WO2006019021A1 - Refrigerating container and cold insulating operation control device of refrigerating container - Google Patents

Refrigerating container and cold insulating operation control device of refrigerating container Download PDF

Info

Publication number
WO2006019021A1
WO2006019021A1 PCT/JP2005/014644 JP2005014644W WO2006019021A1 WO 2006019021 A1 WO2006019021 A1 WO 2006019021A1 JP 2005014644 W JP2005014644 W JP 2005014644W WO 2006019021 A1 WO2006019021 A1 WO 2006019021A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
container
refrigeration
temperature
wall
Prior art date
Application number
PCT/JP2005/014644
Other languages
French (fr)
Japanese (ja)
Inventor
Yousuke Takahashi
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004241510A external-priority patent/JP2006057947A/en
Priority claimed from JP2004241509A external-priority patent/JP4344296B2/en
Priority claimed from JP2004241508A external-priority patent/JP4231826B2/en
Priority claimed from JP2004241511A external-priority patent/JP4297849B2/en
Priority claimed from JP2004241512A external-priority patent/JP4231827B2/en
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Publication of WO2006019021A1 publication Critical patent/WO2006019021A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/003Transport containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/069Cooling space dividing partitions

Definitions

  • Refrigeration container and refrigerated container cooling operation control device
  • the present invention relates to a refrigeration container. Further, the present invention controls the storage temperature by controlling each chamber in the container partitioned into the first chamber and the second chamber with different set temperatures as targets by an engine-driven generator-mounted refrigerator.
  • the present invention relates to a refrigeration container in which different cargoes can be mixed, and more specifically, the temperature of the second chamber is controlled by introducing cool air from the refrigerator provided in the first chamber into the second chamber, and
  • the present invention relates to a cold insulation operation control device provided with a control means for performing control so that a temperature is maintained by a heater provided in a second chamber when the temperature of the two chambers is excessively lowered.
  • the cargo compartment is divided into a plurality of rooms with insulating partitions, and the partitions are movable so that they can be adjusted to the cargo volume.
  • the interior is controlled in a plurality of temperature zones by placing an internal machine (heat exchanger) in the room and managing the temperature at individual temperatures (see, for example, Patent Documents 1 and 2).
  • a traveling body having rollers on the guide rails is disposed, and the partition is rotatably connected to the traveling body via a hinge. Is moved to an arbitrary position inside the packing box, and the partition is flipped up to be selected between a storage position along the ceiling wall and a working position for partitioning the packing box back and forth (for example, And Patent Document 4).
  • recent refrigerated containers are stored by dividing the interior of the container chamber into two front and rear chambers with movable heat insulating partition plates, and controlling the front and rear chambers with different set temperatures as targets. Transportation efficiency is improved by allowing cargoes with different temperatures to be mixed (see, for example, Patent Document 5).
  • the front chamber is used as a freezer for storing frozen storage items that must be transported while maintaining frozen state such as frozen meat and frozen seafood
  • the rear chamber is used for fresh vegetables and soft drinks. It is used as a refrigerator that stores refrigerated items that must be transported while maintaining the refrigerated state.
  • the refrigerated container is cooled by an engine-driven generator-mounted refrigerator.
  • the set temperature of the freezer in the front chamber is set lower than the set temperature of the refrigerator in the rear chamber, and the refrigerator temperature control is performed by introducing cool air from the freezer into the refrigerator. Yes.
  • the heater inside the refrigerator is controlled so as to maintain the temperature in the refrigerator.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-59057
  • Patent Document 2 JP-A-5-238306
  • Patent Document 3 JP-A-8-189169
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-114079
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-122891
  • the T-rail has a large cross-sectional area and usually has a high thermal conductivity !, and an aluminum extrusion is used, a large amount of heat moves through the flooring. A large amount of heat flows through the cold air passages from the flooring. For this reason, when dividing the interior of the warehouse into multiple parts by partitioning, it is necessary to form the partition to match the cross-sectional shape of the flooring and block the cold air passage by the flooring, but the interior with a narrow entrance is wide Because of the cross-sectional shape of the flooring, it is difficult to form a partition that matches the cross-sectional shape of the flooring, and the cold air passage cannot be reliably sealed.
  • the size of the refrigerator is about 20 ° C to 130 ° C when mounted on a container or truck. Designed to have the ability to cool down.
  • the two rooms of the refrigerator and the refrigerator are controlled at different set temperatures, that is, so-called two temperature zones, it is necessary to operate the compressor and the heater on the refrigerator side at the same time.
  • the generator (engine) is overloaded, which causes a problem in terms of safety.
  • the present invention has been made in view of the above-described problems, and a first object is to provide a simple structure in which the internal temperature in which the refrigerated product is stored is subcooled below the refrigeration temperature. It is to provide a refrigerated container that can be reliably prevented.
  • the second purpose is to store the front chamber and the refrigerated product when the container is partitioned into a front chamber and a rear chamber of an arbitrary volume through a partition according to the cargo volume.
  • the purpose of the present invention is to provide a refrigerated container that can suppress heat transfer between the rear chamber as much as possible.
  • a third object is to reduce heat leakage as much as possible when the inside of a container is divided into a front chamber and a rear chamber of an arbitrary volume according to the cargo volume through a partition. It is intended to provide a refrigerated container that can reliably control the front chamber for storing products to the refrigeration temperature and the rear chamber for storing refrigerated products to the refrigeration temperature.
  • the fourth object is that when the partition is in the storage position, the two-temperature zone control for controlling each room to the freezing temperature and the refrigeration temperature is prevented, and the refrigerated product is erroneously cooled to the freezing temperature. It is providing the refrigeration container which can prevent reliably.
  • the fifth purpose is to avoid the simultaneous driving of the compressor and the heater, so that the engine overload state can be avoided even with the capacity of the above-designed refrigerator, and the control of the two temperature zones is safe and stable. It is providing the cold-storage operation control apparatus of the refrigeration container which can be performed in the next. Means for solving the problem
  • the refrigerated container of the present invention includes a container formed of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation properties, and a refrigeration unit provided on the outer surface of the front wall of the container.
  • the interior is partitioned into a front chamber on the front wall side and a rear chamber on the rear wall side through a partition movable along the inner surface of the container, and the front chamber is on the low temperature side and the rear chamber is on the high temperature side.
  • a refrigeration container that sets and cools the anterior chamber by a refrigeration unit while cooling the anterior chamber by introducing cool air from the anterior chamber to the posterior chamber, the refrigeration unit being driven by the prime mover and the prime mover It is composed of a generator and a refrigeration apparatus having an electric compressor driven by electricity generated by the generator, and an electric heater for preventing overcooling is provided in the rear chamber. is there.
  • the refrigeration container having such a configuration, cargo (frozen products) is loaded and partitioned in the front chamber.
  • cargo (frozen products) is loaded and partitioned in the front chamber.
  • the refrigeration unit operate the refrigeration unit to cool the front chamber to the freezing temperature.
  • the prime mover is driven, the generator is driven, and the electric compressor is driven by the electricity generated by the generator, and the air in the front chamber is heat-exchanged in the evaporator of the refrigeration system to cool it to the refrigeration temperature.
  • cool air from the front chamber is introduced to the rear chamber, and the rear chamber is cooled to the refrigeration temperature.
  • the rear chamber is heated by operating the electric heater using the electricity generated by the generator and heating the rear chamber. It is possible to reliably prevent cooling more than necessary.
  • the refrigeration container of the present invention includes a container formed of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation, and a refrigeration unit provided on the outer surface of the front wall of the container.
  • the interior is divided into a front chamber on the front wall side and a rear chamber on the rear wall side through a partition movable along the inner surface of the container, and the front chamber is on the low temperature side and the rear chamber is on the high temperature side.
  • the refrigeration container cools the anterior chamber by a refrigeration unit and cools the anterior chamber by introducing the cool air from the anterior chamber to the posterior chamber, and forms the surface of the bottom wall flat, A plurality of slats are arranged in each, and a partition is disposed between a pair of adjacent slats.
  • Examples of the bottom wall having a flat surface include a steel plate such as stainless steel, a plastic plate such as FRP, and a wood subjected to water-resistant treatment. Although it is slightly inferior to FRP or wood, a stainless steel plate can be preferably used.
  • the refrigerated container having such a configuration, after laying mushrooms in the front chamber, cargo (frozen products) is loaded and the partitions are fixed. If the partition is fixed, lay the mushrooms in the rear room and load the cargo (refrigerated goods). Then, operate the refrigeration unit to cool the anterior chamber to the refrigeration temperature. That is, the compressor of the refrigeration apparatus is driven, and the air in the front chamber is heat-exchanged in the evaporator to cool to the refrigeration temperature. On the other hand, cool air from the front chamber is introduced to the rear chamber, and the rear chamber is cooled to the refrigeration temperature.
  • the partition can be fixed at an arbitrary position with this length interval, and the internal space of the container can be divided into a front chamber and a rear chamber according to the cargo amount.
  • the structure of the partition is simplified, and it is possible to reliably seal without any gap between the cutting and the bottom wall.
  • the cross-sectional area of the bottom wall becomes extremely small, and the amount of heat flowing through the bottom wall can be significantly reduced. Therefore, it is possible to suppress the relatively high temperature cold air in the rear chamber that houses the refrigerated product from flowing into the front chamber that houses the frozen product.
  • the refrigerated container of the present invention includes a container formed of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation, and a refrigeration unit provided on the outer surface of the front wall of the container.
  • the interior is divided into a front chamber on the front wall side and a rear chamber on the rear wall side through a partition movable along the inner surface of the container, and the front chamber is on the low temperature side and the rear chamber is on the high temperature side.
  • the refrigeration container that cools the front chamber by the refrigeration unit while the cool air in the front chamber is guided to the rear chamber and cools the rear chamber, and the heat of the refrigeration unit is located above the inner surface of the front wall.
  • the outside of the flat ventilator with one end opened near the front wall, the other end opened in the rear chamber, and the inside divided into left and right sides over the entire width of the ceiling wall inner surface, Also, the front opening and the rear end of the ceiling wall inner surface
  • a cool air fan and a circulation fan are installed inside, and an outside of the mixer where an electric heater is arranged facing the front of the circulation fan is provided. Further, heat exchange is performed on the inner surface of the front wall.
  • An air passage that extends in the up-down direction is provided, while the mixing duct is opened rearward on the inner surface of the rear wall.
  • An air passage extending in the vertical direction facing the mouth is provided, and the left and right rear chamber side openings of the ventilation duct are communicated with the front opening facing the cool air fan of the mixing duct, and sealed to the peripheral surface of the partition It is characterized in that a material is provided and is in close contact with the inner surface of the bottom wall, the inner surfaces of the left and right side walls formed on a flat surface, and the outer surface of the bottom wall of the air duct.
  • the refrigeration unit is operated, Cool the anterior chamber to freezing temperature. That is, the compressor of the refrigeration unit is driven, and the air in the anterior chamber sucked through the fan is heat-exchanged in the heat exchanger and cooled to the refrigeration temperature. Also, the circulation fan is driven to circulate the air in the rear chamber. At this time, the circulating air in each of the front and rear chambers is guided downward through the air passages and blown out from the lower side to the upper side. The internal temperature distribution becomes uniform.
  • the cool air fan is driven, the cool air in the front chamber is guided to the rear chamber through the left and right half of the ventilation duct, the mixing duct, and the air passage, so that the rear chamber can be cooled.
  • the amount of air equivalent to the amount of air led to the rear chamber is returned from the rear chamber to the front chamber through the left and right other half of the ventilation duct.
  • the relatively hot air in the rear chamber supplied to the front chamber is immediately sucked in by the fan and cooled in the heat exchanger, so that the frozen cargo is not affected.
  • the partition can be formed in a rectangular shape corresponding to a substantially rectangular shape formed by the inner surface of the flat bottom wall, the inner surfaces of the left and right side walls, and the outer surface of the flat ventilation duct, the structure is simplified. In addition, it is possible to ensure confidentiality with the inner surface of the container through the sealing material, and to suppress the leakage of heat between the front chamber and the rear chamber as much as possible. Since the position of the partition is no longer restricted, the volume of the front and rear chambers can be arbitrarily changed according to the cargo volume.
  • the width of the ventilation duct extends over the entire width of the ceiling wall, the height can be minimized even if a certain amount of ventilation is ensured. Therefore, between the ceiling wall inner surface and the cargo Considering that a cold air passage must be secured, there is no effect on the internal volume.
  • the refrigeration container of the present invention when a heat insulating material is provided on the inner surface of the bottom wall of the ventilation duct, the cool air in the front chamber is guided to the rear chamber through the ventilation duct, and the relatively hot rear When the cool air in the chamber is guided to the front chamber, it is possible to reliably prevent condensation on the outer and inner surfaces of the ventilation duct due to the temperature difference between the cool air in the front chamber and the cool air in the rear chamber. Therefore, condensation water will not drip and wet the cargo.
  • the front duct side one end opening and the rear chamber side other end opening of the vent duct are opened from the closed position by the air pressure generated when the cold air fan is driven.
  • the shutters that operate to each other are provided so as to be rotatable, the shutters are usually in positions where the openings are closed, and air flow between the front chamber and the rear chamber is prevented via the ventilation duct. can do.
  • the length of the air duct is sufficiently long enough to be almost equal to the length of the container, air movement in the air duct can be suppressed, and heat movement accompanying air movement can be prevented.
  • the refrigerated container of the present invention includes a container formed of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation, and a refrigeration unit provided on the outer surface of the front wall of the container. It is possible to move along the inner surface of the container, and through the partition which can be rotated between the storage position and the working position, the interior is separated from the front chamber on the front wall side and the rear chamber on the rear wall side.
  • the front chamber is set to the low temperature side and the rear chamber is set to the high temperature side, and the front chamber is cooled by a refrigeration unit, while the cool air in the front chamber is guided to the rear chamber to cool the rear chamber.
  • An electrical contact that detects that the partition is in the storage position is a refrigerated container, and when the finish is in the storage position, the front chamber is set to the freezing temperature and the rear chamber is refrigerated based on the detection signal of the electrical contact. Preventing two temperature zone control to control each temperature It is an feature.
  • the refrigeration container having such a configuration
  • cargo (frozen products) is loaded into the front chamber and partitioned. Is pulled down from the storage position and rotated to the work position, and moved to the partition position and fixed.
  • the refrigeration unit is operated to cool the front chamber to the freezing temperature.
  • the compressor of the refrigeration system is driven, and the air in the front chamber is exchanged in the evaporator to cool it to the refrigeration temperature.
  • cool the front chamber to the rear chamber cool the rear chamber to the refrigeration temperature.
  • a warning is issued based on the detection signal of the electrical contact
  • a notification that the partition is in the storage position may be given by a buzzer or a lamp. It is possible and preferable.
  • each chamber in the container partitioned into the first chamber and the second chamber is different by an engine-driven generator-mounted refrigerator.
  • the container is a refrigerated container that can load cargoes with different storage temperatures, and the second air is introduced into the second chamber by introducing the cool air of the refrigerator installed in the first chamber.
  • the cold insulation operation control device provided with the control means for controlling the temperature of the chamber and controlling the temperature so as to be maintained by the heater provided in the second chamber when the temperature of the second chamber is too low.
  • the control means controls to stop the other operation while operating either the compressor or the heater of the refrigerator. In this case, the compressor or the heater
  • the priority for controlling the shift is set, and the control means controls either the compressor or the heater according to the priority.
  • the engine overload state can be avoided by stopping the operation of either the compressor or the heater of the refrigerator while the other is operating. Can do. Further, in the operation at this time, since the cold insulation operation control is performed according to the preset priority, it is possible to stably control both the first chamber and the second chamber according to the priority.
  • the first chamber is a freezer
  • the second chamber is a refrigerator
  • the freezing side temperature deviation which is the difference between the temperature inside the freezer and the set temperature on the freezer side
  • the refrigerator is set to the set temperature. If the refrigeration side temperature deviation, which is the difference in internal temperature, is ⁇ 2, the priority is as follows:
  • Priority 1 The control means gives priority to temperature control of the freezer by controlling the compressor when 1 ° C ⁇ 1.
  • Priority 2 When AT2 ⁇ 2 ° C., ⁇ ⁇ ⁇ ⁇ . 5 ° C., the controller operates the heater to give priority to temperature control of the refrigerator.
  • Priority 3 When the control means -2 ° C ⁇ AT2 ⁇ 0 ° C and AT1 ⁇ 0 ° C, the heater is operated to give priority to the temperature control of the refrigerator. To do.
  • Priority 4 When the control means 0 ° C ⁇ 2 ⁇ 0.5 ° C and ⁇ 1 ⁇ —0.5 ° C, the heater operates the heater to Prioritize temperature control.
  • the priority is basically set so that the compressor or the heater is operated with priority given to the one deviating from the set temperature force.
  • the refrigerator is prioritized, and then the heater of the refrigerator is set to operate while observing the temperature on the freezer side by the compressor.
  • the temperature inside the refrigerator storing the refrigerated product is lower than the refrigeration temperature. It is possible to reliably prevent overcooling with a simple structure.
  • the refrigerated container of the present invention when the inside of the container is partitioned into a front chamber and a rear chamber having an arbitrary volume according to the cargo amount via a partition, It is possible to suppress the heat transfer between the refrigerated product and the rear chamber as much as possible.
  • the refrigerated container of the present invention when the inside of the container is partitioned into a front chamber and a rear chamber having an arbitrary volume according to the cargo volume through a partition, heat leakage is minimized. It is possible to control the front chamber containing the frozen product to the freezing temperature and the rear chamber containing the refrigerated product to the refrigeration temperature.
  • the two-temperature zone control for controlling each room to the refrigeration temperature and the refrigeration temperature is prevented, and the refrigerated product is mistakenly frozen. Therefore, it is possible to reliably prevent cooling.
  • the refrigeration container cooling operation control apparatus according to the present invention, while one of the compressor or the heater of the refrigerator is in operation, the other operation is stopped to avoid an engine overload state. can do. Therefore, the capacity of the generator can be reduced to the minimum necessary, and can be optimized in terms of weight, cost, and fuel consumption. In this operation, since the cold insulation operation control is performed according to the preset priority, both the first chamber and the second chamber can be stably controlled according to the priority.
  • FIG. 1 is a longitudinal sectional view showing a schematic structure of a refrigerated container according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing the rear end portion of the refrigeration container of FIG. 1 with a part thereof omitted.
  • FIG. 3 is a perspective view showing an example of soot.
  • FIG. 4 is a perspective view showing an example of a partition.
  • FIG. 5 is a cross-sectional view showing a shutter provided in a right air passage in the air duct.
  • FIG. 6 is a longitudinal sectional view of the mixing duct at a position corresponding to the cold air fan.
  • FIG. 7 is a longitudinal sectional view of the mixing duct at a position corresponding to the circulation fan.
  • FIG. 8 shows the floor surface laid together with the slider rails with a part omitted. It is a longitudinal cross-sectional view.
  • FIG. 9 is a longitudinal sectional view showing a schematic structure of a refrigerated container according to a modification of the first embodiment of the refrigerated container of the present invention.
  • FIG. 10 is a longitudinal sectional view showing a schematic structure of a refrigerated container according to a second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the ventilation duct portion of the refrigeration container of FIG. 10 as viewed from above.
  • FIG. 12 is a cross-sectional view showing the opening / closing structure of the forward-side shirter member and the backward-side shirter member.
  • FIG. 13 is a functional block diagram of a control system that controls two temperature zones in a refrigerated container according to a second embodiment of the present invention.
  • FIG. 14 is a flowchart showing a process of normal cold insulation operation control on the freezer side.
  • FIG. 15 is a flowchart showing a process of normal cold insulation operation control on the refrigerator side.
  • FIG. 16 is a flowchart showing a process of controlling the cold insulation operation based on priority. Explanation of symbols
  • FIG. 1 is a longitudinal sectional view showing a schematic structure of a refrigerated container 1 according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing the refrigerated container 1 with a part of the rear end portion omitted.
  • the refrigerated container 1 includes a bottom wall 2a, a ceiling wall 2b, a left and right side wall 2c, a front wall 2d, and a left and right side wall 2c that are respectively provided with heat insulating materials and are pivotally supported so as to be opened and closed.
  • 2 e and a refrigeration unit 3 provided on the outer surface of the front wall 2d of the container 2, and the inner space of the container 2 is divided into a front chamber 2A on the front wall 2d side by a partition 13 described later,
  • the rear wall 2e is divided into a rear chamber 2B.
  • the bottom wall 2a of the container 2 is formed by sticking a heat insulating material to a flat stainless steel plate, and a gutter is installed on the upper surface thereof.
  • an aluminum slat body 11A is detachably installed along the front wall 2d and the rear wall 2e, and is located between the slat bodies 11A and 11A.
  • Multiple unit saws 11B are detachably installed.
  • a partition 13 is disposed between the slat body 11A and the unit slat 11B or between the adjacent unit slats 11B and 11B.
  • the saw body 11A and unit saw 11B are made by extrusion molding of aluminum.
  • a plurality of vertical bars 111 formed by extrusion molding of aluminum and a plurality of plate members 112 arranged in parallel on the upper surface of the vertical bars 111 with a set interval therebetween.
  • the partition 13 when the partition 13 is arranged between the front wall 2d side saw body 11A and the rear unit saw 11B to form the minimum volume front chamber 2A (maximum volume rear chamber 2B).
  • a partition 13 is placed between the rear wall 2e side saw body 11A and the front unit saw 11B in front of the rear wall 2e (see Fig. 1 with a one-dot chain line state). ) (See the state of the two-dot chain line in Fig. 1), and between them, the partition 13 is placed between any adjacent unit saws 1 IB and 11B to form the front chamber 2A and the rear chamber 2B.
  • the volume of the front chamber 2A and the rear chamber 2B can be changed according to the volume of frozen or refrigerated cargo.
  • the partition 13 has a heat insulating property, and as shown in FIG. 4, is formed in a square shape substantially corresponding to the inner shape of the container 2 and can be folded in two via the hinge sheet 13e. It is.
  • the partition 13 is provided with a sealing material 13a (see FIG. 1) around it, and is provided with a fixing belt 13b having mounting brackets 13c on one surface and a plurality of air ribs 13d on both surfaces. Are provided.
  • the mounting bracket 13c is locked to the locking portion (not shown) of the lashing rail disposed on the inner surface of the side wall 2c of the container 2, and the fixing belt is fixed.
  • the length of the unit saw 11B between any adjacent saws that is, between the rear end of the front wall 2d side saw body 11A and the rear end of the rear wall 2e side saw body 11A
  • the partition 13 can be fixed at an arbitrary position in the container 2.
  • the partition 13 has a sealing material 13a provided around the inner surface of the flat bottom wall 2a, the inner surfaces of the left and right side walls 2c, and the outer surface of the flat ventilation duct 14 provided on the ceiling wall 2b described later. Since they are in close contact with each other with almost no gap, leakage of heat between the front chamber 2A and the rear chamber 2B can be suppressed as much as possible. Also, since the cross-sectional area of the stainless steel plate of the bottom wall 2a is remarkably reduced as compared with the letter-shaped flooring, the amount of heat transfer is also greatly reduced. Moreover, the air passage 13d can secure an air passage between the cargo and the cargo, and it can be prevented that the cargo contacts the partition 13 and heat is directly transferred to the cargo.
  • the inner surface of the ceiling wall 2b of the container 2 has a width substantially corresponding to the inner surface interval of the left and right side walls 2c, and is positioned near the front wall 2d and has one end opened to the front chamber 2A.
  • a flat ventilation duct 14 having the other end opened to the rear chamber 2B at a fixed distance from the rear wall 2e is fixed.
  • This ventilation duct 14 is divided into the right and left sides by a partition wall 14a (see Fig. 2) at the middle in the width direction.
  • 14R is set to guide the cool air from the front chamber 2A to the rear chamber 2B
  • the left air passage 14L is set to guide the cool air from the rear chamber 2B to the front chamber 2A! .
  • the heat insulating material 14b (see FIGS. 5 and 6) is attached to the inner surface of the bottom wall of the ventilation duct 14 in each of the left and right ventilation paths 14R and 14L.
  • the ventilation duct 14 has a width substantially corresponding to the inner surface distance between the left and right side walls 2c, the height can be minimized even if a sufficient ventilation amount is secured, and the volume inside the chamber is affected.
  • a gap for allowing cool air to pass between the inner surface of the ceiling wall 2b and the cargo is necessary, and the ventilation duct 14 can be placed in this gap.
  • a shutter 15 is provided in each of the front wall 2d side opening and the rear wall 2e side opening of the right ventilation path 14R and the front wall 2d side opening and the rear wall 2e side opening of the left ventilation path 14L. It is provided in the rotation itself.
  • each shutter 15 normally closes each opening by its own weight, prevents air flow between the front chamber 2A and the rear chamber 2B, and moves the air in the ventilation duct 14. Can be suppressed.
  • each shutter 15 rotates against its own weight and can guide cool air from the front chamber 2A to the rear chamber 2B, and the rear chamber 2 B force is also applied to the front chamber. A relatively hot air can be led to 2A.
  • the shutter 15 rotates against its own weight and opens the rear wall 2e side opening, so that the cool air in the front chamber 2A is moved to the right. It can be led to the rear chamber 2 B through the air passage 14R.
  • the rear end portion of the ceiling wall 2b has a width substantially corresponding to the inner surface spacing of the left and right side walls 2c, and has a mixing chamber 16a inside and an opening communicating with the mixing chamber 16a in the front and rear
  • a box-shaped mixing duct 16 is fixed, and one cooling fan 17 and a plurality of circulation fans 18 are disposed in the mixing chamber 16a of the mixing duct 16.
  • the other end of the suction duct 19 having one end connected to the rear wall 2e side opening of the right air passage 14R is connected to the front side opening communicating with the mixing chamber 16a provided with the cold air fan 17 ( (See Figure 6.)
  • an electric heater 20 is provided in the front opening of the mixing duct 16 that communicates with the mixing chamber 16a in which the circulation fan 18 is provided, and the front opening is provided on the left side described above.
  • the opening force on the rear wall 2e side of the air passage 14L is also opened to the rear chamber 2B at a certain distance (see FIGS. 2 and 7).
  • the opening on the rear side of the mixing duct 16 is formed so as to face only the mixing chamber 16a provided with the circulation fan 18, and the opening is formed on the inner surface of the rear wall 2e via the sealing material 16b. Is communicated with an air passage 21 extending in the vertical direction.
  • the mixing chamber 16a of the mixing duct 16 has a partition wall 161 (see FIG. 2) between the cool air fan 17 and the circulation fan 18 on the suction side where the cool air fan 17 and the circulation fan 18 are disposed. Are divided. Therefore, the cold air in the front chamber 2A can be guided only to the cold air fan 17 through the ventilation duct 14 and the suction duct 19.
  • the refrigeration unit 3 is generated by a prime mover, for example, a diesel engine equipped with a fuel tank, a generator driven by a diesel engine, and the generator. It is composed of a refrigeration system that includes an electric compressor driven using electricity, so that the refrigeration capacity can be maintained for a set time even when there is no power source, such as rail transport, ship transport, and trailer transport. Designed.
  • a heat exchange for exchanging heat with the evaporator of the refrigeration apparatus is provided at the front end of the ceiling wall 2b (above the inner surface of the front wall 2d), and the cold air exchanged by this heat exchange is supplied to the front chamber.
  • An air passage 21 extending in the vertical direction is provided on the inner surface of the front wall 2d in order to guide the cool air supplied by the fan 23a downward.
  • refrigeration unit 3 is controlled by a control device (not shown), and the above-described cold air fan 17, circulation fan 18, electric heater 20, and fan 23a are connected to the control device and wiring. Connected and ONZOFF controlled via the controller.
  • the sword body 11A is installed along the front wall 2d, and the After installing the appropriate number of unit saws 1 IB against the rear end of the main body 11A, the cargo (frozen product) is placed on the main body 11A and the unit saw 11B using transport equipment such as a forklift. And load it. After loading the frozen products, install the partition 13, partition the container 2 into the front chamber 2A and the rear chamber 2B, then install the remaining unit saw 11B on the bottom wall 2a that becomes the rear chamber 2B. Install the slat body 11A along the rear wall 2e. Similarly, load the cargo (refrigerated goods) on the unit slag 11B and the slat body 11A using transport equipment such as forklifts, and use the rear wall 2e. Close.
  • the refrigerated container 1 is transported to the delivery location.
  • trucks can be transported directly to a delivery location using a trailer, or transported to a cargo station using a trailer, transported by rail to the target cargo station, and then transported again from the cargo station to the delivery location.
  • using a trailer transport to the port, ship to the target port, and then track again from the port to the delivery location.
  • a two-temperature zone selection switch (not shown) for controlling the front chamber 2A to the refrigeration temperature and the rear chamber 2B to the refrigeration temperature, respectively.
  • a two-temperature zone selection switch (not shown) for controlling the front chamber 2A to the refrigeration temperature and the rear chamber 2B to the refrigeration temperature, respectively.
  • the generator is driven, and the electric compressor of the refrigeration apparatus is driven by the electricity generated by the generator.
  • the electric compressor is driven, the refrigerant is compressed and supplied to the condenser, and cooled by the condenser to become a high-pressure liquid.
  • the liquefied refrigerant is blown out to the evaporator through the expansion valve, the liquefied refrigerant is vaporized, and the vaporization heat is taken away from the surrounding force of the evaporator to cool.
  • the refrigerant that has become gas is sucked into the electric compressor, and the refrigeration cycle is performed again.
  • the air in the front chamber 2A is sucked by the fan 23a, cooled by heat exchange in the heat exchanger 22, and then supplied to the main body 11A through the air passage 21 provided in the front wall 2d. Blows upward from the main body 11A and the unit 11B. In this way, the air in the front chamber 2A is circulated, and the interior of the front chamber 2A is controlled to maintain a set temperature, for example, 20 ° C.
  • the circulation fan 18 is driven. Air is sucked into the circulation fan 18 and supplied to the saw body 11A through the air passage 21 provided on the rear wall 2e, and blown upward from the saw body 11A and the unit saw 11B. In this manner, the air in the rear chamber 2B is circulated, and the interior of the rear chamber 2B is controlled to maintain a set temperature, for example, 15 ° C.
  • the cold air in the front chamber 2A is sucked into the mixing dust 16 through the air passage 14R on the right side of the ventilation duct 14 and the suction duct 19, and the cooling fan 17 side mixing chamber 16a and the circulation fan 18 side mixing chamber 16a and The air is supplied to the saw body 11A through the air passage 21 provided in the rear wall 2e, and is blown upward from the saw body 11A and the unit saw 11B.
  • the temperature sensor 24 detects the temperature and stops the driving of the cool air fan 17.
  • the temperature of the rear chamber 2B is excessively lower than the set temperature.
  • the cool air fan 17 when the cool air fan 17 is operating, the drive of the cool air fan 17 is stopped and the electric heater 20 is activated to circulate the air in the rear chamber 2B through the circulation fan 18. During the heating, the sucked air is heated by the electric heater 20. When the air in the rear chamber 2B is heated and reaches the set temperature, the operation of the electric heater 20 is stopped.
  • the cool air fan 17 is driven, the cool air of the front chamber 2A is guided to the rear chamber 2B, and the inside is cooled.
  • the electric heater 20 is operated to heat and circulate the air in the rear chamber 2B so that the internal temperature of the rear chamber 2B is maintained at the set temperature. Easy to control. As compared with the case where engine cooling water or high-temperature refrigerant is introduced to the rear chamber 2B via piping, it is easy to install the electric wiring between the refrigeration unit 3 and the rear chamber 2B. In addition, it is possible to reduce the degree of occurrence of problems that do not require consideration of leakage of cooling water or refrigerant.
  • the bottom wall 2a is formed on a flat surface and the swords 11A and 11B are laid, and then the cargo is loaded using a transportation device. It is assumed that transportation equipment such as clift cannot be used. In this case, the cargo can be loaded and unloaded using a commercially available slider, that is, a slider that can be moved back and forth via a roller, and the load receiving surface is configured to move up and down.
  • the bottom wall 2a of the container 2 has a width that allows the slider to travel as shown in FIG.
  • a plurality of rails 25 projecting upward from the upper surface of the container and having a depth that the load receiving surface immerses below the upper surface of the slats 11A and 11B during storage. It can be laid from the front wall 2d to the rear wall 2e.
  • a rubber plate or the like is suspended from the lower end surface of the partition 13 as the sealing material 13a, and the sealing material 13a is formed in a shape corresponding to the vertical cross-sectional shape of the floor surface including the rail 25.
  • the front chamber 2A and the rear chamber 2B can be sealed with almost no gap, and the rear chamber 2B force can also minimize heat leakage to the front chamber 2A.
  • FIG. 9 is a longitudinal sectional view showing a schematic structure of a refrigerated container 100 according to a modification of the first embodiment of the present invention.
  • the same constituent elements as those in the first embodiment described above are denoted by the same reference numerals, and the following description will mainly be made on differences.
  • each guide rail 12 having a substantially C-shaped cross section are located below a ventilation duct 14 provided on a ceiling wall 2b described later so that the openings face each other. Is fixed.
  • each guide rail 12 is fitted with a traveling body in which rollers are rotatably supported on the front and rear sides, and a partition 113 is provided on the left and right traveling bodies through hinges to the rear. It is connected to turn freely!
  • a knock (not shown) is provided at the lower end of the partition 113 so that it can be engaged with and disengaged from a hook (not shown) provided at the rear end of the ventilation duct 14. Yes.
  • the partition 113 can be moved along the guide rail 12 to any position in the front-rear direction. .
  • the mounting bracket 13c is locked to the locking portion (not shown) of the lashing rail disposed on the inner surface of the side wall 2c of the container 2, and the fixing belt 13
  • the length of the unit saw 11B between any adjacent saws that is, between the rear end of the front wall 2d side saw body 1 1 A and the front wall 2e side saw body 11 A
  • the partition 113 can be fixed at an arbitrary position in the container 2 at intervals.
  • the partition 113 When loading or unloading cargo, the partition 113 is flipped up, and the knock is engaged with the hook provided in the ventilation duct 14, so that the storage position along the ventilation duct 14 is reached. Can be held.
  • a limit switch (not shown) that operates when the partition 113 is in the retracted position is provided in the ventilation duct 14.
  • This limit switch detection signal main switch (not shown), one temperature zone selection switch for controlling the entire container 2 to the freezing temperature or refrigeration temperature, the front chamber 2A to the freezing temperature, An operation signal of a two temperature zone selection switch for controlling the rear chamber 2B to the refrigeration temperature is input to the control device.
  • the sword body 11A is installed along the front wall 2d, and after the appropriate number of unit swords 11B are installed in contact with the rear end of the sword body 11A, the Cargo (frozen goods) is loaded onto the main body 11A and the unit saw 11B using transport equipment such as a forklift.
  • the partition 113 is lowered to the stored state force working state, and moved and fixed along the rear end of the unit saw 11B, so that the inside of the container 2 is moved to the front chamber 2A and the rear chamber 2A. Divide into room 2B.
  • the limit switch when the partition 113 is fixed at the storage position, the limit switch is operating, and the detection signal of the limit switch is input to the control device of the refrigeration unit 3.
  • the main switch When the main switch is turned on in this state and the two temperature zone selection switch is turned on, an abnormality is displayed on the operation panel and an alarm is issued. It is controlled so that it cannot move to the stage where the degree is set. Therefore, it is possible to grasp that the partition 113 is in the storage position, and it is not possible to control the two temperature zones, so that it is possible to reliably avoid cooling the refrigerated product to the freezing temperature.
  • FIG. 10 is a schematic longitudinal sectional view showing a schematic structure of the refrigerated container 200 according to the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the ventilation duct portion when the refrigeration container 200 is viewed from above.
  • the arrow in a figure has shown the flow direction of cold air.
  • the same constituent elements as those in the above-described embodiments are denoted by the same reference numerals, and the following description will be mainly made on differences.
  • the refrigerated container 200 of the second embodiment is partitioned into a front chamber 202A and a rear chamber 202B by a partition 13 having a heat insulating property that allows the inside of the container to move back and forth.
  • the ceiling portion inside the container has a double structure of a ceiling wall 202b corresponding to the outer wall and a ceiling inner wall 202bl.
  • the space between the ceiling wall 202b and the ceiling inner wall 202bl is the ventilation duct 214. Become! / Speak.
  • the ventilation duct 214 is divided into left and right parts along the longitudinal direction of the container body, and one side (upper side in Fig. 11) is located behind the front chamber 202A side.
  • the air passage is 214L.
  • Outward side shatter member 311 and return side shatter member 312 are provided at the end of the front chamber 202A side of the forward passage side air passage 214R and the return side air passage 214L, respectively.
  • the forward side airflow path 214R and the return side airflow path 214L communicate with the inside of the front chamber 202A. It becomes like this.
  • an electric heater 220 is provided in the vicinity of the fan 23a of the refrigerator 23.
  • the electric heater 220 is basically a defrost heater for removing frost and the like attached to the heat exchanger.
  • a Balta head 219 for allowing the cool air from the refrigerator 23 to flow downward, and the upper portion of the Balta head 219 is a refrigerator housing portion 217a and The circulation fan storage part 217b is opened, and the lower part of the Balta head 219 is opened inside the front chamber 202A. That is, the front chamber 202A has a lower blowing structure that blows out cold air with lower force.
  • a cool air fan housing unit 222 that houses one cold air fan 17 for sucking the cool air of the front chamber 202A, and cool air is circulated in the rear chamber 202B.
  • a circulation fan storage unit 224 that stores three circulation fans 18, 18, and 18 is provided in communication.
  • the cool air fan storage portion 222 and the rear end portion of the outward passage side air passage 214R are provided so as to be opened and closed by the outward passage shirter member 311.
  • the rear end portion of the return-side air passage 214L is open to both the inside of the rear chamber 202B and the circulation fan storage portion 224, and is provided so as to be opened and closed by the return-side shirter member 312.
  • the inner wall of the door 225 constituting the rear wall of the rear chamber 202B is provided with a Balta head 226 for allowing cool air to flow downward, and the upper portion of the Balta head 226 has a cool air fan housing portion 222 and
  • the circulation fan storage unit 224 opens, and the lower part of the butter head 226 opens into the rear chamber 202B. That is, the rear chamber 202B has a lower blowing structure that blows out cool air from below, like the front chamber 202A.
  • the circulation fan storage section 224 is provided with an electric heater 20 facing the circulation fans 18, 18, and 18.
  • the front chamber 202A of the refrigerator 23 has a fan 23a in a state where the forward-side shirter member 311 and the backward-side shirter member 312 are closed.
  • Rotating and circulating fans 218, 218, and 218 rotate to circulate cold air by blowing downward
  • the rear chamber 202B circulates cold air by rotating downward and circulating fans 18, 18, and 18, respectively.
  • the forward-side shirter member 311 and the backward-side shirter member 312 are opened by the rotation of the cold air fan 17, the cold air blown out from the refrigerator 23 as shown by arrows in FIGS.
  • the front chamber 202A and passing through the front chamber 202A After passing through the front chamber 202A and passing through the front chamber 202A, it circulates in the front chamber 202A, and then the front chamber 202A side force is also sent to the rear chamber 202B through the upper outbound air passage 214R (in FIG. (Shown by the arrow), passes through the cool air fan housing 222 on the rear chamber 202B side, passes through the circulation fan housing 224, passes through the Balta head 226, and blows from the lower side of the rear chamber 202B to circulate in the rear chamber 202B. To do. The circulated cold air is sucked into the circulation fans 18, 18 and 18 and drawn into the circulation fan storage 224, and the lower force of the rear chamber 202 B is blown out again through the Balta head 226.
  • FIG. 12 shows the open / close structure of the forward path side shirter member 311 and the return path side shirter member 312.
  • the forward-side shirter member 311 and the backward-side shirter member 312 have the same structure except that their arrangement directions are reversed to the right and left! /, So here, the backward-side shirter member 312 will be described as an example.
  • the return path side shatter member 312 is arranged in the same direction (the direction shown in FIG. 12) at both ends of the forward path side air path 214L. That is, the upper end portion 34a and the lower end portion 34b of the shirter mounting plate 34 having the opening 33 through which the cold air passes are fixed to the ceiling wall 202b and the ceiling inner wall 202bl by fixing tools (bolts and nuts in the figure) 35, respectively.
  • a return-side shirter member 312 is attached to the shirter mounting plate 34 so as to close the opening 33.
  • the return path side shatter member 312 is rotatably attached at its upper end by a support shaft 36.
  • the shirter mounting plate 34 is provided to be inclined by an angle ⁇ (for example, 15 degrees) with respect to the vertical direction. Since the shirter mounting plate 34 is provided in an inclined manner in this way, the return side shirter member 312 acts to always close the opening 33 by its own weight. Then, in the forward side air passage 214L, the white line in FIG. When the cold air flows in the direction indicated by the arrow, the return-side shirter member 312 is rotated as indicated by the two-dot chain line in FIG. 12 to open the opening 33 due to the pressing action of the cold air. When the flow of cold air disappears, the return-side shirter member 312 rotates by its own weight, and the opening 33 is closed again.
  • for example, 15 degrees
  • the forward-side shirter member 311 has the arrangement relationship shown in Fig. 12 when the refrigerated container shown in Fig. 11 is viewed from the direction of arrow A in the figure.
  • the material of the return side shatter member 312 and the forward side shatter member 311 having such a configuration is preferably a relatively light material that can be easily rotated by the flow of cold air.
  • a relatively light material that can be easily rotated by the flow of cold air.
  • PE polyethylene
  • PP polypropylene
  • molded resin is preferably used.
  • the refrigeration container according to the second embodiment has different storage temperatures by controlling the respective chambers of the front chamber 202A and the rear chamber 202B with different set temperatures as targets (two temperature zone control). Cargo can be mixed.
  • the front chamber 202A is a freezer for storing frozen storage items that must be transported in a frozen state such as frozen meat and frozen seafood
  • the rear chamber 202B is used for fresh vegetables, soft drinks, etc. It is used as a refrigerator for storing refrigerated items that must be transported in a refrigerated state.
  • the set temperature of the front chamber (hereinafter referred to as "freezer") 202A is set lower than the set temperature of the rear chamber (hereinafter referred to as "refrigerator”) 202B, and, as described above, By introducing the cold air from the freezer 202A to the refrigerator 202B through the forward air passage 214R, the temperature of the refrigerator 202B is controlled, and when the temperature of the refrigerator 202B is too low, the temperature is maintained by the electric heater 20. To control.
  • the case where the temperature of the refrigerator 202B is too low can be considered as follows. That is, the internal temperature of the freezer 202A is controlled to about 20 ° C to 30 ° C, and the internal temperature of the refrigerator (chilled) 13 is controlled around + 5 ° C. Even if the cold air on the 02A side is not supplied to the refrigerator 202B side through the forward-side air passage 214R, the cold heat on the freezer 202A side is transmitted to the refrigerator 202B side through the partition 13, and is set by cooling the inside of the refrigerator 202B May fall too low from temperature.
  • the inside of the refrigerator 202B may be cooled by the outside air temperature in Hokkaido and may be too low from the set temperature.
  • a set temperature such as + 5 ° C.
  • the freezer 202A side needs to be controlled so that the interior is warmed by the electric heater 220 and the interior is maintained at a set temperature (120 ° C. to 30 ° C.).
  • the control unit is configured to stop the operation of one of the compressor and the electric heater 20 of the refrigerator while the other is in operation.
  • a priority for preferentially controlling the displacement of the compressor or the electric heater 20 is set in advance, and the configuration of controlling the displacement of the compressor or the electric heater 20 according to this priority! / RU
  • FIG. 13 is a functional block diagram showing a schematic configuration of a control system that controls two temperature zones in the refrigerated container 200 having the above configuration.
  • a plurality of temperature sensors 52 (not shown in FIGS. 10 to 12) provided at appropriate locations in the freezer 202A and the refrigerator 202B are provided to the control unit 51 that controls the two temperature zones in general. Not connected).
  • the control unit 51 is connected to the heater drive unit 53 that drives each electric heater 20, 220 to ONZOFF, and is connected to the fan drive unit 54 that controls the cold air fan 17, the circulation fan 18, and the circulation fan 218. ing.
  • the control unit 51 is configured to drive and control the compressor of the refrigerator 23.
  • the control unit 51 is a force that is not shown in the figure CPU that performs various arithmetic processing, ROM that stores temperature control programs in two temperature zones, RAM that stores various detected temperature data, and RAM that functions as a work area during temperature control Etc.
  • FIG. 14 is a flowchart showing processing of normal cold storage operation control on the freezer side.
  • the cooling operation control process will be described with reference to the flowchart shown in FIG.
  • the set temperature of the freezer 202A is, for example, 25 ° C
  • the accuracy of the internal temperature control of the freezer 202A is + 1 ° C to -2 ° C.
  • the freezing side temperature deviation which is the difference between the temperature inside the freezer 202A and the set temperature is ⁇ 1.
  • Circulation fan 218 is assumed to be operating at all times.
  • the control unit 51 detects the internal temperature by a temperature sensor 52 provided at a predetermined location (not shown) of the freezer 202A, and the freezing side temperature deviation which is the difference between the detected temperature and the set temperature of the freezer 202A. It is determined whether ⁇ 1 exceeds the control accuracy of + 1 ° C (step Sl l). As a result, when ⁇ 1 exceeds + 1 ° C (when it is determined Yes in step S11), the compressor is turned on and the operation is started (step S12). On the other hand, after starting the compressor, it is determined whether or not ⁇ 1 has become ⁇ 1 ° C or less (step S13). As a result, when ⁇ 1 is ⁇ 1 ° C or less (when determined to be Yes at step S13), the compressor is turned off (step S14).
  • Control unit 51 basically repeats the above-described processing (the processing from step S11 to step S14) to change the internal temperature of freezer 202A to the set temperature—from 25 ° C to ⁇ 1 ° C. Control to be within the range of.
  • step S15 the control unit 51 constantly monitors whether or not the force ⁇ 1 is ⁇ 2 ° C. or lower. As described above, this takes into account other factors that cannot be controlled only by ONZOFF of the compressor (for example, the influence of the outside air temperature described above)!
  • step S15 when ⁇ 1 is ⁇ 2 ° C or lower (when it is determined Yes in step S15), it is determined that the inside of the freezer 202A is too cold, and the electric heater (defrost heater) 220 is turned on. Set to ON (step S16). When the internal temperature reaches the set temperature, that is, ⁇ 1 force SO (Yes in Step S17), the electric heater (defrost heater) 220 is turned off (Step S18), and Step S11 is entered. Return.
  • FIG. 15 is a flowchart showing a process of normal cold insulation operation control on the refrigerator side.
  • the cooling operation control process will be described with reference to the flowchart shown in FIG.
  • the set temperature of the refrigerator 202B is, for example, + 5 ° C
  • the accuracy of the internal temperature control of the refrigerator 202B is ⁇ 2 ° C.
  • the refrigeration side temperature deviation which is the difference in the internal temperature with respect to the set temperature of the refrigerator 202B, is ⁇ 2. It is assumed that the circulation fan 18 is always in operation.
  • the control unit 51 detects the internal temperature by a temperature sensor 52 provided at a predetermined location (not shown) of the refrigerator 202B, and the refrigeration side temperature deviation which is the difference between the detected temperature and the set temperature of the refrigerator 202B. It is determined whether ⁇ T2 exceeds the control accuracy of + 1 ° C or not (step S21). As a result, when ⁇ 2 exceeds + 1 ° C (when it is determined Yes in step S21), the cool air fan 17 is turned on and the operation is started (step S22). On the other hand, after the operation of the cooling fan 17 is started, it is determined whether or not ⁇ ⁇ 2 has become ⁇ 0.5 ° C. or less (step S23). As a result, when ⁇ 2 force—0.5 ° C. or less (when determined to be Yes at step S23), the cool air fan 17 is turned off (step S24).
  • Control unit 51 basically repeats the above process (the process from step S21 to step S24) to change the internal temperature of refrigerator 202B from the set temperature of + 5 ° C to + 1 ° C. Control to be within the range of ⁇ 1. 5 ° C.
  • step S25 The power is constantly monitored whether it is below 1 ° C (step S25). As described above, this takes into consideration other factors that cannot be controlled only by ONZOFF of the cold air fan 17 (for example, the influence of cold heat conducted from the freezer 202A to the partition 13 or the outside air temperature).
  • Step S25 when ⁇ 2 is less than -1 ° C (when it is determined Yes in step S25), it is determined that the refrigerator 202B is too cold, and the electric heater 20 is turned on ( Step S26). Then, when ⁇ 2 force exceeds 5 ° C (Yes is determined in Step S27), the electric heater 20 is turned off (Step S28), and the process returns to Step S21.
  • the normal cold storage operation control on the freezer side and the normal cold storage operation control on the refrigerator side are individually performed, and at that time, the compressor and electric heater are controlled.
  • the cooling operation control based on the priority described below is performed in preference to the above-described cooling operation control.
  • FIG. 16 is a flowchart showing a process of controlling the cold insulation operation based on the priority.
  • the cooling operation control process based on the priority will be described with reference to the flowchart shown in FIG.
  • the control unit 51 first preferentially determines whether or not the refrigeration side temperature deviation ⁇ 1 exceeds + 1 ° C (step S31). As a result, when ⁇ 1 exceeds + 1 ° C (when it is determined Yes in step S31), priority is given to the cold storage operation control of the freezer 202A (step S38). That is, priority is given to the processing shown in FIG. That is, even when the electric heater 20 is turned on on the refrigerator 202B side, the electric heater is not turned on, and the control on the freezer 202A side is given priority.
  • step S32 determines whether or not ⁇ 2 that is the refrigeration side temperature deviation is ⁇ 2 ° C or lower is determined. Is determined (step S32). As a result, if ⁇ 2 is ⁇ 2 ° C or less (if Yes in step S32), then it is determined whether ⁇ ⁇ 1 is a force that is less than + 0.5 ° C (step S32). S33). If ⁇ 1 exceeds + 0.5 ° C (when it is determined No in step S33), the process proceeds to step S38, and the cooling operation control of the freezer 202A is prioritized. That is, even if the refrigerator 202B side is somewhat too cold, the electric heater 20 is not turned on and the control on the freezer 202A side is given priority.
  • step S33 if ⁇ 1 is + 0.5 ° C or lower (if determined to be Yes in step S33), the process proceeds to step S39, and step S26 in FIG. Priority is given to the processing in step S27. That is, when the compressor is in operation, the compressor is turned off and the processing in steps S26 and S27 is prioritized. Then, it is always monitored whether the judgment in Step S27 is Yes and the electric heater 20 is turned off in Step S28 (Step S40), and whether or not ⁇ T1 exceeds + 1 ° C is always checked.
  • Step S41 Monitor (Step S41) and if the electric heater is not turned off and ⁇ 1 does not exceed + 1 ° C (No in Step S40, No in Step S41), return to Step S39, 1 Repeat steps S26 and S27 shown in 5. On the other hand, if the electric heater is turned off or ⁇ 1 exceeds + 1 ° C (Yes in step S40, or step S41 If yes, the process proceeds to step S38, and priority is given to the cold storage control of the freezer 202A.
  • Step S34 determines whether or not ⁇ 2 ° C to 0 ° C.
  • step S35 determines whether ⁇ 1 is less than 0 ° C or not.
  • step S35 if ⁇ 1 is 0 ° C or lower (if determined to be Yes in step S35), the process proceeds to step S39, and priority is given to the processing in step S26 and step S27 in FIG. And do it. That is, when the compressor is in operation, the compressor is turned off and the processing in steps S26 and S27 is prioritized. If the electric heater is not turned off and ⁇ 1 does not exceed + 1 ° C (No in Step S40, No in Step S41), the process returns to Step S39, and Step S26 shown in FIG. , Repeat step S27. On the other hand, if the electric heater is turned off or ⁇ 1 exceeds + 1 ° C (Yes in Step S40 or Yes in Step S41), the process proceeds to Step S38 and the refrigerator 202A is kept cool. Prioritize operation control.
  • Step S34 if ⁇ 2 is not within the range of ⁇ 2 ° C to 0 ° C in Step S34 (if determined to be No in Step S34), then ⁇ 2 force 0 ° C to + It is determined whether the temperature is within a range of 0.5 ° C (step S36). As a result, if the ⁇ 2 force is within the range of 0 ° C to + 0.5 ° C (if determined as Yes in step S36), then whether ⁇ 1 is less than or equal to -0.5 ° C. Judge whether or not. As a result, when ⁇ 1 is not ⁇ 0.5 ° C.
  • step S38 the process proceeds to step S38, and the cooling operation control of the freezer 202A is prioritized.
  • step S38 the cooling operation control of the freezer 202A is prioritized.
  • step S39 the processing in steps S26 and S27 in FIG. Is given priority. That is, when the compressor is in operation, the compressor is turned off, and the processing in steps S26 and S27 is prioritized.
  • step S4 If 0 is determined to be No and Step S41 is determined to be No), the process returns to Step S39 and repeats Steps S26 and S27 shown in FIG.
  • the process proceeds to Step S38 and the refrigerator 202A is cooled. Prioritize operation control.
  • Step S36 if ⁇ ⁇ 2 is not within the range of 0 ° C to + 0.5 ° C in Step S36 (if determined No in Step S36), the process returns to Step S31.
  • the inside of each cabinet is subjected to two temperatures corresponding to the frozen product and the refrigerated product.
  • the belt can be reliably controlled over a long period of time, and the cargo can be transported from the shipper to the shipper without losing quality.

Abstract

A refrigerating container and a cold insulating operation control device of the refrigerating container. In one embodiment of the refrigerating container, the inside of the container is demarcated into a front chamber (2A) on a front wall side and a rear chamber (2B) on a rear wall side by a partition (13) installed in the container (2), the front chamber (2A) is set to a low temperature side and the rear chamber (2B) is set to a high temperature side, and the front chamber (2A) is cooled by a refrigerating unit (3) and the rear chamber (2B) is cooled by leading a cool air into the rear chamber (2B). The refrigerating unit (3) comprises a prime mover, a generator driven by the prime mover, and a refrigerating device having an electric compressor driven by an electric power generated by the generator. An electric heater (20) is installed in the rear chamber (2B).

Description

明 細 書  Specification
冷凍コンテナおよび冷凍コンテナの保冷運転制御装置  Refrigeration container and refrigerated container cooling operation control device
技術分野  Technical field
[0001] 本発明は冷凍コンテナに関する。また、本発明は、エンジン駆動の発電機搭載型 冷凍機によって、第 1室と第 2室に仕切られたコンテナ内の各室をそれぞれ異なった 設定温度を目標として制御することにより、保存温度の異なる貨物を混載可能な冷凍 コンテナに係り、より詳細には、前記第 1室に設けられた前記冷凍機の冷気を前記第 2室に導入することによって第 2室の温度制御を行うとともに、第 2室の温度が下がり 過ぎた場合には、第 2室に設けられているヒータによって温度を維持するように制御 を行う制御手段を備えた保冷運転制御装置に関する。  [0001] The present invention relates to a refrigeration container. Further, the present invention controls the storage temperature by controlling each chamber in the container partitioned into the first chamber and the second chamber with different set temperatures as targets by an engine-driven generator-mounted refrigerator. The present invention relates to a refrigeration container in which different cargoes can be mixed, and more specifically, the temperature of the second chamber is controlled by introducing cool air from the refrigerator provided in the first chamber into the second chamber, and The present invention relates to a cold insulation operation control device provided with a control means for performing control so that a temperature is maintained by a heater provided in a second chamber when the temperature of the two chambers is excessively lowered.
背景技術  Background art
[0002] 一般に、輸送単価を低減するには、輸送機材の積載能力 、つぱ 、の荷物を往復 時に確保する必要がある。この場合、温度管理が不要な貨物を輸送するときには、 混載によって貨物を確保することができるが、温度管理が必要な貨物を輸送するとき には、管理温度が同じという制約が加わるため、混載が非常に困難となる。  [0002] Generally, in order to reduce the unit price of transportation, it is necessary to secure the loading capacity of transportation equipment, and the luggage at the time of reciprocation. In this case, when freight that does not require temperature management is transported, cargo can be secured by mixed loading.However, when freight that requires temperature management is transported, the restriction that the control temperature is the same is added, so mixed loading is not possible. It becomes very difficult.
[0003] このため、冷凍トラックや冷凍コンテナにおいては、荷室を断熱性を有する仕切りで 複数の部屋に分割するとともに、貨物量に合わせることができるように、仕切りを可動 式とし、さらに、各部屋に庫内機 (熱交 )を配置して個別の温度で温度管理する ことにより、庫内を複数の温度帯で制御している(例えば、特許文献 1, 2参照)。  [0003] For this reason, in refrigeration trucks and refrigerated containers, the cargo compartment is divided into a plurality of rooms with insulating partitions, and the partitions are movable so that they can be adjusted to the cargo volume. The interior is controlled in a plurality of temperature zones by placing an internal machine (heat exchanger) in the room and managing the temperature at individual temperatures (see, for example, Patent Documents 1 and 2).
[0004] 一方、冷凍トラックや冷凍コンテナにおいては、冷気の循環を促進するため、床面 に Tレールと称される断面 T字状の長尺な床材を固定して、床面と貨物の間に冷気 の通路を確保している(例えば、特許文献 3参照)。  [0004] On the other hand, in refrigeration trucks and refrigerated containers, in order to promote the circulation of cold air, a long floor material with a T-shaped cross section called T-rail is fixed to the floor surface, and the floor surface and cargo A cold air passage is secured between them (for example, see Patent Document 3).
[0005] また、左右の側壁にガイドレールを設けるとともに、ガイドレールにローラを有する走 行体を配設し、走行体に対して仕切りをヒンジを介して回動自在に連結することにより 、仕切りを荷箱内部の任意の位置に移動させるとともに、仕切りを跳ね上げて天井壁 に沿った格納位置と荷箱内を前後に仕切る作業位置との間に選択することが知られ て ヽる(例えば、特許文献 4参照)。 [0006] また、近時の冷凍コンテナは、コンテナ庫内を可動式の断熱仕切板で前後 2室に 仕切り、前室と後室をそれぞれ異なった設定温度を目標として制御することにより、保 存温度の異なる貨物を混載可能として、輸送効率の向上を図っている(例えば、特許 文献 5参照)。 [0005] In addition to providing guide rails on the left and right side walls, a traveling body having rollers on the guide rails is disposed, and the partition is rotatably connected to the traveling body via a hinge. Is moved to an arbitrary position inside the packing box, and the partition is flipped up to be selected between a storage position along the ceiling wall and a working position for partitioning the packing box back and forth (for example, And Patent Document 4). [0006] In addition, recent refrigerated containers are stored by dividing the interior of the container chamber into two front and rear chambers with movable heat insulating partition plates, and controlling the front and rear chambers with different set temperatures as targets. Transportation efficiency is improved by allowing cargoes with different temperatures to be mixed (see, for example, Patent Document 5).
[0007] 例えば、前室は、冷凍肉や冷凍魚介類等の冷凍状態を維持して搬送しなければな らない冷凍保存物品を収納する冷凍庫として使用し、後室は、生鮮野菜や清涼飲料 等の冷蔵状態を維持して搬送しなければならない冷蔵保存物品を収納する冷蔵庫と して使用される。  [0007] For example, the front chamber is used as a freezer for storing frozen storage items that must be transported while maintaining frozen state such as frozen meat and frozen seafood, and the rear chamber is used for fresh vegetables and soft drinks. It is used as a refrigerator that stores refrigerated items that must be transported while maintaining the refrigerated state.
[0008] この場合、冷凍コンテナは、エンジン駆動の発電機搭載型冷凍機によって保冷運 転を行っている。具体的に説明すると、例えば、前室の冷凍庫の設定温度が後室の 冷蔵庫の設定温度より低く設定されており、かつ、冷凍庫の冷気を冷蔵庫に導入す ることによって冷蔵庫の温度制御を行っている。また、冷蔵庫の温度が下がり過ぎた 場合には、冷蔵庫側に設けられたヒータによって冷蔵庫内の温度を維持するよう〖こ 制御する。  [0008] In this case, the refrigerated container is cooled by an engine-driven generator-mounted refrigerator. Specifically, for example, the set temperature of the freezer in the front chamber is set lower than the set temperature of the refrigerator in the rear chamber, and the refrigerator temperature control is performed by introducing cool air from the freezer into the refrigerator. Yes. In addition, when the temperature of the refrigerator is excessively lowered, the heater inside the refrigerator is controlled so as to maintain the temperature in the refrigerator.
特許文献 1:特開平 10— 59057号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-59057
特許文献 2:特開平 5 - 238306号公報  Patent Document 2: JP-A-5-238306
特許文献 3 :特開平 8— 189169号公報  Patent Document 3: JP-A-8-189169
特許文献 4:特開 2003— 114079号公報  Patent Document 4: Japanese Patent Laid-Open No. 2003-114079
特許文献 5:特開 2004 - 122891号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-122891
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] ところで、冷凍トラックや冷凍コンテナで冷凍品( 20°Cレベル)と生鮮食料品など の冷蔵品(0°C〜15°Cレベル)とを混載する場合、 2室間の温度差が大きいため、高 温側の部屋力も低温側の部屋へ庫内壁を伝わって大量の熱が移動する。この結果、 高温側の部屋が過冷却となったり、低温側の部屋が冷却不足となり、貨物の品質が 低下するおそれがある。  [0009] By the way, when a frozen product (20 ° C level) and a refrigerated product such as fresh food (0 ° C to 15 ° C level) are mixed and loaded in a refrigeration truck or container, the temperature difference between the two rooms Because it is large, the room temperature on the high temperature side is transferred to the room on the low temperature side along the inner wall, and a large amount of heat moves. As a result, the room on the high temperature side may be overcooled, or the room on the low temperature side may be undercooled, reducing the quality of the cargo.
[0010] この場合、高温側の部屋の過冷却を防止するため、特許文献 1, 2に記載されてい るように、エンジンの冷却水や冷凍機の高温冷媒を利用して加熱することが行われて いるが、冷凍機やエンジンと、庫内とを配管接続する必要があり、構造が複雑となる ばかりでなぐ配管工事の不具合による冷却水や冷媒の漏洩などの故障が発生し易 いという問題がある。このような故障が、冷凍コンテナの無人輸送時、例えば、鉄道輸 送時に発生した場合、長時間にわたって対応することができないため、商品価値が なくなるおそれがある。 In this case, in order to prevent overcooling of the room on the high temperature side, as described in Patent Documents 1 and 2, heating is performed using engine coolant or high-temperature refrigerant of the refrigerator. Break However, it is necessary to connect the refrigerator and engine to the inside of the warehouse, which not only complicates the structure but also causes problems such as leakage of cooling water and refrigerant due to defects in piping work. is there. If such a failure occurs during unmanned transportation of a refrigerated container, for example, during rail transportation, the product value may be lost because it cannot be handled for a long time.
[0011] また、冷凍品と冷蔵品とを混載し、誤って仕切りを格納位置に固定した状態で、各 部屋を冷凍温度と冷蔵温度にそれぞれ温度制御する、所謂二温度帯制御を行うと、 コンテナ内が仕切りによって区画されていないため、コンテナ全体に冷凍温度の冷 気が流れ込むことから、冷蔵品をも冷凍させる結果、冷蔵品の商品価値を喪失させる ものとなる。  [0011] In addition, when the so-called two-temperature zone control is performed in which the frozen product and the refrigerated product are mixed and the room is erroneously fixed to the storage position, and the temperature of each room is controlled to the freezing temperature and the refrigeration temperature, respectively. Since the inside of the container is not partitioned by the refrigeration temperature, the refrigeration product flows into the entire container, and as a result, the refrigerated product is frozen, resulting in the loss of commercial value of the refrigerated product.
[0012] 一方、 Tレールは断面積が大き 、上に、通常、熱伝導率の高!、アルミの押出成形 品が採用されていることから、床材を通して大量の熱が移動するとともに、その床材 による冷気の通路から大量の熱が流れる。このため、仕切りによって庫内を複数の部 屋に仕切る場合は、仕切りを床材の断面形状に合わせて形成し、床材による冷気の 通路を塞ぐ必要があるが、入口が狭ぐ内部が広いという床材の断面形状から、仕切 りを床材の断面形状に合わせて形成することは困難であり、冷気の通路を確実に密 閉することはできない。また、仕切りの構造が複雑になって、仕切りの設置作業に手 間が力かるという欠点がある。し力も、仮に床材による冷気の通路を密閉したとしても 、断面積の大きな床材を通して大量の熱が移動することは避けられな 、。  [0012] On the other hand, since the T-rail has a large cross-sectional area and usually has a high thermal conductivity !, and an aluminum extrusion is used, a large amount of heat moves through the flooring. A large amount of heat flows through the cold air passages from the flooring. For this reason, when dividing the interior of the warehouse into multiple parts by partitioning, it is necessary to form the partition to match the cross-sectional shape of the flooring and block the cold air passage by the flooring, but the interior with a narrow entrance is wide Because of the cross-sectional shape of the flooring, it is difficult to form a partition that matches the cross-sectional shape of the flooring, and the cold air passage cannot be reliably sealed. In addition, the structure of the partition is complicated, and there is a drawback in that it takes time to install the partition. However, even if the cold air passage by the flooring is sealed, it is inevitable that a large amount of heat moves through the flooring with a large cross-sectional area.
[0013] また、特許文献 5のような冷凍コンテナにおけるエンジン駆動の発電機搭載型冷凍 機では、冷凍機のサイズは、コンテナもしくはトラックに搭載したときに、 20°C〜一 3 0°C程度に冷える能力を有するように設計されている。この場合、上記したように、冷 凍庫と冷蔵庫の 2室を異なった設定温度で制御する、いわゆる二温度帯の制御を行 おうとすると、コンプレッサと冷蔵庫側のヒータを同時に運転させる必要が生じること になるが、上記設計の冷凍機では、コンプレッサとヒータを同時に運転すると発電機( エンジン)が過負荷状態となり、ひいては安全性の面で問題となる。  [0013] In addition, in an engine-driven generator-mounted refrigerator in a refrigerated container as in Patent Document 5, the size of the refrigerator is about 20 ° C to 130 ° C when mounted on a container or truck. Designed to have the ability to cool down. In this case, as described above, if the two rooms of the refrigerator and the refrigerator are controlled at different set temperatures, that is, so-called two temperature zones, it is necessary to operate the compressor and the heater on the refrigerator side at the same time. However, in the refrigerator of the above design, if the compressor and the heater are operated at the same time, the generator (engine) is overloaded, which causes a problem in terms of safety.
[0014] この問題を解決するためには、コンプレッサの能力にヒータ駆動分の能力をカ卩えた 容量の発電機 (エンジン)を搭載すればよいが、そうすると発電機が大型化し、重量 面、コスト面、燃費面で不利になるといった問題があった。 [0014] In order to solve this problem, it is sufficient to install a generator (engine) with a capacity that is equivalent to the capacity of the compressor in addition to the capacity of the compressor, but this increases the size and weight of the generator. There was a problem that it was disadvantageous in terms of cost, cost and fuel consumption.
[0015] 本発明は、以上のような問題点に鑑みてなされたもので、第 1の目的は、冷蔵品を 収容する庫内温度が冷蔵温度以下に過冷却されるのを簡単な構造で確実に防止す ることができる冷凍コンテナを提供することである。  [0015] The present invention has been made in view of the above-described problems, and a first object is to provide a simple structure in which the internal temperature in which the refrigerated product is stored is subcooled below the refrigeration temperature. It is to provide a refrigerated container that can be reliably prevented.
[0016] 第 2の目的は、貨物量に合わせてコンテナ内を任意の容積の前室と後室とに仕切り を介して区画した際に、冷凍品を収容する前室と冷蔵品を収容する後室との間の熱 の移動を可及的に抑制することができる冷凍コンテナを提供することである。  [0016] The second purpose is to store the front chamber and the refrigerated product when the container is partitioned into a front chamber and a rear chamber of an arbitrary volume through a partition according to the cargo volume. The purpose of the present invention is to provide a refrigerated container that can suppress heat transfer between the rear chamber as much as possible.
[0017] 第 3の目的は、貨物量に合わせてコンテナ内を任意の容積の前室と後室とに仕切り を介して区画した際に、熱の漏洩を可及的に抑制して、冷凍品を収容する前室を冷 凍温度に、冷蔵品を収容する後室を冷蔵温度にそれぞれ確実に制御することができ る冷凍コンテナを提供することである。  [0017] A third object is to reduce heat leakage as much as possible when the inside of a container is divided into a front chamber and a rear chamber of an arbitrary volume according to the cargo volume through a partition. It is intended to provide a refrigerated container that can reliably control the front chamber for storing products to the refrigeration temperature and the rear chamber for storing refrigerated products to the refrigeration temperature.
[0018] 第 4の目的は、仕切りが格納位置にあるとき、各部屋を冷凍温度および冷蔵温度に それぞれ制御する二温度帯制御を阻止し、誤って冷蔵品が冷凍温度に冷却されるこ とを確実に防止することができる冷凍コンテナを提供することである。  [0018] The fourth object is that when the partition is in the storage position, the two-temperature zone control for controlling each room to the freezing temperature and the refrigeration temperature is prevented, and the refrigerated product is erroneously cooled to the freezing temperature. It is providing the refrigeration container which can prevent reliably.
[0019] 第 5の目的は、コンプレッサとヒータの同時駆動を回避することで、上記設計の冷凍 機の能力でもエンジンの過負荷状態の発生を回避し、二温度帯の制御を安全かつ 安定的に行うことのできる冷凍コンテナの保冷運転制御装置を提供することである。 課題を解決するための手段  [0019] The fifth purpose is to avoid the simultaneous driving of the compressor and the heater, so that the engine overload state can be avoided even with the capacity of the above-designed refrigerator, and the control of the two temperature zones is safe and stable. It is providing the cold-storage operation control apparatus of the refrigeration container which can be performed in the next. Means for solving the problem
[0020] 本発明の冷凍コンテナは、それぞれ断熱性を有する前壁、天井壁、底壁、左右の 側壁および後壁から形成されたコンテナと、コンテナの前壁外面に設けられた冷凍 ユニットとからなり、コンテナの内面に沿って移動可能な仕切りを介して内部を前壁側 の前室と後壁側の後室とに区画するとともに、前室を低温側に、後室を高温側にそ れぞれ設定し、冷凍ユニットによって前室を冷却する一方、前室の冷気を後室に導 いて後室を冷却する冷凍コンテナであって、前記冷凍ユニットが原動機と、原動機に よって駆動される発電機と、発電機によって発電された電気で駆動される電動コンプ レッサを有する冷凍装置とから構成され、後室に過冷却防止用電気ヒータが設けら れて 、ることを特徴とするものである。  [0020] The refrigerated container of the present invention includes a container formed of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation properties, and a refrigeration unit provided on the outer surface of the front wall of the container. The interior is partitioned into a front chamber on the front wall side and a rear chamber on the rear wall side through a partition movable along the inner surface of the container, and the front chamber is on the low temperature side and the rear chamber is on the high temperature side. A refrigeration container that sets and cools the anterior chamber by a refrigeration unit while cooling the anterior chamber by introducing cool air from the anterior chamber to the posterior chamber, the refrigeration unit being driven by the prime mover and the prime mover It is composed of a generator and a refrigeration apparatus having an electric compressor driven by electricity generated by the generator, and an electric heater for preventing overcooling is provided in the rear chamber. is there.
[0021] このような構成の冷凍コンテナによれば、前室に貨物(冷凍品)を積み込んで仕切り を固定する一方、後室に貨物 (冷蔵品)を積み込んだ後、冷凍ユニットを作動させ、 前室を冷凍温度に冷却する。すなわち、原動機を駆動すれば発電機が駆動するとと もに、発電機によって発電された電気によって電動コンプレッサが駆動し、冷凍装置 の蒸発器において前室の空気を熱交換して冷凍温度に冷却する。一方、後室に前 室の冷気を導き、後室を冷蔵温度に冷却する。ここで、後室が設定された冷蔵温度 以下に過冷却された場合は、発電機にて発電された電気を利用して電気ヒータを作 動させ、後室を加熱することにより、後室が必要以上に冷却されることを確実に防止 することができる。 [0021] According to the refrigeration container having such a configuration, cargo (frozen products) is loaded and partitioned in the front chamber. On the other hand, after loading cargo (refrigerated products) in the rear chamber, operate the refrigeration unit to cool the front chamber to the freezing temperature. In other words, if the prime mover is driven, the generator is driven, and the electric compressor is driven by the electricity generated by the generator, and the air in the front chamber is heat-exchanged in the evaporator of the refrigeration system to cool it to the refrigeration temperature. . On the other hand, cool air from the front chamber is introduced to the rear chamber, and the rear chamber is cooled to the refrigeration temperature. Here, when the rear chamber is supercooled below the set refrigeration temperature, the rear chamber is heated by operating the electric heater using the electricity generated by the generator and heating the rear chamber. It is possible to reliably prevent cooling more than necessary.
[0022] この結果、電気ヒータの ONZOFF制御によって後室の過冷却を簡単確実に防止 することができ、また、冷凍ユニットと電気ヒータとの間を配線接続すればよいことから 、エンジンの冷却水や高温冷媒を後室に配管を介して接続する場合に比較して作業 も容易となる他、工事の不具合などによって冷却水や冷媒の漏洩が発生することもな ぐ長期にわたって性能を維持することができる。  As a result, it is possible to easily and surely prevent overcooling of the rear chamber by the ONZOFF control of the electric heater, and it is only necessary to connect the refrigeration unit and the electric heater by wiring. Compared to connecting a high-temperature refrigerant or a high-temperature refrigerant to the rear chamber via a pipe, the work should be easier, and the performance should be maintained over a long period of time without causing leakage of cooling water or refrigerant due to construction problems. Can do.
[0023] あるいは、本発明の冷凍コンテナは、それぞれ断熱性を有する前壁、天井壁、底壁 、左右の側壁および後壁から形成されたコンテナと、コンテナの前壁外面に設けられ た冷凍ユニットとからなり、コンテナの内面に沿って移動可能な仕切りを介して内部を 前壁側の前室と後壁側の後室とに区画するとともに、前室を低温側に、後室を高温 側にそれぞれ設定し、冷凍ユニットによって前室を冷却する一方、前室の冷気を後 室に導いて後室を冷却する冷凍コンテナであって、前記底壁の表面を平坦に形成 する一方、底壁に複数個のすのこを配置し、隣接する一対のすのこの間に仕切りを 配置することを特徴とするものである。  [0023] Alternatively, the refrigeration container of the present invention includes a container formed of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation, and a refrigeration unit provided on the outer surface of the front wall of the container. The interior is divided into a front chamber on the front wall side and a rear chamber on the rear wall side through a partition movable along the inner surface of the container, and the front chamber is on the low temperature side and the rear chamber is on the high temperature side. The refrigeration container cools the anterior chamber by a refrigeration unit and cools the anterior chamber by introducing the cool air from the anterior chamber to the posterior chamber, and forms the surface of the bottom wall flat, A plurality of slats are arranged in each, and a partition is disposed between a pair of adjacent slats.
[0024] 前記表面が平坦に形成された底壁としては、ステンレスなどの鋼板、 FRPなどのプ ラスチック板、耐水処理を施した木材を挙げることができる力 耐久性を考慮すると、 熱伝導率が FRPや木材よりも若干劣るものの、ステンレス鋼板を好適に採用すること ができる。  [0024] Examples of the bottom wall having a flat surface include a steel plate such as stainless steel, a plastic plate such as FRP, and a wood subjected to water-resistant treatment. Although it is slightly inferior to FRP or wood, a stainless steel plate can be preferably used.
[0025] 前記すのことしては、耐久性や取り扱!/、性の点から、軽量、高強度であることが要 求される。このような要求を満たすものとしては、アルミや FRPを好適に採用すること ができる。そして、縦桟が長手方向を向くようにすのこを配置することにより、隣接する 縦桟間に冷気の通路を確保することができる。 [0025] As described above, it is required to be lightweight and high-strength from the viewpoints of durability, handling and / or properties. Aluminum and FRP can be suitably used to meet these requirements. And by arranging the saws so that the vertical bars face the longitudinal direction, they are adjacent A cold air passage can be secured between the vertical rails.
[0026] このような構成の冷凍コンテナによれば、前室にすのこを敷き詰めた後、貨物(冷凍 品)を積み込んで仕切りを固定する。仕切りを固定したならば、後室にすのこを敷き 詰めた後、貨物 (冷蔵品)を積み込む。その後、冷凍ユニットを作動させ、前室を冷凍 温度に冷却する。すなわち、冷凍装置のコンプレッサを駆動し、蒸発器において前 室の空気を熱交換して冷凍温度に冷却する。一方、後室に前室の冷気を導き、後室 を冷蔵温度に冷却する。  [0026] According to the refrigerated container having such a configuration, after laying mushrooms in the front chamber, cargo (frozen products) is loaded and the partitions are fixed. If the partition is fixed, lay the mushrooms in the rear room and load the cargo (refrigerated goods). Then, operate the refrigeration unit to cool the anterior chamber to the refrigeration temperature. That is, the compressor of the refrigeration apparatus is driven, and the air in the front chamber is heat-exchanged in the evaporator to cool to the refrigeration temperature. On the other hand, cool air from the front chamber is introduced to the rear chamber, and the rear chamber is cooled to the refrigeration temperature.
[0027] この場合、前室に吹き込まれた冷気および後室に吹き込まれた冷気は、すのこを経 て循環し、冷気が滞留することはない。  [0027] In this case, the cold air blown into the front chamber and the cold air blown into the rear chamber circulate via the saw and the cold air does not stay.
[0028] この結果、仕切りをすのこの長さ間隔をおいて任意の位置に固定することができ、 貨物量に合わせてコンテナの内部空間を前室と後室に区画することができる。しかも 、底壁の表面は平坦に形成されているため、仕切りの構造が簡単になるとともに、仕 切りと底壁との間を隙間が生じることなく確実に密封することができる。また、底壁の 断面積はきわめて小さくなり、底壁を流れる熱量を著しく減少させることができる。した がって、冷蔵品を収容する後室の相対的に高温の冷気が冷凍品を収容する前室に 流れるのを抑制することができる。  [0028] As a result, the partition can be fixed at an arbitrary position with this length interval, and the internal space of the container can be divided into a front chamber and a rear chamber according to the cargo amount. In addition, since the surface of the bottom wall is formed flat, the structure of the partition is simplified, and it is possible to reliably seal without any gap between the cutting and the bottom wall. In addition, the cross-sectional area of the bottom wall becomes extremely small, and the amount of heat flowing through the bottom wall can be significantly reduced. Therefore, it is possible to suppress the relatively high temperature cold air in the rear chamber that houses the refrigerated product from flowing into the front chamber that houses the frozen product.
[0029] あるいは、本発明の冷凍コンテナは、それぞれ断熱性を有する前壁、天井壁、底壁 、左右の側壁および後壁から形成されたコンテナと、コンテナの前壁外面に設けられ た冷凍ユニットとからなり、コンテナの内面に沿って移動可能な仕切りを介して内部を 前壁側の前室と後壁側の後室とに区画するとともに、前室を低温側に、後室を高温 側にそれぞれ設定し、冷凍ユニットによって前室を冷却する一方、前室の冷気を後 室に導!、て後室を冷却する冷凍コンテナであって、前記前壁内面の上方に冷凍ュ ニットの熱交換器およびファンを設ける一方、天井壁内面の幅方向全面にわたって 一端が前壁近傍に開口され、他端が後室に開口されて内部が左右に区画された偏 平な通気ダ外を設け、また、天井壁内面の後端部に、前方開口部および後方開口 部を有し、内部に冷気ファンおよび循環ファンが設置されるとともに、循環ファンの前 方に臨んで電気ヒータが配設された混合ダ外を設け、さらに、前壁内面に熱交 に臨んで上下方向に延びる空気通路を設ける一方、後壁内面に混合ダクトの後方開 口部に臨んで上下方向に延びる空気通路を設け、また、通気ダクトの左右一方の後 室側開口を混合ダクトの冷気ファンに臨む前方開口部に連通してなり、前記仕切りの 周面にシール材を設けて、平坦面に形成された底壁内面、左右側壁内面および通 気ダクトの底壁外面に密着させることを特徴とするものである。 [0029] Alternatively, the refrigerated container of the present invention includes a container formed of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation, and a refrigeration unit provided on the outer surface of the front wall of the container. The interior is divided into a front chamber on the front wall side and a rear chamber on the rear wall side through a partition movable along the inner surface of the container, and the front chamber is on the low temperature side and the rear chamber is on the high temperature side. The refrigeration container that cools the front chamber by the refrigeration unit while the cool air in the front chamber is guided to the rear chamber and cools the rear chamber, and the heat of the refrigeration unit is located above the inner surface of the front wall. While providing the exchanger and fan, the outside of the flat ventilator with one end opened near the front wall, the other end opened in the rear chamber, and the inside divided into left and right sides over the entire width of the ceiling wall inner surface, Also, the front opening and the rear end of the ceiling wall inner surface A cool air fan and a circulation fan are installed inside, and an outside of the mixer where an electric heater is arranged facing the front of the circulation fan is provided. Further, heat exchange is performed on the inner surface of the front wall. An air passage that extends in the up-down direction is provided, while the mixing duct is opened rearward on the inner surface of the rear wall. An air passage extending in the vertical direction facing the mouth is provided, and the left and right rear chamber side openings of the ventilation duct are communicated with the front opening facing the cool air fan of the mixing duct, and sealed to the peripheral surface of the partition It is characterized in that a material is provided and is in close contact with the inner surface of the bottom wall, the inner surfaces of the left and right side walls formed on a flat surface, and the outer surface of the bottom wall of the air duct.
[0030] このような構成の冷凍コンテナによれば、前室に貨物(冷凍品)を積み込んで仕切り を固定する一方、後室に貨物 (冷蔵品)を積み込んだ後、冷凍ユニットを作動させ、 前室を冷凍温度に冷却する。すなわち、冷凍ユニットのコンプレッサを駆動し、ファン を介して吸引した前室の空気を熱交^^において熱交換して冷凍温度に冷却する。 また、循環ファンを駆動し、後室の空気を循環させる。この際、前室および後室にお いて、循環する空気は、それぞれ空気通路を経て下方に導かれ、下方から上方に向 けて吹き出されることから、上吹き出し方式に比較して、各室の内部温度分布が均一 になる。  [0030] According to the refrigerated container having such a configuration, cargo (frozen product) is loaded into the front chamber and the partition is fixed, and after loading cargo (refrigerated product) into the rear chamber, the refrigeration unit is operated, Cool the anterior chamber to freezing temperature. That is, the compressor of the refrigeration unit is driven, and the air in the anterior chamber sucked through the fan is heat-exchanged in the heat exchanger and cooled to the refrigeration temperature. Also, the circulation fan is driven to circulate the air in the rear chamber. At this time, the circulating air in each of the front and rear chambers is guided downward through the air passages and blown out from the lower side to the upper side. The internal temperature distribution becomes uniform.
[0031] 一方、冷気ファンを駆動すれば、前室の冷気が通気ダクトの左右一半部、混合ダク トおよび空気通路を経て後室に導かれることから、後室を冷却することができる。この 際、後室に導かれた空気量に相当する空気量が後室より通気ダクトの左右他半部を 経て前室に戻される。この際、前室に供給された相対的に高温の後室の冷気は、フ アンによって直ちに吸引されて、熱交^^において冷却されるため、冷凍貨物に影 響を与えることはない。  On the other hand, if the cool air fan is driven, the cool air in the front chamber is guided to the rear chamber through the left and right half of the ventilation duct, the mixing duct, and the air passage, so that the rear chamber can be cooled. At this time, the amount of air equivalent to the amount of air led to the rear chamber is returned from the rear chamber to the front chamber through the left and right other half of the ventilation duct. At this time, the relatively hot air in the rear chamber supplied to the front chamber is immediately sucked in by the fan and cooled in the heat exchanger, so that the frozen cargo is not affected.
[0032] また、電気ヒータを作動すれば、後室を循環する空気が電気ヒータによって加熱さ れるため、後室の過冷却を防止することができる。  [0032] Further, if the electric heater is operated, the air circulating in the rear chamber is heated by the electric heater, so that overcooling of the rear chamber can be prevented.
[0033] さらに、仕切りを、平坦な底壁内面、左右の側壁内面および偏平な通気ダクトの外 面によって形成される略方形に対応する方形状に形成することができるため、構造が 簡単になるとともに、シール材を介してコンテナの内面との機密性を確保することがで き、前室と後室との間の熱の漏洩を可及的に抑制することができる。し力も、仕切りの 設置位置に制約がなくなることから、前室と後室との容積を貨物量に合わせて任意に 変更することができる。  [0033] Furthermore, since the partition can be formed in a rectangular shape corresponding to a substantially rectangular shape formed by the inner surface of the flat bottom wall, the inner surfaces of the left and right side walls, and the outer surface of the flat ventilation duct, the structure is simplified. In addition, it is possible to ensure confidentiality with the inner surface of the container through the sealing material, and to suppress the leakage of heat between the front chamber and the rear chamber as much as possible. Since the position of the partition is no longer restricted, the volume of the front and rear chambers can be arbitrarily changed according to the cargo volume.
[0034] また、通風ダクトの幅は、天井壁の幅方向全面にわたるため、一定の通気量を確保 しても、高さを最小限度に抑えることができる。したがって、天井壁内面と貨物との間 に冷気の通路を確保しなければならな 、ことを考慮すると、庫内容積に影響を与える ことはない。 [0034] Further, since the width of the ventilation duct extends over the entire width of the ceiling wall, the height can be minimized even if a certain amount of ventilation is ensured. Therefore, between the ceiling wall inner surface and the cargo Considering that a cold air passage must be secured, there is no effect on the internal volume.
[0035] また、本発明の冷凍コンテナにおいて、前記通気ダクトの底壁内面に断熱材を設け ていると、通気ダクトを介して前室の冷気を後室に導くとともに、相対的に高温の後室 の冷気を前室に導く際、前室の冷気と後室の冷気との温度差によって通気ダクトの 外面および内面に結露が発生することを確実に防止することができる。したがって、 結露水が滴下して貨物を濡らすことがな 、。  [0035] Further, in the refrigeration container of the present invention, when a heat insulating material is provided on the inner surface of the bottom wall of the ventilation duct, the cool air in the front chamber is guided to the rear chamber through the ventilation duct, and the relatively hot rear When the cool air in the chamber is guided to the front chamber, it is possible to reliably prevent condensation on the outer and inner surfaces of the ventilation duct due to the temperature difference between the cool air in the front chamber and the cool air in the rear chamber. Therefore, condensation water will not drip and wet the cargo.
[0036] また、本発明の冷凍コンテナにお!/、て、前記通気ダクトの前室側一端開口および 後室側他端開口に、冷気ファンの駆動時に発生する空気圧によって閉鎖位置から開 放位置へ作動するシャッターをそれぞれ回動自在に設けていると、シャッターは、通 常、開口を閉鎖する位置にあって、通気ダクトを介して前室と後室との間の空気の流 通を阻止することができる。また、通気ダクトの長さは、コンテナの長さにほぼ等しく十 分に長いことから、通気ダクト内での空気移動を抑えることができ、空気移動に伴う熱 移動を防止することができる。  [0036] In the refrigeration container of the present invention, the front duct side one end opening and the rear chamber side other end opening of the vent duct are opened from the closed position by the air pressure generated when the cold air fan is driven. When the shutters that operate to each other are provided so as to be rotatable, the shutters are usually in positions where the openings are closed, and air flow between the front chamber and the rear chamber is prevented via the ventilation duct. can do. In addition, since the length of the air duct is sufficiently long enough to be almost equal to the length of the container, air movement in the air duct can be suppressed, and heat movement accompanying air movement can be prevented.
[0037] また、本発明の冷凍コンテナにおいて、前記仕切りの表裏両面にそれぞれエアリブ を設けていると、仕切りと貨物との間に冷気の通路を確保することができ、貨物が仕 切りに接触して仕切りの熱が直接貨物に伝わることを防止できる。  [0037] Further, in the refrigerated container of the present invention, if air ribs are provided on both the front and back surfaces of the partition, a cold air passage can be secured between the partition and the cargo, and the cargo contacts the cut. Therefore, it is possible to prevent the heat of the partition from being transmitted directly to the cargo.
[0038] あるいは、本発明の冷凍コンテナは、それぞれ断熱性を有する前壁、天井壁、底壁 、左右の側壁および後壁から形成されたコンテナと、コンテナの前壁外面に設けられ た冷凍ユニットと力 なり、コンテナの内面に沿って移動可能であり、かつ、格納位置 と作業位置との間に回動可能な仕切りを介して内部を前壁側の前室と後壁側の後室 とに区画するとともに、前室を低温側に、後室を高温側にそれぞれ設定し、冷凍ュ- ットによって前室を冷却する一方、前室の冷気を後室に導いて後室を冷却する冷凍 コンテナであって、前記仕切りが格納位置にあることを検出する電気接点を設け、仕 切りが格納位置にあるとき、電気接点の検出信号に基づいて前室を冷凍温度に、後 室を冷蔵温度にそれぞれ制御する二温度帯制御を阻止することを特徴とするもので ある。  [0038] Alternatively, the refrigerated container of the present invention includes a container formed of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation, and a refrigeration unit provided on the outer surface of the front wall of the container. It is possible to move along the inner surface of the container, and through the partition which can be rotated between the storage position and the working position, the interior is separated from the front chamber on the front wall side and the rear chamber on the rear wall side. The front chamber is set to the low temperature side and the rear chamber is set to the high temperature side, and the front chamber is cooled by a refrigeration unit, while the cool air in the front chamber is guided to the rear chamber to cool the rear chamber. An electrical contact that detects that the partition is in the storage position is a refrigerated container, and when the finish is in the storage position, the front chamber is set to the freezing temperature and the rear chamber is refrigerated based on the detection signal of the electrical contact. Preventing two temperature zone control to control each temperature It is an feature.
[0039] このような構成の冷凍コンテナによれば、前室に貨物(冷凍品)を積み込み、仕切り を格納位置カゝら引き下ろして作業位置に回動させるとともに、仕切り位置に移動させ て固定する。次いで、後室に貨物 (冷蔵品)を積み込んだ後、冷凍ユニットを作動さ せ、前室を冷凍温度に冷却する。すなわち、冷凍装置のコンプレッサを駆動し、蒸発 器において前室の空気を熱交換して冷凍温度に冷却する。一方、後室に前室の冷 気を導き、後室を冷蔵温度に冷却する。 [0039] According to the refrigeration container having such a configuration, cargo (frozen products) is loaded into the front chamber and partitioned. Is pulled down from the storage position and rotated to the work position, and moved to the partition position and fixed. Next, after cargo (refrigerated goods) is loaded into the rear chamber, the refrigeration unit is operated to cool the front chamber to the freezing temperature. In other words, the compressor of the refrigeration system is driven, and the air in the front chamber is exchanged in the evaporator to cool it to the refrigeration temperature. On the other hand, cool the front chamber to the rear chamber and cool the rear chamber to the refrigeration temperature.
[0040] ここで、仕切りが格納位置に固定されているとき、リミットスィッチなどの電気接点が 作動しており、検出信号が冷凍装置の制御装置に入力されている。この状態で前室 を冷凍温度に、後室を冷蔵温度にそれぞれ制御する二温度帯選択スィッチを操作し ても、該ニ温度帯選択スィッチの投入を無効とし、冷凍温度や冷蔵温度を設定する ステージに移行できな 、ように制御されて 、る。  [0040] Here, when the partition is fixed at the storage position, an electrical contact such as a limit switch is operating, and a detection signal is input to the control device of the refrigeration apparatus. In this state, even if the two temperature zone selection switch that controls the front chamber to the refrigeration temperature and the rear chamber to the refrigeration temperature is operated, the input of the two temperature zone selection switch is invalidated and the refrigeration temperature and the refrigeration temperature are set. It is controlled so that it cannot move to the stage.
[0041] ただし、コンテナ全体を設定温度で冷凍ある!/ヽは冷蔵するため、 1温度帯選択スィ ツチを操作した場合は、仕切りが格納位置にある検出信号に基づいて温度を設定す る次のステージに移行することができる。  [0041] However, because the entire container is frozen at the set temperature! / ヽ is refrigerated, if the 1 temperature zone selection switch is operated, the temperature is set based on the detection signal that the partition is in the storage position. You can move on to the next stage.
[0042] この結果、コンテナを前室と後室とに区画して各室をそれぞれ設定温度で制御する 際に、仕切りを格納位置に固定した状態では二温度帯制御を行うことはできず、誤つ て冷蔵品を冷凍温度に冷却することを確実に防止することができる。  [0042] As a result, when the container is divided into a front chamber and a rear chamber and each chamber is controlled at a set temperature, the two-temperature zone control cannot be performed in a state where the partition is fixed at the storage position. It is possible to reliably prevent the refrigerated product from being cooled to the freezing temperature by mistake.
[0043] また、本発明の冷凍コンテナにおいて、仕切りが格納位置にあるとき、電気接点の 検出信号に基づいて警報を発すると、仕切りが格納位置にあることをブザーやランプ などで報知することができ、好ましい。  [0043] Further, in the refrigerated container of the present invention, when the partition is in the storage position, if a warning is issued based on the detection signal of the electrical contact, a notification that the partition is in the storage position may be given by a buzzer or a lamp. It is possible and preferable.
[0044] あるいは、本発明に係わるコンプレッサの保冷運転制御装置は、エンジン駆動の発 電機搭載型冷凍機によって、第 1室と第 2室に仕切られたコンテナ内の各室をそれぞ れ異なった設定温度を目標として制御することにより、保存温度の異なる貨物を混載 可能な冷凍コンテナであって、前記第 1室に設けられた前記冷凍機の冷気を前記第 2室に導入することによって第 2室の温度制御を行うとともに、第 2室の温度が下がり 過ぎた場合には、第 2室に設けられているヒータによって温度を維持するように制御 を行う制御手段を備えた保冷運転制御装置において、前記制御手段は、前記冷凍 機のコンプレッサまたは前記ヒータのいずれか一方を運転中は他方の運転を停止す るように制御することを特徴とする。この場合、前記コンプレッサまたは前記ヒータのい ずれかを優先して制御する優先度が設定されており、前記制御手段は、この優先度 に従ってコンプレッサまたはヒータのいずれかを制御する。 [0044] Alternatively, in the compressor cooling operation control device according to the present invention, each chamber in the container partitioned into the first chamber and the second chamber is different by an engine-driven generator-mounted refrigerator. By controlling the set temperature as a target, the container is a refrigerated container that can load cargoes with different storage temperatures, and the second air is introduced into the second chamber by introducing the cool air of the refrigerator installed in the first chamber. In the cold insulation operation control device provided with the control means for controlling the temperature of the chamber and controlling the temperature so as to be maintained by the heater provided in the second chamber when the temperature of the second chamber is too low. The control means controls to stop the other operation while operating either the compressor or the heater of the refrigerator. In this case, the compressor or the heater The priority for controlling the shift is set, and the control means controls either the compressor or the heater according to the priority.
[0045] このような特徴を有する本発明によれば、冷凍機のコンプレッサまたはヒータのいず れか一方を運転中は他方の運転を停止することで、エンジンの過負荷状態を回避す ることができる。また、このときの運転では、予め設定した優先度に従って保冷運転制 御を行うので、第 1室及び第 2室の双方を優先度に従って安定的に制御することが可 能となる。  [0045] According to the present invention having such a feature, the engine overload state can be avoided by stopping the operation of either the compressor or the heater of the refrigerator while the other is operating. Can do. Further, in the operation at this time, since the cold insulation operation control is performed according to the preset priority, it is possible to stably control both the first chamber and the second chamber according to the priority.
[0046] ここで、前記第 1室を冷凍庫、前記第 2室を冷蔵庫とし、前記冷凍庫側の設定温度 に対する庫内温度の差である冷凍側温度偏差を ΔΤ1、前記冷蔵庫の設定温度に 対する庫内温度の差である冷蔵側温度偏差を ΔΤ2とすると、優先度としては以下の [0046] Here, the first chamber is a freezer, the second chamber is a refrigerator, and the freezing side temperature deviation, which is the difference between the temperature inside the freezer and the set temperature on the freezer side, is ΔΤ1, and the refrigerator is set to the set temperature. If the refrigeration side temperature deviation, which is the difference in internal temperature, is ΔΤ2, the priority is as follows:
4つのパターンが考えられる。 Four patterns are possible.
[0047] 優先度 1:前記制御手段は、 1°C< ΔΤ1の場合には、前記コンプレッサを制御して 冷凍庫の温度制御を優先する。 [0047] Priority 1: The control means gives priority to temperature control of the freezer by controlling the compressor when 1 ° C <ΔΤ1.
[0048] 優先度 2 :前記制御手段は、 AT2<—2°Cの場合に、 ΔΤΚ Ο. 5°Cである場合に は、前記ヒータを運転して冷蔵庫の温度制御を優先する。 Priority 2: When AT2 <−2 ° C., Δ 前 記 Ο. 5 ° C., the controller operates the heater to give priority to temperature control of the refrigerator.
[0049] 優先度 3 :前記制御手段は、 - 2°C< AT2< 0°Cの場合に、 AT1 < 0°Cである場 合には、前記ヒータを運転して冷蔵庫の温度制御を優先する。 [0049] Priority 3: When the control means -2 ° C <AT2 <0 ° C and AT1 <0 ° C, the heater is operated to give priority to the temperature control of the refrigerator. To do.
[0050] 優先度 4 :前記制御手段は、 0°C< ΔΤ2< 0. 5°Cの場合に、 ΔΤ1 <— 0. 5°Cであ る場合には、前記ヒータを運転して冷蔵庫の温度制御を優先する。 [0050] Priority 4: When the control means 0 ° C <ΔΤ2 <0.5 ° C and ΔΤ1 <—0.5 ° C, the heater operates the heater to Prioritize temperature control.
[0051] すなわち、上記優先度は、基本的には、設定温度力 より外れている方を優先して コンプレッサまたはヒータを運転するように設定している。そして、まずは冷凍庫の方 を優先し、次に冷蔵庫の方のヒータの運転を、コンプレッサによる冷凍庫側の温度を 見ながら行うように設定して 、る。 [0051] That is, the priority is basically set so that the compressor or the heater is operated with priority given to the one deviating from the set temperature force. First, the refrigerator is prioritized, and then the heater of the refrigerator is set to operate while observing the temperature on the freezer side by the compressor.
[0052] このように優先度を設定することで、冷凍庫側の庫内温度制御の精度は ± 1°C、冷 蔵庫側の庫内温度制御の精度は士 2°Cの範囲で安定して保冷運転制御を行うことが 可能となる。 [0052] By setting priorities in this way, the accuracy of the temperature control on the freezer side is stable within ± 1 ° C, and the accuracy of the temperature control on the refrigerator side is stable within the range of 2 ° C. Therefore, it is possible to control the cold operation.
発明の効果  The invention's effect
[0053] 本発明の冷凍コンテナによれば、冷蔵品を収容する庫内温度が冷蔵温度以下に 過冷却されるのを簡単な構造で確実に防止することができる。 [0053] According to the refrigeration container of the present invention, the temperature inside the refrigerator storing the refrigerated product is lower than the refrigeration temperature. It is possible to reliably prevent overcooling with a simple structure.
[0054] あるいは、本発明の冷凍コンテナによれば、貨物量に合わせてコンテナ内を任意の 容積の前室と後室とに仕切りを介して区画した際に、冷凍品を収容する前室と冷蔵 品を収容する後室との間の熱の移動を可及的に抑制することができる。  [0054] Alternatively, according to the refrigerated container of the present invention, when the inside of the container is partitioned into a front chamber and a rear chamber having an arbitrary volume according to the cargo amount via a partition, It is possible to suppress the heat transfer between the refrigerated product and the rear chamber as much as possible.
[0055] あるいは、本発明の冷凍コンテナによれば、貨物量に合わせてコンテナ内を任意の 容積の前室と後室とに仕切りを介して区画した際に、熱の漏洩を可及的に抑制して、 冷凍品を収容する前室を冷凍温度に、冷蔵品を収容する後室を冷蔵温度にそれぞ れ確実に制御することができる。  [0055] Alternatively, according to the refrigerated container of the present invention, when the inside of the container is partitioned into a front chamber and a rear chamber having an arbitrary volume according to the cargo volume through a partition, heat leakage is minimized. It is possible to control the front chamber containing the frozen product to the freezing temperature and the rear chamber containing the refrigerated product to the refrigeration temperature.
[0056] あるいは、本発明の冷凍コンテナによれば、仕切りが格納位置にあるとき、各部屋 を冷凍温度および冷蔵温度にそれぞれ制御する二温度帯制御を阻止し、誤って冷 蔵品が冷凍温度に冷却されることを確実に防止することができる。  [0056] Alternatively, according to the refrigeration container of the present invention, when the partition is in the storage position, the two-temperature zone control for controlling each room to the refrigeration temperature and the refrigeration temperature is prevented, and the refrigerated product is mistakenly frozen. Therefore, it is possible to reliably prevent cooling.
[0057] あるいは、本発明に係わる冷凍コンテナの保冷運転制御装置によれば、冷凍機の コンプレッサまたはヒータのいずれか一方を運転中は他方の運転を停止することで、 エンジンの過負荷状態を回避することができる。そのため、発電機の容量を必要最小 限とすることができ、重量面、コスト面、燃費面で最適化することができる。また、このと きの運転では、予め設定した優先度に従って保冷運転制御を行うので、第 1室及び 第 2室の双方を優先度に従って安定して制御することができる。  [0057] Alternatively, according to the refrigeration container cooling operation control apparatus according to the present invention, while one of the compressor or the heater of the refrigerator is in operation, the other operation is stopped to avoid an engine overload state. can do. Therefore, the capacity of the generator can be reduced to the minimum necessary, and can be optimized in terms of weight, cost, and fuel consumption. In this operation, since the cold insulation operation control is performed according to the preset priority, both the first chamber and the second chamber can be stably controlled according to the priority.
図面の簡単な説明  Brief Description of Drawings
[0058] [図 1]図 1は、本発明の第 1実施形態に係る冷凍コンテナの概略構造を示す縦断面 図である。  FIG. 1 is a longitudinal sectional view showing a schematic structure of a refrigerated container according to a first embodiment of the present invention.
[図 2]図 2は、図 1の冷凍コンテナの後端部を一部省略して示す平面図である。  FIG. 2 is a plan view showing the rear end portion of the refrigeration container of FIG. 1 with a part thereof omitted.
[図 3]図 3は、すのこの一例を示す斜視図である。  FIG. 3 is a perspective view showing an example of soot.
[図 4]図 4は、仕切りの一例を示す斜視図である。  FIG. 4 is a perspective view showing an example of a partition.
[図 5]図 5は、通気ダクトにおける右方の通気路に設けられたシャッターを示す断面図 である。  FIG. 5 is a cross-sectional view showing a shutter provided in a right air passage in the air duct.
[図 6]図 6は、混合ダクトの、冷気ファンに対応する位置での縦断面図である。  FIG. 6 is a longitudinal sectional view of the mixing duct at a position corresponding to the cold air fan.
[図 7]図 7は、混合ダクトの、循環ファンに対応する位置での縦断面図である。  FIG. 7 is a longitudinal sectional view of the mixing duct at a position corresponding to the circulation fan.
[図 8]図 8は、スライダー用レールをすのことともに敷設した床面を一部省略して示す 縦断面図である。 [FIG. 8] FIG. 8 shows the floor surface laid together with the slider rails with a part omitted. It is a longitudinal cross-sectional view.
[図 9]図 9は、本発明の冷凍コンテナの第 1実施形態の変形例に係る冷凍コンテナの 概構造略を示す縦断面図である。  FIG. 9 is a longitudinal sectional view showing a schematic structure of a refrigerated container according to a modification of the first embodiment of the refrigerated container of the present invention.
[図 10]図 10は、本発明の第 2実施形態に係る冷凍コンテナの概略構造を示す縦断 面図である。  FIG. 10 is a longitudinal sectional view showing a schematic structure of a refrigerated container according to a second embodiment of the present invention.
[図 11]図 11は、図 10の冷凍コンテナを上方から見た通気ダクト部分の横断面図であ る。  [FIG. 11] FIG. 11 is a cross-sectional view of the ventilation duct portion of the refrigeration container of FIG. 10 as viewed from above.
[図 12]図 12は、往路側シャツタ部材及び復路側シャツタ部材の開閉構造を示す断面 図である。  FIG. 12 is a cross-sectional view showing the opening / closing structure of the forward-side shirter member and the backward-side shirter member.
[図 13]図 13は、本発明の第 2実施形態に係る冷凍コンテナにおける二温度帯の制 御を行う制御システムの機能ブロック図である。  FIG. 13 is a functional block diagram of a control system that controls two temperature zones in a refrigerated container according to a second embodiment of the present invention.
[図 14]図 14は、冷凍庫側の通常の保冷運転制御の処理を示すフローチャートである [図 15]図 15は、冷蔵庫側の通常の保冷運転制御の処理を示すフローチャートである [図 16]図 16は、優先度による保冷運転制御の処理を示すフローチャートである。 符号の説明  [FIG. 14] FIG. 14 is a flowchart showing a process of normal cold insulation operation control on the freezer side. [FIG. 15] FIG. 15 is a flowchart showing a process of normal cold insulation operation control on the refrigerator side. [FIG. FIG. 16 is a flowchart showing a process of controlling the cold insulation operation based on priority. Explanation of symbols
1 冷凍コンテナ (第 1実施形態)  1 Refrigerated container (first embodiment)
2 コンテナ  2 container
2A j室  2A j room
2B 後室  2B rear room
3 冷凍ユニット  3 Refrigeration unit
11A すのこ本体  11A Sunoko body
11B 単位すのこ  11B Units
12 ガイドレール  12 Guide rail
13 仕切り  13 Partition
13a シール材  13a Seal material
13d エアリブ 通気ダクト13d air rib Ventilation duct
b 断熱材 b Insulation
シャッター  Shutter
混合ダクト  Mixing duct
冷気ファン  Cold air fan
循環ファン  Circulation fan
吸入ダクト  Suction duct
¾気ヒータ  ¾-air heater
空気通路  Air passage
熱交換器  Heat exchanger
冷凍機 refrigerator
a ファン a fan
温度センサ  Temperature sensor
レーノレ Lenore
0 冷凍コンテナ (第 1実施形態の変形例)3 仕切り0 Refrigeration container (Modification of the first embodiment) 3 Partition
0 冷凍コンテナ (第 2実施形態) 0 Refrigeration container (second embodiment)
2 A 前室 (冷凍庫)2 A Front room (freezer)
2B 後室 (冷蔵庫)2B rear room (refrigerator)
4 通気ダクト4 Ventilation duct
7a 冷凍機収納部7a Refrigerator storage
7b 循環ファン収納部7b Circulation fan storage
8 循環ファン8 Circulation fan
9 ノ ノレクヘッド、9 Norehead,
0 電気ヒータ(デフロストヒータ)0 Electric heater (defrost heater)
2 冷気ファン収納部2 Cooling fan compartment
4 循環ファン収納部4 Circulation fan storage
5 扉 226 ノ ノレクヘッド、 5 door 226 Norek head,
311 往路側シャツタ部材  311 Outward side shatter material
312 復路側シャツタ部材  312 Return side shatter material
33 開口部  33 opening
34 シャツタ取付板  34 Shatter mounting plate
35 固定具  35 Fixture
36 支持軸  36 Support shaft
51 制御部  51 Control unit
52 温度センサ  52 Temperature sensor
53 ヒータ駆動部  53 Heater drive
54 ファン駆動部  54 Fan drive
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0060] 以下、本発明の実施の形態を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0061] <第 1実施形態 >  [0061] <First embodiment>
図 1は、本発明の第 1実施形態に係る冷凍コンテナ 1の概略構造を示す縦断面図 である。図 2は、この冷凍コンテナ 1の後端部を一部省略して示す平面図である。  FIG. 1 is a longitudinal sectional view showing a schematic structure of a refrigerated container 1 according to the first embodiment of the present invention. FIG. 2 is a plan view showing the refrigerated container 1 with a part of the rear end portion omitted.
[0062] この冷凍コンテナ 1は、それぞれ断熱材を内装した底壁 2a、天井壁 2b、左右の側 壁 2c、前壁 2dおよび左右の側壁 2cに対してそれぞれ開閉自在に軸支された後壁 2 eからなるコンテナ 2と、コンテナ 2の前壁 2dの外面に設けられた冷凍ユニット 3とから 構成され、コンテナ 2の内部空間は、後述する仕切り 13によって前壁 2d側の前室 2A と、後壁 2e側の後室 2Bとに区画されている。  [0062] The refrigerated container 1 includes a bottom wall 2a, a ceiling wall 2b, a left and right side wall 2c, a front wall 2d, and a left and right side wall 2c that are respectively provided with heat insulating materials and are pivotally supported so as to be opened and closed. 2 e and a refrigeration unit 3 provided on the outer surface of the front wall 2d of the container 2, and the inner space of the container 2 is divided into a front chamber 2A on the front wall 2d side by a partition 13 described later, The rear wall 2e is divided into a rear chamber 2B.
[0063] コンテナ 2の底壁 2aは、平板状ステンレス鋼板に断熱材を貼着して形成され、その 上面にすのこが設置されている。具体的には、前壁 2dおよび後壁 2eに沿ってそれぞ れアルミ製のすのこ本体 11Aが着脱自在に設置されるとともに、これらのすのこ本体 11A, 11Aの間に位置して、アルミ製の複数個の単位すのこ 11Bが着脱自在に設置 されている。そして、すのこ本体 11Aと単位すのこ 11Bとの間あるいは隣接する単位 すのこ 11B, 11Bの間に位置して仕切り 13が配設されるようになつている。なお、す のこ本体 11Aおよび単位すのこ 11Bは、図 3に示すように、アルミの押出成形によつ て形成された複数本の縦桟 111と、アルミの押出成形によって形成さるとともに縦桟 1 11の上面に設定間隔をお ヽて平行に配設された複数枚の板材 112から構成される [0063] The bottom wall 2a of the container 2 is formed by sticking a heat insulating material to a flat stainless steel plate, and a gutter is installed on the upper surface thereof. Specifically, an aluminum slat body 11A is detachably installed along the front wall 2d and the rear wall 2e, and is located between the slat bodies 11A and 11A. Multiple unit saws 11B are detachably installed. A partition 13 is disposed between the slat body 11A and the unit slat 11B or between the adjacent unit slats 11B and 11B. As shown in Fig. 3, the saw body 11A and unit saw 11B are made by extrusion molding of aluminum. A plurality of vertical bars 111 formed by extrusion molding of aluminum and a plurality of plate members 112 arranged in parallel on the upper surface of the vertical bars 111 with a set interval therebetween.
[0064] 具体的には、前壁 2d側すのこ本体 11Aおよびその後方の単位すのこ 11Bとの間 に仕切り 13を配置して最小容積の前室 2A (最大容積の後室 2B)を形成する場合 ( 図 1において一点鎖線状態参照)と、後壁 2e側すのこ本体 11 Aおよびその前方の単 位すのこ 11Bとの間に仕切り 13を配置して最大容積の前室 2A (最小容積の後室 2B )を形成する場合(図 1において二点鎖線状態参照)と、これらの間において、任意の 隣接する単位すのこ 1 IB, 11Bの間に仕切り 13を配置して前室 2Aおよび後室 2Bを 形成する場合とを選択することができ、冷凍品の貨物量または冷蔵品の貨物量に対 応して前室 2Aと後室 2Bの容積を変更することができる。 [0064] Specifically, when the partition 13 is arranged between the front wall 2d side saw body 11A and the rear unit saw 11B to form the minimum volume front chamber 2A (maximum volume rear chamber 2B). A partition 13 is placed between the rear wall 2e side saw body 11A and the front unit saw 11B in front of the rear wall 2e (see Fig. 1 with a one-dot chain line state). ) (See the state of the two-dot chain line in Fig. 1), and between them, the partition 13 is placed between any adjacent unit saws 1 IB and 11B to form the front chamber 2A and the rear chamber 2B. The volume of the front chamber 2A and the rear chamber 2B can be changed according to the volume of frozen or refrigerated cargo.
[0065] ここで、仕切り 13は断熱性を有し、図 4に示すように、コンテナ 2の内面形状に略対 応する方形状に形成されるとともに、ヒンジシート 13eを介して二つ折り可能となって いる。そして、仕切り 13には、周囲にシール材 13a (図 1参照)が配設される一方、そ の表裏一面に取付金具 13cを有する固定ベルト 13bが設けられるとともに、表裏両面 に複数本のエアリブ 13dが設けられて形成されている。  Here, the partition 13 has a heat insulating property, and as shown in FIG. 4, is formed in a square shape substantially corresponding to the inner shape of the container 2 and can be folded in two via the hinge sheet 13e. It is. The partition 13 is provided with a sealing material 13a (see FIG. 1) around it, and is provided with a fixing belt 13b having mounting brackets 13c on one surface and a plurality of air ribs 13d on both surfaces. Are provided.
[0066] したがって、仕切り 13をコンテナ 2内に搬入した後、コンテナ 2の側壁 2c内面に配 設されたラッシングレールの係止部(図示せず)に取付金具 13cを係止し、固定ベル ト 13bを張設することにより、隣接する任意のすのこ間、すなわち、前壁 2d側すのこ 本体 11 Aの後端と、後壁 2e側すのこ本体 11 Aの前端間において、単位すのこ 11B の長さ間隔でコンテナ 2内の任意の位置に仕切り 13を固定することができる。  [0066] Therefore, after carrying the partition 13 into the container 2, the mounting bracket 13c is locked to the locking portion (not shown) of the lashing rail disposed on the inner surface of the side wall 2c of the container 2, and the fixing belt is fixed. By extending 13b, the length of the unit saw 11B between any adjacent saws, that is, between the rear end of the front wall 2d side saw body 11A and the rear end of the rear wall 2e side saw body 11A With this, the partition 13 can be fixed at an arbitrary position in the container 2.
[0067] この際、仕切り 13は、その周囲に設けたシール材 13aが、平坦な底壁 2aの内面、 左右の側壁 2cの内面および後述する天井壁 2bに設けた平坦な通気ダクト 14の外面 にそれぞれほぼ隙間なく密着するため、前室 2Aおよび後室 2B間にわたる熱の漏洩 を可及的に抑制することができる。し力も、底壁 2aのステンレス鋼板の断面積は丁字 状の床材よりも著しく減少するため、熱の移動量も大きく減少するものとなる。また、ェ ァリブ 13dによって貨物との間に空気通路を確保することができ、貨物が仕切り 13に 接触して熱が直接貨物に伝わることを防止できる。 [0068] 一方、コンテナ 2の天井壁 2bの内面には、左右の側壁 2cの内面間隔に略相当する 幅を有し、前壁 2d近傍に位置して一端が前室 2Aに開口するとともに、後壁 2eから一 定距離をおいて他端が後室 2Bに開口する偏平な通気ダクト 14が固定されている。こ の通気ダクト 14は、内部が幅方向の略中間で隔壁 14a (図 2参照)によって左右に区 画されており、そのうち、後壁 2e側力 前壁 2d側を見て右方の通気路 14Rは、前室 2Aの冷気を後室 2Bに冷気を導くように設定され、また、左方の通気路 14Lは、後室 2Bの冷気を前室 2Aに導くように設定されて!、る。 [0067] At this time, the partition 13 has a sealing material 13a provided around the inner surface of the flat bottom wall 2a, the inner surfaces of the left and right side walls 2c, and the outer surface of the flat ventilation duct 14 provided on the ceiling wall 2b described later. Since they are in close contact with each other with almost no gap, leakage of heat between the front chamber 2A and the rear chamber 2B can be suppressed as much as possible. Also, since the cross-sectional area of the stainless steel plate of the bottom wall 2a is remarkably reduced as compared with the letter-shaped flooring, the amount of heat transfer is also greatly reduced. Moreover, the air passage 13d can secure an air passage between the cargo and the cargo, and it can be prevented that the cargo contacts the partition 13 and heat is directly transferred to the cargo. [0068] On the other hand, the inner surface of the ceiling wall 2b of the container 2 has a width substantially corresponding to the inner surface interval of the left and right side walls 2c, and is positioned near the front wall 2d and has one end opened to the front chamber 2A. A flat ventilation duct 14 having the other end opened to the rear chamber 2B at a fixed distance from the rear wall 2e is fixed. This ventilation duct 14 is divided into the right and left sides by a partition wall 14a (see Fig. 2) at the middle in the width direction. 14R is set to guide the cool air from the front chamber 2A to the rear chamber 2B, and the left air passage 14L is set to guide the cool air from the rear chamber 2B to the front chamber 2A! .
[0069] そして、通気ダクト 14の底壁内面には、左右の通気路 14R, 14Lそれぞれにおい て、断熱材 14b (図 5および図 6参照)が貼着されている。この場合、通気ダクト 14は、 左右の側壁 2cの内面間隔に略相当する幅を有するため、十分な通気量を確保して も高さを最小限に抑えることができ、庫内容積に影響を与えることはない。すなわち、 天井壁 2b内面と貨物との間には、冷気を通過させる隙間が必要であり、この隙間内 に通気ダクト 14を納めることができる。  [0069] The heat insulating material 14b (see FIGS. 5 and 6) is attached to the inner surface of the bottom wall of the ventilation duct 14 in each of the left and right ventilation paths 14R and 14L. In this case, since the ventilation duct 14 has a width substantially corresponding to the inner surface distance between the left and right side walls 2c, the height can be minimized even if a sufficient ventilation amount is secured, and the volume inside the chamber is affected. Never give. That is, a gap for allowing cool air to pass between the inner surface of the ceiling wall 2b and the cargo is necessary, and the ventilation duct 14 can be placed in this gap.
[0070] そして、右方の通気路 14Rの前壁 2d側開口および後壁 2e側開口と、左方の通気 路 14Lの前壁 2d側開口および後壁 2e側開口には、それぞれシャッター 15が回動自 在に設けられている。  [0070] Then, a shutter 15 is provided in each of the front wall 2d side opening and the rear wall 2e side opening of the right ventilation path 14R and the front wall 2d side opening and the rear wall 2e side opening of the left ventilation path 14L. It is provided in the rotation itself.
[0071] ここで、各シャッター 15は、通常、各開口をそれぞれ自重によって閉鎖しており、前 室 2Aと後室 2Bとの間の空気の流通を阻止するとともに、通気ダクト 14内の空気移動 を抑えることができる。一方、後述する冷気ファン 17が駆動するとき、各シャッター 15 は、自重に抗して回動し、前室 2Aから後室 2Bに冷気を導くことができ、また、後室 2 B力も前室 2Aに相対的に高温の冷気を導くことができる。例えば、図 5に示すように、 冷気ファン 17が駆動するとき、シャッター 15が自重に抗してそれぞれ回動し、後壁 2 e側開口を開放させることにより、前室 2Aの冷気を右方の通気路 14Rを通して後室 2 Bに導くことができる。  [0071] Here, each shutter 15 normally closes each opening by its own weight, prevents air flow between the front chamber 2A and the rear chamber 2B, and moves the air in the ventilation duct 14. Can be suppressed. On the other hand, when a cool air fan 17 to be described later is driven, each shutter 15 rotates against its own weight and can guide cool air from the front chamber 2A to the rear chamber 2B, and the rear chamber 2 B force is also applied to the front chamber. A relatively hot air can be led to 2A. For example, as shown in FIG. 5, when the cool air fan 17 is driven, the shutter 15 rotates against its own weight and opens the rear wall 2e side opening, so that the cool air in the front chamber 2A is moved to the right. It can be led to the rear chamber 2 B through the air passage 14R.
[0072] また、天井壁 2bの後端部には、左右の側壁 2cの内面間隔に略相当する幅を有し、 内部に混合室 16aを有するとともに、前後に混合室 16aに連通する開口部を形成し た箱状の混合ダクト 16が固定されており、混合ダクト 16の混合室 16aには、 1個の冷 気ファン 17と、複数個の循環ファン 18が配設されている。そして、混合ダクト 16の、 冷気ファン 17が設けられた混合室 16aに連通する前方側開口部には、右方の通気 路 14Rの後壁 2e側開口に一端が接続された吸入ダクト 19の他端が接続されている( 図 6参照)。一方、混合ダクト 16の、循環ファン 18が設けられた混合室 16aに連通す る前方側開口部には、電気ヒータ 20が設けられており、該前方側開口部は、前述し た左方の通気路 14Lの後壁 2e側開口力も一定距離をおいて後室 2Bに開口されて いる(図 2および図 7参照)。さらに、混合ダクト 16の後方側開口部は、循環ファン 18 が設けられた混合室 16aのみに対向して形成されており、また、該開口部は、シール 材 16bを介して後壁 2eの内面に設けられた、上下方向に延びる空気通路 21に連通 されている。 [0072] Further, the rear end portion of the ceiling wall 2b has a width substantially corresponding to the inner surface spacing of the left and right side walls 2c, and has a mixing chamber 16a inside and an opening communicating with the mixing chamber 16a in the front and rear A box-shaped mixing duct 16 is fixed, and one cooling fan 17 and a plurality of circulation fans 18 are disposed in the mixing chamber 16a of the mixing duct 16. And of the mixing duct 16, The other end of the suction duct 19 having one end connected to the rear wall 2e side opening of the right air passage 14R is connected to the front side opening communicating with the mixing chamber 16a provided with the cold air fan 17 ( (See Figure 6.) On the other hand, an electric heater 20 is provided in the front opening of the mixing duct 16 that communicates with the mixing chamber 16a in which the circulation fan 18 is provided, and the front opening is provided on the left side described above. The opening force on the rear wall 2e side of the air passage 14L is also opened to the rear chamber 2B at a certain distance (see FIGS. 2 and 7). Further, the opening on the rear side of the mixing duct 16 is formed so as to face only the mixing chamber 16a provided with the circulation fan 18, and the opening is formed on the inner surface of the rear wall 2e via the sealing material 16b. Is communicated with an air passage 21 extending in the vertical direction.
[0073] なお、混合ダクト 16の混合室 16aは、冷気ファン 17および循環ファン 18が配設され た吸込側において、冷気ファン 17と循環ファン 18との間が隔壁 161 (図 2参照)によ つて区画されている。このため、前室 2Aの冷気を通気ダクト 14、吸入ダクト 19を経て 冷気ファン 17のみに導くことができる。  [0073] The mixing chamber 16a of the mixing duct 16 has a partition wall 161 (see FIG. 2) between the cool air fan 17 and the circulation fan 18 on the suction side where the cool air fan 17 and the circulation fan 18 are disposed. Are divided. Therefore, the cold air in the front chamber 2A can be guided only to the cold air fan 17 through the ventilation duct 14 and the suction duct 19.
[0074] 冷凍ユニット 3は、詳細には図示しな 、が、原動機、例えば、燃料タンクを備えたデ イーゼルエンジンと、ディーゼルエンジンによって駆動される発電機と、発電機によつ て発電された電気を利用して駆動される電動コンプレッサを含む冷凍装置とから構 成され、鉄道輸送、船舶輸送、トレーラ輸送など、動力源がない場合においても設定 時間にわたって冷凍能力を維持することができるように設計されている。  [0074] Although not shown in detail, the refrigeration unit 3 is generated by a prime mover, for example, a diesel engine equipped with a fuel tank, a generator driven by a diesel engine, and the generator. It is composed of a refrigeration system that includes an electric compressor driven using electricity, so that the refrigeration capacity can be maintained for a set time even when there is no power source, such as rail transport, ship transport, and trailer transport. Designed.
[0075] また、天井壁 2bの前端部 (前壁 2dの内面上方)には、冷凍装置の蒸発器と熱交換 する熱交 が設けられるとともに、この熱交 によって熱交換された冷気 を前室 2Αに供給するファン 23aが設けられている。そして、前壁 2dの内面には、ファ ン 23aによって供給された冷気を下方に導くため、上下方向に延びる空気通路 21が 設けられている。  [0075] In addition, a heat exchange for exchanging heat with the evaporator of the refrigeration apparatus is provided at the front end of the ceiling wall 2b (above the inner surface of the front wall 2d), and the cold air exchanged by this heat exchange is supplied to the front chamber. There is a fan 23a that feeds to 2Α. An air passage 21 extending in the vertical direction is provided on the inner surface of the front wall 2d in order to guide the cool air supplied by the fan 23a downward.
[0076] なお、冷凍ユニット 3は、制御装置(図示せず)によって制御されるようになっており 、前述した冷気ファン 17、循環ファン 18、電気ヒータ 20およびファン 23aは、制御装 置と配線接続され、制御装置を介して ONZOFF制御される。  Note that the refrigeration unit 3 is controlled by a control device (not shown), and the above-described cold air fan 17, circulation fan 18, electric heater 20, and fan 23a are connected to the control device and wiring. Connected and ONZOFF controlled via the controller.
[0077] 次に、このように構成された冷凍コンテナ 1の作動について説明する。 Next, the operation of the refrigerated container 1 configured as described above will be described.
[0078] まず、集荷地において、前壁 2dに沿ってすのこ本体 11Aを設置するとともに、すの こ本体 11Aの後端に順次適数個の単位すのこ 1 IBを突き合わせて設置した後、す のこ本体 11Aおよび単位すのこ 11Bの上に貨物(冷凍品)をフォークリフトなどの輸 送用機器を利用して積み込む。冷凍品の積み込みが終了すれば、仕切り 13を取り 付け、コンテナ 2内を前室 2Aと後室 2Bに区画した後、後室 2Bとなる底壁 2aに残りの 単位すのこ 11Bを設置するとともに、すのこ本体 11Aを後壁 2eに沿うように設置し、 同様に、単位すのこ 11Bおよびすのこ本体 11Aの上に貨物(冷蔵品)をフォークリフ トなどの輸送用機器を利用して積み込み、後壁 2eを閉鎖する。 [0078] First, in the pickup area, the sword body 11A is installed along the front wall 2d, and the After installing the appropriate number of unit saws 1 IB against the rear end of the main body 11A, the cargo (frozen product) is placed on the main body 11A and the unit saw 11B using transport equipment such as a forklift. And load it. After loading the frozen products, install the partition 13, partition the container 2 into the front chamber 2A and the rear chamber 2B, then install the remaining unit saw 11B on the bottom wall 2a that becomes the rear chamber 2B. Install the slat body 11A along the rear wall 2e. Similarly, load the cargo (refrigerated goods) on the unit slag 11B and the slat body 11A using transport equipment such as forklifts, and use the rear wall 2e. Close.
[0079] この後、冷凍コンテナ 1を配達地に向けて輸送する。具体的には、トレーラを利用し て直接配達地にトラック輸送したり、トレーラを利用して貨物駅まで輸送し、目的の貨 物駅まで鉄道輸送した後、再び貨物駅から配達地にトラック輸送したり、トレーラを利 用して港湾まで輸送し、目的の港湾まで船舶輸送した後、再び港湾から配達地にトラ ック輸送する。 [0079] Thereafter, the refrigerated container 1 is transported to the delivery location. Specifically, trucks can be transported directly to a delivery location using a trailer, or transported to a cargo station using a trailer, transported by rail to the target cargo station, and then transported again from the cargo station to the delivery location. Or, using a trailer, transport to the port, ship to the target port, and then track again from the port to the delivery location.
[0080] このような集荷地力 配達地に向けて冷凍コンテナ 1を輸送する場合は、前室 2Aを 冷凍温度に、後室 2Bを冷蔵温度にそれぞれ制御するための二温度帯選択スィッチ (図示せず)を投入して冷凍ユニット 3を作動させておく。  [0080] When the refrigerated container 1 is transported to such a place where the cargo is collected, a two-temperature zone selection switch (not shown) for controlling the front chamber 2A to the refrigeration temperature and the rear chamber 2B to the refrigeration temperature, respectively. To operate the refrigeration unit 3.
[0081] すなわち、二温度帯選択スィッチの投入によってディーゼルエンジンが駆動するこ とにより、発電機が駆動し、発電機にて発電された電気によって冷凍装置の電動コン プレッサが駆動する。そして、電動コンプレッサが駆動すれば、冷媒が圧縮されて凝 縮器に供給され、凝縮器で冷却されて圧力の高い液体となる。その後、液化した冷 媒を膨張弁を経て蒸発器に吹き出させると、液化した冷媒は気化し、気化熱を蒸発 器の周囲力も奪って冷却する。気体となった冷媒は、電動コンプレッサに吸い込まれ 、再び冷凍サイクルを実行する。  That is, when the diesel engine is driven by turning on the two temperature zone selection switch, the generator is driven, and the electric compressor of the refrigeration apparatus is driven by the electricity generated by the generator. When the electric compressor is driven, the refrigerant is compressed and supplied to the condenser, and cooled by the condenser to become a high-pressure liquid. After that, when the liquefied refrigerant is blown out to the evaporator through the expansion valve, the liquefied refrigerant is vaporized, and the vaporization heat is taken away from the surrounding force of the evaporator to cool. The refrigerant that has become gas is sucked into the electric compressor, and the refrigeration cycle is performed again.
[0082] ここで、前室 2Aの空気がファン 23aによって吸引され、熱交換器 22で熱交換して 冷却された後、前壁 2dに設けた空気通路 21を経てすのこ本体 11Aに供給され、す のこ本体 11Aおよび単位すのこ 11Bから上方に向けて吹き出されて!/、る。このように 、前室 2Aの空気が循環され、前室 2Aの内部を設定温度、例えば、 20°Cを維持す るように制御されている。  Here, the air in the front chamber 2A is sucked by the fan 23a, cooled by heat exchange in the heat exchanger 22, and then supplied to the main body 11A through the air passage 21 provided in the front wall 2d. Blows upward from the main body 11A and the unit 11B. In this way, the air in the front chamber 2A is circulated, and the interior of the front chamber 2A is controlled to maintain a set temperature, for example, 20 ° C.
[0083] 一方、後室 2Bにおいては、循環ファン 18が駆動されており、このため、後室 2Bの 空気が循環ファン 18に吸引され、後壁 2eに設けた空気通路 21を経てすのこ本体 11 Aに供給され、すのこ本体 11Aおよび単位すのこ 11Bから上方に向けて吹き出され ている。このように、後室 2Bの空気が循環され、後室 2Bの内部を設定温度、例えば 、 15°Cを維持するように制御されている。 [0083] On the other hand, in the rear chamber 2B, the circulation fan 18 is driven. Air is sucked into the circulation fan 18 and supplied to the saw body 11A through the air passage 21 provided on the rear wall 2e, and blown upward from the saw body 11A and the unit saw 11B. In this manner, the air in the rear chamber 2B is circulated, and the interior of the rear chamber 2B is controlled to maintain a set temperature, for example, 15 ° C.
[0084] このように、前室 2Aおよび後室 2Bにおいて、冷気を下吹き出し、上吸い込み方式 とすることにより、上吹き出し方式に比較して庫内温度分布が均一になる。  [0084] In this way, in the front chamber 2A and the rear chamber 2B, the cool air is blown down and the upper suction method is used, so that the internal temperature distribution becomes uniform as compared with the upper blow method.
[0085] ところで、温度センサ 24 (図 7参照)によって検出された後室 2Bの内部温度力 設 定温度を一定温度上回るようになると、冷気ファン 17が駆動し、吸入ダクト 19を介し て右方の通気路 14Rの後壁 2e側開口に設けたシャッター 15に吸引力を作用させる 。このため、右方の通気路 14Rの後壁 2e側開口に設けたシャッター 15および前壁 2 d側開口に設けたシャッター 15をそれぞれ自重に抗して回動させる。したがって、前 室 2Aの冷気が通気ダクト 14の右方の通気路 14Rおよび吸入ダクト 19を経て混合ダ タト 16に吸引され、冷気ファン 17側混合室 16aから循環ファン 18側混合室 16aおよ び後壁 2eに設けた空気通路 21を経てすのこ本体 11Aに供給され、すのこ本体 11A および単位すのこ 11Bから上方に向けて吹き出される。  [0085] By the way, when the temperature inside the rear chamber 2B detected by the temperature sensor 24 (see Fig. 7) exceeds the set temperature, the cool air fan 17 is driven and the right side through the suction duct 19 is driven. A suction force is applied to the shutter 15 provided on the rear wall 2e side opening of the air passage 14R. Therefore, the shutter 15 provided in the opening on the rear wall 2e side of the right ventilation path 14R and the shutter 15 provided in the opening on the front wall 2d side are rotated against their own weights. Therefore, the cold air in the front chamber 2A is sucked into the mixing dust 16 through the air passage 14R on the right side of the ventilation duct 14 and the suction duct 19, and the cooling fan 17 side mixing chamber 16a and the circulation fan 18 side mixing chamber 16a and The air is supplied to the saw body 11A through the air passage 21 provided in the rear wall 2e, and is blown upward from the saw body 11A and the unit saw 11B.
[0086] この際、後室 2Bの空気が循環ファン 18によって循環していることから、混合ダクト 1 6の混合室 16aにおいて、混合ダクト 16に吸引された前室 2Aの冷気と後室 2Bの冷 気とが混合され、徐々に冷却される。  At this time, since the air in the rear chamber 2B is circulated by the circulation fan 18, in the mixing chamber 16a of the mixing duct 16, the cold air in the front chamber 2A sucked into the mixing duct 16 and the rear chamber 2B It is mixed with cold air and gradually cooled.
[0087] なお、前室 2Aの冷気が通気ダクト 14の右方の通気路 14Rを通過する際、後室 2B の内部温度は、前室 2Aの冷気よりも相対的に高温であることから、通気ダクト 14外 面に結露しょうとする力 通気ダクト 14の底壁内面には断熱材 14bが貼着されている ことにより、結露の発生が防止される。このため、結露水が滴下して貨物を濡らすこと がない。  [0087] When the cold air in the front chamber 2A passes through the right air passage 14R of the ventilation duct 14, the internal temperature of the rear chamber 2B is relatively higher than the cold air in the front chamber 2A. Force to condense on the outer surface of the air duct 14 Since the heat insulating material 14b is adhered to the inner surface of the bottom wall of the air duct 14, the occurrence of condensation is prevented. For this reason, condensed water does not drip and wet the cargo.
[0088] また、冷気ファン 17によって前室 2Aの冷気が後室 2Bに供給されることから、後室 2 Bには、正圧が発生する。このため、左方の通気路 14Lのシャッター 15を自重に抗し て回動させ、後室 2Bの空気を左方の通気路 14Lを経て前室 2Aに供給する。すなわ ち、前室 2Aから後室 2Bに供給した空気は、その容量だけ後室 2B力 前室 2Aに還 流し、常に平衡状態を維持している。 [0089] この場合、通気ダクト 14の左方の通気路 14Lの前壁 2d側開口は、前壁 2d近傍に 開口されているため、前室 2Aに戻された後室 2Bの冷気は、直ちにファン 23aによつ て吸引されて熱交^^ 22で冷却される。したがって、後室 2Bから前室 2Aに還流さ れた相対的に高温の冷気が、前室 2Aの貨物 (冷凍品)に接触することが防止され、 貨物の品質低下を招くことはない。 [0088] Further, since the cool air in the front chamber 2A is supplied to the rear chamber 2B by the cool air fan 17, a positive pressure is generated in the rear chamber 2B. For this reason, the shutter 15 of the left vent passage 14L is rotated against its own weight, and the air in the rear chamber 2B is supplied to the front chamber 2A via the left vent passage 14L. In other words, the air supplied from the front chamber 2A to the rear chamber 2B is returned to the rear chamber 2B force front chamber 2A by that capacity, and is always in an equilibrium state. [0089] In this case, since the opening on the front wall 2d side of the left air passage 14L of the ventilation duct 14 is opened in the vicinity of the front wall 2d, the cold air in the rear chamber 2B returned to the front chamber 2A is immediately It is sucked by the fan 23a and cooled by heat exchange ^^ 22. Therefore, the relatively high-temperature cold air returned from the rear chamber 2B to the front chamber 2A is prevented from coming into contact with the cargo (frozen product) in the front chamber 2A, and the quality of the cargo is not deteriorated.
[0090] なお、後室 2Bの相対的に高温の冷気が通気ダクト 14の左方の通気路 14Lを通過 する際、前室 2Aの内部温度は、後室 2Bの冷気よりも相対的に低温であることから、 通気ダクト 14内面に結露しょうとする力 通気ダクト 14の底壁内面には断熱材 14bが 貼着されていることにより、結露の発生が防止される。このため、結露水が通気ダクト 14の前室 2A側開口端やダクトの継ぎ目など力も滴下して貨物を濡らすことがな 、。  [0090] When the relatively hot air in the rear chamber 2B passes through the left air passage 14L of the ventilation duct 14, the internal temperature of the front chamber 2A is relatively lower than the cold air in the rear chamber 2B. Therefore, the force to condense on the inner surface of the air duct 14 The heat insulating material 14b is adhered to the inner surface of the bottom wall of the air duct 14, thereby preventing condensation. For this reason, the condensed water does not drip forces such as the opening end of the front chamber 2A side of the ventilation duct 14 or the joint of the duct and wet the cargo.
[0091] このように、後室 2Bの空気が冷却され、設定温度に達すれば、温度センサ 24が温 度を検出し、冷気ファン 17の駆動を停止させる。  In this way, when the air in the rear chamber 2B is cooled and reaches the set temperature, the temperature sensor 24 detects the temperature and stops the driving of the cool air fan 17.
[0092] 一方、後室 2Bに前室 2Aの冷気が導かれることにより、あるいは、後室 2Bから前室 2Aへの熱の漏洩により、後室 2Bの温度が設定温度を一定温度以上下回る過冷却 の状態になると、冷気ファン 17が駆動しているときには、冷気ファン 17の駆動を停止 させるととも〖こ、電気ヒータ 20を作動させ、循環ファン 18を介して後室 2Bの空気を循 環させる際、吸引した空気を電気ヒータ 20によって加熱する。後室 2Bの空気が加熱 され、設定温度に達すれば、電気ヒータ 20の作動を停止させる。  [0092] On the other hand, when the cool air of the front chamber 2A is introduced into the rear chamber 2B, or due to the heat leakage from the rear chamber 2B to the front chamber 2A, the temperature of the rear chamber 2B is excessively lower than the set temperature. In the cooling state, when the cool air fan 17 is operating, the drive of the cool air fan 17 is stopped and the electric heater 20 is activated to circulate the air in the rear chamber 2B through the circulation fan 18. During the heating, the sucked air is heated by the electric heater 20. When the air in the rear chamber 2B is heated and reaches the set temperature, the operation of the electric heater 20 is stopped.
[0093] このように、後室 2Bの温度が設定温度を上回った場合は、冷気ファン 17を駆動さ せ、前室 2Aの冷気を後室 2Bに導いて内部を冷却させることにより、また、後室 2Bの 温度が設定温度を下回った場合は、電気ヒータ 20を作動させ、後室 2Bの空気を加 熱して循環させることにより、それぞれ後室 2Bの内部温度を設定温度に維持するよう に簡単に制御することができる。し力も、冷凍ユニット 3と後室 2Bとの間にわたって電 気配線を敷設すればよぐエンジンの冷却水や高温冷媒を後室 2Bに配管を介して 導く場合に比較して作業を簡単に行うことができるとともに、冷却水や冷媒の漏洩な どを考慮する必要がなぐ不具合の発生する度合いが少なくなるものである。  [0093] Thus, when the temperature of the rear chamber 2B exceeds the set temperature, the cool air fan 17 is driven, the cool air of the front chamber 2A is guided to the rear chamber 2B, and the inside is cooled, When the temperature of the rear chamber 2B falls below the set temperature, the electric heater 20 is operated to heat and circulate the air in the rear chamber 2B so that the internal temperature of the rear chamber 2B is maintained at the set temperature. Easy to control. As compared with the case where engine cooling water or high-temperature refrigerant is introduced to the rear chamber 2B via piping, it is easy to install the electric wiring between the refrigeration unit 3 and the rear chamber 2B. In addition, it is possible to reduce the degree of occurrence of problems that do not require consideration of leakage of cooling water or refrigerant.
[0094] ところで、この第 1実施形態においては、底壁 2aを平坦面に形成し、すのこ 11A, 1 1Bを敷設した後、輸送用機器を利用して貨物を積み込む場合を説明したが、フォー クリフトなどの輸送用機器が使用できない場合が想定される。この場合は、市販品の スライダー、すなわち、ローラーを介して進退自在であり、かつ、荷受け面が昇降自 在に構成されたスライダーを利用して貨物を積み卸しすることができる。そして、この ようなスライダーを利用することに対応して、コンテナ 2の底壁 2aには、図 8に示すよう に、スライダーが走行可能な幅を有するとともに、走行時には荷受け面がすのこ 11A , 11Bの上面よりも上方に突出し、また、格納時には荷受け面がすのこ 11A, 11Bの 上面よりも下方に没入する深さを有する複数本のレール 25を左右幅方向に設定間 隔をおいてコンテナ 2の前壁 2dから後壁 2eにかけて敷設すればよい。 In the first embodiment, the bottom wall 2a is formed on a flat surface and the swords 11A and 11B are laid, and then the cargo is loaded using a transportation device. It is assumed that transportation equipment such as clift cannot be used. In this case, the cargo can be loaded and unloaded using a commercially available slider, that is, a slider that can be moved back and forth via a roller, and the load receiving surface is configured to move up and down. Corresponding to the use of such a slider, the bottom wall 2a of the container 2 has a width that allows the slider to travel as shown in FIG. A plurality of rails 25 projecting upward from the upper surface of the container and having a depth that the load receiving surface immerses below the upper surface of the slats 11A and 11B during storage. It can be laid from the front wall 2d to the rear wall 2e.
[0095] この場合、仕切り 13の下端面にシール材 13aとしてゴム板などを垂設するとともに、 シール材 13aをレール 25を含む床面の縦断面形状に対応する形状に形成すること により、平坦な底壁 2aの場合と同様に、前室 2Aと後室 2Bとの間をほぼ隙間なく密閉 することができ、後室 2B力も前室 2Aへの熱の漏洩を最小限度に抑えることができる [0095] In this case, a rubber plate or the like is suspended from the lower end surface of the partition 13 as the sealing material 13a, and the sealing material 13a is formed in a shape corresponding to the vertical cross-sectional shape of the floor surface including the rail 25. As with the bottom wall 2a, the front chamber 2A and the rear chamber 2B can be sealed with almost no gap, and the rear chamber 2B force can also minimize heat leakage to the front chamber 2A.
[0096] <第 1実施形態の変形例 > <Modification of First Embodiment>
図 9は、本発明の第 1実施形態の変形例に係る冷凍コンテナ 100の概略構造を示 す縦断面図である。なお、上述の第 1実施形態と同じ構成要素には同じ参照符号を 付すこととし、以下の説明は主として相違点について行う。  FIG. 9 is a longitudinal sectional view showing a schematic structure of a refrigerated container 100 according to a modification of the first embodiment of the present invention. The same constituent elements as those in the first embodiment described above are denoted by the same reference numerals, and the following description will mainly be made on differences.
[0097] 冷凍コンテナ 100の左右の側壁 2cの上部には、後述する天井壁 2bに設けた通気 ダクト 14の下方に位置して断面略 C字状のガイドレール 12が互いに開口部を対向さ せて固定されている。そして、各ガイドレール 12には、詳細には図示しないが、前後 にローラをそれぞれ回転自在に軸支した走行体が嵌入されており、左右の走行体に それぞれヒンジを介して仕切り 113が後方に向けて回動自在に連結されて!、る。  [0097] At the upper part of the left and right side walls 2c of the refrigeration container 100, guide rails 12 having a substantially C-shaped cross section are located below a ventilation duct 14 provided on a ceiling wall 2b described later so that the openings face each other. Is fixed. Although not shown in detail, each guide rail 12 is fitted with a traveling body in which rollers are rotatably supported on the front and rear sides, and a partition 113 is provided on the left and right traveling bodies through hinges to the rear. It is connected to turn freely!
[0098] また、仕切り 113の下端部には、ノ ックル(図示せず)が設けられており、通気ダクト 14の後端部に設けたフック(図示せず)に係脱できるようになつている。  [0098] Further, a knock (not shown) is provided at the lower end of the partition 113 so that it can be engaged with and disengaged from a hook (not shown) provided at the rear end of the ventilation duct 14. Yes.
[0099] したがって、把手(図示せず)を把握して仕切り 113を押し込み、あるいは、引き出 すことにより、仕切り 113をガイドレール 12に沿って前後方向の任意の位置に移動さ せることができる。そして、任意の位置において、コンテナ 2の側壁 2c内面に配設さ れたラッシングレールの係止部(図示せず)に取付金具 13cを係止し、固定ベルト 13 bを張設することにより、隣接する任意のすのこ間、すなわち、前壁 2d側すのこ本体 1 1 Aの後端と、後壁 2e側すのこ本体 11 Aの前端間において、単位すのこ 11Bの長さ 間隔でコンテナ 2内の任意の位置に仕切り 113を固定することができる。 Accordingly, by grasping a handle (not shown) and pushing in or pulling out the partition 113, the partition 113 can be moved along the guide rail 12 to any position in the front-rear direction. . At an arbitrary position, the mounting bracket 13c is locked to the locking portion (not shown) of the lashing rail disposed on the inner surface of the side wall 2c of the container 2, and the fixing belt 13 By stretching b, the length of the unit saw 11B between any adjacent saws, that is, between the rear end of the front wall 2d side saw body 1 1 A and the front wall 2e side saw body 11 A The partition 113 can be fixed at an arbitrary position in the container 2 at intervals.
[0100] なお、貨物を積み込み、あるいは、荷卸しするに際しては、仕切り 113を跳ね上げ て、ノ ックルを通気ダクト 14に設けたフックに係合させることにより、通気ダクト 14に沿 つた格納位置に保持することができる。そして、仕切り 113が格納位置にあるときに作 動するリミットスィッチ(図示せず)が通気ダクト 14に設けられている。  [0100] When loading or unloading cargo, the partition 113 is flipped up, and the knock is engaged with the hook provided in the ventilation duct 14, so that the storage position along the ventilation duct 14 is reached. Can be held. A limit switch (not shown) that operates when the partition 113 is in the retracted position is provided in the ventilation duct 14.
[0101] また、このリミットスィッチの検出信号や、メインスィッチ(図示せず)、コンテナ 2全体 を冷凍温度または冷蔵温度に制御するための一温度帯選択スィッチ、前室 2Aを冷 凍温度に、後室 2Bを冷蔵温度にそれぞれ制御するための二温度帯選択スィッチの 操作信号が制御装置に入力されている。  [0101] This limit switch detection signal, main switch (not shown), one temperature zone selection switch for controlling the entire container 2 to the freezing temperature or refrigeration temperature, the front chamber 2A to the freezing temperature, An operation signal of a two temperature zone selection switch for controlling the rear chamber 2B to the refrigeration temperature is input to the control device.
[0102] 次に、このように構成された冷凍コンテナ 100の作動について説明する。  Next, the operation of the refrigeration container 100 configured as described above will be described.
[0103] まず、集荷地において、前壁 2dに沿ってすのこ本体 11Aを設置するとともに、すの こ本体 11Aの後端に順次適数個の単位すのこ 11Bを突き合わせて設置した後、す のこ本体 11Aおよび単位すのこ 11Bの上に貨物(冷凍品)をフォークリフトなどの輸 送用機器を利用して積み込む。冷凍品の積み込みが終了すれば、仕切り 113を格 納状態力 作業状態に下ろし、単位すのこ 11Bの後端にに沿うように移動させて固 定することにより、コンテナ 2内を前室 2Aと後室 2Bに区画する。その後、後室 2Bとな る底壁 2aに残りの単位すのこ 11Bを設置するとともに、すのこ本体 11Aを後壁 2eに 沿うように設置し、同様に、単位すのこ 11Bおよびすのこ本体 11Aの上に貨物(冷蔵 品)をフォークリフトなどの輸送用機器を利用して積み込み、後壁 2eを閉鎖する。  [0103] First, in the pick-up area, the sword body 11A is installed along the front wall 2d, and after the appropriate number of unit swords 11B are installed in contact with the rear end of the sword body 11A, the Cargo (frozen goods) is loaded onto the main body 11A and the unit saw 11B using transport equipment such as a forklift. When the loading of the frozen product is completed, the partition 113 is lowered to the stored state force working state, and moved and fixed along the rear end of the unit saw 11B, so that the inside of the container 2 is moved to the front chamber 2A and the rear chamber 2A. Divide into room 2B. After that, install the remaining unit saw 11B on the bottom wall 2a, which becomes the rear chamber 2B, and install the saw body 11A along the rear wall 2e. Similarly, the cargo is placed on the unit saw 11B and the saw body 11A. (Refrigerated products) are loaded using transport equipment such as forklifts, and the rear wall 2e is closed.
[0104] この後、冷凍コンテナ 100を配達地に向けて輸送する力 その場合はメインスィッチ を投入するとともに、二温度帯選択スィッチを投入し、表示パネル(図示せず)を通し て冷凍温度および冷蔵温度をそれぞれ設定して、冷凍ユニット 3を作動させておく。  [0104] After that, the force for transporting the refrigerated container 100 to the delivery place In that case, the main switch is turned on, the two temperature zone selection switch is turned on, and the refrigeration temperature and the temperature are passed through the display panel (not shown). Set the refrigeration temperature and operate the refrigeration unit 3.
[0105] ところで、仕切り 113が格納位置に固定されているときには、リミットスィッチが作動 しており、リミットスィッチの検出信号が冷凍ユニット 3の制御装置に入力されている。 この状態でメインスィッチを投入するとともに、二温度帯選択スィッチを投入した際に は、操作パネルにおいて異常を表示して警報を発するとともに、冷凍温度や冷蔵温 度を設定するステージに移行できないように制御される。したがって、仕切り 113が格 納位置にあることを把握することができるとともに、二温度帯制御ができないため、冷 蔵品を冷凍温度に冷却することを確実に回避することができる。 By the way, when the partition 113 is fixed at the storage position, the limit switch is operating, and the detection signal of the limit switch is input to the control device of the refrigeration unit 3. When the main switch is turned on in this state and the two temperature zone selection switch is turned on, an abnormality is displayed on the operation panel and an alarm is issued. It is controlled so that it cannot move to the stage where the degree is set. Therefore, it is possible to grasp that the partition 113 is in the storage position, and it is not possible to control the two temperature zones, so that it is possible to reliably avoid cooling the refrigerated product to the freezing temperature.
[0106] なお、コンテナ 2全体を設定温度で冷凍あるいは冷蔵するため、一温度帯選択スィ ツチを操作した場合は、仕切り 113が格納位置にあることを検出するリミットスィッチの 検出信号に基づいて温度を設定する次のステージに移行することができる。  [0106] Note that in order to freeze or refrigerate the entire container 2 at the set temperature, when one temperature zone selection switch is operated, the temperature is determined based on the detection signal of the limit switch that detects that the partition 113 is in the storage position. You can move on to the next stage of setting.
[0107] この結果、コンテナ 2を前室 2Aと後室 2Bとに区画して各室をそれぞれ設定温度で 制御する際に、仕切り 113を格納位置に固定した状態では二温度帯制御を行うこと はできず、誤って冷蔵品を冷凍温度に冷却することを確実に防止することができる。  [0107] As a result, when the container 2 is divided into the front chamber 2A and the rear chamber 2B and each chamber is controlled at the set temperature, the two-temperature zone control is performed in a state where the partition 113 is fixed at the storage position. Thus, it is possible to reliably prevent the refrigerated product from being cooled to the freezing temperature by mistake.
[0108] <第 2実施形態 >  <Second Embodiment>
冷凍コンテナ 200の構造の説明  Explanation of structure of refrigeration container 200
図 10は、本発明の第 2実施形態に係る冷凍コンテナ 200の概略構造を示す概略 縦断面図である。図 11は、この冷凍コンテナ 200を上方力 見た通気ダクト部分の横 断面図である。なお、図中の矢印は冷気の流れ方向を示している。また、上述の各 実施形態と同じ構成要素には同じ参照符号を付すこととし、以下の説明は主として相 違点について行う。  FIG. 10 is a schematic longitudinal sectional view showing a schematic structure of the refrigerated container 200 according to the second embodiment of the present invention. FIG. 11 is a cross-sectional view of the ventilation duct portion when the refrigeration container 200 is viewed from above. In addition, the arrow in a figure has shown the flow direction of cold air. In addition, the same constituent elements as those in the above-described embodiments are denoted by the same reference numerals, and the following description will be mainly made on differences.
[0109] すなわち、第 2実施形態の冷凍コンテナ 200は、コンテナ内部が前後に可動可能 な断熱性を有する仕切り 13によって前室 202Aと後室 202Bとに仕切られている。ま た、コンテナ内部の天井部分は、外壁に相当する天井壁 202bと天井内壁 202blと の 2重構造となっており、この天井壁 202bと天井内壁 202blとの間の空間が通気ダ タト 214となって!/ヽる。  That is, the refrigerated container 200 of the second embodiment is partitioned into a front chamber 202A and a rear chamber 202B by a partition 13 having a heat insulating property that allows the inside of the container to move back and forth. In addition, the ceiling portion inside the container has a double structure of a ceiling wall 202b corresponding to the outer wall and a ceiling inner wall 202bl. The space between the ceiling wall 202b and the ceiling inner wall 202bl is the ventilation duct 214. Become! / Speak.
[0110] 通気ダクト 214は、図 11に示すように、コンテナ本体の長手方向に沿って左右に 2 分割されており、一方の側(図 11では上側)が、前室 202A側カゝら後室 202B側に向 けて冷気を送るための往路側通気路 214Rであり、他方の側(図 11では下側)は、後 室 202B力も前室 202Aに向けて冷気を戻すための復路側の通気路 214Lとなって いる。  [0110] As shown in Fig. 11, the ventilation duct 214 is divided into left and right parts along the longitudinal direction of the container body, and one side (upper side in Fig. 11) is located behind the front chamber 202A side. The forward side air passage 214R for sending cold air toward the chamber 202B side, and the other side (the lower side in FIG. 11) is a rear side air passage for returning the cold air toward the front chamber 202A. The air passage is 214L.
[0111] 往路側通気路 214R及び復路側通気路 214Lの前室 202A側の端部には、往路側 シャツタ部材 311及び復路側シャツタ部材 312がそれぞれ設けられており、これら往 路側シャツタ部材 311及び復路側シャツタ部材 312の開閉動作 (これについては図 1 2を用いて後述する。 )によって、往路側通気路 214R及び復路側通気路 214Lと前 室 202Aの内部とが連通するようになって 、る。 [0111] Outward side shatter member 311 and return side shatter member 312 are provided at the end of the front chamber 202A side of the forward passage side air passage 214R and the return side air passage 214L, respectively. By opening and closing the roadside shatter member 311 and the returnside shatter member 312 (this will be described later with reference to FIG. 12), the forward side airflow path 214R and the return side airflow path 214L communicate with the inside of the front chamber 202A. It becomes like this.
[0112] また、前室 202Aの前側上部には、冷凍機 23を収納するための冷凍機収納部 217 a、及び 3台の循環ファン 218, 218, 218を収納するための循環ファン収納部 217b が設けられている。また、冷凍機収納部 217aには、冷凍機 23のファン 23aの近傍に 電気ヒータ 220が設けられている。この電気ヒータ 220は、基本的には熱交 «に付 着した霜等を除去するためのデフロストヒータである。  [0112] Further, in the front upper portion of the front chamber 202A, a refrigerator storage unit 217a for storing the refrigerator 23, and a circulation fan storage unit 217b for storing three circulation fans 218, 218, 218 Is provided. In the refrigerator storage unit 217a, an electric heater 220 is provided in the vicinity of the fan 23a of the refrigerator 23. The electric heater 220 is basically a defrost heater for removing frost and the like attached to the heat exchanger.
[0113] また、前室 202Aの前壁には、冷凍機 23からの冷気を下方に流すためのバルタへ ッド 219が設けられており、このバルタヘッド 219の上部が冷凍機収納部 217a及び 循環ファン収納部 217bに開口し、バルタヘッド 219の下部は前室 202Aの内部に開 口している。すなわち、前室 202Aは、冷気を下力も吹き出す下吹き出し構造となつ ている。  [0113] Further, on the front wall of the front chamber 202A, there is provided a Balta head 219 for allowing the cool air from the refrigerator 23 to flow downward, and the upper portion of the Balta head 219 is a refrigerator housing portion 217a and The circulation fan storage part 217b is opened, and the lower part of the Balta head 219 is opened inside the front chamber 202A. That is, the front chamber 202A has a lower blowing structure that blows out cold air with lower force.
[0114] 一方、後室 202Bの後側上部には、前室 202A力もの冷気を吸い込むための 1台の 冷気ファン 17を収納した冷気ファン収納部 222と、後室 202B内で冷気を循環させる ための 3台の循環ファン 18, 18, 18を収納した循環ファン収納部 224とが連通して 設けられている。また、冷気ファン収納部 222と往路側通気路 214Rの後端部とが往 路側シャツタ部材 311によって開閉可能に設けられている。一方、復路側通気路 21 4Lの後端部は、後室 202Bの内部及び循環ファン収納部 224の両方に開口しており 、復路側シャツタ部材 312によって開閉可能に設けられている。  [0114] On the other hand, in the upper rear side of the rear chamber 202B, a cool air fan housing unit 222 that houses one cold air fan 17 for sucking the cool air of the front chamber 202A, and cool air is circulated in the rear chamber 202B. For this purpose, a circulation fan storage unit 224 that stores three circulation fans 18, 18, and 18 is provided in communication. Further, the cool air fan storage portion 222 and the rear end portion of the outward passage side air passage 214R are provided so as to be opened and closed by the outward passage shirter member 311. On the other hand, the rear end portion of the return-side air passage 214L is open to both the inside of the rear chamber 202B and the circulation fan storage portion 224, and is provided so as to be opened and closed by the return-side shirter member 312.
[0115] また、後室 202Bの後壁を構成する扉 225の内壁には、冷気を下方に流すための バルタヘッド 226が設けられており、このバルタヘッド 226の上部は冷気ファン収納部 222及び循環ファン収納部 224に開口し、バルタヘッド 226の下部は後室 202Bの 内部に開口している。すなわち、後室 202Bは、前室 202Aと同様、冷気を下から吹 き出す下吹き出し構造となっている。また、循環ファン収納部 224には、各循環ファン 18, 18, 18に対向して電気ヒータ 20が設けられている。  [0115] Further, the inner wall of the door 225 constituting the rear wall of the rear chamber 202B is provided with a Balta head 226 for allowing cool air to flow downward, and the upper portion of the Balta head 226 has a cool air fan housing portion 222 and The circulation fan storage unit 224 opens, and the lower part of the butter head 226 opens into the rear chamber 202B. That is, the rear chamber 202B has a lower blowing structure that blows out cool air from below, like the front chamber 202A. In addition, the circulation fan storage section 224 is provided with an electric heater 20 facing the circulation fans 18, 18, and 18.
[0116] すなわち、この第 2実施形態の冷凍コンテナは、往路側シャツタ部材 311及び復路 側シャツタ部材 312が閉じている状態では、前室 202Aは、冷凍機 23のファン 23aの 回転及び循環ファン 218, 218, 218の回転により、下吹き出しで冷気を循環し、後 室 202Bは、循環ファン 18, 18, 18の回転により、下吹き出しで冷気を循環する。一 方、冷気ファン 17の回転により往路側シャツタ部材 311及び復路側シャツタ部材 312 が開くと、図 10及び図 11中に矢印で示すように、冷凍機 23から吹き出された冷気は 、バルタヘッド 219を通って前室 202Aの下側から吹き出し、前室 202A内を循環し た後、上部の往路側通気路 214Rを通って前室 202A側力も後室 202B側に送られ( 図 10では破線の矢印で示している)、後室 202B側の冷気ファン収納部 222を通り、 循環ファン収納部 224を通ってバルタヘッド 226を通り、後室 202Bの下側から吹き 出し、後室 202B内を循環する。循環した冷気は、循環ファン 18, 18, 18に吸い込ま れるようにして循環ファン収納部 224に引き込まれ、再びバルタヘッド 226を通って後 室 202Bの下側力も吹き出される。このとき、前室 202Aから吸い込まれたことによつ て若干高圧となった後室 202B内の冷気の一部が、循環ファン収納部 224に引き込 まれる再に復路側通気路 214Lを通って前室 202A側に戻される(図 10では実線の 矢印で示して 、る)ことになる。 That is, in the refrigeration container according to the second embodiment, the front chamber 202A of the refrigerator 23 has a fan 23a in a state where the forward-side shirter member 311 and the backward-side shirter member 312 are closed. Rotating and circulating fans 218, 218, and 218 rotate to circulate cold air by blowing downward, and the rear chamber 202B circulates cold air by rotating downward and circulating fans 18, 18, and 18, respectively. On the other hand, when the forward-side shirter member 311 and the backward-side shirter member 312 are opened by the rotation of the cold air fan 17, the cold air blown out from the refrigerator 23 as shown by arrows in FIGS. After passing through the front chamber 202A and passing through the front chamber 202A, it circulates in the front chamber 202A, and then the front chamber 202A side force is also sent to the rear chamber 202B through the upper outbound air passage 214R (in FIG. (Shown by the arrow), passes through the cool air fan housing 222 on the rear chamber 202B side, passes through the circulation fan housing 224, passes through the Balta head 226, and blows from the lower side of the rear chamber 202B to circulate in the rear chamber 202B. To do. The circulated cold air is sucked into the circulation fans 18, 18 and 18 and drawn into the circulation fan storage 224, and the lower force of the rear chamber 202 B is blown out again through the Balta head 226. At this time, a part of the cool air in the rear chamber 202B, which has become slightly high pressure due to being sucked in from the front chamber 202A, is drawn into the circulation fan storage section 224 and again passes through the return-side air passage 214L. This is returned to the front chamber 202A side (indicated by a solid arrow in FIG. 10).
[0117] 図 12は、往路側シャツタ部材 311及び復路側シャツタ部材 312の開閉構造を示し ている。往路側シャツタ部材 311と復路側シャツタ部材 312とは、その配置方向が左 右反転して!/、る以外は全く同じ構造であるので、ここでは復路側シャツタ部材 312を 例に挙げ説明する。 FIG. 12 shows the open / close structure of the forward path side shirter member 311 and the return path side shirter member 312. The forward-side shirter member 311 and the backward-side shirter member 312 have the same structure except that their arrangement directions are reversed to the right and left! /, So here, the backward-side shirter member 312 will be described as an example.
[0118] 復路側シャツタ部材 312は、往路側通気路 214Lの両端部にそれぞれ同方向(図 1 2に示す方向)を向いて配置されている。すなわち、冷気が通過する開口部 33を有 するシャツタ取付板 34の上端部 34a及び下端部 34bが、天井壁 202b及び天井内壁 202blにそれぞれ固定具(図では、ボルト'ナット) 35によって固定されており、この シャツタ取付板 34に、前記開口部 33を塞ぐようにして復路側シャツタ部材 312が取り 付けられている。復路側シャツタ部材 312は、その上端部が支持軸 36によって回動 可能に取り付けられている。また、シャツタ取付板 34は、垂直方向に対して角度 Θ ( 例えば、 15度等)だけ傾斜して設けられている。このようにシャツタ取付板 34が傾斜 して設けられていることにより、復路側シャツタ部材 312は、その自重によって開口部 33を常に塞ぐように作用する。そして、往路側通気路 214L内に、図 12中に白抜き の矢符で示す方向に冷気が流れると、その冷気の押圧作用によって復路側シャツタ 部材 312が図 12中二点鎖線で示すように回動し、開口部 33を開くようになつている。 冷気の流れが無くなると、自重により復路側シャツタ部材 312が回動し、再び開口部 33を閉じることになる。 [0118] The return path side shatter member 312 is arranged in the same direction (the direction shown in FIG. 12) at both ends of the forward path side air path 214L. That is, the upper end portion 34a and the lower end portion 34b of the shirter mounting plate 34 having the opening 33 through which the cold air passes are fixed to the ceiling wall 202b and the ceiling inner wall 202bl by fixing tools (bolts and nuts in the figure) 35, respectively. A return-side shirter member 312 is attached to the shirter mounting plate 34 so as to close the opening 33. The return path side shatter member 312 is rotatably attached at its upper end by a support shaft 36. The shirter mounting plate 34 is provided to be inclined by an angle Θ (for example, 15 degrees) with respect to the vertical direction. Since the shirter mounting plate 34 is provided in an inclined manner in this way, the return side shirter member 312 acts to always close the opening 33 by its own weight. Then, in the forward side air passage 214L, the white line in FIG. When the cold air flows in the direction indicated by the arrow, the return-side shirter member 312 is rotated as indicated by the two-dot chain line in FIG. 12 to open the opening 33 due to the pressing action of the cold air. When the flow of cold air disappears, the return-side shirter member 312 rotates by its own weight, and the opening 33 is closed again.
[0119] なお、往路側シャツタ部材 311は、図 11に示す冷凍コンテナを図中矢符 A方向か ら見ると、図 12に示す配置関係となる。  [0119] The forward-side shirter member 311 has the arrangement relationship shown in Fig. 12 when the refrigerated container shown in Fig. 11 is viewed from the direction of arrow A in the figure.
[0120] このような構成の復路側シャツタ部材 312及び往路側シャツタ部材 311の材質とし ては、冷気の流れによって容易に回動し得る程度の比較的軽い材質のものが良ぐ 例えばポリエチレン (PE)やポリプロピレン (PP)などの榭脂によって成形された榭脂 板を使用するのが好ましい。  [0120] The material of the return side shatter member 312 and the forward side shatter member 311 having such a configuration is preferably a relatively light material that can be easily rotated by the flow of cold air. For example, polyethylene (PE ) Or polypropylene (PP) or the like molded resin is preferably used.
[0121] 一本発明に係わる保冷運転制御の説明  [0121] Explanation of cold storage control according to the present invention
上記したように、この第 2実施形態の冷凍コンテナは、前室 202Aと後室 202Bの各 室をそれぞれ異なった設定温度を目標として制御(二温度帯制御)することにより、保 存温度の異なる貨物を混載可能である。この第 2実施形態では、前室 202Aを冷凍 肉や冷凍魚介類等の冷凍状態を維持して搬送しなければならない冷凍保存物品を 収納する冷凍庫とし、後室 202Bを生鮮野菜や清涼飲料等の冷蔵状態を維持して搬 送しなければならない冷蔵保存物品を収納する冷蔵庫として使用する。  As described above, the refrigeration container according to the second embodiment has different storage temperatures by controlling the respective chambers of the front chamber 202A and the rear chamber 202B with different set temperatures as targets (two temperature zone control). Cargo can be mixed. In this second embodiment, the front chamber 202A is a freezer for storing frozen storage items that must be transported in a frozen state such as frozen meat and frozen seafood, and the rear chamber 202B is used for fresh vegetables, soft drinks, etc. It is used as a refrigerator for storing refrigerated items that must be transported in a refrigerated state.
[0122] また、前室 (以下「冷凍庫」 、う。 ) 202Aの設定温度が後室 (以下「冷蔵庫」 、う 。)202Bの設定温度より低く設定されており、かつ、上記したように、冷凍庫 202Aの 冷気を往路側通気路 214Rを通って冷蔵庫 202B側に導入することによって、冷蔵 庫 202Bの温度制御を行い、冷蔵庫 202Bの温度が下がり過ぎた場合には電気ヒー タ 20によって温度を維持するように制御を行う。  [0122] Further, the set temperature of the front chamber (hereinafter referred to as "freezer") 202A is set lower than the set temperature of the rear chamber (hereinafter referred to as "refrigerator") 202B, and, as described above, By introducing the cold air from the freezer 202A to the refrigerator 202B through the forward air passage 214R, the temperature of the refrigerator 202B is controlled, and when the temperature of the refrigerator 202B is too low, the temperature is maintained by the electric heater 20. To control.
[0123] ここで、冷蔵庫 202Bの温度が下がり過ぎた場合とは、次のような場合が考えられる 。すなわち、冷凍庫 202Aの庫内温度は 20°C〜一 30°C程度に制御され、冷蔵庫 (チルド) 13の庫内温度は + 5°C前後に制御されるため、この温度差により、冷凍庫 2 02A側の冷気を往路側通気路 214Rを通じて冷蔵庫 202B側に供給していなくても 、冷凍庫 202A側の冷熱が仕切り 13を伝導して冷蔵庫 202B側に伝達され、冷蔵庫 202B内が冷却さることによって設定温度から下がり過ぎる場合がある。また、例えば 冬場に大阪から北海道に物品を搬送する場合などには、北海道の外気温によっても 冷蔵庫 202B内が冷却され、設定温度から下がり過ぎる場合もある。このような場合 には、電気ヒータ 20によって庫内を温めて、庫内を設定温度( + 5°C等)に維持する ように制御する必要がある。また、冷凍庫 202A側でも電気ヒータ 220によって庫内を 温めて、庫内を設定温度(一 20°C〜一 30°C)に維持するように制御する必要がある 場合も考えられる。 [0123] Here, the case where the temperature of the refrigerator 202B is too low can be considered as follows. That is, the internal temperature of the freezer 202A is controlled to about 20 ° C to 30 ° C, and the internal temperature of the refrigerator (chilled) 13 is controlled around + 5 ° C. Even if the cold air on the 02A side is not supplied to the refrigerator 202B side through the forward-side air passage 214R, the cold heat on the freezer 202A side is transmitted to the refrigerator 202B side through the partition 13, and is set by cooling the inside of the refrigerator 202B May fall too low from temperature. For example, When goods are transported from Osaka to Hokkaido in winter, the inside of the refrigerator 202B may be cooled by the outside air temperature in Hokkaido and may be too low from the set temperature. In such a case, it is necessary to control the electric heater 20 so as to warm the interior and maintain the interior at a set temperature (such as + 5 ° C). In addition, there may be a case where the freezer 202A side needs to be controlled so that the interior is warmed by the electric heater 220 and the interior is maintained at a set temperature (120 ° C. to 30 ° C.).
[0124] このように、二温度帯の制御では、冷凍機 23のコンプレッサと主に冷蔵庫 202Bの 電気ヒータ 20とを同時に運転する必要が生じる場合がある。しかし、上記したように、 冷凍機 23のコンプレッサと冷蔵庫 202Bの電気ヒータ 20とを同時に運転すると、発電 機が過負荷状態になるといった不具合が発生する。そこで、この第 2実施形態では、 冷凍機のコンプレッサまたは電気ヒータ 20のいずれか一方を運転中は他方の運転を 停止するように制御手段で制御する構成としている。この場合、コンプレッサまたは電 気ヒータ 20の 、ずれかを優先して制御する優先度を予め設定し、この優先度に従つ てコンプレッサまたは電気ヒータ 20の!、ずれかを制御する構成として!/、る。  As described above, in the control in the two temperature zones, it may be necessary to simultaneously operate the compressor of the refrigerator 23 and mainly the electric heater 20 of the refrigerator 202B. However, as described above, when the compressor of the refrigerator 23 and the electric heater 20 of the refrigerator 202B are operated simultaneously, a problem occurs that the generator is overloaded. Therefore, in the second embodiment, the control unit is configured to stop the operation of one of the compressor and the electric heater 20 of the refrigerator while the other is in operation. In this case, a priority for preferentially controlling the displacement of the compressor or the electric heater 20 is set in advance, and the configuration of controlling the displacement of the compressor or the electric heater 20 according to this priority! / RU
[0125] 図 13は、上記構成の冷凍コンテナ 200において、二温度帯の制御を行う制御シス テムの概略構成を示す機能ブロック図である。  FIG. 13 is a functional block diagram showing a schematic configuration of a control system that controls two temperature zones in the refrigerated container 200 having the above configuration.
[0126] すなわち、二温度帯の制御全般を司る制御部 51に、冷凍庫 202A及び冷蔵庫 20 2Bの適宜の個所に設けられた複数の温度センサ 52 (ただし、図 10ないし図 12には 図示されていない。)が接続されている。また、制御部 51は、各電気ヒータ 20, 220を ONZOFF駆動するヒータ駆動部 53に接続されているとともに、冷気ファン 17、循環 ファン 18および循環ファン 218を ONZOFF制御するファン駆動部 54に接続されて いる。また、制御部 51は、冷凍機 23のコンプレッサを駆動制御するようになっている 。制御部 51は、図示は省略している力 各種演算処理を行う CPU、二温度帯の温度 制御プログラムを格納している ROM、各種検出温度データを記憶したり、温度制御 時にはワークエリアとして働く RAM等を備えて 、る。  That is, a plurality of temperature sensors 52 (not shown in FIGS. 10 to 12) provided at appropriate locations in the freezer 202A and the refrigerator 202B are provided to the control unit 51 that controls the two temperature zones in general. Not connected). The control unit 51 is connected to the heater drive unit 53 that drives each electric heater 20, 220 to ONZOFF, and is connected to the fan drive unit 54 that controls the cold air fan 17, the circulation fan 18, and the circulation fan 218. ing. In addition, the control unit 51 is configured to drive and control the compressor of the refrigerator 23. The control unit 51 is a force that is not shown in the figure CPU that performs various arithmetic processing, ROM that stores temperature control programs in two temperature zones, RAM that stores various detected temperature data, and RAM that functions as a work area during temperature control Etc.
[0127] 以下、冷凍庫側の通常の保冷運転制御及び冷蔵庫側の通常の保冷運転制御の 具体例を説明し、最後に、本発明に係わる優先度による保冷運転制御について説明 する。 [0128] (1)冷凍庫側の通常の保冷運転制御 [0127] Hereinafter, specific examples of normal cold storage operation control on the freezer side and normal cold storage operation control on the refrigerator side will be described, and finally, the cold storage operation control based on the priority according to the present invention will be described. [0128] (1) Normal cold storage control on the freezer side
図 14は、冷凍庫側の通常の保冷運転制御の処理を示すフローチャートである。以 下、図 14に示すフローチャートを参照して保冷運転制御処理を説明する。ここで、冷 凍庫 202Aの設定温度を例えば 25°Cとし、冷凍庫 202Aの庫内温度制御の精度 を、 + 1°C〜― 2°Cとする。また、冷凍庫 202Aの設定温度に対する庫内温度の差で ある冷凍側温度偏差を ΔΤ1とする。また、循環ファン 218は常に運転しているものと する。  FIG. 14 is a flowchart showing processing of normal cold storage operation control on the freezer side. Hereinafter, the cooling operation control process will be described with reference to the flowchart shown in FIG. Here, the set temperature of the freezer 202A is, for example, 25 ° C, and the accuracy of the internal temperature control of the freezer 202A is + 1 ° C to -2 ° C. In addition, the freezing side temperature deviation which is the difference between the temperature inside the freezer 202A and the set temperature is ΔΤ1. Circulation fan 218 is assumed to be operating at all times.
[0129] 制御部 51は、冷凍庫 202Aの図示しない所定の個所に設けられた温度センサ 52 により庫内温度を検出し、その検出温度と冷凍庫 202Aの設定温度との差である冷 凍側温度偏差 ΔΤ1が、制御精度である + 1°Cを超えている力否かを判断する (ステ ップ Sl l)。その結果、 ΔΤ1が + 1°Cを超えている場合 (ステップ S 11で Yesと判断さ れた場合)には、コンプレッサを ONとして運転を開始する(ステップ S12)。一方、コン プレッサの運転を開始した後、 ΔΤ1がー 1°C以下になったか否かを判断する (ステツ プ S13)。その結果、 ΔΤ1が— 1°C以下になった場合 (ステップ S13で Yesと判断さ れた場合)には、コンプレッサを OFFとする(ステップ S 14)。  [0129] The control unit 51 detects the internal temperature by a temperature sensor 52 provided at a predetermined location (not shown) of the freezer 202A, and the freezing side temperature deviation which is the difference between the detected temperature and the set temperature of the freezer 202A. It is determined whether ΔΤ1 exceeds the control accuracy of + 1 ° C (step Sl l). As a result, when ΔΤ1 exceeds + 1 ° C (when it is determined Yes in step S11), the compressor is turned on and the operation is started (step S12). On the other hand, after starting the compressor, it is determined whether or not ΔΤ1 has become −1 ° C or less (step S13). As a result, when ΔΤ1 is −1 ° C or less (when determined to be Yes at step S13), the compressor is turned off (step S14).
[0130] 制御部 51は、基本的に上記の処理 (ステップ S11〜ステップ S14の処理)を繰り返 すことにより、冷凍庫 202Aの庫内温度を設定温度である— 25°Cから ± 1°Cの範囲 内となるように制御する。  [0130] Control unit 51 basically repeats the above-described processing (the processing from step S11 to step S14) to change the internal temperature of freezer 202A to the set temperature—from 25 ° C to ± 1 ° C. Control to be within the range of.
[0131] 一方、このようなコンプレッサの ONZOFF制御において、制御部 51は、 ΔΤ1がー 2°C以下になった力否かを常に監視している (ステップ S15)。これは、上記したように 、コンプレッサの ONZOFFだけでは制御できない他の要素(例えば、上記した外気 温度等の影響)を考慮して!/、る。  [0131] On the other hand, in such ONZOFF control of the compressor, the control unit 51 constantly monitors whether or not the force ΔΔ1 is −2 ° C. or lower (step S15). As described above, this takes into account other factors that cannot be controlled only by ONZOFF of the compressor (for example, the influence of the outside air temperature described above)!
[0132] そして、 ΔΤ1が— 2°C以下になった場合 (ステップ S15で Yesと判断された場合)に は、冷凍庫 202A内が冷え過ぎていると判断し、電気ヒータ (デフロストヒータ) 220を ONとする (ステップ S16)。そして、庫内温度が設定温度になると、すなわち、 ΔΤ1 力 SOになると (ステップ S17で Yesと判断されると)、電気ヒータ(デフロストヒータ) 220 を OFFとして(ステップ S 18)、ステップ S 11に戻る。  [0132] Then, when ΔΤ1 is −2 ° C or lower (when it is determined Yes in step S15), it is determined that the inside of the freezer 202A is too cold, and the electric heater (defrost heater) 220 is turned on. Set to ON (step S16). When the internal temperature reaches the set temperature, that is, ΔΤ1 force SO (Yes in Step S17), the electric heater (defrost heater) 220 is turned off (Step S18), and Step S11 is entered. Return.
[0133] (2)冷蔵庫側の通常の保冷運転制御の説明 図 15は、冷蔵庫側の通常の保冷運転制御の処理を示すフローチャートである。以 下、図 15に示すフローチャートを参照して保冷運転制御処理を説明する。ここで、冷 蔵庫 202Bの設定温度を例えば + 5°Cとし、冷蔵庫 202Bの庫内温度制御の精度を 、 ± 2°Cとする。また、冷蔵庫 202Bの設定温度に対する庫内温度の差である冷蔵側 温度偏差を ΔΤ2とする。また、循環ファン 18は常に運転しているものとする。 [0133] (2) Explanation of normal cool operation control on the refrigerator side FIG. 15 is a flowchart showing a process of normal cold insulation operation control on the refrigerator side. Hereinafter, the cooling operation control process will be described with reference to the flowchart shown in FIG. Here, the set temperature of the refrigerator 202B is, for example, + 5 ° C, and the accuracy of the internal temperature control of the refrigerator 202B is ± 2 ° C. In addition, the refrigeration side temperature deviation, which is the difference in the internal temperature with respect to the set temperature of the refrigerator 202B, is ΔΤ2. It is assumed that the circulation fan 18 is always in operation.
[0134] 制御部 51は、冷蔵庫 202Bの図示しない所定の個所に設けられた温度センサ 52 により庫内温度を検出し、その検出温度と冷蔵庫 202Bの設定温度との差である冷 蔵側温度偏差 Δ T2が、制御精度である + 1°Cを超えて 、る力否かを判断する (ステ ップ S21)。その結果、 ΔΤ2が + 1°Cを超えている場合 (ステップ S21で Yesと判断さ れた場合)には、冷気ファン 17を ONとして運転を開始する (ステップ S22)。一方、冷 気ファン 17の運転を開始した後、 ΔΤ2がー 0. 5°C以下になったか否かを判断する( ステップ S23)。その結果、 ΔΤ2力— 0. 5°C以下になった場合 (ステップ S23で Yes と判断された場合)には、冷気ファン 17を OFFとする (ステップ S24)。  [0134] The control unit 51 detects the internal temperature by a temperature sensor 52 provided at a predetermined location (not shown) of the refrigerator 202B, and the refrigeration side temperature deviation which is the difference between the detected temperature and the set temperature of the refrigerator 202B. It is determined whether ΔT2 exceeds the control accuracy of + 1 ° C or not (step S21). As a result, when ΔΤ2 exceeds + 1 ° C (when it is determined Yes in step S21), the cool air fan 17 is turned on and the operation is started (step S22). On the other hand, after the operation of the cooling fan 17 is started, it is determined whether or not Δ に 2 has become −0.5 ° C. or less (step S23). As a result, when ΔΤ2 force—0.5 ° C. or less (when determined to be Yes at step S23), the cool air fan 17 is turned off (step S24).
[0135] 制御部 51は、基本的に上記の処理 (ステップ S21〜ステップ S24の処理)を繰り返 すことにより、冷蔵庫 202Bの庫内温度を設定温度である + 5°Cから + 1°C〜一 0. 5 °Cの範囲内となるように制御する。  [0135] Control unit 51 basically repeats the above process (the process from step S21 to step S24) to change the internal temperature of refrigerator 202B from the set temperature of + 5 ° C to + 1 ° C. Control to be within the range of ~ 1. 5 ° C.
[0136] 一方、このような冷気ファン 17の ONZOFF制御において、制御部 51は、 ΔΤ2力 S  [0136] On the other hand, in such ONZOFF control of the cold air fan 17, the control unit 51 performs ΔΤ2 force S
— 1°C以下になった力否かを常に監視している (ステップ S25)。これは、上記したよう に、冷気ファン 17の ONZOFFだけでは制御できない他の要素(例えば、上記した 冷凍庫 202Aから仕切り 13を伝導してくる冷熱や、外気温度等の影響)を考慮してい る。  — The power is constantly monitored whether it is below 1 ° C (step S25). As described above, this takes into consideration other factors that cannot be controlled only by ONZOFF of the cold air fan 17 (for example, the influence of cold heat conducted from the freezer 202A to the partition 13 or the outside air temperature).
[0137] そして、 ΔΤ2が— 1°C以下になった場合 (ステップ S25で Yesと判断された場合)に は、冷蔵庫 202B内が冷え過ぎていると判断し、電気ヒータ 20を ONとする (ステップ S26)。そして、 ΔΤ2力 . 5°Cを超えると (ステップ S27で Yesと判断されると)、電気 ヒータ 20を OFFとして(ステップ S28)、ステップ S21に戻る。  [0137] Then, when ΔΤ2 is less than -1 ° C (when it is determined Yes in step S25), it is determined that the refrigerator 202B is too cold, and the electric heater 20 is turned on ( Step S26). Then, when ΔΤ2 force exceeds 5 ° C (Yes is determined in Step S27), the electric heater 20 is turned off (Step S28), and the process returns to Step S21.
[0138] (3)優先度による保冷運転制御の説明  [0138] (3) Explanation of cool operation control by priority
この第 2実施形態では、基本的には上記の冷凍庫側の通常の保冷運転制御、及 び冷蔵庫側の通常の保冷運転制御を個別に行い、その際に、コンプレッサと電気ヒ ータ 20の運転が重なる事態となったときには、以下に説明する優先度による保冷運 転制御を上記各保冷運転制御に優先して実施する。 In the second embodiment, basically, the normal cold storage operation control on the freezer side and the normal cold storage operation control on the refrigerator side are individually performed, and at that time, the compressor and electric heater are controlled. When the operation of the motor 20 overlaps, the cooling operation control based on the priority described below is performed in preference to the above-described cooling operation control.
[0139] 図 16は、優先度による保冷運転制御の処理を示すフローチャートである。以下、図 16に示すフローチャートを参照して優先度による保冷運転制御処理を説明する。  [0139] FIG. 16 is a flowchart showing a process of controlling the cold insulation operation based on the priority. Hereinafter, the cooling operation control process based on the priority will be described with reference to the flowchart shown in FIG.
[0140] 優先度による保冷運転制御処理では、制御部 51はまず最初に、冷凍側温度偏差 である ΔΤ1が + 1°Cを超えている力否かを優先的に判断する (ステップ S31)。その 結果、 ΔΤ1が + 1°Cを超えている場合 (ステップ S31で Yesと判断された場合)には、 冷凍庫 202Aの保冷運転制御を優先する (ステップ S38)。すなわち、図 13に示す処 理を優先する。つまり、冷蔵庫 202B側で電気ヒータ 20を ONするタイミングであって も、電気ヒータは ONせず、冷凍庫 202A側の制御を優先する。  [0140] In the cold insulation operation control process based on the priority, the control unit 51 first preferentially determines whether or not the refrigeration side temperature deviation ΔΤ1 exceeds + 1 ° C (step S31). As a result, when ΔΤ1 exceeds + 1 ° C (when it is determined Yes in step S31), priority is given to the cold storage operation control of the freezer 202A (step S38). That is, priority is given to the processing shown in FIG. That is, even when the electric heater 20 is turned on on the refrigerator 202B side, the electric heater is not turned on, and the control on the freezer 202A side is given priority.
[0141] 一方、 ΔΤ1が + 1°C以下である場合 (ステップ S31で Noと判断された場合)には、 次に、冷蔵側温度偏差である ΔΤ2が— 2°C以下であるか否かを判断する (ステップ S 32)。その結果、 ΔΤ2が— 2°C以下である場合 (ステップ S32で Yesと判断された場 合)には、次に、 ΔΤ1が + 0. 5°C以下である力否かを判断する(ステップ S33)。そし て、 ΔΤ1が + 0. 5°Cを超えている場合 (ステップ S33で Noと判断された場合)には、 ステップ S38に進み、冷凍庫 202Aの保冷運転制御を優先する。すなわち、冷蔵庫 2 02B側が多少冷え過ぎであっても、電気ヒータ 20を ONせず、冷凍庫 202A側の制 御を優先する。  [0141] On the other hand, if ΔΤ1 is + 1 ° C or lower (if determined to be No in step S31), then whether or not ΔΤ2 that is the refrigeration side temperature deviation is −2 ° C or lower is determined. Is determined (step S32). As a result, if ΔΤ2 is −2 ° C or less (if Yes in step S32), then it is determined whether Δ 判断 1 is a force that is less than + 0.5 ° C (step S32). S33). If ΔΤ1 exceeds + 0.5 ° C (when it is determined No in step S33), the process proceeds to step S38, and the cooling operation control of the freezer 202A is prioritized. That is, even if the refrigerator 202B side is somewhat too cold, the electric heater 20 is not turned on and the control on the freezer 202A side is given priority.
[0142] 一方、 ΔΤ1が + 0. 5°C以下である場合 (ステップ S33で Yesと判断された場合)に は、ステップ S39に進み、冷蔵庫 202B側の制御である図 15のステップ S26,ステツ プ S27の処理を優先して行う。すなわち、コンプレッサが運転中である場合には、コ ンプレッサを OFFして、ステップ S26,ステップ S27の処理を優先する。そして、ステ ップ S27での判断が Yesとなってステップ S28により電気ヒータ 20を OFFしたか否か を常に監視するとともに (ステップ S40)、 Δ T1が + 1°Cを超えたか否かを常に監視し (ステップ S41)、電気ヒータが OFFされず、 ΔΤ1が + 1°Cを超えない場合 (ステップ S40で No、ステップ S41で Noと判断された場合)には、ステップ S39に戻って、図 1 5に示すステップ S26,ステップ S27の処理を繰り返す。一方、電気ヒータが OFFさ れるか、または ΔΤ1が + 1°Cを超えた場合 (ステップ S40で Yes、またはステップ S41 で Yesと判断された場合)には、ステップ S38に進み、冷凍庫 202Aの保冷運転制御 を優先する。 [0142] On the other hand, if ΔΤ1 is + 0.5 ° C or lower (if determined to be Yes in step S33), the process proceeds to step S39, and step S26 in FIG. Priority is given to the processing in step S27. That is, when the compressor is in operation, the compressor is turned off and the processing in steps S26 and S27 is prioritized. Then, it is always monitored whether the judgment in Step S27 is Yes and the electric heater 20 is turned off in Step S28 (Step S40), and whether or not ΔT1 exceeds + 1 ° C is always checked. Monitor (Step S41) and if the electric heater is not turned off and ΔΤ1 does not exceed + 1 ° C (No in Step S40, No in Step S41), return to Step S39, 1 Repeat steps S26 and S27 shown in 5. On the other hand, if the electric heater is turned off or ΔΤ1 exceeds + 1 ° C (Yes in step S40, or step S41 If yes, the process proceeds to step S38, and priority is given to the cold storage control of the freezer 202A.
[0143] 一方、ステップ S32において、 ΔΤ2がー 2°C以下でない場合 (ステップ S32におい て Noと判断された場合)には、次に、 ΔΤ2が、—2°C〜0°Cの範囲内であるか否かを 判断する (ステップ S34)。その結果、 ΔΤ2が— 2°C〜0°Cの範囲内である場合 (ステ ップ S34で Yesと判断された場合)には、次に、 ΔΤ1が 0°C以下である力否かを判断 する(ステップ S35)。その結果、 ΔΤ1が 0°C以下でない場合 (ステップ S35で Noと判 断された場合)には、ステップ S38に進み、冷凍庫 202Aの保冷運転制御を優先する 。一方、 ΔΤ1が 0°C以下である場合 (ステップ S35で Yesと判断された場合)には、ス テツプ S39に進み、冷蔵庫 202B側の制御である図 15のステップ S26,ステップ S27 の処理を優先して行う。すなわち、コンプレッサが運転中である場合には、コンプレツ サを OFFして、ステップ S26,ステップ S27の処理を優先する。そして、電気ヒータが OFFされず、 ΔΤ1が + 1°Cを超えない場合 (ステップ S40で No、ステップ S41で No と判断された場合)には、ステップ S39に戻って、図 15に示すステップ S26,ステップ S27の処理を繰り返す。一方、電気ヒータが OFFされるか、または ΔΤ1が + 1°Cを超 えた場合 (ステップ S40で Yes、またはステップ S41で Yesと判断された場合)には、 ステップ S38に進み、冷凍庫 202Aの保冷運転制御を優先する。  On the other hand, if ΔΤ2 is not −2 ° C or less in Step S32 (if No in Step S32), then ΔΤ2 is within the range of −2 ° C to 0 ° C. It is determined whether or not (step S34). As a result, if ΔΤ2 is within the range of −2 ° C to 0 ° C (if determined to be Yes in step S34), then it is determined whether ΔΤ1 is less than 0 ° C or not. Judge (Step S35). As a result, if ΔΤ1 is not 0 ° C. or lower (if determined to be No in step S35), the process proceeds to step S38, and priority is given to the cold storage operation control of the freezer 202A. On the other hand, if ΔΤ1 is 0 ° C or lower (if determined to be Yes in step S35), the process proceeds to step S39, and priority is given to the processing in step S26 and step S27 in FIG. And do it. That is, when the compressor is in operation, the compressor is turned off and the processing in steps S26 and S27 is prioritized. If the electric heater is not turned off and ΔΤ1 does not exceed + 1 ° C (No in Step S40, No in Step S41), the process returns to Step S39, and Step S26 shown in FIG. , Repeat step S27. On the other hand, if the electric heater is turned off or ΔΤ1 exceeds + 1 ° C (Yes in Step S40 or Yes in Step S41), the process proceeds to Step S38 and the refrigerator 202A is kept cool. Prioritize operation control.
[0144] 一方、ステップ S34において、 ΔΤ2が、—2°C〜0°Cの範囲内でない場合 (ステツ プ S34で Noと判断された場合)には、次に、 ΔΤ2力 0°C〜 + 0. 5°Cの範囲内であ るか否かを判断する(ステップ S36)。その結果、 ΔΤ2力 0°C〜 + 0. 5°Cの範囲内 である場合 (ステップ S36において Yesと判断された場合)には、次に、 ΔΤ1が— 0. 5°C以下であるか否かを判断する。その結果、 ΔΤ1がー 0. 5°C以下でない場合 (ス テツプ S37で Noと判断された場合)には、ステップ S38に進み、冷凍庫 202Aの保冷 運転制御を優先する。一方、 ΔΤ1が— 0. 5°C以下である場合 (ステップ S37で Yes と判断された場合)には、ステップ S39に進み、冷蔵庫 202B側の制御である図 15の ステップ S26,ステップ S27の処理を優先して行う。すなわち、コンプレッサが運転中 である場合には、コンプレッサを OFFして、ステップ S26,ステップ S27の処理を優先 する。そして、電気ヒータが OFFされず、 ΔΤ1が + 1°Cを超えない場合 (ステップ S4 0で No、ステップ S41で Noと判断された場合)には、ステップ S39に戻って、図 15に 示すステップ S26,ステップ S27の処理を繰り返す。一方、電気ヒータが OFFされる 力 または ΔΤ1が + 1°Cを超えた場合 (ステップ S40で Yes、またはステップ S41で Y esと判断された場合)には、ステップ S38に進み、冷凍庫 202Aの保冷運転制御を優 先する。 On the other hand, if ΔΤ2 is not within the range of −2 ° C to 0 ° C in Step S34 (if determined to be No in Step S34), then ΔΤ2 force 0 ° C to + It is determined whether the temperature is within a range of 0.5 ° C (step S36). As a result, if the ΔΤ2 force is within the range of 0 ° C to + 0.5 ° C (if determined as Yes in step S36), then whether ΔΤ1 is less than or equal to -0.5 ° C. Judge whether or not. As a result, when ΔΤ1 is not −0.5 ° C. or less (when it is determined No in step S37), the process proceeds to step S38, and the cooling operation control of the freezer 202A is prioritized. On the other hand, if ΔΤ1 is −0.5 ° C or lower (if determined to be Yes in step S37), the process proceeds to step S39, and the processing in steps S26 and S27 in FIG. Is given priority. That is, when the compressor is in operation, the compressor is turned off, and the processing in steps S26 and S27 is prioritized. If the electric heater is not turned off and ΔΤ1 does not exceed + 1 ° C (step S4 If 0 is determined to be No and Step S41 is determined to be No), the process returns to Step S39 and repeats Steps S26 and S27 shown in FIG. On the other hand, if the power to turn off the electric heater or ΔΤ1 exceeds + 1 ° C (Yes in Step S40 or Yes in Step S41), the process proceeds to Step S38 and the refrigerator 202A is cooled. Prioritize operation control.
[0145] 一方、ステップ S36において、 ΔΤ2が、 0°C〜 + 0. 5°Cの範囲内でない場合 (ステ ップ S36において Noと判断された場合)には、ステップ S31に戻る。  [0145] On the other hand, if Δ 内 2 is not within the range of 0 ° C to + 0.5 ° C in Step S36 (if determined No in Step S36), the process returns to Step S31.
[0146] なお、本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろ な形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示に すぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すも のであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲 に属する変形や変更は、全て本発明の範囲内のものである。  [0146] The present invention can be implemented in various other forms without departing from the spirit or main characteristic power thereof. For this reason, the above-described embodiment is merely an example in all respects, and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
[0147] この出願は、日本で 2004年 8月 20日に出願された特願 2004— 241508号、特願 2004— 241509号、特願 2004— 241510号、特願 2004— 241511号および特願 2004 - 241512号に基づく優先権を請求する。それらの内容はこれに言及すること により、本出願に組み込まれるものである。また、本明細書に引用された文献は、これ に言及することにより、その全部が具体的に組み込まれるものである。  [0147] This application was filed in Japan on August 20, 2004, Japanese Patent Application No. 2004-241508, Japanese Patent Application No. 2004-241509, Japanese Patent Application No. 2004-241510, Japanese Patent Application No. 2004-241511, and Japanese Patent Application No. 2004. -Request priority under 241512. The contents of which are hereby incorporated by reference into this application. In addition, all references cited in this specification are specifically incorporated by reference.
産業上の利用可能性  Industrial applicability
[0148] 以上のように本発明によれば、冷凍コンテナを利用して冷凍品および冷蔵品を混 載して輸送効率を向上させる際、各庫内を冷凍品および冷蔵品に対応した二温度 帯に確実に、かつ、長期にわたって制御することができ、品質を損なうことなく荷主か ら荷主に貨物を輸送することが可能となる。 [0148] As described above, according to the present invention, when a frozen product and a refrigerated product are mixed using a refrigerated container to improve the transportation efficiency, the inside of each cabinet is subjected to two temperatures corresponding to the frozen product and the refrigerated product. The belt can be reliably controlled over a long period of time, and the cargo can be transported from the shipper to the shipper without losing quality.

Claims

請求の範囲 The scope of the claims
[1] それぞれ断熱性を有する前壁、天井壁、底壁、左右の側壁および後壁から形成さ れたコンテナと、コンテナの前壁外面に設けられた冷凍ユニットとからなり、  [1] The container consists of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation properties, and a refrigeration unit provided on the outer surface of the front wall of the container.
コンテナの内面に沿って移動可能な仕切りを介して内部を前壁側の前室と後壁側 の後室とに区画するとともに、  The interior is divided into a front chamber on the front wall side and a rear chamber on the rear wall side through a partition movable along the inner surface of the container,
前室を低温側に、後室を高温側にそれぞれ設定し、  Set the front chamber to the low temperature side and the rear chamber to the high temperature side,
冷凍ユニットによって前室を冷却する一方、前室の冷気を後室に導 、て後室を冷 却する冷凍コンテナであって、  A refrigeration container that cools the anterior chamber by a refrigeration unit while guiding cold air from the anterior chamber to the posterior chamber and cooling the posterior chamber,
前記冷凍ユニットが原動機と、  The refrigeration unit is a prime mover;
原動機によって駆動される発電機と、  A generator driven by a prime mover;
発電機によって発電された電気で駆動される電動コンプレッサを有する冷凍装置と から構成され、  A refrigeration apparatus having an electric compressor driven by electricity generated by a generator,
後室に過冷却防止用電気ヒータが設けられていることを特徴とする冷凍コンテナ。  An electric heater for preventing overcooling is provided in a rear chamber.
[2] それぞれ断熱性を有する前壁、天井壁、底壁、左右の側壁および後壁から形成さ れたコンテナと、コンテナの前壁外面に設けられた冷凍ユニットとからなり、  [2] The container consists of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation properties, and a refrigeration unit provided on the outer surface of the front wall of the container.
コンテナの内面に沿って移動可能な仕切りを介して内部を前壁側の前室と後壁側 の後室とに区画するとともに、  The interior is divided into a front chamber on the front wall side and a rear chamber on the rear wall side through a partition movable along the inner surface of the container,
前室を低温側に、後室を高温側にそれぞれ設定し、  Set the front chamber to the low temperature side and the rear chamber to the high temperature side,
冷凍ユニットによって前室を冷却する一方、前室の冷気を後室に導 、て後室を冷 却する冷凍コンテナであって、  A refrigeration container that cools the anterior chamber by a refrigeration unit while guiding cold air from the anterior chamber to the posterior chamber and cooling the posterior chamber,
前記底壁の表面を平坦に形成する一方、底壁に複数個のすのこを配置し、隣接す る一対のすのこの間に仕切りを配置することを特徴とする冷凍コンテナ。  A refrigeration container having a flat surface on the bottom wall, a plurality of slats disposed on the bottom wall, and a partition disposed between a pair of adjacent slats.
[3] それぞれ断熱性を有する前壁、天井壁、底壁、左右の側壁および後壁から形成さ れたコンテナと、コンテナの前壁外面に設けられた冷凍ユニットとからなり、 [3] Consists of a container formed from a front wall, ceiling wall, bottom wall, left and right side walls, and rear wall each having heat insulation properties, and a refrigeration unit provided on the outer surface of the front wall of the container.
コンテナの内面に沿って移動可能な仕切りを介して内部を前壁側の前室と後壁側 の後室とに区画するとともに、  The interior is divided into a front chamber on the front wall side and a rear chamber on the rear wall side through a partition movable along the inner surface of the container,
前室を低温側に、後室を高温側にそれぞれ設定し、  Set the front chamber to the low temperature side and the rear chamber to the high temperature side,
冷凍ユニットによって前室を冷却する一方、前室の冷気を後室に導 、て後室を冷 却する冷凍コンテナであって、 While the front chamber is cooled by the refrigeration unit, the cool air in the front chamber is guided to the rear chamber, and the rear chamber is cooled. A refrigerated container
前記前壁内面の上方に冷凍ユニットの熱交換器およびファンを設ける一方、 天井壁内面の幅方向全面にわたって一端が前壁近傍に開口され、他端が後室に 開口されて内部が左右に区画された偏平な通気ダクトを設け、  While providing the heat exchanger and fan of the refrigeration unit above the inner surface of the front wall, one end is opened in the vicinity of the front wall over the entire width direction of the inner surface of the ceiling wall, and the other end is opened in the rear chamber. Provided with a flat ventilation duct,
また、天井壁内面の後端部に、前方開口部および後方開口部を有し、内部に冷気 ファンおよび循環ファンが設置されるとともに、循環ファンの前方に臨んで電気ヒータ が配設された混合ダクトを設け、  In addition, there is a front opening and a rear opening at the rear end of the inner surface of the ceiling wall, a cooling fan and a circulation fan are installed inside, and an electric heater is arranged facing the front of the circulation fan. A duct,
さらに、前壁内面に熱交換器に臨んで上下方向に延びる空気通路を設ける一方、 後壁内面に混合ダクトの後方開口部に臨んで上下方向に延びる空気通路を設け、 また、通気ダクトの左右一方の後室側開口を混合ダクトの冷気ファンに臨む前方開 口部に連通してなり、  Further, an air passage extending in the vertical direction facing the heat exchanger is provided on the inner surface of the front wall, and an air passage extending in the vertical direction facing the rear opening of the mixing duct is provided on the inner surface of the rear wall. One rear chamber opening communicates with the front opening facing the cool air fan of the mixing duct,
前記仕切りの周面にシール材を設けて、平坦面に形成された底壁内面、左右側壁 内面および通気ダクトの底壁外面に密着させることを特徴とする冷凍コンテナ。  A refrigeration container, wherein a sealing material is provided on a peripheral surface of the partition, and is closely attached to an inner surface of a bottom wall, inner surfaces of left and right side walls formed on a flat surface, and an outer surface of a bottom wall of a ventilation duct.
[4] 請求項 3記載の冷凍コンテナにおいて、  [4] In the refrigeration container according to claim 3,
前記通気ダクトの底壁内面に断熱材を設けていることを特徴とする冷凍コンテナ。  A refrigeration container, wherein a heat insulating material is provided on an inner surface of a bottom wall of the ventilation duct.
[5] 請求項 3記載の冷凍コンテナにおいて、 [5] The refrigeration container according to claim 3,
前記通気ダクトの前室側一端開口および後室側他端開口に、冷気ファンの駆動時 に発生する空気圧によって閉鎖位置から開放位置へ作動するシャッターをそれぞれ 回動自在に設けて 、ることを特徴とする冷凍コンテナ。  A shutter that operates from the closed position to the open position by air pressure generated when the cold air fan is driven is provided rotatably at one opening at the front chamber side and the other opening at the rear chamber side of the ventilation duct. Refrigerated container.
[6] 請求項 3記載の冷凍コンテナにおいて、 [6] The refrigeration container according to claim 3,
前記仕切りの表裏両面にそれぞれエアリブを設けていることを特徴とする冷凍コン テナ。  A refrigeration container, wherein air ribs are provided on both sides of the partition.
[7] それぞれ断熱性を有する前壁、天井壁、底壁、左右の側壁および後壁から形成さ れたコンテナと、コンテナの前壁外面に設けられた冷凍ユニットとからなり、  [7] The container consists of a front wall, a ceiling wall, a bottom wall, left and right side walls, and a rear wall each having heat insulation properties, and a refrigeration unit provided on the outer surface of the front wall of the container.
コンテナの内面に沿って移動可能であり、かつ、格納位置と作業位置との間に回動 可能な仕切りを介して内部を前壁側の前室と後壁側の後室とに区画するとともに、 前室を低温側に、後室を高温側にそれぞれ設定し、  The interior is partitioned into a front chamber on the front wall side and a rear chamber on the rear wall side through a partition that is movable along the inner surface of the container and is rotatable between a storage position and a work position. Set the front chamber to the low temperature side and the rear chamber to the high temperature side.
冷凍ユニットによって前室を冷却する一方、前室の冷気を後室に導 、て後室を冷 却する冷凍コンテナであって、 While the front chamber is cooled by the refrigeration unit, the cool air in the front chamber is guided to the rear chamber, and the rear chamber is cooled. A refrigerated container
前記仕切りが格納位置にあることを検出する電気接点を設け、  Providing an electrical contact for detecting that the partition is in the retracted position;
仕切りが格納位置にあるとき、電気接点の検出信号に基づいて前室を冷凍温度に 、後室を冷蔵温度にそれぞれ制御する二温度帯制御を阻止することを特徴とする冷 凍コンテナ。  A refrigeration container characterized in that, when the partition is in the retracted position, the two-temperature zone control for controlling the front chamber to the refrigeration temperature and the rear chamber to the refrigeration temperature based on the detection signal of the electrical contact is inhibited.
[8] 請求項 7記載の冷凍コンテナにおいて、  [8] The refrigeration container according to claim 7,
前記仕切りが格納位置にあるとき、電気接点の検出信号に基づいて警報を発する ことを特徴とする冷凍コンテナ。  When the partition is in the storage position, an alarm is issued based on a detection signal of an electrical contact.
[9] エンジン駆動の発電機搭載型冷凍機によって、第 1室と第 2室に仕切られたコンテ ナ内の各室をそれぞれ異なった設定温度を目標として制御することにより、保存温度 の異なる貨物を混載可能な冷凍コンテナであって、 [9] Cargos with different storage temperatures can be controlled by using engine-driven generator-mounted refrigerators to control each chamber in the container partitioned into the first and second chambers with different target temperatures. A refrigerated container
前記第 1室に設けられた前記冷凍機の冷気を前記第 2室に導入することによって第 2室の温度制御を行うとともに、第 2室の温度が下がり過ぎた場合には、第 2室に設け られて 、るヒータによって温度を維持するように制御を行う制御手段を備えた保冷運 転制御装置において、  The temperature of the second chamber is controlled by introducing the cool air of the refrigerator provided in the first chamber into the second chamber, and when the temperature of the second chamber is excessively lowered, In the cold insulation operation control device provided with a control means for controlling so as to maintain the temperature by the heater provided,
前記制御手段は、前記冷凍機のコンプレッサまたは前記ヒータの 、ずれか一方を 運転中は他方の運転を停止するように制御することを特徴とする冷凍コンテナの保 冷運転制御装置。  The control means for controlling the refrigeration container refrigeration operation, wherein the control means controls to stop the operation of one of the compressor and the heater of the refrigeration machine while the other is operating.
[10] 請求項 9に記載の冷凍コンテナの保冷運転制御装置において、  [10] In the refrigerated container cooling operation control device according to claim 9,
前記コンプレッサまたは前記ヒータのいずれかを優先して制御する優先度が設定さ れており、  Priority is set to give priority to either the compressor or the heater,
前記制御手段は、この優先度に従ってコンプレッサまたはヒータのいずれかを制御 することを特徴とする冷凍コンテナの保冷運転制御装置。  The said control means controls either a compressor or a heater according to this priority, The cold storage operation control apparatus of the refrigeration container characterized by the above-mentioned.
[11] 請求項 10に記載の冷凍コンテナの保冷運転制御装置において、 [11] In the refrigerated container cooling operation control device according to claim 10,
前記第 1室を冷凍庫、前記第 2室を冷蔵庫とし、  The first chamber is a freezer, the second chamber is a refrigerator,
前記冷凍庫側の設定温度に対する庫内温度の差である冷凍側温度偏差を ΔΤ1、 前記冷蔵庫の設定温度に対する庫内温度の差である冷蔵側温度偏差を ΔΤ2とする とき、 前記制御手段は、 1°C< ΔΤ1の場合には、前記コンプレッサを制御して冷凍庫の 温度制御を優先することを特徴とする冷凍コンテナの保冷運転制御装置。 When the refrigeration side temperature deviation which is the difference of the internal temperature with respect to the set temperature on the freezer side is ΔΤ1, and the refrigeration side temperature deviation which is the difference of the internal temperature with respect to the set temperature of the refrigerator is ΔΤ2, In the case of 1 ° C <ΔΤ1, the control means controls the compressor to give priority to the temperature control of the freezer.
[12] 請求項 11に記載の冷凍コンテナの保冷運転制御装置にお ヽて、 [12] In the refrigerated container cooling operation control device according to claim 11,
前記制御手段は、 AT2<—2°Cの場合に、 ΔΤ1<0. 5°Cである場合には、前記ヒ ータを運転して冷蔵庫の温度制御を優先することを特徴とする冷凍コンテナの保冷 運転制御装置。  In the case of AT2 <−2 ° C, the control means operates the heater and gives priority to temperature control of the refrigerator when ΔΤ1 <0.5 ° C. Refrigeration operation control device.
[13] 請求項 11または請求項 12に記載の冷凍コンテナの保冷運転制御装置において、 前記制御手段は、 -2°C< ΔΤ2く 0°Cの場合に、 AT1<0°Cである場合には、前 記ヒータを運転して冷蔵庫の温度制御を優先することを特徴とする冷凍コンテナの保 冷運転制御装置。  [13] In the refrigerated container cold storage operation control device according to claim 11 or claim 12, the control means is -2 ° C <ΔΤ2 where 0 ° C and AT1 <0 ° C. Is a refrigeration container refrigeration operation control device that operates the heater and prioritizes refrigerator temperature control.
[14] 請求項 11ないし 13のいずれか 1項に記載の冷凍コンテナの保冷運転制御装置に おいて、  [14] In the refrigerated container cold storage control device according to any one of claims 11 to 13,
前記制御手段は、 0°C< ΔΤ2<0. 5°Cの場合に、 ΔΤΚ -Ο. 5°Cである場合に は、前記ヒータを運転して冷蔵庫の温度制御を優先することを特徴とする冷凍コンテ ナの保冷運転制御装置。  The control means, when 0 ° C <ΔΤ2 <0.5 ° C, and when ΔΤΚ-Ο.5 ° C, operates the heater to give priority to temperature control of the refrigerator. A cold storage control device for refrigeration containers.
PCT/JP2005/014644 2004-08-20 2005-08-10 Refrigerating container and cold insulating operation control device of refrigerating container WO2006019021A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004241510A JP2006057947A (en) 2004-08-20 2004-08-20 Refrigerated container
JP2004-241508 2004-08-20
JP2004-241512 2004-08-20
JP2004241509A JP4344296B2 (en) 2004-08-20 2004-08-20 Refrigeration container
JP2004-241510 2004-08-20
JP2004241508A JP4231826B2 (en) 2004-08-20 2004-08-20 Refrigeration container
JP2004241511A JP4297849B2 (en) 2004-08-20 2004-08-20 Refrigeration container
JP2004241512A JP4231827B2 (en) 2004-08-20 2004-08-20 Cool container cold storage control system
JP2004-241511 2004-08-20
JP2004-241509 2004-08-20

Publications (1)

Publication Number Publication Date
WO2006019021A1 true WO2006019021A1 (en) 2006-02-23

Family

ID=35907409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014644 WO2006019021A1 (en) 2004-08-20 2005-08-10 Refrigerating container and cold insulating operation control device of refrigerating container

Country Status (1)

Country Link
WO (1) WO2006019021A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118896A1 (en) * 2014-02-10 2015-08-13 富士電機株式会社 Storage container
WO2016020379A1 (en) * 2014-08-05 2016-02-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Container, generator device, and method for transporting goods
CN107270629A (en) * 2017-06-28 2017-10-20 龚志明 It is provided with the freezer of guiding device
CN112319346A (en) * 2020-11-16 2021-02-05 佛山双誉信息技术服务有限公司 Cold chain logistics transportation device with whole-course monitoring and early warning function and refrigeration method thereof
CN114963639A (en) * 2022-05-27 2022-08-30 青岛海信网络能源股份有限公司 Integrated energy storage box refrigeration equipment
CN116518619A (en) * 2023-07-05 2023-08-01 合肥美的电冰箱有限公司 Refrigerator, control method and control device thereof, and computer-readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167564A (en) * 1987-11-25 1989-07-03 Carrier Corp Temperature controller for refrigerated freight car container and temperature control method
JPH01106877U (en) * 1988-01-11 1989-07-19
JPH0485088U (en) * 1990-11-30 1992-07-23
JPH08166185A (en) * 1994-11-22 1996-06-25 Zexel Corp Carrying vehicle with temperature control function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167564A (en) * 1987-11-25 1989-07-03 Carrier Corp Temperature controller for refrigerated freight car container and temperature control method
JPH01106877U (en) * 1988-01-11 1989-07-19
JPH0485088U (en) * 1990-11-30 1992-07-23
JPH08166185A (en) * 1994-11-22 1996-06-25 Zexel Corp Carrying vehicle with temperature control function

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118896A1 (en) * 2014-02-10 2015-08-13 富士電機株式会社 Storage container
JPWO2015118896A1 (en) * 2014-02-10 2017-03-23 富士電機株式会社 Containment
WO2016020379A1 (en) * 2014-08-05 2016-02-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Container, generator device, and method for transporting goods
EP3177881A1 (en) * 2014-08-05 2017-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Container, generator device, and method for transporting goods
EP3177881B1 (en) * 2014-08-05 2023-06-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Container, generator device, and method for transporting goods
CN107270629A (en) * 2017-06-28 2017-10-20 龚志明 It is provided with the freezer of guiding device
CN112319346A (en) * 2020-11-16 2021-02-05 佛山双誉信息技术服务有限公司 Cold chain logistics transportation device with whole-course monitoring and early warning function and refrigeration method thereof
CN112319346B (en) * 2020-11-16 2021-11-09 上海海配食用农产品有限公司 Cold chain logistics transportation device with whole-course monitoring and early warning function and refrigeration method thereof
CN114963639A (en) * 2022-05-27 2022-08-30 青岛海信网络能源股份有限公司 Integrated energy storage box refrigeration equipment
CN114963639B (en) * 2022-05-27 2023-08-18 青岛海信网络能源股份有限公司 Integrated energy storage box refrigeration equipment
CN116518619A (en) * 2023-07-05 2023-08-01 合肥美的电冰箱有限公司 Refrigerator, control method and control device thereof, and computer-readable storage medium
CN116518619B (en) * 2023-07-05 2023-10-31 合肥美的电冰箱有限公司 Refrigerator, control method and control device thereof, and computer-readable storage medium

Similar Documents

Publication Publication Date Title
KR0150463B1 (en) Refrigerator commodities transport system
EP2850372B1 (en) Cargo temperature monitoring and control for a refrigerated container
WO2006019021A1 (en) Refrigerating container and cold insulating operation control device of refrigerating container
CN101520273A (en) Refrigerated container
JP5135045B2 (en) refrigerator
RU2459747C2 (en) Cooling system and cargo container
WO2014198152A1 (en) Electric refrigerator
JP4297849B2 (en) Refrigeration container
KR100986920B1 (en) Refringerating device of refringerated vehicle
KR20170016546A (en) Refrigerated container for transferring simultaneous of fresh cargo that different storage temperature
JP4093810B2 (en) Cooling storage
JP2015052441A (en) Freezing car
JP4344296B2 (en) Refrigeration container
JP4231827B2 (en) Cool container cold storage control system
JP4150364B2 (en) Refrigeration container
JP3177565U (en) Transport vehicle cargo compartment structure
JP3948876B2 (en) Cooling storage
JP2006057947A (en) Refrigerated container
KR102439937B1 (en) Sandwich Cold Storage Panel Freezer for Refrigeration Truck
JP2008185241A (en) Multiple compartment type insulated truck
KR100942801B1 (en) Cooling pack cart
JP3997498B2 (en) Freezer refrigerator for transportation
JPH07190587A (en) Refrigerator
JP2023158276A (en) Cooling storage type refrigerator
JP2002013870A (en) Refrigeration box for vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580025936.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 920/KOLNP/2007

Country of ref document: IN

122 Ep: pct application non-entry in european phase