WO2006018989A1 - Additive for electrolyte solution of nonaqueous electrolyte battery, nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery - Google Patents

Additive for electrolyte solution of nonaqueous electrolyte battery, nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery Download PDF

Info

Publication number
WO2006018989A1
WO2006018989A1 PCT/JP2005/014407 JP2005014407W WO2006018989A1 WO 2006018989 A1 WO2006018989 A1 WO 2006018989A1 JP 2005014407 W JP2005014407 W JP 2005014407W WO 2006018989 A1 WO2006018989 A1 WO 2006018989A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
aqueous electrolyte
nonaqueous electrolyte
additive
electrolyte
Prior art date
Application number
PCT/JP2005/014407
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Otsuki
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2006018989A1 publication Critical patent/WO2006018989A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte additive for a non-aqueous electrolyte battery, a battery non-aqueous electrolyte containing the additive, and a non-aqueous electrolyte battery including the non-aqueous electrolyte, and in particular, a thermal runaway start temperature.
  • the present invention relates to a non-aqueous electrolyte battery with improved performance.
  • non-aqueous electrolyte battery using lithium as a negative electrode active material is known as one of the batteries having a high energy density because the electrode potential of lithium is the lowest among metals and the electric capacity per unit volume is large.
  • batteries whether primary batteries or secondary batteries, have been actively researched, and some have been put into practical use and supplied to the market.
  • non-aqueous electrolyte primary batteries are used as power sources for cameras, electronic watches, and various memory backups.
  • non-aqueous electrolyte secondary batteries are used as drive power sources for notebook computers and mobile phones, and are also being considered for use as main power sources or auxiliary power sources for electric vehicles and fuel cell vehicles. Yes.
  • the negative electrode active material lithium reacts violently with a compound having active protons such as water and alcohol, so that the electrolyte used in the battery is an ester compound or an ether compound.
  • aprotic organic solvents such as
  • the aprotic organic solvent has low reactivity with the negative electrode active material lithium, for example, a large current suddenly flows when the battery is short-circuited, and the battery abnormally generates heat. There is a high risk of vaporization 'decomposing to generate gas, rupture of the battery due to the generated gas and heat, and ignition of sparks generated at the time of short circuit.
  • Non-aqueous electrolyte batteries have been developed that provide non-flammability, flame retardancy, or self-extinguishing properties, and greatly reduce the risk of ignition of the battery in the event of a short circuit or other accident (see WO 02/21631). Issue pamphlet and International Publication No. 03Z041197 pamphlet).
  • the present inventor has added a cyclic phosphazene compound having a specific structure to the non-aqueous electrolyte so that the thermal runaway start temperature of the non-aqueous electrolyte battery can be increased. Has been found to increase significantly, and the present invention has been completed.
  • the additive for electrolyte solution of the nonaqueous electrolyte battery of the present invention has the following formula (I):
  • each X is independently F or C1, provided that all X are not the same.
  • N is 3 or 4, and is characterized by comprising a phosphazene compound in which the number of C1 bonded to each P is 0 or 1.
  • n in the formula (I) is 3, and among 6 Xs:! To 3 are C1 is there.
  • N in the middle is 4, and 2 to 4 out of 8 X's are C1.
  • a nonaqueous electrolytic solution for a battery of the present invention is characterized by containing the above-mentioned additive for electrolytic solution, an aprotic organic solvent, and a supporting salt.
  • the non-aqueous electrolyte battery of the present invention comprises the above non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode. It can be either a primary battery or a secondary battery.
  • the non-aqueous electrolyte battery of the present invention preferably has a thermal runaway start temperature of 200 ° C or higher.
  • an electrolyte solution for a nonaqueous electrolyte battery which is composed of a cyclic phosphazene compound having a specific structure and can significantly increase the thermal runaway start temperature of the nonaqueous electrolyte battery.
  • Additives can be provided. Further, it is possible to provide a nonaqueous electrolytic solution for a battery containing the additive and having greatly improved safety. Furthermore, a non-aqueous electrolyte battery provided with the non-aqueous electrolyte for the battery and having a significantly improved thermal runaway temperature can be provided.
  • FIG. 1 shows a GC-MS GC chart of the reaction mixture obtained in Synthesis Example 1.
  • FIG. 2 shows the results of ARC analysis of non-aqueous electrolyte secondary batteries of conventional and comparative examples:!
  • FIG. 3 shows the results of ARC analysis of the non-aqueous electrolyte secondary batteries of the conventional example, the comparative example 4 and the example.
  • the additive for electrolyte solution of the nonaqueous electrolyte battery of the present invention is characterized by comprising a cyclic phosphazene compound represented by the above formula (I) and having 0 or 1 C1 bonded to each P.
  • the phosphazene compound has an effect of suppressing the exothermic reaction of the non-aqueous electrolyte and suppresses thermal runaway of the battery, and the non-aqueous electrolyte provided with the non-aqueous electrolyte containing the phosphazene compound Liquid batteries have high safety due to high thermal runaway start temperature.
  • the phosphazene compound generates nitrogen gas and / or phosphate ester in an emergency of a non-aqueous electrolyte battery, thereby making the non-aqueous electrolyte non-flammable, flame retardant, or self-extinguishing. It also has the effect of greatly reducing the risk of such problems.
  • the phosphazene compound constituting the additive for electrolyte of the nonaqueous electrolyte battery of the present invention is represented by the above formula (I).
  • each X is independently F or C1, provided that all Xs are not the same.
  • the use of a compound containing a halogen element may cause the generation of halogen radicals.
  • the phosphazene compound described above forms phosphorus halides because the phosphorus element in the molecule traps the halogen radicals. The problem is Does not occur.
  • n is 3 or 4.
  • the viscosity of the phosphazene compound at 25 ° C. is more preferably 5 mPa ′s or less, preferably lOmPa ′s or less, from the viewpoint of sufficiently securing the charge / discharge characteristics of the battery.
  • the viscosity is measured using a viscosity meter [R-type viscometer Model RE500_SL, manufactured by Toki Sangyo Co., Ltd.], lrpm, 2 mm, 3 rpm, 5 rpm, 7 rpm, lOrpm, 20 rpm and 50 mm. Measured at each rotational speed of m for 120 seconds, the rotational speed at the indicated value of 50-60% is taken as the analysis condition, and the value measured at that time.
  • a viscosity meter [R-type viscometer Model RE500_SL, manufactured by Toki Sangyo Co., Ltd.], lrpm, 2 mm, 3 rpm, 5 rpm, 7 rpm, lOrpm, 20 rpm and 50 mm. Measured at each rotational speed of m for 120 seconds, the rotational speed at the indicated value of 50-60% is taken as the analysis condition, and the value measured at that time.
  • the number of C1 bonded to each P is 0 or 1.
  • C1 is a large element, it is easy to desorb because of its steric hindrance. Therefore, a phosphazene compound in which two C1s are bonded to one P is insufficient in the effect of suppressing the thermal runaway of a highly reactive battery, and can sufficiently raise the thermal runaway start temperature of the battery.
  • the phosphazene compound may undergo reductive decomposition depending on the potential used, and may not be satisfactory as a battery function.
  • a geminal isomer A phosphazene compound in which is bonded is referred to as a geminal isomer, and a phosphazene compound in which each C1 is bonded to P is sometimes referred to as a non-geminal isomer.
  • n in the formula (I) is 3, and 1 to 3 out of 6 Xs are C1 and the residual force, and the formula (I) is the n force, and 2 to 4 out of 8 Xs are C1 and the rest are F.
  • the freezing point of the phosphazene compound which is X force or C1 in formula (I) is shown in Table 1 together with boiling point and viscosity at 25 ° C.
  • the freezing point is minimum in a specific C1 number range, and when n is 3, the C1 number is preferably in the range of 1-3. When n is 4, the number of C1 is preferably in the range of 2-5.
  • the phosphazene compound preferably has a freezing point of 10 ° C or lower.
  • the phosphazene compound is synthesized, for example, by reacting a commercially available phosphazene compound represented by (NPC1) with a fluorinating agent such as sodium fluoride (NaF) in a nitrobenzene solvent and partially fluorinating it. it can.
  • a fluorinating agent such as sodium fluoride (NaF)
  • NaF sodium fluoride
  • a conventional synthesis method the synthesis method described in J. Chem. Soc, ser. A., pp. 2590 81968 is known. Since the synthesis method has a low yield, the inventor has made his own The synthesis process was used.
  • n 3, and C1 / F ratio of 1/5, 2/4, 3/3, 0.4M of (NPC1)
  • NPC1 C1 / F ratio of 1/5, 2/4, 3/3, 0.4M of (NPC1)
  • react 2 equivalents of NaF with the nitrobenzene solution then add a very small amount of water, then react with 1 equivalent of NaF, and then distill under reduced pressure to obtain each phosphazene compound.
  • the amount of NaF added can be reduced.
  • the amount of NaF added can be increased. .
  • a phosphazene compound having a desired C1 / F ratio can be synthesized by changing the ratio of (NPC1) / NaF.
  • the above phosphazene compounds may be used alone or as a mixture of two or more.
  • a non-aqueous electrolyte for a battery according to the present invention includes the above-described additive for a non-aqueous electrolyte, an aprotic organic solvent, and a supporting salt. Thermal runaway is suppressed and ignition is performed. 'Bow
  • the aprotic organic solvent used in the battery non-aqueous electrolyte of the present invention is not particularly limited, but ether compounds and ester compounds are preferred from the viewpoint of keeping the viscosity of the electrolyte low. Les. Specifically, 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), dimethyl carbonate (DMC), jetyl carbonate (DEC), diphenyl carbonate, ethylene carbonate (EC), propylene carbonate ( PC), ⁇ _ butyro rataton ( GBL), y-valerolatatone, ethylmethyl carbonate (EMC), methyl formate (MF) and the like are preferable.
  • DME 1,2-dimethoxyethane
  • THF tetrahydrofuran
  • DMC dimethyl carbonate
  • DEC jetyl carbonate
  • diphenyl carbonate diphenyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • GBL
  • aprotic organic solvent for the non-aqueous electrolyte solution of the primary battery cyclic ester compounds such as propylene carbonate and y-butylate rataton, chain ester compounds such as dimethyl carbonate and ethylmethyl carbonate, While chain ether compounds such as 1,2-dimethoxyethane are preferred, aprotic organic solvents for non-aqueous electrolytes for secondary batteries include ethylene carbonate, propylene carbonate, Preference is given to cyclic ester compounds such as ratatones, chain ester compounds such as dimethyl carbonate, ethylmethyl carbonate and jetyl carbonate, and chain ether compounds such as 1,2-dimethoxyethane.
  • a cyclic ester compound is suitable in that it has a high relative dielectric constant and is excellent in solubility, such as a lithium salt.
  • a chain ester ic compound and an ether compound are low in viscosity, and thus have a low viscosity. It is suitable in terms of chemical conversion. These may be used alone or in combination of two or more, but it is preferable to use in combination of two or more.
  • the viscosity of the aprotic organic solvent at 25 ° C. is not particularly limited, but is preferably 10 mPa ′ s (10 cP) or less, more preferably 5 mPa ′ s (5 cP) or less.
  • the supporting salt used in the non-aqueous electrolyte for a battery of the present invention is preferably a supporting salt serving as a lithium ion source.
  • the supporting salt is not particularly limited, but examples thereof include LiCIO, Li
  • Preferable examples include lithium salts such as N. These supporting salts can be used alone or as a mixture of two or more.
  • the concentration of the supporting salt in the non-aqueous electrolyte for a battery of the present invention is preferably in the range of 0.2 to 1.5 mol / L (M), more preferably in the range of 0.5 to lmol / L (M). Masle. If the concentration of the supporting salt is less than 0.2 mol / L, sufficient conductivity of the electrolyte cannot be ensured, which may hinder battery discharge and charge characteristics. In addition, since the viscosity of the electrolytic solution increases and the mobility of lithium ions cannot be secured sufficiently, the conductivity of the electrolytic solution cannot be secured sufficiently as described above, and the discharge characteristics and charging characteristics of the battery may be hindered. is there.
  • the content of the phosphazene compound (that is, the content of the additive) in the nonaqueous electrolytic solution for a battery of the present invention improves the safety of the electrolytic solution and sufficiently increases the thermal runaway start temperature of the battery. From the viewpoint of making it, 2% by volume or more is preferable, and 5% by volume or more is more preferable. [0029] ⁇ Nonaqueous electrolyte battery>
  • the non-aqueous electrolyte battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and is usually used in the technical field of non-aqueous electrolyte batteries such as a separator as necessary. Other members are provided, and the battery may be a primary battery or a secondary battery. Since the non-aqueous electrolyte solution containing the above-mentioned additive is used in the non-aqueous electrolyte battery of the present invention, the thermal runaway start temperature of the battery in ARC analysis is high, preferably the thermal runaway start temperature is 200. ° C or higher.
  • the positive electrode active material of the non-aqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery.
  • the positive electrode active material of the non-aqueous electrolyte primary battery fluorinated graphite [( CF)], MnO (electrical n 2 chemical synthesis or chemical synthesis), VO, MoO, Ag CrO, CuO, Cu
  • These positive electrode active materials may be used alone or in combination of two or more.
  • Metal oxides such as 2 5 6 13 2 3, lithium such as LiCoO, LiNiO, LiMn O, LiFeO and LiFePO
  • Containing complex oxides metal sulfides such as TiS and MoS, conductive polymers such as polyaniline, etc.
  • the lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co and Ni.
  • the composite oxide is LiFe Co Ni O [where 0 ⁇ ⁇ 1, 0 ⁇ y ⁇ l, 0 ⁇ x + y
  • LiCoO, LiNiO, and LiMn O are particularly suitable because of their excellent electrolyte wettability.
  • These positive electrode active materials may be used alone or in combination of two or more.
  • the negative electrode active material of the non-aqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery.
  • the negative electrode active material of the non-aqueous electrolyte primary battery includes lithium metal itself.
  • lithium alloys examples of metals that form alloys with lithium include Sn, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg.
  • Al, Zn, and Mg are preferable from the viewpoints of reserves and toxicity.
  • These negative electrode active materials may be used alone or in combination of two or more May be used in combination.
  • the negative electrode active material of the non-aqueous electrolyte secondary battery lithium metal itself, an alloy of lithium and A1, In, Pb, Zn or the like, a carbon material such as graphite doped with lithium, or the like is preferable.
  • graphite which is preferred for a carbon material such as graphite, is particularly preferred because it has higher safety and is superior in wettability of an electrolyte.
  • examples of graphite include natural graphite, artificial black lead, mesophase carbon microbeads (MCMB), and the like, and widely include graphitizable carbon and non-graphitizable carbon.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • the positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary.
  • the conductive agent include acetylene black
  • the binder is polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • PTFE Polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • CMC strong ruxymethyl cellulose
  • the shape of the positive electrode and the negative electrode can be appropriately selected as a medium force known in the art as an electrode without particular limitation.
  • a sheet shape, a columnar shape, a plate shape, a spiral shape, and the like can be given.
  • a separator interposed between the positive and negative electrodes in the role of preventing current short-circuiting due to contact of both electrodes in the non-aqueous electrolyte battery.
  • a material that can reliably prevent contact between both electrodes and that can pass or contain an electrolyte solution such as polytetrafluoroethylene, polypropylene, polyethylene, cenorelose, polybutylene terephthalate, polyethylene
  • an electrolyte solution such as polytetrafluoroethylene, polypropylene, polyethylene, cenorelose, polybutylene terephthalate, polyethylene
  • a non-woven fabric made of a synthetic resin such as phthalate, a thin layer film and the like are preferable.
  • polypropylene or polyethylene microporous film having a thickness of about 20 to 50 ⁇ m, and vinylome such as cenorelose, polybutylene terephthalate, and polyethylene terephthalate are particularly suitable.
  • vinylome such as cenorelose, polybutylene terephthalate, and polyethylene terephthalate
  • known members that are normally used in batteries can be suitably used.
  • the form of the non-aqueous electrolyte battery of the present invention described above is not particularly limited, such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery.
  • a non-aqueous electrolyte battery can be produced by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode.
  • the spiral structure for example, it is possible to produce a nonaqueous electrolyte battery by stacking and winding up a sheet-like positive electrode and a negative electrode through a separator.
  • a nonaqueous electrolyte was prepared by dissolving LiPF (supporting salt) at a concentration of 1M (mol / L) in the resulting mixed solution.
  • LiCoO positive electrode active material
  • acetylene black conductive agent
  • polyvinylidene fluoride binder
  • organic solvent ethyl acetate and ethanol
  • acetylene black conductive agent
  • 3 parts by mass of polyvinylidene fluoride binder
  • a solvent 50/50 wt% mixed solvent of acetic acid Echiru and ethanol
  • the positive electrode sheet and the negative electrode sheet were overlapped and rolled up through a separator (microporous film: made of polypropylene) having a thickness of 25 ⁇ m to produce a cylindrical electrode.
  • the positive electrode length of the cylindrical electrode was about 260 mm.
  • the above electrolytic solution was injected into the cylindrical electrode and sealed to prepare an AA lithium battery (nonaqueous electrolyte secondary battery).
  • the obtained battery was charged under the conditions of 4.2 V and 3.7 mAh, and then ARC analysis was performed by the following method. The results are shown in FIGS. 2 and 3 and Table 2.
  • start temperature 50 ° C
  • end temperature 350 ° C
  • temperature step 5 ° C
  • temperature sensitivity 0.02 ° C / min
  • standby time 17 minutes
  • analysis step temperature 0.2 ° C
  • Thermal ARC analysis was performed on the batteries using an ARC device manufactured by Hazar d Technology.
  • Fig. 2 and Fig. 3 in the stepped region, the battery did not run out of heat, and the temperature was raised by applying heat from the outside, and the thermal runaway start temperature was obtained from the last step.
  • the self-heating rate was obtained from the slope at the thermal runaway start temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

Disclosed is an additive for electrolyte solutions of nonaqueous electrolyte batteries which enables to raise the thermal runaway temperature of a nonaqueous electrolyte battery by a greater degree than the conventional additives for electrolyte solutions. Specifically disclosed is an additive for electrolyte solutions of nonaqueous electrolyte batteries which is composed of a phosphazene compound represented by the following formula (I): (NPX2)n (wherein Xs independently represent F or Cl, but not all Xs are the same; and n is 3 or 4) with the number of Cl bonded to each P being 0 or 1.

Description

明 細 書  Specification
非水電解液電池の電解液用添加剤、電池用非水電解液及び非水電解 液電池  Nonaqueous Electrolyte Battery Electrolyte Additive, Battery Nonaqueous Electrolyte, and Nonaqueous Electrolyte Battery
技術分野  Technical field
[0001] 本発明は、非水電解液電池の電解液用添加剤、該添加剤を含む電池用非水電解 液及び該非水電解液を備えた非水電解液電池に関し、特に熱暴走開始温度を向上 させた非水電解液電池に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an electrolyte additive for a non-aqueous electrolyte battery, a battery non-aqueous electrolyte containing the additive, and a non-aqueous electrolyte battery including the non-aqueous electrolyte, and in particular, a thermal runaway start temperature. The present invention relates to a non-aqueous electrolyte battery with improved performance.
背景技術  Background art
[0002] 近年、電気自動車や燃料電池自動車の主電源若しくは補助電源として、又は小型 電子機器の電源として、軽量且つ長寿命で、エネルギー密度の高い電池が求められ ている。これに対し、リチウムを負極活物質とする非水電解液電池は、リチウムの電極 電位が金属中で最も低 単位体積当りの電気容量が大きいため、エネルギー密度 の高い電池の一つとして知られており、 1次電池 · 2次電池を問わず多くの種類のも のが活発に研究され、一部が実用化し市場に供給されている。例えば、非水電解液 1次電池は、カメラ、電子ウォッチ及び各種メモリーバックアップ用電源として用いられ ている。また、非水電解液 2次電池は、ノート型パソコン及び携帯電話等の駆動電源 として用いられており、更には、電気自動車や燃料電池自動車の主電源若しくは補 助電源として用いることが検討されている。  [0002] In recent years, there has been a demand for a light, long-life battery with high energy density as a main power source or auxiliary power source for electric vehicles and fuel cell vehicles, or as a power source for small electronic devices. In contrast, a non-aqueous electrolyte battery using lithium as a negative electrode active material is known as one of the batteries having a high energy density because the electrode potential of lithium is the lowest among metals and the electric capacity per unit volume is large. Many types of batteries, whether primary batteries or secondary batteries, have been actively researched, and some have been put into practical use and supplied to the market. For example, non-aqueous electrolyte primary batteries are used as power sources for cameras, electronic watches, and various memory backups. In addition, non-aqueous electrolyte secondary batteries are used as drive power sources for notebook computers and mobile phones, and are also being considered for use as main power sources or auxiliary power sources for electric vehicles and fuel cell vehicles. Yes.
[0003] これらの非水電解液電池においては、負極活物質のリチウムが水及びアルコール 等の活性プロトンを有する化合物と激しく反応するため、該電池に使用される電解液 は、エステル化合物及びエーテル化合物等の非プロトン性有機溶媒に限られている  [0003] In these non-aqueous electrolyte batteries, the negative electrode active material lithium reacts violently with a compound having active protons such as water and alcohol, so that the electrolyte used in the battery is an ester compound or an ether compound. Limited to aprotic organic solvents such as
[0004] し力しながら、上記非プロトン性有機溶媒は、負極活物質のリチウムとの反応性が 低いものの、例えば、電池の短絡時等に大電流が急激に流れ、電池が異常に発熱し た際に、気化 '分解してガスを発生したり、発生したガス及び熱により電池の破裂 '発 火を引き起こしたり、短絡時に生じる火花が引火する等の危険性が高い。 [0004] However, although the aprotic organic solvent has low reactivity with the negative electrode active material lithium, for example, a large current suddenly flows when the battery is short-circuited, and the battery abnormally generates heat. There is a high risk of vaporization 'decomposing to generate gas, rupture of the battery due to the generated gas and heat, and ignition of sparks generated at the time of short circuit.
[0005] これに対して、電池用非水電解液にホスファゼン化合物を添加して、非水電解液に 不燃性、難燃性又は自己消火性を付与して、短絡等の非常時に電池が発火 '引火 する危険性を大幅に低減した非水電解液電池が開発されている(国際公開第 02/ 21631号パンフレット及び国際公開第 03Z041197号パンフレット参照)。 [0005] On the other hand, a phosphazene compound is added to the battery non-aqueous electrolyte to obtain a non-aqueous electrolyte. Non-aqueous electrolyte batteries have been developed that provide non-flammability, flame retardancy, or self-extinguishing properties, and greatly reduce the risk of ignition of the battery in the event of a short circuit or other accident (see WO 02/21631). Issue pamphlet and International Publication No. 03Z041197 pamphlet).
発明の開示  Disclosure of the invention
[0006] し力しながら、電池用非水電解液にホスファゼン化合物を添加しても、電池が異常 な高温に曝される等して、電池の熱暴走がー且始まると、電池の熱暴走を途中で停 止させることができない。従って、電池の発火'引火の危険性を低減すると同時に、 熱暴走を抑制できる電池の非水電解液用添加剤が求められている。  [0006] However, even if a phosphazene compound is added to the non-aqueous electrolyte for the battery, if the battery starts to run away due to, for example, being exposed to an abnormally high temperature, the battery runs out of heat. Cannot be stopped on the way. Accordingly, there is a need for a non-aqueous electrolyte additive for a battery that can reduce the risk of ignition and ignition of the battery and at the same time suppress thermal runaway.
[0007] そこで、本発明の目的は、従来の電解液用添加剤よりも、非水電解液電池の熱暴 走開始温度を上昇させることが可能な非水電解液電池の電解液用添加剤を提供す ることにある。また、本発明の他の目的は、かかる添加剤を含む電池用非水電解液と 、該非水電解液を備え、熱暴走開始温度を大幅に向上させた非水電解液電池を提 供することにある。  [0007] Therefore, an object of the present invention is to provide an additive for an electrolyte of a nonaqueous electrolyte battery that can increase the thermal runaway start temperature of the nonaqueous electrolyte battery as compared with a conventional additive for electrolyte. Is to provide. Another object of the present invention is to provide a non-aqueous electrolyte for a battery containing such an additive, and a non-aqueous electrolyte battery comprising the non-aqueous electrolyte and having a significantly improved thermal runaway start temperature. is there.
[0008] 本発明者は、上記目的を達成するために鋭意検討した結果、特定構造の環状ホス ファゼンィヒ合物を非水電解液に添加することで、非水電解液電池の熱暴走開始温 度が大幅に上昇することを見出し、本発明を完成させるに至った。  [0008] As a result of diligent studies to achieve the above object, the present inventor has added a cyclic phosphazene compound having a specific structure to the non-aqueous electrolyte so that the thermal runaway start temperature of the non-aqueous electrolyte battery can be increased. Has been found to increase significantly, and the present invention has been completed.
[0009] 即ち、本発明の非水電解液電池の電解液用添加剤は、下記式 (I) :  That is, the additive for electrolyte solution of the nonaqueous electrolyte battery of the present invention has the following formula (I):
(NPX ) · · · (I)  (NPX) (1)
2 n  2 n
[式中、 Xはそれぞれ独立して F又は C1であり、但し、総ての Xが同一であることはなく [In the formula, each X is independently F or C1, provided that all X are not the same.
; nは 3又は 4である]で表され、各 Pに結合する C1の数が 0又は 1であるホスファゼン 化合物からなることを特徴とする。 N is 3 or 4, and is characterized by comprising a phosphazene compound in which the number of C1 bonded to each P is 0 or 1.
[0010] 本発明の非水電解液電池の電解液用添加剤の好適例においては、前記式 (I)中の nが 3であり、 6個の Xのうち:!〜 3個が C1である。 [0010] In a preferred example of the additive for an electrolyte solution of the nonaqueous electrolyte battery of the present invention, n in the formula (I) is 3, and among 6 Xs:! To 3 are C1 is there.
[0011] 本発明の非水電解液電池の電解液用添加剤の他の好適例においては、前記式 (I) [0011] In another preferred embodiment of the additive for electrolyte solution of the nonaqueous electrolyte battery of the present invention, the above formula (I)
中の nが 4であり、 8個の Xのうち 2〜4個が C1である。  N in the middle is 4, and 2 to 4 out of 8 X's are C1.
[0012] また、本発明の電池用非水電解液は、上記電解液用添加剤と、非プロトン性有機 溶媒と、支持塩とを含むことを特徴とする。 [0012] Further, a nonaqueous electrolytic solution for a battery of the present invention is characterized by containing the above-mentioned additive for electrolytic solution, an aprotic organic solvent, and a supporting salt.
[0013] 更に、本発明の非水電解液電池は、上記電池用非水電解液と、正極と、負極とを 備えることを特徴とし、 1次電池であっても、 2次電池であってもよレ、。ここで、本発明 の非水電解液電池は、熱暴走開始温度が 200°C以上であるのが好ましレ、。 [0013] Further, the non-aqueous electrolyte battery of the present invention comprises the above non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode. It can be either a primary battery or a secondary battery. Here, the non-aqueous electrolyte battery of the present invention preferably has a thermal runaway start temperature of 200 ° C or higher.
[0014] 本発明によれば、特定構造の環状ホスファゼンィヒ合物からなり、非水電解液電池 の熱暴走開始温度を大幅に上昇させることが可能な非水電解液電池の電解液用添 加剤を提供することができる。また、該添加剤を含み、安全性が大幅に改善された電 池用非水電解液を提供することができる。更に、該電池用非水電解液を備え、熱暴 走開始温度を大幅に向上させた非水電解液電池を提供することができる。 [0014] According to the present invention, an electrolyte solution for a nonaqueous electrolyte battery, which is composed of a cyclic phosphazene compound having a specific structure and can significantly increase the thermal runaway start temperature of the nonaqueous electrolyte battery, is provided. Additives can be provided. Further, it is possible to provide a nonaqueous electrolytic solution for a battery containing the additive and having greatly improved safety. Furthermore, a non-aqueous electrolyte battery provided with the non-aqueous electrolyte for the battery and having a significantly improved thermal runaway temperature can be provided.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]合成例 1で得られた反応混合物の GC-MSの GCチャートを示す。  FIG. 1 shows a GC-MS GC chart of the reaction mixture obtained in Synthesis Example 1.
[図 2]従来例及び比較例:!〜 3の非水電解液 2次電池の ARC分析の結果を示す。  FIG. 2 shows the results of ARC analysis of non-aqueous electrolyte secondary batteries of conventional and comparative examples:!
[図 3]従来例、比較例 4及び実施例の非水電解液 2次電池の ARC分析の結果を示 す。  FIG. 3 shows the results of ARC analysis of the non-aqueous electrolyte secondary batteries of the conventional example, the comparative example 4 and the example.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下に、本発明を詳細に説明する。 [0016] The present invention is described in detail below.
<非水電解液電池の電解液用添加剤 >  <Additives for electrolytes in non-aqueous electrolyte batteries>
本発明の非水電解液電池の電解液用添加剤は、上記式 (I)で表され、各 Pに結合 する C1の数が 0又は 1である環状ホスファゼン化合物からなることを特徴とする。該ホ スファゼンィ匕合物は、非水電解液の発熱反応を抑制して、電池の熱暴走を抑制する 効果を有し、該ホスファゼンィ匕合物を含む非水電解液を備えた非水電解液電池は、 熱暴走開始温度が高ぐ安全性が高い。また、該ホスファゼン化合物は、非水電解液 電池の非常時に窒素ガス及び/又はリン酸エステル等を発生して、非水電解液を不 燃性、難燃性又は自己消火性にし、電池の発火等の危険性を大幅に低減する作用 も有する。  The additive for electrolyte solution of the nonaqueous electrolyte battery of the present invention is characterized by comprising a cyclic phosphazene compound represented by the above formula (I) and having 0 or 1 C1 bonded to each P. The phosphazene compound has an effect of suppressing the exothermic reaction of the non-aqueous electrolyte and suppresses thermal runaway of the battery, and the non-aqueous electrolyte provided with the non-aqueous electrolyte containing the phosphazene compound Liquid batteries have high safety due to high thermal runaway start temperature. In addition, the phosphazene compound generates nitrogen gas and / or phosphate ester in an emergency of a non-aqueous electrolyte battery, thereby making the non-aqueous electrolyte non-flammable, flame retardant, or self-extinguishing. It also has the effect of greatly reducing the risk of such problems.
[0017] 本発明の非水電解液電池の電解液用添加剤を構成するホスファゼン化合物は、上 記式 (I)で表される。式 (I)において、 Xはそれぞれ独立して F又は C1であり、但し、総て の Xが同一であることはなレ、。なお、ハロゲン元素を含む化合物を用いると、ハロゲン ラジカルの発生が問題となることがある力 上記ホスファゼン化合物は、分子中のリン 元素がハロゲンラジカルを捕捉してハロゲン化リンを形成するため、このような問題は 発生しない。 [0017] The phosphazene compound constituting the additive for electrolyte of the nonaqueous electrolyte battery of the present invention is represented by the above formula (I). In the formula (I), each X is independently F or C1, provided that all Xs are not the same. Note that the use of a compound containing a halogen element may cause the generation of halogen radicals. The phosphazene compound described above forms phosphorus halides because the phosphorus element in the molecule traps the halogen radicals. The problem is Does not occur.
[0018] また、式 (I)におレ、て、 nは 3又は 4である。 nが 5以上では、ホスファゼン化合物の効 率的な合成が困難となるため好ましくなレ、。ここで、上記ホスファゼン化合物の 25°C における粘度としては、電池の充放電特性を十分に確保する観点から、 lOmPa's以 下が好ましぐ 5mPa' s以下が更に好ましい。なお、本発明において、粘度は、粘度測 定計 [R型粘度計 Model RE500_SL、東機産業 (株)製]を用い、 lrpm、 2卬 m、 3rpm 、 5rpm、 7rpm, lOrpm, 20rpm及び 50卬 mの各回転速度で 120秒間ずつ測定し、指示 値が 50〜60%となった時の回転速度を分析条件とし、その際に測定した値である。  [0018] In the formula (I), n is 3 or 4. When n is 5 or more, efficient synthesis of phosphazene compounds becomes difficult, which is preferable. Here, the viscosity of the phosphazene compound at 25 ° C. is more preferably 5 mPa ′s or less, preferably lOmPa ′s or less, from the viewpoint of sufficiently securing the charge / discharge characteristics of the battery. In the present invention, the viscosity is measured using a viscosity meter [R-type viscometer Model RE500_SL, manufactured by Toki Sangyo Co., Ltd.], lrpm, 2 mm, 3 rpm, 5 rpm, 7 rpm, lOrpm, 20 rpm and 50 mm. Measured at each rotational speed of m for 120 seconds, the rotational speed at the indicated value of 50-60% is taken as the analysis condition, and the value measured at that time.
[0019] 更に、式 (I)において、各 Pに結合する C1の数は、 0又は 1である。 1つの Pに 2つの C 1が結合しているホスファゼン化合物は、 Pの電子が 2つの C1に吸引されて Pがプラス を帯びていることにカ卩え、 C1の電子軌道と Pの電子軌道からなる非占有最低分子軌 道の縮重により、 Pの還元電位が低くなつている。また、 C1が大きな元素であるため、 その立体的な障害が理由で脱離し易くなつている。そのため、 1つの Pに 2つの C1が 結合しているホスファゼン化合物は、反応性が高ぐ電池の熱暴走を抑制する効果 が不十分で、電池の熱暴走開始温度を十分に上昇させることができなレ、。また、この ような化合物を添加剤として使用した場合、使用する電位によって該ホスファゼンィ匕 合物が還元分解を受け、電池機能として満足できない場合がある [以下、 1個の Pに 2 個の C1が結合してレ、るホスファゼン化合物を geminal (ジエミナル)体と称し、各 C1が P に 1個ずつ結合しているホスファゼン化合物を non-geminal (ノンジヱミナル)体と称す ることがある]。  [0019] Further, in the formula (I), the number of C1 bonded to each P is 0 or 1. A phosphazene compound in which two C 1s are bonded to one P, the electrons of P are attracted to two C1 and P is positive, and the electron orbit of C1 and the electron orbit of P The reduction potential of P is lowered due to the degeneracy of the lowest unoccupied molecular orbital consisting of. Also, since C1 is a large element, it is easy to desorb because of its steric hindrance. Therefore, a phosphazene compound in which two C1s are bonded to one P is insufficient in the effect of suppressing the thermal runaway of a highly reactive battery, and can sufficiently raise the thermal runaway start temperature of the battery. Nare ,. In addition, when such a compound is used as an additive, the phosphazene compound may undergo reductive decomposition depending on the potential used, and may not be satisfactory as a battery function. [Hereinafter, two C1 in one P] A phosphazene compound in which is bonded is referred to as a geminal isomer, and a phosphazene compound in which each C1 is bonded to P is sometimes referred to as a non-geminal isomer].
[0020] 上記ホスファゼン化合物の中でも、凝固点の低さの観点から、式 (I)中の nが 3であり 、 6個の Xのうち 1〜3個が C1で残り力 であるもの、並びに式 (I)中の n力 であり、 8個 の Xのうち 2〜4個が C1で残りが Fであるものが好ましレ、。なお、式 (I)中の X力 又は C1 であるホスファゼンィ匕合物の凝固点を、沸点及び 25°Cにおける粘度と共に表 1に示 す。 [0021] [0020] Among the above phosphazene compounds, from the viewpoint of a low freezing point, n in the formula (I) is 3, and 1 to 3 out of 6 Xs are C1 and the residual force, and the formula (I) is the n force, and 2 to 4 out of 8 Xs are C1 and the rest are F. The freezing point of the phosphazene compound which is X force or C1 in formula (I) is shown in Table 1 together with boiling point and viscosity at 25 ° C. [0021]
Figure imgf000007_0001
Figure imgf000007_0001
[0022] 表 1からも明らかなように、式 (I)中の Xが F又は C1であるホスファゼン化合物におい ては、 CI数の増加(分子量の増カロ)に従って沸点が上昇するものの、凝固点は特定 の C1数範囲で最小となり、 nが 3の場合は、 C1数は 1〜3の範囲が好適で、 nが 4の場 合は、 C1数は 2〜5の範囲が好適である。ここで、上記ホスファゼン化合物は、凝固点 カ 10°C以下であるのが好ましい。凝固点カ 10°C以下のホスファゼンィ匕合物を非水 電解液に添加することで、非水電解液電池の低温特性を向上させることができる。 [0022] As is apparent from Table 1, in the phosphazene compound in which X in formula (I) is F or C1, Although the boiling point rises as the CI number increases (increased molecular weight), the freezing point is minimum in a specific C1 number range, and when n is 3, the C1 number is preferably in the range of 1-3. When n is 4, the number of C1 is preferably in the range of 2-5. Here, the phosphazene compound preferably has a freezing point of 10 ° C or lower. By adding a phosphazene compound having a freezing point of 10 ° C or lower to the non-aqueous electrolyte, the low-temperature characteristics of the non-aqueous electrolyte battery can be improved.
[0023] 上記ホスファゼン化合物は、例えば、ニトロベンゼン溶媒中、 (NPC1 ) で表される 市販のホスファゼン化合物を、フッ化ナトリウム(NaF)等のフッ素化剤と反応させ、部 分フッ素化する方法で合成できる。従来の合成方法としては、 J. Chem. Soc, ser. A., pp.2590 81968に記載の合成法が知られている力 該合成法では、収率が低いため 、本発明者は、独自の合成プロセスを使用した。より具体的には、式 (I)で表され、 n= 3で、 C1/F比が 1/5、 2/4、 3/3のホスファゼン化合物を合成する場合、 0.4Mの (NPC1 ) のニトロベンゼン溶液に、初回に 2当量の NaFを反応させ、その後、極少量 の水を添加した後、更に 1当量の NaFを反応させた後、減圧蒸留することにより各ホ スファゼンィ匕合物を得ることができる。特に C1比が高いホスファゼン化合物を得る場 合には、 NaFの添力卩量を減少させればよいし、逆に C1/F比を小さくする場合には、 NaFの添加量を増量すればよい。この合成法では、(NPC1 ) /NaFの比を変える ことにより、所望の C1/F比を有するホスファゼン化合物を合成することができる。な お、上記ホスファゼン化合物は、 1種単独で用いてもよいし、 2種以上の混合物として 用いてもよい。 [0023] The phosphazene compound is synthesized, for example, by reacting a commercially available phosphazene compound represented by (NPC1) with a fluorinating agent such as sodium fluoride (NaF) in a nitrobenzene solvent and partially fluorinating it. it can. As a conventional synthesis method, the synthesis method described in J. Chem. Soc, ser. A., pp. 2590 81968 is known. Since the synthesis method has a low yield, the inventor has made his own The synthesis process was used. More specifically, when synthesizing a phosphazene compound represented by the formula (I), n = 3, and C1 / F ratio of 1/5, 2/4, 3/3, 0.4M of (NPC1) First, react 2 equivalents of NaF with the nitrobenzene solution, then add a very small amount of water, then react with 1 equivalent of NaF, and then distill under reduced pressure to obtain each phosphazene compound. Can do. In particular, to obtain a phosphazene compound with a high C1 ratio, the amount of NaF added can be reduced. Conversely, to reduce the C1 / F ratio, the amount of NaF added can be increased. . In this synthesis method, a phosphazene compound having a desired C1 / F ratio can be synthesized by changing the ratio of (NPC1) / NaF. The above phosphazene compounds may be used alone or as a mixture of two or more.
[0024] <電池用非水電解液 >  <Non-aqueous electrolyte for battery>
本発明の電池用非水電解液は、上述した非水電解液用添加剤と、非プロトン性有 機溶媒と、支持塩とを含むことを特徴とし、熱暴走が抑制されていると共に、発火 '弓| 火の危険性が非常に低い。  A non-aqueous electrolyte for a battery according to the present invention includes the above-described additive for a non-aqueous electrolyte, an aprotic organic solvent, and a supporting salt. Thermal runaway is suppressed and ignition is performed. 'Bow | The risk of fire is very low.
[0025] 本発明の電池用非水電解液に用レ、る非プロトン性有機溶媒としては、特に制限は ないが、電解液の粘度を低く抑える観点から、エーテル化合物やエステル化合物等 が好ましレ、。具体的には、 1,2-ジメトキシェタン(DME)、テトラヒドロフラン (THF)、 ジメチルカーボネート(DMC)、ジェチルカーボネート(DEC)、ジフエニルカーボネ ート、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、 γ _ブチロラタトン( GBL)、 y -バレロラタトン、ェチルメチルカーボネート (EMC)、メチルフオルメート( MF)等が好適に挙げられる。これらの中でも、 1次電池の非水電解液用の非プロトン 性有機溶媒としては、プロピレンカーボネート、 y -ブチ口ラタトン等の環状エステル 化合物、ジメチルカーボネート、ェチルメチルカーボネート等の鎖状エステル化合物 、 1,2-ジメトキシェタン等の鎖状エーテルィ匕合物が好ましぐ一方、 2次電池の非水 電解液用の非プロトン性有機溶媒としては、エチレンカーボネート、プロピレンカーボ ネート、 y -ブチ口ラタトン等の環状エステルイ匕合物、ジメチルカーボネート、ェチルメ チルカーボネート、ジェチルカーボネート等の鎖状エステル化合物、 1,2-ジメトキシ ェタン等の鎖状エーテルィ匕合物が好ましい。特に、環状のエステル化合物は、比誘 電率が高ぐリチウム塩等の溶解性に優れる点で好適であり、鎖状のエステルイヒ合物 及びエーテル化合物は、低粘度であるため電解液の低粘度化の点で好適である。こ れらは 1種単独で使用してもよぐ 2種以上を併用してもよいが、 2種以上を併用する のが好適である。また、非プロトン性有機溶媒の 25°Cにおける粘度としては、特に制 限はないが、 10mPa' s (10cP)以下が好ましぐ 5mPa' s (5cP)以下が更に好ましい。 [0025] The aprotic organic solvent used in the battery non-aqueous electrolyte of the present invention is not particularly limited, but ether compounds and ester compounds are preferred from the viewpoint of keeping the viscosity of the electrolyte low. Les. Specifically, 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), dimethyl carbonate (DMC), jetyl carbonate (DEC), diphenyl carbonate, ethylene carbonate (EC), propylene carbonate ( PC), γ _ butyro rataton ( GBL), y-valerolatatone, ethylmethyl carbonate (EMC), methyl formate (MF) and the like are preferable. Among these, as the aprotic organic solvent for the non-aqueous electrolyte solution of the primary battery, cyclic ester compounds such as propylene carbonate and y-butylate rataton, chain ester compounds such as dimethyl carbonate and ethylmethyl carbonate, While chain ether compounds such as 1,2-dimethoxyethane are preferred, aprotic organic solvents for non-aqueous electrolytes for secondary batteries include ethylene carbonate, propylene carbonate, Preference is given to cyclic ester compounds such as ratatones, chain ester compounds such as dimethyl carbonate, ethylmethyl carbonate and jetyl carbonate, and chain ether compounds such as 1,2-dimethoxyethane. In particular, a cyclic ester compound is suitable in that it has a high relative dielectric constant and is excellent in solubility, such as a lithium salt. A chain ester ic compound and an ether compound are low in viscosity, and thus have a low viscosity. It is suitable in terms of chemical conversion. These may be used alone or in combination of two or more, but it is preferable to use in combination of two or more. The viscosity of the aprotic organic solvent at 25 ° C. is not particularly limited, but is preferably 10 mPa ′ s (10 cP) or less, more preferably 5 mPa ′ s (5 cP) or less.
[0026] 本発明の電池用非水電解液に用いる支持塩としては、リチウムイオンのイオン源と なる支持塩が好ましい。該支持塩としては、特に制限はなレ、が、例えば、 LiCIO、 Li[0026] The supporting salt used in the non-aqueous electrolyte for a battery of the present invention is preferably a supporting salt serving as a lithium ion source. The supporting salt is not particularly limited, but examples thereof include LiCIO, Li
BF、 LiPF、 LiCF SO、 LiAsF、 LiC F SO、 Li(CF SO ) N及び Li(C F SO )BF, LiPF, LiCF SO, LiAsF, LiC F SO, Li (CF SO) N and Li (C F SO)
N等のリチウム塩が好適に挙げられる。これら支持塩は、 1種単独で使用してもよぐ 2 種以上を混合して使用してもょレ、。 Preferable examples include lithium salts such as N. These supporting salts can be used alone or as a mixture of two or more.
[0027] 本発明の電池用非水電解液中の支持塩の濃度としては、 0.2〜1.5mol/L(M)の範 囲が好ましぐ 0.5〜lmol/L(M)の範囲が更に好ましレ、。支持塩の濃度が 0.2mol/L未 満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電 特性に支障をきたすことがあり、 1.5mol/Lを超えると、電解液の粘度が上昇し、リチウ ムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分 に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。  [0027] The concentration of the supporting salt in the non-aqueous electrolyte for a battery of the present invention is preferably in the range of 0.2 to 1.5 mol / L (M), more preferably in the range of 0.5 to lmol / L (M). Masle. If the concentration of the supporting salt is less than 0.2 mol / L, sufficient conductivity of the electrolyte cannot be ensured, which may hinder battery discharge and charge characteristics. In addition, since the viscosity of the electrolytic solution increases and the mobility of lithium ions cannot be secured sufficiently, the conductivity of the electrolytic solution cannot be secured sufficiently as described above, and the discharge characteristics and charging characteristics of the battery may be hindered. is there.
[0028] 本発明の電池用非水電解液における上記ホスファゼン化合物の含有量 (即ち、添 加剤の含有量)は、電解液の安全性を向上させ、電池の熱暴走開始温度を十分に 上昇させる観点から、 2体積%以上が好ましぐ 5体積%以上が更に好ましい。 [0029] <非水電解液電池 > [0028] The content of the phosphazene compound (that is, the content of the additive) in the nonaqueous electrolytic solution for a battery of the present invention improves the safety of the electrolytic solution and sufficiently increases the thermal runaway start temperature of the battery. From the viewpoint of making it, 2% by volume or more is preferable, and 5% by volume or more is more preferable. [0029] <Nonaqueous electrolyte battery>
本発明の非水電解液電池は、上述の電池用非水電解液と、正極と、負極とを備え 、必要に応じて、セパレーター等の非水電解液電池の技術分野で通常使用されてい る他の部材を備え、 1次電池であっても、 2次電池であってもよい。本発明の非水電 解液電池には、上述した添加剤を含む非水電解液が用いられているため、 ARC分 析における電池の熱暴走開始温度が高ぐ好ましくは、熱暴走開始温度が 200°C以 上である。  The non-aqueous electrolyte battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and is usually used in the technical field of non-aqueous electrolyte batteries such as a separator as necessary. Other members are provided, and the battery may be a primary battery or a secondary battery. Since the non-aqueous electrolyte solution containing the above-mentioned additive is used in the non-aqueous electrolyte battery of the present invention, the thermal runaway start temperature of the battery in ARC analysis is high, preferably the thermal runaway start temperature is 200. ° C or higher.
[0030] 本発明の非水電解液電池の正極活物質は 1次電池と 2次電池で一部異なり、例え ば、非水電解液 1次電池の正極活物質としては、フッ化黒鉛 [(CF ) ]、 MnO (電気 n 2 ィ匕学合成であっても化学合成であってもよい)、 V O、 MoO、 Ag CrO、 CuO、 Cu  [0030] The positive electrode active material of the non-aqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery. For example, as the positive electrode active material of the non-aqueous electrolyte primary battery, fluorinated graphite [( CF)], MnO (electrical n 2 chemical synthesis or chemical synthesis), VO, MoO, Ag CrO, CuO, Cu
2 5 3 2 4  2 5 3 2 4
S、 FeS、 SO、 SOC1、 TiS等が好適に挙げられ、これらの中でも、高容量で安全 S, FeS, SO, SOC1, TiS, etc. are preferred, among which high capacity and safety
2 2 2 2 2 2 2 2
性が高ぐ更には放電電位が高ぐ電解液の濡れ性に優れる点で、 MnO、フッ化黒  MnO, fluorinated black in terms of excellent wettability of electrolyte with high discharge potential and high discharge potential
2 鉛が好ましい。これら正極活物質は、 1種単独で使用してもよぐ 2種以上を併用して ちょい。  2 Lead is preferred. These positive electrode active materials may be used alone or in combination of two or more.
[0031] 一方、非水電解液 2次電池の正極活物質としては、 V O、 V〇 、 MnO、 MnO  On the other hand, as the positive electrode active material of the non-aqueous electrolyte secondary battery, V 2 O, V 0, MnO, MnO
2 5 6 13 2 3 等の金属酸化物、 LiCoO、 LiNiO、 LiMn O、 LiFeO及び LiFePO等のリチウム  Metal oxides such as 2 5 6 13 2 3, lithium such as LiCoO, LiNiO, LiMn O, LiFeO and LiFePO
2 2 2 4 2 4  2 2 2 4 2 4
含有複合酸化物、 TiS、 MoS等の金属硫化物、ポリア二リン等の導電性ポリマー等  Containing complex oxides, metal sulfides such as TiS and MoS, conductive polymers such as polyaniline, etc.
2 2  twenty two
が好適に挙げられる。上記リチウム含有複合酸化物は、 Fe、 Mn、 Co及び Niからな る群から選択される 2種又は 3種の遷移金属を含む複合酸化物であってもよ この 場合、該複合酸化物は、 LiFe Co Ni O [式中、 0≤χ< 1、 0≤y< l , 0 < x + y  Are preferable. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co and Ni. In this case, the composite oxide is LiFe Co Ni O [where 0≤χ <1, 0≤y <l, 0 <x + y
(Ι 2  (Ι 2
≤1]、或いは LiMn Fe〇 等で表される。これらの中でも、高容量で安全性が高く  ≤1] or LiMn Fe〇 etc. Among these, high capacity and high safety
2  2
、更には電解液の濡れ性に優れる点で、 LiCoO、 LiNiO、 LiMn Oが特に好適で  In addition, LiCoO, LiNiO, and LiMn O are particularly suitable because of their excellent electrolyte wettability.
2 2 2 4  2 2 2 4
ある。これら正極活物質は、 1種単独で使用してもよぐ 2種以上を併用してもよい。  is there. These positive electrode active materials may be used alone or in combination of two or more.
[0032] 本発明の非水電解液電池の負極活物質は 1次電池と 2次電池で一部異なり、例え ば、非水電解液 1次電池の負極活物質としては、リチウム金属自体の他、リチウム合 金等が挙げられる。リチウムと合金をつくる金属としては、 Sn、 Pb、 Al、 Au、 Pt、 In、 Zn、 Cd、 Ag、 Mg等が挙げられる。これらの中でも、埋蔵量の多さ、毒性の観点から Al、 Zn、 Mgが好ましい。これら負極活物質は、 1種単独で使用してもよぐ 2種以上 を併用してもよい。 [0032] The negative electrode active material of the non-aqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery. For example, the negative electrode active material of the non-aqueous electrolyte primary battery includes lithium metal itself. And lithium alloys. Examples of metals that form alloys with lithium include Sn, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg. Among these, Al, Zn, and Mg are preferable from the viewpoints of reserves and toxicity. These negative electrode active materials may be used alone or in combination of two or more May be used in combination.
[0033] 一方、非水電解液 2次電池の負極活物質としては、リチウム金属自体、リチウムと A1 、 In、 Pb又は Zn等との合金、リチウムをドープした黒鉛等の炭素材料等が好適に挙 げられ、これらの中でも安全性がより高ぐ電解液の濡れ性に優れる点で、黒鉛等の 炭素材料が好ましぐ黒鉛が特に好ましい。ここで、黒鉛としては、天然黒鉛、人造黒 鉛、メソフェーズカーボンマイクロビーズ (MCMB)等、広くは易黒鉛化カーボンや難 黒鉛化カーボンが挙げられる。これら負極活物質は、 1種単独で使用してもよぐ 2種 以上を併用してもよい。  [0033] On the other hand, as the negative electrode active material of the non-aqueous electrolyte secondary battery, lithium metal itself, an alloy of lithium and A1, In, Pb, Zn or the like, a carbon material such as graphite doped with lithium, or the like is preferable. Among these, graphite, which is preferred for a carbon material such as graphite, is particularly preferred because it has higher safety and is superior in wettability of an electrolyte. Here, examples of graphite include natural graphite, artificial black lead, mesophase carbon microbeads (MCMB), and the like, and widely include graphitizable carbon and non-graphitizable carbon. These negative electrode active materials may be used alone or in combination of two or more.
[0034] 上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導 電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン( PVDF)、ポリテトラフルォロエチレン(PTFE)、スチレン 'ブタジエンゴム(SBR)、力 ルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様 の配合割合で用いることができる。  [0034] The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder is polyvinylidene fluoride (PVDF). , Polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), strong ruxymethyl cellulose (CMC), and the like. These additives can be used at the same mixing ratio as before.
[0035] また、上記正極及び負極の形状としては、特に制限はなぐ電極として公知の形状 の中力 適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイ ラル形状等が挙げられる。  [0035] The shape of the positive electrode and the negative electrode can be appropriately selected as a medium force known in the art as an electrode without particular limitation. For example, a sheet shape, a columnar shape, a plate shape, a spiral shape, and the like can be given.
[0036] 本発明の非水電解液電池に使用する他の部材としては、非水電解液電池におい て、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレ 一ターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、 且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルォロエチレン、ポリ プロピレン、ポリエチレン、セノレロース系、ポリブチレンテレフタレート、ポリエチレンテ レフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これら の中でも、厚さ 20〜50 μ m程度のポリプロピレン又はポリエチレン製の微孔性フィルム 、セノレロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフイノレム が特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用さ れている公知の各部材が好適に使用できる。  [0036] As another member used in the non-aqueous electrolyte battery of the present invention, a separator interposed between the positive and negative electrodes in the role of preventing current short-circuiting due to contact of both electrodes in the non-aqueous electrolyte battery. Is mentioned. As the material of the separator, a material that can reliably prevent contact between both electrodes and that can pass or contain an electrolyte solution, such as polytetrafluoroethylene, polypropylene, polyethylene, cenorelose, polybutylene terephthalate, polyethylene A non-woven fabric made of a synthetic resin such as phthalate, a thin layer film and the like are preferable. Among these, polypropylene or polyethylene microporous film having a thickness of about 20 to 50 μm, and vinylome such as cenorelose, polybutylene terephthalate, and polyethylene terephthalate are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in batteries can be suitably used.
[0037] 以上に説明した本発明の非水電解液電池の形態としては、特に制限はな コイン タイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種 々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び 負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液電池を作 製することができる。また、スパイラル構造の場合は、例えば、セパレーターを介して シート状の正極及び負極を重ね合わせ巻き上げる等して、非水電解液電池を作製 すること力 Sできる。 [0037] The form of the non-aqueous electrolyte battery of the present invention described above is not particularly limited, such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery. Various known forms are preferred. In the case of the button type, a non-aqueous electrolyte battery can be produced by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. Further, in the case of the spiral structure, for example, it is possible to produce a nonaqueous electrolyte battery by stacking and winding up a sheet-like positive electrode and a negative electrode through a separator.
[0038] <実施例 >  [0038] <Example>
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例 に何ら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
[0039] <ホスファゼン化合物の合成例 1 > <Synthesis example 1 of phosphazene compound>
0.4Mの(NPC1 ) のニトロベンゼン溶液に、初回に 2当量の NaFを反応させ、その 後、極少量の水を添加した後、更に 1当量の NaFを反応させた。得られた反応混合 物を減圧蒸留して、式 (I)で表され、 n= 3で、 C1/F比が 1/5、 2/4 (geminal体及び non-geminal体)、 3/3のホスファゼンィ匕合物をそれぞれ得た。減圧蒸留前の反応混 合物の GC-MS分析の GCチャートを図 1に示す。  A 0.4M (NPC1) nitrobenzene solution was reacted with 2 equivalents of NaF for the first time, and then a very small amount of water was added, followed by 1 equivalent of NaF. The obtained reaction mixture was distilled under reduced pressure, represented by the formula (I), n = 3, C1 / F ratio was 1/5, 2/4 (geminal and non-geminal), 3/3 Of phosphazene compounds were obtained. Figure 1 shows a GC chart of GC-MS analysis of the reaction mixture before distillation under reduced pressure.
[0040] <電池用非水電解液の作製 > [0040] <Preparation of non-aqueous electrolyte for battery>
次に、エチレンカーボネート(EC)及びェチルメチルカーボネート (EMC)の混合溶 媒 (EC/EMC体積比 = 1/2) 90体積%に、表 2に示す構造のホスファゼン化合物( 添加剤) 10体積%をカ卩え、得られた混合溶液に LiPF (支持塩)を 1M (mol/L)の濃 度で溶解させて非水電解液を調製した。なお、従来例の非水電解液は、 EC及び E MCの混合溶媒 (EC/EMC体積比 = 1/2)に LiPFを 1Mの濃度で溶解させて調 製した。  Next, 90% by volume of a mixed solvent of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) (EC / EMC volume ratio = 1/2), 10 volumes of a phosphazene compound (additive) with the structure shown in Table 2 A nonaqueous electrolyte was prepared by dissolving LiPF (supporting salt) at a concentration of 1M (mol / L) in the resulting mixed solution. The conventional non-aqueous electrolyte was prepared by dissolving LiPF at a concentration of 1M in a mixed solvent of EC and EMC (EC / EMC volume ratio = 1/2).
[0041] <非水電解液 2次電池の作製 >  [0041] <Preparation of non-aqueous electrolyte secondary battery>
LiCoO (正極活物質) 94質量部に対して、アセチレンブラック(導電剤) 3質量部と、 ポリフッ化ビニリデン (結着剤) 3質量部とを添カ卩し、有機溶媒 (酢酸ェチルとエタノー ルとの 50/50質量%混合溶媒)で混練した後、該混練物を厚さ 25 μ mのアルミニウム 箔(集電体)にドクターブレードで塗工した後、熱風乾燥(100〜120°C)して、厚さ 80 μ πιの正極シートを作製した。また、黒鉛 (炭素材料) 94質量部に対して、アセチレン ブラック (導電剤) 3質量部と、ポリフッ化ビニリデン (結着剤) 3質量部とを添加し、有機 溶媒(酢酸ェチルとエタノールとの 50/50質量%混合溶媒)で混練した後、該混練物 を厚さ 25 μ mのアルミニウム箔 (集電体)にドクターブレードで塗工した後、熱風乾燥( 100〜120°C)して、厚さ 150 μ mの負極シートを作製した。厚さ 25 μ mのセパレーター( 微孔性フィルム:ポリプロピレン製)を介して、上記正極シート及び負極シートを重ね 合わせて巻き上げ、円筒型電極を作製した。該円筒型電極の正極長さは約 260mm であった。該円筒型電極に、上記電解液を注入して封口し、単三型リチウム電池(非 水電解液 2次電池)を作製した。得られた電池を 4.2V、 3.7mAhの条件で充電した後 、下記の方法で ARC分析を行った。結果を図 2及び図 3、並びに表 2に示す。 Add 94 parts by mass of LiCoO (positive electrode active material) with 3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder), and add an organic solvent (ethyl acetate and ethanol). 50% / 50% by mass mixed solvent), and the kneaded product is applied to a 25 μm thick aluminum foil (current collector) with a doctor blade, followed by hot air drying (100-120 ° C) Thus, a positive electrode sheet having a thickness of 80 μπι was prepared. Also, 3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) are added to 94 parts by mass of graphite (carbon material), and organic After kneading in a solvent (50/50 wt% mixed solvent of acetic acid Echiru and ethanol), it was coated with a doctor blade to an aluminum foil having a thickness of 25 mu m and kneaded mixture (collector), dried with hot air ( 100 to 120 ° C.) to prepare a negative electrode sheet having a thickness of 150 μm. The positive electrode sheet and the negative electrode sheet were overlapped and rolled up through a separator (microporous film: made of polypropylene) having a thickness of 25 μm to produce a cylindrical electrode. The positive electrode length of the cylindrical electrode was about 260 mm. The above electrolytic solution was injected into the cylindrical electrode and sealed to prepare an AA lithium battery (nonaqueous electrolyte secondary battery). The obtained battery was charged under the conditions of 4.2 V and 3.7 mAh, and then ARC analysis was performed by the following method. The results are shown in FIGS. 2 and 3 and Table 2.
[0042] (1) ARC分析方法  [0042] (1) ARC analysis method
スタート温度 = 50°C、終了温度 = 350°C、温度ステップ = 5°C、温度感度 = 0.02°C/ 分、待機時間 = 17分、解析ステップ温度 = 0.2°Cの測定条件の下、 Thermal Hazar d Technology社製の ARC装置を用いて、電池に対して ARC分析を行った。なお、 図 2及び図 3中、階段状の領域では、電池が熱暴走しておらず、外部から熱を加えて 昇温を行っており、最後のステップから熱暴走開始温度を求めた。また、熱暴走開始 温度での傾きから、自己発熱速度を求めた。  Under the measurement conditions of start temperature = 50 ° C, end temperature = 350 ° C, temperature step = 5 ° C, temperature sensitivity = 0.02 ° C / min, standby time = 17 minutes, analysis step temperature = 0.2 ° C, Thermal ARC analysis was performed on the batteries using an ARC device manufactured by Hazar d Technology. In Fig. 2 and Fig. 3, in the stepped region, the battery did not run out of heat, and the temperature was raised by applying heat from the outside, and the thermal runaway start temperature was obtained from the last step. In addition, the self-heating rate was obtained from the slope at the thermal runaway start temperature.
[0043] 表 2  [0043] Table 2
Figure imgf000013_0001
Figure imgf000013_0001
[0044] 表 1から明らかなように、式 (I)で表され、 Xが F又は C1で、但し、総ての Xが同一でな ぐ nが 3又は 4で、更に各 Pに対する C1の結合数が 0又は 1であるホスファゼン化合物 を非水電解液に添加することで、非水電解液電池の熱暴走開始温度を上昇させるこ とがでさる。 [0044] As is clear from Table 1, it is represented by the formula (I), and X is F or C1, provided that all Xs are not the same. By adding a phosphazene compound in which n is 3 or 4 and the number of C1 bonds to each P is 0 or 1, to the non-aqueous electrolyte, the thermal runaway start temperature of the non-aqueous electrolyte battery can be increased. It is out.

Claims

請求の範囲 The scope of the claims
[1] 下記式 (I) :  [1] The following formula (I):
(NPX ) … (I)  (NPX)… (I)
2 n  2 n
[式中、 Xはそれぞれ独立して F又は C1であり、但し、総ての Xが同一であることはなく [In the formula, each X is independently F or C1, provided that all X are not the same.
; nは 3又は 4である]で表され、各 Pに結合する C1の数が 0又は 1であるホスファゼン 化合物からなる非水電解液電池の電解液用添加剤。 N is 3 or 4, and an additive for an electrolyte of a non-aqueous electrolyte battery comprising a phosphazene compound in which the number of C1 bonded to each P is 0 or 1.
[2] 前記式 (I)中の nが 3であり、 6個の Xのうち 1〜3個が C1であることを特徴とする請求 項 1に記載の非水電解液電池の電解液用添加剤。 [2] The electrolyte for a nonaqueous electrolyte battery according to claim 1, wherein n in the formula (I) is 3, and 1 to 3 of 6 Xs are C1. Additive.
[3] 前記式 (I)中の nが 4であり、 8個の Xのうち 2〜4個が C1であることを特徴とする請求 項 1に記載の非水電解液電池の電解液用添加剤。 [3] The electrolyte for a non-aqueous electrolyte battery according to claim 1, wherein n in the formula (I) is 4, and 2 to 4 of 8 Xs are C1. Additive.
[4] 請求項:!〜 3のいずれかに記載の電解液用添加剤と、非プロトン性有機溶媒と、支 持塩とを含むことを特徴とする電池用非水電解液。 [4] Claims: A nonaqueous electrolytic solution for a battery comprising the additive for electrolytic solution according to any one of! To 3, an aprotic organic solvent, and a supporting salt.
[5] 請求項 4に記載の電池用非水電解液と、正極と、負極とを備えた非水電解液電池。 [5] A nonaqueous electrolyte battery comprising the battery nonaqueous electrolyte according to claim 4, a positive electrode, and a negative electrode.
[6] 熱暴走開始温度が 200°C以上であることを特徴とする請求項 5に記載の非水電解 液電池。 [6] The nonaqueous electrolyte battery according to [5], wherein the thermal runaway start temperature is 200 ° C or higher.
PCT/JP2005/014407 2004-08-20 2005-08-05 Additive for electrolyte solution of nonaqueous electrolyte battery, nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery WO2006018989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004240732A JP2006059682A (en) 2004-08-20 2004-08-20 Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery
JP2004-240732 2004-08-20

Publications (1)

Publication Number Publication Date
WO2006018989A1 true WO2006018989A1 (en) 2006-02-23

Family

ID=35907379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014407 WO2006018989A1 (en) 2004-08-20 2005-08-05 Additive for electrolyte solution of nonaqueous electrolyte battery, nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery

Country Status (2)

Country Link
JP (1) JP2006059682A (en)
WO (1) WO2006018989A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787477B2 (en) * 2004-08-20 2011-10-05 株式会社ブリヂストン Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery
JP5493288B2 (en) * 2008-03-11 2014-05-14 日立化成株式会社 Electrolytic solution and secondary battery using the same
US20110195318A1 (en) * 2009-03-03 2011-08-11 Tomonobu Tsujikawa Lithium ion battery
CN102239596A (en) * 2009-09-02 2011-11-09 松下电器产业株式会社 Nonaqueous solvent, nonaqueous electrolyte solution using same, and nonaqueous secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041197A1 (en) * 2001-11-07 2003-05-15 Bridgestone Corporation Non-aqueous electrolyte primary cell and additive for non-aqueous electrolyte of the cell
WO2003090295A1 (en) * 2002-04-19 2003-10-30 Bridgestone Corporation Positive electrode for nonaqueous electrolyte battery, process for producing the same and nonaqueous electrolyte battery
JP2004006301A (en) * 2002-04-10 2004-01-08 Bridgestone Corp Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005116424A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005190873A (en) * 2003-12-26 2005-07-14 Bridgestone Corp Nonaqueous electrolyte for battery, and nonaqueous electrolyte battery equipped with it

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963644A (en) * 1995-06-13 1997-03-07 Mitsui Petrochem Ind Ltd Nonaqueous electrolyte and nonaqueous electrolyte battery
US5830600A (en) * 1996-05-24 1998-11-03 Sri International Nonflammable/self-extinguishing electrolytes for batteries
JPH1160243A (en) * 1997-08-13 1999-03-02 Mitsui Mining & Smelting Co Ltd Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2001023687A (en) * 1999-07-09 2001-01-26 Sony Corp Nonaqueous electrolyte battery
JP2003532976A (en) * 1999-11-05 2003-11-05 コノコフィリップス カンパニー Composite carbon electrodes for lithium-based batteries
EP1289044B1 (en) * 2000-05-08 2018-03-21 Bridgestone Corporation Nonaqueous electrolyte secondary battery
AU2001284430A1 (en) * 2000-09-07 2002-03-22 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
US7099142B2 (en) * 2000-09-07 2006-08-29 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
JP4787477B2 (en) * 2004-08-20 2011-10-05 株式会社ブリヂストン Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041197A1 (en) * 2001-11-07 2003-05-15 Bridgestone Corporation Non-aqueous electrolyte primary cell and additive for non-aqueous electrolyte of the cell
JP2004006301A (en) * 2002-04-10 2004-01-08 Bridgestone Corp Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
WO2003090295A1 (en) * 2002-04-19 2003-10-30 Bridgestone Corporation Positive electrode for nonaqueous electrolyte battery, process for producing the same and nonaqueous electrolyte battery
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005116424A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005190873A (en) * 2003-12-26 2005-07-14 Bridgestone Corp Nonaqueous electrolyte for battery, and nonaqueous electrolyte battery equipped with it

Also Published As

Publication number Publication date
JP2006059682A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
EP2863468B1 (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
TWI663763B (en) Non-aqueous electrolyte
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
WO2007043624A1 (en) Nonaqueous electrolyte solution and lithium secondary battery using same
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
JP4201308B2 (en) Lithium secondary battery separator and lithium secondary battery using the same
JP5764526B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2004022523A (en) Nonaqueous electrolyte secondary battery
JP2001052736A (en) Lithium secondary battery
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JPWO2019235469A1 (en) Reduced graphene material
JP2000348759A (en) Nonaqueous electrolytic solution and secondary battery using it
JP2013062164A (en) Nonaqueous electrolyte for electrochemical element, and electrochemical element
WO2006018989A1 (en) Additive for electrolyte solution of nonaqueous electrolyte battery, nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery
JP5401349B2 (en) Lithium secondary battery
JP2000348760A (en) Nonaqueous electrolytic solution and secondary battery using it
JP3949337B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
KR20010098486A (en) Non-aqueous electrolyte secondary battery and method for producing the same
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP3368446B2 (en) Lithium secondary battery
JP5487442B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase