WO2006025264A1 - 核酸解析方法 - Google Patents

核酸解析方法 Download PDF

Info

Publication number
WO2006025264A1
WO2006025264A1 PCT/JP2005/015493 JP2005015493W WO2006025264A1 WO 2006025264 A1 WO2006025264 A1 WO 2006025264A1 JP 2005015493 W JP2005015493 W JP 2005015493W WO 2006025264 A1 WO2006025264 A1 WO 2006025264A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
filter paper
reagent
amplification
reaction
Prior art date
Application number
PCT/JP2005/015493
Other languages
English (en)
French (fr)
Inventor
Yasuyoshi Mori
Takashi Hirano
Original Assignee
Eiken Kagaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiken Kagaku Kabushiki Kaisha filed Critical Eiken Kagaku Kabushiki Kaisha
Priority to CN2005800373472A priority Critical patent/CN101048515B/zh
Priority to EP05774925A priority patent/EP1795612B1/en
Priority to JP2006532604A priority patent/JP4791966B2/ja
Priority to ES05774925T priority patent/ES2401879T3/es
Priority to US11/574,475 priority patent/US20090226892A1/en
Publication of WO2006025264A1 publication Critical patent/WO2006025264A1/ja
Priority to HK08100824.4A priority patent/HK1110629A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips

Definitions

  • the present invention relates to a method for amplifying a nucleic acid on a porous support and a total system for nucleic acid extraction, amplification and detection using the method.
  • nucleic acid extraction, amplification, and detection have been performed in different systems, and it is difficult to integrate them into a single system.
  • nucleic acid amplification such as PCR requires a complex temperature cycle at high temperatures, and it is necessary to react the nucleic acid with a reagent such as an enzyme, substrate, primer, etc. with a high degree of freedom.
  • a reagent such as an enzyme, substrate, primer, etc.
  • nucleic acid is adsorbed on a filter made of non-woven fabric, filter paper, hydroxyapatite or the like and amplified by the LAMP method (see Patent Document 2 and Patent Document 3).
  • nucleic acid is amplified by adsorbing nucleic acid on a solid support and adding a LAMP reaction solution thereto.
  • the LAMP method is a nucleic acid amplification method developed by the inventors and does not require the complicated temperature control that is indispensable for the PCR method, and has a unique inverted repeat structure (one on the same strand). Can be synthesized with high amplification efficiency (see Non-Patent Document 1 and Patent Document 4).
  • the inventors have already reported a method for detecting nucleic acid amplification on a hydrophilic substrate by binding a nucleic acid precipitant to a LAMP amplification product (see Patent Document 5).
  • this method is aimed at solving the problem of B / F separation in the hybridization process, and is not intended for a system that performs extraction, amplification, and detection of nucleic acids in a solid phase consistently. .
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-20 1 607
  • Patent Document 4 International Publication No. 00/28082 Pamphlet
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-141 1 59
  • Non-Patent Document 1 Tsugunori Notomi et al., “Loop-mediated isothermal amplification of DNA.”, Nucleic Acids Res., Vol.28, No.12: e63, (2000) Disclosure of invention
  • the inventors developed a technology for extracting nucleic acid from a sample on a solid phase and supporting the target nucleic acid on the solid phase, and a LAMP product-polyethyleneimine (PEI) complex on the solid phase. And has established a method for detection in a sequence-specific manner. Therefore, if the LAMP reaction can occur on the solid phase, the entire extraction, amplification, and detection steps can be realized on the solid phase, and a total system for nucleic acid analysis can be constructed.
  • PEI polyethyleneimine
  • an object of the present invention is to construct a total system for nucleic acid analysis capable of performing all steps of nucleic acid extraction, amplification and detection on a solid support.
  • the inventors have confirmed that the LAMP reaction occurs by heating a small piece of filter paper on which a small amount of the LAMP reaction solution is developed to a predetermined temperature. Furthermore, the LAMP reaction solution was divided into several components, each was spread on multiple filter papers, and it was confirmed that the LAMP reaction also occurred by superimposing them. Based on these results, we conducted a model experiment of the total system of solid phase extraction method-solid phase LAMP reaction-solid phase. PEI detection, The present invention was completed by successfully detecting the target nucleic acid.
  • the present invention relates to a nucleic acid analysis method characterized by adding a sample containing a nucleic acid to a porous support containing a nucleic acid amplification reagent in advance and performing a nucleic acid amplification reaction of a target nucleic acid.
  • nucleic acid extraction from a sample containing nucleic acid, nucleic acid amplification reaction of a target nucleic acid, and detection of the nucleic acid amplification reaction or its product can be performed consistently on the porous support.
  • the porous support may further contain a nucleic acid extraction reagent and / or a nucleic acid detection reagent in advance.
  • the method of the present invention comprises a porous support composed of two or more layers.
  • a nucleic acid probe is hybridized to the nucleic acid amplification reaction product, a nucleic acid precipitant is allowed to act on the generated hybrid to form an aggregate, and the target nucleic acid in the sample is detected by the obtained aggregate. And a nucleic acid analysis method.
  • the nucleic acid precipitating agent and / or the nucleic acid probe may be previously contained in the porous support.
  • the nucleic acid amplification reagent is divided and held in two or more porous supports, and these supports may be used in contact with each other during amplification.
  • the primer and the other nucleic acid amplification reagent may be divided and held on different porous supports, or the polymerase and the other nucleic acid amplification reagent may be divided and held on different porous supports. It may be.
  • a polymerase, a primer, and other nucleic acid amplification reagents may be divided and held on different porous supports. In these methods, it is desirable that the polymerase is held on the porous support in a dry state.
  • the LAMP reaction is preferably used as the nucleic acid amplification reaction. That's right.
  • porous support for example, one or more selected from filter paper, nylon membrane, cellulose ester, cellulose, non-woven fabric, woven fabric, cotton, polyurethane, and plastic sintered body are used. be able to.
  • nucleic acid precipitating agent one or more selected from the group consisting of hydroxyapatite, polyethyleneimine, sulfated sulfate, poly-L-lysine, and jetylaminoethyl dextran should be used. Can do.
  • the present invention also provides a nucleic acid extraction reagent, a nucleic acid extraction reagent, and / or a nucleic acid detection reagent.
  • a nucleic acid analysis system is provided.
  • a solid phase system capable of consistently performing extraction, amplification and detection of nucleic acids.
  • this system enables simple DNA testing and DNA analysis at clinical sites and laboratories.
  • Figure 1 is a schematic diagram showing the LAMP reaction on filter paper.
  • Fig. 2 shows the results of LAMP reaction on filter paper (CK20; detection of force lucein fluorescence).
  • Figure 3 shows the results of LAMP reaction on filter paper (PSA; force lucein fluorescence detection).
  • Fig. 3 (A) shows the results of visual detection of filter paper force lucein fluorescence (1, 2: filter paper method negative, 3, 4: filter paper method positive, 5: solution method negative, 6: solution method positive).
  • Fig. 3 (B) shows the results of 3% agarose electrophoresis analysis of the amplification reaction solution (1, 2: filter paper method negative, 3, 4: filter paper method positive, 5: solution method negative, 6: solution method positive).
  • Figure 4 shows the results of the LAMP reaction (PSA force Lucein fluorescence detection) on the filter paper using the two-sheet method and the Bst filter paper method.
  • Fig. 3 (A) shows the results of visual detection of filter paper force lucein fluorescence (1, 2: filter paper method negative, 3, 4: filter paper method positive, 5: solution method negative, 6: solution method positive).
  • Fig. 3 (B) shows the results of 3% agarose
  • FIG. 4 (A) shows the result of visual detection of the filter paper's force lucein fluorescence (upper, filter paper method; lower, solution method). In both the upper and lower tiers, the two on the left show the case where the filter papers that do not contain Bst are stacked, and the two on the right show the case where the filter papers that have developed Bst are stacked.
  • Fig. 4 (B) shows the results of 3% agarose electrophoresis analysis of the amplification reaction (1, 2: Filter paper method negative, 3,4: Filter paper method positive, 5: Solution method negative, 6: Solution method positive).
  • Figure 5 shows the results of LAMP reaction on filter paper (PSA calcein fluorescence detection) by the two-sheet method—primer filter paper method.
  • FIG. 5 (A) shows the result of visual detection of the filter paper's force lucein fluorescence (upper, filter paper method; lower, solution method). In both the upper and lower tiers, the two on the left indicate the case where the filter paper without Primer is stacked (Nega), and the two on the right indicate the case where the filter paper on which Primer is developed is stacked (Posi).
  • Fig. 5 (B) shows the results of 3% agarose electrophoresis analysis of the amplification reaction solution (1, 2: Filter paper method negative, 3,4: Filter paper method positive, 5: Solution method negative, 6: Solution method positive) .
  • Fig. 6 shows the results of LAMP reaction on filter paper using the three-sheet method (HCV-transcribed RNA calcein fluorescence detection).
  • Fig. 6 shows the results of visual detection of filter paper force lucein fluorescence (1, 2: three-sheet filter paper negative, 3,4: three-sheet filter paper positive, 5: —sheet filter paper method negative, 6: —sheet filter paper method
  • Fig. 6 (B) shows the results of 3% agarose electrophoresis analysis of the amplification reaction (1, 2: Three-sheet filter paper negative, 3, 6) (Solution method negative, 8: Solution method negative). 4: three-sheet filter paper positive, 5: —sheet filter paper method negative, 6: —sheet filter paper method positive, 7 solution method negative, 8: solution method positive).
  • Figure 7 shows the results of all extraction-amplification-detection on filter paper (1. HBV sample amplification results 2. HCV sample amplification results 3. Negative control (no HBV target nucleic acid)).
  • Figure 8 shows the results of amplification of HBV samples by the three-filter-paper method, 51 solution reaction, and 25 1 normal scale reaction.
  • (PaperJO) is the three filter paper method
  • is the 5 1 (5 ⁇ 1_20) solution reaction
  • the mouth (25 // 1—20) is the 25 wl normal scale reaction measurement result (each 3)
  • No mark (Paper_N, 5 1_, 25 1_N) indicates the measurement results of the control (2 each).
  • Figure 9 shows the results of electrophoretic analysis of the PCR reaction (PSA) on filter paper using the single-sheet method (M: 100 b ladder, 1: filter paper method negative, 2: filter paper method positive, vertical DNA 10 6 copi es / tube, 3: filter paper method positive DNA 10 8 copi es / tube, 4: solution method negative DNA 5: solution method positive DNA 10 6 cop ies / tube, 6: solution method positive DNA 10 8 copies / tube) 0
  • M 100 b ladder, 1: filter paper method negative, 2: filter paper method positive, vertical DNA 10 6 copi es / tube, 3: filter paper method positive DNA 10 8 copi es / tube, 4: solution method negative DNA 5: solution method positive DNA 10 6 cop ies / tube, 6: solution method positive DNA 10 8 copies / tube
  • Target nucleic acid means a nucleic acid sequence or nucleic acid molecule to be detected.
  • Porous support in the present specification is a porous hydrophilic solid-phase support, and examples thereof include filter paper, nylon membrane, and cellulose ester.
  • sample in the present specification includes all samples containing nucleic acids such as blood and peripheral blood leukocytes, and nucleic acids extracted from those samples.
  • Nucleic acid amplification reaction in the present specification includes all known nucleic acid amplification reactions such as PCR, ICAN, SDA, NASBA, LAMP and the like.
  • Nucleic acid amplification reagent includes all reagents necessary for nucleic acid amplification reaction, such as DNA polymerase, substrate nucleotide, primer, probe and the like.
  • Nucleic acid extraction reagent “Nucleic acid extraction reagent” in the present specification includes all reagents necessary for nucleic acid extraction.
  • Nucleic acid detection reagent in this specification includes all reagents necessary for nucleic acid detection, such as a luminescent reagent, a fluorescent reagent, an intercalation reagent, and a nucleic acid precipitating agent.
  • Primer “Primer” in the present specification means an oligonucleotide or a labeled product thereof for specifically hybridizing and amplifying to a target nucleic acid.
  • Nucleic acid probe In this specification, “nucleic acid probe” is specific to a target nucleic acid. Means a nucleic acid fragment for the purpose of detecting the sequence. As will be described later, the nucleic acid probe may be a peptide nucleic acid or a locked nucleic acid.
  • Nucleic acid precipitating agent “Nucleic acid precipitating agent” in the present specification means an agent that adsorbs to nucleic acid and forms aggregates such as polyethyleneimine.
  • Extraction of the nucleic acid on the porous support can be performed according to the method described in Example 3 described later.
  • alcohol ethanol, isopropanol
  • Extraction of the nucleic acid on the porous support can be performed according to the method described in Example 3 described later.
  • alcohol ethanol, isopropanol
  • the nucleic acid extracted on the porous support is directly subjected to a nucleic acid amplification reaction.
  • a nucleic acid amplification reaction any known method such as PCR method, ICAN method, SDA method, NASBA method, LAMP method and the like may be used.
  • the LAMP reaction is preferred as the nucleic acid amplification reaction used in the present invention.
  • the LAMP (Loop-mediated isothermal amplification) method is a nucleic acid amplification method developed by the present inventors. Alternatively, two, four, or six specific primers with an outer primer pair and a loop primer pair added thereto, a strand-displacement polymerase, and a nucleotide as a substrate under isothermal conditions (65 DNA and RNA can be amplified quickly and inexpensively.
  • the LAMP method see Reference: Notomi, T et al .: Nucleic Acids Res. 28 (12): e63 (2000), Patent: International Publication No. W00 / 28082, or Eiken Chemical Co., Ltd. Home Page (ht tp: //www.eiken.co.jp/) is described in detail.
  • the extension reaction and the amplification reaction proceed simultaneously at multiple positions on the same strand of the amplification product, so that DNA amplification is achieved in a super-exponential and isothermal condition. It is possible to synthesize long-chain amplification products having a repeat structure (a structure in which complementary sequences are repeatedly included on the same strand) with high amplification efficiency. it can.
  • the inner primer is an indispensable primer for the LAMP method.
  • the X2c Is a primer (having the structure of X1C + X2) containing the complementary sequence X2 and the same sequence Xlc as Xlc in this order from the 3 ′ side to the 5 ′ side.
  • the outer primer is a primer sequence that has a complementary sequence to the arbitrary sequence X3c outside the inner primer (that is, the 3 'side of the cage), and can be annealed to it (for each complementary to the two strands) One by one).
  • a loop primer is a primer that contains a base sequence complementary to the sequence in the loop at the 3 'end when complementary sequences generated on the same strand of the amplified product by the LAMP method anneal to each other to form a loop.
  • the outer primer and loop primer are not essential for the LAMP method, but if they are present, the amplification reaction proceeds more efficiently.
  • the temperature at which the inner primer can form a stable base pair bond with a complementary sequence on the vertical nucleic acid and the strand displacement polymerase can maintain the enzyme activity, for example, 50 to 75 °. C, preferably 55 to 70 ° C., for 1 minute to 10 hours, preferably 5 minutes to 4 hours.
  • the LAMP reaction is a buffer that provides a suitable pH for enzyme reactions, salts required for maintaining the catalytic activity of enzymes, enzymes protecting agents, and, if necessary, melting temperature (Tm) regulators. It is preferable to carry out in the coexistence of the above.
  • the buffering agent those having a buffering action from neutral to weak strength such as Tris-HCl are used. pH is used
  • KC1 KC1
  • NaCK NH 4 ) 2 S0 4
  • Tm melting temperature
  • Usi serum albumin and saccharides are used as enzyme protective agents.
  • Tm melting temperature
  • betaine, proline, dimethyl sulfoxide, or formamide can be generally used.
  • the inner primer and the substrate nucleotide may be labeled with an appropriate label.
  • labeling substances include fluorescent dyes (FIT R0C, etc.), enzymes, and tongues.
  • Examples include parks, radioisotopes, chemiluminescent substances (for example, DNP), piotin, and DIG (digoxigenin).
  • the amplified target nucleic acid can be easily detected by a known method using a labeled nucleic acid probe or a fluorescent reagent on a porous support.
  • the method using a nucleic acid probe and a nucleic acid precipitating agent is preferable in that the amplification product can be easily confirmed visually.
  • the nucleic acid probe used for detection is an oligonucleotide probe having a sequence complementary to at least a part of the target nucleic acid, and its chain length is usually about 5 to 50 base length, preferably 10 to 30 base length Degree.
  • the probe when a nucleic acid precipitating agent is used, the probe is preferably relatively short. This is because nucleic acid precipitating agents tend to adsorb to long-chain nucleic acids, so in order to prevent the precipitating agent from adsorbing to free probes and achieve good B / F separation, nucleic acid probes are generally used. This is because it is necessary to have a relatively short chain. However, by adjusting the reaction conditions such as adjusting the temperature during the reaction of the nucleic acid precipitant to around the Tm of the probe, good B / F separation becomes possible regardless of the length of the probe.
  • the nucleic acid probe may be labeled with an appropriate reagent for detection.
  • the labeling substance examples include fluorescent dyes (FIT R0C, etc.), enzymes, proteins, radioisotopes, chemiluminescent substances (eg, DNP), piotin, DIG (digoxigenin), and the like.
  • the nucleic acid probe may be a peptide nucleic acid (Nielsen, PE et al., Science 254, 1497 to 1500 (1991)), or a locked nucleic acid (W099 / 14226, Special Table 2002-521310).
  • the nucleic acid precipitating agent used in the present invention is not particularly limited as long as it adsorbs to the nucleic acid to form an aggregate. However, a nucleic acid precipitating agent that selectively binds to a nucleic acid having a longer chain length than a nucleic acid having a shorter chain length is preferable. .
  • nucleic acid precipitating agent as the nucleic acid precipitating agent, surfactant, dihydroxybenzene, sodium dodecyl sulfate, sodium diisoptyl sulfosuccinate, sodium tetradecyl sulfate, dihydroxybenzene, sarcosine Alkaline metal salts and ammonium salts with Sarkosyl, S0 4 , P0 r Cl, HCOO, etc. are known.
  • hydroxyapatite, polyethyleneimine, sulfated sulfate, poly-L-lysine , And DEAE dextran are preferred.
  • Polyethyleneimine preferably has a degree of polymerization of about 40 or less.
  • the concentration and amount of the nucleic acid precipitant used is determined by the nature of the precipitant.
  • the concentration is preferably about 0.1 M to 2 M, and the addition amount is preferably about 4 to 200 At g with respect to the reaction solution 25 1.
  • the pH of the reaction solution suitable for the nucleic acid precipitating agent is determined by the properties of each precipitating agent, but generally 6 to 10 is preferable. This is because if the pH of the reaction solution is too high, it will be difficult for the probe to hybridize to the nucleic acid, while if the pH is too low, the B / F separation will decrease due to protonation of the nucleic acid.
  • the ionic strength of the reaction solution when the nucleic acid precipitating agent is added is also determined by the properties of each precipitating agent, but generally 0.15 niol / 1 or less is preferable. This is because the electrostatic interaction is inhibited and sufficient agglomeration cannot be formed.
  • the temperature at the time of adding the nucleic acid precipitating agent is preferably 20 to 70, and may be the same as the constant temperature at the time of nucleic acid amplification.
  • the nucleic acid probe and the nucleic acid precipitating agent may be added on the porous support after amplification, or may be spotted in advance at an appropriate position on the porous support.
  • the amplification reaction is performed by adding a nucleic acid probe to a porous support in advance, the amplification step and the hybridization step proceed almost simultaneously.
  • Hybridization conditions between the amplification product and the nucleic acid probe are not particularly limited, but it may be usually performed at 50 to 70 ° C. for about 5 minutes.
  • Aggregates formed from amplified nucleic acids, nucleic acid probes, and nucleic acid precipitating agents and free nucleic acid probes have distinctly different mobility on the solid phase, so they can be easily separated.
  • Aggregates can be easily detected by labeling nucleic acid probes and amplification products. Detection includes both qualitative and quantitative, for example, If it is qualitative detection such as the presence or absence of the target sequence, it can be easily performed by visual confirmation of the aggregate. On the other hand, quantitative detection can be performed by measuring the signal intensity using a commercially available apparatus such as a fluorescent plate reader pol arion (manufactured by TECAN).
  • the present invention also includes a nucleic acid analysis for consistently performing extraction, amplification, and detection of nucleic acids, which is composed of one or more porous supports including a nucleic acid amplification reagent, a nucleic acid extraction reagent, and / or a nucleic acid detection reagent in advance. Provide a system.
  • the above primers are used in addition to the inner primer.
  • -It is desirable to further include a primer, and a Z or loop primer, or a label thereof.
  • the nucleic acid precipitating agent is any one or two or more selected from the group consisting of hydroxyapatite, polyethyleneimine, sulfated sulfate, poly-L-lysine, and jetylaminoethyl dextran. It is preferable that
  • the system of the present invention can detect a melting temperature adjusting agent (for example, betain, trimethylamine N-oxide, etc.), a buffer that gives conditions suitable for an enzymatic reaction, and a synthetic reaction product as necessary. It may be provided as a kit containing other reagents necessary for this purpose.
  • a melting temperature adjusting agent for example, betain, trimethylamine N-oxide, etc.
  • a buffer that gives conditions suitable for an enzymatic reaction
  • a synthetic reaction product as necessary. It may be provided as a kit containing other reagents necessary for this purpose.
  • the nucleic acid amplification reagent is divided and held in two or more porous supports, and can be configured to be used by contacting these supports during use (or during amplification).
  • primer and other nucleic acid amplification tests A system in which the drug is divided and held in different porous supports, a system in which the polymerase and other nucleic acid amplification reagents are divided and held in different porous supports, or a polymerase and a primer And a system in which other nucleic acid amplification reagents are separately held on different porous supports.
  • the polymerase is preferably held on a porous support in a dry state to maintain stability.
  • PSA PSA cDNA GenBank ID M26663 cloned in pBR322
  • FIP TGTTCCTGATGCAGTGGGCAGCTTTAGTCTGCGGCGGTGTTCTG SEQ ID NO: 1
  • RIP TGCTGGGTCGGCACAGCCTGAAGCTGACCTGAAATACCTGGCCTG SEQ ID NO: 2
  • F3 TGCTTGTGGCCTCTCGTG SEQ ID NO: 3
  • FIP CAATTTGCAGGACACACCGAGATTGAAGAGCTGCGAAGTC (SEQ ID NO: 5)
  • LpF GCAGTTGAGCATCCTTAATCT (SEQ ID NO: 9)
  • LpB GACTGAGAGAGGAATACGTC (SEQ ID NO: 10) c) HCV sample (Akita Nikka plasma pack sample; ABC No62; approx. 2300 KIU / ml; 1.15 X 10 4 copies / 1)
  • FIP GGTTKATCCAAGAAAGGACCCAGTCGCCATAGTGGTCTGCGGA (SEQ ID NO: 1 1)
  • BIP CCGCAAGACTGCTAGCCGAGGCAAGCACCCTATCAGGC (SEQ ID NO: 1 2)
  • F3 GGCGTTAGTATGAGTGTCGTAC (SEQ ID NO: 1 3)
  • FIP GATAAAACGCCGCAGACACATCCTTCCAACCTCTTGTCCTCCAA (SEQ ID NO: 1 6)
  • BIP CCTGCTGCTATGCCTCATCTTCTTTGACAAACGGGCAACATACCTT (SEQ ID NO: 1 7)
  • F3 CAAAATTCGCAGTCCCCAAC (SEQ ID NO: 18)
  • HBV probe (3 'R0X label): CAGCGATAGCCAGGACAAAG (SEQ ID NO: 2 1) (3) Filter paper
  • the filter paper material is Qualitative filter paper No. 1 manufactured by Toyo Filter Paper Co., Ltd., cut into three corners. Or a 4mm diameter circular cut was used (hereinafter referred to as a piece of paper).
  • Reaction was performed by adding 0 to 20 pieces of filter paper (3 mm square). The PCR tube is heated in a thermal cycler to the specified temperature, LAMP reaction is performed, and calcein (Dojin Chemical) is added to detect fluorescence (Applied Biostems AB B7700 (Dye l for FA) ayer use)) to confirm the presence or absence of amplification. Next, 10 1 of Loading Dye, 6 ⁇ (Promega) was added to the filter paper, left for 5 minutes, and subjected to 3% agarose electrophoresis to confirm LAMP amplification of the target nucleic acid. The LAMP reaction on the filter paper was performed by the following various methods.
  • primer, enzyme, substrate, and magnesium ion are present in the same solution, non-specific reactions such as primer dimer may occur if stored for a long period of time. Therefore, the primer or enzyme was spread on a filter paper separate from the remaining reagents, and it was examined using the PSA system whether it was possible to cause LAMP reaction by overlaying them when necessary.
  • LAMP reaction solution (RM; 1.67-fold concentration) that does not contain only one primer 3 1 and 2.5-fold primer solution ⁇ ⁇ are spread on separate filter paper pieces, and they are overlapped. A LAMP reaction was performed. The concentration of each component is set to a predetermined concentration when the total amount of the two liquids is 5 ⁇ 1.
  • LAMP reaction solution containing only Bst (RM; 1.67-fold concentration) 3 1 or 4-fold diluted Bst (or Enzyme Mix) stock solution 2 1 is spread on separate filter paper pieces, and they are overlapped Reaction was performed.
  • the concentration of each component is set to a predetermined concentration when the two are combined and the total liquid volume is 5 1.
  • the target nucleic acid supported on the filter paper must be able to cause a LAMP reaction on the filter paper.
  • a filter paper reaction consisting of three sheets of filter paper containing the target nucleic acid, RM filter paper, and Bst filter paper (or Enzyme Mix filter paper) is required. Therefore, the three-sheet method was tried by the following method using the HCV system.
  • LAMP reaction solution (RM: 1.67-fold concentration) that does not contain Bst and target nucleic acid on 3 pieces of filter paper.
  • 3 1-fold diluted Bst (or Enzyme Mix) solution 1 1, any concentration
  • Each target nucleic acid solution was developed with lil, and the LAMP reaction was performed by superimposing them. The concentration of each component is set to a predetermined concentration when all three liquids are combined and the total liquid volume is 51.
  • Figure 3 shows the results of LAMP reaction on filter paper with PSA (6 xlO " 20 M) as a target nucleic acid at 65 ° (:, 60 minutes. As shown in Figure 3, only when target nucleic acid is included LAMP amplification was confirmed, and 3% agarose electrophoresis analysis confirmed that a ladder pattern of the specified size was obtained, indicating that LAMP reaction was possible on the filter paper. It was done.
  • Figure 4 shows the results of LAMP reaction on the filter paper for 60 minutes using the primer filter paper method with PSA (6 ⁇ 10 " 2 ⁇ ⁇ ) as the target nucleic acid at 65.
  • Fig. 5 shows the results of LAMP reaction on filter paper for 65 and 60 minutes using (6 xlO " M M) as the target nucleic acid.
  • the purpose of this experiment was to confirm whether a substance (primer or enzyme) could be transferred between two filter papers. Therefore, as a negative control, there was no target nucleic acid, no primer, Reaction conditions without enzyme were used (one of the two sheets was water spot filter paper).
  • Bst filter paper method can also be used to formulate LAMP reagents.
  • Primer when used as a separate filter paper, it can be considered that RM filter paper can be used in common regardless of the system, and it can be applied to enable simultaneous detection of multiple items or multiple items.
  • Figure 6 shows the results of LAMP reaction on filter paper for 60 minutes at 63 using HCV-transcribed RNA (6 xlO " 18 M) as a target nucleic acid by the triple-plate method.
  • the inventors confirmed that in the nucleic acid extraction method using filter paper, when the filtration operation was performed without acting isopropanol, the target nucleic acid passed through the filter paper and could not be supported on the filter paper. ing. From this, isopropanol It can be seen that the target nucleic acid precipitated (aggregated) in is larger than the pores of the filter paper, but the dissolved target nucleic acid is sufficiently smaller than the pores of the filter paper. It can also be seen that there is no special interaction such as adsorption between the dissolved target nucleic acid and filter paper (cellulose).
  • the dissolved target nucleic acid can freely move between the filter papers to some extent, and as a result, the solution contained in the three stacked filter papers results in a predetermined LAMP reaction solution containing the target nucleic acid (that is, It was presumed to function as the same solution as in the single sheet method.
  • HCV sample (Akita Nikko plasma pack sample; ABC No62; approx. 2300 KIU / ml; 1.15 X 104 copies / 1) 1000 diluted with phosphate buffer or HBV sample (Nikka plasma pack) Specimen No. 79; 63100 copies / ml) was diluted 10-fold with normal plasma (No. 39), and 100 1 was lysed buf fer (68% guanidine thiocyanate, 3%). DTT and 10 mM Tris pH 8.0) were mixed and allowed to stand for 10 minutes. Next, 400 1 of 100% isopropanol was added to the specimen, and filtered with a piece of filter paper (diameter 4 mm; Nol) using a syringe.
  • the obtained filter paper was used as the target nucleic acid filter paper, placed on the RM filter paper and Bst (or Enzyme Mix) filter paper, placed in a PCR tube, and heated at 63 ° C for 1 hour.
  • the total system using filter paper as a carrier avoids the minute mixing of reagents, and the reagent can be stabilized by changing the liquid feeding system in the device to a simple carrier movement system. confirmed.
  • Filter paper three-sheet method 5 1 (R 3 1 + l / 2Bst ⁇ n ⁇ + vertical 1 1)
  • PSA (6 xlO ” 20 M) was used as the target nucleic acid, and a PCR reaction solution of 31 was added to one piece of filter paper, and a PCR reaction was performed on the filter paper (in the amplification region).
  • the size is 178 bp.
  • the PCR reaction was performed according to the TAKARA LA TaQ standard protocol, and the PCR reaction solution composition shown in Table 2 was used. 30 seconds, 30 seconds at 58, 30 seconds at 70, 30 seconds at 70. 2]
  • the present invention can be used for simple DNA analysis and DNA testing in clinical sites and laboratories as a simple nucleic acid detection device that consistently performs nucleic acid extraction, amplification, and detection. Sequence listing
  • SEQ ID NO: 2 Artificial sequence description: RIP primer for PSA
  • SEQ ID NO: 3 Description of artificial sequence: F3 primer for PSA
  • SEQ ID NO: 4 Description of artificial sequence: R3 primer for PSA
  • SEQ ID NO: 6 Description of artificial sequence: RIP primer for CK20
  • SEQ ID NO: 7 Description of artificial sequence: F3 primer for CK20
  • SEQ ID NO: 8 Description of artificial sequence: R3 primer for CK20
  • SEQ ID NO: 10 Description of one artificial sequence: LpR primer for CK20
  • SEQ ID NO: 1 4 Description of one artificial sequence: R3 primer for HCV
  • SEQ ID NO: 1 7 Description of one artificial sequence: RIP primer for HBV
  • SEQ ID NO: 2 1 Description of one artificial sequence: HBV probe

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は、核酸の抽出、増幅、検出の全工程を1つの固相支持体上で行うことが可能な、核酸解析のトータルシステムに関する。すなわち、予め核酸増幅試薬を含む多孔質支持体に、核酸を含む検体を添加し、核酸の抽出、標的核酸の核酸増幅反応、及び該核酸増幅反応産物の検出を一貫して行うことを特徴とする核酸解析方法、ならびに該方法のためのシステムに関する。

Description

核酸解析方法 技 術 分 野
本発明は、 多孔質支持体上での核酸の増幅方法と、 該方法を利用した核酸の 抽出、 増幅、 検出のトータルシステムに関する。 背 景 技 術 明
最近、 DNA検査の一般的需要が拡大している。 こうした需要に応えるために 田
は、 検体からの核酸の抽出、 増幅、 検出を一貫して行える、 簡便な小型システ ムの開発が望まれる。
酵素や血液成分等の生化学分析では、 ドライケミストリーを利用した簡易な 固相検査システムが開発されている (例えば、 特許文献 1参照)。 これらのシス テムでは、 反応に必要な試薬類がマトリックス中に乾燥状態で提供され、 添加 された検体の水分を溶媒として反応が行われる。 ドライケミストリーを利用し た検査システムでは、 わずかな検体を固相上に点着するだけで、 目的とする成 分が簡便に測定できるため実用性が高く、 生化学分野で汎用されている。
しかしながら、 上記のドライケミストリーを核酸検査に応用するためには、 いくつかのハードルがある。 まず、 核酸の抽出、 増幅、 検出は従来異なる系で 行われており、 単一のシステムに一貫化することは難しい。 特に、 PCR等の核 酸増幅は、 高温での複雑な温度サイクルを必要とし、 また銬型核酸と酵素、 基 質、 プライマ一等の試薬類を高い自由度で反応させる必要があることから、 一 般に固相反応系には適さない。
これに対し、 不織布や濾紙、 ハイ ドロキシアパタイト等からなるフィルター に核酸を吸着させ、 LAMP法によって増幅する方法が報告されている (特許文献 2及び特許文献 3参照)。 これらの方法では、 固相支持体上に核酸を吸着させ、 ここに LAMP反応液を添加することにより、 核酸の増幅が行われる。
LAMP法は、 発明者らが開発した核酸増幅法で、 PCR法で不可欠とされる複雑 な温度制御を必要せず、 特有のインバーテッドリピート構造 (同一鎖上に互い に相補的な配列が繰り返し含まれる構造) を有する長鎖の増幅産物を、 高い増 幅効率で合成できる (非特許文献 1及び特許文献 4参照)。 発明者らは、 LAMP 増幅産物に核酸沈澱剤を結合させることで、 親水性基材上で核酸増幅を検出す る方法を既に報告している (特許文献 5参照)。 しかしながら、 この方法はハイ ブリダィゼーションアツセィにおける B/F分離の問題の解決が目的であって、 核酸の抽出、 増幅、 検出を固相中で一貫して行うシステムを指向したものでは ない。
[特許文献 1 ] 特開平 5 - 80049号公報
[特許文献 2] 特開 2004— 20 1 607号公報
[特許文献 3] 国際公開 03Z6650号パンフレツト
[特許文献 4] 国際公開 00/28082号パンフレツト
[特許文献 5 ] 特開 2004— 141 1 59号公報
[非特許文献 1 ] 納富継宣ら (Tsugunori Notomi et al. ), 「Loop- mediated isothermal amplification of DNA.」, ヌクレイック アシッ ド リサーチ (Nucleic Acids Res. ) , Vol.28, No.12: e63, (2000) 発 明 の 開 示
これまでの研究で、 発明者らは検体からの核酸抽出を固相上で行い標的核酸 を固相に担持させる技術、 及び、 LAMP産物-ポリエチレンィミン (PEI) 複合体 を固相上に展開させて配列特異的に検出する方法を確立している。 そこで、 も し固相上で LAMP反応を起こすことができれば、 抽出、 増幅、 検出の全工程が固 相上で実現することになり、 核酸解析のトータルシステムが構築できることに なる。
すなわち、 本発明の課題は、 核酸の抽出、 増幅、 検出の全工程を固相支持体 上で行うことが可能な、 核酸解析のトータルシステムを構築することにある。 発明者らは、 微量の LAMP 反応液を展開させた濾紙の小片を所定温度に加熱 し、 LAMP 反応が起きることを確認した。 さらに、 LAMP 反応液を幾つかの成分 に分割し、 それぞれを複数の濾紙に展開して、 重ね合わせることによつても LAMP反応が起きることを確認した。 そして、 これらの結果をもとに、 固相抽出 法-固相 LAMP 反応-固相. PEI 検出というトータルシステムのモデル実験を行い、 目的とする核酸の検出に成功し、 本発明を完成させた。
すなわち、 本発明は、 予め核酸増幅試薬を含む多孔質支持体に、 核酸を含む 検体を添加し、 標的核酸の核酸増幅反応を行うことを特徴とする、 核酸解析方 法に関する。
前記方法は、核酸を含む検体からの核酸抽出と、標的核酸の核酸増幅反応と、 該核酸増幅反応あるいはその産物の検出を、 前記多孔質支持体上で一貫して行 うことができる。
この場合、 前記多孔質支持体は、 さらに核酸抽出試薬及び 又は核酸検出試 薬を予め含むものであってもよい。
ある態様において、 本発明の方法は、 2以上の層で構成される多孔質支持体 上において、
1) 核酸抽出試薬を含む多孔質支持体層で核酸を抽出し、
2) 核酸増幅試薬を含む多孔質支持体層で標的核酸の核酸増幅反応を行い、そし て
3) 上記核酸増幅反応産物に核酸プローブをハイプリダイズさせ、生成したハイ ブリツドに核酸沈澱剤を作用させて凝集塊を形成させ、 得られた凝集塊により 検体中の標的核酸を検出することを特徴とする核酸解析方法である。
前記方法において、 核酸沈澱剤及び 又は核酸プローブは多孔質支持体中に 予め含まれていてもよい。
本発明の方法において、 予め核酸増幅試薬、 核酸抽出試薬、 及び/又は核酸 検出試薬を含む 2以上の多孔質支持体から構成されるものであってもよい。 ある態様において、 核酸増幅試薬は 2以上の多孔質支持体に分割して保持さ れており、 増幅時にそれら支持体を接触させて用いるものであってもよい。 例 えば、 プライマーとそれ以外の核酸増幅試薬が異なる多孔質支持体に分割して 保持されていてもよいし、 ポリメラーゼとそれ以外の核酸増幅試薬が異なる多 孔質支持体に分割して保持されていてもよい。 あるいは、 ポリメラーゼと、 プ ライマーと、 それ以外の核酸増幅試薬がそれぞれ異なる多孔質支持体に分割し て保持されていてもよい。 なお、 これらの方法において、 ポリメラ一ゼは乾燥 状態で多孔質支持体に保持されていることが望ましい。
本発明の方法において、核酸増幅反応としては LAMP反応を用いることが好ま しい。
本発明の方法において、 多孔質支持体としては、 例えば、 濾紙、 ナイロンメ ンブレン、 セルロースエステル、 セルロース、 不織布、 織布、 綿、 ポリウレ夕 ン、及びプラスチック焼結体から選ばれる 1又は 2以上を用いることができる。 また、核酸沈澱剤としては、ハイドロキシァパタイト、ポリエチレンィミン、 硫酸プロ夕ミン、 ポリ- L-リジン、 及びジェチルアミノエチル デキストランか らなる群より選ばれるいずれか 1又は 2以上を用いることができる。
本発明はまた、 予め核酸増幅試薬、 核酸抽出試薬、 及び 又は核酸検出試薬 を含む 1又は 2以上の多孔質支持体から構成される、 核酸の抽出、 増幅、 検出 を一貫して実施するための核酸解析システムを提供する。
前記多孔質支持体に含まれる試薬としては、 例えば、
i ) プライマー又はその標識物
i i) 核酸プローブ又はその標識物。
i i i) 核酸沈澱剤
iv) DNAポリメラーゼ
V) DNAポリメラーゼの基質となるヌクレオチド、 又はその標識物
等が挙げられるが、 これらに限定されない。
本発明によれば、 核酸の抽出、 増幅、 検出を一貫して行える固相システムが 提供される。 本システムは、 核酸分析へのドライケミストリーの応用として、 臨床現場や研究室における簡便な DNA検査や DNA分析を可能にする。 図面の簡単な説明
図 1は、 濾紙上 LAMP反応の概略を示した図である。
図 2は、 濾紙上 LAMP反応 (CK20 ;力ルセイン蛍光検出) の結果を示す。
図 3は、 濾紙上 LAMP反応 (PSA;力ルセイン蛍光検出) の結果を示す。 図 3 (A)は、濾紙の力ルセイン蛍光を目視検出した結果(1, 2 : 濾紙法ネガティブ、 3, 4 : 濾紙法ポジティブ、 5 : 溶液法ネガティブ、 6 : 溶液法ポジティブ)である。 図 3 (B)は、 増幅反応液の 3 %ァガロース電気泳動分析結果 (1, 2 : 濾紙法ネガ ティブ、 3, 4 : 濾紙法ポジティブ、 5 : 溶液法ネガティブ、 6 : 溶液法ポジティブ) である。 図 4は、 二枚法一 Bst 濾紙法による濾紙上 LAMP反応 (PSA力ルセイン蛍光検 出)の結果を示す。 図 4(A)は、濾紙の力ルセイン蛍光を目視検出した結果(上 段, 濾紙法;下段, 溶液法) である。 上段下段共に、 左 2本は Bstを含まない 濾紙を重ねた場合、右 2本は Bstを展開した濾紙を重ねた場合を示す。 図 4(B) は、 増幅反応液の 3%ァガロース電気泳動分析結果 (1, 2: 濾紙法ネガティブ、 3,4: 濾紙法ポジティブ、 5: 溶液法ネガティブ、 6: 溶液法ポジティブ)である。 図 5は、二枚法—プライマー濾紙法による濾紙上 LAMP反応の結果(PSA カル セイン蛍光検出) を示す。 図 5(A)は、 濾紙の力ルセイン蛍光を目視検出した 結果 (上段, 濾紙法;下段, 溶液法) である。 上段下段共に、 左 2本は Primer を含まない濾紙を重ねた場合 (Nega)、右 2本は Primerを展開した濾紙を重ねた 場合(Posi)を示す。 図 5(B)は、 増幅反応液の 3%ァガロース電気泳動分析結 果 (1, 2: 濾紙法ネガティブ、 3,4: 濾紙法ポジティブ、 5: 溶液法ネガティブ、 6: 溶液法ポジティブ) である。
図 6は、 三枚法による濾紙上 LAMP反応の結果 (HCV 転写 RNA カルセィン蛍 光検出) を示す図である。 図 6 ( は、 濾紙の力ルセイン蛍光を目視検出した 結果(1, 2: 三枚濾紙法ネガティブ、 3,4: 三枚濾紙法ポジティブ、 5: —枚濾紙 法ネガティブ、 6: —枚濾紙法ポジティブ、 7: 溶液法ネガティブ、 8: 溶液法ポ ジティブ) である。 図 6(B)は、 増幅反応液の 3%ァガロース電気泳動分析結 果 (1, 2: 三枚濾紙法ネガティブ、 3,4: 三枚濾紙法ポジティブ、 5: —枚濾紙法 ネガティブ、 6: —枚濾紙法ポジティブ、 7 溶液法ネガティブ、 8: 溶液法ポジ ティブ) である。
図 7 は、 抽出-増幅-検出を全て濾紙上で行った結果 (1. HBV検体増幅結果 2.HCV検体増幅結果 3.陰性コントロール (HBV標的核酸無し)) を示す。
図 8は、 濾紙三枚法、 5 1溶液反応、 25 1通常スケール反応による HBV検 体の増幅結果を示す。 図中、 △ (PaperJO) は濾紙三枚法、〇は 5 1 (5^1_20) 溶液反応、 口 (25 // 1—20) は 25 wl通常スケール反応の測定結果(各 3本) を、 無印 (Paper_N、 5 1_ , 25 1_N) はコントロール (各 2本) の測定結果を示 す。
図 9は、 一枚法による濾紙上 PCR反応 (PSA) の電気泳動分析結果を示す (M: 100 b ラダー、 1: 濾紙法ネガティブ、 2: 濾紙法ポジティブ 錶型 DNA 106 copi es/tube, 3 : 濾紙法ポジティブ铸型 DNA 108copi es/tube, 4 : 溶液法ネガ ティブ、 5 :溶液法ポジティブ錶型 DNA 106cop ies/tube, 6 :溶液法ポジティブ鐯 型 DNA 108copies/tube) 0 本明細書は、 本願の優先権の基礎である特願 2 0 0 4 - 2 5 2 7 6 7号の明 細書に記載された内容を包含する。 発明.を実施するための最良の形態
1 . 用語の定義
標的核酸:本明細書中における 「標的核酸」 とは、 検出すべき核酸配列又は 核酸分子を意味する。
多孔質支持体:本明細書中における 「多孔質支持体」 とは、 多孔質の親水性 固相支持体であって、 例えば、 濾紙、 ナイロンメンブレン、 又はセルロースェ ステル等を挙げることができる。
検体:本明細書中における 「検体」 には、 血液、 末梢血白血球等、 核酸を含 有する全ての試料、 及びそれらの試料から抽出された核酸が含まれる。
核酸増幅反応:本明細書中における 「核酸増幅反応」 とは、 PCR法、 ICAN法、 SDA法、 NASBA法、 LAMP法等、 公知の核酸増幅反応の全てが含まれる。
核酸増幅試薬:本明細書中における 「核酸増幅試薬」 には、 DNA ポリメラー ゼ、 基質ヌクレオチド、 プライマー、 プローブ等、 核酸増幅反応に必要な全て の試薬が含まれる。
核酸抽出試薬:本明細書中における 「核酸抽出試薬」 には、 核酸抽出に必要 な全ての試薬が含まれる。
核酸検出試薬:本明細書中における 「核酸検出試薬」 には、 発光試薬、 蛍光 試薬、 インターカレー夕一、 核酸沈澱剤等、 核酸検出に必要な全ての試薬が含 まれる。
プライマー:本明細書中における 「プライマ一」 とは、 標的核酸に特異的に ハイプリダイズし、 増幅するためのオリゴヌクレオチド又はその標識物を意味 する。
核酸プローブ:本明細書中における 「核酸プローブ」 とは、 標的核酸に特異 的にハイプリダイズし、 該配列を検出するための核酸断片を意味する。 なお、 後述するように核酸プローブは、ぺプチド核酸やロックド核酸であってもよい。 核酸沈澱剤:本明細書中における 「核酸沈澱剤」 とは、 ポリエチレンィミン 等、 核酸に吸着して凝集塊を形成させるものを意味する。
なお、 上記各用語の具体例については、 以下の記載と実施例においてさらに 詳述する。
2 . 多孔質支持体上での核酸の抽出
多孔質支持体上での核酸の抽出は、 後述する実施例 3に記載する方法にした がって実施できる。例えば、タンパク質変性剤共存下で検体にアルコール類(ェ 夕ノール、 イソプロパノール) を加えて核酸を沈澱させ、 それを多孔質支持体 上に担持させればよい。
3 . 多孔質支持体上での核酸の核酸増幅
多孔質支持体上で抽出された核酸は、 そのまま核酸増幅反応に付される。 核 酸増幅反応は、 PCR法をはじめ、 ICAN法、 SDA法、 NASBA法、 LAMP法等が公知 のいずれの方法を用いてもよい。
特に、本発明で用いられる核酸増幅反応としては LAMP反応が好ましレ^ LAMP (Loop-mediated i sothermal ampl i f icat ion) 法は本発明者らが開発した核酸 の増幅方法で、インナープライマ一ペア或いはこれにアウタープライマ一ペア、 さらにループプライマ一ペアを加えた、 2種、 4種或いは 6種の特異的プライマ 一と、 鎖置換型ポリメラーゼ及び基質であるヌクレオチドを用いて、 等温条件 下 (65で前後) で DNA又は RNAを迅速かつ安価に増幅することができる。 LAMP 法の概要については、 文献 : Notomi, T et al.: Nucle ic Acids Res. 28 (12) : e63 (2000)、 特許:国際公開 W0 00/28082号、 あるいは栄研化学 (株)ホ ームページ (ht tp://www. eiken. co. jp/) に詳細に記載されている。
LAMP法では、 増幅生成物の同一鎖上の複数の位置で、 伸長反応と増幅反応が 同時進行するため、 DNAの増幅が超指数関数的にしかも等温条件下で達成され、 特有のインバーテツドリピート構造 (同一鎖上に互いに相補的な配列が繰り返 し含まれる構造) を有する長鎖の増幅産物を、 高い増幅効率で合成することが できる。
LAMP法ではインナープライマー、 アウタープライマー、 ループプライマーと 呼ばれる、 特異的プライマーが用いられる。
インナープライマーは LAMP法に必須のプライマーであって、铸型 DNAのそれ ぞれの鎖において、 3 ' 側に存在する任意配列 X2c、 これより 5 ' 側の任意配列 Xlcを選択したとき、 該 X2cに相補的配列 X2と該 Xlcと同一の配列 Xlcを 3 ' 側から 5 ' 側にこの順で含む (X1C + X2の構造をもつ) プライマ一である。 アウタープライマーとは、 インナープライマーよりも外側 (すなわち铸型の 3 '側) の任意配列 X3cに相補的配列を有し、 これにァニールしうるプライマ一 2種 (2本鎖に相補的な各々について 1つずつ) をいう。
ループプライマーとは、 LAMP法による増幅生成物の同一鎖上に生じる相補的 配列が互いにァニールしてループを形成するとき、 該ループ内の配列に相補的 な塩基配列をその 3 ' 末端に含むプライマーをいう。 前記アウタープライマ一 とループプライマーは LAMP法に必須のプライマーではないが、これらがあれば 増幅反応はより効率的に進行する。
LAMP反応は、インナープライマーが錶型核酸上の相補的配列に対して安定な 塩基対結合を形成することができ、 かつ鎖置換型ポリメラーゼが酵素活性を維 持しうる温度、 例えば 50〜75°C、 好ましくは 55〜70°Cで、 1分〜 10時間、 好ま しくは 5分〜 4時間かけて行われる。
また LAMP反応は、 酵素反応に好適な pHを与える緩衝剤、 酵素の触媒活性の 維持ゃァニールのために必要な塩類、 酵素の保護剤、 更には必要に応じて融解 温度(Tm)の調整剤等の共存下で行うことが好ましい。緩衝剤としては、 Tris-HCl 等の中性から弱アル力リ性に緩衝作用を持つものが用いられる。 pHは使用する
DNAポリメラ一ゼに応じて調整すればよい。 塩類としては、 例えば KC1、 NaCK あるいは (NH4) 2S04等が、 酵素の活性維持と DNAの融解温度(Tm)調整のために適 宜添加される。 酵素の保護剤としては、 ゥシ血清アルブミンや糖類が利用され る。 また、 融解温度 (Tm)調整剤としては、 ベタイン、 プロリン、 ジメチルスル ホキシド、 あるいはホルムアミドを一般的に利用することができる。
ィンナープライマーや基質ヌクレオチドは適当な標識によりラベルされてい てもよい。 標識物質としては、 例えば、 蛍光色素 (FIT R0C等)、 酵素、 タン パク、 放射性同位体、 化学発光物質 (例えば、 DNP)、 ピオチン、 DIG (ジゴキシ ゲニン) 等を挙げることができる。
4 . 多孔質支持体上での標的核酸の検出
増幅された標的核酸は、 多孔質支持体上で標識核酸プローブや蛍光試薬等を 用いて公知の方法により簡便に検出することができる。 特に、 核酸プローブと 核酸沈澱剤を用いた方法は、 増幅産物を目視で簡便に確認できるという点で好 ましい。
(1)核酸プローブ
検出で用いられる核酸プローブは、 標的核酸の少なくとも一部に相補的な配 列を有するオリゴヌクレオチドプローブであって、 その鎖長は、 通常 5〜50塩 基長程度、 好ましくは 10〜30塩基長程度である。
特に核酸沈澱剤を用いる場合、 前記プローブは比較的短鎖であることが好ま しい。 これは、 核酸沈澱剤は長鎖の核酸に吸着しやすいという性質を有するた め、 遊離のプローブへの沈澱剤の吸着を防止して良好な B/F分離を達成するに は、 一般に核酸プローブは比較的短鎖であることが必要だからである。 しかし ながら、核酸沈澱剤反応時の温度をプローブの Tm付近に調整するなど反応条件 を調整すれば、 プローブの長さにかかわらず良好な B/F分離が可能となる。 前記核酸プローブは、 検出のために適当な試薬で標識されていてもよい。 標 識物質としては、 例えば、 蛍光色素 (FIT R0C等)、 酵素、 タンパク、 放射性 同位体、 化学発光物質 (例えば、 DNP)、 ピオチン、 DIG (ジゴキシゲニン) 等を 挙げることができる。また、核酸プローブはペプチド核酸(Ni el sen, P. E. e t al. , Sc ience 254, 1497〜 1500 (1991) )、 又はロック ド核酸 (W099/14226、 特表 2002-521310) であってもよい。
(2) 核酸沈澱剤
本発明で用いられる核酸沈澱剤は、 核酸に吸着して凝集塊を形成させるもの であれば特に限定されないが、 鎖長の短い核酸よりも鎖長の長い核酸と選択的 に結合するものが好ましい。 すなわち、 核酸沈澱剤としては、 界面活性剤、 ジ ヒドロキシベンゼン、 ドデシル硫酸ナトリウム、 ジイソプチルスルホコハク酸 ナトリウム、 テトラデシル硫酸ナトリウム、 ジヒドロキシベンゼン、 サルコシ ル (Sarkosyl )、 及び S04、 P0r Cl、 HCOOとのアルカリ金属塩及びアンモニゥム 塩等が公知であるが、 本発明においては、 ハイドロキシアパタイト、 ポリェチ レンィミン、 硫酸プロ夕ミン、 ポリ- L-リジン、 及びジェチルアミノエチル デ キストラン (DEAE dextran) が好ましい。 ポリエチレンイミンは、 特に重合度 が 4 0以下程度のものが好ましい。
使用する核酸沈澱剤の濃度や量は、 各沈澱剤の性質によって決定される。 例 えば、 重合度 14のポリエチレンィミンであれば、 濃度 0. 1M〜2M程度、 添加量 は反応液 25 1に対して 4〜200 At g程度が好ましい。
核酸沈澱剤に適した反応液の pHは各沈澱剤の性質によって決定されるが、一 般的に 6〜10が好ましい。これは反応液の pHが高すぎるとプローブが核酸にハ イブリダィズしにくくなり、 一方 pHが低すぎると核酸のプロトン化により B/F 分離が低下するからである。
また、 核酸沈澱剤添加時の反応液のイオン強度も各沈澱剤の性質によって決 定されるが、 一般的に 0. 15 niol/1以下が好ましい、 イオン強度が高すぎると沈 澱剤と核酸の静電的相互作用が阻害され、 十分な凝集塊の形成が望めないから である。
さらに、 核酸沈澱剤添加時の温度は 20〜70で程度が好ましく、 核酸増幅時の —定温度と同じでもよい。
(3) 核酸沈澱剤による検出
前記核酸プローブと核酸沈澱剤は、 増幅後の多孔質支持体上に添加してもよ いし、 多孔質支持体の適当な位置に予めスポットしておいてもよい。 あらかじ め多孔質支持体に核酸プローブを添加して前記増幅反応を行う場合、 前記増幅 工程とハイブリダィゼ一シヨン工程はほぼ同時に進行する。 増幅産物と核酸プ ローブとのハイブリダィズ条件は特に限定されないが、 通常 50〜70°Cで、 5分 程度行えばよい。
増幅核酸、 核酸プローブ、 核酸沈澱剤で形成される凝集塊と、 遊離の核酸プ ローブは固相上での移動度が明確に異なるため、 両者は容易に分離することが できる。
凝集塊は核酸プローブや増幅産物を標識しておくことにより、 容易に検出す ることができる。 検出は定性的なものと定量的なものの両方を含み、 例えば、 標的配列の有無等、 定性的な検出であれば、 凝集塊の目視確認によって簡便に 実施することが可能である。 一方、 定量的な検出は、 蛍光プレートリーダー pol arion (TECAN 社製) 等、 市販の装置を用いてシグナル強度を測定すること により実施することができる。
5 . 核酸解析システム
本発明はまた、 予め核酸増幅試薬、 核酸抽出試薬、 及び 又は核酸検出試薬 を含む 1又は 2以上の多孔質支持体から構成され、 核酸の抽出、 増幅、 検出を 一貫して行うための核酸解析システムを提供する。
多孔質支持体に含まれる試薬としては、 例えば、
i ) プライマ一又はその標識物
i i) 核酸プローブ又はその標識物
i i i) 核酸沈澱剤
iv) DNAポリメラ一ゼ
V) DNAポリメラ一ゼの基質となるヌクレオチド、 又はその標識物
等が挙げられるが、 これに限定されない。
LAMP増幅の場合、 上記プライマーは、 インナ一プライマーに加えて、 ァゥ夕
—プライマ一、 及び Z又はループプライマ一、 あるいはその標識物をさらに含 んでいることが望ましい。
また、 核酸沈澱剤は、 前記したように、 ハイドロキシアパタイト、 ポリェチ レンィミン、 硫酸プロ夕ミン、 ポリ- L-リジン、 及びジェチルアミノエチル デ キストランからなる群より選ばれるいずれか 1つ又は 2つ以上であることが好 ましい。
さらに、 本発明のシステムは、 必要に応じて融解温度調整剤 (例えば、 ベ夕 イン、 トリメチルァミン N-ォキシド等)、 酵素反応に好適な条件を与える緩衝 液、 合成反応生成物の検出のために必要な他の試薬類を含むキットとして提供 されてもよい。
本発明のシステムは、 核酸増幅試薬が 2以上の多孔質支持体に分割して保持 されており、 使用時 (あるいは増幅時) にそれら支持体を接触させて用いるも のとして構成することもできる。 例えば、 プライマ一とそれ以外の核酸増幅試 薬が異なる多孔質支持体に分割して保持されているシステム、 ポリメラーゼと それ以外の核酸増幅試薬が異なる多孔質支持体に分割して保持されているシス テム、 あるいは、 ポリメラ一ゼと、 プライマーと、 それ以外の核酸増幅試薬が それぞれ異なる多孔質支持体に分割して保持されているシステム等を挙げるこ とができる。 これらのシステムでは、 ポリメラーゼは安定性を維持するため、 乾燥状態で多孔質支持体に保持されていることが望ましい。 実 施 例
以下、 実施例を用いて本発明についてさらに詳細に説明するが、 本発明はこ れらの実施例に限定されるものではない。
なお、特に記載しない限り、実施例では以下に示す LAMP反応液及び試験材料 を用いて行った。
(1) LAMP反応液 [表 1 ] LAMP 反応液の基本組成
Tris-HCl (pH8.8) 20 mM
KC1 10 mM
(NH4) 2S04 10 mM
MgSO^ 8 mM
Tween20 0.1 %
Betain 0.8 M [0.6M]
dNTPs 5.6 mM [7.6m ]
Inner primer 3. 2 MM
Outer primer 0.8
Loop primer 1.6 M
Bst polymerase 8 U/tube
BSA 2¾
(enzyme mix 1 ix 1/tube)
[ ] 内は HCV 増幅系の場合
( ) 内は CK20 あるいは HCV 増幅系の場合
(2) 標的核酸、 プライマー及び標識プローブ
a) PSA (pBR322 にクローニングした PSA cDNA GenBank ID M26663) FIP TGTTCCTGATGCAGTGGGCAGCTTTAGTCTGCGGCGGTGTTCTG (配列番号 1 ) RIP TGCTGGGTCGGCACAGCCTGAAGCTGACCTGAAATACCTGGCCTG (配列番号 2 ) F3 TGCTTGTGGCCTCTCGTG (配列番号 3 )
R3 GGGTGTGTGAAGCTGTG (配列番号 4 ) b) CK20 (GenBank ID BC031559)
FIP : CAATTTGCAGGACACACCGAGATTGAAGAGCTGCGAAGTC (配列番号 5 )
BIP : CTGCTGAGGACTTCAGACTGACTTGGAGATCAGCTTCCAC (配列番号 6 )
F3: CGA CTACAGTGCATATTACAGAC (配列番号 7 )
B3 : GTAGGGTTAGGTCATCAAAGAC (配列番号 8 )
LpF : GCAGTTGAGCATCCTTAATCT (配列番号 9 )
LpB: GACTGAGAGAGGAATACGTC (配列番号 1 0 ) c) HCV検体 (秋田日赤血漿パック検体; ABC No62 ;約 2300 KIU/ml ; 1. 15 X 104 copies/ 1)
FIP : GGTTKATCCAAGAAAGGACCCAGTCGCCATAGTGGTCTGCGGA (配列番号 1 1 ) BIP : CCGCAAGACTGCTAGCCGAGGCAAGCACCCTATCAGGC (配列番号 1 2 )
F3: GGCGTTAGTATGAGTGTCGTAC (配列番号 1 3 )
B3: CATGGTGCACGGTCTACG (配列番号 1 4 )
Loop R : TTGGGTTGCGAAAGG (配列番号 1 5 ) d) 蒙検体 (日赤血漿パック検体 No. 79 ; 63100 copi es/ml )
FIP : GATAAAACGCCGCAGACACATCCTTCCAACCTCTTGTCCTCCAA (配列番号 1 6 ) BIP : CCTGCTGCTATGCCTCATCTTCTTTGACAAACGGGCAACATACCTT (配列番号 1 7 ) F3: CAAAATTCGCAGTCCCCAAC (配列番号 1 8 )
B3: GGTGGTTGATGTTCCTGGA (配列番号 1 9 )
Loop R : GTTGGTTCTTCTGGACTACC (配列番号 2 0 )
標識 HBV プローブ (3 ' R0X 標識) : CAGCGATAGCCAGGACAAAG (配列番号 2 1 ) (3) 濾紙
濾紙材としては、 東洋濾紙社製定性濾紙 No. 1 を 3匪 角に切断したものある いは直径 4mm の円形に切断したものを用いた (以下ともに瀘紙片と表記)。
[実施例 1 ] LAMP 反応液への濾紙の添加実験
まず、 通常スケールの LAMP 反応に対する濾紙 (セルロース) の添加による 影響を CK20の系を用いて以下の方法で調べた。
1 . 試験方法
0. 2ml の PCR チューブに 50 1の LAMP反応液 (表 1 ) を入れ、 所定の枚数 の濾紙片を加えた。標的核酸としては CK20を用い、サーマルサイクラーで 63で、 60分間加熱することにより LAMP増幅を行い、 ABI-7700 (Appl ied Biosys tems 製) を用いて力ルセイン蛍光 (FAM 用 Dye layer) を測定することにより、 増 幅の有無を確認した。
2 . 試験結果
結果を図 2に示す。図 2に示されるように、濾紙片を 20枚添加しても増幅反 応が起きることが確認された。 濾紙片 (3mm 角) は最大で 3 1 の液体を保持 できるので、 20 枚の濾紙片であれば 50 x l 以上の液体を保持できることにな る。 すなわち、 反応液に濾紙が添加された状態 (反応液過剰の状態) のみなら ず、 濾紙に反応液を展開した状態 (濾紙過剰の状態) でも LAMP 反応が起こる 可能性が確認された。 [実施例 2 ] 濾紙上での LAMP 反応
1 . 試験方法
0〜20枚の濾紙片 (3mm角) を添加して反応を行った。 PCRチューブはサ一マ ルサイクラ一で所定の温度に加熱して LAMP反応を行い、カルセィン(同仁化学) を加えて蛍光を検出すること (Appl i ed B iosys tems 製 AB卜 7700 (FA 用 Dye l ayer使用)) により、 増幅の有無を確認した。 次いで、 濾紙に Load ing Dye, 6 x (Promega製) を 10 1 添加して 5分放置し、 3%ァガロースの電気泳動にかけ て、 標的核酸の LAMP増幅を確認した。 濾紙上 LAMP反応は'、 以下の各種方法に より行った。
1 . 1 一枚法
表 1に示す全ての成分を含む LAMP反応液を 1枚の濾紙に 3 1展開し、 LAMP 反応を行った。
1 . 2 二枚法
プライマー、 酵素、 基質、 マグネシウムイオンが同一の溶液中に存在してい る場合、 長期間保存しているとプライマーダイマー等の非特異反応が起きる可 能性が考えられる。 そこで、 プライマーあるいは酵素を残りの試薬とは別の濾 紙に展開しておき、 必要なときにそれらを重ね合わせて LAMP 反応を起こすこ とが可能かどうかを PSAの系を用いて検討した。
(1) プライマー濾紙法
プライマ一だけを含まない LAMP反応液(RM; 1. 67 倍濃度) 3 1、及び 2. 5 倍 濃度のプライマ一溶液 ϊ μΛ を、 それぞれ別々の濾紙片に展開し、 それらを重 ね合わせて LAMP反応を行った。 なお、 各成分の濃度は、 2枚が合わさって、 全 液量が 5 μ 1 となった状態で所定の濃度になるように設定されている。
(2) Bs t濾紙法
Bs tのみを含まない LAMP反応液 (RM ; 1. 67 倍濃度) 3 1、 4倍希釈した Bs t (あるいは Enzyme Mix) 原液 2 1をそれぞれ別の濾紙片に展開し、 それらを 重ね合わせて反応を行った。 なお、 各成分の濃度は、 2 枚が合わさって、 全液 量が 5 1 となつた状態で所定の濃度になるように設定されている。
1 . 3 三枚法
濾紙反応法を濾紙抽出法と組み合わせるためには、 濾紙上に担持された標的 核酸に対して濾紙上で LAMP 反応が起こせなければならない。 つまり、 標的核 酸を含む濾紙、 RM 濾紙、 Bs t 濾紙 (あるいは Enzyme Mix 濾紙) の 3枚からな る濾紙反応が必要である。 そこで、 HCV の系を用いて以下の方法で三枚法を試 みた。
3枚の濾紙片に、 Bs t 及び標的核酸を含まない LAMP反応液 (RM : 1. 67 倍濃 度) 3 1、 2倍希釈した Bs t (あるいは Enzyme Mix) 溶液 1 1、 任意の濃度の 標的核酸溶液を l i lをそれぞれ展開し、 それらを重ね合わせて LAMP反応を行 つた。 なお、 各成分の濃度は、 3枚が合わさって、 全液量が 5 1 となった状態 で所定の濃度になるように設定されている。
2 . 試験結果及び考察
2 . 1 一枚法 PSA (6 xlO"20 M) を標的核酸として、 65° (:、 60分間濾紙上 LAMP反応を行った 結果を図 3に示す。 図 3に示されるよう、 標的核酸を含む場合のみ力ルセイン 蛍光が観察され、 LAMP 増幅が確認された。 また、 3%ァガロース電気泳動分析 により、所定のサイズのラダ一パ夕一ンが得られたことから、濾紙上で LAMP 反 応が可能なことが確認された。
2 . 2 二枚法
プライマー濾紙法により、 PSA (6 χ10" Μ) を標的核酸として、 65で、 60分 間濾紙上 LAMP反応を行った結果を図 4に示す。 また、 Bs t濾紙法により、 PSA
(6 xlO"M M) を標的核酸として、 65 、 60分間濾紙上 LAMP反応を行った結果 を図 5に示す。
図 4及び図 5より、 Pr imerあるいは酵素が別々の濾紙に展開されていても、 それらを重ね合わせることによって所定の LAMP 反応が起きることが確認され た。 すなわち、 プライマーも Bst も濾紙の細孔にくらべて十分に小さく、 濾紙 間をかなり自由に移動できることが確認された。
なお、 本実験は、 二枚の濾紙間に物質 (プライマーあるいは酵素) の移動が 可能かどうかを確認することを目的としたため、 ネガティブコントロールとし ては、 標的核酸無しではなく、 それぞれプライマ一無しあるいは酵素無しの反 応条件とした (二枚のうちの一枚を水スポット濾紙とした)。
Bs t は濾紙上で安定に製剤化できることがわかっているため、 Bs t 濾紙法は LAMP 試薬の製剤化も兼ねられると考えられる。 一方、 Primer を別濾紙にした 場合は、 RM濾紙が系によらずに共通化できるという長所が考えられ、多項目あ るいは複数夕ーゲッ卜の同時検出可能に応用可能であると考えられる。
2 . 3 三枚法
三枚法により、 HCV転写 RNA (6 xlO"18 M) を標的核酸として、 63で、 60分間 濾紙上 LAMP反応を行った結果を図 6に示す。 三枚法によっても所定の LAMP増 幅が確認され、 LAMP試薬を 2枚に分けて製剤化し、 そこに濾紙抽出した標的核 酸担持濾紙を重ね合わせるシステムが構築可能であることが確認された。
ところで、 発明者らは、 濾紙を用いた核酸抽出法において、 イソプロパノ一 ルを作用させずに濾過操作を行った場合、 標的核酸が濾紙を通過してしまい、 濾紙上に担持できないことを確認している。 このことから、 イソプロパノール で沈澱 (凝集) した標的核酸は濾紙の細孔より大きいが、 溶解している標的核 酸は濾紙の細孔より十分に小さいことがわかる。 また、 溶解している標的核酸 と濾紙 (セルロース) の間には吸着等の特別な相互作用が無いこともわかる。 以上より、 溶解している標的核酸は濾紙の間をある程度自由に移動することが でき、 重ねた 3枚の濾紙に含まれる溶液が、 結果的に、 標的核酸を含む所定の LAMP 反応液 (すなわち一枚法と同じ溶液) として機能するものと推定された。
[実施例 3 ] 濾紙を用いたトータルシステムのモデル実験
以下のプロ卜コールで濾紙を用いたトータルシステムのモデル実験を行った。 1 . 試験方法
( 1 ) HCV検体 (秋田日赤血漿パック検体; ABC No62 ;約 2300 KIU/ml ; 1. 15 X 104 copi es/ 1 ) をリン酸バッファ一で 1000 希釈した溶液あるいは、 HBV検 体 (日赤血漿パック検体 No. 79 ; 63100 copies/ml ) を正常血漿 (No. 39) で 10倍希釈した溶液を検体とし、 その 100 1 を 300 1 の Lys i s buf fer (68% グァニジンチオシァネート、 3%DTT、 10mM Tri s pH8. 0) に混合して 10分間放 置した。 次いで、 検体に 400 1の 100%イソプロパノールを加え、 シリンジを 用いて濾紙片 (直径 4匪; Nol) で濾過した。
( 2 )標的核酸を担持した濾紙に対し、 500 1の 70%エタノールをシリンジで 通過させることで洗浄した。
( 3 ) 5分間放置することでエタノールを除去した。
( 4 )得られた濾紙を標的核酸濾紙とし、 RM 濾紙及び Bst (あるいは Enzyme Mix) 濾紙と重ね合わせて PCR チューブに仕込み、 63°Cで 1 時間加熱した。
( 5 )モノマー濃度で 0. 25M のポリエチレンィミン(PEI:重合度 14; 0, 75M KC1 を含む) 溶液を 1. l u \ スポットした濾紙片と、 反応後の濾紙を重ねて、 1分間 放置した。 これらの濾紙に、 ΙΟΟηΜ の R0X標識 HBVプローブを含む溶液 100 1 を添加し、 LAMP産物- PEI複合体にプローブをハイブリダィズさせた。 次いで、 この LAMP産物- PEI複合体を展開した濾紙を蛍光イルミネーター上 (302nm) で 目視観察した。なお、 プローブ検出に対する陰性コントロール(無関係 LAMP 産 物) として HCV 増幅産物を用いた。 また、 LAMP反応に対する陰性コントロール として HBV 増幅系の標的核酸無添加の系を用いた。 2 . 試験結果及び考察
濾紙上に抽出した HBVを標的核酸として、 三枚法による増幅反応と、 濾紙に よる PEI 検出を続けて行なった (図 7)。 その結果、 HBVの実検体に対する一連 の遺伝子検査 (配列特異的検出を含む) を全て濾紙上で行うことに成功した。 すなわち、 HBV 検体を増幅したサンプル(図 7- 1 )のみ R0X の赤色蛍光を示し、 無関係 LAMP産物 (HCV検体: 図 7-2)、 陰性コントロール (図 7-3) では濾紙由 来のわずかな蛍光しか観察されなかった。
以上の結果から、濾紙等の多孔質固相担体上において、液相と同様の LAMP 反 応を起こせることが明らかとなった。 また、 反応系の各種成分を別々の濾紙に 展開しておき、 それを重ね合わせることによつても、 LAMP反応が起きることが 確認された。 このことは、 抽出一増幅一検出という工程の全てが濾紙上で一貫 して実施可能なことを示す。 各ステップを一つのデバイス上で組み合わせれる ことができれば、 この方法は簡易で安価な核酸検出 (分析) のトータルシステ ムとなりうるものと思われる。
本研究により、 濾紙を基本.担体としたトータルシステムは、 試薬の微量混合 を回避し、 デバイス内での送液システムを簡易な担体移動システムに変えるこ と、 試薬を安定化が達せられることが確認された。
[実施例 4 ] 三枚法の感度
1 . 試験方法
三枚法の感度を評価するために、 実施例 1〜 3に従い、 以下の 3つの方法:
(1) 濾紙三枚法 5 1 (R 3 1 + l/2Bst \ n \ + 錶型 1 1)
(2) 5 1溶液反応 (RM 3 ^ 1 + l/2Bst 1 1 + 铸型 1 1)
(3) 25 1通常スケール反応
により、 HBV 検体 (20 copi es/tube) の増幅と検出を行った。 検出には、 大塚 電子社製蛍光プレートリーダ Fl uod i a T70 (Ex 486nm; Em 530nm) を用い、 そ れぞれ 3本の試料について測定を行った。 なお、 コントロールとして検体を含 まない試料 (2本) についても同様に増幅と検出を行った。
2 . 試験結果及び考察
結果を図 8に示す。 その結果、 溶液反応では 3本中 2本しか増幅が認められ ず、 本実施例の条件においては 20 copies/tubeが感度の限界と考えられた。一 方、 濾紙三枚法では、 3本中 3本において増幅が認められた。 このことから、 本発明にかかる濾紙法の感度は溶液法の感度と同等あるいはそれ以上であるこ とが確認された。
[実施例 5 ] 濾紙上での PCR反応
実施例 2の一枚法に準じて、 PSA (6 xlO"20 M) を標的核酸として、 濾紙片 1 枚に 3 1の PCR反応液を添加して濾紙上 PCR反応を行った(増幅領域のサイズ は 178 bp)。 PCR反応は、 TAKARA LA TaQ標準プロ卜コールに従い、 表 2に示す PCR反応液組成により、 PSA用 LAMPプライマーの outer primer (配列番号 3、 4) を PCRプライマーとして、 95で 30sec、 58で 30sec、 70で 30secを 35回サイ クル行った。 2 ]
PCR 反応液組成
Primer 0.5 M each
LA Taq 2.5U
10XLA PCR buffer II l
25mM MgCl2 2.5mM
2.5ra each dNTP 0.4mM each
Betain 0.5M
BSA 0.9¾
Total 10 1 反応後の濾紙 3枚を 10/ lの loading dyeに浸潤させて電気泳動を行い、 増 幅を確認した。 比較として、 同様の PCR条件で通常の溶液 PCRを行った。 溶液 PCRは 10 1スケールで行い、 その全てを電気泳動に供した。
図 9に示されるよう、 濾紙上 PCRでも溶液 PCRと同様に、 増幅領域のサイズ に対応したバンドが観察された。 このことから、 PCR法を用いても LAMP法と同 様に濾紙上での核酸増幅が可能であることが確認された。 本明細書中で引用した全ての刊行物、 特許及び特許出願をそのまま参考とし て本明細書中にとり入れるものとする。 産業上の利用の可能性
本発明は、 核酸の抽出、 増幅、 検出を一貫して行う簡易な核酸検出デバイス として、 臨床現場や研究室における簡便な DNA分析や DNA検査に利用できる。 配列表フリ テキス卜
配列番号 1 ―人工配列の説明: PSA用 FIPプライマ一
配列番号 2 ―人工配列の説明: PSA用 RIPプライマー
配列番号 3 ―人工配列の説明: PSA用 F3プライマー
配列番号 4 ―人工配列の説明: PSA用 R3プライマー
配列番号 5 ―人工配列の説明: CK20用 FIPプライマー
配列番号 6 ―人工配列の説明: CK20用 RIPプライマ一
配列番号 7 ―人工配列の説明: CK20用 F3プライマー
配列番号 8 ―人工配列の説明: CK20用 R3プライマー
配列番号 9 ―人工配列の説明: CK20用 LpFプライマー
配列番号 1 0一人工配列の説明 : CK20用 LpRプライマ一
配列番号 1 1一人工配列の説明 : HCV用 FIPプライマー
配列番号 1 2一人工配列の説明 : HCV用 RIPプライマー
配列番号 1 3一人工配列の説明 : HCV用 F3プライマー
配列番号 1 4一人工配列の説明 : HCV用 R3プライマー
配列番号 1 5一人工配列の説明 : HCV用 Loopプライマー
配列番号 1 6一人工配列の説明 : HBV用 F1Pプライマ一
配列番号 1 7一人工配列の説明 : HBV用 RIPプライマー
配列番号 1 8一人工配列の説明 : HBV用 F3プライマ一
配列番号 1 9一人工配列の説明 : HBV用 R3プライマー
配列番号 2 0一人工配列の説明 : HBV用 Loopプライマー
配列番号 2 1 一人工配列の説明 : HBV用プローブ

Claims

1 . 予め核酸増幅試薬を含む多孔質支持体に、 核酸を含む検体を添加し、 標 的核酸の核酸増幅反応を行うことを特徴とする、 核酸解析方法。
2 . 検体からの核酸抽出と、 標的核酸の核酸増幅反応と、 該核酸増幅反応あ るいはその産物の検出を、 前記多孔質支持体上で一貫して行うことを特徴とす る、 請求項 1に記載の核酸解析方法。
3 . 前記多孔質支持体が、 さらに核酸抽出試薬及びノ又は核酸検出試薬を予 青
め含むものである、 請求項 2に記載の核酸解析方法。
4 . 2以上の層で構成される多孔質支持体上において、
1) 核酸抽出試薬を含む多孔質支持体層で核酸を抽出し、
2) 核酸増幅試薬を含む多孔質支持体層で標的核酸の核酸増幅反応を行い、そし 囲
3) 上記核酸増幅反応産物に核酸プローブをハイブリダィズさせ、生成したハイ ブリツドに核酸沈澱剤を作用させて凝集塊を形成させ、 得られた凝集塊により 検体中の標的核酸を検出する、 ことを特徵とする核酸解析方法
5 . 核酸沈澱剤及び 又は核酸プローブがあらかじめ前記多孔質支持体に含 まれていることを特徴とする、 請求項 4に記載の核酸解析方法。
6 . 前記多孔質支持体が、 予め核酸増幅試薬、 核酸抽出試薬、 及びノ又は核 酸検出試薬を含む 2以上の多孔質支持体から構成されるものである、 請求項 1
〜 5のいずれか 1項に記載の核酸解析方法。
7 . 核酸増幅試薬が 2以上の多孔質支持体に分割して保持されており、 増幅 時に前記支持体を接触させて用いることを特徴とする請求項 6に記載の方法。
8 . プライマ一とそれ以外の核酸増幅試薬が異なる多孔質支持体に分割して 保持されていることを特徴とする、 請求項 7に記載の方法。
9 . ポリメラーゼとそれ以外の核酸増幅試薬が異なる多孔質支持体に分割し て保持されていることを特徴とする、 請求項 7に記載の方法。
1 0 . ポリメラーゼと、 プライマーと、 それ以外の核酸増幅試薬がそれぞれ 異なる多孔質支持体に分割して保持されていることを特徴とする、 請求項 7に 記載の方法。
1 1 . ポリメラーゼが乾燥状態で多孔質支持体に保持されていることを特徴 とする、 請求項 7〜1 0のいずれか 1項に記載の方法。
1 2 . 核酸増幅反応が LAMP反応である、請求項 1〜1 1のいずれか 1項に記 載の核酸解析方法。
1 3 . 多孔質支持体が濾紙、 ナイロンメンブレン、 セルロースエステル、 セ ルロース、 不織布、 織布、 綿、 ポリウレタン、 及びプラスチック焼結体から選 ばれる 1又は 2以上である、 請求項 1〜 1 2のいずれか 1項に記載の核酸解析 方法。
1 4 . 核酸沈澱剤が、 ハイドロキシアパタイト、 ポリエチレンィミン、 硫酸 プロ夕ミン、 ポリ- L-リジン、 及びジェチルアミノエチル デキストランからな る群より選ばれるいずれか 1又は 2以上である、 請求項 1 ~ 1 3のいずれか 1 項に記載の核酸解析方法。
1 5 . 予め核酸増幅試薬、 核酸抽出試薬、 及び/又は核酸検出試薬を含む 1 又は 2以上の多孔質支持体から構成され、 核酸の抽出、 増幅、 検出を一貫して 行うための核酸解析システム。
PCT/JP2005/015493 2004-08-31 2005-08-19 核酸解析方法 WO2006025264A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2005800373472A CN101048515B (zh) 2004-08-31 2005-08-19 核酸分析方法
EP05774925A EP1795612B1 (en) 2004-08-31 2005-08-19 Nucleic acid analysis method
JP2006532604A JP4791966B2 (ja) 2004-08-31 2005-08-19 核酸解析方法
ES05774925T ES2401879T3 (es) 2004-08-31 2005-08-19 Método de análisis de ácidos nucleicos
US11/574,475 US20090226892A1 (en) 2004-08-31 2005-08-19 Nucleic acid analysis method
HK08100824.4A HK1110629A1 (en) 2004-08-31 2008-01-22 Nucleic acid analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004252767 2004-08-31
JP2004-252767 2004-08-31

Publications (1)

Publication Number Publication Date
WO2006025264A1 true WO2006025264A1 (ja) 2006-03-09

Family

ID=35999920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015493 WO2006025264A1 (ja) 2004-08-31 2005-08-19 核酸解析方法

Country Status (7)

Country Link
US (1) US20090226892A1 (ja)
EP (1) EP1795612B1 (ja)
JP (1) JP4791966B2 (ja)
CN (1) CN101048515B (ja)
ES (1) ES2401879T3 (ja)
HK (1) HK1110629A1 (ja)
WO (1) WO2006025264A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200028A (ja) * 2007-01-26 2008-09-04 Eiken Chem Co Ltd 反応又は検出用チューブ容器、該容器を含む試薬キット
JP2015536651A (ja) * 2012-10-31 2015-12-24 セレー,インコーポレイテッド インサイチュハイブリダイゼーションを行うための方法およびキット
JP2016533746A (ja) * 2013-08-19 2016-11-04 ゼネラル・エレクトリック・カンパニイ 多孔質基材における核酸増幅の検出

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986976B2 (en) * 2010-01-07 2015-03-24 Bigtec Private Limited Method for isolation of nucleic acids and a kit thereof
DE102010038330A1 (de) * 2010-07-23 2012-03-01 Aj Innuscreen Gmbh Verfahren, Vorrichtung und Testkit für Molekularbiologische Reaktionen
EP2726595A1 (en) * 2011-07-01 2014-05-07 Qiagen GmbH Filter module in biomolecule isolation
WO2016045571A1 (en) * 2014-09-23 2016-03-31 The Hong Kong University Of Science And Technology Polynucleotide-polypeptide aggregates and uses thereof
CN104593252B (zh) * 2015-01-12 2017-02-22 国家纳米科学中心 基于移液器枪头的集样品预处理和扩增于一体的核酸分析系统及其应用
US10596566B2 (en) * 2016-04-15 2020-03-24 Mauk et al. Capillary-action microfluidic device for point-of-care diagnostics
SG10201910254YA (en) 2019-11-04 2021-06-29 Denka Company Ltd Nucleic Acid Detection Method Using Lamp And Probe Detection
CN110724633A (zh) * 2019-11-11 2020-01-24 浙江汇泽医药科技有限公司 一种微量细胞核酸提取与扩增系统及工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580049A (ja) 1991-07-22 1993-03-30 Fuji Photo Film Co Ltd 乾式分析要素を用いた測定方法及び乾式分析要素
WO2000028082A1 (fr) 1998-11-09 2000-05-18 Eiken Kagaku Kabushiki Kaisha Procede de synthese d'acide nucleique
WO2003006650A1 (fr) 2001-07-09 2003-01-23 Asahi Kasei Kabushiki Kaisha Procede de purification d'acide nucleique au moyen d'un non-tisse et procede de detection
WO2003078659A2 (en) 2002-03-20 2003-09-25 Innovativebio.Biz Microcapsules with controlable permeability encapsulating a nucleic acid amplification reaction mixture and their use as reaction compartments for parallels reactions
JP2004141159A (ja) 2002-10-02 2004-05-20 Eiken Chem Co Ltd 核酸沈澱剤を利用した核酸増幅産物のハイブリダイゼーションアッセイ
JP2004154143A (ja) * 2001-08-01 2004-06-03 Fuji Photo Film Co Ltd 核酸の分離精製方法
JP2004201607A (ja) 2002-12-26 2004-07-22 Asahi Kasei Corp 核酸吸着固相体上でのlamp反応
JP2004290149A (ja) * 2003-03-28 2004-10-21 Fuji Photo Film Co Ltd 核酸の分離精製装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756126A (en) * 1991-05-29 1998-05-26 Flinders Technologies Pty. Ltd. Dry solid medium for storage and analysis of genetic material
US5804384A (en) * 1996-12-06 1998-09-08 Vysis, Inc. Devices and methods for detecting multiple analytes in samples
JP3580801B2 (ja) * 2001-08-01 2004-10-27 富士写真フイルム株式会社 核酸の分離精製方法
US20050032061A1 (en) * 2001-11-05 2005-02-10 Riken Method of storing and/or delivering an oligomer and/or polymer applied on a support, and supports thereof
US7682818B2 (en) * 2003-03-28 2010-03-23 Fujifilm Corporation Apparatus for separating and purifying nucleic acid and method for separating and purifying nucleic acid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580049A (ja) 1991-07-22 1993-03-30 Fuji Photo Film Co Ltd 乾式分析要素を用いた測定方法及び乾式分析要素
WO2000028082A1 (fr) 1998-11-09 2000-05-18 Eiken Kagaku Kabushiki Kaisha Procede de synthese d'acide nucleique
WO2003006650A1 (fr) 2001-07-09 2003-01-23 Asahi Kasei Kabushiki Kaisha Procede de purification d'acide nucleique au moyen d'un non-tisse et procede de detection
JP2004154143A (ja) * 2001-08-01 2004-06-03 Fuji Photo Film Co Ltd 核酸の分離精製方法
WO2003078659A2 (en) 2002-03-20 2003-09-25 Innovativebio.Biz Microcapsules with controlable permeability encapsulating a nucleic acid amplification reaction mixture and their use as reaction compartments for parallels reactions
JP2004141159A (ja) 2002-10-02 2004-05-20 Eiken Chem Co Ltd 核酸沈澱剤を利用した核酸増幅産物のハイブリダイゼーションアッセイ
JP2004201607A (ja) 2002-12-26 2004-07-22 Asahi Kasei Corp 核酸吸着固相体上でのlamp反応
JP2004290149A (ja) * 2003-03-28 2004-10-21 Fuji Photo Film Co Ltd 核酸の分離精製装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1795612A4 *
TSUGUNORI NOTOMI ET AL.: "Loop-mediated isothermal amplification of DNA", NUCLEIC ACIDS RES., vol. 28, no. 12, 2000, pages E63

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200028A (ja) * 2007-01-26 2008-09-04 Eiken Chem Co Ltd 反応又は検出用チューブ容器、該容器を含む試薬キット
JP2015536651A (ja) * 2012-10-31 2015-12-24 セレー,インコーポレイテッド インサイチュハイブリダイゼーションを行うための方法およびキット
JP2016533746A (ja) * 2013-08-19 2016-11-04 ゼネラル・エレクトリック・カンパニイ 多孔質基材における核酸増幅の検出

Also Published As

Publication number Publication date
EP1795612B1 (en) 2012-12-26
US20090226892A1 (en) 2009-09-10
JP4791966B2 (ja) 2011-10-12
ES2401879T3 (es) 2013-04-25
EP1795612A4 (en) 2008-06-04
EP1795612A1 (en) 2007-06-13
CN101048515B (zh) 2013-06-12
CN101048515A (zh) 2007-10-03
HK1110629A1 (en) 2008-07-18
JPWO2006025264A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006025264A1 (ja) 核酸解析方法
US7728119B2 (en) Nucleotide primer set and nucleotide probe for detecting genotype of methylene tetrahydrofolate reductase (MTHFR)
JP4268944B2 (ja) 核酸の検出あるいは定量方法
CN104662159B (zh) 核苷酸扩增反应
US8465926B2 (en) Method and system for real time quantification and monitoring of nucleic acid amplification using electroconductive or electrochemically active labels
EP3441480A1 (en) Fast hybridization for next generation sequencing target enrichment
SG190377A1 (en) Amplified nucleic acid detection method and detection device
EP1250463A4 (en) MULTIPLEXED AND SENSITIVE DIAGNOSTIC METHODS FOR PROTEIN ANALYSIS
EP2426222A1 (en) Generic buffer for amplification
US20090061433A1 (en) Nucleotide primer set and nucleotide probe for detecting genotype of serum amyloid a1(saa1)
CA2525413A1 (en) Compositions, methods and kits for determining the presence of trichomonas vaginalis in a test sample
US7919611B2 (en) Nucleotide primer set and nucleotide probe for detecting genotype of N-acetyltransferase-2 (NAT2)
JP2004508002A5 (ja)
KR20180056343A (ko) 측방 유동 분석 스트립을 이용한 지카 바이러스의 간단하고 고감도 분자 진단 방법
CA2512599A1 (en) A method to reduce false positive results
JP2007189984A (ja) ハイブリダイゼーションによる核酸の検出方法およびアッセイキット
WO2006028162A1 (ja) シグナルプローブポリマーの形成方法
EP3814496B1 (en) Sample preparation method and system
KR20060015668A (ko) 멤브레인 측면 흐름 디엔에이 칩을 이용한 인체 유해미생물의 검출 방법과 이를 위한 검사 키트
EP1816195A1 (en) Nucleic acid fragments for detecting nucleic acid and method of detecting nucleic acid
EP1627926A1 (en) A method to reduce false positive results
WO2021124960A1 (ja) マイコバクテリウム・ツベルクローシス、マイコバクテリウム・アビウム及びマイコバクテリウム・イントラセルラーを検出するためのプライマーセット及びこれを用いた方法、並びにそのための試薬キット
JP4101810B2 (ja) マイクロアレイ再生方法及びマイクロアレイ再生試薬キット
WO2024084249A1 (en) Clonal amplification
WO2004111231A1 (ja) 遺伝子多型検出キット

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532604

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11574475

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005774925

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580037347.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005774925

Country of ref document: EP