WO2006018303A1 - Schwimmkörper - Google Patents

Schwimmkörper Download PDF

Info

Publication number
WO2006018303A1
WO2006018303A1 PCT/EP2005/008951 EP2005008951W WO2006018303A1 WO 2006018303 A1 WO2006018303 A1 WO 2006018303A1 EP 2005008951 W EP2005008951 W EP 2005008951W WO 2006018303 A1 WO2006018303 A1 WO 2006018303A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating body
outer skin
flow
boundary layer
float
Prior art date
Application number
PCT/EP2005/008951
Other languages
English (en)
French (fr)
Inventor
Jürgen DRENCKHAN
Norbert Auff'm Ordt
Original Assignee
Hanse Yachts Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanse Yachts Gmbh & Co. Kg filed Critical Hanse Yachts Gmbh & Co. Kg
Publication of WO2006018303A1 publication Critical patent/WO2006018303A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/06Shape of fore part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the invention relates to a flooded in operation of water floats, such as the outer skin of a ship or boat, the ballast body of a keel yacht or the tower of a submarine.
  • the floating body has a longitudinal center plane, while the outer skin of the floating body has a convex shape having a greatest thickness at a Konstr ⁇ mies effeten point.
  • the goal is generally to lower the drag and make the ship seaworthy. Because the reduction of the flow resistance leads above all to the saving of drive energy or drive costs as well as the faster drive with the same drive power.
  • the flow resistance of a displacement-type floating body is composed of different proportions: the pressure resistance, the friction resistance and the characteristic impedance. Sailboats still have resistance due to heeling and drifting. For all resistance components, there are efforts to reduce these.
  • the pressure resistance is caused by the friction losses in the boundary layer, which forms between the float and the water flowing around. It depends on the type of flow, laminar or turbulent, on the thickness of the boundary layer and in particular on the position of the separation point of the boundary layer of the floating body. Between the detached boundary layer and the floating body, a strongly swirled dead water area is created, which extends beyond the end of the floating body. The emergence of this turbulent Totwasser capablees leads to a significant increase in flow resistance, which is also shown by the increase in pressure resistance.
  • a plurality of concave areas are formed in front of the location of the largest thickness of the floating body, between each of which convex areas are arranged.
  • FIG. 1a shows the flow around a floating body according to the state of the art
  • FIG. 1 b shows the flow velocity in the known floating body according to FIG. 1 a;
  • FIG. 2 a shows a floating body according to the invention in a schematic horizontal section
  • FIG. 2b shows flow velocity profiles similar to those in FIG. 1b, but for the floating body according to FIG. 2a.
  • Fig. Ia the flow around a 5 of the prior art floating body 6 of convex shape and with a plane perpendicular to the plane longitudinal center plane M is shown schematically.
  • the layer thickness of the turbulent boundary layer 2 increases steadily in the direction of flow.
  • the turbulent boundary layer 2 separates from the float 6.
  • FIG. Ib the curves of the flow velocity v as a function of the distance n from the surface of the floating body 6 in three different positions Al, Bl, Cl are shown , The positions Al, Bl, Cl can be seen from FIG. 1a. From the position Al via Bl to Cl, it can be seen from FIG.
  • the inventors have now recognized that the separation of the flow can be prevented if it is possible to transport flow energy within the turbulent boundary layer 2 in the edge region to the viscous sub-layer 7 and thus to compensate for the friction losses.
  • FIGS. 2a and 2b show the concave shape design according to the invention of a region K in front of the area of the greatest thickness D of the floating body. This is shown in FIGS. 2a and 2b.
  • the energy transport in a concave turbulent boundary layer 2 depends on the flow velocity v ', the degree of turbulence, the boundary layer thickness d of the radius R and the arc length L of the concave region K. These parameters can be designed so that sufficient flow energy is transported into the boundary region to the viscous sub-layer 7, so that despite the energy losses in the subsequent convex portion of the floating body 6 no separation of the flow takes place.
  • FIG. 2b shows the flow profiles in the positions A2, B2 and C2 which are analogous to FIG. 1b.
  • the flow velocity v 'at the boundary to the viscous sub-layer 7 is higher in the position A2 than in the comparable position A1 from FIG. so that v '> v holds.
  • This higher flow velocity is brought about by the aforementioned energy transport within the turbulent boundary layer in the direction of the viscous sublayer 7.
  • the increased flow velocity v ' is sufficient to prevent backflow and hence detachment in the subsequent convex region, which is shown in the positions B2 and C2 of FIG. 2b.
  • a turbulent boundary layer which is guided along a concavely curved wall, increases its thickness. This leads to an increase of the flow resistance. It should therefore be noted that the radius of curvature R of the concave portion K and its length L must be optimally adapted to the object according to the invention in order not to cancel out the advantage of lowering the pressure resistance by increasing the friction resistance.
  • the turbulent boundary layer 2 does not have sufficient thickness for the physical effect of the energy transport in a concave flow. In that case, one should increase the boundary layer thickness by specific shaping of the foredeck.
  • a turbulent boundary layer which flows along a convexly curved wall with respect to the main flow, changes its layer thickness only slightly, but the degree of turbulence can decrease, whereby the frictional resistance decreases. It may therefore be advantageous to the. front part of the floating body 6 under the aspect of optimizing the boundary layer 2 including convex areas to make.
  • the degree of turbulence or the thickness of the turbulent boundary layer in the concave region K are not sufficient for the purpose according to the invention, it is advantageous to use turbulence-generating means in the front part, which in turn can also lead to a thickening of this boundary layer.
  • turbulence-generating means in the front part, which in turn can also lead to a thickening of this boundary layer.
  • shaping without additional resources must be given priority.
  • the invention thus acts directly on the source of the cause of the replacement of the turbulent boundary layer and thus on the formation of Totigan capablees, which has never been stimulated.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Hydraulic Turbines (AREA)

Abstract

Die Erfindung betrifft einen im Betrieb von Wasser umströmten Schwimmkörper (6), beispielsweise die Aussenhaut eines Schiffes oder Bootes, der Ballastkörper einer Kielyacht oder der Turm eines U-Bootes. Der Schwimmkörper (6) besitzt eine Längsmittelebene (M), während die Aussenhaut des Schwimmkörpers (6) eine konvexe Form hat, die an einer konstruktionsbedingten Stelle eine grösste Dicke (D) aufweist. Gemäss Erfindung ist in der Aussenhaut des Schwimmkörpers (6) in Strömungsrichtung des Wassers vor der Stelle der grössten Dicke (D) ein konkaver Bereich (K) eingeformt.

Description

Beschreibung
Die Erfindung betrifft einen im Betrieb von Wasser umströmten Schwimmkörper, beispielsweise die Außenhaut eines Schiffes oder Bootes, der Ballastkörper einer Kielyacht oder der Turm eines U-Bootes. Der Schwimmkörper besitzt eine Längsmittelebene, während die Außenhaut des Schwimmkörpers eine konvexe Form hat, die an einer konstrύktionsbedingten Stelle eine größte Dicke aufweist.
Bei der Formgebung von Schwimmkörpern besteht das Ziel im allgemeinen darin, den Strömungswiderstand zu senken und das Schiff seetüchtig zu machen. Denn die Senkung des Strömungswiderstandes führt vor allem zur Einsparung von Antriebsenergie oder Antriebskosten sowie zur schnelleren Fahrt bei gleicher Antriebsleistung. Der Strömungswiderstand eines Schwimmkörpers vom Verdrängertyp setzt sich aus verschiedenen Anteilen zusammen: Dem Druckwiderstand, dem Reibungswiderstand und dem Wellenwiderstand. Bei Segelbooten kommen noch der Widerstand durch Krängung und Abdrift hinzu. Für alle Widerstandskomponenten gibt es Bemühungen, diese zu senken.
Der Druckwiderstand wird durch die Reibungsverluste in der Grenzschicht, die sich zwischen dem Schwimmkörper und dem umströmenden Wasser ausbildet, verursacht. Er hängt von der Art der Strömung, laminar oder turbulent, von der Dicke der Grenzschicht und insbesondere von der Lage des Ablösepunktes der Grenzschicht vom Schwimmkörper ab. Zwischen der abgelösten Grenzschicht und dem Schwimmkörper entsteht dabei ein stark verwirbeltes Totwassergebiet, das über das Ende des- Schwimmkörpers hinaus reicht. Die Entstehung dieses verwirbelten Totwassergebietes führt zu einer erheblichen Zunahme des Strömungswiderstandes, was sich auch durch die Erhöhung des Druckwiderstandes zeigt.
Bislang ging man zur Senkung des Druckwiderstandes so vor, dem Heckteil von Schwimmkörpern eine definierte Form zu geben, die aufgrund ihrer Gestaltung die Größe des sich um das Heckteil ausbildenden Totwassergebiets reduzieren sollte. Damit wurde aber auf die Ursachen der Ablösung der turbulenten Grenzschicht kein Einfluss genommen und es konnten demzufolge auch nur begrenzte Wirkungen erzielt werden. Aufgabe der Erfindung ist es, die Ablösung der turbulenten Strömung an umströmten Schwimmkörpern zu verhindern bzw. den Ablösepunkt soweit an das Ende des Schwimmkörpers zu verlagern, dass nur ein kleines Totwassergebiet von geringem Einfluss auf den Druckwiderstand verbleibt.
Zur Lösung dieser Aufgabe dienen die Merkmale des Patentanspruchs 1. Diese bestehen darin, dass in der Außenhaut des Schwimmkörpers in Strömungsrichtung des Wassers vor der Stelle der größten Dicke ein konkaver Bereich eingeformt wird.
Dadurch wird erreicht, dass der Druckwiderstandes, der gewöhnlich etwa 10% des Gesamtwiderstandes beträgt, bei ungünstiger Formgebung aber auch wesentlich größer sein kann, wesentlich reduziert wird.
In einer weiteren Ausgestaltung der Erfindung sind vor der Stelle der größten Dicke des Schwimmkörpers mehrere konkave Bereiche eingeformt, zwischen denen jeweils konvexe Bereiche angeordnet werden.
Die Erfindung wird nun anhand von Figuren näher erläutert; es zeigen:
Figur Ia die Umströmung eines dem Stand der Technik entsprechenden Schwimmkörpers;
Figur Ib Verläufe der Strömungsgeschwindigkeit bei dem bekannten Schwimmkörper nach Fig. 1 a;
Figur 2a einen erfindungsgemäßen Schwimmkörper in schematischem Horizontal¬ schnitt; und
Figur 2b Strömungsgeschwindigkeitsprofile ähnlich wie in Fig. Ib, jedoch für den Schwimmkörper nach Fig. 2a.
In Fig. Ia ist die Umströmung 5 eines dem Stand der Technik entsprechenden Schwimmkörpers 6 von konvexer Form und mit einer senkrecht zur Zeichenebene verlaufenden Längsmittelebene M schematisch dargestellt. Nach dem Umschlag der Strömung von laminar in turbulent im Punkt 1 am vorderen Teil des Schwimmkörpers 6 nimmt die Schichtdicke der turbulenten Grenzschicht 2 in Strömungsrichtung stetig zu. Im Ablösepunkt 3 löst sich die turbulente Grenzschicht 2 vom Schwimmkörper 6.
Die physikalische Ursache der Ablösung ist in Fig. Ib schematisch dargestellt. Man erkennt, dass zwischen der turbulenten Grenzschicht 2 und der Außenhaut des Schwimmkörpers 6 noch eine viskose Unterschicht 7 liegt. In diesem Bereich kommt es zur Bildung einer Rückströmung und damit zur Ablösung der turbulenten Grenzschicht 2. In der Fig. Ib sind die Verläufe der Strömungsgeschwindigkeit v in Abhängigkeit vom Abstand n von der Oberfläche des Schwimmkörpers 6 in drei verschiedenen Positionen Al, Bl, Cl dargestellt. Die Positionen Al, Bl, Cl sind aus der Fig. Ia zu ersehen. Fortschreitend von der Position Al über Bl zu Cl ist aus der Fig. Ib erkennbar, dass die Strömungsgeschwindigkeit v in der Grenzschicht 2 im Grenzbereich zur viskosen Unterschicht 7 stetig abnimmt und beim Punkt Cl zu einer Rückströmung führt, die für die Ablösung der Strömung verantwortlich ist. Ursache dieses Effektes sind die Reibung und die konvexe Krümmung des Schwimmkörpers.
Die Erfinder haben nun erkannt, dass die Ablösung der Strömung verhindert werden kann, wenn es gelingt, Strömungsenergie innerhalb der turbulenten Grenzschicht 2 in das Randgebiet zur viskosen Unterschicht 7 zu transportieren und damit die Reibungsverluste zu kompensieren.
Dieser Energietransport ist in überraschender Weise durch die erfindungsgemäße konkave Formgestaltung eines Bereichs K vor dem Bereich der größten Dicke D des Schwimmkörpers ermöglicht worden. Dies zeigen die Fig. 2a und Fig. 2b. Der Energietransport in einer konkaven turbulenten Grenzschicht 2 hängt von der Strömungsgeschwindigkeit v', dem Turbulenzgrad, der Grenzschichtdicke d dem Radius R und der Bogenlänge L des konkaven Bereiches K ab. Diese Parameter können so gestaltet werden, dass ausreichend Strömungsenergie in den Grenzbereich zur viskosen Unterschicht 7 transportiert wird, so dass trotz der Energieverluste im sich anschließenden konvexen Bereich des Schwimmkörpers 6 keine Ablösung der Strömung erfolgt. In Fig. 2b sind die Strömungsprofile in den zu Fig. Ib analogen Positionen A2, B2 und C2 dargestellt. Durch die konkave Krümmung ist in der Position A2 die Strömungsgeschwindigkeit v' an der Grenze zur viskosen Unterschicht 7 höher als in der vergleichbaren Position Al aus Fig. Ib, so dass also v' > v gilt. Diese höhere Strömungsgeschwindigkeit wird durch den oben erwähnten Energietransport innerhalb der turbulenten Grenzschicht in Richtung viskoser Unterschicht 7 bewirkt. Die erhöhte Strömungsgeschwindigkeit v' ist ausreichend, um im anschließenden konvexen Bereich eine Rückströmung und damit Ablösung zu verhindern, was in den Positionen B2 und C2 von Fig. 2b dargestellt ist.
Eine turbulente Grenzschicht, die entlang einer konkav gekrümmten Wand- gefuhrt wird, vergrößert ihre Dicke. Das fuhrt zu einer Erhöhung des Strömungswiderstandes. Es ist daher zu beachten, dass der Krümmungsradius R des konkaven Bereiches K und seine Länge L dem erfindungsgemäßen Ziel optimal angepasst werden müssen, um nicht den Vorteil der Senkung des Druckwiderstandes durch eine Erhöhung des Reibungs¬ widerstandes aufzuheben.
Bei sehr kurzen Schwimmkörpern ist es möglich, dass die turbulente Grenzschicht 2 keine ausreichende Dicke für den physikalischen Effekt des Energietransportes in einer konkaven Strömung hat. In dem Fall sollte man durch bestimmte Formgebung des Vorschiffes die Grenzschichtdicke vergrößern.
Eine turbulente Grenzschicht, die entlang einer, bezogen auf die Hauptströmung, konvex gekrümmten Wand fließt, verändert ihre Schichtdicke nur gering, aber der Turbulenzgrad kann sich verringern, wodurch der Reibungswiderstand sinkt. Es kann daher von Vorteil sein, den. vorderen Teil des Schwimmkörpers 6 unter dem Aspekt der Optimierung der Grenzschicht 2 unter Einbeziehung konvexer Bereiche zu gestalten.
Wenn der Turbulenzgrad oder die Dicke der turbulenten Grenzschicht im konkaven Bereich K für den erfindungsgemäßen Zweck nicht ausreichend sind, ist es vorteilhaft, im vorderen Teil turbulenzerzeugende Mittel einzusetzen, die ihrerseits auch zu einer Aufdickung dieser Grenzschicht führen können. Da diese Mittel aber in der Regel zu einem stärkeren Anstieg des Strömungswiderstandes fuhren, ist der Formgebung ohne zusätzliche Mittel der Vorrang zu geben. Im Gegensatz zum Stand der Technik wirkt die Erfindung also unmittelbar auf die Entstehungsursache der Ablösung der turbulenten Grenzschicht und damit auf die Entstehung des Totwassergebietes ein, was bisher noch nie angeregt worden ist.

Claims

Patentansprüche
1. Umströmter Schwimmkörper, beispielsweise die Außenhaut eines Schiffes oder Bootes, der Ballastkörper einer Kielyacht oder der Turm eines U-Bootes, wobei der Schwimmkörper (6) eine Längsmittelebene (M) besitzt und die Außenhaut des Schwimmkörpers (6) eine konvexe Form hat, die an einer konstruktionsbedingten Stelle eine größte Dicke aufweist, dadurch gekennzeichnet, dass in der Außenhaut des Schwimmkörpers (6) in Strömungsrichtung des Wassers vor- der Stelle der größten Dicke (D) ein konkaver Bereich (K) mit einer Länge /(L) und einem Radius (R) eingeformt ist.
2. Schwimmkörper nach Anspruch 1, dadurch gekennzeichnet, dass vor der Stelle der größten Dicke (D) des Schwimmkörpers (6) mehrere konkave Bereiche eingeformt sind, zwischen denen jeweils konvexe Bereiche liegen.
PCT/EP2005/008951 2004-08-19 2005-08-18 Schwimmkörper WO2006018303A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004040081.4 2004-08-19
DE102004040081 2004-08-19

Publications (1)

Publication Number Publication Date
WO2006018303A1 true WO2006018303A1 (de) 2006-02-23

Family

ID=35613785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/008951 WO2006018303A1 (de) 2004-08-19 2005-08-18 Schwimmkörper

Country Status (1)

Country Link
WO (1) WO2006018303A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000838A1 (en) * 2006-06-30 2008-01-03 Technische Universiteit Delft Ship

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1379552A (en) * 1920-09-20 1921-05-24 Geist George Boat-hull
FR588351A (fr) * 1924-10-31 1925-05-06 Carène pour embarcations rapides
US3063397A (en) * 1959-08-27 1962-11-13 Jr Harold Boericke Sub-surface craft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1379552A (en) * 1920-09-20 1921-05-24 Geist George Boat-hull
FR588351A (fr) * 1924-10-31 1925-05-06 Carène pour embarcations rapides
US3063397A (en) * 1959-08-27 1962-11-13 Jr Harold Boericke Sub-surface craft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000838A1 (en) * 2006-06-30 2008-01-03 Technische Universiteit Delft Ship
US8047148B2 (en) 2006-06-30 2011-11-01 Technische Universiteit Delft Ship
KR101377025B1 (ko) 2006-06-30 2014-03-20 테크니쉐 유니버시테이트 델프트

Similar Documents

Publication Publication Date Title
EP2060484B2 (de) Ruder für Schiffe
EP2060482B1 (de) Kortdüse
EP2060485B1 (de) Ruderanordnung für Schiffe mit höheren Geschwindigkeiten mit einem kavitationsreduzierenden, twistierten, insbesondere Vollschweberuder
EP2591994A1 (de) Vorrichtung zur Verringerung des Antriebsleistungsbedarfs eines Wasserfahrzeuges
EP1921005A1 (de) Ruder für Schiffe
DE102011082596A1 (de) Heckspoiler
DE202013101943U1 (de) Vorrichtung zur Verringerung des Antriebsleistungsbedarfs eines Wasserfahrzeuges
WO2003070567A1 (de) Linienentwurf und propulsionsanordnung für ein kursstabiles, seegehendes schiff mit ruderpropellerantrieb
DE3324753A1 (de) Anordnung zum beeinflussen der propelleranstroemung
EP2281743B1 (de) Propellergondel
DE3522621C3 (de) Paddel für ein Wasserfahrzeug
EP2679803B1 (de) Windenergieanlagenrotorblatt mit einer dicken profilhinterkante
WO2006018303A1 (de) Schwimmkörper
DE2636261C2 (de) Ringförmiger Aufbau am Schiffsheck
DE10314057B3 (de) Schnorchelvorrichtung für ein U-Boot
DE19746711A1 (de) Steuerruder für Wasserfahrzeuge
EP3822159B1 (de) Flossenstabilisator
DE69923211T2 (de) Einrichtung zum antrieb von schiffen und düse hierfür
DE102010022070A1 (de) Antriebseinheit
EP0102624A2 (de) Rigg für Segelbrett
DE202007017450U1 (de) Hochleistungsruder für Schiffe
DE1781128A1 (de) Schiffsrumpf
DE3801317A1 (de) Schiff, insbesondere motorsportboot
DE202008001708U1 (de) Wasserfahrzeug
DE60013546T2 (de) Tragflächen für Flugzeuge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase