JP4787477B2 - Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4787477B2
JP4787477B2 JP2004240729A JP2004240729A JP4787477B2 JP 4787477 B2 JP4787477 B2 JP 4787477B2 JP 2004240729 A JP2004240729 A JP 2004240729A JP 2004240729 A JP2004240729 A JP 2004240729A JP 4787477 B2 JP4787477 B2 JP 4787477B2
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
electrolyte
additive
phosphazene compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004240729A
Other languages
Japanese (ja)
Other versions
JP2006059681A (en
Inventor
正珠 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004240729A priority Critical patent/JP4787477B2/en
Publication of JP2006059681A publication Critical patent/JP2006059681A/en
Application granted granted Critical
Publication of JP4787477B2 publication Critical patent/JP4787477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水電解液電池の電解液用添加剤、該添加剤を含む電池用非水電解液及び該非水電解液を備えた非水電解液電池に関し、特に発熱反応開始温度を向上させた非水電解液電池に関するものである。   The present invention relates to an additive for an electrolyte of a non-aqueous electrolyte battery, a non-aqueous electrolyte for a battery containing the additive, and a non-aqueous electrolyte battery including the non-aqueous electrolyte, and particularly improves the exothermic reaction start temperature. The present invention also relates to a non-aqueous electrolyte battery.

近年、電気自動車や燃料電池自動車の主電源若しくは補助電源として、又は小型電子機器の電源として、軽量且つ長寿命で、エネルギー密度の高い電池が求められている。これに対し、リチウムを負極活物質とする非水電解液電池は、リチウムの電極電位が金属中で最も低く、単位体積当りの電気容量が大きいため、エネルギー密度の高い電池の一つとして知られており、1次電池・2次電池を問わず多くの種類のものが活発に研究され、一部が実用化し市場に供給されている。例えば、非水電解液1次電池は、カメラ、電子ウォッチ及び各種メモリーバックアップ用電源として用いられている。また、非水電解液2次電池は、ノート型パソコン及び携帯電話等の駆動電源として用いられており、更には、電気自動車や燃料電池自動車の主電源若しくは補助電源として用いることが検討されている。   In recent years, there has been a demand for a light, long-life battery with high energy density as a main power source or auxiliary power source for electric vehicles and fuel cell vehicles, or as a power source for small electronic devices. In contrast, a non-aqueous electrolyte battery using lithium as a negative electrode active material is known as one of batteries having a high energy density because the electrode potential of lithium is the lowest among metals and the electric capacity per unit volume is large. Many types of batteries, whether primary batteries or secondary batteries, are actively researched, and some of them are put into practical use and supplied to the market. For example, non-aqueous electrolyte primary batteries are used as power sources for cameras, electronic watches, and various memory backups. In addition, non-aqueous electrolyte secondary batteries are used as drive power sources for notebook computers and mobile phones, and are also being considered for use as main power sources or auxiliary power sources for electric vehicles and fuel cell vehicles. .

これらの非水電解液電池においては、負極活物質のリチウムが水及びアルコール等の活性プロトンを有する化合物と激しく反応するため、該電池に使用される電解液は、エステル化合物及びエーテル化合物等の非プロトン性有機溶媒に限られている。   In these non-aqueous electrolyte batteries, lithium as the negative electrode active material reacts violently with compounds having active protons such as water and alcohol, so that the electrolyte used in the batteries is non-ester compounds and ether compounds. Limited to protic organic solvents.

しかしながら、上記非プロトン性有機溶媒は、負極活物質のリチウムとの反応性が低いものの、例えば、電池の短絡時等に大電流が急激に流れ、電池が異常に発熱した際に、気化・分解してガスを発生したり、発生したガス及び熱により電池の破裂・発火を引き起こしたり、短絡時に生じる火花が引火する等の危険性が高い。   However, although the aprotic organic solvent has low reactivity with the lithium of the negative electrode active material, for example, when a battery is short-circuited, a large current flows suddenly, and when the battery abnormally generates heat, it is vaporized and decomposed. Therefore, there is a high risk of generating gas, causing the battery to rupture or ignite due to the generated gas and heat, and sparks generated during a short circuit.

また、非水電解液電池の安全性評価基準のガイドライン(非特許文献1参照)を満たすには、非水電解液電池を130℃の熱オーブン内で60分間保管して、電池が破裂・発火しないことが必要であるが、非プロトン性有機溶媒に支持塩を溶解させただけの非水電解液を用いると、上記ガイドラインを満たすことができない。そこで、通常、上記ガイドラインを遵守するために、非水電解液電池には、安全弁を取り付ける等の安全対策が採られている。   In order to satisfy the guidelines for safety evaluation standards for non-aqueous electrolyte batteries (see Non-Patent Document 1), store the non-aqueous electrolyte battery in a 130 ° C heat oven for 60 minutes, and the battery will burst or ignite. However, if a non-aqueous electrolyte in which a supporting salt is simply dissolved in an aprotic organic solvent is used, the above guidelines cannot be satisfied. Therefore, in order to comply with the above guidelines, safety measures such as attaching a safety valve are usually taken for nonaqueous electrolyte batteries.

これに対して、電池用非水電解液にホスファゼン化合物を添加して、非水電解液に不燃性、難燃性又は自己消火性を付与して、短絡等の非常時に電池が発火・引火する危険性を大幅に低減した非水電解液電池が開発されている(特許文献1及び2参照)。この場合、非水電解液電池に安全弁を取り付けなくても、上記ガイドラインを満たすことが可能である。   In contrast, a phosphazene compound is added to the battery non-aqueous electrolyte to impart non-flammability, flame retardancy or self-extinguishing properties to the non-aqueous electrolyte, and the battery ignites and ignites in the event of an emergency such as a short circuit. Non-aqueous electrolyte batteries that greatly reduce the risk have been developed (see Patent Documents 1 and 2). In this case, the above guidelines can be satisfied without attaching a safety valve to the nonaqueous electrolyte battery.

電池工業会指針,リチウム二次電池安全性評価基準ガイドライン,4.3.(3)-ii 環境試験Battery Industry Association Guidelines, Lithium Secondary Battery Safety Evaluation Standard Guidelines, 4.3. (3) -ii Environmental Test 国際公開第02/21631号パンフレットInternational Publication No. 02/21631 Pamphlet 国際公開第03/041197号パンフレットInternational Publication No. 03/041197 Pamphlet

しかしながら、昨今、上記した130℃・60分保管で破裂・発火しないとの基準を、更に厳しくすることが検討されており、電池用非水電解液にホスファゼン化合物を添加しても、安全弁の付設等の安全対策を施さない限り、新しい基準を満足できない可能性がある。   However, in recent years, it has been studied to further tighten the standard of not bursting or igniting when stored at 130 ° C for 60 minutes, and even if a phosphazene compound is added to the nonaqueous electrolyte for batteries, a safety valve is provided. Unless safety measures such as this are taken, there is a possibility that the new standard cannot be satisfied.

そこで、本発明の目的は、従来の電解液用添加剤よりも、非水電解液電池の発熱反応開始温度を上昇させることが可能な非水電解液電池の電解液用添加剤を提供することにある。また、本発明の他の目的は、かかる添加剤を含む電池用非水電解液と、該非水電解液を備え、発熱反応開始温度を大幅に向上させた非水電解液電池を提供することにある。   Accordingly, an object of the present invention is to provide an additive for an electrolyte solution of a nonaqueous electrolyte battery that can increase the exothermic reaction start temperature of the nonaqueous electrolyte battery as compared with the conventional additive for electrolyte solution. It is in. Another object of the present invention is to provide a non-aqueous electrolyte for a battery containing such an additive, and a non-aqueous electrolyte battery comprising the non-aqueous electrolyte and having a greatly improved exothermic reaction start temperature. is there.

本発明者は、上記目的を達成するために鋭意検討した結果、特定構造の環状ホスファゼン化合物を非水電解液に添加することで、非水電解液電池の発熱反応開始温度が大幅に上昇することを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor added a cyclic phosphazene compound having a specific structure to the non-aqueous electrolyte, which significantly increased the exothermic reaction start temperature of the non-aqueous electrolyte battery. As a result, the present invention has been completed.

即ち、本発明の非水電解液電池の電解液用添加剤は、下記式(I):
(NPX2n ・・・ (I)
[式中、Xはそれぞれ独立してF又はClであり、但し、総てのXが同一であることはなく;nは3又は4である]で表されるホスファゼン化合物からなることを特徴とする。
That is, the additive for electrolyte solution of the nonaqueous electrolyte battery of the present invention has the following formula (I):
(NPX 2 ) n ... (I)
Wherein each X is independently F or Cl, provided that all Xs are not the same; n is 3 or 4; To do.

本発明の非水電解液電池の電解液用添加剤の好適例においては、前記式(I)中のnが3であり、6個のXのうち1〜3個がClである。   In a preferred example of the additive for an electrolyte solution of the nonaqueous electrolyte battery of the present invention, n in the formula (I) is 3, and 1 to 3 of the 6 Xs are Cl.

本発明の非水電解液電池の電解液用添加剤の他の好適例においては、前記式(I)中のnが4であり、8個のXのうち2〜5個がClである。   In another preferred example of the additive for electrolyte solution of the nonaqueous electrolyte battery of the present invention, n in the formula (I) is 4, and 2 to 5 of 8 Xs are Cl.

本発明の非水電解液電池の電解液用添加剤の他の好適例においては、前記式(I)中の各Pに結合するClの数が0又は1である。即ち、前記式(I)中のXの2つ以上がClの場合、各Clがそれぞれ異なるPに結合しているのが好ましい。   In another preferred embodiment of the additive for electrolyte solution of the nonaqueous electrolyte battery of the present invention, the number of Cl bonded to each P in the formula (I) is 0 or 1. That is, when two or more of X in the formula (I) are Cl, each Cl is preferably bonded to different Ps.

また、本発明の電池用非水電解液は、上記電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする。   Moreover, the non-aqueous electrolyte for batteries of the present invention is characterized by containing the above-mentioned additive for electrolyte, an aprotic organic solvent, and a supporting salt.

更に、本発明の非水電解液電池は、上記電池用非水電解液と、正極と、負極とを備えることを特徴とし、1次電池であっても、2次電池であってもよい。ここで、本発明の非水電解液電池は、発熱反応開始温度が150℃以上であるのが好ましい。   Furthermore, the non-aqueous electrolyte battery of the present invention includes the non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and may be a primary battery or a secondary battery. Here, the nonaqueous electrolyte battery of the present invention preferably has an exothermic reaction start temperature of 150 ° C. or higher.

本発明によれば、特定構造の環状ホスファゼン化合物からなり、非水電解液電池の発熱反応開始温度を大幅に上昇させることが可能な非水電解液電池の電解液用添加剤を提供することができる。また、該添加剤を含み、安全性が大幅に改善された電池用非水電解液を提供することができる。更に、該電池用非水電解液を備え、発熱反応開始温度を大幅に向上させた非水電解液電池を提供することができる。   According to the present invention, it is possible to provide an additive for an electrolyte solution of a non-aqueous electrolyte battery, which is composed of a cyclic phosphazene compound having a specific structure and can greatly increase the exothermic reaction start temperature of the non-aqueous electrolyte battery. it can. In addition, it is possible to provide a non-aqueous electrolyte for a battery containing the additive and having greatly improved safety. Furthermore, it is possible to provide a non-aqueous electrolyte battery comprising the non-aqueous electrolyte for a battery and having a greatly improved exothermic reaction start temperature.

以下に、本発明を詳細に説明する。
<非水電解液電池の電解液用添加剤>
本発明の非水電解液電池の電解液用添加剤は、上記式(I)で表される環状ホスファゼン化合物からなることを特徴とする。該ホスファゼン化合物は、非水電解液の発熱反応を抑制する効果を有し、該ホスファゼン化合物を含む非水電解液を備えた非水電解液電池は、発熱反応開始温度が高く、安全性が高い。また、該ホスファゼン化合物は、非水電解液電池の非常時に窒素ガス及び/又はリン酸エステル等を発生して、非水電解液を不燃性、難燃性又は自己消火性にし、電池の発火等の危険性を大幅に低減する作用も有する。
The present invention is described in detail below.
<Additive for electrolyte solution of non-aqueous electrolyte battery>
The additive for electrolyte of the nonaqueous electrolyte battery of the present invention is characterized by comprising a cyclic phosphazene compound represented by the above formula (I). The phosphazene compound has an effect of suppressing the exothermic reaction of the non-aqueous electrolyte, and the non-aqueous electrolyte battery including the non-aqueous electrolyte containing the phosphazene compound has a high exothermic reaction start temperature and high safety. . In addition, the phosphazene compound generates nitrogen gas and / or phosphate ester, etc. in an emergency of a non-aqueous electrolyte battery, thereby making the non-aqueous electrolyte non-flammable, flame retardant or self-extinguishing, etc. It also has the effect of greatly reducing the risk of

本発明の非水電解液電池の電解液用添加剤を構成するホスファゼン化合物は、上記式(I)で表される。式(I)において、Xはそれぞれ独立してF又はClであり、但し、総てのXが同一であることはない。なお、ハロゲン元素を含む化合物を用いると、ハロゲンラジカルの発生が問題となることがあるが、上記ホスファゼン化合物は、分子中のリン元素がハロゲンラジカルを捕捉してハロゲン化リンを形成するため、このような問題は発生しない。   The phosphazene compound constituting the additive for electrolyte of the nonaqueous electrolyte battery of the present invention is represented by the above formula (I). In formula (I), each X is independently F or Cl, provided that not all X are the same. Note that when a compound containing a halogen element is used, the generation of a halogen radical may be a problem. However, since the phosphorus element in the molecule captures the halogen radical and forms phosphorus halide, Such a problem does not occur.

また、式(I)において、nは3又は4である。nが5以上では、ホスファゼン化合物の効率的な合成が困難となるため好ましくない。ここで、上記ホスファゼン化合物の25℃における粘度としては、電池の充放電特性を十分に確保する観点から、10mPa・s以下が好ましく、5mPa・s以下が更に好ましい。なお、本発明において、粘度は、粘度測定計[R型粘度計Model RE500-SL、東機産業(株)製]を用い、1rpm、2rpm、3rpm、5rpm、7rpm、10rpm、20rpm及び50rpmの各回転速度で120秒間づつ測定し、指示値が50〜60%となった時の回転速度を分析条件とし、その際に測定した値である。   In the formula (I), n is 3 or 4. When n is 5 or more, it is not preferable because efficient synthesis of the phosphazene compound becomes difficult. Here, the viscosity of the phosphazene compound at 25 ° C. is preferably 10 mPa · s or less, and more preferably 5 mPa · s or less, from the viewpoint of sufficiently securing the charge / discharge characteristics of the battery. In the present invention, the viscosity is 1 rpm, 2 rpm, 3 rpm, 5 rpm, 7 rpm, 10 rpm, 20 rpm, and 50 rpm using a viscometer [R-type viscometer Model RE500-SL, manufactured by Toki Sangyo Co., Ltd.] It is a value measured at that time, measured at the rotational speed for 120 seconds, with the rotational speed when the indicated value is 50 to 60% as the analysis condition.

上記ホスファゼン化合物の中でも、凝固点の低さの観点から、式(I)中のnが3であり、6個のXのうち1〜3個がClで残りがFであるもの、並びに式(I)中のnが4であり、8個のXのうち2〜5個がClで残りがFであるものが好ましい。なお、式(I)中のXがF又はClであるホスファゼン化合物の凝固点を、沸点及び25℃における粘度と共に表1に示す。   Among the above phosphazene compounds, from the viewpoint of a low freezing point, n in the formula (I) is 3, 1 to 3 out of 6 Xs and the rest are F, and the formula (I N) is 4 and 2 to 5 of 8 Xs are Cl and the remainder is F. The freezing point of the phosphazene compound in which X in formula (I) is F or Cl is shown in Table 1 together with the boiling point and the viscosity at 25 ° C.

Figure 0004787477
Figure 0004787477

表1からも明らかなように、式(I)中のXがF又はClであるホスファゼン化合物においては、Cl数の増加(分子量の増加)に従って沸点が上昇するものの、凝固点は特定のCl数範囲で最小となり、nが3の場合は、Cl数は1〜3の範囲が好適で、nが4の場合は、Cl数は2〜5の範囲が好適である。ここで、上記ホスファゼン化合物は、凝固点が-10℃以下であるのが好ましい。凝固点が-10℃以下のホスファゼン化合物を非水電解液に添加することで、非水電解液電池の低温特性を向上させることができる。   As is apparent from Table 1, in the phosphazene compound in which X in the formula (I) is F or Cl, the boiling point rises as the Cl number increases (increase in molecular weight), but the freezing point is in a specific Cl number range. When n is 3, the Cl number is preferably in the range of 1 to 3, and when n is 4, the Cl number is preferably in the range of 2 to 5. Here, the phosphazene compound preferably has a freezing point of −10 ° C. or lower. By adding a phosphazene compound having a freezing point of −10 ° C. or lower to the non-aqueous electrolyte, the low-temperature characteristics of the non-aqueous electrolyte battery can be improved.

また、1つのPに2つのClが結合しているホスファゼン化合物は、Pの電子が2つのClに吸引されてPがプラスを帯びていることに加え、Clの電子軌道とPの電子軌道からなる非占有最低分子軌道の縮重により、Pの還元電位が低くなっている。また、Clが大きな元素であるため、その立体的な障害が理由で脱離し易くなっている。このような化合物を添加剤として使用した場合、使用する電位によって該ホスファゼン化合物が還元分解を受け、電池機能として満足できない場合がある。そのため、各Pに結合するClの数は、0又は1であるのが好ましい[以下、1個のPに2個のClが結合しているホスファゼン化合物をgeminal(ジェミナル)体と称し、各ClがPに1個づつ結合しているホスファゼン化合物をnon-geminal(ノンジェミナル)体と称することがある]。   In addition, a phosphazene compound in which two Cls are bonded to one P is that P electrons are attracted by two Cls and P is positive, and from the electron orbits of Cl and P. Due to the degeneracy of the unoccupied lowest molecular orbitals, the reduction potential of P is lowered. Moreover, since Cl is a large element, it is easy to desorb because of its steric hindrance. When such a compound is used as an additive, the phosphazene compound may undergo reductive decomposition depending on the potential used, and may not be satisfactory as a battery function. Therefore, the number of Cl bonded to each P is preferably 0 or 1. [Hereinafter, a phosphazene compound in which two Cls are bonded to one P is referred to as a geminal body, and each Cl May be referred to as non-geminal bodies].

上記ホスファゼン化合物は、例えば、ニトロベンゼン溶媒中、(NPCl2nで表される市販のホスファゼン化合物を、フッ化ナトリウム(NaF)等のフッ素化剤と反応させ、部分フッ素化する方法で合成できる。従来の合成方法としては、J. Chem. Soc., ser. A., pp.2590 81968に記載の合成法が知られているが、該合成法では、収率が低いため、本発明者は、独自の合成プロセスを使用した。より具体的には、式(I)で表され、n=3で、Cl/F比が1/5、2/4、3/3のホスファゼン化合物を合成する場合、0.4Mの(NPCl23のニトロベンゼン溶液に、初回に2当量のNaFを反応させ、その後、極少量の水を添加した後、更に1当量のNaFを反応させた後、減圧蒸留することにより各ホスファゼン化合物を得ることができる。特にCl/F比が4/2のホスファゼン化合物等のCl比が高いホスファゼン化合物を得る場合には、NaFの添加量を減少させればよいし、逆にCl/F比を小さくする場合には、NaFの添加量を増量すればよい。この合成法では、(NPCl2n/NaFの比を変えることにより、所望のCl/F比を有するホスファゼン化合物を合成することができる。なお、上記ホスファゼン化合物は、1種単独で用いてもよいし、2種以上の混合物として用いてもよい。 The phosphazene compound can be synthesized, for example, by a method in which a commercially available phosphazene compound represented by (NPCl 2 ) n is reacted with a fluorinating agent such as sodium fluoride (NaF) in a nitrobenzene solvent and partially fluorinated. As a conventional synthesis method, a synthesis method described in J. Chem. Soc., Ser. A., pp. 2590 81968 is known, but since the yield is low in the synthesis method, the present inventor , Using its own synthesis process. More specifically, when synthesizing a phosphazene compound represented by the formula (I), n = 3, and Cl / F ratios of 1/5, 2/4, and 3/3, 0.4 M of (NPCl 2 ) Each phosphazene compound can be obtained by reacting 3 nitrobenzene solutions with 2 equivalents of NaF for the first time, then adding a very small amount of water, and further reacting with 1 equivalent of NaF, followed by distillation under reduced pressure. it can. In particular, when obtaining a phosphazene compound having a high Cl ratio, such as a phosphazene compound having a Cl / F ratio of 4/2, the amount of NaF added may be reduced, and conversely, when the Cl / F ratio is reduced. What is necessary is just to increase the addition amount of NaF. In this synthesis method, a phosphazene compound having a desired Cl / F ratio can be synthesized by changing the ratio of (NPCl 2 ) n / NaF. In addition, the said phosphazene compound may be used individually by 1 type, and may be used as a 2 or more types of mixture.

<電池用非水電解液>
本発明の電池用非水電解液は、上述した非水電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とし、発熱反応が抑制されていると共に、発火・引火の危険性が非常に低い。
<Non-aqueous electrolyte for batteries>
The non-aqueous electrolyte for a battery of the present invention includes the above-described additive for a non-aqueous electrolyte, an aprotic organic solvent, and a supporting salt, and suppresses an exothermic reaction. The risk of ignition is very low.

本発明の電池用非水電解液に用いる非プロトン性有機溶媒としては、特に制限はないが、電解液の粘度を低く抑える観点から、エーテル化合物やエステル化合物等が好ましい。具体的には、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ-ブチロラクトン(GBL)、γ-バレロラクトン、エチルメチルカーボネート(EMC)、メチルフォルメート(MF)等が好適に挙げられる。これらの中でも、1次電池の非水電解液用の非プロトン性有機溶媒としては、プロピレンカーボネート、γ-ブチロラクトン等の環状エステル化合物、ジメチルカーボネート、エチルメチルカーボネート等の鎖状エステル化合物、1,2-ジメトキシエタン等の鎖状エーテル化合物が好ましく、一方、2次電池の非水電解液用の非プロトン性有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン等の環状エステル化合物、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状エステル化合物、1,2-ジメトキシエタン等の鎖状エーテル化合物が好ましい。特に、環状のエステル化合物は、比誘電率が高く、リチウム塩等の溶解性に優れる点で好適であり、鎖状のエステル化合物及びエーテル化合物は、低粘度であるため電解液の低粘度化の点で好適である。これらは1種単独で使用してもよく、2種以上を併用してもよいが、2種以上を併用するのが好適である。また、非プロトン性有機溶媒の25℃における粘度としては、特に制限はないが、10mPa・s(10cP)以下が好ましく、5mPa・s(5cP)以下が更に好ましい。   The aprotic organic solvent used in the nonaqueous electrolytic solution for batteries of the present invention is not particularly limited, but ether compounds and ester compounds are preferred from the viewpoint of keeping the viscosity of the electrolytic solution low. Specifically, 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (GBL), γ-valerolactone, ethyl methyl carbonate (EMC), methyl formate (MF) and the like are preferable. Among these, examples of the aprotic organic solvent for the non-aqueous electrolyte of the primary battery include cyclic ester compounds such as propylene carbonate and γ-butyrolactone, chain ester compounds such as dimethyl carbonate and ethyl methyl carbonate, and 1,2. A chain ether compound such as -dimethoxyethane is preferred, while an aprotic organic solvent for the non-aqueous electrolyte of the secondary battery includes cyclic ester compounds such as ethylene carbonate, propylene carbonate, and γ-butyrolactone, dimethyl carbonate, Chain ester compounds such as ethyl methyl carbonate and diethyl carbonate, and chain ether compounds such as 1,2-dimethoxyethane are preferred. In particular, a cyclic ester compound is suitable in that it has a high relative dielectric constant and excellent solubility in lithium salts and the like, and a chain ester compound and an ether compound have a low viscosity. This is preferable in terms of points. These may be used individually by 1 type, may use 2 or more types together, but it is suitable to use 2 or more types together. The viscosity of the aprotic organic solvent at 25 ° C. is not particularly limited, but is preferably 10 mPa · s (10 cP) or less, and more preferably 5 mPa · s (5 cP) or less.

本発明の電池用非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これら支持塩は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 As the supporting salt used in the non-aqueous electrolyte for a battery of the present invention, a supporting salt serving as a lithium ion source is preferable. The supporting salt is not particularly limited, and for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N and Li ( Preferable examples include lithium salts such as C 2 F 5 SO 2 ) 2 N. These supporting salts may be used individually by 1 type, and 2 or more types may be mixed and used for them.

本発明の電池用非水電解液中の支持塩の濃度としては、0.2〜1.5mol/L(M)の範囲が好ましく、0.5〜1mol/L(M)の範囲が更に好ましい。支持塩の濃度が0.2mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、1.5mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。   The concentration of the supporting salt in the battery non-aqueous electrolyte of the present invention is preferably in the range of 0.2 to 1.5 mol / L (M), more preferably in the range of 0.5 to 1 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L, the conductivity of the electrolyte cannot be sufficiently ensured, and the discharge characteristics and charging characteristics of the battery may be hindered. Since the viscosity of the electrolytic solution increases and the mobility of lithium ions cannot be ensured sufficiently, the conductivity of the electrolytic solution cannot be sufficiently ensured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. .

本発明の電池用非水電解液における上記ホスファゼン化合物の含有量(即ち、添加剤の含有量)は、電解液の安全性を向上させ、電池の発熱反応開始温度を十分に上昇させる観点から、2体積%以上が好ましく、5体積%以上が更に好ましい。   The content of the phosphazene compound in the nonaqueous electrolytic solution for a battery of the present invention (that is, the content of an additive) improves the safety of the electrolytic solution and sufficiently increases the exothermic reaction start temperature of the battery. 2% by volume or more is preferable, and 5% by volume or more is more preferable.

<非水電解液電池>
本発明の非水電解液電池は、上述の電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液電池の技術分野で通常使用されている他の部材を備え、1次電池であっても、2次電池であってもよい。本発明の非水電解液電池には、上述した添加剤を含む非水電解液が用いられているため、ARC分析における電池の発熱反応開始温度が高く、好ましくは、発熱反応開始温度が150℃以上である。
<Nonaqueous electrolyte battery>
The non-aqueous electrolyte battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and is usually used in the technical field of non-aqueous electrolyte batteries such as a separator as necessary. It may be a primary battery or a secondary battery provided with other members. Since the nonaqueous electrolyte solution containing the above-mentioned additive is used in the nonaqueous electrolyte battery of the present invention, the exothermic reaction start temperature of the battery in ARC analysis is high, and preferably the exothermic reaction start temperature is 150 ° C. That's it.

本発明の非水電解液電池の正極活物質は1次電池と2次電池で一部異なり、例えば、非水電解液1次電池の正極活物質としては、フッ化黒鉛[(CFx)n]、MnO2(電気化学合成であっても化学合成であってもよい)、V25、MoO3、Ag2CrO4、CuO、CuS、FeS2、SO2、SOCl2、TiS2等が好適に挙げられ、これらの中でも、高容量で安全性が高く、更には放電電位が高く、電解液の濡れ性に優れる点で、MnO2、フッ化黒鉛が好ましい。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 The positive electrode active material of the non-aqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery. For example, as the positive electrode active material of the non-aqueous electrolyte primary battery, fluorinated graphite [(CF x ) n ], MnO 2 (which may be electrochemical synthesis or chemical synthesis), V 2 O 5 , MoO 3 , Ag 2 CrO 4 , CuO, CuS, FeS 2 , SO 2 , SOCl 2 , TiS 2, etc. Among these, MnO 2 and fluorinated graphite are preferable from the viewpoints of high capacity, high safety, high discharge potential, and excellent wettability of the electrolytic solution. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

一方、非水電解液2次電池の正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiFexCoyNi(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、或いはLiMnxFey2-x-y等で表される。これらの中でも、高容量で安全性が高く、更には電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn24が特に好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 On the other hand, as the positive electrode active material of the non-aqueous electrolyte secondary battery, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 are used. Preferable examples include lithium-containing composite oxides such as LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni. In this case, the composite oxide includes: LiFe x Co y Ni [wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1] (1-xy) O 2, or represented by LiMn x Fe y O 2-xy like. Among these, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are particularly preferable in terms of high capacity, high safety, and excellent electrolyte wettability. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

本発明の非水電解液電池の負極活物質は1次電池と2次電池で一部異なり、例えば、非水電解液1次電池の負極活物質としては、リチウム金属自体の他、リチウム合金等が挙げられる。リチウムと合金をつくる金属としては、Sn、Pb、Al、Au、Pt、In、Zn、Cd、Ag、Mg等が挙げられる。これらの中でも、埋蔵量の多さ、毒性の観点からAl、Zn、Mgが好ましい。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。   The negative electrode active material of the nonaqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery. For example, as the negative electrode active material of the nonaqueous electrolyte primary battery, lithium metal itself, lithium alloy, etc. Is mentioned. Examples of the metal that forms an alloy with lithium include Sn, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg. Among these, Al, Zn, and Mg are preferable from the viewpoints of rich reserves and toxicity. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

一方、非水電解液2次電池の負極活物質としては、リチウム金属自体、リチウムとAl、In、Pb又はZn等との合金、リチウムをドープした黒鉛等の炭素材料等が好適に挙げられ、これらの中でも安全性がより高く、電解液の濡れ性に優れる点で、黒鉛等の炭素材料が好ましく、黒鉛が特に好ましい。ここで、黒鉛としては、天然黒鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)等、広くは易黒鉛化カーボンや難黒鉛化カーボンが挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。   On the other hand, preferred examples of the negative electrode active material of the non-aqueous electrolyte secondary battery include lithium metal itself, an alloy of lithium and Al, In, Pb or Zn, a carbon material such as graphite doped with lithium, and the like. Among these, a carbon material such as graphite is preferable, and graphite is particularly preferable in view of higher safety and excellent wettability of the electrolytic solution. Here, examples of graphite include natural graphite, artificial graphite, mesophase carbon microbeads (MCMB), and the like, and widely include graphitizable carbon and non-graphitizable carbon. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.

また、上記正極及び負極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。   Moreover, there is no restriction | limiting in particular as a shape of the said positive electrode and a negative electrode, It can select suitably from well-known shapes as an electrode. For example, a sheet shape, a columnar shape, a plate shape, a spiral shape, and the like can be given.

本発明の非水電解液電池に使用する他の部材としては、非水電解液電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。   As another member used in the nonaqueous electrolyte battery of the present invention, a separator interposed in the nonaqueous electrolyte battery between the positive and negative electrodes to prevent a short circuit of current due to contact of both electrodes can be mentioned. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in batteries can be suitably used.

以上に説明した本発明の非水電解液電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液電池を作製することができる。また、スパイラル構造の場合は、例えば、セパレーターを介してシート状の正極及び負極を重ね合わせ巻き上げる等して、非水電解液電池を作製することができる。   The form of the non-aqueous electrolyte battery of the present invention described above is not particularly limited, and various known forms such as a coin-type, button-type, paper-type, square-type or spiral-type cylindrical battery are suitable. Can be mentioned. In the case of the button type, a non-aqueous electrolyte battery can be produced by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a non-aqueous electrolyte battery can be produced by stacking and winding up a sheet-like positive electrode and a negative electrode via a separator.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<ホスファゼン化合物の合成例1>
0.4Mの(NPCl23のニトロベンゼン溶液に、初回に2当量のNaFを反応させ、その後、極少量の水を添加した後、更に1当量のNaFを反応させた。得られた反応混合物を減圧蒸留して、式(I)で表され、n=3で、Cl/F比が1/5、2/4(geminal体及びnon-geminal体)、3/3のホスファゼン化合物をそれぞれ得た。減圧蒸留前の反応混合物のGC-MS分析のGCチャートを図1に示す。
<Synthesis example 1 of phosphazene compound>
A 0.4 M (NPCl 2 ) 3 nitrobenzene solution was reacted with 2 equivalents of NaF for the first time, after which a very small amount of water was added, and then 1 equivalent of NaF was further reacted. The obtained reaction mixture was distilled under reduced pressure, represented by the formula (I), n = 3, Cl / F ratio of 1/5, 2/4 (geminal body and non-geminal body), 3/3. Each phosphazene compound was obtained. FIG. 1 shows a GC chart of GC-MS analysis of the reaction mixture before distillation under reduced pressure.

<電池用非水電解液の作製>
次に、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒(EC/EMC体積比=1/2)90体積%に、表2に示す構造のホスファゼン化合物(添加剤)10体積%を加え、得られた混合溶液にLiPF6(支持塩)を1M(mol/L)の濃度で溶解させて非水電解液を調製した。なお、従来例の非水電解液は、EC及びEMCの混合溶媒(EC/EMC体積比=1/2)にLiPF6を1Mの濃度で溶解させて調製した。
<Preparation of non-aqueous electrolyte for battery>
Next, 10% by volume of a phosphazene compound (additive) having a structure shown in Table 2 is added to 90% by volume of a mixed solvent (EC / EMC volume ratio = 1/2) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). In addition, LiPF 6 (supporting salt) was dissolved in the obtained mixed solution at a concentration of 1M (mol / L) to prepare a nonaqueous electrolytic solution. The conventional non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1M in a mixed solvent of EC and EMC (EC / EMC volume ratio = 1/2).

<非水電解液2次電池の作製>
LiCoO2(正極活物質)94質量部に対して、アセチレンブラック(導電剤)3質量部と、ポリフッ化ビニリデン(結着剤)3質量部とを添加し、有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)で混練した後、該混練物を厚さ25μmのアルミニウム箔(集電体)にドクターブレードで塗工した後、熱風乾燥(100〜120℃)して、厚さ80μmの正極シートを作製した。また、黒鉛(炭素材料)94質量部に対して、アセチレンブラック(導電剤)3質量部と、ポリフッ化ビニリデン(結着剤)3質量部とを添加し、有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)で混練した後、該混練物を厚さ25μmのアルミニウム箔(集電体)にドクターブレードで塗工した後、熱風乾燥(100〜120℃)して、厚さ150μmの負極シートを作製した。厚さ25μmのセパレーター(微孔性フィルム:ポリプロピレン製)を介して、上記正極シート及び負極シートを重ね合わせて巻き上げ、円筒型電極を作製した。該円筒型電極の正極長さは約260mmであった。該円筒型電極に、上記電解液を注入して封口し、単三型リチウム電池(非水電解液2次電池)を作製した。得られた電池を4.2V、3.7mAhの条件で充電した後、下記の方法でARC分析を行った。結果を図2及び図3、並びに表2に示す。
<Preparation of non-aqueous electrolyte secondary battery>
3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) are added to 94 parts by mass of LiCoO 2 (positive electrode active material), and an organic solvent (ethyl acetate and ethanol) is added. 50/50% by mass mixed solvent), the kneaded product was applied to a 25 μm thick aluminum foil (current collector) with a doctor blade, and then dried with hot air (100 to 120 ° C.) to obtain a thickness. An 80 μm positive electrode sheet was produced. Further, 3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) are added to 94 parts by mass of graphite (carbon material), and an organic solvent (ethyl acetate and ethanol) is added. 50/50% by mass mixed solvent), the kneaded product was applied to a 25 μm thick aluminum foil (current collector) with a doctor blade, and then dried with hot air (100 to 120 ° C.) to obtain a thickness. A 150 μm negative electrode sheet was prepared. The positive electrode sheet and the negative electrode sheet were overlapped and rolled up through a separator (microporous film: made of polypropylene) having a thickness of 25 μm to produce a cylindrical electrode. The positive electrode length of the cylindrical electrode was about 260 mm. The above electrolytic solution was injected into the cylindrical electrode and sealed to prepare an AA lithium battery (non-aqueous electrolyte secondary battery). The obtained battery was charged under the conditions of 4.2 V and 3.7 mAh, and then ARC analysis was performed by the following method. The results are shown in FIGS. 2 and 3 and Table 2.

(1)ARC分析方法
スタート温度=50℃、終了温度=350℃、温度ステップ=5℃、温度感度=0.02℃/分、待機時間=17分、解析ステップ温度=0.2℃の測定条件の下、Thermal Hazard Technology社製のARC装置を用いて、電池に対してARC分析を行った。
(1) ARC analysis method Under the measurement conditions of start temperature = 50 ° C., end temperature = 350 ° C., temperature step = 5 ° C., temperature sensitivity = 0.02 ° C./min, standby time = 17 minutes, analysis step temperature = 0.2 ° C. ARC analysis was performed on the battery using an ARC apparatus manufactured by Thermal Hazard Technology.

Figure 0004787477
Figure 0004787477

表1から明らかなように、式(I)で表され、XがF又はClで、但し、総てのXが同一でなく、nが3又は4であるホスファゼン化合物を非水電解液に添加することで、非水電解液電池の発熱反応開始温度を上昇させることができる。また、実施例1と実施例2との比較から、複数のClを含むホスファゼン化合物においては、各Clが異なるPに結合している方が、電池の発熱反応開始温度の向上効果が大きいことがわかる。   As is clear from Table 1, a phosphazene compound represented by the formula (I), wherein X is F or Cl, provided that all Xs are not the same and n is 3 or 4, is added to the non-aqueous electrolyte. As a result, the exothermic reaction start temperature of the non-aqueous electrolyte battery can be increased. In addition, from the comparison between Example 1 and Example 2, in the phosphazene compound containing a plurality of Cls, the effect of improving the exothermic reaction start temperature of the battery is greater when each Cl is bonded to different P. Recognize.

合成例1で得られた反応混合物のGC-MS分析のGCチャートを示す。The GC chart of GC-MS analysis of the reaction mixture obtained by the synthesis example 1 is shown. 従来例及び比較例の非水電解液2次電池のARC分析の結果を示す。The result of the ARC analysis of the nonaqueous electrolyte secondary battery of a prior art example and a comparative example is shown. 従来例及び実施例の非水電解液2次電池のARC分析の結果を示す。The result of the ARC analysis of the nonaqueous electrolyte secondary battery of a prior art example and an Example is shown.

Claims (7)

下記式(I):
(NPX2n ・・・ (I)
[式中、Xはそれぞれ独立してF又はClであり、但し、総てのXが同一であることはなく;nは3又は4である]で表されるホスファゼン化合物からなる非水電解液電池の電解液用添加剤。
Formula (I) below:
(NPX 2 ) n ... (I)
[Wherein X is independently F or Cl, provided that all X are not the same; n is 3 or 4] Additive for battery electrolyte.
前記式(I)中のnが3であり、6個のXのうち1〜3個がClであることを特徴とする請求項1に記載の非水電解液電池の電解液用添加剤。   2. The additive for an electrolyte solution of a non-aqueous electrolyte battery according to claim 1, wherein n in the formula (I) is 3, and 1 to 3 of 6 Xs are Cl. 前記式(I)中のnが4であり、8個のXのうち2〜5個がClであることを特徴とする請求項1に記載の非水電解液電池の電解液用添加剤。   The additive for electrolyte solution of the non-aqueous electrolyte battery according to claim 1, wherein n in the formula (I) is 4, and 2 to 5 of 8 Xs are Cl. 前記式(I)中の各Pに結合するClの数が0又は1であることを特徴とする請求項1に記載の非水電解液電池の電解液用添加剤。   2. The additive for an electrolyte solution of a nonaqueous electrolyte battery according to claim 1, wherein the number of Cl bonded to each P in the formula (I) is 0 or 1. 3. 請求項1〜4のいずれかに記載の電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする電池用非水電解液。   A nonaqueous electrolytic solution for a battery comprising the additive for electrolytic solution according to any one of claims 1 to 4, an aprotic organic solvent, and a supporting salt. 請求項5に記載の電池用非水電解液と、正極と、負極とを備えた非水電解液電池。   A nonaqueous electrolyte battery comprising the battery nonaqueous electrolyte solution according to claim 5, a positive electrode, and a negative electrode. 発熱反応開始温度が150℃以上であることを特徴とする請求項6に記載の非水電解液電池。   The nonaqueous electrolyte battery according to claim 6, wherein the exothermic reaction start temperature is 150 ° C. or higher.
JP2004240729A 2004-08-20 2004-08-20 Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery Expired - Fee Related JP4787477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240729A JP4787477B2 (en) 2004-08-20 2004-08-20 Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240729A JP4787477B2 (en) 2004-08-20 2004-08-20 Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2006059681A JP2006059681A (en) 2006-03-02
JP4787477B2 true JP4787477B2 (en) 2011-10-05

Family

ID=36106976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240729A Expired - Fee Related JP4787477B2 (en) 2004-08-20 2004-08-20 Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4787477B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059682A (en) * 2004-08-20 2006-03-02 Bridgestone Corp Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery
JP5314885B2 (en) * 2007-12-13 2013-10-16 株式会社ブリヂストン Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963644A (en) * 1995-06-13 1997-03-07 Mitsui Petrochem Ind Ltd Nonaqueous electrolyte and nonaqueous electrolyte battery
US5830600A (en) * 1996-05-24 1998-11-03 Sri International Nonflammable/self-extinguishing electrolytes for batteries
JPH1160243A (en) * 1997-08-13 1999-03-02 Mitsui Mining & Smelting Co Ltd Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2001023687A (en) * 1999-07-09 2001-01-26 Sony Corp Nonaqueous electrolyte battery
KR20020064309A (en) * 1999-11-05 2002-08-07 코노코 인코퍼레이티드 Composite carbon electrode for rechargeable lithium-based batteries
EP1289044B1 (en) * 2000-05-08 2018-03-21 Bridgestone Corporation Nonaqueous electrolyte secondary battery
CA2423842C (en) * 2000-09-07 2011-05-31 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
AU2001284432A1 (en) * 2000-09-07 2002-03-22 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
EP1443578A4 (en) * 2001-11-07 2006-09-27 Bridgestone Corp Non-aqueous electrolyte primary cell and additive for non-aqueous electrolyte of the cell
CN1647299A (en) * 2002-04-19 2005-07-27 株式会社普利司通 Positive electrode for nonaqueous electrolyte battery, process for producing the same and nonaqueous electrolyte battery
JP2006059682A (en) * 2004-08-20 2006-03-02 Bridgestone Corp Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2006059681A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP5314885B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
JP5359163B2 (en) Non-aqueous electrolyte
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2008192504A (en) Nonaqueous electrolyte
JP2000058123A (en) Nonaqueous electrolyte and battery using the same
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
CN110970662B (en) Non-aqueous electrolyte and lithium ion battery
JP4314503B2 (en) Lithium secondary battery
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP4458841B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2010050021A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
WO2005064734A1 (en) Nonaqueous liquid electrolyte for battery, nonaqueous liquid electrolyte battery containing the same, electrolyte for polymer battery and polymer battery containing the same
JP2004006301A (en) Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
WO2005091421A1 (en) Additive for nonaqueous electrolyte of battery, nonaqueous electrolyte for battery and battery loaded with nonaqueous electrolyte
WO2006018989A1 (en) Additive for electrolyte solution of nonaqueous electrolyte battery, nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2008052988A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP4787477B2 (en) Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery
JP3438364B2 (en) Non-aqueous electrolyte

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees