WO2006014124A1 - Titanium-based alloy - Google Patents

Titanium-based alloy Download PDF

Info

Publication number
WO2006014124A1
WO2006014124A1 PCT/RU2005/000381 RU2005000381W WO2006014124A1 WO 2006014124 A1 WO2006014124 A1 WO 2006014124A1 RU 2005000381 W RU2005000381 W RU 2005000381W WO 2006014124 A1 WO2006014124 A1 WO 2006014124A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
titanium
mass
molybdenum
iron
Prior art date
Application number
PCT/RU2005/000381
Other languages
French (fr)
Russian (ru)
Inventor
Vladislav Valentinovich Tetyukhin
Igor Vasilievich Levin
Alexandr Vladimirovich Trubochkin
Original Assignee
Public Stock Company 'vsmpo-Avisma Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35787368&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006014124(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Public Stock Company 'vsmpo-Avisma Corporation filed Critical Public Stock Company 'vsmpo-Avisma Corporation
Priority to DK05772406T priority Critical patent/DK1783235T3/en
Priority to EP05772406A priority patent/EP1783235B1/en
Priority to DE602005012284T priority patent/DE602005012284D1/en
Priority to US11/630,428 priority patent/US20080181809A1/en
Publication of WO2006014124A1 publication Critical patent/WO2006014124A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the invention relates to the field of metallurgy, in particular to the creation of modern titanium alloys used for the manufacture of high-strength and high-tech products, including large ones, i.e. alloys with a high degree of versatility.
  • Titanium alloys are widely used as aerospace materials, for example, for airplanes and rockets, because alloys have strong mechanical properties and are relatively lightweight.
  • TibAWV (Kalachev B.A., Polkin I.S. and Talalaev V.D. Titanium alloys from different countries. Handbook. M .: VILS, 2000, p. 58-59) - [1].
  • the alloy was developed in the USA in the 50s. Alloy of medium strength from 850 to 1000 MPa and high technology. It is well processed by pressure: forging, stamping, pressing. Found wide application in aviation and aerospace engineering, shipbuilding, automotive industry, etc., as well as for the manufacture of fastener parts for various purposes.
  • the alloy is well processed by all types of welding, including diffusion.
  • the disadvantage of Ti6A14V alloy is its lack of versatility.
  • the known pseudo- ⁇ -titanium alloy Grade 9 (Ti-ZA1-2.5V), as an alloy having a high ability to cold deformation (see [1], with 44.45). It has intermediate strength of the alloy Ti-6A1-4V and titanium (600-800 MPa). It is used in the cured state and after annealing to relieve stresses; It has high corrosion resistance in many environments, including seawater. Used for the manufacture of pipes for the hydraulic and fuel systems of aircraft, rockets, submarines.
  • a disadvantage of the known alloy is also its low versatility, due to the fact that in the manufacture of large-sized structural products it is mandatory to relieve internal stresses. To this end, the products are annealed, while the strength characteristics of the Grade 9 alloy are reduced to 400-500 MPa.
  • the closest analogue to the claimed invention is ⁇ + ⁇ -titanium fame, comprising 3.0-5.0 Al; 2.1-3.7 V; 0.85-3.15 Mo; 0.85-3.15 Fe; 0.06-0.2 O 2 and inevitable impurities (Japanese application J ⁇ 3007214 B2, publ. 07.02.2000) - prototype.
  • the problem to which this invention is directed is to create a universal titanium alloy with the lowest cost for its manufacture and the ability to produce from it a wide range of products from titanium alloys, such as bulky forgings and stampings, as well as sheet metal and foil with the required strength - ny and plastic characteristics and structure.
  • the technical result achieved by the implementation of the claimed invention is to regulate the optimal combination of ⁇ - and ⁇ -stabilizing alloying components in the finished semi-finished product.
  • the technical result is achieved by the fact that in a titanium-based alloy consisting of aluminum, vanadium, molybdenum, iron and oxygen, according to the invention, the components are taken in the following ratio, May. %:
  • Titanium rest The combination of high strength and technological plasticity of the proposed alloy is achieved as a result of a targeted selection and experimental assessment of alloying ranges.
  • the content of ⁇ -stabilizing elements (aluminum, oxygen) and ⁇ -stabilizing elements (vanadium, molybdenum and iron) are selected necessary and sufficient to achieve the goal.
  • Aluminum is an ⁇ -phase stabilizer for ⁇ + ⁇ -titanium alloys, which provides an increase in mechanical strength.
  • the aluminum content of the inventive alloy is less than 3.5%, the required strength cannot be achieved. If the aluminum content exceeds 5%, the resistance to hot deformation increases and the deformability at lower temperatures deteriorates, which leads to a decrease in productivity.
  • Vanadium is added to titanium as a ⁇ -phase stabilizer for ⁇ + ⁇ -titanium alloys, which provides an increase in mechanical strength without forming brittle intermetallic compounds with titanium.
  • the presence of vanadium in the alloy as the ⁇ phase stabilizes makes it difficult to form an ⁇ 2 superstructure in the ⁇ phase and helps to increase not only strength properties, but also ductility.
  • the content of vanadium is less than 2%, sufficient strength, which must be obtained on the basis of the invention, cannot be achieved. If the vanadium content exceeds 4.0%, superplastic elongation is reduced due to an excessive decrease in the polymorphic transformation temperature.
  • the content of vanadium in the range of 2.0-4.0% in this alloy has the advantage of the fact that the waste of the Ti6A14V alloy, which is widely used in our enterprise, can be used to obtain it.
  • Molybdenum is added to titanium as a ⁇ -phase stabilizer for ⁇ + ⁇ -titanium alloys.
  • the introduction of molybdenum in the pre- 0.1–0.8% ensures its complete solubility in the ⁇ phase, which makes it possible to obtain the necessary strength characteristics without reducing the plastic properties. If the molybdenum content exceeds 0.8%, the specific gravity of the alloy increases due to the fact that molybdenum is a heavy metal, and the plastic properties of the alloy are reduced. A molybdenum content of less than 0.1% does not provide the full properties of the alloy.
  • the introduction of iron into the alloy up to 0.4% increases the volume fraction of the ⁇ phase, decreasing the resistance to deformation during hot working of the alloy, which helps to avoid the formation of defects such as cracks.
  • An iron content of more than 0.4% leads to segregation processes with the formation of “beta-fluxes” during melting and crystallization of the alloy, which leads to heterogeneous mechanical properties, in particular ductility.
  • Oxygen provides an increase in mechanical strength during the formation of a solid solution, mainly in the ⁇ phase.
  • An oxygen content of more than 0.25% can lead to a decrease in the plastic properties of the alloy.
  • the proposed alloy in comparison with the known ones, has high versatility, is economically profitable, has a lower cost, due to the fact that waste from widely known alloys, for example, Ti6A14V alloy, is used for its production.
  • This alloy has the necessary and sufficient level of mechanical properties and can be used by deformation both in the ⁇ + ⁇ -region and in the ⁇ -region for the manufacture of a wide range of products, including large-size stampings and forgings, as well as thin sheets and foil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to metallurgy, in particular to titanium-based alloys used for producing high-strength and high technology products. The inventive titanium-based alloy consists of aluminium, vanadium. Molybdenum, iron and oxygen at the following component ratio: 3.5-4.4 mass % aluminium, 2.0-4.0 mass % vanadium, 0.1-0.8 mass % molybdenum, maximum 0.4 mass % iron, maximum 0.25 mass % oxygen, the rest being titanium. Said invention makes it possible to produce a multipurpose alloy for large-sized forging and stamping products, sheet iron and foil having required strength and plastic characteristics and a structure.

Description

СПЛАВ НА ОСНОВЕ ТИТАНА TITANIUM ALLOY
Область техникиTechnical field
Изобретение относится к области металлургии, а именно к созданию современных титановых сплавов, используемых для изготовления высокопрочных и высокотехнологичных изделий, в том числе крупногабаритных, т.е. сплавов, обладающих высокой степенью универсальности.The invention relates to the field of metallurgy, in particular to the creation of modern titanium alloys used for the manufacture of high-strength and high-tech products, including large ones, i.e. alloys with a high degree of versatility.
Титановые сплавы широко применяются в качестве мате- риалов аэрокосмического назначения, например, для самолетов и ракет, т.к. сплавы обладают прочными механическими свойствами и являются сравнительно легковесными.Titanium alloys are widely used as aerospace materials, for example, for airplanes and rockets, because alloys have strong mechanical properties and are relatively lightweight.
Предшествующий уровень техники Известен наиболее широко используемый титановый сплавBACKGROUND OF THE INVENTION The most widely used titanium alloy is known.
ТiбАWV (Калачев Б.A., Полькин И.C. и Талалаев В.Д. Титановые сплавы разных стран. Справочник. M.: ВИЛС, 2000, с. 58-59) - [1]. Сплав разработан в США в 50-х годах. Сплав средней прочности от 850 до 1000 МПа и высокой технологичности. Хорошо обраба- тывается давлением: ковкой, штамповкой, прессованием. Нашел широкое применение в авиационной и аэрокосмической технике, судостроении, автомобилестроении и др., а также для изготовления деталей крепежа различного назначения. Сплав хорошо обрабатывается всеми видами сварки, в том числе диффузионной. Недостатком сплава Ti6A14V является его недостаточная универсальность. Из него сложно изготовить тонколистовой прокат, фольгу и трубы, так как сплав обладает относительно высоким сопротивлением деформации, что при температуре деформа- ции ниже 8000C ведет к образованию таких дефектов, как трещины, а также сокращает срок службы рабочего инструмента или требует использования дорогостоящей инструментальной оснастки. Известен псевдо-α-титановый сплав Grаdе 9 (Ti-ЗA1-2,5V), как сплав, обладающий высокой способностью к холодной деформации (см. [1], с 44,45). Обладает промежуточной прочностью сплава Ti-6A1-4V и титaнa(600-800 МПа). Применяется в нагарто- ванном состоянии и после отжига для снятия напряжений; облада- ет высокой коррозионной стойкостью во многих средах, включая морскую воду. Используется для изготовления труб гидравлической и топливной систем самолетов, ракет, подводных лодок.TibAWV (Kalachev B.A., Polkin I.S. and Talalaev V.D. Titanium alloys from different countries. Handbook. M .: VILS, 2000, p. 58-59) - [1]. The alloy was developed in the USA in the 50s. Alloy of medium strength from 850 to 1000 MPa and high technology. It is well processed by pressure: forging, stamping, pressing. Found wide application in aviation and aerospace engineering, shipbuilding, automotive industry, etc., as well as for the manufacture of fastener parts for various purposes. The alloy is well processed by all types of welding, including diffusion. The disadvantage of Ti6A14V alloy is its lack of versatility. It is difficult to make sheet metal, foil and pipes from it, since the alloy has a relatively high deformation resistance, which at temperatures below 800 0 C leads to the formation of defects such as cracks, and also shortens the life of the working tool or requires the use of expensive tooling. The known pseudo-α-titanium alloy Grade 9 (Ti-ZA1-2.5V), as an alloy having a high ability to cold deformation (see [1], with 44.45). It has intermediate strength of the alloy Ti-6A1-4V and titanium (600-800 MPa). It is used in the cured state and after annealing to relieve stresses; It has high corrosion resistance in many environments, including seawater. Used for the manufacture of pipes for the hydraulic and fuel systems of aircraft, rockets, submarines.
Недостатком известного сплава является также его низкая универсальность, связанная с тем, что при изготовлении крупно- габаритных конструкционных изделий обязательным является снятие внутренних напряжений. С этой целью изделия проходят отжиг, при этом прочностные характеристики сплава Grаdе 9 снижаются до 400-500 МПа.A disadvantage of the known alloy is also its low versatility, due to the fact that in the manufacture of large-sized structural products it is mandatory to relieve internal stresses. To this end, the products are annealed, while the strength characteristics of the Grade 9 alloy are reduced to 400-500 MPa.
Наиболее близким аналогом к заявляемому изобретению яв- ляется α+β-титановый слав, включающий 3,0-5,0 Al; 2,1-3,7 V; 0,85-3,15 Mo; 0,85-3,15 Fe; 0,06-0,2 O2 и неизбежные примеси (заявка Японии JЧs 3007214 B2, публ. 07.02.2000)- прототип.The closest analogue to the claimed invention is α + β-titanium fame, comprising 3.0-5.0 Al; 2.1-3.7 V; 0.85-3.15 Mo; 0.85-3.15 Fe; 0.06-0.2 O 2 and inevitable impurities (Japanese application JС 3007214 B2, publ. 07.02.2000) - prototype.
Недостатком названного сплава является высокое содержание железа и молибдена, которые склонны к ликвации. С целью снижения вероятности возникновения ликвационной неоднородности необходимо использовать специальную технологию выплавки слитков, а также проводить прокатку и ковку с малыми степенями деформации с целью исключения декорации «бeтa- флeкoв», что снижает производительность.The disadvantage of this alloy is the high content of iron and molybdenum, which are prone to segregation. In order to reduce the likelihood of segregation heterogeneity, it is necessary to use a special technology for smelting ingots, as well as rolling and forging with small degrees of deformation in order to exclude the “beta- flash ”, which reduces performance.
Раскрытие изобретенияDisclosure of invention
Задачей, на решение которой направлено данное изобрете- ние, является создание универсального титанового сплава с наименьшими затратами на его изготовление и возможностью изготавливать из него широкую номенклатуру изделий из титановых сплавов, таких как крупногабаритные поковки и штамповки, а также тонколистовой прокат и фольгу с необходимыми прочнόст- ными и пластическими характеристиками и структурой.The problem to which this invention is directed is to create a universal titanium alloy with the lowest cost for its manufacture and the ability to produce from it a wide range of products from titanium alloys, such as bulky forgings and stampings, as well as sheet metal and foil with the required strength - ny and plastic characteristics and structure.
Технический результат, достигаемый при осуществлении заявляемого изобретения, заключается в регламентации оптимального сочетания α- и β-стабилизирующих легирующих компонентов в готовом полуфабрикате. Технический результат достигается тем, что в сплаве на основе титана, состоящем из алюминия, ванадия, молибдена, железа и кислорода, согласно изобретению компоненты взяты в следующем соотношении, мае. %:The technical result achieved by the implementation of the claimed invention is to regulate the optimal combination of α- and β-stabilizing alloying components in the finished semi-finished product. The technical result is achieved by the fact that in a titanium-based alloy consisting of aluminum, vanadium, molybdenum, iron and oxygen, according to the invention, the components are taken in the following ratio, May. %:
Алюминий 3,5-4,4 Ванадий 2,0-4,0Aluminum 3.5-4.4 Vanadium 2.0-4.0
Молибден 0, 1 -0, 8Molybdenum 0, 1 -0, 8
Железо mах 0,4Iron max 0.4
Кислород mах 0,25Oxygen max 0.25
Титан остальное Сочетание высокой прочности и технологической пластичности предлагаемого сплава достигается в результате целенаправленного выбора и экспериментальной оценки диапазонов легирования. Содержание α- стабилизирующих элементов (алюминия, кислорода) и β-стабилизирующих элементов (ванадия, молибдена и железа) выбрано необходимым и достаточным для достижения поставленной цели.Titanium rest The combination of high strength and technological plasticity of the proposed alloy is achieved as a result of a targeted selection and experimental assessment of alloying ranges. The content of α-stabilizing elements (aluminum, oxygen) and β-stabilizing elements (vanadium, molybdenum and iron) are selected necessary and sufficient to achieve the goal.
Алюминий является стабилизатором α-фазы для α +β- титановых сплавов, который обеспечивает повышение механиче- ской прочности. Однако, когда содержание алюминия в заявляемом сплаве составляет менее 3,5%, необходимая прочность не может быть достигнута. Если же содержание алюминия превышает 5%, сопротивление горячей деформации увеличивается и де- формируемость при более низких температурах ухудшается, что приводит к снижению производительности.Aluminum is an α-phase stabilizer for α + β-titanium alloys, which provides an increase in mechanical strength. However, when the aluminum content of the inventive alloy is less than 3.5%, the required strength cannot be achieved. If the aluminum content exceeds 5%, the resistance to hot deformation increases and the deformability at lower temperatures deteriorates, which leads to a decrease in productivity.
Ванадий добавляют в титан в качестве стабилизатора β-фазы для α +β-титaнoвыx сплавов, который обеспечивает повышение механической прочности, не образуя хрупкие интерметаллиды с титаном. Наличие ванадия в сплаве по мере стабилизации β-фазы затрудняет образование α2 -сверхструктуры в α-фазе и способствует повышению не только прочностных свойств, но и пластичности. При содержании ванадия менее 2% достаточная прочность, которая должна быть получена, исходя из изобретения, не может быть достигнута. Если содержание ванадия превышает 4,0%, сверхпластическое удлинение уменьшается за счет чрезмерного снижения температуры полиморфного превращения. Содержание ванадия в пределах 2,0-4,0% в данном сплаве имеет преимущество в связи с тем, что для его получения могут быть использованы от- ходы сплава Ti6A14V, широко применяемого на нашем предприятии.Vanadium is added to titanium as a β-phase stabilizer for α + β-titanium alloys, which provides an increase in mechanical strength without forming brittle intermetallic compounds with titanium. The presence of vanadium in the alloy as the β phase stabilizes makes it difficult to form an α 2 superstructure in the α phase and helps to increase not only strength properties, but also ductility. When the content of vanadium is less than 2%, sufficient strength, which must be obtained on the basis of the invention, cannot be achieved. If the vanadium content exceeds 4.0%, superplastic elongation is reduced due to an excessive decrease in the polymorphic transformation temperature. The content of vanadium in the range of 2.0-4.0% in this alloy has the advantage of the fact that the waste of the Ti6A14V alloy, which is widely used in our enterprise, can be used to obtain it.
Молибден добавляют в титан в качестве стабилизатора β- фазы для α +β-титaнoвыx сплавов. Введение молибдена в преде- лах 0,1-0,8% обеспечивает полную растворимость его в α-фазе, что позволяет получать необходимые прочностные характеристики без снижения пластических свойств. Если содержание молибдена превышает 0,8%, увеличивается удельный вес сплава в след- ствие того, что молибден является тяжелым металлом, и пластические свойства сплава снижаются. Содержание молибдена менее 0,1% не обеспечивает свойства сплава в полном объеме.Molybdenum is added to titanium as a β-phase stabilizer for α + β-titanium alloys. The introduction of molybdenum in the pre- 0.1–0.8% ensures its complete solubility in the α phase, which makes it possible to obtain the necessary strength characteristics without reducing the plastic properties. If the molybdenum content exceeds 0.8%, the specific gravity of the alloy increases due to the fact that molybdenum is a heavy metal, and the plastic properties of the alloy are reduced. A molybdenum content of less than 0.1% does not provide the full properties of the alloy.
Введение железа в сплав до 0,4% увеличивает объемную долю β-фазы, снижая сопротивление деформации при горячей обра- ботке сплава, что помогает избежать образование таких дефектов, как трещины. Содержание железа более 0,4% приводит к ликва- ционным процессам с образованием «бeтa-флeкoв» при плавлении и кристаллизации сплава, что приводит к неоднородности механических свойств, в частности пластичности. Кислород обеспечивает повышение механической прочности при образовании твердого раствора, в основном, в α-фазе. Содержание кислорода более 0,25% может привести к снижению пластических свойств сплава.The introduction of iron into the alloy up to 0.4% increases the volume fraction of the β phase, decreasing the resistance to deformation during hot working of the alloy, which helps to avoid the formation of defects such as cracks. An iron content of more than 0.4% leads to segregation processes with the formation of “beta-fluxes” during melting and crystallization of the alloy, which leads to heterogeneous mechanical properties, in particular ductility. Oxygen provides an increase in mechanical strength during the formation of a solid solution, mainly in the α phase. An oxygen content of more than 0.25% can lead to a decrease in the plastic properties of the alloy.
В качестве неизбежных примесей в сплаве может присутст- вовать до 0,1% углерода и до 0,05% азота, при этом общее количество примесей не должно превышать 0,16%.Up to 0.1% carbon and up to 0.05% nitrogen can be present as inevitable impurities in the alloy, while the total amount of impurities should not exceed 0.16%.
Варианты осуществления изобретенияEmbodiments of the invention
Для исследования свойств заявляемого сплава были выплав- лены методом двойного вакуумного дугового переплава слитки следующего химического состава (таблица 1). Таблица 1To study the properties of the inventive alloy, ingots of the following chemical composition were smelted using the double vacuum arc remelting method (table 1). Table 1
Figure imgf000008_0002
Figure imgf000008_0002
Таблица 2table 2
Figure imgf000008_0001
Figure imgf000008_0001
Из каждого слитка методом горячей деформации были изготовлены прутки диаметром 50 мм. Часть прутков была подвергнута термической обработке путем отжига при температуре 7500C, выдержке 1 час и охлаждении на воздухе. Были исследованы при комнатной температуре механические свойства прутков, прошедших термическую обработку, и прутков без термообработки. Результаты исследований приведены в таблице 2. Кроме того, дополнительно были исследованы механические свойства β- осаженных заготовок, подвергнутых термической обработке при температуре 71O0C, выдержке 3 часа и охлаждению на воздухе. Результаты испытаний механических свойств заготовок, полученных осадкой в α+β и β-области приведены в таблице 2.From each ingot, bars with a diameter of 50 mm were made by hot deformation. Some of the rods were subjected to heat treatment by annealing at a temperature of 750 0 C, holding for 1 hour and cooling in air. The mechanical properties of heat-treated rods and rods without heat treatment were investigated at room temperature. The research results are shown in table 2. In addition, the mechanical properties of β-deposited preforms subjected to heat treatment at a temperature of 71O 0 C, holding for 3 hours and cooling in air were additionally investigated. The test results of the mechanical properties of the workpieces obtained by upsetting in the α + β and β-region are shown in table 2.
Промышленная применимость Предлагаемый сплав по сравнению с известными обладает высокой универсальностью, экономически выгоден, имеет более низкую себестоимость, в связи с тем, что для его производства используются отходы широко известных сплавов, например, сплав Ti6A14V. Данный сплав обладает необходимым и достаточным уровнем механических свойств и может быть использован путем деформации как в α+β-области, так и в β-области для изготовления широкой номенклатуры изделий, включая крупногабаритные штамповки и поковки, а также тонкие листы и фольгу. Industrial applicability The proposed alloy, in comparison with the known ones, has high versatility, is economically profitable, has a lower cost, due to the fact that waste from widely known alloys, for example, Ti6A14V alloy, is used for its production. This alloy has the necessary and sufficient level of mechanical properties and can be used by deformation both in the α + β-region and in the β-region for the manufacture of a wide range of products, including large-size stampings and forgings, as well as thin sheets and foil.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯCLAIM
Сплав на основе титана, состоящий из алюминия, ванадия, молибдена, железа, кислорода, отличающийся тем, что компоненты сплава взяты в следующем соотношении, мае. %:A titanium-based alloy consisting of aluminum, vanadium, molybdenum, iron, oxygen, characterized in that the alloy components are taken in the following ratio, May. %:
Алюминий 3,5-4,4Aluminum 3.5-4.4
Ванадий 2,0-4,0Vanadium 2.0-4.0
Молибден 0,1-0,8Molybdenum 0.1-0.8
Железо mах 0,4Iron max 0.4
Кислород mах 0,25Oxygen max 0.25
Титан остальное Titanium rest
PCT/RU2005/000381 2004-07-30 2005-07-14 Titanium-based alloy WO2006014124A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK05772406T DK1783235T3 (en) 2004-07-30 2005-07-14 Titanium-based alloy
EP05772406A EP1783235B1 (en) 2004-07-30 2005-07-14 Titanium-based alloy
DE602005012284T DE602005012284D1 (en) 2004-07-30 2005-07-14 ALLOY ON TITANIUM BASE
US11/630,428 US20080181809A1 (en) 2004-07-30 2005-07-14 Titanium-Based Alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2004123500 2004-07-30
RU2004123500/02A RU2269584C1 (en) 2004-07-30 2004-07-30 Titanium-base alloy

Publications (1)

Publication Number Publication Date
WO2006014124A1 true WO2006014124A1 (en) 2006-02-09

Family

ID=35787368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2005/000381 WO2006014124A1 (en) 2004-07-30 2005-07-14 Titanium-based alloy

Country Status (8)

Country Link
US (1) US20080181809A1 (en)
EP (1) EP1783235B1 (en)
AT (1) ATE420217T1 (en)
DE (1) DE602005012284D1 (en)
DK (1) DK1783235T3 (en)
ES (1) ES2320684T3 (en)
RU (1) RU2269584C1 (en)
WO (1) WO2006014124A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2211873C2 (en) * 2001-11-22 2003-09-10 ОАО Верхнесалдинское металлургическое производственное объединение METASTABLE β-TITANIUM ALLOY
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
CN101543948B (en) * 2008-03-28 2011-06-08 北京有色金属研究总院 Processing technology of Ti5Mo5V2Cr3Al alloy
DE102009050603B3 (en) * 2009-10-24 2011-04-14 Gfe Metalle Und Materialien Gmbh Process for producing a β-γ-TiAl base alloy
RU2425164C1 (en) 2010-01-20 2011-07-27 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Secondary titanium alloy and procedure for its fabrication
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US9631261B2 (en) 2010-08-05 2017-04-25 Titanium Metals Corporation Low-cost alpha-beta titanium alloy with good ballistic and mechanical properties
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) * 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
RU2463365C2 (en) * 2010-09-27 2012-10-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" METHOD TO PRODUCE INGOT OF PSEUDO β-TITANIUM ALLOY, CONTAINING (4,0-6,0)%Al, (4,5-6,0)% Mo, (4,5-6,0)% V, (2,0-3,6)%Cr, (0,2-0,5)% Fe, (0,1-2,0)%Zr
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
CN102586639A (en) * 2012-03-16 2012-07-18 广州有色金属研究院 Method for preparing titanium alloy through high-speed pressing formation
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US9956629B2 (en) * 2014-07-10 2018-05-01 The Boeing Company Titanium alloy for fastener applications
JP6392179B2 (en) * 2014-09-04 2018-09-19 株式会社神戸製鋼所 Method for deoxidizing Ti-Al alloy
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
SG11201808763QA (en) * 2016-04-25 2018-11-29 Arconic Inc Bcc materials of titanium, aluminum, vanadium, and iron, and products made therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719324A1 (en) * 1976-04-28 1977-11-10 Kobe Steel Ltd TITANIUM ALLOY WITH HIGH INTERNAL FRICTION AND METHOD FOR HEAT-TREATING THIS ALLOY
US5332545A (en) * 1993-03-30 1994-07-26 Rmi Titanium Company Method of making low cost Ti-6A1-4V ballistic alloy
RU2039111C1 (en) * 1992-07-14 1995-07-09 Научно-производственное объединение "Композит" Titanium alloy
WO2003095690A1 (en) * 2002-05-09 2003-11-20 Titanium Metals Corporation ALPHA-BETA Ti-Al-V-Mo-Fe ALLOY

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754204A (en) * 1954-12-31 1956-07-10 Rem Cru Titanium Inc Titanium base alloys
US2868640A (en) * 1955-01-11 1959-01-13 British Non Ferrous Metals Res Titanium alloys
US2819958A (en) * 1955-08-16 1958-01-14 Mallory Sharon Titanium Corp Titanium base alloys
US2893864A (en) * 1958-02-04 1959-07-07 Harris Geoffrey Thomas Titanium base alloys
US5358686A (en) * 1993-02-17 1994-10-25 Parris Warren M Titanium alloy containing Al, V, Mo, Fe, and oxygen for plate applications
JP2988246B2 (en) * 1994-03-23 1999-12-13 日本鋼管株式会社 Method for producing (α + β) type titanium alloy superplastic formed member
RU2259413C2 (en) * 2001-02-28 2005-08-27 ДжФЕ СТИЛ КОРПОРЕЙШН Brick made out of a titanium alloy and a method of its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719324A1 (en) * 1976-04-28 1977-11-10 Kobe Steel Ltd TITANIUM ALLOY WITH HIGH INTERNAL FRICTION AND METHOD FOR HEAT-TREATING THIS ALLOY
RU2039111C1 (en) * 1992-07-14 1995-07-09 Научно-производственное объединение "Композит" Titanium alloy
US5332545A (en) * 1993-03-30 1994-07-26 Rmi Titanium Company Method of making low cost Ti-6A1-4V ballistic alloy
WO2003095690A1 (en) * 2002-05-09 2003-11-20 Titanium Metals Corporation ALPHA-BETA Ti-Al-V-Mo-Fe ALLOY

Also Published As

Publication number Publication date
ES2320684T3 (en) 2009-05-27
RU2269584C1 (en) 2006-02-10
EP1783235A4 (en) 2008-02-13
DE602005012284D1 (en) 2009-02-26
EP1783235B1 (en) 2009-01-07
US20080181809A1 (en) 2008-07-31
ATE420217T1 (en) 2009-01-15
EP1783235A1 (en) 2007-05-09
DK1783235T3 (en) 2009-03-16

Similar Documents

Publication Publication Date Title
WO2006014124A1 (en) Titanium-based alloy
JP7337207B2 (en) titanium alloy
CN108291277B (en) Processing of alpha-beta titanium alloys
CN108300918B (en) Calcium-containing rare earth magnesium alloy sheet with high room temperature forming performance and preparation method thereof
JP6165171B2 (en) Titanium alloys with improved properties
RU2283889C1 (en) Titanium base alloy
JP6026416B2 (en) High strength alpha / beta titanium alloy fasteners and fastener stock
CN113293273B (en) Processing method of 2xxx series aluminum alloy bar and wire for fastener
CN112105751B (en) High strength titanium alloy
CN103572094A (en) Titanium alloy having good oxidation resistance and high strength at elevated temperatures
CN111826550B (en) Moderate-strength nitric acid corrosion resistant titanium alloy
RU2724751C1 (en) Billet for high-strength fasteners made from deformable titanium alloy, and method of manufacturing thereof
CA3110188C (en) High strength fastener stock of wrought titanium alloy and method of manufacturing the same
CA2938854A1 (en) High-strength alpha-beta titanium alloy
JP2023153795A (en) Creep-resistant titanium alloys
CN113718139A (en) Al-Mg-Si-Cu-Mn aluminum alloy and processing method of extrusion material thereof
RU2690257C1 (en) Titanium-based alloy
Luo et al. Mechanical properties and microstructure of AZ31 magnesium alloy tubes
JP5605273B2 (en) High strength α + β type titanium alloy having excellent hot and cold workability, production method thereof, and titanium alloy product
CN111910138A (en) Step-by-step thermal mechanical treatment process for casting aluminum-silicon alloy
CN105671376A (en) High-strength and high-plasticity hypoeutectic aluminium-silicon alloy material manufactured through gravity casting and room-temperature cold rolling, and manufacturing method thereof
RU2569285C1 (en) High strength alloy based on titanium and article made from high strength alloy based on titanium
CN115815490A (en) Forging process of high-strength magnesium-zinc-manganese wrought magnesium alloy
RU2606677C1 (en) Titanium-based alloy (versions) and article made therefrom
CN116020970A (en) High-impact-power TA5 alloy forging ring and preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005772406

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005772406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11630428

Country of ref document: US