WO2006025601A1 - Positive electrode material composition for lithium secondary battery - Google Patents

Positive electrode material composition for lithium secondary battery Download PDF

Info

Publication number
WO2006025601A1
WO2006025601A1 PCT/JP2005/016467 JP2005016467W WO2006025601A1 WO 2006025601 A1 WO2006025601 A1 WO 2006025601A1 JP 2005016467 W JP2005016467 W JP 2005016467W WO 2006025601 A1 WO2006025601 A1 WO 2006025601A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
polymer
electrode material
composition
material composition
Prior art date
Application number
PCT/JP2005/016467
Other languages
French (fr)
Japanese (ja)
Inventor
Alan Vallee
Paul-Andre Lavoie
Kazuhiko Murata
Teruki Matsushita
Keiichiro Mizuta
Kazuo Takei
Hironobu Hashimoto
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to JP2006532026A priority Critical patent/JPWO2006025601A1/en
Publication of WO2006025601A1 publication Critical patent/WO2006025601A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material composition used for producing a lithium secondary battery.
  • the positive electrode used in the lithium secondary battery includes a polymer that constitutes the matrix, an electrolyte salt (lithium salt) that helps transfer lithium ions, an electrode active material for storing lithium ions, and electron transfer.
  • a composition obtained by mixing (mixing) a conductive auxiliary agent of the present invention and, if necessary, a solvent is generally used as a material, and in the past, such a composition has been formed as a material.
  • Various batteries using the positive electrode have been proposed (see, for example, Patent Documents 1 to 4).
  • the positive electrode is manufactured by a method of extruding the composition as described above or a method of solution casting and devolatizing a solvent.
  • Patent Document 1 Special Table 2 0 0 2-5 3 5 2 3 5
  • Patent Document 2 US Patent No. 5 7 5 5 9 8 5
  • Patent Document 3 International Publication No. 0 3 Z 7 5 3 7 5 Breadlet
  • Patent Document 4 International Publication No. 0 3 0 9 2 0 1 7 Breadlet Disclosure of the Invention Problems to be Solved by the Invention
  • the one prepared by mixing (kneading) the electrode active material and the conductive auxiliary agent in advance into the matrix is procured.
  • the battery performance is significantly inferior to the case where a battery is manufactured using a positive electrode obtained by individually procuring each raw material and mixing (kneading) immediately before molding.
  • the problem to be solved by the present invention is that although the polymer, the electrode active material and the conductive auxiliary agent are contained in advance, the battery performance of the lithium secondary battery using the produced positive electrode is
  • An object of the present invention is to provide a positive electrode material composition for a lithium secondary battery which does not decrease. Means to solve the problem
  • the present inventors diligently studied to solve the above-mentioned problems.
  • polymer, electrode While mixing (kneading) the active material and the conductive aid (especially when melt kneading under high temperature), or while being mixed (kneaded) before being used for molding, while being stored for a fixed period for transportation or storage
  • the molecular weight of the matrix polymer is slightly decreased, and the decrease in molecular weight of this polymer is not a problem in other applications other than the cathode material application, but the lithium secondary battery In the positive electrode materials used for this purpose, we have found that it is a factor that adversely affects battery performance.
  • the positive electrode material composition for a lithium secondary battery according to the present invention is a composition for a positive electrode material that essentially comprises a polymer, an electrode active material and a conductive auxiliary, and is an amine antioxidant, a phosphorus antioxidant And at least one antioxidant selected from the group consisting of phenothiazine-based antioxidants.
  • the positive electrode material composition for a lithium secondary battery of the present invention contains in advance a polymer, an electrode active material and a conductive support agent, so that the process at the time of manufacturing the positive electrode can be simplified. It is possible to prevent the battery performance of the lithium secondary battery using the positive electrode from being degraded.
  • positive electrode material composition for a lithium secondary battery according to the present invention (hereinafter sometimes referred to simply as “positive electrode material composition”) will be described in detail below, but the scope of the present invention is bound by these descriptions. However, other than the following examples, modifications can be made as appropriate without departing from the spirit of the present invention.
  • the positive electrode material composition for a lithium secondary battery of the present invention is a composition that essentially includes a polymer, an electrode active material, and a conductive additive. As described above, since the composition of the present invention contains a polymer necessary as a positive electrode material, an electrode active material and a conductive auxiliary agent, there is an advantage that the process in manufacturing the positive electrode can be simplified.
  • the polymer which is an essential component of the positive electrode material composition is not particularly limited as long as it is usually used as a matrix of a positive electrode material for a lithium secondary battery, and is an ion conductive polyether polymer. Is preferred.
  • the polymer is an ethylene oxide-based polymer in that the battery performance as a positive electrode material can be further improved.
  • the ethylene oxide-based polymer suitable as the polymer is, for example, ethylene oxide.
  • R i and R a (where R a is a C1-C16 alkyl group, a cycloalkyl group, a aryl group, an aryl group, a (meth) acryloyl group and an alkenyl group Or a single CH 2 —O—R e — R a group (R e has one (CH 2 —CH 2 —O) p — structure (P is 0 to 10). integer))
  • the monomer mixture may contain other monomers in addition to ethylene oxide and the substituted alkoxy compound.
  • the proportion of each monomer in the monomer mixture is not particularly limited and may be appropriately set.
  • substituted oxisilane compounds represented by the above structural formula (1) include propylene oxide, butylene oxide, 1,2 _ epoxypentane, 1,2 _ epoxyhexane, 1,2 epoxy octane, cyclohexenoxide and styrene oxide. Or methyl glycidyl ether, cetyl dalysidyl ether, ethylene glycol methyl dalysyl ether, and the like.
  • the substituent is a crosslinkable substituent
  • the monomer mixture may be polymerized while being stirred in a solvent.
  • the method for such polymerization is not particularly limited, but preferred examples include a solution polymerization method and a precipitation polymerization method. Among them, the solution polymerization method is more preferable because it has excellent productivity.
  • a solution polymerization method in which polymerization is performed while supplying each monomer as a raw material to a previously charged solvent is particularly preferable because of safety such as easy removal of heat of reaction.
  • a commonly used polymerization initiator, An agent or the like may be added and used.
  • the solvent examples include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene; and aliphatic hydrocarbons such as heptane, octane, n-hexane, n-pentane, and 2, 2, 4-trimethylpentane.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene
  • aliphatic hydrocarbons such as heptane, octane, n-hexane, n-pentane, and 2, 2, 4-trimethylpentane.
  • Aliphatic hydrocarbon solvents such as cyclohexane and methyl cyclohexane; ether solvents such as jetyl ether, dibutyl ether and methyl butyl ether; solvents of ethylene diallyl dialkyl ethers such as dimethoxetane; THF Organic solvents which do not contain active hydrogen such as hydroxyl groups such as cyclic ether solvents such as (tetrahydrofuran) and dioxan; etc. are preferable, and toluene and xylene are more preferable.
  • the solvent is an organic solvent that does not contain water at all avoids the problem that hydroxide and the like generated by the reaction of water and metal ions become an insulating layer and the cycle characteristics of the battery are degraded. It is preferable to do it.
  • the weight average molecular weight (Mw) of the polymer is not particularly limited, but is preferably 2 0 0 0 5-0 0 0 0 0 0, more preferably 3 0 0 0 0 0 3 0 0 , 0 0 0, and more preferably 4.0, 0 0 0 to 2 0 0, 0 0 0. If the weight average molecular weight is less than 20, 00, there is a risk that tack will occur when forming into a positive electrode, while if it exceeds 500, the forming itself becomes difficult, Processability and handling may be reduced.
  • the molecular weight distribution (MwZMn) of the polymer is not particularly limited, but is preferably 3 or less, more preferably 2 or less. When the molecular weight distribution exceeds 3, there is a risk that tackiness may occur when the molded product is made into a positive electrode, or the handling property may be deteriorated.
  • the electrode active material which is an essential component of a positive electrode material composition, enables charge and discharge by reversibly inserting and desorbing lithium ions, and is usually used to form a positive electrode.
  • a positive electrode which is an essential component of a positive electrode material composition
  • the electrode active material may be only one type, or two or more types
  • the proportion of the electrode active material in the positive electrode material composition is not particularly limited, but is preferably, for example, 0.1 to 50 times by weight the polymer, and more preferably 0.3 to 2 times. It is preferable to be 0 times, more preferably 0.5 to 10 times. If the amount of the electrode active material is too small, the function as the positive electrode may not be sufficiently exhibited. On the other hand, if the amount of the electrode active material is too large, molding may be difficult.
  • the conductive auxiliary agent which is an essential component of the positive electrode material composition, is not particularly limited as long as it is generally used to form a positive electrode, and examples thereof include acetylene black, ketjen black, Graphite, etc. Can be mentioned.
  • the conductivity assistant may be only one kind or two or more kinds.
  • the proportion of the conductive auxiliary agent in the positive electrode material composition is not particularly limited.
  • the amount is preferably 0.1 to 20 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the extremely active material. If the amount of the conductive additive is too small, the conductivity of the positive electrode may be insufficient. On the other hand, if the amount of the conductive additive is too large, molding may be difficult.
  • the positive electrode material composition of the present invention contains one or more antioxidants selected from the group consisting of amine antioxidants, phosphorus antioxidants and phosphine oxides antioxidants.
  • one or more antioxidants selected from the group consisting of amine antioxidants, phosphorus antioxidants and phosphine oxides antioxidants.
  • the above-mentioned antioxidant is an amine-based antioxidant and a phosphorus-based antioxidant from the viewpoint that molecular weight reduction can be effectively suppressed with a small amount.
  • amine-based antioxidants examples include bis (4_t-butylphenyl) phamine, poly (2,2 and 4 trimethyl 1, 2 2 dihydroquinoline), 6-ethoxy and 1,2 2 -dich 2 , 2,4 _ trimethylquinoline, reaction product of diphenylamine and acetone, 1-(N-phenylamino) mononaphthalene, diphenylamine derivative, dialkyl diphenyl lamines, N, N, mono diphenyl mono p-pheni radiamine, mixed gyalyl _ p-phenylenediamine, N-phenyl-one N, monoisopropyl-one-p-phenylediamine, N, N'-di- 2-naphthyl-one-p-phenylediamine, etc. —T_butylphenyl) amine is preferred.
  • the amine antioxidant may be one type alone, or two or more types.
  • Examples of the above-mentioned phosphorus-based antioxidants include trififnyl phosphate, diphenyl isodecyl phosphate, phenyl diisodecyl phosphate, and 4,4′-butylidene bis.
  • cyclic neopentanetetraylbis (2,6-di-tert-butyl-4-methylphenyl) phosphite is preferred.
  • the phosphorus-based antioxidant may be only one type, or two or more types.
  • phenothiazine-based antioxidants examples include phenothiazine, 10-methinoleph enothiazine, 2-methylphenothiazine, 2 _ trifluoromethylphenothiazine etc. Among these, phenothiazine is particularly preferable. .
  • the phenothiazine-based antioxidant may be only one type or two or more types.
  • the ratio of the antioxidant to the positive electrode material composition is not particularly limited, for example, It is preferably 100 to 50000 ppm, and more preferably 500 to 20000 ppm, relative to poly (poly) (solid content). If the amount of the antioxidant is too small, the decrease in the molecular weight of the polymer can not be sufficiently suppressed, and the battery performance of the lithium secondary battery using the manufactured positive electrode may be insufficient, If the amount of the antioxidant is too large, the antioxidant acts as a plasticizer to cause deterioration in the physical properties of the polymer, or lithium ions react with the antioxidant in the battery, resulting in a decrease in battery performance. May cause
  • the positive electrode material composition of the present invention preferably also contains a lithium salt as an electrolyte salt required to form a positive electrode.
  • the lithium salt is not particularly limited as long as it is generally used to form a positive electrode, and is not particularly limited.
  • the electrolyte salt may be only one kind or two or more kinds.
  • the ratio of the electrolyte salt in the positive electrode material composition is not particularly limited, for example, when the polymer is a polyether polymer, the total number of moles of ether oxygen in the polyether polymer, and the mole of the electrolyte salt It is preferable that the value of the number be 1 to 36, more preferably 3 to 33, and still more preferably 6 to 30. If the amount of the electrolyte salt is too small, the ion conductivity will be insufficient and the electrical characteristics will be lowered. On the other hand, if the amount of the electrolyte salt is too large, the ion conductivity improvement effect will not appear if the amount exceeds a certain level. Addition, which is disadvantageous in cost.
  • the positive electrode material composition of the present invention may contain a solvent.
  • the solvent is one that is finally removed by means such as devolatilization when it is molded into a positive electrode, but by including the solvent in the composition, it becomes possible to form an electrolyte salt etc.
  • the component which is hardly soluble in the polymer can be dissolved in a solvent to facilitate mixing of the components, or the viscosity can be adjusted so as to be easy to handle during transportation / storage and the like.
  • the solvent is not particularly limited, and examples thereof include those mentioned above as solvents which can be used to obtain the above-mentioned ethylene oxide-based polymer.
  • the proportion of the solvent in the positive electrode material composition is not particularly limited, and may be set as appropriate.
  • the polymerization reaction solution contains a solvent
  • the polymerization reaction solution is used as it is as a positive electrode material. It may be mixed as a component of the composition, or after the solvent is once removed from the polymerization reaction solution, another solvent may be added as a component of the positive electrode material composition.
  • the positive electrode material composition of the present invention may further contain, if necessary, an antioxidant other than the above-mentioned essential antioxidant (for example, a general-purpose phenol-based antioxidant), an antioxidant, a light stabilizer, and a lubricant. Additives such as antistatic agent, reinforcing agent, and filler, as appropriate, as long as the effects of the present invention are not impaired You may contain.
  • the positive electrode material composition may contain, for example, a component contained in a polymerization reaction solution obtained by polymerization when obtaining the polymer.
  • the positive electrode material composition of the present invention may be in any form such as solution, slurry solution, paste, particles, pellets, fine particles, lumps of desired shape, etc., the polymer, the electrode active material And it can obtain by mixing or kneading each component mentioned above which makes the above-mentioned conductive support agent essential, and devolatilizing or granulating as needed. Also, for example, a solvent may be added again to a composition obtained by granulation once and obtained in the form of particles or pellets to obtain a composition in the form of a solution or a slurry solution.
  • the method of mixing or kneading the above-described components essentially containing the polymer, the electrode active material, and the conductive auxiliary agent is not particularly limited as long as a conventionally known method is adopted, but the positive electrode material composition is not particularly limited. It is preferable that the polymer, the electrode active material, and the conductive auxiliary be uniformly mixed, and it is desirable to adopt a mixing method or a kneading method capable of uniformly mixing these three components.
  • the water content in the positive electrode material composition of the present invention is too large, when the positive electrode formed by molding the composition is used in a battery, the water formed by the reaction of water, metal ion, etc. Although it is not preferable that the material etc. becomes the insulating layer and the cycle characteristics of the battery may be deteriorated, it is not preferable to contain a suitable amount of water in order to obtain good formability when forming the composition into a positive electrode. Sometimes it is better to keep it.
  • the water content in the composition is preferably 0.5 to 5%, more preferably 0.1 to 0.8% with respect to the polymer.
  • the composition although it varies depending on the composition etc., preferably it is 0.01% to 2%, more preferably 0.5% to 0.5%.
  • the composition is obtained through devolatilization, water is also removed together with the solvent at the time of devolatilization, or conversely, water is removed while removing. It may be adjusted by volatilization, or may be adjusted by dehumidifying (humidifying) after volatilization.
  • the positive electrode material composition of the present invention is preferably a coating or molding composition.
  • the positive electrode material composition of the present invention is used for preparation of a positive electrode, and the force of coating to form a film-like positive electrode is for example formed into a desired shape by extrusion and the like to obtain a positive electrode.
  • the solvent is added by adjusting the amount thereof so as to obtain an optimum viscosity according to the apparatus used for coating or molding, or the solvent is subjected to devolatilization.
  • the content of the solvent in the composition may be adjusted by adjusting the processing temperature (such as the temperature at the time of mixing and kneading).
  • the positive electrode material composition of the present invention has a weight-average molecular weight reduction ratio (D Mw ) of the polymer in the composition defined below of not more than 20% after being left for 0.5 hours, and left for 1 hour It is preferable that it is 30% or less later. More preferably, the reduction rate (D Mw ) after standing for 0.5 hours is 15% or less, and the reduction rate (D Mw ) after standing for 1 hour is 20% or less.
  • D Mw weight-average molecular weight reduction ratio
  • the reduction rate of weight average molecular weight of the polymer in the composition (D Mw ): The weight average molecular weight of the polymer in the composition when left to stand under an air atmosphere at 120 ° C. for a certain period of time is Mw. Mw weight average molecular weight of the polymer in the composition before placing.
  • composition decrease rate of the thus 0.5 hours after standing (D Mw) and left for 1 hour after the reduction rate (D Mw) is in a range described above, regardless of the storage method, after transportation and storage Even when a positive electrode material is produced and a lithium secondary battery is produced using the positive electrode material, good battery performance can be exhibited.
  • the above-mentioned decrease is caused by containing at least one antioxidant selected from the group consisting of amine antioxidants, phosphorus antioxidants and phenothiazine antioxidants. Rates can be easily achieved.
  • the components required for the positive electrode material are compounded on the surface as needed, for example, in the case of containing no electrolyte salt, and then the positive electrode is formed by the usual method. It can be done.
  • the lithium battery produced by the usual method using the positive electrode obtained in this manner is excellent in various battery performances such as short test and cycle characteristics.
  • a pressure reduction line is connected to the reactor while maintaining the internal temperature of the reactor containing the slurry solution of the obtained positive electrode material composition at 50 to 53 ° C. 6. 7 to 13.3 k P a A reduced pressure of (50 to 100 mmHg) was applied, and 29 kg of toluene was distilled off to obtain a slurry solution having a solid content of about 70%.
  • the internal temperature is set to 90 ° C while rotating the kneader at 38 rpm, and the reactor is transferred to the kneader main body through the gear pump.
  • the slurry solution was fed and degassed under reduced pressure of 34.7 kPa (26 OmmHg) to distill off toluene.
  • a belt cooler was connected to the outlet of the kneader, and the strand extruded from the outlet of the kneader was cooled and received in the pad, and the pad was left at room temperature for 12 hours or more to dry.
  • from the belt cooler to the pad was covered with a hood to replace the air inside with nitrogen gas throughout the process including drying.
  • using a strand cutter cover the entire apparatus with a hood and cut the strands into pellets by local evacuation while putting the pellets in a tumble dryer and vacuum drying at room temperature for 12 hours or more.
  • the obtained pellet-like positive electrode material composition was left to stand in air at 20 ° C., taken out for an elapsed time shown in Table 2, and used as a sample. Then, add acetonitrile to each sample so that the polymer concentration becomes 1%, stir thoroughly with a Tutch mixer and shaker to dissolve the polymer content, and then filter with a non-aqueous solution (0.45 m). The insoluble matter was filtered, and the obtained filtrate was analyzed by a GPC apparatus ("HCL_8120" manufactured by Tosoh Corporation), and the weight average molecular weight of the polymer in the sample was determined from a calibration curve prepared using a standard molecular weight sample of polyethylene oxide. .
  • Example 2 the amounts of amine-based antioxidant and phosphorus-based antioxidant were changed to 19 g of amine-based antioxidant and 19 g of phosphorus-based antioxidant, respectively, and in Example 3, amine-based antioxidant 9 5 g, except that the phosphorus-based antioxidant was changed to 95 g, in the same manner as in Example 1, a positive electrode material composition was obtained as a uniform slurry solution.
  • the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. And the molecular weight reduction rate with respect to the initial weight average molecular weight (124, 000) of the polymer was calculated. The results are shown in Table 1.
  • a positive electrode material composition was obtained as a uniform slurry solution in the same manner as in Example 1 except that the amine antioxidant and the phosphorus antioxidant were not used.
  • the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. And the initial weight average molecular weight of the polymer (124, 00 The molecular weight reduction rate was calculated with respect to 0). The results are shown in Table 1.
  • a positive electrode material composition was obtained as a uniform slurry solution in the same manner as in Example 1 except that 95 g of "Yoshinox BB" manufactured by Corporation was used.
  • the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. And the molecular weight reduction rate with respect to the initial weight average molecular weight (124, 000) of the polymer was calculated. The results are shown in Table 1.
  • the obtained pellet-like positive electrode material composition is left in air at 20 ° C., taken out for an elapsed time shown in Table 2, and used as a sample as a sample in the same manner as in Example 1 to determine the weight average molecular weight of the polymer in the sample. I asked. Then, the molecular weight reduction rate was calculated relative to the initial weight average molecular weight of the polymer. The results are shown in Table 2.
  • this reactor After replacing the air in a 100 L reactor (this reactor is called “Reactor A”) equipped with Max Blend wings, a hot water jacket, and an addition port with nitrogen gas, the hot water jacket temperature is raised to 70 ° C. Polymer kept warm and preheated to 80 ° C. (Ethylene oxynobutylene oxide copolymer: weight average molecular weight (Mw) 124, 000, molecular weight distribution (Mw / Mn) 1. 4 42. 4 kg of the toluene solution (solid content 45%) was added.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Reactor B this reactor is referred to as “Reactor B”) equipped with a stirring blade (“Super blend wing”, Sumitomo Heavy Industries, Ltd.), a warm water jacket, and an addition port.
  • the reactor is replaced with a phenol-based antioxidant (4, 4'-butylidebibis (6-t-butyl-1-methylphenol): AP Co., Ltd. "Yoshinox BB”) 95 g, toluene 22 39.
  • 6 kg of a mixture of an electrode active material and a conductive additive (“Lithated vandi um oxide / carbon blend", manufactured by US AVE STOR LLC) was sequentially added.
  • the mixture of electrode active material and conductive support left in the hopper and piping is flushed with 4.5 kg of toluene into the reactor, and then the inner blade rotation 75 rpm, normal temperature and pressure for 30 minutes, outer blade Stir at 29 rpm and mix uniformly.
  • the piping of the reactor A is made via the piping previously attached to connect the reactor A and the reactor B.
  • the temperature was raised with a warm water jacket and stirring was carried out at 50 for 2 hours to obtain a precursor composition as a uniform slurry solution.
  • the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. Then, the molecular weight reduction rate was calculated with respect to the initial weight average molecular weight (1 2 4 0 0 0) of the polymer. The results are shown in Table 1.
  • Phosphorus antioxidant cyclic neopentane tetrayl bis (2, 6-di-t-1-1-1-1 methyl phenyl) Phosphate: 0.5% acetonitrile of Asahi Denka "Adekastab PEP-3 6"
  • the solution 16 was stirred at normal temperature with a magnetic stirrer until the antioxidant was dissolved, to obtain a positive electrode material composition as a uniform slurry solution.
  • the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. Then, the molecular weight reduction rate was calculated with respect to the initial weight average molecular weight (1 2 4 0 0 0) of the polymer. The results are shown in Table 1.
  • a precursor composition was obtained in the same manner as in Example 4, and the precursor composition was used as a positive electrode material composition.
  • the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. And the initial weight average molecular weight of the polymer (1 2 4, 0 0
  • the positive electrode material compositions obtained in Examples 4 and 5 and Comparative Example 3 are used as they are in Examples 1 to 3 and Comparative Examples 1 and 2.
  • the positive electrode material composition obtained in the above it is preferable that lithium bis (trifuro reomethanesulfone) imid (L i N (CF 3 S 0 2 ) 2 ) be contained as the electrolyte salt in an amount of 7% by weight in the composition.
  • any battery based on the positive electrode material composition stored in each example It exhibited better performance than the battery based on the positive electrode material composition stored in each of the comparative examples.
  • the positive electrode material composition for a lithium secondary battery according to the present invention is suitably used as a material for producing a positive electrode of a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is a positive electrode material composition for lithium secondary batteries which does not cause deterioration in the battery performance of a lithium secondary battery using a positive electrode which is produced from the positive electrode material composition even though the composition contains a polymer, an electrode active material and a conductive assistant beforehand. Specifically disclosed is a positive electrode material composition for lithium secondary batteries essentially containing a polymer, an electrode active material and a conductive assistant which is characterized by further containing one or more antioxidantsselected from the group consisting of amine antioxidants, phosphorus antioxidants and phenothiazine antioxidants.

Description

明 細 書 リチウム 2次電池用正極材料組成物 技術分野  Description Positive electrode material composition for lithium secondary battery
本発明は、 リチウム 2次電池の作製に用いられる正極材料組成物に関する。 背景技術  The present invention relates to a positive electrode material composition used for producing a lithium secondary battery. Background art
リチウム 2次電池に用いられる正極は、 マトリ ックスを構成するポリマー、 リチウムィ オンの移動を助ける電解質塩 (リチウム塩) 、 リチウムイオンを蓄えておくための電極活 物質、 および電子の移動を手助けするための導電助剤と、 必要に応じて溶媒とを混合 (混 練) してなる組成物を材料として作製されるのが一般的であり、 これまでに、 そのような 組成物を材料として形成された正極を用いた電池が種々提案されている (例えば、 特許文 献 1〜4参照) 。 詳しくは、 正極は、 前記のような組成物を押し出し成形する方法か、 も しくは溶液キャストしたのちに溶媒を脱揮する方法で成形することにより作製されている ところで、 従来、 工業的に正極を製造する際には、 ポリマー、 電解質塩、 電極活物質お よび導電助剤などを混合する工程と、 得られた混合物を成形する工程とは引き続き行なう のが通常であった。 すなわち、 正極の原料となるポリマー、 電解質塩、 電極活物質おょぴ 導電助剤などは正極の成形の直前に混合されているのであり、 正極を製造する際に用いる 各原料は、 通常それぞれ個別に調達されていた。  The positive electrode used in the lithium secondary battery includes a polymer that constitutes the matrix, an electrolyte salt (lithium salt) that helps transfer lithium ions, an electrode active material for storing lithium ions, and electron transfer. In general, a composition obtained by mixing (mixing) a conductive auxiliary agent of the present invention and, if necessary, a solvent is generally used as a material, and in the past, such a composition has been formed as a material. Various batteries using the positive electrode have been proposed (see, for example, Patent Documents 1 to 4). Specifically, the positive electrode is manufactured by a method of extruding the composition as described above or a method of solution casting and devolatizing a solvent. In the production of S, it was usual to carry out the steps of mixing a polymer, an electrolyte salt, an electrode active material, a conductive auxiliary agent and the like, and a step of forming the obtained mixture. That is, the polymer serving as the raw material of the positive electrode, the electrolyte salt, the electrode active material, and the conductive auxiliary agent are mixed immediately before the formation of the positive electrode, and each raw material used in producing the positive electrode is usually individual Were procured.
【特許文献 1】 特表 2 0 0 2— 5 3 5 2 3 5号公報  [Patent Document 1] Special Table 2 0 0 2-5 3 5 2 3 5
【特許文献 2】 米国特許第 5 7 5 5 9 8 5号明細書  [Patent Document 2] US Patent No. 5 7 5 5 9 8 5
【特許文献 3】 国際公開第 0 3 Z 7 5 3 7 5号パンフレツト  [Patent Document 3] International Publication No. 0 3 Z 7 5 3 7 5 Breadlet
【特許文献 4】 国際公開第 0 3ノ 9 2 0 1 7号パンフレツ ト 発明の開示 発明が解決しようとする課題  [Patent Document 4] International Publication No. 0 3 0 9 2 0 1 7 Breadlet Disclosure of the Invention Problems to be Solved by the Invention
しかしながら、 正極製造時の工程の簡略化等を考慮し、 前述した正極の原料のうち電極 活物質および導電助剤をあらかじめマトリックスとするポリマーに混合 (混練) したもの を原料として調達する形態が採用されることがある。 ところが、 そのような調達形態を採 用すると、 各原料をそれぞれ個別に調達し成形直前に混合 (混練) して得た正極を用いて 電池を作製した場合に比べ、 電池性能が著しく劣るという問題が起こることがあった。 そこで、 本発明が解決しょうとする課題は、 ポリマー、 電極活物質および導電助剤をあ らかじめ含有しているにもかかわらず、 作製された正極を用いたリチウム 2次電池の電池 性能が低下することがない、 リチウム 2次電池用正極材料組成物を提供することにある。 課題を解決するための手段  However, in consideration of the simplification of the process at the time of positive electrode production, etc., among the above-mentioned raw materials of positive electrode, the one prepared by mixing (kneading) the electrode active material and the conductive auxiliary agent in advance into the matrix is procured. There is something to be done. However, when such a procurement form is adopted, there is a problem that the battery performance is significantly inferior to the case where a battery is manufactured using a positive electrode obtained by individually procuring each raw material and mixing (kneading) immediately before molding. Happened. Therefore, the problem to be solved by the present invention is that although the polymer, the electrode active material and the conductive auxiliary agent are contained in advance, the battery performance of the lithium secondary battery using the produced positive electrode is An object of the present invention is to provide a positive electrode material composition for a lithium secondary battery which does not decrease. Means to solve the problem
本発明者は、 上記課題を解決するべく、 鋭意検討を行った。 その結果、 ポリマー、 電極 活物質および導電助剤の混合 (混練) 時 (特に、 高温下で溶融混練する場合) や、 混合 ( 混練) したのち成形に供するまでに輸送や貯蔵などのため一定期間保存されている間に、 マトリックスとなるポリマーの分子量が僅かながら低下していること、 さらに、 このポリ マーの分子量低下は、 正極材料用途以外の他の用途では大して問題にならない程度のもの であるが、 リチウム 2次電池用の正極材料においては電池性能に大きな悪影響を及ぼす原 因となることをつきとめた。 そして、 この知見に基づき、 ポリマー、 電極活物質および導 電助剤の混合 (混練) 時や、 混合 (混練) したのち成形に供するまでに輸送や貯蔵などの ため一定期間保存されている間に生じるポリマーの分子量低下を電池性能に影響を及ぼさ ない範囲に抑制する手段について種々検討した結果、 ポリマー、 電極活物質および導電助 剤を含む正極材料組成物に特定の酸化防止剤を含有させておくことが有効であることを見 出し、 このような特定の酸化防止剤を含有する正極材料組成物により作製された正極を用 いたリチウム 2次電池であれば電池性能が低下することがないことを確認して、 本発明を 完成した。 The present inventors diligently studied to solve the above-mentioned problems. As a result, polymer, electrode While mixing (kneading) the active material and the conductive aid (especially when melt kneading under high temperature), or while being mixed (kneaded) before being used for molding, while being stored for a fixed period for transportation or storage Although the molecular weight of the matrix polymer is slightly decreased, and the decrease in molecular weight of this polymer is not a problem in other applications other than the cathode material application, but the lithium secondary battery In the positive electrode materials used for this purpose, we have found that it is a factor that adversely affects battery performance. Then, based on this finding, during mixing (kneading) of the polymer, the electrode active material, and the conductive auxiliary, or while being stored for a certain period for transportation, storage, etc. before mixing (kneading) and before being used for molding. As a result of various investigations on means for suppressing the molecular weight reduction of the resulting polymer to an extent not affecting the battery performance, a specific antioxidant is contained in the positive electrode material composition containing the polymer, the electrode active material and the conductive aid. In the case of a lithium secondary battery using a positive electrode made of a positive electrode material composition containing such a specific antioxidant, the battery performance is not deteriorated. After confirming, the present invention was completed.
すなわち、 本発明にかかるリチウム 2次電池用正極材料組成物は、 ポリマー、 電極活物 質および導電助剤を必須とする正極材料用組成物であって、 アミン系酸化防止剤、 リン系 酸化防止剤およびフエノチアジン系酸化防止剤からなる群より選ばれる 1種以上の酸化防 止剤を含有することを特徴とする。 発明の効果  That is, the positive electrode material composition for a lithium secondary battery according to the present invention is a composition for a positive electrode material that essentially comprises a polymer, an electrode active material and a conductive auxiliary, and is an amine antioxidant, a phosphorus antioxidant And at least one antioxidant selected from the group consisting of phenothiazine-based antioxidants. Effect of the invention
本発明のリチウム 2次電池用正極材料組成物は、 ポリマー、 電極活物質および導電助剤 をあらかじめ含有しているものであるので、 正極製造時の工程の簡略化等が図れると同時 に、 作製された正極を用いたリチウム 2次電池の電池性能が低下するのを防ぐことができ る。 発明を実施するための最良の形態  The positive electrode material composition for a lithium secondary battery of the present invention contains in advance a polymer, an electrode active material and a conductive support agent, so that the process at the time of manufacturing the positive electrode can be simplified. It is possible to prevent the battery performance of the lithium secondary battery using the positive electrode from being degraded. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明にかかるリチウム 2次電池用正極材料組成物 (以下、 単に 「正極材料組成 物」 と称することもある) について詳しく説明するが、 本発明の範囲はこれらの説明に拘 束されることはなく、 以下の例示以外についても、 本発明の趣旨を損なわない範囲で適宜 変更実施し得る。  The positive electrode material composition for a lithium secondary battery according to the present invention (hereinafter sometimes referred to simply as “positive electrode material composition”) will be described in detail below, but the scope of the present invention is bound by these descriptions. However, other than the following examples, modifications can be made as appropriate without departing from the spirit of the present invention.
本発明のリチウム 2次電池用正極材料組成物は、 ポリマー、 電極活物質および導電助剤 を必須とする組成物である。 このように、 本発明の組成物は、 正極材料として必要なポリ マー、 電極活物質おょぴ導電助剤を含むものであるので、 正極製造時の工程の簡略化等が 図れるという利点がある。  The positive electrode material composition for a lithium secondary battery of the present invention is a composition that essentially includes a polymer, an electrode active material, and a conductive additive. As described above, since the composition of the present invention contains a polymer necessary as a positive electrode material, an electrode active material and a conductive auxiliary agent, there is an advantage that the process in manufacturing the positive electrode can be simplified.
正極材料組成物の必須成分である前記ポリマーは、 リチウム 2次電池用正極材料のマト リックスとして通常使用されているものであればよく、 特に制限されないが、 イオン導電 性のポリエーテル重合体であることが好ましい。 特に、 前記ポリマーがエチレンォキシド 系ポリマーであることが正極材料としてより優れた電池性能を発現しうる点で好適である 前記ポリマーとして好適なエチレンォキシド系ポリマーは、 例えば、 エチレンォキシド と、 下記一般式 ( 1 ) : The polymer which is an essential component of the positive electrode material composition is not particularly limited as long as it is usually used as a matrix of a positive electrode material for a lithium secondary battery, and is an ion conductive polyether polymer. Is preferred. In particular, it is preferable that the polymer is an ethylene oxide-based polymer in that the battery performance as a positive electrode material can be further improved. The ethylene oxide-based polymer suitable as the polymer is, for example, ethylene oxide. The following general formula (1):
Figure imgf000004_0001
Figure imgf000004_0001
(式 (1 ) 中、 R i、 R a (R aは、炭素数 1〜 1 6の、アルキル基、 シクロアルキル基、 ァリール基、 ァラルキル甚、 (メタ) ァクリロイル基およびアルケニル基の中のいずれか の基である) または一 C H 2— O— R e— R a基(R eは、一( C H 2— C H 2— O) p—の構 造を有する(Pは 0から 1 0までの整数))) (In the formula (1), R i and R a (where R a is a C1-C16 alkyl group, a cycloalkyl group, a aryl group, an aryl group, a (meth) acryloyl group and an alkenyl group Or a single CH 2 —O—R e — R a group (R e has one (CH 2 —CH 2 —O) p — structure (P is 0 to 10). integer)))
で示される置換ォキシラン化合物とを必須とする単量体混合物を重合させることにより得 ることができる。 前記単量体混合物は、 エチレンォキシドおよび前記置換ォキシラン化合 物のほかに、 他の単量体を含んでいてもよい。 なお、 前記単量体混合物中に占める各モノ マーの割合は、 特に制限されるものではなく適宜設定すればよい。 It can obtain by polymerizing the monomer mixture which makes essential a substituted oxylan compound shown by these. The monomer mixture may contain other monomers in addition to ethylene oxide and the substituted alkoxy compound. The proportion of each monomer in the monomer mixture is not particularly limited and may be appropriately set.
前記構造式 (1 ) で示される置換ォキシラン化合物としては、 例えば、 プロピレンォキ シド、 ブチレンォキシド、 1, 2 _エポキシペンタン、 1 , 2 _エポキシへキサン、 1, 2—エポキシオクタン、 シクロへキセンォキシドおよびスチレンォキシド、 または、 メチ ルグリシジルエーテル、 ェチルダリシジルエーテル、 エチレングリコールメチルダリシジ ルエーテル等を挙げることができる。 また、 置換基 が架橋性の置換基であるものとし ては、 例えば、 エポキシブテン、 3, 4 _エポキシ一 1一ペンテン、 1, 2—エポキシ一 5 , 9—シクロドデカジエン、 3 , 4—エポキシ一 1—ビュルシクロへキセン、 1, 2— エポキシ一 5—シクロォクテン、 アクリル酸グリシジル、 メタクリル酸グリシジル、 ソル ビン酸グリシジルおよびグリシジル一 4—へキサノエート、 または、 ビニルダリシジルェ 一テル、 ァリルグリシジルエーテル、 4―ビュルシク口へキシルグリシジルエーテル、 a —テノレぺニノレグリシジノレエ一テノレ、 シクロへキセ二/レメチノレグリシジノレエーテ /レ、 4—ビ ニルベンジルグリシジルエーテル、 4—ァリルべンジルグリシジルエーテル、 ァリルダリ シジルエーテル、 エチレングリコールァリルグリシジルエーテル、 エチレングリコールビ ニルダリシジルエーテル、 ジエチレングリコールァリルグリシジルエーテル、 ジエチレン グリコールビニルグリシジルエーテル、 トリエチレングリコールァリルグリシジルエーテ ル、 トリエチレングリコールビニルダリシジルエーテル、 オリゴエチレングリコールァリ ルグリシジルエーテルおよびオリゴエチレンダリコールビニルダリシジルエーテル等が挙 げられる。 置換ォキシラン化合物は、 1種のみであっても 2種以上であってもよい。  Examples of substituted oxisilane compounds represented by the above structural formula (1) include propylene oxide, butylene oxide, 1,2 _ epoxypentane, 1,2 _ epoxyhexane, 1,2 epoxy octane, cyclohexenoxide and styrene oxide. Or methyl glycidyl ether, cetyl dalysidyl ether, ethylene glycol methyl dalysyl ether, and the like. Also, assuming that the substituent is a crosslinkable substituent, it is possible to use, for example, epoxy butene, 3,4-epoxy 1 1 1 penten, 1, 2-epoxy 1 5, 9-cyclododecadiene, 3, 4- Epoxy-1-vinylcyclohexene, 1,2-epoxy-5-cyclooctene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate and glycidyl 1-4-hexanoate, or, vinyl glycidyl ether, aryl glycidyl Ether, 4-Buulchix hexyl glycidyl ether, a- Tenorepini nole glycidno leece one-nore, Cyclohexene / Remethinole glycidino reate / Re, 4-Vinyl benzyl glycidyl ether, 4-Aryl benzyl Glycidyl ether, aryl glycidyl ether, ethylene glycol paryl glycidyl Ether, ethylene glycol vinyl glycidyl ether, diethylene glycol paryl glycidyl ether, diethylene glycol vinyl glycidyl ether, triethylene glycol palyl glycidyl ether, triethylene glycol vinyl dalysyl ether, oligo ethylene glycol gallyl glycidyl ether and oligo ethylene Examples include dalicol vinyl dalysidyl ether. The number of substituted oxylan compounds may be one or two or more.
前記エチレンォキシド系ポリマ一を得るに際しては、 前記単量体混合物を溶媒の中で撹 拌しながら重合するようにすればよい。 このような重合の方法としては、 特に限定はされ ないが、 例えば、 溶液重合法や沈殿重合法などを好ましく挙げることができ、 なかでも、 溶液重合法が生産性に優れているためより好ましく、 予め仕込んだ溶媒に原料となる各モ ノマーを供給しながら重合を行う溶液重合法が、 反応熱を除熱しやすいなどの安全性のた め、 特に好ましい。 なお、 前記重合においては、 通常用いられている重合開始剤、 可溶ィ匕 剤などを添加して用いるようにしてもよい。 In order to obtain the ethylene oxide-based polymer, the monomer mixture may be polymerized while being stirred in a solvent. The method for such polymerization is not particularly limited, but preferred examples include a solution polymerization method and a precipitation polymerization method. Among them, the solution polymerization method is more preferable because it has excellent productivity. A solution polymerization method in which polymerization is performed while supplying each monomer as a raw material to a previously charged solvent is particularly preferable because of safety such as easy removal of heat of reaction. In the above polymerization, a commonly used polymerization initiator, An agent or the like may be added and used.
前記溶媒としては、 例えば、 ベンゼン、 トルエン、 キシレンおよびェチルベンゼンなど の芳香族炭化水素系溶媒;ヘプタン、 オクタン、 n—へキサン、 n—ペンタン、 2, 2, 4ートリメチルペンタンなどの脂肪族炭化水素系溶媒;シクロへキサン、 メチルシクロへ キサンなどの脂環式炭化水素系溶媒;ジェチルエーテル、 ジブチルエーテル、 メチルプチ ルエーテルなどのエーテル系溶媒;ジメ トキシェタンなどのエチレンダリコールジアルキ ルエーテル類の溶媒; T H F (テトラヒドロフラン) 、 ジォキサンなどの環状エーテル系 溶媒;等の水酸基等の活性水素を含まない有機溶媒が好ましく、 トルエンおよびキシレン がより好ましい。 さらに、 前記溶媒は、 水を全く含まない有機溶媒であることが、 水分と 金属ィオン分などとが反応して生成する水酸化物等が絶縁層となり電池のサイクル特性が 悪化するという問題を回避するうえでは、 好ましい。  Examples of the solvent include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene; and aliphatic hydrocarbons such as heptane, octane, n-hexane, n-pentane, and 2, 2, 4-trimethylpentane. Aliphatic hydrocarbon solvents such as cyclohexane and methyl cyclohexane; ether solvents such as jetyl ether, dibutyl ether and methyl butyl ether; solvents of ethylene diallyl dialkyl ethers such as dimethoxetane; THF Organic solvents which do not contain active hydrogen such as hydroxyl groups such as cyclic ether solvents such as (tetrahydrofuran) and dioxan; etc. are preferable, and toluene and xylene are more preferable. Furthermore, that the solvent is an organic solvent that does not contain water at all avoids the problem that hydroxide and the like generated by the reaction of water and metal ions become an insulating layer and the cycle characteristics of the battery are degraded. It is preferable to do it.
前記ポリマーの重量平均分子量 (Mw) は、 特に限定はされないが、 2 0, 0 0 0〜5 0 0 , 0 0 0であることが好ましく、 より好ましくは 3 0, 0 0 0〜 3 0 0 , 0 0 0、 さ らに好ましくは 4.0 , 0 0 0〜2 0 0 , 0 0 0である。 重量平均分子量が 2 0, 0 0 0未 満であると、 成形して正極とする際にタックが生じるおそれがあり、 一方、 5 0 0, 0 0 0を超えると、 成形自体が困難となり、 加工性およびハンドリング性が低下するおそれが ある。  The weight average molecular weight (Mw) of the polymer is not particularly limited, but is preferably 2 0 0 0 5-0 0 0 0 0 0, more preferably 3 0 0 0 0 0 3 0 0 , 0 0 0, and more preferably 4.0, 0 0 0 to 2 0 0, 0 0 0. If the weight average molecular weight is less than 20, 00, there is a risk that tack will occur when forming into a positive electrode, while if it exceeds 500, the forming itself becomes difficult, Processability and handling may be reduced.
前記ポリマーの分子量分布 (MwZM n ) は、 特に限定はされないが、 3以下であるこ とが好ましく、 より好ましくは 2以下である。 分子量分布が 3を超えると、 成形して正極 とする際にタックが生じたり、 ハンドリング性が悪くなるおそれがある。  The molecular weight distribution (MwZMn) of the polymer is not particularly limited, but is preferably 3 or less, more preferably 2 or less. When the molecular weight distribution exceeds 3, there is a risk that tackiness may occur when the molded product is made into a positive electrode, or the handling property may be deteriorated.
正極材料組成物の必須成分である前記電極活物質は、 リチウムイオンを可逆的に挿入 Z 脱離することにより充電 放電することを可能にするものであり、 正極を形成するのに通 常用いられているものであればよく、 特に制限されないが、 例えば、 リチウムバナジウム 複合酸化物、 リチウムコバルト複合酸化物、 リチウムマンガン複合酸化物、 リチウムニッ ケル複合酸化物等が挙げられ、 中でも、 L i x V y O z (ただし、 x、 yおよび zは、 そ れぞれ互いに独立、 かつ、 0 < x≤2、 y = (m x + 2 z ) / n、 および z = (m x + n y ) / 2 (ただし、 mは L iの価数であり、 nは Vの価数で 4以上の実数ある。 ) を満足 する実数である。 ) であることが、 高容量かつ高電圧の優れた性能を有するリチウム 2次 電池を作製しうる正極が得られる点で、 特に好ましい。 電極活物質は 1種のみであっても よいし、 2種以上であってもよい。  The electrode active material, which is an essential component of a positive electrode material composition, enables charge and discharge by reversibly inserting and desorbing lithium ions, and is usually used to form a positive electrode. No particular limitation is imposed on the material, and examples thereof include lithium vanadium complex oxide, lithium cobalt complex oxide, lithium manganese complex oxide, lithium nickel complex oxide and the like, among which L ix V y O z (however, x, y and z are independent of each other, and 0 <x≤2, y = (mx + 2 z) / n, and z = (mx + ny) / 2 , M is a valence number of Li, n is a real number satisfying valence number of V of 4 or more.) Lithium which has excellent performance of high capacity and high voltage. Particularly preferred is that a positive electrode capable of producing a secondary battery can be obtained. Yes. The electrode active material may be only one type, or two or more types.
正極材料組成物に占める前記電極活物質の割合は、 特に制限されないが、 例えば、 前記 ポリマーに対して重量基準で 0 . 1〜5 0倍であることが好ましく、 より好ましくは 0 . 3〜2 0倍、 さらに好ましくは 0 . 5 ~ 1 0倍であるのがよい。 電極活物質が少なすぎる と、 正極としての機能が充分に発揮されない恐れがあり、 一方、 電極活物質が多すぎると 、 成形が困難となる恐れがある。  The proportion of the electrode active material in the positive electrode material composition is not particularly limited, but is preferably, for example, 0.1 to 50 times by weight the polymer, and more preferably 0.3 to 2 times. It is preferable to be 0 times, more preferably 0.5 to 10 times. If the amount of the electrode active material is too small, the function as the positive electrode may not be sufficiently exhibited. On the other hand, if the amount of the electrode active material is too large, molding may be difficult.
正極材料組成物の必須成分である前記導電助剤としては、 正極を形成するのに通常用い られているものであればよく、 特に制限されないが、 例えば、 アセチレンブラック、 ケッ チェンブラック、 グラフアイト等が挙げられる。 導電助剤は 1種のみであってもよいし、 2種以上であってもよい。  The conductive auxiliary agent, which is an essential component of the positive electrode material composition, is not particularly limited as long as it is generally used to form a positive electrode, and examples thereof include acetylene black, ketjen black, Graphite, etc. Can be mentioned. The conductivity assistant may be only one kind or two or more kinds.
正極材料組成物に占める前記導電助剤の割合は、 特に制限されないが、 例えば、 前記電 極活物質 1 0 0重量部に対して 0 . 1〜2 0重量部であることが好ましく、 より好ましく は 1〜1 5重量部であるのがよい。 導電助剤が少なすぎると、 正極の導電性が不充分とな る恐れがあり、 一方、 導電助剤が多すぎると、 成形が困難となる恐れがある。 The proportion of the conductive auxiliary agent in the positive electrode material composition is not particularly limited. The amount is preferably 0.1 to 20 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the extremely active material. If the amount of the conductive additive is too small, the conductivity of the positive electrode may be insufficient. On the other hand, if the amount of the conductive additive is too large, molding may be difficult.
本発明の正極材料組成物は、 アミン系酸化防止剤、 リン系酸化防止剤およぴフニノチア ジン系酸化防止剤からなる群より選ばれる 1種以上の酸化防止剤を含有するものである。 これにより、 前記ポリマーの分子量低下を電池性能に影響を及ぼさない範囲に抑制し、 作 製された正極を用いたリチウム 2次電池の電池性能が低下するのを防ぐことができる。 本 発明においては、 特に、 前記酸化防止剤がアミン系酸化防止剤およびリン系酸化防止剤で あることが、 少ない量で効果的に分子量低下を抑制できる点から好ましい。  The positive electrode material composition of the present invention contains one or more antioxidants selected from the group consisting of amine antioxidants, phosphorus antioxidants and phosphine oxides antioxidants. Thereby, it is possible to suppress the decrease in molecular weight of the polymer to a range not affecting the battery performance, and to prevent the battery performance of the lithium secondary battery using the manufactured positive electrode from being degraded. In the present invention, in particular, it is preferable that the above-mentioned antioxidant is an amine-based antioxidant and a phosphorus-based antioxidant from the viewpoint that molecular weight reduction can be effectively suppressed with a small amount.
前記アミン系酸化防止剤としては、 例えば、 ビス (4 _ t一ブチルフエニル) ァミン、 ポリ (2, 2 , 4一トリメチル一 1, 2—ジヒ ドロキノリン) 、 6—エトキシ一 1, 2— ジヒ ドロー 2 , 2, 4 _トリメチルキノリン、 ジフエニルァミンとアセトンとの反応物、 1 - (N—フエニルァミノ) 一ナフタレン、 ジフエニルァミン誘導体、 ジアルキルジフエ ニルァミン類、 N, N, 一ジフエニル一 p—フエ二レンジァミン、 混合ジァリル _ p—フ ェニレンジァミン、 N—フエニル一 N, 一イソプロピル一 p—フエ二レンジァミン、 N, N ' —ジ一 2—ナフチル一 p—フエ二レンジァミン等が挙げられ、 これらの中でも特に、 ビス (4— t _ブチルフエニル) ァミンが好ましい。 なお、 アミン系酸化防止剤は、 1種 のみであってもよいし、 2種以上であってもよい。  Examples of the amine-based antioxidants include bis (4_t-butylphenyl) phamine, poly (2,2 and 4 trimethyl 1, 2 2 dihydroquinoline), 6-ethoxy and 1,2 2 -dich 2 , 2,4 _ trimethylquinoline, reaction product of diphenylamine and acetone, 1-(N-phenylamino) mononaphthalene, diphenylamine derivative, dialkyl diphenyl lamines, N, N, mono diphenyl mono p-pheni radiamine, mixed gyalyl _ p-phenylenediamine, N-phenyl-one N, monoisopropyl-one-p-phenylediamine, N, N'-di- 2-naphthyl-one-p-phenylediamine, etc. —T_butylphenyl) amine is preferred. The amine antioxidant may be one type alone, or two or more types.
前記リン系酸化防止剤としては、 例えば、 トリフヱニルホスファイ ト、 ジフエニルイソ デシルホスファイ ト、 フエニルジイソデシルホスファイ ト、 4, 4 ' —ブチリデン一ビス Examples of the above-mentioned phosphorus-based antioxidants include trififnyl phosphate, diphenyl isodecyl phosphate, phenyl diisodecyl phosphate, and 4,4′-butylidene bis.
( 3—メチル _ 6— t—ブチルフエニルジトリデシル) ホスフアイ ト、 (3-Methyl _ 6-t-butylphenylditridecyl) phosphate,
サイクリックネオペンタンテトライルビス (ォクタデシルホスファイ ト) 、 トリス (ノニ ルフエニルホスフアイ ト) 、 トリス (モノ (またはジ) ノユルフェニル) ホスファイ ト、 ジイソデシルペンタエリスリ トールジホスファイ ト、 9, 1 0—ジヒ ドロ一 9—ォキサ一 1 0—ホスファフェナントレン一 1 0—オキサイ ド、 1 0— ( 3, 5—ジ一 t—ブチル一 4—ヒ ドロキシベンジル) 一 9, 1 0—ジヒ ドロ一 9一ォキサ一 1 0 _ホスファフェナン トレン _ 1 0—オキサイ ド、 1 0—デシ口キシ一 9, 1 0—ジヒ ドロ _ 9—ォキサ一 1 0 —ホスファフェナントレン一 1 0—オキサイ ド、 トリス (2, 4—ジ _ t—ブチルフエ二 ル) ホスファイト、 サイクリックネオペンタンテトライルビス (2, 4—ジ一 t一ブチル フエニル) ホスファイ ト、 サイクリックネオペンタンテトライルビス (2, 6—ジ一 t— ブチルー 4—メチルフエニル) ホスファイ ト、 2, 2—メチレンビス (4, 6—ジー t— ブチルフエニル) ォクチルホスファイト等が挙げられ、 これらの中でも特に、 サイクリツ クネオペンタンテトライルビス (2, 6—ジ一 t—ブチル一 4—メチルフエニル) ホスフ アイトが好ましい。 なお、 リン系酸化防止剤は、 1種のみであってもよいし、 2種以上で あってもよい。 Cyclic neopentane tetrayl bis (octadecyl phosphate), tris (nonphenyl phenyl phosphate), tris (mono (or di) noyl phenyl) phosphate, diisodecyl pentaerythritol diphosphate, 9, 10-Dihydro 1 9-Oxa 1 1 0-Phosphaphenanthrene 1 1 0-Oxide, 1 0-(3, 5-Di-t-butyl-1- 4-hydroxybenzyl) 1 9, 1 0- Dihydro 1 9 1 Oxa 1 1 0 _ Phosphaphenanthrene _ 1 0 0-Oxide, 1 0-Decipheral 9, 1 0-Dihydro _ 9-Oxa 1 1 0-Phosphaphenanthrene 1 0 0-Oxide , Tris (2, 4-di-t-butylphenyl) phosphite, cyclic neopentanetetrayl bis (2, 4-di-t-butylphenyl) phosphate, cyclic Cu neopentane tetrayl bis (2,6-di-tert-butyl-4-methylphenyl) phosphate, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite etc. are mentioned, among these In particular, cyclic neopentanetetraylbis (2,6-di-tert-butyl-4-methylphenyl) phosphite is preferred. The phosphorus-based antioxidant may be only one type, or two or more types.
前記フエノチアジン系酸化防止剤としては、 例えば、 フエノチアジン、 1 0—メチノレフ エノチアジン、 2—メチルフエノチアジン、 2 _トリフルォロメチルフエノチアジン等が 挙げられ、 これらの中でも特に、 フエノチアジンが好ましい。 なお、 フエノチアジン系酸 化防止剤は、 1種のみであってもよいし、 2種以上であってもよい。  Examples of the phenothiazine-based antioxidants include phenothiazine, 10-methinoleph enothiazine, 2-methylphenothiazine, 2 _ trifluoromethylphenothiazine etc. Among these, phenothiazine is particularly preferable. . The phenothiazine-based antioxidant may be only one type or two or more types.
正極材料組成物に占める前記酸化防止剤の割合は、 特に制限されないが、 例えば、 前記 ポリ々一 (固形分) に対して 100〜50000 p pmであることが好ましく、 500〜 20000 p pmであることがより好ましい。 酸化防止剤が少なすぎると、 ポリマ一の分 子量低下を充分に抑制することができず、 作製された正極を用いたリチウム 2次電池の電 池性能が不充分となる恐れがあり、 一方、 酸化防止剤が多すぎると、 酸化防止剤が可塑剤 として作用しポリマーの物性低下を招いたり、 電池内でリチウムイオンが酸化防止剤と反 応しゃすくなったりし、 結果として電池性能の低下を引き起こす恐れがある。 Although the ratio of the antioxidant to the positive electrode material composition is not particularly limited, for example, It is preferably 100 to 50000 ppm, and more preferably 500 to 20000 ppm, relative to poly (poly) (solid content). If the amount of the antioxidant is too small, the decrease in the molecular weight of the polymer can not be sufficiently suppressed, and the battery performance of the lithium secondary battery using the manufactured positive electrode may be insufficient, If the amount of the antioxidant is too large, the antioxidant acts as a plasticizer to cause deterioration in the physical properties of the polymer, or lithium ions react with the antioxidant in the battery, resulting in a decrease in battery performance. May cause
本発明の正極材料組成物は、 正極を形成するのに必要となる電解質塩としてリチウム塩 をも含有していることが好ましい。 前記リチウム塩としては、 正極を形成するのに通常用 いられているものであればよく、 特に制限されないが、 例えば、 フッ素イオン、 塩素ィォ ン、 臭素イオン、 ヨウ素イオン、 ヘプタフルォロプロピルスルホン酸イオン、 ビス (トリ フルォロメタンスルホニル) イミ ドイオン、 ビス (ヘプタフルォロプロピルスルホニル) ィミ ドイオン、 トリフルォロスルホンィミ ドイオン、 テトラフルォロホウ素酸イオン、 硝 酸イオン、 As F6—、 PF6 、 ステアリルスルホン酸イオン、 ォクチルスルホン酸ィォ ン、 ドデシルベンゼンスルホン酸イオン、 ナフタレンスルホン酸イオン、 ドデシルナフタ レンスルホン酸イオン、 および 7, 7, 8, 8—テトラシァノ一 p—キノジメタンイオン からなる群より選ばれた陰イオンと、 L iイオンとからなる塩等が挙げられる。 これらの 中でも、 L i BF4、 L i PF6、 L i CF3S〇3、 L i C4F9S03、 L i N (C F3 S 02) 2、 L i N (C2F6S02) 2がより好ましい。 電解質塩は 1種のみであってもよい 'し、 2種以上であってもよい。 The positive electrode material composition of the present invention preferably also contains a lithium salt as an electrolyte salt required to form a positive electrode. The lithium salt is not particularly limited as long as it is generally used to form a positive electrode, and is not particularly limited. For example, fluorine ion, chlorine ion, bromine ion, iodine ion, heptafluoropropyl Sulfonate ion, bis (trifluoromethanesulfonyl) imide ion, bis (heptafluoropropylsulfonyl) ion, trifluorosulfonate ion, tetrafluoroboronate ion, nitrate ion, As F 6— , PF 6 , stearyl sulfonate ion, octyl sulfonate ion, dodecylbenzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion, and 7,7,8,8-tetracyano-p-quinodi Anions selected from the group consisting of methane ions, L i ions and Ranaru salts and the like. These inter alia, L i BF 4, L i PF 6, L i CF 3 S_〇 3, L i C 4 F 9 S0 3, L i N (CF 3 S 0 2) 2, L i N (C 2 F 6 S0 2 ) 2 is more preferred. The electrolyte salt may be only one kind or two or more kinds.
正極材料組成物に占める前記電解質塩の割合は、 特に制限されないが、 例えば、 前記ポ リマーがポリエーテル重合体である場合、 該ポリエーテル重合体中のエーテル酸素の総モ ル数 電解質塩のモル数の値が 1〜36となるようにするのが好ましく、 より好ましくは 3-33, さらに好ましくは 6〜30となるようにするのがよい。 電解質塩が少なすぎる と、 イオン伝導性が不足するため電気特性の低下をもたらすことになり、 一方、 電解質塩 が多すぎても、 ある程度以上になるとイオン伝導性の向上効果は現れないため、 無駄な添 加となりコスト的に不利になる。  Although the ratio of the electrolyte salt in the positive electrode material composition is not particularly limited, for example, when the polymer is a polyether polymer, the total number of moles of ether oxygen in the polyether polymer, and the mole of the electrolyte salt It is preferable that the value of the number be 1 to 36, more preferably 3 to 33, and still more preferably 6 to 30. If the amount of the electrolyte salt is too small, the ion conductivity will be insufficient and the electrical characteristics will be lowered. On the other hand, if the amount of the electrolyte salt is too large, the ion conductivity improvement effect will not appear if the amount exceeds a certain level. Addition, which is disadvantageous in cost.
本発明の正極材料組成物は、 溶媒を含有するものであってもよい。 溶媒は、 成形して正 極とする際には最終的に脱揮などの手段によって除去されるものであるが、 組成物中に溶 媒を含有させておくことにより、 電解質塩等のように前記ポリマーには溶解しにくい成分 を溶媒に溶解させて各成分の混合を容易にしたり、 輸送 ·貯蔵などの際に取扱い易いよう 粘度を調整したりすることができる。 溶媒としては、 特に制限はないが、 例えば、 前記ェ チレンォキシド系ポリマーを得る際に用いることのできる溶媒として前述したもの等が挙 げられる。 正極材料組成物に占める前記溶媒の割合は、 特に制限されず、 適宜設定すれば よい。 なお、 前述したエチレンォキシド系ポリマーのように前記ポリマーを溶媒を用いた 重合法で得る場合には、 重合反応液中に溶媒が含まれているので、 該重合反応液をそのま ま正極材料組成物の成分として混合するようにしてもよいし、 重合反応液から一旦溶媒を 除去したのちに正極材料組成物の成分として他の溶媒を加えるようにしてもよい。  The positive electrode material composition of the present invention may contain a solvent. The solvent is one that is finally removed by means such as devolatilization when it is molded into a positive electrode, but by including the solvent in the composition, it becomes possible to form an electrolyte salt etc. The component which is hardly soluble in the polymer can be dissolved in a solvent to facilitate mixing of the components, or the viscosity can be adjusted so as to be easy to handle during transportation / storage and the like. The solvent is not particularly limited, and examples thereof include those mentioned above as solvents which can be used to obtain the above-mentioned ethylene oxide-based polymer. The proportion of the solvent in the positive electrode material composition is not particularly limited, and may be set as appropriate. When the polymer is obtained by a polymerization method using a solvent as in the case of the ethylene oxide-based polymer described above, since the polymerization reaction solution contains a solvent, the polymerization reaction solution is used as it is as a positive electrode material. It may be mixed as a component of the composition, or after the solvent is once removed from the polymerization reaction solution, another solvent may be added as a component of the positive electrode material composition.
本発明の正極材料組成物は、 さらに必要に応じて、 例えば、 前述した必須の酸化防止剤 以外の酸化防止剤 (例えば、 汎用のフエノール系酸化防止剤) 、 老化防止剤、 光安定剤、 滑剤、 帯電防止剤、 補強剤、 充填剤等の添加剤を、 本発明の効果を損なわない範囲で適宜 含有していてもよい。 また、 正極材料組成物は、 例えば、 前記ポリマーを得る際の重合で 得られた重合反応液に含まれる成分を含有していてもよい。 The positive electrode material composition of the present invention may further contain, if necessary, an antioxidant other than the above-mentioned essential antioxidant (for example, a general-purpose phenol-based antioxidant), an antioxidant, a light stabilizer, and a lubricant. Additives such as antistatic agent, reinforcing agent, and filler, as appropriate, as long as the effects of the present invention are not impaired You may contain. In addition, the positive electrode material composition may contain, for example, a component contained in a polymerization reaction solution obtained by polymerization when obtaining the polymer.
本発明の正極材料組成物は、 溶液状、 スラリー溶液状、 ペースト状、 粒子状、 ペレツト 状、 微粒子状、 所望の形の塊状など、 いかなる形態であってもよく、 前記ポリマー、 前記 電極活物質および前記導電助剤を必須とする前述した各成分を混合もしくは混練し、 必要 に応じて脱揮や造粒を施すことにより得ることができる。 また、 例えば、 一度造粒して粒 子状やペレット状で得た組成物に、 再度溶媒を加え、 溶液状やスラリー溶液状の組成物と して得ることもできる。  The positive electrode material composition of the present invention may be in any form such as solution, slurry solution, paste, particles, pellets, fine particles, lumps of desired shape, etc., the polymer, the electrode active material And it can obtain by mixing or kneading each component mentioned above which makes the above-mentioned conductive support agent essential, and devolatilizing or granulating as needed. Also, for example, a solvent may be added again to a composition obtained by granulation once and obtained in the form of particles or pellets to obtain a composition in the form of a solution or a slurry solution.
前記ポリマー、 前記電極活物質および前記導電助剤を必須とする前述した各成分を混合 もしくは混練する方法については、 従来公知の方法を採用すればよく特に制限されないが 、 正極材料組成物は、 特に、 前記ポリマー、 前記電極活物質および前記導電助剤が均一に 混合されてなることが好ましく、 これら 3成分を均一に混合しうる混合方法もしくは混練 方法を採用することが望ましい。  The method of mixing or kneading the above-described components essentially containing the polymer, the electrode active material, and the conductive auxiliary agent is not particularly limited as long as a conventionally known method is adopted, but the positive electrode material composition is not particularly limited. It is preferable that the polymer, the electrode active material, and the conductive auxiliary be uniformly mixed, and it is desirable to adopt a mixing method or a kneading method capable of uniformly mixing these three components.
本発明の正極材料組成物中の水分含有量は、 多すぎると、 該組成物を成形してなる正極 を電池に用いた際に、 水分と金属ィオン分などとが反応して生成する水酸化物等が絶縁層 となり電池のサイクル特性が悪化するおそれがあり、 好ましくないのであるが、 該組成物 を正極に成形する際に良好な成形性を得るためには、 適度に水分を含有させておく方が良 い場合がある。 この場合、 具体的には、 組成物中の水分含有量は、 前記ポリマーに対して は、 好ましくは 0 . 0 0 5〜 5 %、 より好ましくは 0 . 1〜 0 . 8 %であるのがよく、 組 成物に対しては、 その組成等によって異なるが、 好ましくは 0 . 0 0 1〜 2 %、 より好ま しくは 0 . 0 5〜 0 . 5 %であるのがよい。 組成物中の水分含有量を前記範囲に調節する 方法としては、 例えば、 脱揮を経て組成物を得るようにし、 脱揮の際に溶媒とともに水分 も除去したり、 逆に水を加えながら脱揮を行ったりして調整するか、.脱揮後に調湿 (加湿 ) することで調整するようにすればよい。  When the water content in the positive electrode material composition of the present invention is too large, when the positive electrode formed by molding the composition is used in a battery, the water formed by the reaction of water, metal ion, etc. Although it is not preferable that the material etc. becomes the insulating layer and the cycle characteristics of the battery may be deteriorated, it is not preferable to contain a suitable amount of water in order to obtain good formability when forming the composition into a positive electrode. Sometimes it is better to keep it. In this case, specifically, the water content in the composition is preferably 0.5 to 5%, more preferably 0.1 to 0.8% with respect to the polymer. For the composition, although it varies depending on the composition etc., preferably it is 0.01% to 2%, more preferably 0.5% to 0.5%. As a method of adjusting the water content in the composition to the above-mentioned range, for example, the composition is obtained through devolatilization, water is also removed together with the solvent at the time of devolatilization, or conversely, water is removed while removing. It may be adjusted by volatilization, or may be adjusted by dehumidifying (humidifying) after volatilization.
本発明の正極材料組成物は、 コーティング用または成形用の組成物であることが好まし い。 本発明の正極材料組成物は正極の作製に用いるものであり、 コーティングにより膜状 の正極とする力 例えば押し出し成形などにより所望の形状に成形して正極とされるから である。 正極材料組成物をコーティング用または成形用の組成物とする場合、 コーティン グゃ成形に用いる装置に応じた最適な粘度になるよう、 溶媒をその量を調整して添加した り、 脱揮を施したり、 加工温度 (混合 ·混練時の温度など) を調整したりすることによつ て、 組成物中の溶媒の含有量を調整すればよい。  The positive electrode material composition of the present invention is preferably a coating or molding composition. The positive electrode material composition of the present invention is used for preparation of a positive electrode, and the force of coating to form a film-like positive electrode is for example formed into a desired shape by extrusion and the like to obtain a positive electrode. When the positive electrode material composition is used as a composition for coating or molding, the solvent is added by adjusting the amount thereof so as to obtain an optimum viscosity according to the apparatus used for coating or molding, or the solvent is subjected to devolatilization. The content of the solvent in the composition may be adjusted by adjusting the processing temperature (such as the temperature at the time of mixing and kneading).
本発明の正極材料組成物は、 下記で定義される組成物中のポリマーの重量平均分子量の 減少率 (DMw) 1 0 . 5時間放置後には 2 0 %以下であり、 かつ、 1時間放置後には 3 0 %以下であることが好ましい。 より好ましくは、 0 . 5時間放置後の減少率 (DMw) は 1 5 %以下であり、 かつ、 1時間放置後の減少率 (DMw) は 2 0 %以下であるのがよい。 The positive electrode material composition of the present invention has a weight-average molecular weight reduction ratio (D Mw ) of the polymer in the composition defined below of not more than 20% after being left for 0.5 hours, and left for 1 hour It is preferable that it is 30% or less later. More preferably, the reduction rate (D Mw ) after standing for 0.5 hours is 15% or less, and the reduction rate (D Mw ) after standing for 1 hour is 20% or less.
組成物中のポリマーの重量平均分子量の減少率 (DMw) : 1 2 0 °Cの空気雰囲気下に 一定時間放置したときの組成物中のポリマーの重量平均分子量を Mwとし、 前記雰囲気下 に置く前の組成物中のポリマーの重量平均分子量を Mw。としたときに、 The reduction rate of weight average molecular weight of the polymer in the composition (D Mw ): The weight average molecular weight of the polymer in the composition when left to stand under an air atmosphere at 120 ° C. for a certain period of time is Mw. Mw weight average molecular weight of the polymer in the composition before placing. When you
DMw (%) 〔 (Mw。― Mw) /Mw0] X I 0 0 D Mw (%) [(Mw.-Mw) / Mw 0 ] XI 0 0
で表される値である。 このように 0. 5時間放置後の減少率 (DMw) および 1時間放置後の減少率 (DMw) が 前述した範囲となる組成物であれば、 保存方法に関わらず、 輸送 ·貯蔵後に正極材料を作 製し、 該正極材料を用いてリチウム 2次電池を作製したときにも、 良好な電池性能を発現 させることができる。 本発明においては、 前述したように、 アミン系酸化防止剤、 リン系 酸化防止剤およびフエノチアジン系酸化防止剤からなる群より選ばれる 1種以上の酸化防 止剤を含有することにより、 前述した減少率を容易に達成することができる。 Is a value represented by If composition decrease rate of the thus 0.5 hours after standing (D Mw) and left for 1 hour after the reduction rate (D Mw) is in a range described above, regardless of the storage method, after transportation and storage Even when a positive electrode material is produced and a lithium secondary battery is produced using the positive electrode material, good battery performance can be exhibited. In the present invention, as described above, the above-mentioned decrease is caused by containing at least one antioxidant selected from the group consisting of amine antioxidants, phosphorus antioxidants and phenothiazine antioxidants. Rates can be easily achieved.
本発明の正極材料組成物は、 電解質塩を含有しない場合にはこれを含有させるなど必要 に応じてざらに正極材料に要する成分を配合したのち、 通常の方法で成形することによつ て正極とすることができる。 このようにして得られた正極を用いて通常の方法で作製され たリチウム電池は、 ショートテストゃサイクル特性などの各種電池性能に優れたものとな る。 実施例  In the positive electrode material composition of the present invention, the components required for the positive electrode material are compounded on the surface as needed, for example, in the case of containing no electrolyte salt, and then the positive electrode is formed by the usual method. It can be done. The lithium battery produced by the usual method using the positive electrode obtained in this manner is excellent in various battery performances such as short test and cycle characteristics. Example
以下に、 実施例および比較例によって本発明をより具体的に説明するが、 本発明はこれ らに限定されるものではない。 以下、 特に断りのない限り、 「重量%」 を 「%」 と、 「重 量部」 を 「部」 と、 記すこととする。  EXAMPLES The present invention will be more specifically described below by Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless stated otherwise, “% by weight” is described as “%” and “weight part” is described as “part”.
〔実施例 1〕  [Example 1]
攪拌翼 ( 「スーパーブレンド翼」 住友重機械工業 (株) 製) 、 温水ジャケッ ト、 添加口 を備えた 100 Lの反応器内の空気を窒素ガスで置換したのち、 該反応器に、 アミン系酸 化防止剤 (ビス (4一 t一ブチルフエニル) ァミン:精ェ化学製 「ステアラー STARJ ) 47. 5 g、 リン系酸化防止剤 (サイクリ ックネオペンタンテトライルビス (2, 6- ジ一 t—ブチル一4一メチルフエニル) ホスファイ ト :旭電化製 「アデカスタブ PEP— 36」 ) 47. 5 g、 トルエン 30. 8 k g、 電極活物質と導電助剤との混合物 ( 「L i t h l a t e d v n a d i um o x i d e/ c a r b o n b l e n d」 US A VESTOR LLC社製) 39. 6 k gを順次投入した。 その後、 ホッパーや配管に残 つた電極活物質と導電助剤との混合物をトルエン 5 k gで反応器内に洗い流したのち、 常 温、 常圧で 30分間、 内翼回転 75 r pm、 外翼回転 29 r pmで攪拌し、 均一に混合し た。 次いで、 内翼回転 75 r pm、 外翼回転 29 r pmで攪拌しながら、 ポリマー (ェチ レンォキシド "ブチレンォキシド共重合体:重量平均分子量 (Mw) 124, 000、 分 子量分布 (MwZMn) 1. 4) のトルエン溶液 (固形分 45%) 42. 4 k gを投入し たのち、 温水ジャケットで昇温し、 内温が 50°Cに達してからさらに 2時間攪拌して、 均 一なスラリ一溶液として正極材料組成物を得た。  Stirring blades ("Super blend wings" manufactured by Sumitomo Heavy Industries, Ltd.), warm water jacket, air in 100 L reactor equipped with an addition port are replaced with nitrogen gas, and then the reactor is Antioxidant (Bis (4 1 t butyl phenyl) ァ amine: made by Seiyaku Chemical Co., Ltd. “Stearer STARJ” 47. 5 g, Phosphorus-based antioxidant (cyclic neopentane tetrayl bis (2, 6-di-t) Butyl-1-methylphenyl) Phosphate: "Adekastab PEP- 36" made by Asahi Denka Co., Ltd. 47. 5 g, 30.8 kg of toluene, a mixture of an electrode active material and a conductive aid ("Litlated vnd um oxide / carbonblend" US 39.6 kg of A VESTOR LLC were sequentially added. After that, the mixture of electrode active material and conductive aid left in the hopper and piping is flushed with 5 kg of toluene into the reactor, and then the inner blade rotation 75 rpm, outer blade rotation, at normal temperature and pressure for 30 minutes. Stir at 29 rpm and mix uniformly. Then, while stirring at an inner blade rotation of 75 rpm and an outer blade rotation of 29 rpm, a polymer (ethylene oxide “butylene oxide copolymer: weight average molecular weight (Mw) 124, 000, molecular weight distribution (MwZMn) 1. 4) After adding 42.4 kg of the toluene solution (solid content 45%), raise the temperature with a warm water jacket and stir for an additional 2 hours after reaching the internal temperature of 50 ° C to obtain a uniform slurry. The positive electrode material composition was obtained as a solution.
得られた正極材料組成物のスラリー溶液約 1 gをァノレミカップに枰りとったものを 3個 用意し、 それらを 120 の乾燥機内に入れ、 0. 5時間後、 1時間後にそれぞれ取り出 して、 試料とした。 次いで、 各試料にァセトニトリルをポリマー濃度が 1%となるように 追加して溶解させて 2000 r pmで 3分間遠心分離し、 上澄み液を G PC装置 (東ソ一 製 「HCL_8120」 ) にて分析し、 ポリエチレンォキシドの標準分子量サンプルによ り作製した検量線から、 試料中のポリマーの重量平均分子量を求めた。 溶離液としては水 /ァセトニトリル (v o 1比) =50/50を用いた。 そして、 ポリマーの初期重量平均 分子量 (124, 000) を Mw。とし、 試料中のポリマーの重量平均分子量を Mwとし て、 下記式に基づき、 ポリマーの初期重量平均分子量 (124, 000) に対する分子量 減少率を算出した。 結果を表 1に示す。 About 1 g of a slurry solution of the obtained positive electrode material composition is placed in an anolomi cup, and 3 pieces of them are put in a dryer of 120 and taken out after 0.5 hours and 1 hour respectively. , And samples. Then, add acetonitrile to each sample so that the concentration of the polymer is 1%, dissolve it, centrifuge at 2000 rpm for 3 minutes, and analyze the supernatant using the GPC apparatus (“HCL_8120” manufactured by TOSOH 1) The weight average molecular weight of the polymer in the sample was determined from a calibration curve prepared using a standard molecular weight sample of polyethylene oxide. As the eluent, water / acetonitrile ( vo 1 ratio) = 50/50 was used. And Mw the initial weight-average molecular weight of the polymer (124, 000). And the weight average molecular weight of the polymer in the sample is Mw Then, based on the following formula, the rate of decrease in molecular weight relative to the initial weight average molecular weight of the polymer (120,000) was calculated. The results are shown in Table 1.
分子量減少率 (%) = 〔 (Mw。一 Mw) ZMw0〕 X 100 Molecular weight reduction rate (%) = [(Mw. 1 Mw) ZMw 0 ] X 100
他方、 得られた正極材料組成物のスラリー溶液が入った前記反応器の内温を 50-53 °Cに保ちながら、 反応器に減圧ラインを接続して 6. 7〜13. 3 k P a (50〜 100 mmHg) の減圧をかけ、 トルエン 29 k gを留去させ、 固形分約 70 %のスラリー溶液 とした。 次に、 KRCニーダ一本体内の空気を窒素ガスで置換したのち、 ニーダーを 38 r pmで回転させながら内温を 90°Cに設定しておき、 前記反応器からギヤポンプを介し てニーダー本体に前記スラリー溶液をフィードし、 34. 7 k P a (26 OmmHg) の 減圧をかけて脱揮を行い、 トルエンを留去した。 そして、 ニーダ一の出口にベルトクーラ 一を繋ぎ、 ニーダ一の出口から押し出されたストランドを冷却しながらパットに受けるよ うにし、 パットを 12時間以上室温で放置し、 乾燥させた。 このとき、 乾燥中を含め終始 、 ベルトクーラーからパットまでをフードで覆って内部の空気を窒素ガスで置換しておい た。 次いで、 ストランドカッターを用い、 この装置全体をフードで覆って局所排気しなが らストランドをカッティングしてペレツトとし、 該ペレツトをタンプルドライヤーの中に 入れて常温で 12時間以上真空乾燥し、 ペレツト状の正極材料組成物を得た。  On the other hand, a pressure reduction line is connected to the reactor while maintaining the internal temperature of the reactor containing the slurry solution of the obtained positive electrode material composition at 50 to 53 ° C. 6. 7 to 13.3 k P a A reduced pressure of (50 to 100 mmHg) was applied, and 29 kg of toluene was distilled off to obtain a slurry solution having a solid content of about 70%. Next, after replacing the air in the KRC kneader main body with nitrogen gas, the internal temperature is set to 90 ° C while rotating the kneader at 38 rpm, and the reactor is transferred to the kneader main body through the gear pump. The slurry solution was fed and degassed under reduced pressure of 34.7 kPa (26 OmmHg) to distill off toluene. Then, a belt cooler was connected to the outlet of the kneader, and the strand extruded from the outlet of the kneader was cooled and received in the pad, and the pad was left at room temperature for 12 hours or more to dry. At this time, from the belt cooler to the pad was covered with a hood to replace the air inside with nitrogen gas throughout the process including drying. Next, using a strand cutter, cover the entire apparatus with a hood and cut the strands into pellets by local evacuation while putting the pellets in a tumble dryer and vacuum drying at room temperature for 12 hours or more. The positive electrode material composition of
得られたペレツト状の正極材料組成物を空気中 20°Cで放置し、 表 2に示す経過時間で 取り出し、 これを試料とした。 次いで、 各試料にァセトニトリルをポリマー濃度が 1%と なるように追加し、 タツチミキサーおよびシェーカーにて充分に攪拌してポリマー分を溶 解させたのち、 フィルター (非水系、 0. 45 m) で不溶物を濾過し、 得られた濾液を GPC装置 (東ソー製 「HCL_8120」 ) にて分析し、 ポリエチレンォキシドの標準 分子量サンプルにより作製した検量線から、 試料中のポリマーの重量平均分子量を求めた 。 溶離液としては水 アセトニトリノレ (v o 1比) =50/50を用いた。 そして、 ポリ マーの初期重量平均分子量 ( 124, 000) を Mw。とし、 試料中のポリマーの重量平 均分子量を Mwとして、 下記式に基づき、 ポリマーの初期重量平均分子量 (124, 00 0) に対する分子量減少率を算出した。 結果を表 2に示す。  The obtained pellet-like positive electrode material composition was left to stand in air at 20 ° C., taken out for an elapsed time shown in Table 2, and used as a sample. Then, add acetonitrile to each sample so that the polymer concentration becomes 1%, stir thoroughly with a Tutch mixer and shaker to dissolve the polymer content, and then filter with a non-aqueous solution (0.45 m). The insoluble matter was filtered, and the obtained filtrate was analyzed by a GPC apparatus ("HCL_8120" manufactured by Tosoh Corporation), and the weight average molecular weight of the polymer in the sample was determined from a calibration curve prepared using a standard molecular weight sample of polyethylene oxide. . As the eluent, water / acetonitrile (v o 1 ratio) = 50/50 was used. And Mw the initial weight average molecular weight of the polymer (124, 000). Assuming that the weight average molecular weight of the polymer in the sample is Mw, the molecular weight reduction rate with respect to the initial weight average molecular weight of the polymer (124, 000) was calculated based on the following formula. The results are shown in Table 2.
分子量減少率 (◦/。) = 〔 (Mw。― Mw) /Mw0] 100 Molecular weight reduction rate (◦ /.) = [(Mw.-Mw) / Mw 0 ] 100
〔実施例 2〜3〕  [Examples 2 to 3]
アミン系酸化防止剤およびリン系酸化防止剤の量を、 それぞれ、 実施例 2ではアミン系 酸化防止剤 19 g、 リン系酸化防止剤 19 gに変え、 実施例 3ではァミン系酸化防止剤 9 5 g、 リン系酸化防止剤 95 gに変えたこと以外は、 実施例 1と同様にして、 均一なスラ リー溶液として正極材料組成物を得た。  In Example 2, the amounts of amine-based antioxidant and phosphorus-based antioxidant were changed to 19 g of amine-based antioxidant and 19 g of phosphorus-based antioxidant, respectively, and in Example 3, amine-based antioxidant 9 5 g, except that the phosphorus-based antioxidant was changed to 95 g, in the same manner as in Example 1, a positive electrode material composition was obtained as a uniform slurry solution.
得られた正極材料組成物のスラリー溶液を用い、 実施例 1と同様にして、 試料中のポリ マーの重量平均分子量を求めた。 そして、 ポリマーの初期重量平均分子量 (124, 00 0) に対する分子量減少率を算出した。 結果を表 1に示す。  Using the slurry solution of the obtained positive electrode material composition, the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. And the molecular weight reduction rate with respect to the initial weight average molecular weight (124, 000) of the polymer was calculated. The results are shown in Table 1.
〔比較例 1〕  Comparative Example 1
アミン系酸化防止剤およびリン系酸化防止剤を用いないこと以外は、 実施例 1と同様に して、 均一なスラリ一溶液として正極材料組成物を得た。  A positive electrode material composition was obtained as a uniform slurry solution in the same manner as in Example 1 except that the amine antioxidant and the phosphorus antioxidant were not used.
得られた正極材料組成物のスラリー溶液を用い、 実施例 1と同様にして、 試料中のポリ マーの重量平均分子量を求めた。 そして、 ポリマーの初期重量平均分子量 (124, 00 0) に対する分子量減少率を算出した。 結果を表 1に示す。 Using the slurry solution of the obtained positive electrode material composition, the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. And the initial weight average molecular weight of the polymer (124, 00 The molecular weight reduction rate was calculated with respect to 0). The results are shown in Table 1.
〔比較例 2〕  Comparative Example 2
アミン系酸化防止剤 47. 5 gおよびリン系酸化防止剤 47. 5 gに変えて、 フエノ一 ル系酸化防止剤 (4, 4, 一ブチリデンビス (6— t—プチルー 3—メチルフヱノール) : エーピーアイコーポレーション製 「ヨシノックス BB」 ) 95 gを用いたこと以外は、 実施例 1と同様にして、 均一なスラリ一溶液として正極材料組成物を得た。  Amine based antioxidant 47. 5 g and phosphorus based antioxidant 47. 5 g, a phenolic antioxidant (4, 4, monobutylidene bis (6-t-peptyl 3-methylphenol): AP A positive electrode material composition was obtained as a uniform slurry solution in the same manner as in Example 1 except that 95 g of "Yoshinox BB" manufactured by Corporation was used.
得られた正極材料組成物のスラリー溶液を用い、 実施例 1と同様にして、 試料中のポリ マーの重量平均分子量を求めた。 そして、 ポリマーの初期重量平均分子量 (124, 00 0) に対する分子量減少率を算出した。 結果を表 1に示す。  Using the slurry solution of the obtained positive electrode material composition, the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. And the molecular weight reduction rate with respect to the initial weight average molecular weight (124, 000) of the polymer was calculated. The results are shown in Table 1.
他方、 実施例 1と同様にして、 得られた正極材料組成物のスラリー溶液を用いて、 ペレ ット状の正極材料組成物を得た。  On the other hand, in the same manner as in Example 1, a pellet-like positive electrode material composition was obtained using the obtained slurry solution of the positive electrode material composition.
得られたペレツト状の正極材料組成物を空気中 20°Cで放置し、 表 2に示す経過時間で 取り出し、 これを試料として実施例 1と同様の方法で試料中のポリマーの重量平均分子量 を求めた。 そして、 ポリマーの初期重量平均分子量.(124, 000) に対する分子量減 少率を算出した。 結果を表 2に示す。  The obtained pellet-like positive electrode material composition is left in air at 20 ° C., taken out for an elapsed time shown in Table 2, and used as a sample as a sample in the same manner as in Example 1 to determine the weight average molecular weight of the polymer in the sample. I asked. Then, the molecular weight reduction rate was calculated relative to the initial weight average molecular weight of the polymer. The results are shown in Table 2.
〔実施例 4〕  [Example 4]
マックスブレンド翼、 温水ジャケット、 添加口を備えた 100 Lの反応器 (該反応器を 「反応器 A」 とする) 内の空気を窒素ガスで置換したのち、 温水ジャケット温度を 70°C まで昇温しておき、 その中に、 あらかじめ 80°Cに加温保温したポリマー (エチレンォキ シドノブチレンォキシド共重合体:重量平均分子量 (Mw) 124, 000、 分子量分布 (Mw/Mn) 1. 4) のトルエン溶液 (固形分 45%) 42. 4 k gを投入した。 次い で、 翼回転 90 r pmで攪拌しながら、 リチウム塩としてリチウムビス (トリフルォロメ タンスルホン) イミ ド (L i N (CF3S02) 2) 4, 08 k gをホッパーから反応器へ 投入した。 その後、 ホッパーや配管に残ったリチウム塩をトルエン 4 k gで反応器内に洗 い流したのち、 内温 70 、 翼回転 90 r pmで 2時間攪拌した。 After replacing the air in a 100 L reactor (this reactor is called “Reactor A”) equipped with Max Blend wings, a hot water jacket, and an addition port with nitrogen gas, the hot water jacket temperature is raised to 70 ° C. Polymer kept warm and preheated to 80 ° C. (Ethylene oxynobutylene oxide copolymer: weight average molecular weight (Mw) 124, 000, molecular weight distribution (Mw / Mn) 1. 4 42. 4 kg of the toluene solution (solid content 45%) was added. Next, while stirring at a blade rotation of 90 rpm, 4, 08 kg of lithium bis (trifluoromethane sulfone) imid (L i N (CF 3 S 0 2 ) 2 ) was introduced as a lithium salt from the hopper into the reactor. . Thereafter, the lithium salt remaining in the hopper and the piping was washed with 4 kg of toluene into the reactor, and stirred at an internal temperature of 70 and a blade rotation of 90 rpm for 2 hours.
次に、 攪拌翼 ( 「スーパーブレンド翼」 住友重機械工業 (株) 製) 、 温水ジャケット、 添加口を備えた 100 Lの反応器 (該反応器を 「反応器 B」 とする) 内の空気を窒素置換 したのち、 該反応器に、 フエノール系酸化防止剤 (4, 4' —ブチリデシビス (6— t— ブチル一 3—メチルフエノール) : エーピーアイコーポレーション製 「ヨシノックス BB 」 ) 95 g、 トルエン 22 k g, 電極活物質と導電助剤との混合物 ( 「L i t h i a t e d v a n a d i um o x i d e/c a r b o n b l e n d」 US AVE S TOR LLC社製) 39. 6 k gを順次投入した。 その後、 ホッパーや配管に残った電極活物質 と導電助剤との混合物をトルエン 4. 5 k gで反応器内に洗い流したのち、 常温、 常圧で 30分間、 内翼回転 75 r pm、 外翼回転 29 r pmで攪拌し、 均一に混合した。  Next, air in a 100 L reactor (this reactor is referred to as “Reactor B”) equipped with a stirring blade (“Super blend wing”, Sumitomo Heavy Industries, Ltd.), a warm water jacket, and an addition port. The reactor is replaced with a phenol-based antioxidant (4, 4'-butylidebibis (6-t-butyl-1-methylphenol): AP Co., Ltd. "Yoshinox BB") 95 g, toluene 22 39. 6 kg of a mixture of an electrode active material and a conductive additive ("Lithated vandi um oxide / carbon blend", manufactured by US AVE STOR LLC) was sequentially added. After that, the mixture of electrode active material and conductive support left in the hopper and piping is flushed with 4.5 kg of toluene into the reactor, and then the inner blade rotation 75 rpm, normal temperature and pressure for 30 minutes, outer blade Stir at 29 rpm and mix uniformly.
次いで、 反応器 B内を、 内翼回転 75 r pm、 外翼回転 29 r pmで攪拌しながら、 反 応器 Aと反応器 Bを繋ぐようあらかじめ付設した配管を経由して、 反応器 Aの内容物 (ポ リマーとリチウム塩との混合溶液) の全量を反応器 Bへ投入したのち、 温水ジャケットで 昇温し、 50でで 2時間攪拌して、 均一なスラリー溶液として前駆組成物を得た。  Next, while stirring the inside of the reactor B with the inner blade rotation 75 rpm and the outer blade rotation 29 rpm, the piping of the reactor A is made via the piping previously attached to connect the reactor A and the reactor B. After all the contents (mixed solution of polymer and lithium salt) were charged into reactor B, the temperature was raised with a warm water jacket and stirring was carried out at 50 for 2 hours to obtain a precursor composition as a uniform slurry solution. The
次に、 前駆組成物 100部と、 アミン系酸化防止剤 (ビス (4— t一プチルフヱニル) ァミン :精ェ化学製 「ステアラ一 S TAR」 ) の 0. 25%ァセトニトリル溶液 32部と を、 常温下、 マグネチックスターラーにて酸化防止剤が溶解するまで攪拌し、 均一なスラ リ一溶液として正極材料組成物を得た。 Next, 100 parts of the precursor composition and 32 parts of a 0.25% solution of an acetonitrile solution of an amine-based antioxidant (bis (4-t heptylphenyl) ミ ン amamine: Steara 1 S TAR manufactured by Seiei Chemical Co., Ltd.) The mixture was stirred at normal temperature with a magnetic stirrer until the antioxidant was dissolved, to obtain a positive electrode material composition as a uniform slurry solution.
得られた正極材料組成物のスラリー溶液を用い、 実施例 1と同様にして、 試料中のポリ マーの重量平均分子量を求めた。 そして、 ポリマーの初期重量平均分子量 (1 2 4, 0 0 0 ) に対する分子量減少率を算出した。 結果を表 1に示す。  Using the slurry solution of the obtained positive electrode material composition, the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. Then, the molecular weight reduction rate was calculated with respect to the initial weight average molecular weight (1 2 4 0 0 0) of the polymer. The results are shown in Table 1.
〔実施例 5〕  [Example 5]
実施例 4と同様にして前駆組成物を得た。  In the same manner as Example 4, a precursor composition was obtained.
次に、 前駆組成物 1 0 0部と、 アミン系酸化防止剤 (ビス (4一 t _ブチルフエニル) ァミン:精ェ化学製 「ステアラー S T A R」 ) の 0 . 2 5 %ァセトニトリル溶液 1 6部と 、 リン系酸化防止剤 (サイクリックネオペンタンテトライルビス (2, 6—ジ一 t _プチ ル一 4一メチルフエニル) ホスフアイ ト :旭電化製 「アデカスタブ P E P— 3 6」 ) の 0 . 2 5 %ァセトニトリル溶液 1 6部とを、 常温下、 マグネチックスターラーにて酸化防止 剤が溶解するまで攪拌し、 均一なスラリ一溶液として正極材料組成物を得た。  Next, a precursor composition 100 parts and an amine antioxidant (bis (4 t-butylphenyl) amine: 1 part of 0.5% acetonetonitrile solution of 0.51% acetylene) manufactured by Seiyaku Chemical Co., Ltd. Phosphorus antioxidant (cyclic neopentane tetrayl bis (2, 6-di-t-1-1-1-1 methyl phenyl) Phosphate: 0.5% acetonitrile of Asahi Denka "Adekastab PEP-3 6" The solution 16 was stirred at normal temperature with a magnetic stirrer until the antioxidant was dissolved, to obtain a positive electrode material composition as a uniform slurry solution.
得られた正極材料組成物のスラリー溶液を用い、 実施例 1と同様にして、 試料中のポリ マーの重量平均分子量を求めた。 そして、 ポリマーの初期重量平均分子量 (1 2 4, 0 0 0 ) に対する分子量減少率を算出した。 結果を表 1に示す。  Using the slurry solution of the obtained positive electrode material composition, the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. Then, the molecular weight reduction rate was calculated with respect to the initial weight average molecular weight (1 2 4 0 0 0) of the polymer. The results are shown in Table 1.
〔比較例 3〕  Comparative Example 3
実施例 4と同様にして前駆組成物を得、 該前駆組成物を正極材料組成物とした。  A precursor composition was obtained in the same manner as in Example 4, and the precursor composition was used as a positive electrode material composition.
得られた正極材料組成物のスラリー溶液を用い、 実施例 1と同様にして、 試料中のポリ マーの重量平均分子量を求めた。 そして、 ポリマーの初期重量平均分子量 (1 2 4, 0 0 Using the slurry solution of the obtained positive electrode material composition, the weight average molecular weight of the polymer in the sample was determined in the same manner as in Example 1. And the initial weight average molecular weight of the polymer (1 2 4, 0 0
0 ) に対する分子量減少率を算出した。 結果を表 1に示す。 The molecular weight reduction rate was calculated with respect to 0). The results are shown in Table 1.
【表 1】 【table 1】
Figure imgf000013_0001
Figure imgf000013_0001
*1:酸化防止剤の量は、ポリマーの固形分量に対する割合で表した * 1: The amount of antioxidant was expressed as a percentage of the solid content of the polymer
【表 2】 【Table 2】
Figure imgf000014_0001
Figure imgf000014_0001
*1:酸化防止剤の量は、ポリマーの固形分量に対する割合で表した * 1: The amount of antioxidant was expressed as a percentage of the solid content of the polymer
ぐ電池性能 > Battery performance>
以上の実施例および比較例において得られた正極材料組成物について、 実施例 4、 5お よび比較例 3で得られた正極材料組成物についてはそのまま、 実施例 1〜 3および比較例 1、 2で得られた正極材料組成物については、 電解質塩としてリチウムビス (トリフノレオ ロメタンスルホン) イミ ド (L i N ( C F 3 S 0 2) 2) を該電解質塩が組成物中 7重量% となるように加えて均一に混合したのち 直ちに成形して正極を作製した。 そして、 該正 極を用いてリチウム電池を作製し、 得られた電池の性能 (ショートテストおよびサイクル 特性) を比較したところ、 各実施例において保存した正極材料組成物に基づく電池はいず れも、 各比較例において保存した正極材料組成物に基づく電池よりも良好な性能を発揮す るものであった。 産業上の利用可能性 With regard to the positive electrode material compositions obtained in the above-described Examples and Comparative Examples, the positive electrode material compositions obtained in Examples 4 and 5 and Comparative Example 3 are used as they are in Examples 1 to 3 and Comparative Examples 1 and 2. With respect to the positive electrode material composition obtained in the above, it is preferable that lithium bis (trifuro reomethanesulfone) imid (L i N (CF 3 S 0 2 ) 2 ) be contained as the electrolyte salt in an amount of 7% by weight in the composition. In addition to the above, they were uniformly mixed and then immediately molded to prepare a positive electrode. Then, a lithium battery was produced using the positive electrode, and the performance (short test and cycle characteristics) of the obtained battery was compared. As a result, any battery based on the positive electrode material composition stored in each example It exhibited better performance than the battery based on the positive electrode material composition stored in each of the comparative examples. Industrial applicability
本発明にかかるリチウム 2次電池用正極材料組成物は、 リチウム 2次電池の正極を作製 するための材料として好適に用いられる。  The positive electrode material composition for a lithium secondary battery according to the present invention is suitably used as a material for producing a positive electrode of a lithium secondary battery.

Claims

請 求 の 範 囲 The scope of the claims
1. ポリマー、 電極活物質および導電助剤を必須とする正極材料用組成物であって、 ァ ミン系酸化防止剤、 リン系酸化防止剤およびフエノチアジン系酸化防止剤からなる群より 選ばれる 1種以上の酸化防止剤を含有することを特徴とする、 リチウム 2次電池用正極材 料組成物。 1. A composition for a positive electrode material essentially comprising a polymer, an electrode active material and a conductive auxiliary, which is selected from the group consisting of an amine-based antioxidant, a phosphorus-based antioxidant and a phenothiazine-based antioxidant. The positive electrode material composition for lithium secondary batteries characterized by including the above antioxidant.
2. 前記酸化防止剤がアミン系酸化防止剤およびリン系酸化防止剤である、 請求項 1に 記載のリチウム 2次電池用正極材料組成物。 2. The positive electrode material composition for a lithium secondary battery according to claim 1, wherein the antioxidant is an amine-based antioxidant and a phosphorus-based antioxidant.
3. コーティング用または成形用の組成物である、 請求項 1または 2に記載のリチウム 2次電池用正極材料組成物。 3. The positive electrode material composition for a lithium secondary battery according to claim 1, which is a composition for coating or molding.
4. 前記ポリマー、 前記電極活物質および前記導電助剤が均一に混合されてなる、 請求 項 1から 3までのいずれかに記載のリチウム 2次電池用正極材料組成物。 4. The positive electrode material composition for a lithium secondary battery according to any one of claims 1 to 3, wherein the polymer, the electrode active material, and the conductive support agent are uniformly mixed.
5. 電解質塩としてのリチウム塩をも含有する、 請求項 1から 4までのいずれかに記載 のリチウム 2次電池用正極材料組成物。 5. The positive electrode material composition for a lithium secondary battery according to any one of claims 1 to 4, which further contains a lithium salt as an electrolyte salt.
6. 下記で定義される組成物中のポリマーの重量平均分子量の減少率 (DMw) 力 0. 5時間放置後には 20%以下であり、 かつ、 1時間放置後には 30%以下である、 請求項 1から 5までのいずれかに記載のリチウム 2次電池用正極材料組成物。 6. Decrease of weight average molecular weight of polymer in composition defined below (D Mw ) Force 0.5% or less after leaving for 20 hours, and 30% or less after leaving for 1 hour The positive electrode material composition for a lithium secondary battery according to any one of claims 1 to 5.
組成物中のポリマーの重量平均分子量の減少率 (DMw) : 120°Cの空気雰囲気下に一 定時間放置したときの組成物中のポリマーの重量平均分子量を Mwとし、 前記雰囲気下に 置く前の組成物中のポリマーの重量平均分子量を Mw。としたときに、 Decreasing rate of weight average molecular weight of polymer in the composition (D Mw ): The weight average molecular weight of the polymer in the composition when left to stand in an air atmosphere at 120 ° C. for a certain period of time is Mw. Mw weight average molecular weight of the polymer in the previous composition. When you
DMw (%) = 〔 (Mw0-Mw) /Mw0] X 100 D Mw (%) = [(Mw 0- Mw) / Mw 0 ] X 100
で表される値である。 Is a value represented by
7. 前記電極活物質が、 . L i X Vy O z (ただし、 x、 yおよび zは、 それぞれ互いに 独立、 かつ、 0<x≤2、 y = (mx + 2 z ) Zn、 および z = (mx + n y ) /2 (た だし、 mは L iの価数であり、 nは Vの価数で 4以上の実数である。 ) を満足する実数で ある。 ) である、 請求項 1から 6までのいずれかに記載のリチウム 2次電池用正極材料組 成物。 7. The electrode active material is: L i X V y O z (where x, y and z are independent of each other, and 0 <x≤2, y = (mx + 2z) Zn, and z = (mx + ny) / 2 (however, m is a valence number of Li and n is a valence number of V and is a real number of 4 or more.) 6. A positive electrode material composition for a lithium secondary battery according to any one of 6 to 7.
8. 前記ポリマーがイオン導電性のポリエーテル重合体である、 請求項 1から 7までの いずれかに記載のリチウム 2次電池用正極材料組成物。 8. The positive electrode material composition for a lithium secondary battery according to any one of claims 1 to 7, wherein the polymer is an ionically conductive polyether polymer.
PCT/JP2005/016467 2004-09-03 2005-09-01 Positive electrode material composition for lithium secondary battery WO2006025601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006532026A JPWO2006025601A1 (en) 2004-09-03 2005-09-01 Positive electrode material composition for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-257145 2004-09-03
JP2004257145 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006025601A1 true WO2006025601A1 (en) 2006-03-09

Family

ID=36000229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016467 WO2006025601A1 (en) 2004-09-03 2005-09-01 Positive electrode material composition for lithium secondary battery

Country Status (2)

Country Link
JP (1) JPWO2006025601A1 (en)
WO (1) WO2006025601A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011002013A1 (en) * 2009-06-30 2011-01-06 日本ゼオン株式会社 Active material for electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JP2013196994A (en) * 2012-03-22 2013-09-30 Central Research Institute Of Electric Power Industry Nonaqueous electrolyte secondary battery
JP2013196993A (en) * 2012-03-22 2013-09-30 Central Research Institute Of Electric Power Industry Nonaqueous electrolyte secondary battery
WO2014156068A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
WO2015041242A1 (en) * 2013-09-17 2015-03-26 株式会社日本触媒 Phenol-compound-containing composition and production method therefor, and ion conductivity material and lithium secondary battery using said composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307663A (en) * 1987-06-05 1988-12-15 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPH04500883A (en) * 1989-07-20 1992-02-13 ドウティー エレクトロニック コンポーネンツ リミテッド Batteries containing lithium vanadium oxide as active material
JPH10106579A (en) * 1996-09-25 1998-04-24 Sanyo Electric Co Ltd Lithium secondary battery
JPH1167211A (en) * 1997-08-12 1999-03-09 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JPH1186903A (en) * 1997-09-03 1999-03-30 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2002093405A (en) * 2000-09-12 2002-03-29 Hitachi Maxell Ltd Nonaqueous secondary battery and its charging method
JP2002216744A (en) * 2001-01-17 2002-08-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2002319434A (en) * 2001-04-20 2002-10-31 Sharp Corp Lithium polymer secondary cell
JP2003132877A (en) * 2001-10-23 2003-05-09 Sony Corp Positive electrode method for manufacturing the same and solid electrolyte battery
JP2003282063A (en) * 2002-01-21 2003-10-03 Denso Corp Non-aqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307663A (en) * 1987-06-05 1988-12-15 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPH04500883A (en) * 1989-07-20 1992-02-13 ドウティー エレクトロニック コンポーネンツ リミテッド Batteries containing lithium vanadium oxide as active material
JPH10106579A (en) * 1996-09-25 1998-04-24 Sanyo Electric Co Ltd Lithium secondary battery
JPH1167211A (en) * 1997-08-12 1999-03-09 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JPH1186903A (en) * 1997-09-03 1999-03-30 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2002093405A (en) * 2000-09-12 2002-03-29 Hitachi Maxell Ltd Nonaqueous secondary battery and its charging method
JP2002216744A (en) * 2001-01-17 2002-08-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2002319434A (en) * 2001-04-20 2002-10-31 Sharp Corp Lithium polymer secondary cell
JP2003132877A (en) * 2001-10-23 2003-05-09 Sony Corp Positive electrode method for manufacturing the same and solid electrolyte battery
JP2003282063A (en) * 2002-01-21 2003-10-03 Denso Corp Non-aqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011002013A1 (en) * 2009-06-30 2011-01-06 日本ゼオン株式会社 Active material for electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JP5610161B2 (en) * 2009-06-30 2014-10-22 日本ゼオン株式会社 Non-aqueous electrolyte secondary battery active material and non-aqueous electrolyte secondary battery
JP2013196994A (en) * 2012-03-22 2013-09-30 Central Research Institute Of Electric Power Industry Nonaqueous electrolyte secondary battery
JP2013196993A (en) * 2012-03-22 2013-09-30 Central Research Institute Of Electric Power Industry Nonaqueous electrolyte secondary battery
WO2014156068A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
CN105051949A (en) * 2013-03-26 2015-11-11 三洋电机株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
JPWO2014156068A1 (en) * 2013-03-26 2017-02-16 三洋電機株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9705135B2 (en) 2013-03-26 2017-07-11 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2015041242A1 (en) * 2013-09-17 2015-03-26 株式会社日本触媒 Phenol-compound-containing composition and production method therefor, and ion conductivity material and lithium secondary battery using said composition
JP5937765B2 (en) * 2013-09-17 2016-06-22 株式会社日本触媒 PHENOL COMPOUND-CONTAINING COMPOSITION AND PROCESS FOR PRODUCING THE SAME, AND ION CONDUCTIVE MATERIAL USING THE SAME, LITHIUM SECONDARY BATTERY

Also Published As

Publication number Publication date
JPWO2006025601A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
EP3370288B1 (en) Binder for nonaqueous electrolyte secondary cell electrode, method for producing binder, and use thereof
JP6282037B2 (en) Lithium ion battery cell cathode, manufacturing process thereof and battery incorporating the same
US8426062B2 (en) Binder composition for nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte secondary battery
JP7313487B2 (en) Pre-dispersant composition, electrode and secondary battery containing the same
JP2014146600A (en) Binding agent composition, slurry for electrode use, electrode, and nonaqueous electrolytic secondary battery
WO2006025601A1 (en) Positive electrode material composition for lithium secondary battery
CN106356503B (en) The manufacturing method and electrode slice of electrode slice
CA2497332A1 (en) Water soluble nonionic alkylene oxide resin and production process therefor
WO2006025600A1 (en) Method for maintaining positive electrode material composition for lithium secondary battery
JP2013170203A (en) Polyether copolymer
WO2021065457A1 (en) Binder composition for secondary batteries, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
CN115632124B (en) High-nickel ternary cathode material, preparation method thereof and lithium ion battery
EP1571175B1 (en) Process for producing polyether polymer composition, polyether polymer composition, and solid electrolyte film
US20070031735A1 (en) Active material for cathode film, polyether polymer composition for cathode film, cathode film, and method for producing cathode film
JP2004182774A (en) Method for producing polyether polymer composition, polyether polymer composition and solid electrolyte film
JP6217460B2 (en) Non-aqueous secondary battery electrode binder resin, non-aqueous secondary battery electrode binder resin composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
JP6911985B1 (en) Dispersant composition for electrochemical element, conductive material dispersion for electrochemical element, slurry composition for electrochemical element electrode and its manufacturing method, electrode for electrochemical element, and electrochemical element
JP6870769B1 (en) Conductive material dispersion for electrochemical elements, slurry composition for electrochemical element electrodes and manufacturing method thereof, electrodes for electrochemical elements, and electrochemical elements
WO2007119460A1 (en) Solid electrolyte composition, solid electrolyte film and lithium secondary battery
CN113174208B (en) Binder composition for lithium ion battery and preparation method thereof
JP2004119343A (en) Molding material for polymer solid electrolyte, polymer solid electrolyte mold body and its manufacturing method
TWI806306B (en) All-solid battery adhesive using conjugated diene polymer, positive electrode layer, negative electrode layer, electrolyte layer using the same, and all-solid battery including the same
JP3744209B2 (en) Battery separator and secondary battery using the same
JP6911987B1 (en) Dispersant composition for electrochemical elements, conductive material dispersion for electrochemical elements, slurry for electrochemical element electrodes, electrodes for electrochemical elements and electrochemical elements
US20240047679A1 (en) A positive electrode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532026

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase