラミックコ
ンデンサとして特に有効である。
According to the dielectric ceramic composition and the multilayer ceramic capacitor of the present invention, a method for achieving both reduction resistance, sinterability and high dielectric constant is provided. This method is particularly effective as a nickel internal electrode type multilayer ceramic capacitor having a temperature characteristic of X7R or B, which does not allow barium titanate to grow too much in a firing atmosphere in a reducing atmosphere and requires a high dielectric constant. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の積層体の断面図FIG. 1 is a sectional view of a laminate according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 誘電体層(無効層) 2 誘電体層(有効層) 3 内部電極層 Reference Signs List 1 dielectric layer (ineffective layer) 2 dielectric layer (effective layer) 3 internal electrode layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大村 秀明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideaki Omura 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が0.1〜1μm、Ba/Ti
(モル比)が0.997〜1.003のチタン酸バリウ
ムの粒子表面を、前記チタン酸バリウム1モルに対して
0.0001〜0.1モルの酸化チタンで被覆したこと
を特徴とするチタン被覆チタン酸バリウム粉体。
An average particle size of 0.1 to 1 μm, Ba / Ti
(Mole ratio) Barium titanate particles having a molar ratio of 0.997 to 1.003 are coated with titanium oxide in an amount of 0.0001 to 0.1 mol per 1 mol of the barium titanate. Coated barium titanate powder.
【請求項2】 平均粒径が0.1〜1μm、Ba/Ti
(モル比)が0.997〜1.003のチタン酸バリウ
ム粒子に、前記チタン酸バリウム1モルに対して有機溶
媒に溶解させたチタンのアルコキシドをチタン原子換算
にして0.0001〜0.1モルだけ加え、混合し、有
機溶媒を乾燥させた後得られるチタン被覆チタン酸バリ
ウム粉体。
2. An average particle diameter of 0.1 to 1 μm, Ba / Ti
The alkoxide of titanium dissolved in an organic solvent with respect to 1 mol of the barium titanate is added to the barium titanate particles having a molar ratio of 0.997 to 1.003 in terms of titanium atom in an amount of 0.0001 to 0.1 in terms of titanium atom. A titanium-coated barium titanate powder obtained after adding, mixing and drying an organic solvent in an amount of only moles.
【請求項3】 請求項2に記載のチタン被覆チタン酸バ
リウムを500℃〜1200℃の温度で熱処理して得ら
れるチタン被覆チタン酸バリウム。
3. Titanium-coated barium titanate obtained by heat-treating the titanium-coated barium titanate according to claim 2 at a temperature of 500 ° C. to 1200 ° C.
【請求項4】 主原料粉体として請求項1または請求項
2または請求項3に記載のチタン被覆チタン酸バリウム
粉体を、また微量添加物成分のひとつとして少なくとも
酸化マグネシウムを含有し、チタン酸バリウム100モ
ルに対して酸化マグネシウムの量が0.1〜3モルであ
ることを特徴とする耐還元性磁器組成物。
4. A titanium-containing barium titanate powder according to claim 1, 2 or 3 as a main raw material powder, and at least magnesium oxide as one of the trace additive components. A reduction-resistant porcelain composition, wherein the amount of magnesium oxide is 0.1 to 3 mol per 100 mol of barium.
【請求項5】 請求項4に記載の耐還元性磁器組成物を
誘電体層として利用する卑金属内部電極型積層セラミッ
クコンデンサ。
5. A base metal internal electrode type multilayer ceramic capacitor using the reduction resistant porcelain composition according to claim 4 as a dielectric layer.
JP9316769A 1997-11-18 1997-11-18 Barium titanate powder, ceramic composition by using the same and laminated ceramic capacitor by using the same Pending JPH11147716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9316769A JPH11147716A (en) 1997-11-18 1997-11-18 Barium titanate powder, ceramic composition by using the same and laminated ceramic capacitor by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9316769A JPH11147716A (en) 1997-11-18 1997-11-18 Barium titanate powder, ceramic composition by using the same and laminated ceramic capacitor by using the same

Publications (1)

Publication Number Publication Date
JPH11147716A true JPH11147716A (en) 1999-06-02

Family

ID=18080728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9316769A Pending JPH11147716A (en) 1997-11-18 1997-11-18 Barium titanate powder, ceramic composition by using the same and laminated ceramic capacitor by using the same

Country Status (1)

Country Link
JP (1) JPH11147716A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743518B2 (en) * 2001-11-14 2004-06-01 Taiyo Yuden Co., Ltd. Ceramic capacitor and method for the manufacture thereof
WO2006025600A1 (en) * 2004-09-03 2006-03-09 Nippon Shokubai Co., Ltd. Method for maintaining positive electrode material composition for lithium secondary battery
US7033406B2 (en) * 2001-04-12 2006-04-25 Eestor, Inc. Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries
US7466536B1 (en) 2004-08-13 2008-12-16 Eestor, Inc. Utilization of poly(ethylene terephthalate) plastic and composition-modified barium titanate powders in a matrix that allows polarization and the use of integrated-circuit technologies for the production of lightweight ultrahigh electrical energy storage units (EESU)
US7595109B2 (en) 2001-04-12 2009-09-29 Eestor, Inc. Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries
US7648687B1 (en) 2006-06-15 2010-01-19 Eestor, Inc. Method of purifying barium nitrate aqueous solution
US7729811B1 (en) 2001-04-12 2010-06-01 Eestor, Inc. Systems and methods for utility grid power averaging, long term uninterruptible power supply, power line isolation from noise and transients and intelligent power transfer on demand
JP2010189273A (en) * 2010-04-30 2010-09-02 Tdk Corp Compound oxide particle
US7867471B2 (en) 2008-04-03 2011-01-11 Sachem, Inc. Process for preparing advanced ceramic powders using onium dicarboxylates
US7914755B2 (en) 2001-04-12 2011-03-29 Eestor, Inc. Method of preparing ceramic powders using chelate precursors
CN102351241A (en) * 2011-07-14 2012-02-15 西北大学 Synthetic method for giant dielectric constant material copper-calcium titanate
JP2012036080A (en) * 2010-08-06 2012-02-23 Samsung Electro-Mechanics Co Ltd Reduction-resistant dielectric composition, and ceramic electronic component containing the same
US8145362B2 (en) 2006-08-04 2012-03-27 Eestor, Inc. Utility grid power averaging and conditioning
US8287826B2 (en) 2009-09-18 2012-10-16 Eestor, Inc. Selective-cation-removal purification of aluminum source
US8496893B2 (en) 2009-06-25 2013-07-30 Eestor, Inc. Method of forming a dielectric powder using a precipitated precursor powder
US8638544B2 (en) 2010-08-06 2014-01-28 Samsung Electro-Mechanics Co., Ltd. Reduction-resistant dielectric composition and ceramic electronic component including the same
US8698352B2 (en) 2009-08-20 2014-04-15 Eestor, Inc. Rapid activation fusible link
US8845993B2 (en) 2010-01-20 2014-09-30 Eestor, Inc. Purification of barium ion source
US8853116B2 (en) 2006-08-02 2014-10-07 Eestor, Inc. Method of preparing ceramic powders

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914755B2 (en) 2001-04-12 2011-03-29 Eestor, Inc. Method of preparing ceramic powders using chelate precursors
US7033406B2 (en) * 2001-04-12 2006-04-25 Eestor, Inc. Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries
US7595109B2 (en) 2001-04-12 2009-09-29 Eestor, Inc. Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries
US7729811B1 (en) 2001-04-12 2010-06-01 Eestor, Inc. Systems and methods for utility grid power averaging, long term uninterruptible power supply, power line isolation from noise and transients and intelligent power transfer on demand
US6743518B2 (en) * 2001-11-14 2004-06-01 Taiyo Yuden Co., Ltd. Ceramic capacitor and method for the manufacture thereof
US7060144B2 (en) 2001-11-14 2006-06-13 Taiyo Yuden Co., Ltd. Ceramic capacitor and method for the manufacture thereof
US7466536B1 (en) 2004-08-13 2008-12-16 Eestor, Inc. Utilization of poly(ethylene terephthalate) plastic and composition-modified barium titanate powders in a matrix that allows polarization and the use of integrated-circuit technologies for the production of lightweight ultrahigh electrical energy storage units (EESU)
WO2006025600A1 (en) * 2004-09-03 2006-03-09 Nippon Shokubai Co., Ltd. Method for maintaining positive electrode material composition for lithium secondary battery
US7648687B1 (en) 2006-06-15 2010-01-19 Eestor, Inc. Method of purifying barium nitrate aqueous solution
US10239792B2 (en) 2006-08-02 2019-03-26 Eestor, Inc. Method of preparing ceramic powders
US8853116B2 (en) 2006-08-02 2014-10-07 Eestor, Inc. Method of preparing ceramic powders
US8788109B2 (en) 2006-08-04 2014-07-22 Eestor, Inc. Utility grid power averaging and conditioning
US8145362B2 (en) 2006-08-04 2012-03-27 Eestor, Inc. Utility grid power averaging and conditioning
US7867471B2 (en) 2008-04-03 2011-01-11 Sachem, Inc. Process for preparing advanced ceramic powders using onium dicarboxylates
US8496893B2 (en) 2009-06-25 2013-07-30 Eestor, Inc. Method of forming a dielectric powder using a precipitated precursor powder
US8698352B2 (en) 2009-08-20 2014-04-15 Eestor, Inc. Rapid activation fusible link
US8287826B2 (en) 2009-09-18 2012-10-16 Eestor, Inc. Selective-cation-removal purification of aluminum source
US8845993B2 (en) 2010-01-20 2014-09-30 Eestor, Inc. Purification of barium ion source
JP2010189273A (en) * 2010-04-30 2010-09-02 Tdk Corp Compound oxide particle
US8638544B2 (en) 2010-08-06 2014-01-28 Samsung Electro-Mechanics Co., Ltd. Reduction-resistant dielectric composition and ceramic electronic component including the same
JP2012036080A (en) * 2010-08-06 2012-02-23 Samsung Electro-Mechanics Co Ltd Reduction-resistant dielectric composition, and ceramic electronic component containing the same
CN102351241A (en) * 2011-07-14 2012-02-15 西北大学 Synthetic method for giant dielectric constant material copper-calcium titanate

Similar Documents

Publication Publication Date Title
JPH11147716A (en) Barium titanate powder, ceramic composition by using the same and laminated ceramic capacitor by using the same
KR100631995B1 (en) Dielectric ceramic compositions for low temperature sintering and multilayer ceramic condenser using the same
JP5078307B2 (en) Dielectric porcelain and manufacturing method thereof, and capacitor
EP0865052A2 (en) High dielectric-constant ceramic composition, and its fabrication process
JP2006282483A (en) Electronic component, dielectric ceramic composition, and method for producing the same
JP4561922B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
CN105967680A (en) Dielectric ceramic composition and ceramic electronic device
JP2022122132A (en) Dielectric composition, electronic part, and multilayer electronic part
JP5153069B2 (en) Dielectric porcelain
KR100673878B1 (en) Dielectric porcelain composition, electronic device and methods for producing these
JP4267438B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP4487371B2 (en) Dielectric composition and ceramic capacitor using the same
JP2022122129A (en) Dielectric composition, electronic part, and multilayer electronic part
US10964477B2 (en) Dielectric composition and electronic component
KR101194356B1 (en) Barium titanate composite powder coated with additives and manufacturing method for the same
JP2787746B2 (en) Multilayer ceramic chip capacitors
JP4098224B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP3856984B2 (en) Dielectric porcelain and manufacturing method thereof
JP2007258476A (en) Laminated electronic component and manufacturing method thereof
JP4782457B2 (en) Multilayer ceramic capacitor
JP2022088409A (en) Ceramic capacitor
JP5167591B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4487476B2 (en) Dielectric porcelain composition and electronic component
JP4652595B2 (en) Dielectric porcelain with excellent temperature characteristics
JP4594049B2 (en) Multilayer ceramic capacitor