WO2006013897A1 - Optical pickup - Google Patents

Optical pickup Download PDF

Info

Publication number
WO2006013897A1
WO2006013897A1 PCT/JP2005/014219 JP2005014219W WO2006013897A1 WO 2006013897 A1 WO2006013897 A1 WO 2006013897A1 JP 2005014219 W JP2005014219 W JP 2005014219W WO 2006013897 A1 WO2006013897 A1 WO 2006013897A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
diffraction
wavelength
light beam
optical
Prior art date
Application number
PCT/JP2005/014219
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Shimozono
Kouichi Murata
Kou Ishibashi
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004227846A external-priority patent/JP4501583B2/en
Priority claimed from JP2004252148A external-priority patent/JP2006073046A/en
Priority claimed from JP2004266596A external-priority patent/JP4501609B2/en
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2006013897A1 publication Critical patent/WO2006013897A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to an optical pickup device that records information on or reproduces information from or on an optical recording medium (hereinafter referred to as an “optical disk” t) having a different disc thickness or recording density, such as a CD or DVD. .
  • an optical pin capable of recording information on an optical disk or reproducing information (hereinafter referred to as “recording / reproducing”), in particular, recording / reproducing on different types of optical disks such as CDs and DVDs.
  • a backup device is known.
  • a laser light source having a wavelength of about 780 nm is necessary for recording and reproducing a CD
  • a laser light source having a wavelength of about 650 nm is necessary for recording and reproducing a DVD.
  • the two-laser optical pickup device as described above, or an optical pickup device equipped with a twin laser is different because an optical system such as a collimator lens and an objective lens is commonly used at two wavelengths. It is necessary to multiplex so that the optical axes of the two light beams emitted from the light sources arranged at the positions coincide with the optical axis of the optical system. If they do not match, there is a problem that light cannot be received by a common light receiving element.
  • the conventional optical pickup device uses a diffractive element for two different wavelength light beams reflected by the information recording surface of the optical disk and returns one of the wavelengths.
  • the light beam is diffracted in the first order and transmitted, and the light beam of the other wavelength is diffracted in the 0th order (substantially
  • Japanese Laid-Open Patent Publication No. 2001-307369 discloses a method in which the light beam is transmitted straight without being diffracted) and the converging points of the respective returning light beams emitted from the diffraction element force are matched.
  • a diffraction element is used as a method of combining two light beams emitted from different positions and matching the optical axis after multiplexing with the optical axis of the optical system.
  • a method of diffracting a light beam of one wavelength at the 0th order and diffracting a light beam of the other wavelength at the first order so that the optical axes of the respective light beams emitted from the diffraction element coincide with each other for example, JP 2002—163837.
  • Japanese Patent Laid-Open No. 2002-116314 discloses a linear element instead of an organic material having a small linear expansion coefficient, which has been used as a diffraction element material. There is disclosed a technique that uses a synthetic resin having a large expansion coefficient and uses the fact that the pitch of the diffraction grating fluctuates due to a change in environmental temperature to offset the fluctuation of the diffraction angle due to the wavelength fluctuation.
  • the two-laser optical pickup device two light beams emitted from lasers arranged at different positions are combined, and the combined optical axis is made to coincide with the optical axis of the optical system.
  • a method using a beam splitter (or optical prism) is used (for example, Japanese Patent Laid-Open No. 2001-118279).
  • the conventional technique disclosed in Japanese Patent Application Laid-Open No. 2002-116314 has a problem that it is difficult to select an appropriate material that can cancel the fluctuation of the diffraction angle accompanying the change in the environmental temperature.
  • the wavelength variation with respect to the temperature change of the laser is about 0.25 nmZ ° C, but in order to cancel this wavelength variation, a resin with a linear expansion coefficient of about 3 X 10 _4 Z ° C is desirable.
  • so-called optical grade resin such as acrylic or polyolefin resin used in optical pickup devices has a linear expansion coefficient of about 7 X 10 _5 Z ° C. Characteristics cannot be obtained.
  • the above materials are made from laser light irradiation or other members whose thermal conductivity is small due to grease. It is difficult to reduce thermal distortion caused by local thermal expansion and contraction due to heat transfer.
  • the 0th-order light is transmitted straight through the diffractive element. Although it is not affected by wavelength fluctuations depending on the environmental temperature, the first-order diffracted light changes in proportion to the fluctuating wavelength because the diffraction angle depends on the environmental temperature. As a result, the optical axes of the two light beams do not coincide with each other, and the diffracted light beam shifts the position of the focused spot when it reaches the light receiving element.
  • the light receiving element is usually divided into a plurality of regions, and a focus servo or tracking is performed using a sum signal or a difference signal of a signal proportional to the amount of light for each of the divided regions. Servo is performed. However, if the position of the focused spot that reaches the light receiving element is shifted due to a factor other than the focus error or tracking error, accurate focus servo or tracking servo cannot be performed.
  • the present invention has been made in view of the above circumstances, and provides an optical pickup device in which the positional deviation of a spot on a light receiving element is suppressed with respect to a change in environmental temperature even when multiplexing by a diffraction element is used.
  • the purpose is to provide.
  • Two light sources that emit light beams of two different wavelengths, an objective lens installed between the light source and the optical recording medium, and one or two installed between the objective lens and the optical recording medium
  • an optical pickup device comprising two diffractive elements and a light receiving element that detects a light beam reflected by an optical recording medium
  • the diffractive element diffracts the two light beams with the same order or different orders and guides them to the light receiving element.
  • a first light source that emits a light beam having a first wavelength
  • a second light source that emits a light beam having a second wavelength different from the first wavelength
  • the 2 reflected by an optical recording medium
  • a light receiving element that receives the return light beam, and the diffraction element diffracts and transmits the return light beam with the same order.
  • a first light source that emits a light beam with a first wavelength
  • a second light source that emits a light beam with a second wavelength different from the first wavelength, the light beam with the first wavelength
  • the A forward optical system including an objective lens that guides a light beam having a second wavelength toward the optical recording medium; a first light receiving element that receives the return light beam having the first wavelength from the optical recording medium; and the optical recording medium.
  • a second light receiving element for receiving the return light beam having the second wavelength from the optical recording medium, and guiding the return light beam having the first wavelength from the optical recording medium to the first light receiving element, and from the optical recording medium.
  • a return optical system including an objective lens that guides the return light beam having the second wavelength to the second light receiving element, and the forward optical system includes the light beam having the first wavelength and the light beam having the second wavelength.
  • the optical pickup device according to 1, wherein the light beam having the first wavelength is diffracted with a diffraction order equal to each other, and the light beam with the second wavelength is diffracted with a diffraction order equal to each other.
  • the forward diffraction element and the backward diffraction element have diffraction gratings having the same grating pitch, diffract the light beams having the first wavelength at the same diffraction order, and have the second wavelength. Since the light beams are diffracted at the same diffraction order, the effect of the fluctuation of the environmental temperature on the positional deviation of the spot of the light beam collected on the light receiving element is affected even if the diffraction element is used for multiplexing. An optical pickup device that can be suppressed can be realized.
  • a first light source that emits a light flux of a first wavelength
  • a second light source that emits a light flux of a second wavelength different from the first wavelength
  • the light flux from the light source
  • An objective lens that condenses the light
  • a light receiving element that detects a light beam collected by the objective lens and reflected by the optical recording medium, and a light flux emitted from the first light source and the second light source.
  • the first diffractive element and the second diffractive element include The diffraction order of the first diffraction element with respect to the light beam of the first wavelength from the first light source having the same diffraction grating pitch, and the first wavelength of light reflected by the optical recording medium.
  • the order of diffraction in the second diffractive element with respect to the luminous flux is equal The order of diffraction in the first diffraction element for the second wavelength light beam from the second light source, and the second wavelength light beam reflected by the optical recording medium.
  • the first diffractive element and the second diffractive element which are equal to the order of diffraction in the diffractive element, are arranged substantially in parallel between the light source and the objective lens, and the first diffractive element is The light beam having the first wavelength and the light beam having the second wavelength are combined and guided to the objective lens, and the second diffractive element demultiplexes the light beam reflected by the optical recording medium and supplies it to the light receiving element.
  • the diffraction angle fluctuations of the diffraction by the second diffractive element functioning can be made almost the same, so the fluctuations of the respective diffraction angles are canceled out, and the deviation of the condensing spot position guided to the light receiving element can be suppressed.
  • An optical pickup device can be realized.
  • the light source and the light receiving element can be arranged close to each other, and the size of the apparatus can be reduced.
  • the diffractive element is a diffractive element in which linear or curved grooves are periodically formed on a transparent substrate, and the pitch of the groove period is 5 to 20 m.
  • a backup device is a diffractive element in which linear or curved grooves are periodically formed on a transparent substrate, and the pitch of the groove period is 5 to 20 m.
  • the pitch of the groove period in this configuration, that is, if it is 5 m or more, the theoretical diffraction efficiency exceeds 82%, and if it is 20 m or less, the distance between the diffraction element and the light receiving element is within 15 mm. can do.
  • each diffractive element has wavelength selectivity capable of selecting the wavelength of light to be diffracted at the first or higher order of diffraction.
  • the forward diffraction element and the backward diffraction element both diffract the light beam having the first wavelength at the 0th-order diffraction order, and diffract the light beam at the second wavelength at the first-order diffraction order. 8. The optical pickup device according to 3 or 7 above.
  • this configuration allows each diffraction element to diffract both the first wavelength light flux with the 0th order diffraction order and the second wavelength light flux both with the first order diffraction order. Therefore, it is possible to realize an optical pickup device with higher light utilization efficiency.
  • the diffraction grating includes a diffraction grating having a periodic structure in which a cross-sectional shape repeats a sawtooth shape, or a diffraction grating having a periodic structure in which a cross-sectional shape repeats a shape approximating a sawtooth shape by a stepped shape.
  • the optical pickup device according to any one of 2 to 8. With this configuration, in addition to the above effects, each diffraction element has a diffraction grating with a periodic structure in which the cross-sectional shape repeats a sawtooth shape, so that the diffraction element can be easily manufactured, and the cross-sectional shape is a sawtooth shape. Since it has a diffraction grating with a periodic structure that repeats a shape approximated by a stepped shape, an optical pickup device that can manufacture a diffraction element more easily can be realized.
  • the first diffractive element and the second diffractive element are gratings in which a birefringent material layer and an isotropic material layer are formed on a transparent substrate by repeating convex portions having a sawtooth cross-sectional shape. 6.
  • the diffractive element is a diffractive element having a sawtooth cross-sectional shape, an optical pickup device with high light utilization efficiency can be realized.
  • the birefringent material layer of the first diffractive element is oriented so that the extraordinary refractive index corresponds to the light flux in the polarization direction of the first linearly polarized light, and the second diffractive material layer
  • the birefringent material layer of the element is oriented so that the extraordinary refractive index corresponds to the second linearly polarized light orthogonal to the first linearly polarized light.
  • the diffractive element is a polarization-selective diffractive element, it is possible to realize an optical pickup device with higher light utilization efficiency.
  • the diffractive element is provided in each of the outward optical system and the backward optical system, and when there is a wavelength variation in the emitted light of the laser due to a change in the environmental temperature,
  • the diffraction angle change of diffraction by the first diffraction element and the diffraction angle change of diffraction by the second diffraction element in the return path optical system can be made approximately the same, so by canceling each diffraction angle change, the light receiving element It is possible to provide an optical pickup device capable of suppressing the deviation of the focused spot position led to the light.
  • FIG. 1 is a schematic configuration diagram of an optical pickup device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a part of a cross section of a cross-sectional diffraction element 8 having a stepped periodic structure according to an example of the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional diffraction pattern having a serrated periodic structure according to the first embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a part of the cross section of the element 8
  • FIG. 6 A diagram showing an optical path of diffracted light by the diffraction element 8 according to the first embodiment of the present invention.
  • 7 Schematic configuration diagram of an optical system showing the tilt of the diffraction element according to an example (Example 3) of the first embodiment of the present invention.
  • FIG. 13 A sectional view conceptually showing a part of a cross section of the return diffraction element 209 according to the example (Example 7) of the second embodiment of the present invention.
  • FIG. 14 is a diagram conceptually showing a configuration example of an optical pickup device according to an example (Example 8) of the second embodiment of the present invention.
  • FIG. 18 is a cross-sectional view conceptually showing a part of a cross section of a polarization diffraction grating 112 constituting the forward diffraction element 202 according to the second embodiment of the present invention.
  • FIG. 19 is a cross sectional view conceptually showing a cross section of a backward diffraction element 209 according to an example (Example 8) of the second embodiment of the present invention.
  • FIG. 20 is an explanatory view of a multiplexing action by the optical pickup device according to the third embodiment of the present invention.
  • FIG. 21 is an explanatory view of the demultiplexing effect by the optical pickup device according to the third embodiment of the present invention.
  • FIG. 22 is a schematic diagram conceptually showing the structure of the first diffraction element and the second diffraction element of the optical pickup device according to the third embodiment of the present invention.
  • Optical axis of the return light of the second wavelength 26 Optical axis after diffraction of return light of second wavelength
  • Optical axis after diffraction of light beam of wavelength ⁇
  • FIG. 1 which is a schematic configuration diagram of an optical pickup device according to a first embodiment of the present invention will be specifically described with reference to FIG. 1.
  • the optical pickup device of the present invention includes a first light source la that emits a light beam having a first wavelength, a second light source lb that emits a light beam of a second wavelength, an optical element 2, a collimator lens 3, and a diaphragm.
  • An objective lens 5 and a light receiving element 9 for detecting a return light beam reflected by the information recording surface 6a of the first optical disc 6 or the information recording surface 7a of the second optical disc 7 are provided.
  • the light beam emitted from the first light source la is reflected by the optical element 2 and condensed on the information recording surface 6a of the first optical disc 6 through the collimator lens 3, the diaphragm 4, and the objective lens 5. Irradiated.
  • the light beam emitted from the second light source lb is reflected by the optical element 2 and collected on the information recording surface 7a of the second optical disc 7 through the collimator lens 3, the diaphragm 4, and the objective lens 5. Light is irradiated.
  • the return light beam reflected by the information recording surface 6 a or 7 a passes through the objective lens 5, the diaphragm 4, the collimator lens 3, and the optical element 2 and is guided to the light receiving element 9.
  • the focus error signal, the traffic Error signal is obtained.
  • the optical pickup device includes a mechanism (focus servo) for moving the lens in the optical axis direction based on the focus error signal and a lens substantially perpendicular to the optical axis based on the tracking error signal.
  • Mechanism to move in the direction Racking servo is provided, but is omitted in Fig. 1.
  • the first light source la is a semiconductor laser light source that emits a linearly polarized divergent light beam having a wavelength of about 650 nm
  • the second light source lb is a linearly polarized divergent light beam that has a wavelength of about 780 nm.
  • a semiconductor laser light source is illustrated, respectively, it is not limited to these.
  • the first light source la and the second light source lb are not limited to those separately formed, and a so-called twin laser in which lasers having different wavelengths are integrated on a single semiconductor substrate. But you can.
  • the vicinity of wavelength 650 nm means the wavelength range of 630 to 670 nm
  • the vicinity of wavelength 780 means the wavelength range of 760 to 800 nm!
  • the optical element 2 has a function of reflecting the light beam emitted from the first light source la and the second light source lb to the collimator one lens 3 side and transmitting the return light of the optical disc force to the light receiving element 9 It has.
  • the powerful optical element include a half mirror and a polarizing beam splitter.
  • a 1Z4 wave plate is used between the optical element 2 and the optical discs 6 and 7, preferably between the optical element 2 and the collimator lens 3, and combined with the light source. Preferable to use effectively.
  • the collimator lens 3 has a function of converting the light beam reflected by the optical element 2 into substantially parallel light in the optical path from the light source to the optical disk. Also, in the optical path from the optical disk to the light receiving element, it is used in combination with an objective lens, which will be described later, and collects the return light beam from the optical disk, passes through the optical element 2 and the diffraction element 8, and the light receiving surface of the light receiving element 9 It has the function of concentrating on top.
  • the aperture 4 is configured to set the numerical aperture NA by selectively restricting the light beams from the light source la and the light source lb. Accordingly, when the numerical aperture for the first optical disc 6 and the numerical aperture for the second optical disc 7 are different during recording and reproduction of the optical disc, the numerical aperture can be adjusted by the diaphragm 4.
  • the diaphragm 4 includes a mechanical diaphragm and an optical diaphragm, and is not particularly limited.
  • the NA value is 0.65 for the first wavelength and the second wavelength.
  • a force exemplified by 0.50 is not limited to this. If the numerical aperture for the first optical disk 6 and the numerical aperture for the second optical disk 7 are the same, the diaphragm 4 may not be used.
  • the objective lens 5 can be used in common for the first wavelength and the second wavelength. Is a single lens with aberration corrected at a time, and each of the first wavelength and the second wavelength
  • the parallel light 1 2 is collected on the information recording surface 6 a of the optical disc 6 and the information recording surface 7 a of the optical disc 7.
  • the powerful objective lens 5 for example, the objective lens disclosed in Japanese Patent Laid-Open No. 2001-344798 can be used in the f row.
  • the first optical disk 6 is used for recording and reproduction using a light beam having a wavelength, and has a protective layer thickness of 0.6 mm, for example.
  • the second optical disk 7 is used for recording / reproduction using a light beam having a wavelength ⁇ , and has a protective layer thickness of 1.2 mm, for example.
  • the diffractive element 8 diffracts and transmits each of the return light of the first wavelength and the return light of the second wavelength with the same first order and collects them at substantially the same point on the light receiving element. Configured. In this case, it is preferable to set the diffraction order to the first order because the diffraction efficiency is high.
  • the diffractive element includes a linear or curved groove periodically formed on the surface of the transparent substrate, and the pitch of the applied groove period is 5 to 20 m. If the pitch of the groove period is less than 5 ⁇ m, the theoretical diffraction efficiency of the diffraction element is 82% or less, and the diffraction efficiency of 80% or more required for use in the optical pickup device may not be obtained. In order to obtain high diffraction efficiency, 7 m or more is preferable. If it is 9 m or more, the theoretical diffraction efficiency of 88% is obtained, which is more preferable.
  • the pitch of the groove period exceeds 20 m, the distance between the diffraction element and the light receiving element must be more than 15 mm, and the optical pickup device may not be compact.
  • the pitch of the groove period is preferably 15 ⁇ m or less, and more preferably 12 ⁇ m or less.
  • the cross-sectional shape of the periodic groove is a sawtooth shape or a sawtooth shape approximated by a step shape because a high diffraction efficiency is obtained when the diffraction of the same order is performed.
  • the cross-sectional shape of the periodic groove is stepped as shown in the cross-sectional view of FIG. 2, if one period of the periodic structure is stepped with any number of steps from 6 to 32 steps, it is high. It is preferable because a diffraction element with diffraction efficiency can be easily manufactured. Such a diffractive element is called a binary blazed diffractive element.
  • the periodic groove has a sawtooth shape as shown in the cross-sectional view of FIG. 3 because a higher diffraction efficiency can be obtained.
  • the return light of each wavelength is condensed at substantially the same point on the light receiving element surface by a pickup device having a high diffraction efficiency and a compact configuration. It can be done.
  • the groove shape of the diffraction element is changed to a curved line instead of a straight line, for example, a function of reducing coma generated when a parallel plate type half mirror is used as the optical element 2 is provided. Or a function of reducing or appropriately setting the amount of astigmatism of the light beam when the astigmatism method is used for the focus detection means.
  • the material of the transparent substrate for forming the diffraction element is preferably a quartz glass having a small linear expansion coefficient because it can suppress thermal distortion to a small value, but is not limited thereto, and is transparent to the wavelength of the light source. It is also possible to use an inorganic material such as optical glass as long as it is a suitable material.
  • the diffractive element is preferably formed by forming the periodic groove on the optical substrate by known photolithography and etching, but other methods such as cutting and stamping methods are also applicable.
  • the periodic grooves having a sawtooth shape or a step shape in cross section may be formed by directly processing the substrate.
  • a layer made of a transparent material is coated on the transparent substrate to cover the layer. May be formed by processing. According to the method of processing the coated layer, a diffractive element having a desired refractive index can be obtained by selecting a material forming the groove.
  • two diffractive elements are formed of materials having different refractive indexes, the two diffractive elements are disposed to face each other, and the two diffractive elements are arranged between the two diffractive elements.
  • a diffractive element having a laminated structure in which a material having a refractive index, such as a material having a different refractive index, is sandwiched between the materials having different refractive indexes at any wavelength. It is preferable to use a diffractive element having such a laminated structure because the diffraction efficiency at each wavelength can be optimized.
  • the light receiving element 9 receives the reflected light of the information recording surface 6a of the optical disc 6 and the information recording surface 7a of the optical disc 7, and applies the reflected light to each of the information recording surfaces 6a and 7a based on the received reflected light.
  • a read signal, a focus error signal, and a tracking error signal corresponding to the recorded information are generated and output to the outside.
  • FIG. 4 is a schematic configuration diagram of an optical pickup device according to the second embodiment of the present invention.
  • an optical pickup device 100 includes a first light source 201a that emits a light beam with a wavelength, a second light source 201b that emits a light beam with a wavelength, and each light source 201a and 201b.
  • the forward diffraction element 202 that combines the light beams and the combined light beam are transmitted, and the return light from the information recording surface 207a of the first optical disk 207 and the information recording surface 208a of the second optical disk 208 is reflected.
  • the optical element 203 that leads to the backward diffraction element 209 described later, the collimator lens 204 that converts the incident light beam into substantially parallel light, the stop 205, the objective lens 206, and the return from each of the information recording surfaces 207a and 208a A backward diffraction element 209 that demultiplexes light, a first wavelength light-receiving element 210a that receives a light beam of a wavelength after demultiplexing, and a light beam of a wavelength after demultiplexing
  • the second wavelength light receiving element 210b that receives 1 2 is provided.
  • return light is a light flux having a wavelength ⁇ or a light flux having a wavelength ⁇ .
  • the wavelength is called the first wavelength
  • the wavelength is called the second wavelength.
  • the light beam emitted from the first light source 201a is diffracted by the forward diffraction element 202, passes through the optical element 203, the collimator lens 204, the stop 205, and the objective lens 206 in this order, and is information on the first optical disc 2007. Condensed on the recording surface 207a. Similarly, the light beam emitted from the second light source 201b is diffracted by the forward diffraction element 202 and transmitted through the optical element 203, the collimator lens 204, the diaphragm 205, and the objective lens 206 in this order. Condensed on the information recording surface 208a.
  • an optical system that guides the light flux from the first light source 201a or the second light source 201b toward the information recording surface 207a of the first optical disc 207 or the information recording surface 208a of the second optical disc 208, respectively, in the forward path It is called an optical system.
  • the light beams condensed on the information recording surface 207a of the first optical disc 207 or the information recording surface 208a of the second optical disc 208 are reflected by the information recording surfaces 207a and 208a, respectively, and the object lens 206 and the aperture stop are reflected.
  • 205 is transmitted through the collimator lens 204, reflected by the optical element 203, demultiplexed by the return path diffraction element 209, and enters the first light receiving element 210a or the second light receiving element 210b.
  • an optical system that guides the return light of the first wavelength from the information recording surface 207a to the first light receiving element 210a and guides the return light of the second wavelength from the information recording surface 208a to the second light receiving element 210b. This is called a return optical system.
  • the output signal of the first light receiving element 210a is used to generate a read signal, a focus error signal, and a tracking error signal of information recorded on the optical disc recording surface 207a of the first optical disc 207.
  • the output signal of the second light receiving element 210b is used to generate a read signal, a force error signal, and a tracking error signal of information recorded on the optical disk recording surface 208a of the second optical disk 208.
  • the optical pickup device includes a mechanism (focus servo) for controlling the lens in the optical axis direction based on the focus error signal and a lens on the optical axis based on the tracking error signal!
  • a mechanism (tracking servo) that controls in a direction almost perpendicular to the axis is provided, but is omitted in the configuration shown in Fig. 4.
  • the first light source 201a is composed of, for example, a semiconductor laser and emits a linearly polarized divergent light beam having a wavelength near 650 nm.
  • the second light source 201b is constituted by a semiconductor laser, for example, and emits a divergent light beam having a wavelength near 780 nm and linearly polarized light.
  • the wavelengths near 650 nm and 780 nm mean wavelengths in the range of 630 nm to 670 nm and 760 nm to 800 nm, respectively.
  • the first light source 201a and the second light source 201b are arranged separately, two semiconductor laser chips are mounted on the same substrate in the same package. Alternatively, it may be configured to form an hybrid two-wavelength laser light source. Alternatively, the first light source 201a and the second light source 201b are a monolithic two-wavelength laser light source having two light emitting points that emit different wavelengths (see, for example, Japanese Patent Application Laid-Open No. 2004-39898). It may be configured to make
  • the forward diffraction element 202 is configured by, for example, a diffraction grating, diffracts the light beams emitted from the light sources 201a and 201b, and is configured so that the optical axes of the diffracted light beams substantially coincide with each other at a predetermined temperature. Yes. That is, the forward diffraction element 2 is configured to multiplex the light beams emitted from the first light source 201a and the second light source 20 lb. Here, the same-order diffraction can be used for combining the light beams emitted from the first light source 201a and the second light source 201b.
  • the forward diffraction element 202 is constituted by a diffraction grating, and the diffraction grating constituting the forward diffraction element 202 is simply referred to as “diffraction grating of the forward diffraction element 202”.
  • the optical element 203 transmits the light beam diffracted and combined by the forward diffraction element 202 to the collimator lens 204 side, and also the information recording surface 207a of the first optical disk 207 or the second optical disk.
  • the return light from the information recording surface 208a 208 is reflected and guided to the return diffraction element 209 side.
  • the collimator lens 204 converts the light beam diffracted by the outward diffraction element 202 and combined into substantially parallel light.
  • the diaphragm 205 is configured to set the numerical aperture NA by selectively limiting the light flux from the first light source 201a or the second light source 201b.
  • the numerical aperture NA is 0.65 for the first wavelength beam, and the numerical aperture NA for the second wavelength beam.
  • the diaphragm 205 includes a mechanical diaphragm, an optical diaphragm, and the like, and is not particularly limited.
  • the objective lens 206 is a single lens whose aberration is corrected to such an extent that it can be used at each wavelength ⁇ .
  • the parallel light of each of the first wavelength and the second wavelength is optical disc 20
  • the light is focused on the information recording surface 207a of No. 7 and the information recording surface 208a of the optical disc 208.
  • the objective lens 206 for example, an objective lens disclosed in Japanese Patent Laid-Open No. 2001-344798 can be used.
  • the objective lens 206 is not limited to the above, and for example, has two wavelengths, ⁇
  • a configuration in which a lens that corrects aberrations occurring at one of the two wavelengths and an optical member having a function of correcting aberrations occurring at the other wavelength may be combined.
  • the first optical disc 207 is a recording medium for performing recording and reproduction using a light beam having the first wavelength, and has a protective layer thickness of 0.6 mm, for example.
  • the second optical disk 208 is a recording medium for recording / reproducing using a light beam having a wavelength, for example, 1.2 mm.
  • the protective layer thickness is [0050]
  • the return path diffraction element 209 is constituted by, for example, a diffraction grating, diffracts the return light from the information recording surfaces 207a and 208a of the optical disks 207 and 208, and the direction of the optical axis of each light beam after diffraction is separated. It is configured to go. That is, the return path diffraction element 209 is configured to demultiplex the return light. The same order of diffraction can be used for demultiplexing the return light. Further, it is possible to divide one light beam by diffracting it with the 0th order and diffracting the other light beam with an order other than the 0th order.
  • the backward diffraction element 209 is constituted by a diffraction grating, and the diffraction grating constituting the backward diffraction element 209 is simply referred to as “diffraction grating of the backward diffraction element 209”.
  • the grating pitch of the diffraction grating of the backward diffraction element 209 and the grating pitch of the diffraction grating of the forward diffraction element 202 are made substantially equal, and the return light of each wavelength and ⁇ in the forward diffraction element 209
  • the diffraction order of 1 2 is made equal to the diffraction order of the first diffraction element 2 from the following points. That is, by doing so, the oscillation wavelength of the light source changes due to a change in environmental temperature, and the direction of the light beam diffracted and emitted by the forward diffraction element 202 and the backward diffraction element 209 (hereinafter simply referred to as the emission direction). Change in the exit direction occurs in the forward diffraction element 202 and the backward diffraction element 209 so as to cancel out each other by substantially the same amount, so that the light of each light beam emitted from the backward diffraction element 209 The axial direction is not affected by changes in ambient temperature.
  • the surface of the diffraction element from which the incident light exits is referred to as an “exiting surface”.
  • the first light receiving element 210a receives the return light from the information recording surface 207a of the first optical disc 207, and according to the information recorded on the information recording surface 207a, a read signal, a focus error signal, and Each signal of the tracking error signal is generated and output to the outside.
  • the second light receiving element 210b receives the return light from the information recording surface 208a of the second optical disc 208, and reads a read signal, a focus error signal, and a focus error signal according to the information recorded on the information recording surface 208a. Each signal of the tracking error signal is generated and output to the outside.
  • the distance between the first light receiving element 210a and the backward diffraction element 209 is substantially equal to the distance between the first light source 201a and the forward diffraction element 202.
  • the distance between the second light receiving element 210b and the backward diffraction element 209 is substantially equal to the distance between the second light source 201b and the forward diffraction element 2202.
  • the first light receiving element 210a and the second light receiving element 210b are configured as a single light receiving element even if they are separately disposed, and receive different light depending on the position where each light beam is condensed. It may be configured to have a surface.
  • FIG. 5 shows an optical pickup device according to a third embodiment of the present invention, and this optical pickup device 310 includes a first light source 301a that emits a light beam having a wavelength (constituting a part of the light source 301). And a second light source 301b (a part of the light source 301).
  • Light receiving element 308a (which constitutes part of light receiving element 308) and light beam with wavelength ⁇ are received
  • a second light receiving element 308b (which constitutes a part of the light receiving element 308).
  • D indicates an optical disk. Specifically, D indicates the first optical disk (D a ).
  • D is the second optical disc (D is the al a b bl b information recording surface of the optical disc D).
  • the first light source 301a is composed of a semiconductor laser that emits a divergent light beam having a wavelength ( ⁇ ) near a wavelength of 650 nm, for example, as linearly polarized light in a predetermined polarization direction (referred to as a first polarization direction). .
  • the second light source 301b is configured to emit a divergent light beam having a wavelength ( ⁇ ) near, for example, 780 nm.
  • It is composed of a semiconductor laser that emits linearly polarized light equivalent to the polarization direction of the light beam from the source 301a.
  • first light source 301a and the second light source 301b are not limited to separate bodies.
  • two semiconductor laser chips are mounted on a common substrate in a common package.
  • a wavelength laser light source may be used.
  • a monolithic two-wavelength laser light source having two emission points that emit different wavelengths may be used.
  • the first diffractive element 302 acts as a diffraction grating for linearly polarized light beams in the first polarization direction, and is a straight line in the second polarization direction orthogonal to the first polarization direction.
  • it is a polarizing diffraction element provided with a birefringent material that does not act as a diffraction grating.
  • the first diffractive element 302 diffracts the first linearly polarized light beams emitted from the first light source 301a and the second light source 301b with the same order, and the optical axes of the diffracted light beams are These are configured to substantially coincide with each other at a predetermined temperature. That is, the first diffractive element 302 multiplexes the light beams emitted from the first light source 301a and the second light source 301b.
  • the return light beam reflected and returned from the information recording surface D of the optical disc D or the information recording surface D of the optical disc D is returned in the second polarization direction by the function of the 1Z4 wavelength plate 304 described later. Since it is linearly polarized light, the first diffractive element 302 transmits the return light beam without having a diffractive function.
  • the second diffractive element 303 does not act as a diffraction grating for a linearly polarized light beam in the first polarization direction, and is a straight line in the second polarization direction orthogonal to the first polarization direction. Although it is a polarizing diffractive element having a birefringent material that acts as a diffraction grating for a polarized light beam, each light beam diffracted by the first diffractive element 302 is transmitted. For the return beam, each beam is diffracted with the same order, and the direction of the optical axis of each beam is separated after diffraction. That is, the second diffractive element 303 demultiplexes each return light beam.
  • the diffraction grating pitch of the second diffraction element 303 is substantially the same as the diffraction grating pitch of the first diffraction element 302, and the diffraction order of the first diffraction element 302 is equal to the light flux of each wavelength.
  • the 1Z4 wavelength plate 304 has a function of converting the linearly polarized light beam having the first polarization direction transmitted through the second diffraction element 303 into circularly polarized light.
  • the 1Z4 wavelength plate 304 is a straight line in the second polarization direction perpendicular to the first polarization direction with respect to the return light beam reflected by the information recording surface of the optical disk and returned by the reversely circularly polarized light. It has a function of converting to polarized light.
  • This 1Z4 wave plate 304 has a phase difference of 1Z4 waves for both the long and long wavelengths.
  • a broadband retardation plate can be used.
  • the collimator lens 305 diffracts by the first diffraction element 302 and converts the combined light beam into substantially parallel light.
  • the stop 306 sets the numerical aperture NA by selectively limiting the light flux from the first light source 301a or the second light source 301b. If the numerical aperture for the first optical disc D and the numerical aperture for the second optical disc D are different during recording / reproduction of the optical disc D, the numerical aperture a b
  • the diaphragm 306 includes a mechanical diaphragm and an optical diaphragm, and is not particularly limited.
  • the objective lens 307 is aberration-corrected so that both the wavelength and the wavelength can be used.
  • a single lens, and the respective light fluxes of wavelength and wavelength are optical
  • Disc information recording surface D and optical disc information recording surface D of optical disc D are condensed.
  • the objective lens 307 for example, an objective lens disclosed in Japanese Patent Laid-Open No. 2001-344798 can be used. This objective lens is not limited to this.
  • aberration correction is performed at one of the two wavelengths 1 and 2, and aberration at the other wavelength is corrected by combining an optical element having an aberration correction function.
  • the first optical disk D is used for recording / reproduction with a light beam having a wavelength ⁇ , for example, a 1
  • the protective layer thickness is 6 mm.
  • the second optical disk D has a light beam of wavelength ⁇ b 2
  • Used for recording and playback for example, 1.2 mm protective layer thickness.
  • the first light receiving element 308a receives the return light flux of the information recording surface D of the first optical disc D a a
  • the information recorded on information recording surface D is read, the focus error signal, and the al
  • Each signal of the racking error signal is output.
  • the second light receiving element 3 08b receives the return light of the information recording surface D force of the second optical disc D, and reads the information recorded on the information recording surface D b bl bl.
  • Each signal of tracking error signal is output. It is desirable that the distance between the first light receiving element 308a and the second diffractive element 303 is substantially the same as the distance between the first light source 301a and the second diffractive element 303. Note that the first light receiving element 308a and the second light receiving element 308b are not limited to separate members. Separate light-receiving surfaces are provided in the same light-receiving element based on the position where each beam converges. It may be a thing.
  • the light beam having a wavelength emitted from the first light source 301 a is diffracted by the first diffraction element 302, and is diffracted by the second diffraction element 303, 1Z4 wavelength plate 304, collimator lens 305, aperture 306, and objective lens 307.
  • the light is sequentially transmitted and condensed on the information recording surface D of the first optical disc D.
  • the light flux having a wavelength emitted from the light source 301b is diffracted by the first diffraction element 302, and the second
  • the light passes through the diffraction element 303, the 1Z4 wavelength plate 304, the collimator lens 305, the stop 306, and the objective lens 307 in this order, and is condensed on the information recording surface D of the second optical disc D.
  • the light beam condensed on the information recording surface D of the first optical disc D is the information on the optical disc D.
  • the light beam condensed on the information recording surface D of the second optical disc D is the optical disk b bl.
  • the objective lens 307 Reflected by the information recording surface D of the lens D, the objective lens 307, aperture 306, collimator lens 30 b bl
  • Error signal and tracking error signal can be obtained. Also, the information recorded on the optical disc recording surface D of the second optical disc D is used for output information from the second light receiving element 308b.
  • the optical pickup device 310 includes a mechanism (focus servo) for moving the objective lens 307 in the optical axis direction based on the focus error signal, and an objective lens 307 based on the tracking error signal.
  • Force that includes a mechanism (tracking servo) that moves in a direction almost perpendicular to the optical axis is omitted in the configuration shown in Fig. 15.
  • the first The diffractive element 302 and the second diffractive element 303 have substantially the same amount of change, and cancel each other. In other words, if there is a wavelength variation due to changes in the ambient temperature, it will function on the luminous flux from the light source.
  • the diffraction angle fluctuation of the diffraction by the first diffraction element and the diffraction angle fluctuation of the diffraction by the second diffraction element functioning with respect to the light beam reflected by the optical disk can be made approximately the same, so that each time The bending angle is canceled and the optical axis direction of the light beam emitted from the second diffractive element 303 does not depend on the environmental temperature.
  • the first diffractive element 302 and the second diffractive element 303 are arranged substantially in parallel between the light source 301 and the objective lens 307, the light source and the first light receiving element 308 can be arranged close to each other, The size of the apparatus can be reduced.
  • Examples 1 and 3 to 6 are Examples, and Example 2 is a Comparative Example.
  • Semiconductor laser light sources la and lb that emit linearly polarized divergent light beams of 780 nm, optical element 2, collimator lens 3, light beams from light source la and light source lb are selectively restricted, and the first wavelength 0.65 for the luminous flux, and for the second wavelength
  • a diaphragm 4 having a numerical aperture of 0.5, an objective lens 5 and a light receiving element 9 for detecting a return beam are provided.
  • each return light beam is firstly transmitted by the diffraction element 8. It is diffracted and transmitted through.
  • the diffraction order in the diffraction element 8 is assumed to be the first order.
  • the return light of the first wavelength is incident on the diffraction element 8 in the direction of reference numeral 21, and the traveling direction is bent by an angle of reference numeral 23 by diffraction and is diffracted and transmitted in the direction of reference numeral 22.
  • the return light of the second wavelength is The light beam is incident on the diffraction element 8 in the direction of reference numeral 25, and the traveling direction is bent by an angle of reference numeral 27 by diffraction and is diffracted and transmitted in the direction of reference numeral 26, which is the same direction as reference numeral 22.
  • Reference numeral 29 denotes a difference between incident angles at which the return light having the first wavelength and the return light having the second wavelength are incident on the diffraction element 8.
  • the first wavelength is obtained
  • the incident angle of the return light of the first wavelength to the diffraction element 8 is ⁇
  • the diffraction angle of the return light of the first wavelength by the diffraction element 8 is ⁇ ′
  • the incident angle of the return light to the diffraction element 8 is ⁇ , and the return light of the second wavelength is diffracted by the diffraction element 8.
  • the light beam diffracted by the diffraction element 8 is separated from the diffraction element by the distance shown in FIG. It has a condensing point at a point far away.
  • the quartz glass has a periodic structure formed in this way, and is formed by finely processing quartz glass by photolithography and etching.
  • FIG. 2 is a cross-sectional view of the vicinity of the optical axis of the outgoing light when the diffractive element 8 of this example is cut by a plane including the optical axes of the incident light 33 and 34 and the outgoing light 35.
  • the surface having the periodic structure shown is the entrance surface for the return light beams of the first and second wavelengths, and the surface indicated by reference numeral 32 is the exit surface.
  • the diffraction efficiency at that time is that the luminous flux of the first wavelength (650 nm) and the second wavelength (
  • one period of the step-like periodic structure is not limited to the six steps used in this example. If one period of the periodic structure is 6 steps or more, the diffraction efficiency of the light beams having the two wavelengths can be further improved. As Table 1 summarizes the number of stepped steps and the diffraction efficiency (%) at that time, the diffraction efficiency is 84% for 8 steps, 86% for 10 steps, and 87% for 32 steps.
  • Equation (7) is obtained as ⁇ ⁇ .
  • the change ⁇ a in the diffraction direction y of the light beam having the second wavelength is equal to the second light source 2a. If the wavelength fluctuation rate due to temperature change is W nmZ ° C, Eq. (8) is obtained as ⁇ a.
  • the wavelength variation ⁇ ⁇ per unit temperature of the first light source la (wavelength 650 nm) is about 0.2 OnmZ ° C
  • the wavelength per unit temperature of the first light source 1 a (wavelength 780 nm) Since the variation ⁇ ⁇ is about 0.25 nmZ ° C, the deviation ⁇ ⁇ in the diffraction direction of the light beams of two wavelengths is
  • the deviation of the diffraction direction of the light flux of the two wavelengths is made to diffract and transmit the light beam of the first wavelength of 650 nm in the 0th order (that is, substantially Compared with the shift of the condensing point in the conventional optical pickup device using a diffraction element that diffracts and transmits the light beam of the second wavelength of 780 nm in the first order and matches the condensing point. Try.
  • the light beam having the first wavelength of 650 nm is diffracted and transmitted in the 0th order, so that the diffraction direction does not change even if the wavelength changes due to temperature change.
  • the light beam with the second wavelength of 780 nm is first-order diffracted and diffracted and transmitted. Therefore, if a change in wavelength ⁇ occurs due to a temperature change ⁇ , a change in the diffraction angle ⁇ ⁇ represented by Eq.
  • Example 2 Comparing Example 1 and Example 2, the difference in diffraction direction ⁇ ⁇ due to the temperature change ⁇ in Example 1 is less than 1Z5 of the deviation in Example 2 obtained above and the return light of the first wavelength and the second It was shown that the shift of the focal point can be effectively suppressed by using the configuration of the optical pickup device of the present invention that first-order diffracts both the return light of the wavelengths.
  • the diffractive element is installed perpendicular to the optical axis of the optical system.
  • the diffractive element is disposed obliquely with respect to the optical axis of the optical system, for example, a parallel plane half mirror is used as the optical element 2. It is preferable because it can have a function to reduce astigmatism that occurs in some cases. As shown in the configuration diagram around the diffraction element of the optical pickup device of the present invention shown in FIG.
  • Example 1 a straight and equidistant grating with parallel grooves is used as the diffraction element, but the present invention is not limited to this, and a diffraction element having a curved groove (hereinafter referred to as a curved groove diffraction element) may be used. Good.
  • a diffractive element with a curved groove for example, it is possible to provide a function for correcting coma and wrinkles or astigmatism that occurs when a parallel plate type half mirror is used as the optical element 2. It is preferable that a function for appropriately setting the amount of astigmatism of the light beam when using the astigmatism method for the focus detection means can be added.
  • the optical design of a diffractive element having a curved groove can be performed using a known phase function method.
  • each diffractive element using a curved groove diffractive element having a phase function coefficient summarized in Table 2 is formed and replaced with the diffractive element in the optical pickup apparatus of Example 1, the optical pickup apparatus is configured as described above.
  • the converging points of the return light of the two wavelengths are matched, and the coma and astigmatism summarized in Table 3 are obtained.
  • the curved groove diffractive element in each example has a coma aberration reduction in example 4, coma and astigmatism reduction in example 5, coma aberration reduction and a desired value (0.5 ⁇ in this example).
  • the optical design is designed to obtain astigmatism.
  • Example 4 the return light condensing points of the two wavelengths are made to coincide with each other.
  • Example 4 the astigmatism value is made equal to Example 1. Coma is reduced while maintaining. In Example 5, coma and astigmatism are simultaneously reduced. In Example 6, coma is reduced and the astigmatism value is adjusted to 0.5 °.
  • Example 1 Example 3
  • Example 4 Example 5
  • Example 6 Coma aberration DVD 0. 047 A 0. 047 ⁇ 0. 000 ⁇ 0. 005 ⁇ 0. 015 ⁇ coma aberration CD 0. 023 ⁇ 0. 023 ⁇ 0. 000 ⁇ 0. 001 ⁇ 0. 006 ⁇ Astigmatism DVD 0. 180 ⁇ 0. 03 ⁇ 0. 177 ⁇ 0. 009 ⁇ 0. 501 ⁇ Astigmatism CD 0. 074 ⁇ 0. 01 078 ⁇ 0. 014 ⁇ 0. 497 ⁇
  • the diffractive element transmits each light flux of the return light having the first wavelength and the second return light having the wavelength.
  • the power described on the assumption that CD and DVD are compatible is compatible with Blu-ray Disc or HD—DVD (High Definition DVD) and DVD, or between Blu-ray Disc or HD—DVD and CD. It can be effectively applied to compatibility.
  • the optical system is configured as a so-called infinite optical system using a collimator lens, but the range to which the present invention is applied is limited to the infinite optical system. It is not limited, and it can be a finite optical system without using a collimator lens.
  • the forward optical system and the backward optical system have diffractive elements having the same grating pitch, and each diffractive element emits a light beam having the first wavelength. While diffracting with the same order, the second wavelength light beam is diffracted with the same order.
  • each diffraction element has a first order of diffraction for diffracting a light beam of the first wavelength and a diffraction order power for diffracting a light beam of the second wavelength ⁇
  • each diffraction element is of the order of the diffraction order that diffracts the light beam of the first wavelength
  • the order of diffraction that diffracts the light beam of the second wavelength is the first order.
  • the optical pickup device 100 includes a first light source 201a that emits a light beam with a first wavelength of 650 nm, and a second light source 201b that emits a light beam with a second wavelength of 780 nm.
  • a light beam 205 emitted from each of the light sources 201a and 201b, an objective lens 206, a return diffraction element 209 for demultiplexing the return light from each information recording surface 207a and 208a, and a first wavelength after demultiplexing 6 includes a first light receiving element 210a that receives a light beam having a wavelength of 50 nm and a second light receiving element 210b that receives a light beam having a second wavelength of 780 nm after being demultiplexed.
  • the optical pickup device 100 includes a diffraction element 202, a 209 force, the first order of diffraction for diffracting a light beam having a first wavelength of 650 ⁇ m, and a light beam having a second wavelength of 780 nm.
  • the diffraction order is set to be the first order.
  • Each diffraction element 202, 209 also has a diffraction grating force having the same grating pitch. First, multiplexing will be described.
  • FIG. 8 is an explanatory diagram of multiplexing performed by the optical pickup device 100 according to the seventh example.
  • the light beams emitted from the first light source 201a and the second light source 201b are incident on the forward diffraction element 202 with the line indicated by reference numeral 221 and the line indicated by reference numeral 222 as optical axes, respectively.
  • the surface of the diffraction element on which the light beam enters is simply referred to as “incident surface”.
  • each light beam enters the forward diffraction element 202 from a direction perpendicular to the incident surface of the forward diffraction element 202 (direction of a line indicated by reference numeral 223) and angles 0 and ⁇ .
  • the angle formed by the light beam and the direction perpendicular to the incident surface of the folding element 202 is referred to as the incident angle.
  • Each light beam incident on the outward diffraction element 202 exits from the outward diffraction element 202 in a substantially vertical direction.
  • the direction of the light beam emitted from the forward diffraction element 202 is parallel to the optical axis of an optical system configured by the collimator lens 204, the objective lens 206, and the like (hereinafter referred to as the optical axis of the optical pickup device 100). It has become a direction.
  • the first light source 201a When the wavelength of the light beam emitted from the first light source 201a is 650 nm and the grating pitch of the diffraction grating of the forward diffraction element 202 is P, the first light source 201a is emitted from the first light source 201a. A light beam having a different wavelength is incident on the forward diffraction element 202 at an incident angle of 0 expressed by equation (15).
  • the wavelength of the light beam emitted from the second light source 201b is 780 nm, and the forward diffraction element
  • the second light source 201b is configured such that the light beam having the wavelength emitted from the second light source 201b is incident on the forward diffraction element 202 with an incident angle represented by equation (16) 0 so
  • the light emitted from each of the light sources 20 la and 20 lb is diffracted by the outward diffraction element 202 and emitted.
  • the directions will match.
  • FIG. 9 is an explanatory diagram of the demultiplexing performed by the optical pickup device according to Example 7.
  • the grating pitch of the diffraction grating of the backward diffraction element 209 is assumed to be q.
  • Return light from the information recording surface 207a of the optical disc 207 or the information recording surface 208a of the optical disc 208 enters the entrance surface of the return diffraction element 209 substantially perpendicularly with the line indicated by reference numeral 231 in FIG. Diffracts at the following diffraction angles.
  • the light flux of the wavelength emitted from the first light source 201a is diffracted at the diffraction angle represented by ⁇ Zq, and the light flux of the wavelength emitted from the second light source 201b is
  • the light is diffracted at a diffraction angle represented by 2 ⁇ 2 Zq and emitted from the backward diffraction element 209 using the line indicated by reference numeral 232 or the line indicated by reference numeral 233 as the optical axis.
  • the first light receiving element 210a is arranged such that the light receiving surface is positioned on a line indicated by reference numeral 232.
  • the second light receiving element 210b is arranged such that the light receiving surface is positioned on a line indicated by reference numeral 233.
  • FIG. 10 is a diagram illustrating the optical axis direction of the incident light beam to the forward diffraction element 202 and the optical axis direction of the diffracted light beam when the oscillation wavelengths of the light sources 201a and 201b change. Components similar to those shown are denoted by the same reference numerals.
  • the diffraction angle fluctuates by ⁇ compared to when there is no fluctuation in wavelength. If this amount ( ⁇ ⁇ ⁇ ) is ⁇ 0,
  • the light beam travels along a direction (line direction indicated by reference numeral 223) perpendicular to the exit surface of the forward diffraction element 202 and a direction (line direction indicated by reference numeral 241) formed by an angle ⁇ .
  • the oscillation wavelength ⁇ 1S of the second light source 201b is changed by the change in the environmental temperature.
  • the light beam emitted from the second light source 201b is
  • the diffraction angle when diffracting by the diffraction element 2 is expressed by the following equation (18).
  • the diffraction angle changes by ZP. If this amount ( ⁇ ⁇ ⁇ ) is ⁇ 0, the light flux b b after wavelength change
  • the light When reflected by the information recording surface 208 a of the second optical disk 208, the light enters the backward diffraction element 209 at an angle ⁇ 0 or an angle ⁇ 0 with the direction perpendicular to the backward diffraction element 209.
  • FIG. 11 is a diagram illustrating the incident direction of the light beam incident on the return path diffraction element 209 and the emission direction of the light beam output from the return path diffraction element 209 when the oscillation wavelengths of the light sources 201a and 201b change. Components similar to those shown in FIG. 9 are given the same reference numerals.
  • the diffraction angle when a 1 ⁇ ⁇ ) is incident on the backward diffraction element 209 and diffracted by the backward diffraction element 209 is expressed by the following equation (19).
  • the light beam incident on the backward diffraction element 209 is diffracted in the direction with the line indicated by reference numeral 253 as the optical axis.
  • the direction of diffraction at this time is the direction perpendicular to the backward diffraction element 209 (the line indicated by reference numeral 231).
  • Direction and an angle represented by the following equation (20).
  • the light beam incident on the backward diffraction element 209 is diffracted in the direction with the line indicated by reference numeral 254 as the optical axis.
  • the direction of diffraction at this time is the direction perpendicular to the backward diffraction element 209 (the line indicated by reference numeral 231). Direction) and an angle represented by the following equation (22).
  • the grating pitch q of the diffraction grating of the backward diffraction element 209 is equal to the grating pitch P of the diffraction grating of the forward diffraction element 202, ⁇ Zq and ⁇ Zp in the above equation (20) cancel each other.
  • the direction of the light beam after being diffracted by the backward diffraction element 209 indicated by reference numeral 253 is the same as the direction of the light beam indicated by reference numeral 232 in FIG.
  • the direction of the diffracted light beam indicated by reference numeral 254 is the same as the direction of the light beam indicated by reference numeral 233 in FIG.
  • FIG. 12 is a cross-sectional view conceptually showing a part of the cross section of the forward diffraction element 202 according to the present embodiment.
  • a surface denoted by reference numeral 261 is an incident surface on which light beams emitted from the light sources 201a and 201b are incident
  • a surface denoted by reference numeral 262 is an output surface from which each light beam is emitted.
  • the light beam emitted from the first light source 201a and the light beam emitted from the second light source 201b are respectively derived from the direction of the arrow indicated by reference numeral 263 and the direction of the arrow indicated by reference numeral 264, respectively. Is incident on. Further, each light beam diffracted by the forward diffraction element 202 is emitted in a direction in which the directional force indicated by the arrow 265 also deviates.
  • the material of the outward diffraction element 202 is quartz glass, and the diffraction grating of the outward diffraction element 202 is It is formed using an etching technique.
  • the forward diffraction element 202 is constituted by a diffraction grating having a cross-sectional shape having a periodic structure in which a stepped shape repeats periodically.
  • the diffraction grating has a periodic structure in which one step is a step with 6 step force, and the step d of each step (step) is 0.254 m.
  • the width of the portion (hereinafter, referred to as a flat portion) substantially parallel to the exit surface of each floor was set to 1. so that the pitch was 10 m.
  • a diffraction grating is called a binary blazed diffraction grating.
  • the first light source The diffraction efficiency of the first-order diffraction of the emitted light beam with a wavelength of 650 nm and the light beam with a wavelength of 780 nm emitted by the second light source can both be 80%.
  • FIG. 13 is a cross-sectional view conceptually showing a part of a cross section of the backward diffraction element 20 according to the present example.
  • the surface denoted by reference numeral 271 is the incident surface of each return light
  • the surface denoted by reference numeral 272 is the exit surface of the return path diffraction element 209.
  • the light beam emitted from the first light source 201a and the light beam emitted from the second light source 201b are reflected by the information recording surfaces 207a and 208a of the optical disks 207 and 208, respectively, and are reflected on the return path diffraction element 209.
  • the light enters from a direction substantially perpendicular to the line (the direction of the line indicated by reference numeral 273). When the wavelength fluctuates, the light enters from the direction deviating from the line indicated by reference numeral 273 as described above.
  • a light beam having a wavelength (e.g., diffracted by the backward diffraction element 209)
  • the optical pickup device 800 according to Example 8 has the same optical elements as the optical pickup device 100 according to Example 1, but the optical pickup device 100 according to Example 1 is part of the optical member. The relative arrangement of is different.
  • the optical pickup device 1 according to Example 1 is shown. The same reference numerals are assigned to optical members similar to those in 00.
  • the optical pickup device 800 according to Example 8 does not diffract the light beam having the first wavelength of 650 ⁇ m (the diffraction order is 0th order), and diffracts the light beam of the second wavelength of 780 nm. (The order of diffraction is the first order). First, multiplexing will be described.
  • FIG. 15 is an explanatory diagram of multiplexing performed by the optical pickup device 800 according to Example 8.
  • the light beam emitted from the first light source 201a is incident substantially perpendicular to the incident surface of the forward diffraction element 202 (in the direction of the line indicated by reference numeral 291), and is not diffracted by the forward diffraction element 202. (Diffraction order is 0th order), the light is emitted in a direction substantially perpendicular to the exit surface of the forward diffraction element 202 (the direction of the line indicated by reference numeral 291).
  • the wavelength of the light beam emitted from the second light source 201b is 780 nm.
  • the second light source 201b When the grating pitch of the folded grating is P, the second light source 201b has an optical axis of the light beam emitted from the second light source 201b and an angle ⁇ represented by the following equation (23) with the line indicated by reference numeral 291. Arranged as b
  • the incident direction of the light beam emitted from the second light source 201b to the forward diffraction element 202 is indicated by a line denoted by reference numeral 292.
  • the forward diffraction element 202 causes the light beam emitted from the second light source 201b to enter from this direction, so that the forward diffraction element 202 performs first-order diffraction, and a direction perpendicular to the forward diffraction element 202 (a line denoted by reference numeral 291).
  • the light is emitted along the direction of
  • the light beam emitted from the first light source 201a is diffracted by the 0th order by the forward diffraction element 202, and the light beam also emitted by the second light source 201b is diffracted by the first diffraction order by the forward diffraction element 202.
  • the light beams emitted from the light sources 201a and 201b can be combined.
  • FIG. 16 is an explanatory diagram of demultiplexing performed by the optical pickup device 800 according to Example 8.
  • the grating pitch of the diffraction grating of the backward diffraction element 209 is assumed to be q.
  • the return lights of the information recording surfaces 207a and 2078a of the optical disks 207 and 208 are incident substantially perpendicularly to the incident surface of the return diffraction element 209 (the direction of the line denoted by reference numeral 101).
  • the light beam having the first wavelength is the second light beam.
  • the folding element 9 the order of diffraction is the 0th order
  • the light is emitted substantially perpendicular to the emission surface of the second diffraction element 9.
  • the light beam having the second wavelength (the light beam emitted from the second light source)
  • the light is emitted in a direction (direction of a line indicated by reference numeral 102) that forms an emission angle represented by the following expression (24).
  • the first light receiving element 210 a is disposed on a line denoted by reference numeral 101
  • the second light receiving element 210 b is disposed on a line denoted by reference numeral 102.
  • the behavior of the optical pickup device according to Example 8 when the oscillation wavelength of the light source fluctuates with a change in environmental temperature will be described.
  • the light beam emitted from the first light 201a is not diffracted by the forward diffraction element 202 and the backward diffraction element 209 (the diffraction orders are both 0th order), so the oscillation wavelength varies.
  • the light beam emitted from the first light source 2 Ola reaches the first light receiving element 210a without being affected by the emission direction from each of the diffraction elements 202 and 209.
  • the light beam emitted from the second light source 201b is subjected to the same action as that described in the above (Example 1). That is, by making the grating pitch of the diffraction grating of the forward diffraction element 202 and the grating pitch of the diffraction grating of the backward diffraction element 209 equal, the fluctuation of the diffraction angle in the forward diffraction element 202 due to the fluctuation of the wavelength and the return diffraction element It is possible to cancel the fluctuation of the diffraction angle at 209 with substantially the same amount, and the optical axis direction of each light beam emitted from the return path diffusing element 209 is not affected by the change of the environmental temperature. Therefore, the light beam emitted from the backward diffraction element 209 reaches the second light receiving element 210b regardless of the change in wavelength.
  • FIG. 17 is a sectional view conceptually showing a section of the forward diffraction element 202 according to the present example.
  • the forward diffraction element 202 has a configuration in which a first wave plate 111, a polarization diffraction grating 112, and a second wave plate 113 are stacked and fixed.
  • the light flux of each wavelength ⁇ is directly
  • the first diffractive element 2 needs to select whether or not the first-order diffraction is performed according to the wavelength. Therefore, the forward diffraction element 202 uses the first wavelength plate 111 to change the polarization direction of a light beam having a predetermined wavelength (hereinafter, referred to as a light beam having a wavelength ⁇ ) to a specific polarization direction, and to select other wavelengths (hereinafter, referred to as “wavelength ⁇ ”).
  • the light beam with a wavelength of ⁇ ) is orthogonal to the polarization direction of the light beam of
  • the polarization direction of the light beam (wavelength) emitted from the first light source 201a and the polarization direction of the light beam (wavelength) emitted from the second light source 2 Olb are the same in the forward direction. Diffraction element
  • a light source is arranged to be incident on the child 202.
  • the first wave plate 111 fixes uniaxially stretched polycarbonate to a glass substrate, functions as a 5 ⁇ 2 wave plate with respect to a light beam having a wavelength ⁇ emitted from the first light source 201a, and from the second light source 201b. Emitted wavelength ⁇
  • a retardation plate that functions as a two-wavelength plate for two luminous fluxes was created.
  • the first wave plate 111 Since the first wave plate 111 has the function of the above-mentioned retardation plate, it acts as a 1Z2 wave plate with respect to the light flux of the wavelength, so that the polarization direction of the incident light of the wavelength is 90 ° Will rotate.
  • incident light having a wavelength of 2 is substantially equivalent to the case where there is no waveplate, and the polarization direction does not rotate.
  • the polarization direction of only a linearly polarized light beam having a predetermined wavelength (wavelength) the light (wavelength ⁇ ) emitted from the linearly polarized first light source 201a polarized in the same direction can be changed.
  • the polarization direction of the outgoing light (wavelength) from the second light source 201b is orthogonalized.
  • FIG. 18 is a cross-sectional view conceptually showing a part of the cross section of the polarization diffraction grating 112 constituting the forward diffraction element 202.
  • the polarization diffraction grating 112 is a cross-sectional shape having a periodic structure in which a birefringent material layer 121 and an isotropic material layer 122 are joined, and the birefringent material layer 121 repeats a stepped shape periodically.
  • the isotropic material layer 122 is configured to fill the stepped portion.
  • birefringent material layer 121 and the isotropic material layer 122 a birefringent material and an isotropic material satisfying the two conditions described below were used.
  • the first condition is the configuration of the optical system in which the polarization direction of the light beam having the wavelength after passing through the first wave plate 111 is orthogonal to the longitudinal direction of the diffraction grating.
  • the refractive index of the birefringent material layer 121 with respect to the luminous flux after the wavelength is ⁇ ( ⁇ ) and isotropic
  • the refractive index of the material layer 122 is n ( ⁇ )
  • the relationship expressed by the following equation (25) is almost satisfied.
  • the second condition is that the polarization direction of the light beam after transmission through the wave plate 111 is a diffraction grating.
  • the refractive index of the birefringent material layer 121 with respect to the light flux of the wavelength after passing through the wave plate 111 is ⁇ ( ⁇ ), and the refractive index of the isotropic material layer 122 is
  • the light beam having the wavelength ⁇ is not diffracted (the order of diffraction is the 0th order), and the light beam having the wavelength ⁇ is polarized.
  • the forward diffraction element 202 is provided with a selective diffraction function capable of diffracting a light beam having a wavelength of 2 with orthogonal directions.
  • a polymer liquid crystal was used as the birefringent material, and an epoxy ultraviolet curable resin was used as the isotropic material.
  • Table 4 shows the refractive indexes of the birefringent material and the isotropic material used for the polarizing diffraction grating 112.
  • the polarization diffraction grating 112 is fixed by being overlapped with a 0.5 mm-thick cover glass (glass material K7) 123 on the side of the isotropic material layer 122 and fixed on the birefringent material layer 121 side.
  • a 0.5mm cover glass (glass material BK7) 124 is overlaid and fixed.
  • the width of the flat part of each step is set so that one cycle of the scale is composed of 8 steps, each step has a height of 0.449 / zm and the pitch of the grid is 10 m. 1.
  • a 25 m shaped diffraction grating was fabricated.
  • the transmittance of the light beam having a wavelength of 65 Onm that performs 0th-order diffraction is 95%
  • the diffraction efficiency of the first-order diffraction of a light beam having a wavelength of 780nm is 83%
  • the second wave plate 113 similarly to the first wave plate 111 described above, the second wave plate 113 also has a uniaxially stretched polycarbonate fixed to a glass substrate, and a light beam of a wavelength emitted from the first light source 201a.
  • it functions as a 5Z2 wave plate and a phase difference plate that functions as a two-wave plate for the light beam having the wavelength ⁇ emitted from the second light source 201b.
  • the second wave plate 113 Since the second wave plate 113 has the function of the above-mentioned retardation plate, it acts as a 1Z2 wave plate for the wavelength beam, so that the polarization direction of the incident light at the wavelength is 90 ° Will rotate. On the other hand, there is no wave plate for incident light with a wavelength.
  • FIG. 19 is a cross-sectional view conceptually showing a cross section of the backward diffraction element 209 according to the present example.
  • the return path diffraction element 209 is configured by a first wave plate 131, a polarization diffraction grating 132, and a second wave plate 133, similarly to the forward path diffraction element 202.
  • the material used for manufacturing the backward diffraction element 209 and the structure of the diffraction grating of the backward diffraction element 209 were the same as the material used for manufacturing the forward path diffraction element 202 and the structure of the diffraction grating.
  • the power described on the assumption that CD and DVD are compatible is currently being put into practical use, such as BLURAY (registered trademark) disc or HD-DVD (High Definition DVD), It can also be effectively applied to combinations with other DVDs. Similarly, the present invention can be effectively applied to a combination of BLURAY (registered trademark) disc or HD-DVD and CD.
  • the optical system is configured as a so-called infinite optical system using a collimator lens, but the range to which the present invention is applied is limited to the infinite optical system.
  • the optical system is not limited and may be a finite optical system that does not use a collimator lens.
  • the diffraction element having a diffraction grating having a periodic structure in which the cross-sectional shape repeats a sawtooth shape has been described.
  • the present invention combines a wavelength plate and a polarization diffraction grating.
  • the present invention is not limited to the configuration using the diffraction element.
  • a diffraction element having a diffraction grating having a periodic structure in which a cross-sectional shape approximates a sawtooth shape by a stepped shape is used, a diffraction element having diffraction gratings having other cross-sectional shapes is used. May be used.
  • an element combining a wave plate and a polarization diffraction grating has been described as a diffraction element having wavelength selectivity.
  • the present invention includes a wave plate and a polarization diffraction grating. It is not limited to the structure using the combined diffraction element. Specifically, a combination of an organic pigment and a filler that has a refractive index equal to one wavelength even in a diffraction grating in which the grating depth is converted to an optical path length and is an integral multiple of one wavelength. Either a configuration using a diffraction grating or a configuration using other diffraction elements.
  • the forward diffraction element and the backward diffraction element have diffraction gratings having the same grating pitch, and the light flux having the first wavelength. Are diffracted at the same diffraction order, and the light beams of the second wavelength are diffracted at the same diffraction order. It is possible to suppress the influence of changes in the environmental temperature on the positional deviation of the spot of the condensed light beam.
  • the diffraction orders of the diffraction elements are all first-order, it is possible to realize an optical pickup device with high use efficiency of light using diffraction with high diffraction efficiency.
  • each diffraction element has a wavelength selectivity that can select the wavelength of light to be diffracted by the first or higher order of diffraction, so that an optical pickup device with high light utilization efficiency can be realized.
  • each diffraction element diffracts both the light flux of the first wavelength at the 0th-order diffraction order and diffracts the light flux of the second wavelength together at the first-order diffraction order.
  • each diffraction element has a diffraction grating with a periodic structure in which the cross-sectional shape repeats a sawtooth shape, so that the diffraction element can be easily manufactured.
  • each diffraction element has a diffraction grating having a periodic structure in which a cross-sectional shape is similar to a stepped shape approximated to a sawtooth shape, so that the diffraction element can be manufactured more easily.
  • the optical arrangement of the optical pickup device 310 includes a first light source 301a that emits a linearly polarized light beam with a wavelength of 650 nm and a second light source 301b that emits a linearly polarized light beam with a wavelength of 780 nm.
  • First diffraction element 302 for combining light beams from the light source, quarter wave plate 304, 3 refraction lens 305, aperture 306, objective lens 307, optical disk D or D A b al bl for demultiplexing the light beam reflected on the information recording surface (D or D)
  • a second diffractive element 303 a first light receiving element 8a for receiving a demultiplexed light beam having a wavelength of 650 nm, and a second light receiving element 8b for receiving a light beam having a demultiplexed wavelength of 780 nm are provided.
  • the diffraction by the first diffractive element 302 and the diffraction by the second diffractive element 303 are both the first-order diffraction with respect to the light beam having the first wavelength.
  • the diffraction by the first diffractive element 302 and the diffraction by the second diffractive element 303 both use the first-order diffraction for the light flux having the wavelength.
  • FIG. 20 is an explanatory diagram of the multiplexing action performed by the optical pickup device 310.
  • the light beams emitted from the first light source 301a and the second light source 301b are respectively perpendicular to the first diffractive element 302 with respect to the first diffractive element 302 with respect to the optical axis ⁇ , j8 force.
  • the light enters in the state of b, and exits almost perpendicularly to the first diffraction element 302. Further, the emission direction coincides with the optical axis of an optical system including the collimator lens 305, the objective lens 307, and the like.
  • the first light source 301a has an incident angle 0 force of the light beam emitted from the first light source 301a on the first diffractive element 302.
  • the wavelength of the first light source 301a is obtained, and the grating of the first diffractive element 302
  • the second light source 301b includes the first diffraction element 30 of the light beam emitted from the second light source 301b. Incident angle to 2 0 force The wavelength of the second light source 301b is obtained, and the diffraction b 2 of this first diffraction element 302
  • the pitch of the lattice is set as p, and it is arranged so as to satisfy equation (28).
  • the emission directions of the light beams emitted from the respective light sources la and lb after being diffracted by the first diffraction element 302 are changed. -It will match.
  • the combined light beam passes through the second diffraction element 303, passes through the 1 Z4 wavelength plate 304, the collimator lens 305, the stop 306, and the objective lens 307, and passes through the optical disk information recording surface (D or D). Reflected by. And this reflected light flux is the above al bl
  • the light passes through the objective lens 307, the diaphragm 306, the collimator lens 305, and the quarter wavelength plate 304, and is demultiplexed by the second diffraction element 303.
  • FIG. 21 is an explanatory diagram of the demultiplexing effect performed by the optical pickup device 310.
  • the pitch of the diffraction grating of the second diffraction element 303 is q.
  • the return beam is such that the optical axis ⁇ is substantially perpendicular to the second diffraction element 303.
  • the incident light beam from the right side of the figure (the light beam emitted from the first light source) is diffracted at the diffraction angle expressed by Equation (29), and is emitted with the line indicated by the symbol ⁇ as the optical axis.
  • the light flux of the wavelength (the light emitted from the second light source) is the diffraction angle expressed by equation (30).
  • the line indicated by 2 is emitted as the optical axis.
  • the second diffraction element 303 demultiplexes light beams having different wavelengths.
  • the first light receiving element 308a is on the line indicated by the symbol ⁇ , and the second light receiving element 308b is the symbol
  • the demultiplexed light beams pass through the first diffraction grating 302.
  • the first diffractive element 302 and the second diffractive element 303 are each made of a birefringent material in order to increase the diffraction efficiency in both the reciprocal force and the reciprocal force using diffraction of different orders.
  • the polarizing diffraction element is provided.
  • the first diffractive element 302 has a diffractive function for linearly polarized light beams that also emit light.
  • the direction of the slow axis of the birefringent material constituting the first diffraction element 302 is made to coincide with the polarization direction of the linearly polarized light from the light source so that the first diffraction grating 302 has a periodic direction. Is perpendicular to the direction of the slow axis.
  • the second diffraction grating 303 is directed in the direction of the slow axis of the birefringent material constituting the second diffraction element 303 so that it does not have a diffraction function with respect to the linearly polarized light beam emitted from the light source.
  • the periodic direction of the second diffraction grating 303 is the direction of the slow axis.
  • FIG. 22 is a schematic diagram illustrating the configuration of the first diffractive element 302 and the second diffractive element 303.
  • the first diffractive element 302 includes two birefringent material layers 321 and isotropic material layers 322.
  • the quartz glass substrate (323, 324) is sandwiched between the outer surfaces (325, 326) of each quartz glass, and an antireflection film for the wavelength used is applied.
  • a polymer liquid crystal layer is formed on a quartz glass substrate 323, and the surface is subjected to photolithography processing, thereby repeating convex portions having a sawtooth cross-sectional shape.
  • a lattice plane is formed.
  • an epoxy-based ultraviolet curable resin as an isotropic material, the concave portions of the lattice surface are filled and laminated so that the surface becomes smooth (isotropic material layer 322), cured, and quartz Power bar with glass (glass substrate 324).
  • the polymer liquid crystal used for the birefringent material layer 321 includes an ultraviolet curable epoxy film having an ordinary refractive index at the first wavelength of 650 nm and the second wavelength of 780 nm, which is used as the isotropic material layer 322.
  • a material having substantially the same refractive index as that of fat and having a large difference between ordinary light refractive index and extraordinary light refractive index of 0.221 and 0.211 is used. Table 1 shows the refractive index of the material.
  • the first diffractive element 302 has a slow axis of the birefringent material layer 321 constituting the first diffractive element 302 so as to have a diffractive function with respect to linearly polarized light flux that also emits light source power.
  • the direction is matched with the polarization direction of the linearly polarized light from the light source, and the periodic direction of the diffraction grating is orthogonal to the direction of the slow axis.
  • the polarization direction of linearly polarized light that is also emitted from a light source force not shown is defined as the y direction
  • the slow axis of the polymer liquid crystal used for the birefringent material layer 321 is defined as the y direction
  • the periodic direction of the diffraction grating formed in the birefringent material layer 321 is defined as the X direction.
  • one period of the periodic structure of the diffraction grating is composed of 8 steps, and the step of each step is 0.41 m.
  • the width of the flat part of each staircase is set to 1. so that the pitch is 10 m.
  • the diffraction efficiency of the first-order diffraction for the light beams having the wavelength of 650 nm and the wavelength of 780 nm can be both 84%.
  • the transmittance (0th-order diffraction efficiency) is 99% at both wavelengths.
  • a blazed shape that is processed using a gray scale mask is used instead of approximating the force saw-tooth shape, which forms the structure of one period of the grating by 8 steps, in a multi-step manner. If used, a diffraction efficiency of 87% is obtained with a first-order diffraction efficiency for any wavelength, which is more desirable. The transmittance is 99% at both wavelengths.
  • the structure of the second diffractive element 303 is also basically the same as that of the first diffractive element 302 described above.
  • the direction of the slow axis of the polymer liquid crystal used as the force birefringent material layer is different. Referring to FIG. 22, the polarization direction of linearly polarized light emitted from the light source force is defined as the y direction, and the slow axis of the polymer liquid crystal used for the birefringent material layer 321 is defined as the X direction.
  • the periodic direction of the diffraction grating formed in the birefringent material layer 321 is also the X direction.
  • one period of the periodic structure of the diffraction grating is composed of 8 steps, and the step of each step is set to 0.41 ⁇ m.
  • the width of the flat part of each staircase was set to 1.25 m so that the pitch would be 10 m.
  • the structure of one period of the grating is configured by the 8-step staircase.
  • the sawtooth shape is approximated by a multi-step staircase shape, Using a blazed shape that is covered by using a gray scale mask, a diffraction efficiency of 87% is obtained with the first-order diffraction efficiency for any wavelength, which is more desirable.
  • the transmittance is 99% at both wavelengths.
  • the optical pickup device uses two polarizing diffraction elements such as a grating pitch on the light receiving element for the light flux accompanying the wavelength variation due to the change in the environmental temperature.
  • variation of the condensing position can be suppressed.
  • the description has been made on the assumption that CD and DVD are compatible.
  • the present invention can also be effectively implemented for a combination of BLURAY or HD DVD and a conventional DVD that are currently being put into practical use. Alternatively, it can be effectively implemented for a combination of B LURAY or HD—DVD and CD.
  • the optical pickup device of the present invention is configured as a so-called infinite optical system using a collimator lens.
  • the scope to which the present invention is applied is not limited to an infinite optical system, It may be a finite optical system that does not use a collimator lens.
  • the second diffraction element 303 and the 1Z4 wave plate 304 are configured separately, they may be laminated and integrated.
  • the pickup device of the present invention has the effect of suppressing the fluctuation of the light condensing position on the light receiving element due to the change of the wavelength due to the change of the operating temperature by providing two diffraction elements having the same grating pitch. And is effectively used for an optical pickup device that records and reproduces a plurality of different types of optical disks.
  • this patent application was filed 2004–227846, 2004 8 Japanese Patent Application No. 2004-252148 filed on May 31, and Japanese Patent Application No. 2004-266596 filed on September 14, 2004 Full content of claims, drawings and summary It is cited here and incorporated as the disclosure of the specification of the present invention.

Abstract

An optical pickup in which the positional shift of a light beam spot focused on a light-receiving element due to temperature variation is prevented even if a diffraction element is employed for multiplexing. The optical pickup comprises first and second light sources (201a, 201b) emitting light beams of first and second wavelengths, a going path optical system for directing the light beams of two wavelengths toward optical discs (207, 208), light-receiving elements (210a, 210b), and a returning path optical system for directing returning light beams from the optical discs (207, 208) to the light-receiving elements (210a, 210b). The going path optical system and the returning path optical system have a going path diffraction element (202) and returning path diffraction element (209) for diffracting at least one light beam of one wavelength and having an equal grating pitch and each diffraction element (202, 209) is so structured as to diffract each light beam of the wavelength with the same order.

Description

明 細 書  Specification
光ピックアップ装置  Optical pickup device
技術分野  Technical field
[0001] 本発明は、 CDや DVD等のディスクの厚さや記録密度の異なる光記録媒体 (以下、 「光ディスク」 t 、う)への情報の記録または情報の再生を行う光ピックアップ装置に関 する。  TECHNICAL FIELD [0001] The present invention relates to an optical pickup device that records information on or reproduces information from or on an optical recording medium (hereinafter referred to as an “optical disk” t) having a different disc thickness or recording density, such as a CD or DVD. .
背景技術  Background art
[0002] 従来、光ディスクへの情報の記録または情報の再生(以下、「記録再生」 t 、う)、特 に、例えば CDや DVD等の異なる種類の光ディスクに対して記録再生が可能な光ピ ックアップ装置が知られている。一般に、 CDの記録再生には 780nm付近の波長を 持つレーザ光源が必要であり、 DVDの記録再生には 650nm付近の波長を持つレ 一ザ光源が必要であることが知られて 、る。  [0002] Conventionally, an optical pin capable of recording information on an optical disk or reproducing information (hereinafter referred to as “recording / reproducing”), in particular, recording / reproducing on different types of optical disks such as CDs and DVDs. A backup device is known. In general, it is known that a laser light source having a wavelength of about 780 nm is necessary for recording and reproducing a CD, and a laser light source having a wavelength of about 650 nm is necessary for recording and reproducing a DVD.
[0003] 従来、このように使用する光の波長が異なる光ディスクに対して記録再生を行うこと ができるようにするため、発振波長の異なる 2個のレーザを搭載した、所謂、 2レーザ 方式の光ピックアップ装置が実用化されている。通常、この方式の光ピックアップ装 置は、個別に製作されたレーザを 1つのピックアップ上に搭載するものである。ところ 力 近年、光ピックアップ装置の小型化および低価格ィ匕を図るため、発振波長の異な る複数のレーザダイオードを単一基板上に一体集積した、所謂、ツインレーザが開発 され、実用化されている。  [0003] Conventionally, so-called two-laser type light in which two lasers having different oscillation wavelengths are mounted in order to perform recording and reproduction on optical disks having different wavelengths of light used in this way. A pickup device has been put into practical use. Normally, this type of optical pickup device is one in which individually manufactured lasers are mounted on a single pickup. In recent years, in order to reduce the size and cost of optical pickup devices, so-called twin lasers, in which a plurality of laser diodes with different oscillation wavelengths are integrated on a single substrate, have been developed and put into practical use. Yes.
[0004] 上記のような 2レーザ方式の光ピックアップ装置、あるいは、ツインレーザ搭載の光 ピックアップ装置では、コリメーターレンズ、対物レンズ等の光学系を 2つの波長にお いて共通に使用するため、異なる位置に配置された光源から出射する 2つの光束の 光軸が、前記光学系の光軸に一致するように合波する必要がある。一致しなければ 、共通の受光素子で受光できないなどの問題がある。  [0004] The two-laser optical pickup device as described above, or an optical pickup device equipped with a twin laser, is different because an optical system such as a collimator lens and an objective lens is commonly used at two wavelengths. It is necessary to multiplex so that the optical axes of the two light beams emitted from the light sources arranged at the positions coincide with the optical axis of the optical system. If they do not match, there is a problem that light cannot be received by a common light receiving element.
[0005] この問題を解決するために、従来の光ピックアップ装置では、光ディスクの情報記 録面で反射して戻った異なる 2波長の光束に対して、回折素子を用いて、一方の波 長の光束を 1次で回折させて透過させ、他方の波長の光束を 0次で回折させ (実質 的に光束を回折せずに直進透過させ)、回折素子力ゝら出射したそれぞれの戻り光束 の集光点を一致させる方法がとられている(例えば、特開 2001— 307369号公報)。 また、ツインレーザ搭載の光ピックアップ装置では、異なる位置から出射される 2つ の光束を合波させ、合波後の光軸を光学系の光軸に一致させる方法として、回折素 子を用い、一方の波長の光束を 0次で回折させるとともに他方の波長の光束を 1次で 回折させ、前記回折素子から出射したそれぞれの光束の光軸を一致させる方法がと られている(例えば、特開 2002— 163837号公報)。 [0005] In order to solve this problem, the conventional optical pickup device uses a diffractive element for two different wavelength light beams reflected by the information recording surface of the optical disk and returns one of the wavelengths. The light beam is diffracted in the first order and transmitted, and the light beam of the other wavelength is diffracted in the 0th order (substantially For example, Japanese Laid-Open Patent Publication No. 2001-307369 discloses a method in which the light beam is transmitted straight without being diffracted) and the converging points of the respective returning light beams emitted from the diffraction element force are matched. In addition, in an optical pickup device equipped with a twin laser, a diffraction element is used as a method of combining two light beams emitted from different positions and matching the optical axis after multiplexing with the optical axis of the optical system. A method of diffracting a light beam of one wavelength at the 0th order and diffracting a light beam of the other wavelength at the first order so that the optical axes of the respective light beams emitted from the diffraction element coincide with each other (for example, JP 2002—163837).
[0006] 光ピックアップ装置に用いられるレーザは、その環境温度の変化に依存して出射光 の波長が変動することが知られて 、る。  [0006] It is known that the wavelength of emitted light varies in a laser used in an optical pickup device depending on a change in its environmental temperature.
上記の環境温度の変化の影響を回避するために、例えば、特開 2002— 116314 号公報には、回折素子の材料としてそれまで用いられていた線膨張係数の小さい無 機材料の代わりに、線膨張係数の大きい合成樹脂を用い、環境温度の変化により回 折格子のピッチが変動することを利用して波長変動に伴う回折角の変動を相殺しょう とする技術が開示されて 、る。  In order to avoid the influence of the change in the environmental temperature described above, for example, Japanese Patent Laid-Open No. 2002-116314 discloses a linear element instead of an organic material having a small linear expansion coefficient, which has been used as a diffraction element material. There is disclosed a technique that uses a synthetic resin having a large expansion coefficient and uses the fact that the pitch of the diffraction grating fluctuates due to a change in environmental temperature to offset the fluctuation of the diffraction angle due to the wavelength fluctuation.
[0007] さらにまた、 2レーザ方式の光ピックアップ装置では、異なる位置に配置されたレー ザから出射される 2つの光束を合波させ、合波後の光軸を光学系の光軸に一致させ る方法として、ビームスプリッタ (または光学プリズム)を用いる方法がとられて 、る(例 えば、特開 2001— 118279号公報)。  [0007] Furthermore, in the two-laser optical pickup device, two light beams emitted from lasers arranged at different positions are combined, and the combined optical axis is made to coincide with the optical axis of the optical system. For example, a method using a beam splitter (or optical prism) is used (for example, Japanese Patent Laid-Open No. 2001-118279).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 特開 2002— 116314号公報に開示された従来の技術では、環境温度の変化に伴 う回折角の変動を相殺できる適切な材料の選択が困難であるという問題がある。すな わち、レーザの温度変化に対する波長変動は 0. 25nmZ°C程度であるが、この波長 変動を相殺するためには線膨張係数が 3 X 10_4Z°C程度の榭脂が望ま U、のに対 して、光ピックアップ装置に用いられるアクリルまたはポリオレフイン系榭脂等の、いわ ゆる光学グレードの榭脂は線膨張係数が 7 X 10_5Z°C程度と乖離しており、十分な 特性は得られない。 [0008] The conventional technique disclosed in Japanese Patent Application Laid-Open No. 2002-116314 has a problem that it is difficult to select an appropriate material that can cancel the fluctuation of the diffraction angle accompanying the change in the environmental temperature. In other words, the wavelength variation with respect to the temperature change of the laser is about 0.25 nmZ ° C, but in order to cancel this wavelength variation, a resin with a linear expansion coefficient of about 3 X 10 _4 Z ° C is desirable. On the other hand, so-called optical grade resin such as acrylic or polyolefin resin used in optical pickup devices has a linear expansion coefficient of about 7 X 10 _5 Z ° C. Characteristics cannot be obtained.
[0009] また、上記材料は、榭脂のため熱伝導率が小さぐレーザ光照射や他の部材からの 伝熱等により局所的な熱膨張、熱収縮により生じる熱歪みを小さくすることは困難で ある。 [0009] In addition, the above materials are made from laser light irradiation or other members whose thermal conductivity is small due to grease. It is difficult to reduce thermal distortion caused by local thermal expansion and contraction due to heat transfer.
[0010] 上記した特開 2001— 307369号公報、特開 2002— 163837号公報のように、合 波するのに回折素子を用いる場合には、 0次光は回折素子を直進透過することによ つて環境温度に依存した波長変動による影響を受けないが、 1次回折光は、回折角 が環境温度に依存するため、変動した波長に比例して変化することになる。この結果 、 2つの光束の光軸が一致しなくなり、回折された方の光束は、受光素子へ到達した 際の集光スポットの位置がずれる。  [0010] When a diffractive element is used for multiplexing as described in Japanese Patent Laid-Open Nos. 2001-307369 and 2002-163837, the 0th-order light is transmitted straight through the diffractive element. Although it is not affected by wavelength fluctuations depending on the environmental temperature, the first-order diffracted light changes in proportion to the fluctuating wavelength because the diffraction angle depends on the environmental temperature. As a result, the optical axes of the two light beams do not coincide with each other, and the diffracted light beam shifts the position of the focused spot when it reaches the light receiving element.
[0011] さらに、光ピックアップ装置では、通常、受光素子が複数の領域に分割されており、 その分割された領域ごとの光量に比例した信号の和信号あるいは差信号を用いて、 フォーカスサーボあるいはトラッキングサーボを行う。ところが、受光素子に到達する 集光スポットの位置がフォーカスエラーあるいはトラッキングエラー以外の要因でずれ ると、正確な、フォーカスサーボあるいはトラッキングサーボを行うことができなくなる。  [0011] Further, in the optical pickup device, the light receiving element is usually divided into a plurality of regions, and a focus servo or tracking is performed using a sum signal or a difference signal of a signal proportional to the amount of light for each of the divided regions. Servo is performed. However, if the position of the focused spot that reaches the light receiving element is shifted due to a factor other than the focus error or tracking error, accurate focus servo or tracking servo cannot be performed.
[0012] 本発明は、上記事情に鑑みてなされたもので、回折素子による合波を用いても、環 境温度変化に対して受光素子上のスポットの位置ずれが抑制された光ピックアップ 装置を提供することを目的とする。  The present invention has been made in view of the above circumstances, and provides an optical pickup device in which the positional deviation of a spot on a light receiving element is suppressed with respect to a change in environmental temperature even when multiplexing by a diffraction element is used. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0013] 以下、本発明の内容を紹介する。 [0013] The contents of the present invention are introduced below.
1.異なる 2つの波長の光束をそれぞれ出射する 2つの光源と、光源と光記録媒体 との間に設置された対物レンズと、対物レンズと光記録媒体との間に設置された 1つ または 2つの回折素子と、光記録媒体で反射された光束を検出する受光素子とを備 える光ピックアップ装置において、回折素子は 2つの光束を同一次数または異なる次 数で回折させて、受光素子へ導くことを特徴とする光ピックアップ装置。  1. Two light sources that emit light beams of two different wavelengths, an objective lens installed between the light source and the optical recording medium, and one or two installed between the objective lens and the optical recording medium In an optical pickup device comprising two diffractive elements and a light receiving element that detects a light beam reflected by an optical recording medium, the diffractive element diffracts the two light beams with the same order or different orders and guides them to the light receiving element. An optical pickup device characterized by the above.
2.第 1の波長の光束を出射する第 1の光源と、前記第 1の波長とは異なる第 2の波 長の光束を出射する第 2の光源と、光記録媒体で反射された前記 2つの波長の戻り 光束を集光させる対物レンズと、前記対物レンズとその集光点との間に配設され、前 記対物レンズを経て入射した前記 2つの波長の戻り光束を回折させ透過させる 1つの 回折素子と、前記対物レンズで集光され前記回折素子により回折され透過された前 記 2つの波長の戻り光束の集光点に配設され、前記戻り光束を受光する受光素子と を備えてなり、前記回折素子が、戻り光束を同一次数で回折させ透過させることによ り前記 2つの波長の集光点を受光素子の受光面上で略一致させる上記 1に記載の 光ピックアップ装置。 2. A first light source that emits a light beam having a first wavelength, a second light source that emits a light beam having a second wavelength different from the first wavelength, and the 2 reflected by an optical recording medium An objective lens for condensing return beams of two wavelengths, and an objective lens disposed between the objective lens and its condensing point, diffracting and transmitting the return beams of two wavelengths incident through the objective lens 1 Two diffractive elements and before being focused by the objective lens and diffracted and transmitted by the diffractive element And a light receiving element that receives the return light beam, and the diffraction element diffracts and transmits the return light beam with the same order. 2. The optical pickup device according to 1 above, wherein the two wavelength condensing points are substantially matched on the light receiving surface of the light receiving element.
この構成により、環境温度の変化が生じたときにも、受光素子面での異なる波長の 光束に対する集光点のずれが抑制されて、集光点の不一致という問題が解消された 光ピックアップ装置が提供できる  With this configuration, even when the environmental temperature changes, an optical pickup device in which the deviation of the condensing point with respect to the light beams of different wavelengths on the light receiving element surface is suppressed, and the problem of inconsistency of the condensing points is solved. Can offer
3.第 1の波長の光束を出射する第 1の光源と、前記第 1の波長とは異なる第 2の波 長の光束を出射する第 2の光源と、前記第 1の波長の光束および前記第 2の波長の 光束を光記録媒体に向けて導く対物レンズを含む往路光学系と、前記光記録媒体 からの前記第 1の波長の戻り光束を受光する第 1受光素子と、前記光記録媒体から の前記第 2の波長の戻り光束を受光する第 2受光素子と、前記光記録媒体からの前 記第 1の波長の戻り光束を前記第 1受光素子に導くと共に、前記光記録媒体からの 前記第 2の波長の戻り光束を前記第 2受光素子に導く対物レンズを含む復路光学系 とを備えてなり、前記往路光学系は、前記第 1の波長の光束および前記第 2の波長 の光束の少なくとも一方の光束を回折させる往路回折素子を有し、前記復路光学系 は、前記第 1の波長の戻り光束および前記第 2の波長の戻り光束の少なくとも一方の 光束を回折させる復路回折素子を有し、前記往路回折素子と前記復路回折素子と は、相互に等しい格子ピッチの回折格子を有し、前記第 1の波長の光束を相互に等 しい回折の次数で回折させ、前記第 2の波長の光束を相互に等しい回折の次数で 回折させる上記 1に記載の光ピックアップ装置。  3. A first light source that emits a light beam with a first wavelength, a second light source that emits a light beam with a second wavelength different from the first wavelength, the light beam with the first wavelength, and the A forward optical system including an objective lens that guides a light beam having a second wavelength toward the optical recording medium; a first light receiving element that receives the return light beam having the first wavelength from the optical recording medium; and the optical recording medium. A second light receiving element for receiving the return light beam having the second wavelength from the optical recording medium, and guiding the return light beam having the first wavelength from the optical recording medium to the first light receiving element, and from the optical recording medium. And a return optical system including an objective lens that guides the return light beam having the second wavelength to the second light receiving element, and the forward optical system includes the light beam having the first wavelength and the light beam having the second wavelength. An outward diffraction element that diffracts at least one of the light beams, and the return optical system includes: A return diffraction element that diffracts at least one of a return light beam having a wavelength of 1 and a return light beam of the second wavelength, and the forward diffraction element and the return diffraction element are diffraction gratings having a grating pitch equal to each other 2. The optical pickup device according to 1, wherein the light beam having the first wavelength is diffracted with a diffraction order equal to each other, and the light beam with the second wavelength is diffracted with a diffraction order equal to each other.
この構成により、往路回折素子と復路回折素子とが、相互に等しい格子ピッチの回 折格子を有し、第 1の波長の光束を相互に等しい回折の次数で回折させ、第 2の波 長の光束を相互に等しい回折の次数で回折させるため、回折素子を用いて合波を 行う構成であっても、受光素子上に集光する光束のスポットの位置ずれに対する環 境温度の変動の影響を抑制することが可能な光ピックアップ装置を実現できる。  With this configuration, the forward diffraction element and the backward diffraction element have diffraction gratings having the same grating pitch, diffract the light beams having the first wavelength at the same diffraction order, and have the second wavelength. Since the light beams are diffracted at the same diffraction order, the effect of the fluctuation of the environmental temperature on the positional deviation of the spot of the light beam collected on the light receiving element is affected even if the diffraction element is used for multiplexing. An optical pickup device that can be suppressed can be realized.
4.第 1の波長の光束を出射する第 1の光源と、前記第 1の波長とは異なる第 2の波 長の光束を出射する第 2の光源と、前記光源からの前記光束を所定の光記録媒体 へ集光する対物レンズと、この対物レンズで集光され前記光記録媒体で反射された 光束を検出する受光素子と、前記第 1の光源および前記第 2の光源から出射する光 束に対しては回折機能を有し、前記光記録媒体で反射された光束に対しては回折 機能を有しない第 1の回折素子と、前記第 1の光源および前記第 2の光源から出射 する光束に対しては回折機能を有せず、前記光記録媒体で反射された光束に対し ては回折機能を有する第 2の回折素子とを備えてなり、前記第 1の回折素子と前記第 2の回折素子は、回折格子ピッチが等しぐ前記第 1の光源からの前記第 1の波長の 光束に対する、前記第 1の回折素子における回折の次数と、前記光記録媒体で反射 された前記第 1の波長の光束に対する前記第 2の回折素子における回折の次数とは 等しぐ前記第 2の光源からの前記第 2の波長の光束に対する、前記第 1の回折素子 における回折の次数と、前記光記録媒体で反射された前記第 2の波長の光束に対 する前記第 2の回折素子における回折の次数とは等しぐ前記第 1の回折素子およ び前記第 2の回折素子は、光源と対物レンズとの間にほぼ平行に配置され、前記第 1の回折素子は、前記第 1の波長の光束と前記第 2の波長の光束を合波し対物レン ズに導くとともに、前記第 2の回折素子は前記光記録媒体で反射された光束を分波 し前記受光素子に導く上記 1に記載の光ピックアップ装置。 4. A first light source that emits a light flux of a first wavelength, a second light source that emits a light flux of a second wavelength different from the first wavelength, and the light flux from the light source Optical recording medium An objective lens that condenses the light, a light receiving element that detects a light beam collected by the objective lens and reflected by the optical recording medium, and a light flux emitted from the first light source and the second light source. Has a diffractive function, and does not have a diffractive function with respect to a light beam reflected by the optical recording medium, and a light beam emitted from the first light source and the second light source. Comprises a second diffractive element that does not have a diffractive function and has a diffractive function with respect to the light beam reflected by the optical recording medium, and the first diffractive element and the second diffractive element include The diffraction order of the first diffraction element with respect to the light beam of the first wavelength from the first light source having the same diffraction grating pitch, and the first wavelength of light reflected by the optical recording medium. The order of diffraction in the second diffractive element with respect to the luminous flux is equal The order of diffraction in the first diffraction element for the second wavelength light beam from the second light source, and the second wavelength light beam reflected by the optical recording medium. The first diffractive element and the second diffractive element, which are equal to the order of diffraction in the diffractive element, are arranged substantially in parallel between the light source and the objective lens, and the first diffractive element is The light beam having the first wavelength and the light beam having the second wavelength are combined and guided to the objective lens, and the second diffractive element demultiplexes the light beam reflected by the optical recording medium and supplies it to the light receiving element. 2. The optical pickup device according to 1 above.
上記構成によれば、環境温度の変化による波長の変動があった場合、光源からの 光束に機能する第 1の回折素子による回折の回折角の変動と、光記録媒体で反射さ れた光束に対して機能する第 2の回折素子による回折の回折角の変動をほぼ同程 度にできるため、それぞれの回折角の変動が相殺され、受光素子に導かれる集光ス ポット位置のずれを抑制できる光ピックアップ装置を実現できる。また、第 1の回折素 子と第 2の回折素子を光源と対物レンズの間にほぼ平行に配置することで光源と受 光素子を近接して配置でき装置の小型化が可能となる。  According to the above configuration, when there is a change in wavelength due to a change in the environmental temperature, a change in the diffraction angle of diffraction by the first diffraction element that functions as a light beam from the light source and a light beam reflected by the optical recording medium. In contrast, the diffraction angle fluctuations of the diffraction by the second diffractive element functioning can be made almost the same, so the fluctuations of the respective diffraction angles are canceled out, and the deviation of the condensing spot position guided to the light receiving element can be suppressed. An optical pickup device can be realized. In addition, by arranging the first diffractive element and the second diffractive element approximately in parallel between the light source and the objective lens, the light source and the light receiving element can be arranged close to each other, and the size of the apparatus can be reduced.
5.前記回折素子による回折は 1次の回折が用いられる上記 2、 3または 4に記載の 光ピックアップ装置。  5. The optical pickup device according to 2, 3 or 4, wherein the diffraction by the diffraction element uses first-order diffraction.
この構成により、上記の効果に加え、各回折素子での各回折の次数が全て 1次で あるため、回折効率の高い回折光を利用した光の利用効率の高い光ピックアップ装 置を実現できる。 6.前記回折素子は、透明基板に直線状または曲線状の溝が周期的に形成された 回折素子であって、溝周期のピッチが 5〜20 mである上記 2または 5に記載の光ピ ックアップ装置。 With this configuration, in addition to the effects described above, since the diffraction orders of the diffraction elements are all first-order, it is possible to realize an optical pickup device with high light use efficiency using diffracted light with high diffraction efficiency. 6. The diffractive element is a diffractive element in which linear or curved grooves are periodically formed on a transparent substrate, and the pitch of the groove period is 5 to 20 m. A backup device.
この構成の溝周期のピッチとすることにより、すなわち 5 m以上であれば、理論回 折効率が 82%超となり、また 20 m以下であれば回折素子と受光素子との間隔を 1 5mm以内とすることができる。  By setting the pitch of the groove period in this configuration, that is, if it is 5 m or more, the theoretical diffraction efficiency exceeds 82%, and if it is 20 m or less, the distance between the diffraction element and the light receiving element is within 15 mm. can do.
7.前記往路回折素子および前記復路回折素子は、 1次以上の回折の次数で回折 させる光の波長を選択することができる波長選択性を有する上記 3に記載の光ピック アップ装置。  7. The optical pick-up device according to 3 above, wherein the forward diffraction element and the backward diffraction element have a wavelength selectivity capable of selecting a wavelength of light to be diffracted at a first or higher order of diffraction.
この構成により、上記の効果に加え、各回折素子が、 1次以上の回折の次数で回折 させる光の波長を選択することができる波長選択性を有するため、光の利用効率の 高 ヽ光ピックアップ装置を実現できる。  With this configuration, in addition to the above effects, each diffractive element has wavelength selectivity capable of selecting the wavelength of light to be diffracted at the first or higher order of diffraction. A device can be realized.
8.前記往路回折素子と前記復路回折素子とは、前記第 1の波長の光束を共に 0次 の回折の次数で回折させ、前記第 2の波長の光束を共に 1次の回折の次数で回折さ せる上記 3または 7に記載の光ピックアップ装置。  8. The forward diffraction element and the backward diffraction element both diffract the light beam having the first wavelength at the 0th-order diffraction order, and diffract the light beam at the second wavelength at the first-order diffraction order. 8. The optical pickup device according to 3 or 7 above.
この構成により上記の効果に加え、各回折素子が、第 1の波長の光束を共に 0次の 回折の次数で回折させ、第 2の波長の光束を共に 1次の回折の次数で回折させるた め、さらに光の利用効率の高 、光ピックアップ装置を実現できる。  In addition to the above effects, this configuration allows each diffraction element to diffract both the first wavelength light flux with the 0th order diffraction order and the second wavelength light flux both with the first order diffraction order. Therefore, it is possible to realize an optical pickup device with higher light utilization efficiency.
9.前記回折格子は、断面形状が鋸波状の形状を繰り返す周期構造の回折格子、 または断面形状が鋸波状の形状を階段状の形状で近似した形状を繰り返す周期構 造の回折格子を有する上記 2〜8のいずれか 1つに記載の光ピックアップ装置。 この構成により、上記の効果に加え、各回折素子が、断面形状が鋸波状の形状を 繰り返す周期構造の回折格子を有するため、回折素子を簡易に製作できる、また、 断面形状が鋸波状の形状を階段状の形状で近似した形状を繰り返す周期構造の回 折格子を有するため、回折素子をさらに簡易に製作できる光ピックアップ装置を実現 できる。  9. The diffraction grating includes a diffraction grating having a periodic structure in which a cross-sectional shape repeats a sawtooth shape, or a diffraction grating having a periodic structure in which a cross-sectional shape repeats a shape approximating a sawtooth shape by a stepped shape. The optical pickup device according to any one of 2 to 8. With this configuration, in addition to the above effects, each diffraction element has a diffraction grating with a periodic structure in which the cross-sectional shape repeats a sawtooth shape, so that the diffraction element can be easily manufactured, and the cross-sectional shape is a sawtooth shape. Since it has a diffraction grating with a periodic structure that repeats a shape approximated by a stepped shape, an optical pickup device that can manufacture a diffraction element more easily can be realized.
10.前記第 1の回折素子および前記第 2の回折素子は、透明基板上に、複屈折性 材料層と等方性材料層とが、鋸歯状の断面形状をもつ凸部の繰り返しからなる格子 状構造の界面を有するように積層されている偏光性回折素子である上記 4または 5に 記載の光ピックアップ装置。 10. The first diffractive element and the second diffractive element are gratings in which a birefringent material layer and an isotropic material layer are formed on a transparent substrate by repeating convex portions having a sawtooth cross-sectional shape. 6. The optical pickup device according to 4 or 5 above, which is a polarizing diffractive element laminated so as to have an interface having a shape structure.
この構成により、回折素子が鋸歯状の断面形状を有する回折素子であるため、光 の利用効率の高い光ピックアップ装置を実現できる。  With this configuration, since the diffractive element is a diffractive element having a sawtooth cross-sectional shape, an optical pickup device with high light utilization efficiency can be realized.
11.前記第 1の回折素子の複屈折性材料層は、第 1の直線偏光の偏光方向の光 束に対して異常光屈折率が対応するように配向されているとともに、前記第 2の回折 素子の複屈折性材料層は、第 1の直線偏光と直交する第 2の直線偏光に対して異常 光屈折率が対応するように配向されて 、る上記 4、 5または 10の 、ずれか 1項に記載 の光ピックアップ装置。  11. The birefringent material layer of the first diffractive element is oriented so that the extraordinary refractive index corresponds to the light flux in the polarization direction of the first linearly polarized light, and the second diffractive material layer The birefringent material layer of the element is oriented so that the extraordinary refractive index corresponds to the second linearly polarized light orthogonal to the first linearly polarized light. The optical pickup device according to the item.
この構成により、回折素子が偏光選択性の回折素子であるため、さらに光の利用効 率の高 、光ピックアップ装置を実現できる。  With this configuration, since the diffractive element is a polarization-selective diffractive element, it is possible to realize an optical pickup device with higher light utilization efficiency.
12.前記格子断面形状の鋸歯状形状は、所望の鋸歯状形状を階段状に近似した 形状である上記 4、 5、 9、 10または 11のいずれ力 1項に記載の光ピックアップ装置。 発明の効果  12. The optical pickup device according to any one of 4, 5, 9, 10 or 11, wherein the sawtooth shape of the lattice cross-sectional shape is a shape approximating a desired sawtooth shape in a staircase shape. The invention's effect
[0014] 本発明によれば、動作温度が変動したときに受光素子面での異なる波長の光束に 対する集光点がずれて不一致を生じる問題が抑制された光ピックアップ装置が提供 できる。  [0014] According to the present invention, it is possible to provide an optical pickup device in which the problem of inconsistency due to shift of the condensing point for light beams of different wavelengths on the light receiving element surface when the operating temperature fluctuates can be provided.
[0015] 本発明によれば、往路光学系中と復路光学系中のそれぞれに回折素子を設けて おり、環境温度の変化によってレーザの出射光に波長変動があった場合、往路光学 系中の第 1の回折素子による回折の回折角変化と、復路光学系中の第 2の回折素子 による回折の回折角変化をほぼ同程度にできるため、それぞれの回折角変化を相殺 することで、受光素子に導かれる集光スポット位置のずれを抑制できる光ピックアップ 装置を提供できる。  According to the present invention, the diffractive element is provided in each of the outward optical system and the backward optical system, and when there is a wavelength variation in the emitted light of the laser due to a change in the environmental temperature, The diffraction angle change of diffraction by the first diffraction element and the diffraction angle change of diffraction by the second diffraction element in the return path optical system can be made approximately the same, so by canceling each diffraction angle change, the light receiving element It is possible to provide an optical pickup device capable of suppressing the deviation of the focused spot position led to the light.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の実施の形態に係る光ピックアップ装置の概略構成図。 FIG. 1 is a schematic configuration diagram of an optical pickup device according to an embodiment of the present invention.
[図 2]本発明の第 1の実施態様の実施例に係る、階段状の周期構造を有する断面形 状の回折素子 8の断面の一部を示す概略断面図。  FIG. 2 is a schematic cross-sectional view showing a part of a cross section of a cross-sectional diffraction element 8 having a stepped periodic structure according to an example of the first embodiment of the present invention.
[図 3]本発明の第 1の実施態様に係る、鋸歯状の周期構造を有する断面形状の回折 素子 8の断面の一部を示す概略断面図。 FIG. 3 is a cross-sectional diffraction pattern having a serrated periodic structure according to the first embodiment of the present invention. FIG. 6 is a schematic cross-sectional view showing a part of the cross section of the element 8
圆 4]本発明の第 2の実施態様に係る光ピックアップ装置の一構成例を概念的に示し た図。 4] A diagram conceptually showing one configuration example of the optical pickup device according to the second embodiment of the present invention.
圆 5]本発明の第 3の実施態様に係る光ピックアップ装置の概略構成図。 [5] Schematic configuration diagram of an optical pickup device according to a third embodiment of the present invention.
圆 6]本発明の第 1の実施態様に係る回折素子 8による回折光の光路を示す図。 圆 7]本発明の第 1の実施態様の実施例 (例 3)に係る、回折素子のチルトを示す光 学系の概略構成図。 6] A diagram showing an optical path of diffracted light by the diffraction element 8 according to the first embodiment of the present invention. 7] Schematic configuration diagram of an optical system showing the tilt of the diffraction element according to an example (Example 3) of the first embodiment of the present invention.
圆 8]本発明の第 2の実施態様の実施例 (例 7)に係る光ピックアップ装置 100が行う 合波についての説明図。 8] Explanatory drawing about the multiplexing performed by the optical pickup device 100 according to the example (Example 7) of the second embodiment of the present invention.
圆 9]本発明の第 2の実施態様の実施例 (例 7)に係る光ピックアップ装置 100が行う 分波についての説明図。 9] Explanatory drawing about the demultiplexing performed by the optical pickup device 100 according to the example (Example 7) of the second embodiment of the present invention.
圆 10]本発明の第 2の実施態様に係る各光源 la、 lbの発振波長が変化した場合の 、往路回折素子 202への入射光束の光軸方向と、回折後の光束の光軸方向とを示 す説明図。 圆 10] When the oscillation wavelength of each of the light sources la and lb according to the second embodiment of the present invention changes, the optical axis direction of the incident light beam to the forward diffraction element 202 and the optical axis direction of the diffracted light beam FIG.
圆 11]本発明の第 2の実施態様に係る各光源 la、 lbの発振波長が変化したときの、 復路回折素子 209に入射する光束の入射方向と、復路回折素子 209から出射する 光束の出射方向とを示す説明図。 [11] The incident direction of the light beam incident on the backward diffraction element 209 and the emission of the light beam emitted from the backward diffraction element 209 when the oscillation wavelengths of the light sources la and lb according to the second embodiment of the present invention change. Explanatory drawing which shows a direction.
圆 12]本発明の第 2の実施態様の実施例 (例 7)に係る往路回折素子 202の断面の 一部を概念的に示す断面図。 12] A sectional view conceptually showing a part of a section of an outward diffraction element 202 according to an example (Example 7) of the second embodiment of the present invention.
圆 13]本発明の第 2の実施態様の実施例 (例 7)に係る復路回折素子 209の断面の 一部を概念的に示す断面図。 13] A sectional view conceptually showing a part of a cross section of the return diffraction element 209 according to the example (Example 7) of the second embodiment of the present invention.
圆 14]本発明の第 2の実施態様の実施例 (例 8)に係る光ピックアップ装置の一構成 例を概念的に示した図。 FIG. 14 is a diagram conceptually showing a configuration example of an optical pickup device according to an example (Example 8) of the second embodiment of the present invention.
圆 15]本発明の第 2の実施態様の実施例 (例 8)に係る光ピックアップ装置 800が行う 合波についての説明図。 15] An explanatory view of multiplexing performed by the optical pickup device 800 according to the example (Example 8) of the second embodiment of the invention.
圆 16]本発明の第 2の実施態様の実施例 (例 8)に係る光ピックアップ装置 800が行う 分波についての説明図。 16] Explanatory drawing about the demultiplexing performed by the optical pickup device 800 according to the example (Example 8) of the second embodiment of the present invention.
圆 17]本発明の第 2の実施態様の実施例 (例 8)に係る往路回折素子 202の断面を 概念的に示す断面図。 圆 17] A cross section of the forward diffraction element 202 according to the example (Example 8) of the second embodiment of the invention. Sectional drawing shown notionally.
[図 18]本発明の第 2の実施態様に係る往路回折素子 202を構成する偏光回折格子 112の断面の一部を概念的に示す断面図。  FIG. 18 is a cross-sectional view conceptually showing a part of a cross section of a polarization diffraction grating 112 constituting the forward diffraction element 202 according to the second embodiment of the present invention.
[図 19]本発明の第 2の実施態様の実施例 (例 8)に係る復路回折素子 209の断面を 概念的に示す断面図。  FIG. 19 is a cross sectional view conceptually showing a cross section of a backward diffraction element 209 according to an example (Example 8) of the second embodiment of the present invention.
[図 20]本発明の第 3の実施態様に係る光ピックアップ装置による合波作用について の説明図。  FIG. 20 is an explanatory view of a multiplexing action by the optical pickup device according to the third embodiment of the present invention.
[図 21]本発明の第 3の実施態様に係る光ピックアップ装置による分波作用について の説明図。  FIG. 21 is an explanatory view of the demultiplexing effect by the optical pickup device according to the third embodiment of the present invention.
[図 22]本発明の第 3の実施態様に係る光ピックアップ装置の第 1の回折素子および 第 2の回折素子の構成を概念的に示す概略図。  FIG. 22 is a schematic diagram conceptually showing the structure of the first diffraction element and the second diffraction element of the optical pickup device according to the third embodiment of the present invention.
符号の説明 Explanation of symbols
1 :光源 1: Light source
la、 201a, 301a :第 1の光源 la, 201a, 301a: First light source
lb、 201b, 301b :第 2の光源 lb, 201b, 301b: Second light source
2、 203 :光学素子  2, 203: Optical element
3、 204、 305 :コリメーターレンズ  3, 204, 305: Collimator lens
4、 205、 306 :絞り  4, 205, 306: Aperture
5、 206、 307 :対物レンズ  5, 206, 307: Objective lens
6、 7、 207、 208、 D :光ディスク  6, 7, 207, 208, D: Optical disc
6a、 7a、 207a, 208a :情報記録面 6a, 7a, 207a, 208a: Information recording surface
8 :回折素子 8: Diffraction element
9、 210a, 210b, 308 :受光素子  9, 210a, 210b, 308: Photo detector
21:第 1の波長の戻り光の光軸 21: Optical axis of the return light of the first wavelength
22:第 1の波長の戻り光の回折後の光軸  22: Optical axis after diffraction of return light of the first wavelength
23:回折素子による、第 1の波長の戻り光の進行方向の変化  23: Change in the traveling direction of the return light of the first wavelength due to the diffraction element
24 :第 1の波長の戻り光の、回折素子がないときの集光点 24: Focusing point of the return light of the first wavelength when there is no diffraction element
25 :第 2の波長の戻り光の光軸 26::第 2の波長の戻り光の回折後の光軸 25: Optical axis of the return light of the second wavelength 26 :: Optical axis after diffraction of return light of second wavelength
27: :回折素子による、第 2の波長の戻り光の進行方向の変化  27:: Change in traveling direction of return light of second wavelength due to diffraction element
28: :第 2の波長の戻り光の、回折素子がないときの集光点  28:: Focusing point of the return light of the second wavelength when there is no diffraction element
29: :第 1の波長の戻り光と第 2の波長の戻り光との入射角の差  29:: Difference in incident angle between the return light of the first wavelength and the return light of the second wavelength
31: :回折素子の入射面  31: : Diffraction element entrance surface
32: :回折素子の出射面  32:: Output surface of diffraction element
33: :第 1の波長の戻り光の入射方向  33:: Incident direction of the return light of the first wavelength
34: :第 2の波長の戻り光の入射方向  34:: Direction of incident light of the second wavelength
35: :戻り光の回折後の出射方向  35:: Direction of return light after diffraction
41: :入射面  41:: Incident surface
42: :出射面  42:: Output surface
43: :第 1の波長の戻り光の入射方向  43:: Incident direction of the return light of the first wavelength
44: :第 2の波長の戻り光の入射方向  44:: Incident direction of the return light of the second wavelength
45: :戻り光の回折後の出射方向  45:: Direction of return light after diffraction
202:往路回折素子、  202: Outward diffraction element,
209:復路回折素子 209: Return diffraction element
221、 263、 291:第 1の光源 laが出射した光束の光軸  221, 263, 291: Optical axis of the light beam emitted by the first light source la
222、 264、 292:第 2の光源 lb力出射した光束の光軸  222, 264, 292: Optical axis of luminous flux emitted from second light source lb
223、 265:合波後の光束の光軸  223, 265: Optical axis of luminous flux after combining
231、 273、;復路回折素子 209に入射する光束の光軸  231, 273, optical axis of the light beam incident on the backward diffraction element 209
232、 253、 274、 101:分波後の第 1の波長の光束の光軸  232, 253, 274, 101: Optical axis of luminous flux of the first wavelength after demultiplexing
233、 254、 275、 102:分波後の第 2の波長の光束の光軸  233, 254, 275, 102: Optical axis of luminous flux of second wavelength after demultiplexing
241:第 1の光源 laが出射した光束が往路回折素子 202を出射する方向  241: Direction in which the light beam emitted from the first light source la exits the outward diffraction element 202
242:第 2の光源 lbが出射した光束が往路回折素子 202を出射する方向  242: direction in which the light beam emitted from the second light source lb exits the forward diffraction element 202
251:第 1の光源 laが出射した光束の戻り光が復路回折素子 209に入射する光束の 光軸  251: The optical axis of the light beam from which the return light of the light beam emitted by the first light source la is incident on the backward diffraction element 209
252:第 2の光源 lbが出射した光束の戻り光が復路回折素子 209に入射する光束の 261:往路回折素子 202の入射面252: Return light of the light beam emitted from the second light source lb is reflected by the light beam incident on the backward diffraction element 209. 261: Entrance surface of forward diffraction element 202
262 :往路回折素子 202の出射面262: Outgoing surface of forward diffraction element 202
271 :復路回折素子 209の入射面271: Incident surface of return path diffraction element 209
272: :復路回折素子 209の出射面272:: Outgoing surface of return path diffraction element 209
100 :光ピックアップ装置 100: Optical pickup device
111: :第 1の波長板  111:: First wave plate
112: :偏光回折格子  112: Polarized diffraction grating
113: :第 2の波長板  113:: Second wave plate
121: :複屈折性材料層  121: Birefringent material layer
122: :等方性材料層  122:: Isotropic material layer
123、 .124:カバーガラス  123, .124: Cover glass
131: :第 1の波長板  131:: 1st wave plate
133: :第 2の波長板  133:: Second wave plate
132: :偏光回折格子  132: Polarization diffraction grating
302: :第 1の回折素子  302: First diffraction element
303: :第 2の回折素子  303: Second diffraction element
321: :複屈折性材料層  321: Birefringent material layer
322: :等方性材料層  322: Isotropic material layer
323、 , 324:石英ガラス基板  323, 324: Quartz glass substrate
304: 1Z4波長板  304: 1Z4 wave plate
308a:第 1受光素子  308a: First light receiving element
308b:第 2受光素子 308b: Second light receiving element
D:第 1の光ディスク D: First optical disc
a  a
D :第 1の光ディスクの情報記録面 al  D: Information recording surface of the first optical disc al
D:第 2の光ディスク  D: Second optical disc
b  b
D :第 2の光ディスクの情報記録面 bl  D: Information recording surface bl of the second optical disc
:波長 λ の光束の光軸  : Optical axis of light flux with wavelength λ
α :波長え の光束の回折後の光軸 β α: Optical axis after diffraction of light beam of wavelength β
1 波長 λ  1 wavelength λ
2の光束の光軸  Optical axis of 2 luminous flux
β  β
2波長え 2の光束の回折後の光軸  Optical axis after diffraction of 2 light beams with 2 wavelengths
Ύ  Ύ
1 回折後の光軸  1 Optical axis after diffraction
Ύ  Ύ
2戻り光束の光軸  2 Optical axis of return beam
λ  λ
1 第 1の波長  1 First wavelength
λ 第 2の波長  λ Second wavelength
2  2
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の実施態様について、添付図面を参照しながら詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
「第 1の実施態様」  "First Embodiment"
本実施態様では、回折素子が 1つの場合を扱う。  In this embodiment, the case where there is one diffractive element is handled.
本発明の第 1の実施態様に係る光ピックアップ装置の概略構成図である、図 1を用 いて具体的に説明するが、本発明の第 1の実施態様は以下の記載に限定されない。 本発明の光ピックアップ装置は、第 1の波長え の光束を出射する第 1の光源 la、第 2の波長え の光束を出射する第 2の光源 lb、光学素子 2、コリメーターレンズ 3、絞り  FIG. 1 which is a schematic configuration diagram of an optical pickup device according to a first embodiment of the present invention will be specifically described with reference to FIG. 1. However, the first embodiment of the present invention is not limited to the following description. The optical pickup device of the present invention includes a first light source la that emits a light beam having a first wavelength, a second light source lb that emits a light beam of a second wavelength, an optical element 2, a collimator lens 3, and a diaphragm.
2  2
4、対物レンズ 5、および、第 1の光ディスク 6の情報記録面 6aまたは第 2の光ディスク 7の情報記録面 7aで反射された戻り光束を検出する受光素子 9を備えている。  4. An objective lens 5 and a light receiving element 9 for detecting a return light beam reflected by the information recording surface 6a of the first optical disc 6 or the information recording surface 7a of the second optical disc 7 are provided.
[0019] 第 1の光源 laから出射された光束は、光学素子 2で反射され、コリメーターレンズ 3 、絞り 4、対物レンズ 5を介して、第 1の光ディスク 6の情報記録面 6aに集光、照射され る。また、第 2の光源 lbから出射された光束は同様に、光学素子 2で反射され、コリメ 一ターレンズ 3、絞り 4、対物レンズ 5を介して、第 2の光ディスク 7の情報記録面 7aに 集光、照射される。 The light beam emitted from the first light source la is reflected by the optical element 2 and condensed on the information recording surface 6a of the first optical disc 6 through the collimator lens 3, the diaphragm 4, and the objective lens 5. Irradiated. Similarly, the light beam emitted from the second light source lb is reflected by the optical element 2 and collected on the information recording surface 7a of the second optical disc 7 through the collimator lens 3, the diaphragm 4, and the objective lens 5. Light is irradiated.
[0020] 情報記録面 6aまたは 7aで反射された戻り光束は、対物レンズ 5、絞り 4、コリメータ 一レンズ 3、光学素子 2を透過して受光素子 9に導かれる。受光素子 9で検出された 出力信号を用いて、第 1の光ディスク 6の情報記録面 6a、または、第 2の光ディスク 7 の情報記録面 7aに記録された情報の読み取り信号、フォーカスエラー信号、トラツキ ングエラー信号が得られる。なお、光ピックアップ装置には、上記フォーカスエラー信 号に基づいて、レンズを光軸方向に移動する機構 (フォーカスサーボ)、及び上記トラ ッキングエラー信号に基づ 、て、レンズを光軸にほぼ垂直の方向に移動する機構(ト ラッキングサーボ)が備えられているが、図 1では省略されている。 The return light beam reflected by the information recording surface 6 a or 7 a passes through the objective lens 5, the diaphragm 4, the collimator lens 3, and the optical element 2 and is guided to the light receiving element 9. Using the output signal detected by the light receiving element 9, the information recording surface 6a of the first optical disc 6 or the information recording surface 7a of the second optical disc 7 is read, the focus error signal, the traffic Error signal is obtained. The optical pickup device includes a mechanism (focus servo) for moving the lens in the optical axis direction based on the focus error signal and a lens substantially perpendicular to the optical axis based on the tracking error signal. Mechanism to move in the direction Racking servo) is provided, but is omitted in Fig. 1.
[0021] 第 1の光源 laとしては、波長 650nm近傍の直線偏光の発散光束を出射する半導 体レーザ光源が、第 2の光源 lbとしては、波長 780nm近傍の直線偏光の発散光束 を出射する半導体レーザ光源がそれぞれ例示されるが、これらに限定されない。また 、上記第 1の光源 laと第 2の光源 lbとは別体で構成されるものには限定されず、単 一の半導体基板上に波長の異なるレーザを一体に集積した、いわゆる、ツインレー ザでもよい。ここで、波長 650nm近傍とは 630〜670nmの波長範囲をいい、波長 7 80應近傍とは 760〜800nmの波長範囲を!、う。  [0021] The first light source la is a semiconductor laser light source that emits a linearly polarized divergent light beam having a wavelength of about 650 nm, and the second light source lb is a linearly polarized divergent light beam that has a wavelength of about 780 nm. Although a semiconductor laser light source is illustrated, respectively, it is not limited to these. In addition, the first light source la and the second light source lb are not limited to those separately formed, and a so-called twin laser in which lasers having different wavelengths are integrated on a single semiconductor substrate. But you can. Here, the vicinity of wavelength 650 nm means the wavelength range of 630 to 670 nm, and the vicinity of wavelength 780 means the wavelength range of 760 to 800 nm!
[0022] 光学素子 2は、第 1の光源 laおよび第 2の光源 lbから出射された光束をコリメータ 一レンズ 3側に反射させると共に、光ディスク力 の戻り光を透過させて受光素子 9に 導く機能をもつ。力かる光学素子としてはハーフミラー、偏光ビームスプリッタが例示 される力 これに限定されない。偏光ビームスプリッタを用いる場合は、光学素子 2と 光ディスク 6、 7との間、好ましくは光学素子 2とコリメーターレンズ 3との間に 1Z4波長 板を配設し組み合わせて用いると、光源力もの光束を有効に利用できて好まし 、。  The optical element 2 has a function of reflecting the light beam emitted from the first light source la and the second light source lb to the collimator one lens 3 side and transmitting the return light of the optical disc force to the light receiving element 9 It has. Examples of the powerful optical element include a half mirror and a polarizing beam splitter. When using a polarizing beam splitter, a 1Z4 wave plate is used between the optical element 2 and the optical discs 6 and 7, preferably between the optical element 2 and the collimator lens 3, and combined with the light source. Preferable to use effectively.
[0023] コリメーターレンズ 3は、前記光源から光ディスクへ至る光路においては、前記光学 素子 2で反射された光束を、略平行光に変換する機能をもつ。また、光ディスクから 受光素子へ至る光路においては、後述の対物レンズと組み合わせて用いられて、光 ディスクからの戻り光束を集光させ、光学素子 2、回折素子 8を経て受光素子 9の受 光面上に集光させる機能をもつ。  The collimator lens 3 has a function of converting the light beam reflected by the optical element 2 into substantially parallel light in the optical path from the light source to the optical disk. Also, in the optical path from the optical disk to the light receiving element, it is used in combination with an objective lens, which will be described later, and collects the return light beam from the optical disk, passes through the optical element 2 and the diffraction element 8, and the light receiving surface of the light receiving element 9 It has the function of concentrating on top.
[0024] 絞り 4は、光源 laおよび光源 lbからの光束を選択的に開口制限することによって、 開口数 NAを設定するようになっている。これによつて、光ディスクの記録再生の際、 第 1の光ディスク 6用の開口数と第 2の光ディスク 7用の開口数とが異なる場合、絞り 4 により開口数を調整できる。絞り 4には、機械的絞り、光学的絞り等があり、特に限定 されない。 NAの値としては、第 1の波長え の光束に対しては 0. 65、第 2の波長え  The aperture 4 is configured to set the numerical aperture NA by selectively restricting the light beams from the light source la and the light source lb. Accordingly, when the numerical aperture for the first optical disc 6 and the numerical aperture for the second optical disc 7 are different during recording and reproduction of the optical disc, the numerical aperture can be adjusted by the diaphragm 4. The diaphragm 4 includes a mechanical diaphragm and an optical diaphragm, and is not particularly limited. The NA value is 0.65 for the first wavelength and the second wavelength.
1 2 の光束に対しては 0. 50が例示される力 これに限定されない。なお、第 1の光デイス ク 6用の開口数と第 2の光ディスク 7用の開口数とが同じである場合には、絞り 4は用 いなくてもよい。  For a 1 2 luminous flux, a force exemplified by 0.50 is not limited to this. If the numerical aperture for the first optical disk 6 and the numerical aperture for the second optical disk 7 are the same, the diaphragm 4 may not be used.
[0025] 対物レンズ 5は、第 1の波長え および第 2の波長え において共通に使用できる程 度に収差補正された単レンズであり、第 1の波長え および第 2の波長え のそれぞれ [0025] The objective lens 5 can be used in common for the first wavelength and the second wavelength. Is a single lens with aberration corrected at a time, and each of the first wavelength and the second wavelength
1 2 の平行光を光ディスク 6の情報記録面 6a、および、光ディスク 7の情報記録面 7aに集 光させるようになって ヽる。力力る対物レンズ 5として、 f列えば、、特開 2001— 344798 号公報に開示された対物レンズ等を用いることができる。  The parallel light 1 2 is collected on the information recording surface 6 a of the optical disc 6 and the information recording surface 7 a of the optical disc 7. As the powerful objective lens 5, for example, the objective lens disclosed in Japanese Patent Laid-Open No. 2001-344798 can be used in the f row.
[0026] 第 1の光ディスク 6は、波長え の光束を用いた記録再生に用いるものであり、例え ば、 0. 6mmの保護層厚を有する。また、第 2の光ディスク 7は、波長 λ の光束を用 いた記録再生に用いるものであり、例えば、 1. 2mmの保護層厚を有する。  [0026] The first optical disk 6 is used for recording and reproduction using a light beam having a wavelength, and has a protective layer thickness of 0.6 mm, for example. The second optical disk 7 is used for recording / reproduction using a light beam having a wavelength λ, and has a protective layer thickness of 1.2 mm, for example.
[0027] 回折素子 8は、第 1の波長の戻り光、および第 2の波長の戻り光のそれぞれを、同 一次数で回折させて透過させ、受光素子上の略同一点に集光させるように構成され る。そのとき、回折次数を 1次とすると回折効率が高いので好ましい。  [0027] The diffractive element 8 diffracts and transmits each of the return light of the first wavelength and the return light of the second wavelength with the same first order and collects them at substantially the same point on the light receiving element. Configured. In this case, it is preferable to set the diffraction order to the first order because the diffraction efficiency is high.
[0028] 前記回折素子は透明基板の表面に周期的に形成された直線状または曲線状の溝 を備えていて、力かる溝周期のピッチが 5〜20 mであることが好ましい。溝周期の ピッチが 5 μ m未満では回折素子の理論回折効率は 82%あるいはそれ以下であり、 光ピックアップ装置に用いるために必要な 80%以上の回折効率が得られな 、おそれ がある。高い回折効率を得るためには 7 m以上が好ましぐ 9 m以上とすると理論 回折効率 88%が得られるのでより好ましい。溝周期のピッチを 20 m超とすると、回 折素子と受光素子との間隔を 15mm超とする必要があり光ピックアップ装置をコンパ クトイ匕できないおそれがある。コンパクトィ匕するために溝周期のピッチは好ましくは 15 μ m以下であり、より好ましくは 12 μ m以下である。  [0028] It is preferable that the diffractive element includes a linear or curved groove periodically formed on the surface of the transparent substrate, and the pitch of the applied groove period is 5 to 20 m. If the pitch of the groove period is less than 5 μm, the theoretical diffraction efficiency of the diffraction element is 82% or less, and the diffraction efficiency of 80% or more required for use in the optical pickup device may not be obtained. In order to obtain high diffraction efficiency, 7 m or more is preferable. If it is 9 m or more, the theoretical diffraction efficiency of 88% is obtained, which is more preferable. If the pitch of the groove period exceeds 20 m, the distance between the diffraction element and the light receiving element must be more than 15 mm, and the optical pickup device may not be compact. For compactness, the pitch of the groove period is preferably 15 μm or less, and more preferably 12 μm or less.
[0029] 前記周期的な溝の断面形状を鋸歯状または鋸歯状を階段状で近似したものとする と、前記同一次数の回折をさせるときに高い回折効率が得られて好ましい。前記周期 的な溝の断面形状を図 2に断面図を示したような階段状とする場合には、周期構造 の 1周期を 6〜32ステップのいずれかのステップ数の階段状とすると、高い回折効率 の回折素子を簡易に製作することができて好ましい。かかる回折素子は、バイナリブ レーズド回折素子と称されるものである。また、前記周期的な溝の断面形状は図 3に 断面図を示したような鋸歯状とすると、さらに高い回折効率が得られて好ましい。  [0029] It is preferable that the cross-sectional shape of the periodic groove is a sawtooth shape or a sawtooth shape approximated by a step shape because a high diffraction efficiency is obtained when the diffraction of the same order is performed. When the cross-sectional shape of the periodic groove is stepped as shown in the cross-sectional view of FIG. 2, if one period of the periodic structure is stepped with any number of steps from 6 to 32 steps, it is high. It is preferable because a diffraction element with diffraction efficiency can be easily manufactured. Such a diffractive element is called a binary blazed diffractive element. Further, it is preferable that the periodic groove has a sawtooth shape as shown in the cross-sectional view of FIG. 3 because a higher diffraction efficiency can be obtained.
[0030] かかる回折素子を用いることにより、それぞれの波長の戻り光を、高い回折効率で、 かつ、コンパクトな構成のピックアップ装置で、受光素子面上の略同一点に集光させ ることがでさる。 [0030] By using such a diffractive element, the return light of each wavelength is condensed at substantially the same point on the light receiving element surface by a pickup device having a high diffraction efficiency and a compact configuration. It can be done.
[0031] また、前記回折素子の溝形状を直線状に代えて曲線状とすると、例えば光学素子 2として平行平板型のハーフミラーを用いた場合に発生するコマ収差を低減する機 能を持たせたり、フォーカス検出手段に非点収差法を用 ヽる場合の光束の非点収差 量を低減したり適切に設定したりする機能を付加できたりして好ましい。  Further, when the groove shape of the diffraction element is changed to a curved line instead of a straight line, for example, a function of reducing coma generated when a parallel plate type half mirror is used as the optical element 2 is provided. Or a function of reducing or appropriately setting the amount of astigmatism of the light beam when the astigmatism method is used for the focus detection means.
[0032] 前記回折素子を形成する透明基板の材料としては、線膨張係数が小さ ヽ石英ガラ スが熱歪みを小さく抑えられるので好ましいが、これに限定されず、前記光源の波長 に対して透明な材料であれば光学ガラス等の無機材料などを用いることも可能であ る。  [0032] The material of the transparent substrate for forming the diffraction element is preferably a quartz glass having a small linear expansion coefficient because it can suppress thermal distortion to a small value, but is not limited thereto, and is transparent to the wavelength of the light source. It is also possible to use an inorganic material such as optical glass as long as it is a suitable material.
[0033] 前記回折素子は、既知のフォトリソグラフィとエッチングにより光学基板に前記周期 的な溝を形成して、作製することが好ましいが、切削加工、スタンプ法など、他の方法 も適用可能である。また、断面形状が鋸歯状あるいは階段状である周期的な溝は、 基板を直接加工して形成してもよいが、透明基板上に透明材料カゝらなる層を被覆し 、カゝかる層を加工して形成してもよい。被覆した層を加工する方法によれば、溝を形 成する材料を選ぶことにより所望の屈折率をもつ材料の回折素子が得られるので好 ましい。  [0033] The diffractive element is preferably formed by forming the periodic groove on the optical substrate by known photolithography and etching, but other methods such as cutting and stamping methods are also applicable. . In addition, the periodic grooves having a sawtooth shape or a step shape in cross section may be formed by directly processing the substrate. However, a layer made of a transparent material is coated on the transparent substrate to cover the layer. May be formed by processing. According to the method of processing the coated layer, a diffractive element having a desired refractive index can be obtained by selecting a material forming the groove.
[0034] あるいは前記光学素子として、異なる屈折率をもつ材料で前記回折素子を 2つ形 成し、かかる 2つの回折素子を対向配設し、 2つの回折素子の間に、前記 2つの波長 の!、ずれかの波長にお!/、て前記異なる屈折率をもつ材料の 、ずれかと等 、屈折 率をもつ材料を挟持させた、積層構造の回折素子を用いてもよい。かかる積層構造 の回折素子を用いると、それぞれの波長における回折効率を最適化できるので好ま しい。  [0034] Alternatively, as the optical element, two diffractive elements are formed of materials having different refractive indexes, the two diffractive elements are disposed to face each other, and the two diffractive elements are arranged between the two diffractive elements. ! Alternatively, a diffractive element having a laminated structure in which a material having a refractive index, such as a material having a different refractive index, is sandwiched between the materials having different refractive indexes at any wavelength. It is preferable to use a diffractive element having such a laminated structure because the diffraction efficiency at each wavelength can be optimized.
[0035] 受光素子 9は、光ディスク 6の情報記録面 6a、および、光ディスク 7の情報記録面 7a 力もの反射光を受光し、受光した反射光に基づき、これらの各情報記録面 6a、 7aに 記録された情報に応じた読み取り信号、および、フォーカスエラー信号、トラッキング エラー信号の各信号を生成し、外部に出力するようになっている。  [0035] The light receiving element 9 receives the reflected light of the information recording surface 6a of the optical disc 6 and the information recording surface 7a of the optical disc 7, and applies the reflected light to each of the information recording surfaces 6a and 7a based on the received reflected light. A read signal, a focus error signal, and a tracking error signal corresponding to the recorded information are generated and output to the outside.
「第 2の実施態様」  "Second Embodiment"
本実施態様においては、回折素子が 2つある場合で、かつ 2つの光源と 2つの受光 素子とがそれぞれ異なる場所に配設されている場合を扱う。 In this embodiment, there are two diffractive elements, and two light sources and two light receiving elements. The case where the elements are arranged in different places will be handled.
図 4は、本発明の第 2の実施態様に係る光ピックアップ装置の概略構成図である。 図 4において、光ピックアップ装置 100は、波長え の光束を出射する第 1の光源 201 aと、波長え の光束を出射する第 2の光源 201bと、各光源 201a、 201bが出射した  FIG. 4 is a schematic configuration diagram of an optical pickup device according to the second embodiment of the present invention. In FIG. 4, an optical pickup device 100 includes a first light source 201a that emits a light beam with a wavelength, a second light source 201b that emits a light beam with a wavelength, and each light source 201a and 201b.
2  2
光束を合波する往路回折素子 202と、合波した光束を透過させると共に、第 1の光デ イスク 207の情報記録面 207aおよび第 2の光ディスク 208の情報記録面 208aからの 戻り光を反射して後述の復路回折素子 209へ導く光学素子 203と、入射する光束を 略平行光に変換するコリメーターレンズ 204と、絞り 205と、対物レンズ 206と、各情 報記録面 207a、 208aからの戻り光を分波する復路回折素子 209と、分波した後の 波長え の光束を受光する第 1波長受光素子 210aと、分波した後の波長え の光束 The forward diffraction element 202 that combines the light beams and the combined light beam are transmitted, and the return light from the information recording surface 207a of the first optical disk 207 and the information recording surface 208a of the second optical disk 208 is reflected. The optical element 203 that leads to the backward diffraction element 209 described later, the collimator lens 204 that converts the incident light beam into substantially parallel light, the stop 205, the objective lens 206, and the return from each of the information recording surfaces 207a and 208a A backward diffraction element 209 that demultiplexes light, a first wavelength light-receiving element 210a that receives a light beam of a wavelength after demultiplexing, and a light beam of a wavelength after demultiplexing
1 2 を受光する第 2波長受光素子 210bとを備える。 The second wavelength light receiving element 210b that receives 1 2 is provided.
[0036] ここで、上記の「戻り光」とは、波長 λ の光束または波長 λ の光束であって、情報 Here, the above-mentioned “return light” is a light flux having a wavelength λ or a light flux having a wavelength λ.
1 2  1 2
記録面 207aまたは情報記録面 208aで反射され光学素子 203の方向に戻る光束を いう。また、以下では、波長え を第 1の波長といい、波長え を第 2の波長という。  A light beam reflected by the recording surface 207a or the information recording surface 208a and returning in the direction of the optical element 203. In the following, the wavelength is called the first wavelength, and the wavelength is called the second wavelength.
1 2  1 2
[0037] 第 1の光源 201aが出射した光束は、往路回折素子 202で回折し、光学素子 203、 コリメーターレンズ 204、絞り 205、対物レンズ 206の順に透過し、第 1の光ディスク 2 07の情報記録面 207aに集光する。同様に、第 2の光源 201bが出射した光束は、往 路回折素子 202で回折し、光学素子 203、コリメーターレンズ 204、絞り 205、対物レ ンズ 206の順に透過し、第 2の光ディスク 208の情報記録面 208aに集光する。以下 、第 1の光源 201aまたは第 2の光源 201bからの光束を、それぞれ、第 1の光ディスク 207の情報記録面 207aまたは第 2の光ディスク 208の情報記録面 208aに向けて導 く光学系を往路光学系という。  [0037] The light beam emitted from the first light source 201a is diffracted by the forward diffraction element 202, passes through the optical element 203, the collimator lens 204, the stop 205, and the objective lens 206 in this order, and is information on the first optical disc 2007. Condensed on the recording surface 207a. Similarly, the light beam emitted from the second light source 201b is diffracted by the forward diffraction element 202 and transmitted through the optical element 203, the collimator lens 204, the diaphragm 205, and the objective lens 206 in this order. Condensed on the information recording surface 208a. Hereinafter, an optical system that guides the light flux from the first light source 201a or the second light source 201b toward the information recording surface 207a of the first optical disc 207 or the information recording surface 208a of the second optical disc 208, respectively, in the forward path It is called an optical system.
[0038] 第 1の光ディスク 207の情報記録面 207aまたは第 2の光ディスク 208の情報記録 面 208aに集光した光束は、それぞれ、各情報記録面 207a、 208aで反射され、対 物レンズ 206、絞り 205、コリメーターレンズ 204を透過し、光学素子 203で反射され 、復路回折素子 209で分波され、第 1受光素子 210aまたは第 2受光素子 210bに入 る。以下、第 1の波長の戻り光を情報記録面 207aから第 1受光素子 210aに導くと共 に、第 2の波長の戻り光を情報記録面 208aから第 2受光素子 210bに導く光学系を 復路光学系という。 [0038] The light beams condensed on the information recording surface 207a of the first optical disc 207 or the information recording surface 208a of the second optical disc 208 are reflected by the information recording surfaces 207a and 208a, respectively, and the object lens 206 and the aperture stop are reflected. 205, is transmitted through the collimator lens 204, reflected by the optical element 203, demultiplexed by the return path diffraction element 209, and enters the first light receiving element 210a or the second light receiving element 210b. Hereinafter, an optical system that guides the return light of the first wavelength from the information recording surface 207a to the first light receiving element 210a and guides the return light of the second wavelength from the information recording surface 208a to the second light receiving element 210b. This is called a return optical system.
[0039] ここで、第 1受光素子 210aの出力信号は、第 1の光ディスク 207の光ディスク記録 面 207aに記録された情報の、読み取り信号、フォーカスエラー信号、トラッキングェ ラー信号の生成に用いられる。同様に、第 2受光素子 210bの出力信号は、第 2の光 ディスク 208の光ディスク記録面 208aに記録された情報の、読み取り信号、フォー力 スエラー信号、トラッキングエラー信号の生成に用いられる。  Here, the output signal of the first light receiving element 210a is used to generate a read signal, a focus error signal, and a tracking error signal of information recorded on the optical disc recording surface 207a of the first optical disc 207. Similarly, the output signal of the second light receiving element 210b is used to generate a read signal, a force error signal, and a tracking error signal of information recorded on the optical disk recording surface 208a of the second optical disk 208.
[0040] なお、光ピックアップ装置は、上記のフォーカスエラー信号に基づいてレンズを光 軸方向に制御する機構 (フォーカスサーボ)、および、上記のトラッキングエラー信号 に基づ!/、てレンズを光軸にほぼ垂直な方向に制御する機構(トラッキングサーボ)を 備えるが、図 4に示す構成では省略されている。  [0040] The optical pickup device includes a mechanism (focus servo) for controlling the lens in the optical axis direction based on the focus error signal and a lens on the optical axis based on the tracking error signal! A mechanism (tracking servo) that controls in a direction almost perpendicular to the axis is provided, but is omitted in the configuration shown in Fig. 4.
[0041] 第 1の光源 201aは、例えば、半導体レーザで構成され、波長 650nm近傍の波長 かつ直線偏光の発散光束を出射するようになっている。同様に、第 2の光源 201bは 、例えば、半導体レーザで構成され、 780nm近傍の波長かつ直線偏光の発散光束 を出射するようになっている。ここで、波長 650nm近傍および 780nm近傍の波長と は、それぞれ、 630nm〜670nmおよび 760nm〜800nmの範囲にある波長を意味 する。  [0041] The first light source 201a is composed of, for example, a semiconductor laser and emits a linearly polarized divergent light beam having a wavelength near 650 nm. Similarly, the second light source 201b is constituted by a semiconductor laser, for example, and emits a divergent light beam having a wavelength near 780 nm and linearly polarized light. Here, the wavelengths near 650 nm and 780 nm mean wavelengths in the range of 630 nm to 670 nm and 760 nm to 800 nm, respectively.
[0042] なお、上記の第 1の光源 201aと第 2の光源 201bとは、別個に配置されるのでも、 同一パッケージ内の同一基板上に 2個の半導体レーザチップがマウントされ、所謂、 ノ、イブリツド型の 2波長レーザ光源をなすように構成されるのでもよい。または、第 1の 光源 201aと第 2の光源 201bとは、異なる波長を発光する 2個の発光点を持ったモノ リシック型の二波長レーザ光源 (例えば、特開 2004— 39898号公報参照。)をなす ように構成されるのでもよ 、。  [0042] Although the first light source 201a and the second light source 201b are arranged separately, two semiconductor laser chips are mounted on the same substrate in the same package. Alternatively, it may be configured to form an hybrid two-wavelength laser light source. Alternatively, the first light source 201a and the second light source 201b are a monolithic two-wavelength laser light source having two light emitting points that emit different wavelengths (see, for example, Japanese Patent Application Laid-Open No. 2004-39898). It may be configured to make
[0043] 往路回折素子 202は、例えば回折格子によって構成され、各光源 201a、 201bが 出射する光束を回折させ、回折後の各光束の光軸が所定の温度でほぼ一致するよう に構成されている。すなわち、往路回折素子 2は、第 1の光源 201aおよび第 2の光 源 20 lbが出射する各光束を合波するように構成されている。ここで、第 1の光源 201 aおよび第 2の光源 201bが出射する各光束の合波には、同一次数の回折を利用す ることができる。また、一方の光束を 0次で回折させ、他方の光束を 0次以外の次数で 回折させること〖こよって、合波することもできる。以下、往路回折素子 202は回折格子 によって構成され、往路回折素子 202を構成する回折格子を、単に「往路回折素子 202の回折格子」という。 [0043] The forward diffraction element 202 is configured by, for example, a diffraction grating, diffracts the light beams emitted from the light sources 201a and 201b, and is configured so that the optical axes of the diffracted light beams substantially coincide with each other at a predetermined temperature. Yes. That is, the forward diffraction element 2 is configured to multiplex the light beams emitted from the first light source 201a and the second light source 20 lb. Here, the same-order diffraction can be used for combining the light beams emitted from the first light source 201a and the second light source 201b. Also, one beam is diffracted at the 0th order, and the other beam is diffracted at an order other than the 0th order. It can also be combined by diffracting. Hereinafter, the forward diffraction element 202 is constituted by a diffraction grating, and the diffraction grating constituting the forward diffraction element 202 is simply referred to as “diffraction grating of the forward diffraction element 202”.
[0044] 光学素子 203は、往路回折素子 202で回折されて合波された光束をコリメ一ターレ ンズ 204側に透過させると共に、第 1の光ディスク 207の情報記録面 207a、または、 第 2の光ディスク 208の情報記録面 208aからの戻り光を反射させて、復路回折素子 209側に導くようになつている。  [0044] The optical element 203 transmits the light beam diffracted and combined by the forward diffraction element 202 to the collimator lens 204 side, and also the information recording surface 207a of the first optical disk 207 or the second optical disk. The return light from the information recording surface 208a 208 is reflected and guided to the return diffraction element 209 side.
[0045] コリメーターレンズ 204は、往路回折素子 202で回折し、合波された光束をほぼ平 行光に変換するようになって 、る。  The collimator lens 204 converts the light beam diffracted by the outward diffraction element 202 and combined into substantially parallel light.
[0046] 絞り 205は、第 1の光源 201aまたは第 2の光源 201bからの光束を選択的に開口制 限することによって、開口数 NAを設定するようになっている。これによつて、光デイス クの記録再生の際、第 1の光ディスク 207用の開口数と第 2の光ディスク 208用の開 口数が異なる場合、絞り 205により開口数を調整できる。第 1の波長え の光束に対し ては開口数 NAが 0. 65となるよう〖こし、第 2の波長え の光束に対しては開口数 NA  The diaphragm 205 is configured to set the numerical aperture NA by selectively limiting the light flux from the first light source 201a or the second light source 201b. As a result, when the numerical aperture for the first optical disc 207 and the numerical aperture for the second optical disc 208 are different during recording and reproduction of the optical disk, the numerical aperture can be adjusted by the diaphragm 205. The numerical aperture NA is 0.65 for the first wavelength beam, and the numerical aperture NA for the second wavelength beam.
2  2
が 0. 50となるようにした。なお、絞り 205には、機械的絞り、光学的絞り等があり、特 に限定されないものとする。  Was set to 0.50. The diaphragm 205 includes a mechanical diaphragm, an optical diaphragm, and the like, and is not particularly limited.
[0047] 対物レンズ 206は、各波長え 、 λ で共に使用可能な程度に収差補正された単レ [0047] The objective lens 206 is a single lens whose aberration is corrected to such an extent that it can be used at each wavelength λ.
1 2  1 2
ンズであり、第 1の波長え および第 2の波長え のそれぞれの平行光を光ディスク 20  The parallel light of each of the first wavelength and the second wavelength is optical disc 20
1 2  1 2
7の情報記録面 207a、および、光ディスク 208の情報記録面 208aに集光させるよう になっている。係る対物レンズ 206として、例えば、特開 2001— 344798号公報に 開示された対物レンズ等を用いることができる。  The light is focused on the information recording surface 207a of No. 7 and the information recording surface 208a of the optical disc 208. As the objective lens 206, for example, an objective lens disclosed in Japanese Patent Laid-Open No. 2001-344798 can be used.
[0048] なお、対物レンズ 206は、上記のものに限定されず、例えば、 2つの波長え 、 λ の [0048] Note that the objective lens 206 is not limited to the above, and for example, has two wavelengths, λ
1 2 うちの 、ずれか一方の波長で生ずる収差を収差補正するレンズと、他方の波長で生 ずる収差を収差補正する機能を有する光学部材とを組み合わせた構成でもよい。  Of these, a configuration in which a lens that corrects aberrations occurring at one of the two wavelengths and an optical member having a function of correcting aberrations occurring at the other wavelength may be combined.
[0049] 第 1の光ディスク 207は、第 1の波長え の光束を用いて記録再生を行うための記録 媒体であり、例えば、 0. 6mmの保護層厚を有する。同様に、第 2の光ディスク 208は 、波長え の光束を用いて記録再生を行うための記録媒体であり、例えば、 1. 2mm  [0049] The first optical disc 207 is a recording medium for performing recording and reproduction using a light beam having the first wavelength, and has a protective layer thickness of 0.6 mm, for example. Similarly, the second optical disk 208 is a recording medium for recording / reproducing using a light beam having a wavelength, for example, 1.2 mm.
2  2
の保護層厚を有する。 [0050] 復路回折素子 209は、例えば回折格子によって構成され、各光ディスク 207、 208 の情報記録面 207a、 208aからの戻り光を回折させ、回折後の各光束の光軸の方向 が分離していくように構成されている。すなわち、復路回折素子 209は、戻り光を分 波するように構成されている。戻り光の分波には、同一次数の回折を利用することが できる。また、一方の光束を 0次で回折させ、他方の光束を 0次以外の次数で回折さ せること〖こよって、分波することもできる。以下、復路回折素子 209は回折格子によつ て構成され、復路回折素子 209を構成する回折格子を、単に「復路回折素子 209の 回折格子」という。 The protective layer thickness is [0050] The return path diffraction element 209 is constituted by, for example, a diffraction grating, diffracts the return light from the information recording surfaces 207a and 208a of the optical disks 207 and 208, and the direction of the optical axis of each light beam after diffraction is separated. It is configured to go. That is, the return path diffraction element 209 is configured to demultiplex the return light. The same order of diffraction can be used for demultiplexing the return light. Further, it is possible to divide one light beam by diffracting it with the 0th order and diffracting the other light beam with an order other than the 0th order. Hereinafter, the backward diffraction element 209 is constituted by a diffraction grating, and the diffraction grating constituting the backward diffraction element 209 is simply referred to as “diffraction grating of the backward diffraction element 209”.
[0051] ここで、復路回折素子 209の回折格子の格子ピッチと、往路回折素子 202の回折 格子の格子ピッチとをほぼ等しくし、往路回折素子 209での各波長え 、 λ の戻り光  Here, the grating pitch of the diffraction grating of the backward diffraction element 209 and the grating pitch of the diffraction grating of the forward diffraction element 202 are made substantially equal, and the return light of each wavelength and λ in the forward diffraction element 209
1 2 の回折の次数と、第 1の回折素子 2での回折の次数とを等しくするのは、以下の点か ら好適である。すなわち、このようにすることにより、環境温度の変化によって光源の 発振波長が変化し、往路回折素子 202および復路回折素子 209で回折して出射し た光束の方向(以下、単に出射方向という。)が変化しても、出射方向の変化は、往 路回折素子 202と復路回折素子 209とで、ほぼ同量かつ互いに相殺されるように生 ずるため、復路回折素子 209を出射する各光束の光軸方向は環境温度の変化の影 響を受けなくなる。以下、入射した光が出射する回折素子の面を「出射面」という。  It is preferable to make the diffraction order of 1 2 equal to the diffraction order of the first diffraction element 2 from the following points. That is, by doing so, the oscillation wavelength of the light source changes due to a change in environmental temperature, and the direction of the light beam diffracted and emitted by the forward diffraction element 202 and the backward diffraction element 209 (hereinafter simply referred to as the emission direction). Change in the exit direction occurs in the forward diffraction element 202 and the backward diffraction element 209 so as to cancel out each other by substantially the same amount, so that the light of each light beam emitted from the backward diffraction element 209 The axial direction is not affected by changes in ambient temperature. Hereinafter, the surface of the diffraction element from which the incident light exits is referred to as an “exiting surface”.
[0052] 第 1受光素子 210aは、第 1の光ディスク 207の情報記録面 207aからの戻り光を受 光し、この情報記録面 207aに記録された情報に応じた、読み取り信号、フォーカス エラー信号およびトラッキングエラー信号の各信号を生成し、外部に出力するように なっている。同様に、第 2受光素子 210bは、第 2の光ディスク 208の情報記録面 208 aからの戻り光を受光し、この情報記録面 208aに記録された情報に応じた、読み取り 信号、フォーカスエラー信号およびトラッキングエラー信号の各信号を生成し、外部 に出力するようになっている。  [0052] The first light receiving element 210a receives the return light from the information recording surface 207a of the first optical disc 207, and according to the information recorded on the information recording surface 207a, a read signal, a focus error signal, and Each signal of the tracking error signal is generated and output to the outside. Similarly, the second light receiving element 210b receives the return light from the information recording surface 208a of the second optical disc 208, and reads a read signal, a focus error signal, and a focus error signal according to the information recorded on the information recording surface 208a. Each signal of the tracking error signal is generated and output to the outside.
[0053] ここで、第 1受光素子 210aと復路回折素子 209との間の距離を、第 1の光源 201a と往路回折素子 202との間の距離にほぼ等しくするのが好適である。また、第 2受光 素子 210bと復路回折素子 209との間の距離を、第 2の光源 201bと往路回折素子 2 02との間の距離にほぼ等しくするのが好適である。 [0054] なお、上記の第 1受光素子 210aと第 2受光素子 210bとは、別個に配置される構成 でも、単一の受光素子として構成され、各光束の集光する位置に応じて異なる受光 面が設けられる構成でもよ ヽ。 Here, it is preferable that the distance between the first light receiving element 210a and the backward diffraction element 209 is substantially equal to the distance between the first light source 201a and the forward diffraction element 202. In addition, it is preferable that the distance between the second light receiving element 210b and the backward diffraction element 209 is substantially equal to the distance between the second light source 201b and the forward diffraction element 2202. [0054] Note that the first light receiving element 210a and the second light receiving element 210b are configured as a single light receiving element even if they are separately disposed, and receive different light depending on the position where each light beam is condensed. It may be configured to have a surface.
「第 3の実施態様」  "Third embodiment"
本実施態様においては、回折素子が 2つで、かつ 2つの光源と 2っ受光素子が近 Vヽ位置に設置されて ヽる場合を扱う。  In this embodiment, the case where there are two diffractive elements and two light sources and two light receiving elements are installed in the near V position is dealt with.
図 5は本発明の第 3の実施態様に係る光ピックアップ装置を示すものであり、この光 ピックアップ装置 310は、波長え の光束を発する第 1の光源 301a (光源 301の一部 を構成する)および波長え の光束を発する第 2の光源 301b (光源 301の一部を構  FIG. 5 shows an optical pickup device according to a third embodiment of the present invention, and this optical pickup device 310 includes a first light source 301a that emits a light beam having a wavelength (constituting a part of the light source 301). And a second light source 301b (a part of the light source 301).
2  2
成する)と、第 1の回折素子 302と、第 2の回折素子 303と、 1Z4波長板 304と、コリメ 一ターレンズ 305と、絞り 306と、対物レンズ 307と、波長え の光束を受光する第 1の 受光素子 308a (受光素子 308の一部を構成する)および波長 λ の光束を受光する  The first diffractive element 302, the second diffractive element 303, the 1Z4 wavelength plate 304, the collimator lens 305, the stop 306, the objective lens 307, and the first diffractive light beam that receives the light beam of the wavelength. Light receiving element 308a (which constitutes part of light receiving element 308) and light beam with wavelength λ are received
2  2
第 2の受光素子 308b (受光素子 308の一部を構成する)とを備えて!/、る。  And a second light receiving element 308b (which constitutes a part of the light receiving element 308).
なお、符号 Dは光ディスクを示すものであり、具体的には、 Dは第 1の光ディスク(D a  The symbol D indicates an optical disk. Specifically, D indicates the first optical disk (D a
は第 1の光ディスク Dの情報記録面)、 Dは第 2の光ディスク (D は光ディスク Dの al a b bl b 情報記録面)を示すものである。  Is the information recording surface of the first optical disc D, and D is the second optical disc (D is the al a b bl b information recording surface of the optical disc D).
[0055] 第 1の光源 301aは、例えば波長 650nm近傍の波長(λ )の発散光束を所定の偏 光方向(第 1の偏光方向という)の直線偏光で出射する、半導体レーザで構成してい る。 [0055] The first light source 301a is composed of a semiconductor laser that emits a divergent light beam having a wavelength (λ) near a wavelength of 650 nm, for example, as linearly polarized light in a predetermined polarization direction (referred to as a first polarization direction). .
また、第 2の光源 301bは、例えば 780nm近傍の波長(λ )の発散光束を第 1の光  In addition, the second light source 301b is configured to emit a divergent light beam having a wavelength (λ) near, for example, 780 nm.
2  2
源 301aからの光束の偏光方向と同等の直線偏光で出射する、半導体レーザで構成 している。  It is composed of a semiconductor laser that emits linearly polarized light equivalent to the polarization direction of the light beam from the source 301a.
なお、上記第 1の光源 301aと第 2の光源 301bは、別体に限るものではなぐ例え ば共通パッケージ内に 2個の半導体レーザチップが共通基板上にマウントされている 、いわゆるハイブリッド型の 2波長レーザ光源でもよい。あるいは、異なる波長を発光 する 2個の発光点を持ったモノリシック型の 2波長レーザ光源でもよい。  Note that the first light source 301a and the second light source 301b are not limited to separate bodies. For example, two semiconductor laser chips are mounted on a common substrate in a common package. A wavelength laser light source may be used. Alternatively, a monolithic two-wavelength laser light source having two emission points that emit different wavelengths may be used.
[0056] 第 1の回折素子 302は、第 1の偏光方向の直線偏光の光束に対しては回折格子と して作用し、前記第 1の偏光方向とは直交する第 2の偏光方向の直線偏光の光束に 対しては回折格子として作用しない、複屈折性材料を備えた偏光性の回折素子であ る。また、この第 1の回折素子 302は、第 1の光源 301aおよび第 2の光源 301bが出 射する第 1の直線偏光の各光束を同一次数で回折させ、回折後の各光束の光軸が 、所定の温度においてほぼ一致するように構成している。すなわち、第 1の回折素子 302は、第 1の光源 301aおよび第 2の光源 301bが出射する各光束を合波する。 [0056] The first diffractive element 302 acts as a diffraction grating for linearly polarized light beams in the first polarization direction, and is a straight line in the second polarization direction orthogonal to the first polarization direction. For polarized light flux On the other hand, it is a polarizing diffraction element provided with a birefringent material that does not act as a diffraction grating. The first diffractive element 302 diffracts the first linearly polarized light beams emitted from the first light source 301a and the second light source 301b with the same order, and the optical axes of the diffracted light beams are These are configured to substantially coincide with each other at a predetermined temperature. That is, the first diffractive element 302 multiplexes the light beams emitted from the first light source 301a and the second light source 301b.
[0057] また、光ディスク Dの情報記録面 D または光ディスク Dの情報記録面 D で反射 a al b bl され戻ってきた戻り光束は、後述の 1Z4波長板 304の機能により、第 2の偏光方向 の直線偏光となるため、前記第 1の回折素子 302は、戻り光束に対しては回折機能 を持たず透過させる。 [0057] The return light beam reflected and returned from the information recording surface D of the optical disc D or the information recording surface D of the optical disc D is returned in the second polarization direction by the function of the 1Z4 wavelength plate 304 described later. Since it is linearly polarized light, the first diffractive element 302 transmits the return light beam without having a diffractive function.
[0058] 第 2の回折素子 303は、第 1の偏光方向の直線偏光の光束に対しては回折格子と して作用せず、第 1の偏光方向とは直交する第 2の偏光方向の直線偏光の光束に対 しては回折格子として作用する、複屈折性材料を備えた偏光性の回折素子であるが 、第 1の回折素子 302で回折した各光束を透過させる。また、戻り光束に対しては、 各光束を同一次数で回折させ、回折後各光束の光軸の方向が離れるように構成して いる。すなわち、第 2の回折素子 303は、各戻り光束を分波する。  [0058] The second diffractive element 303 does not act as a diffraction grating for a linearly polarized light beam in the first polarization direction, and is a straight line in the second polarization direction orthogonal to the first polarization direction. Although it is a polarizing diffractive element having a birefringent material that acts as a diffraction grating for a polarized light beam, each light beam diffracted by the first diffractive element 302 is transmitted. For the return beam, each beam is diffracted with the same order, and the direction of the optical axis of each beam is separated after diffraction. That is, the second diffractive element 303 demultiplexes each return light beam.
なお、第 2の回折素子 303の回折格子ピッチは、第 1の回折素子 302の回折格子 ピッチとほぼ同一とし、また、それぞれの波長の光束に対して、回折の次数は第 1の 回折素子 302における回折の次数と同一とするのが望ましい。これにより、環境温度 に依存して光源の発振波長が変化し、第 1の回折素子 302および第 2の回折素子 3 03において回折する角度が変化しても、第 1の回折素子 302と第 2の回折素子 303 でほぼ同量の変化量となり互いに相殺されるため、第 2の回折素子 303を出射する 光束の光軸方向は環境温度に依存しな 、。  Note that the diffraction grating pitch of the second diffraction element 303 is substantially the same as the diffraction grating pitch of the first diffraction element 302, and the diffraction order of the first diffraction element 302 is equal to the light flux of each wavelength. It is desirable to have the same diffraction order as As a result, even if the oscillation wavelength of the light source changes depending on the environmental temperature and the angle at which the first diffraction element 302 and the second diffraction element 303 are diffracted changes, the first diffraction element 302 and the second diffraction element 302 Since the diffraction elements 303 of the second diffraction element 303 have almost the same amount of change and cancel each other, the optical axis direction of the light beam emitted from the second diffraction element 303 does not depend on the environmental temperature.
[0059] 1Z4波長板 304は、第 2の回折素子 303を透過した第 1の偏光方向の直線偏光の 光束を円偏光に変換する機能を有する。また、この 1Z4波長板 304は、光ディスクの 情報記録面で反射して逆回りの円偏光で戻ってきた戻り光束に対して、前記第 1の 偏光方向とは直交する第 2の偏光方向の直線偏光に変換する機能を有する。なお、 この 1Z4波長板 304は、波長え およびは長え の両波長に対して、位相差 1Z4波  [0059] The 1Z4 wavelength plate 304 has a function of converting the linearly polarized light beam having the first polarization direction transmitted through the second diffraction element 303 into circularly polarized light. The 1Z4 wavelength plate 304 is a straight line in the second polarization direction perpendicular to the first polarization direction with respect to the return light beam reflected by the information recording surface of the optical disk and returned by the reversely circularly polarized light. It has a function of converting to polarized light. This 1Z4 wave plate 304 has a phase difference of 1Z4 waves for both the long and long wavelengths.
1 2  1 2
長を持つことが望ましい。このような波長板として、特開 2001— 101700公報記載の 広帯域位相差板を用いることができる。 It is desirable to have a length. As such a wave plate, as described in JP 2001-101700 A A broadband retardation plate can be used.
[0060] コリメーターレンズ 305は、第 1の回折素子 302で回折し、合波された光束をほぼ平 行光に変換する。  The collimator lens 305 diffracts by the first diffraction element 302 and converts the combined light beam into substantially parallel light.
[0061] 絞り 306は、第 1の光源 301aまたは第 2の光源 301bからの光束を選択的に開口制 限することで開口数 NAを設定する。光ディスク Dの記録再生の際、第 1の光ディスク D用の開口数と第 2の光ディスク D用の開口数が異なる場合、絞り 306により開口数 a b  [0061] The stop 306 sets the numerical aperture NA by selectively limiting the light flux from the first light source 301a or the second light source 301b. If the numerical aperture for the first optical disc D and the numerical aperture for the second optical disc D are different during recording / reproduction of the optical disc D, the numerical aperture a b
を調整できる。  Can be adjusted.
なお、絞り 306には、機械的絞りや光学的絞りがあり、特に限定されない。  The diaphragm 306 includes a mechanical diaphragm and an optical diaphragm, and is not particularly limited.
[0062] 対物レンズ 307は、波長え および波長え で共に使用可能な程度に収差補正され [0062] The objective lens 307 is aberration-corrected so that both the wavelength and the wavelength can be used.
1 2  1 2
た単レンズであり、波長え および波長え のそれぞれの光束を光ディスク Dの光ディ  A single lens, and the respective light fluxes of wavelength and wavelength are optical
1 2 a スク情報記録面 D 、および光ディスク Dの光ディスク情報記録面 D 〖こ集光させる。  1 2 a Disc information recording surface D and optical disc information recording surface D of optical disc D are condensed.
al b bl  al b bl
この対物レンズ 307として、例えば特開 2001— 344798号公報に開示された対物レ ンズを用いることができる。なお、この対物レンズは、これに限定されず、例えば 2つ の波長え 1またはえ 2のどちらかで収差補正され、他方の波長における収差は収差補 正機能を有する光学素子を組み合わせることで補正するような、対物レンズと収差補 正機能の組合せを用いてもょ ヽ。  As the objective lens 307, for example, an objective lens disclosed in Japanese Patent Laid-Open No. 2001-344798 can be used. This objective lens is not limited to this. For example, aberration correction is performed at one of the two wavelengths 1 and 2, and aberration at the other wavelength is corrected by combining an optical element having an aberration correction function. Use a combination of objective lens and aberration correction function.
[0063] 第 1の光ディスク Dは、波長 λ の光束による記録再生に用いるものであり、例えば a 1 [0063] The first optical disk D is used for recording / reproduction with a light beam having a wavelength λ, for example, a 1
0. 6mmの保護層厚を有する。また、第 2の光ディスク Dは、波長 λ の光束による記 b 2  0.6 The protective layer thickness is 6 mm. In addition, the second optical disk D has a light beam of wavelength λ b 2
録再生に用いるものであり、例えば 1. 2mmの保護層厚を有する。  Used for recording and playback, for example, 1.2 mm protective layer thickness.
[0064] 第 1の受光素子 308aは、第 1の光ディスク Dの情報記録面 D 力もの戻り光束を受 a al [0064] The first light receiving element 308a receives the return light flux of the information recording surface D of the first optical disc D a a
光し、情報記録面 D に記録された情報の、読み取り信号、フォーカスエラー信号、ト al  The information recorded on information recording surface D is read, the focus error signal, and the al
ラッキングエラー信号の各信号を出力するようになっている。一方、第 2の受光素子 3 08bは、第 2の光ディスク Dの情報記録面 D 力 の戻り光を受光し、情報記録面 D b bl bl に記録された情報の、読み取り信号、フォーカスエラー信号、トラッキングエラー信号 の各信号を出力するようになっている。第 1の受光素子 308aと第 2の回折素子 303 の距離は、第 1の光源 301aと第 2の回折素子 303の距離とほぼ同じとするのが望ま しい。なお、上記第 1の受光素子 308aと第 2の受光素子 308bは別体に限らない。各 光束の集光する位置に基づいて、同一の受光素子内に、受光面を別々にして設ける ものでもよい。 Each signal of the racking error signal is output. On the other hand, the second light receiving element 3 08b receives the return light of the information recording surface D force of the second optical disc D, and reads the information recorded on the information recording surface D b bl bl. Each signal of tracking error signal is output. It is desirable that the distance between the first light receiving element 308a and the second diffractive element 303 is substantially the same as the distance between the first light source 301a and the second diffractive element 303. Note that the first light receiving element 308a and the second light receiving element 308b are not limited to separate members. Separate light-receiving surfaces are provided in the same light-receiving element based on the position where each beam converges. It may be a thing.
[0065] 次に、第 3の実施態様の作用について、説明する。  Next, the operation of the third embodiment will be described.
第 1の光源 301aから出射された波長え の光束は、第 1の回折素子 302で回折し、 第 2の回折素子 303、 1Z4波長板 304、コリメーターレンズ 305、絞り 306、対物レン ズ 307の順に透過し、第 1の光ディスク Dの情報記録面 D に集光する。また、第 2の a al  The light beam having a wavelength emitted from the first light source 301 a is diffracted by the first diffraction element 302, and is diffracted by the second diffraction element 303, 1Z4 wavelength plate 304, collimator lens 305, aperture 306, and objective lens 307. The light is sequentially transmitted and condensed on the information recording surface D of the first optical disc D. The second a al
光源 301bから出射された波長え の光束は、第 1の回折素子 302で回折し、第 2の  The light flux having a wavelength emitted from the light source 301b is diffracted by the first diffraction element 302, and the second
2  2
回折素子 303、 1Z4波長板 304、コリメーターレンズ 305、絞り 306、対物レンズ 307 の順に透過し、第 2の光ディスク Dの情報記録面 D 〖こ集光する。  The light passes through the diffraction element 303, the 1Z4 wavelength plate 304, the collimator lens 305, the stop 306, and the objective lens 307 in this order, and is condensed on the information recording surface D of the second optical disc D.
b bl  b bl
そして、第 1の光ディスク Dの情報記録面 D に集光した光束は、光ディスク Dの情  The light beam condensed on the information recording surface D of the first optical disc D is the information on the optical disc D.
1 al a 報記録面 D で反射され、対物レンズ 307、絞り 306、コリメーターレンズ 305を透過 al  1 al a Reflected by the recording surface D and transmitted through the objective lens 307, aperture 306, and collimator lens 305 al
し、第 2の回折素子 303で回折され、第 1の回折素子を透過し、第 1の受光素子 308 aに達する。また、第 2の光ディスク Dの情報記録面 D に集光した光束は、光デイス b bl  Then, it is diffracted by the second diffraction element 303, passes through the first diffraction element, and reaches the first light receiving element 308a. In addition, the light beam condensed on the information recording surface D of the second optical disc D is the optical disk b bl.
ク Dの情報記録面 D で反射され、対物レンズ 307、絞り 306、コリメーターレンズ 30 b bl  Reflected by the information recording surface D of the lens D, the objective lens 307, aperture 306, collimator lens 30 b bl
5を透過し、第 2の回折素子 303で回折され、第 1の回折素子を透過し、第 2の受光 素子 308bに達する。  5, is diffracted by the second diffraction element 303, passes through the first diffraction element, and reaches the second light receiving element 308 b.
[0066] このようにして、第 1の受光素子 308aから出力される出力信号により、第 1の光ディ スク Dの光ディスク記録面 D に記録された情報についての読み取り信号、フォー力 a al  [0066] In this way, the read signal for the information recorded on the optical disc recording surface D of the first optical disc D, the four forces a al by the output signal output from the first light receiving element 308a.
スエラー信号、トラッキングエラー信号が得られる。また、第 2の受光素子 308bの出 力信号を用いて、第 2の光ディスク Dの光ディスク記録面 D に記録された情報につ b bl  Error signal and tracking error signal can be obtained. Also, the information recorded on the optical disc recording surface D of the second optical disc D is used for output information from the second light receiving element 308b.
いての読み取り信号、フォーカスエラー信号、トラッキングエラー信号が得られる。な お、光ピックアップ装置 310には、上記フォーカスエラー信号に基づいて、対物レン ズ 307を光軸方向に移動する機構 (フォーカスサーボ)、及び上記トラッキングエラー 信号に基づ 、て、対物レンズ 307を光軸にほぼ垂直の方向に移動する機構(トラツキ ングサーボ)が含まれる力 図 15に示す構成では省略している。  Reading signal, focus error signal, and tracking error signal are obtained. The optical pickup device 310 includes a mechanism (focus servo) for moving the objective lens 307 in the optical axis direction based on the focus error signal, and an objective lens 307 based on the tracking error signal. Force that includes a mechanism (tracking servo) that moves in a direction almost perpendicular to the optical axis is omitted in the configuration shown in Fig. 15.
[0067] 本実施態様によれば、環境温度に依存して光源の発振波長が変化し、第 1の回折 素子 302および第 2の回折素子 303において回折する角度が変化しても、第 1の回 折素子 302と第 2の回折素子 303でほぼ同量の変化量となり互いに相殺される。換 言すれば、環境温度の変化による波長変動があった場合、光源からの光束に機能 する第 1の回折素子による回折の回折角変動と、光ディスクで反射された光束に対し て機能する第 2の回折素子による回折の回折角変動をほぼ同程度にできるため、そ れぞれの回折角変動が相殺され、第 2の回折素子 303を出射する光束の光軸方向 は環境温度に依存しない。 [0067] According to this embodiment, even if the oscillation wavelength of the light source changes depending on the environmental temperature and the angle at which diffraction is performed in the first diffraction element 302 and the second diffraction element 303 changes, the first The diffractive element 302 and the second diffractive element 303 have substantially the same amount of change, and cancel each other. In other words, if there is a wavelength variation due to changes in the ambient temperature, it will function on the luminous flux from the light source. The diffraction angle fluctuation of the diffraction by the first diffraction element and the diffraction angle fluctuation of the diffraction by the second diffraction element functioning with respect to the light beam reflected by the optical disk can be made approximately the same, so that each time The bending angle is canceled and the optical axis direction of the light beam emitted from the second diffractive element 303 does not depend on the environmental temperature.
このため、受光素子 308に導かれる集光スポット位置のずれを抑制できる光ピック アップ装置を実現できる。また、第 1の回折素子 302と第 2の回折素子 303を、光源 3 01と対物レンズ 307の間にほぼ平行に配置することで、光源と第 1の受光素子 308 を近接して配置でき、装置の小型化が可能となる。  For this reason, it is possible to realize an optical pickup device that can suppress the deviation of the focused spot position guided to the light receiving element 308. Further, by arranging the first diffractive element 302 and the second diffractive element 303 substantially in parallel between the light source 301 and the objective lens 307, the light source and the first light receiving element 308 can be arranged close to each other, The size of the apparatus can be reduced.
実施例  Example
[0068] [I]第 1の実施態様に対する実施例を示す。  [0068] [I] An example for the first embodiment is shown.
[0069] 例 1と例 3〜6は実施例、例 2は比較例である。 [0069] Examples 1 and 3 to 6 are Examples, and Example 2 is a Comparative Example.
[0070] [例 1] [0070] [Example 1]
本例にかかる光ピックアップ装置の光学配置は、図 1に示す実施態様の光学配置 と同様とする。すなわち、本発明の光ピックアップ装置は、波長え =650nm, λ =  The optical arrangement of the optical pickup device according to this example is the same as the optical arrangement of the embodiment shown in FIG. That is, the optical pickup device of the present invention has a wavelength of 650 nm and λ =
1 2 1 2
780nmの直線偏光の発散光束をそれぞれ出射する半導体レーザ光源 laおよび lb 、光学素子 2、コリメーターレンズ 3、光源 laおよび光源 lbからの光束を選択的に開 口制限し、第 1の波長え の光束に対しては 0. 65、第 2の波長え の光束に対しては Semiconductor laser light sources la and lb that emit linearly polarized divergent light beams of 780 nm, optical element 2, collimator lens 3, light beams from light source la and light source lb are selectively restricted, and the first wavelength 0.65 for the luminous flux, and for the second wavelength
1 2  1 2
0. 50の開口数をもつ絞り 4、対物レンズ 5、戻り光束を検出する受光素子 9、を備え ている。ここで光源としては発光点間距離 d= 110 /z mの 2波長光源を、光学素子 2 には厚さ 0. 5mmの BK7 (商品名:ショット社製)を用いたノヽーフミラーを、それぞれ 用いる。  A diaphragm 4 having a numerical aperture of 0.5, an objective lens 5 and a light receiving element 9 for detecting a return beam are provided. Here, as the light source, a two-wavelength light source with a distance between emission points d = 110 / z m is used, and as the optical element 2, a 0.5 mm-thick BK7 (trade name: manufactured by Schott) is used.
[0071] 本例の光ピックアップ装置は、第 1の波長の戻り光束の集光点および第 2の波長の 戻り光束の集光点を一致させるために、回折素子 8によりそれぞれの戻り光束を一次 で回折させ透過させるものである。以下の説明では、特に断らない限り、回折素子 8 における回折の次数は 1次とする。  [0071] In the optical pickup device of this example, in order to make the condensing point of the return light beam of the first wavelength coincide with the condensing point of the return light beam of the second wavelength, each return light beam is firstly transmitted by the diffraction element 8. It is diffracted and transmitted through. In the following description, unless otherwise specified, the diffraction order in the diffraction element 8 is assumed to be the first order.
まず、回折素子 8の機能について、図 6を用いて具体的に説明する。第 1の波長の 戻り光は符号 21の方向で回折素子 8に入射し、回折により符号 23の角度だけ進行 方向が曲げられて符号 22の方向に回折透過される。また、第 2の波長の戻り光は、 符号 25の方向で回折素子 8に入射し、回折により符号 27の角度だけ進行方向が曲 げられて符号 22と同一方向である符号 26の方向に回折透過される。符号 29は、第 1の波長の戻り光と第 2の波長の戻り光が回折素子 8に入射する入射角の差である。 First, the function of the diffraction element 8 will be specifically described with reference to FIG. The return light of the first wavelength is incident on the diffraction element 8 in the direction of reference numeral 21, and the traveling direction is bent by an angle of reference numeral 23 by diffraction and is diffracted and transmitted in the direction of reference numeral 22. The return light of the second wavelength is The light beam is incident on the diffraction element 8 in the direction of reference numeral 25, and the traveling direction is bent by an angle of reference numeral 27 by diffraction and is diffracted and transmitted in the direction of reference numeral 26, which is the same direction as reference numeral 22. Reference numeral 29 denotes a difference between incident angles at which the return light having the first wavelength and the return light having the second wavelength are incident on the diffraction element 8.
[0072] ここで、第 1の波長をえ 、第 1の波長の戻り光の回折素子 8への入射角を α 、第 1 の波長の戻り光の回折素子 8による回折角を α '、第 2の波長をえ 、第 2の波長の Here, the first wavelength is obtained, the incident angle of the return light of the first wavelength to the diffraction element 8 is α , the diffraction angle of the return light of the first wavelength by the diffraction element 8 is α ′, The second wavelength of the second wavelength
1 2  1 2
戻り光の回折素子 8への入射角を α 、第 2の波長の戻り光の回折素子 8による回折  The incident angle of the return light to the diffraction element 8 is α, and the return light of the second wavelength is diffracted by the diffraction element 8.
2  2
角を α '、回折素子 8の溝周期のピッチを ρとすると、(1)式、(2)式の関係が成り立 If the angle is α ′ and the pitch of the groove period of the diffraction element 8 is ρ, the relationship of Equations (1) and (2) holds.
2 2
つ。  One.
= a + λ / p (1)  = a + λ / p (1)
' = + λ /ρ (2)  '= + λ / ρ (2)
2 2 2  2 2 2
また、第 1の光源の発光点と第 2の光源の発光点の距離を dとすると、回折素子 8で 回折した光束は、回折素子から、図 6に示した距離、(3)式の Lだけ離れた点に集光 点を持つ。  If the distance between the emission point of the first light source and the emission point of the second light source is d, the light beam diffracted by the diffraction element 8 is separated from the diffraction element by the distance shown in FIG. It has a condensing point at a point far away.
L = d/ I α - α I (3)  L = d / I α-α I (3)
1 2  1 2
[0073] 以上から、それぞれの波長の光束の集光点を一致させるためには、 α ' = α '即  [0073] From the above, in order to make the condensing points of the light fluxes of the respective wavelengths coincide, α ′ = α ′
1 2 ち、  1 2
(4)式を満足するように、 p、 Lを決めればよいことがわかる。  It can be seen that p and L should be determined so as to satisfy Eq. (4).
\ λ - λ \ /p = d/L (4)  \ λ-λ \ / p = d / L (4)
1 2  1 2
[0074] 本例の回折素子 8は、段差 sが 0. 254 μ mで 6ステップの階段によって構成された 階段状の断面形状の直線状の溝が溝周期 p = 10 mのピッチで周期的に形成され た周期構造をもち、フォトリソグラフィグラフィとエッチングにより石英ガラスを微細加工 して形成されている。  [0074] In the diffraction element 8 of this example, the step s is 0.254 μm and the stepped cross-sectional linear groove formed by six steps is periodic with a pitch of groove period p = 10 m. The quartz glass has a periodic structure formed in this way, and is formed by finely processing quartz glass by photolithography and etching.
図 2は、本例の回折素子 8を入射光 33、 34、および出射光 35の光軸を含む面で切 断したときの、出射光の光軸近傍の断面図であって、符号 31で示す周期構造を有 する面が第 1および第 2の波長の戻り光束の入射面であり、符号 32で示す面が出射 面である。  FIG. 2 is a cross-sectional view of the vicinity of the optical axis of the outgoing light when the diffractive element 8 of this example is cut by a plane including the optical axes of the incident light 33 and 34 and the outgoing light 35. The surface having the periodic structure shown is the entrance surface for the return light beams of the first and second wavelengths, and the surface indicated by reference numeral 32 is the exit surface.
[0075] 波長え = 650nm、え = 780nmの光束を出射し、発光点間距離 d= 110 /z mの 2  [0075] A light beam having a wavelength of 650 nm and a beam of 780 nm is emitted, and the distance between the light emitting points is d = 110 / z m 2
1 2  1 2
波長光源を用いて、波長 1および波長 2の光束を、本例の回折素子 8への入射角度 力 Sそれぞれ α =0. 013rad、 a =0. OOOradとなるように人射させると、 2つの波長Using a wavelength light source, the incident angle to the diffraction element 8 in this example is applied to the light beams of wavelengths 1 and 2 Force S, α = 0.013rad, a = 0.
1 2 1 2
の光束は、回折素子の法線方向に対して等しい回折角度 α ' = α ' =0. 078rad  Is equal in diffraction angle to the normal direction of the diffraction element α '= α' = 0.078 rad
1 2  1 2
で回折透過されて、回折素子から距離 L = 8. 46mm後方の一致した集光点に集光 される。  The light is diffracted and transmitted at, and is collected from the diffractive element at a condensing point at a distance L = 8.46 mm behind.
[0076] そのときの回折効率は、第 1の波長え (650nm)の光束、および、第 2の波長え (  [0076] The diffraction efficiency at that time is that the luminous flux of the first wavelength (650 nm) and the second wavelength (
1 2 1 2
780nm)の光束に対して 82%であり、光ピックアップ装置に適用するために必要な 8 0%以上の値が得られる。 It is 82% with respect to the luminous flux of 780 nm), and a value of 80% or more necessary for application to the optical pickup device can be obtained.
なお、階段状の周期構造の 1周期は、本例で用いた 6ステップには限定されない。 周期構造の 1周期を 6ステップ以上とすると、前記 2つの波長の光束の回折効率をさ らに向上させることができる。表 1に階段状のステップ数とそのときの回折効率 (%)を まとめたように、 8ステップとすると 84%、 10ステップでは 86%、 32ステップでは 87% の回折効率が得られる。  Note that one period of the step-like periodic structure is not limited to the six steps used in this example. If one period of the periodic structure is 6 steps or more, the diffraction efficiency of the light beams having the two wavelengths can be further improved. As Table 1 summarizes the number of stepped steps and the diffraction efficiency (%) at that time, the diffraction efficiency is 84% for 8 steps, 86% for 10 steps, and 87% for 32 steps.
[0077] [表 1]
Figure imgf000028_0001
[0077] [Table 1]
Figure imgf000028_0001
[0078] 以下に、環境温度の変化 (以下、単に温度変化ともいう。 )により、回折素子 8により 回折された光束の光軸方向(以下、回折方向という。)がどのように変化するかを説明 する。 [0078] In the following, how the optical axis direction (hereinafter referred to as the diffraction direction) of the light beam diffracted by the diffraction element 8 changes due to a change in environmental temperature (hereinafter also referred to simply as temperature change). explain.
温度変化したときに第 1の光源 laの波長の変動 Δ λ により引き起こされる、第 1の 波長の光束の回折方向の変化 Δ α は、(5)式で表される。 Caused by the first variation of the wavelength of the light source la delta lambda when the temperature changes, the diffraction direction of change delta alpha of the light beam of a first wavelength, represented by equation (5).
Δ α = Δ λ /ρ (5)  Δ α = Δ λ / ρ (5)
ここで、第 1の光源 laの波長の変動 Δ λ は、第 1の光源 laの温度変化による波長 変動率 W nmZ°C、温度変化 A T°Cを用いて、(6)式で表されるので、 Δ α として( 7)式を得る。  Here, the wavelength variation Δ λ of the first light source la is expressed by equation (6) using the wavelength variation rate W nmZ ° C and the temperature variation AT ° C due to the temperature variation of the first light source la. Therefore, Equation (7) is obtained as Δ α.
Δ λ =W · Δ Τ (6)  Δ λ = W · Δ Τ (6)
Δ a =W · Δ Τ/ρ (7)  Δ a = W · Δ Τ / ρ (7)
また、同様にして、第 2の波長の光束の回折方向 yの変化 Δ a は、第 2の光源 2a の温度変化による波長変動率を W nmZ°Cとすると、 Δ a として(8)式を得る。 Similarly, the change Δa in the diffraction direction y of the light beam having the second wavelength is equal to the second light source 2a. If the wavelength fluctuation rate due to temperature change is W nmZ ° C, Eq. (8) is obtained as Δ a.
2 2  twenty two
Δひ = Δ λ /p=W · ΔΤ/ρ (8)  Δ hi = Δ λ / p = W · ΔΤ / ρ (8)
2 2 2  2 2 2
[0079] したがって AT°Cの温度変化に対する、第 1の波長の戻り光および第 2の波長の戻 り光が回折素子 8を回折して出射する光束の方向のずれ Δ αは、(9)式となる。  [0079] Accordingly, the deviation Δα in the direction of the light flux diffracted and emitted from the diffraction element 8 by the return light of the first wavelength and the return light of the second wavelength with respect to the temperature change of AT ° C is (9) It becomes an expression.
Δ α= | Δ α — Δ α |  Δ α = | Δ α — Δ α |
1 2  1 2
= I (W -W )-AT/p I (9)  = I (W -W) -AT / p I (9)
1 2  1 2
ここで、第 1の光源 la (波長 650nm)の単位温度当たりの波長の変動 Δ λ は 0. 2 OnmZ°C程度であり、第 1の光源 1 a (波長 780nm)の単位温度当たりの波長の変動 Δ λ は 0. 25nmZ°C程度であるので、 2つの波長の光束の回折方向のずれ Δ αは Here, the wavelength variation Δ λ per unit temperature of the first light source la (wavelength 650 nm) is about 0.2 OnmZ ° C, and the wavelength per unit temperature of the first light source 1 a (wavelength 780 nm) Since the variation Δ λ is about 0.25 nmZ ° C, the deviation Δ α in the diffraction direction of the light beams of two wavelengths is
2 2
、(10)式となる。  (10).
Δ α = I 0.05· ΔΤ/ρ | (10)  Δ α = I 0.05 · ΔΤ / ρ | (10)
[0080] [例 2] [0080] [Example 2]
例 1で得られた、本発明の光ピックアップ装置を用いたときの前記 2つの波長の光 束の回折方向のずれを、第 1の波長 650nmの光束を 0次で回折透過させ (すなわち 実質的に光束を直進透過させ)、第 2の波長 780nmの光束を 1次で回折透過させて 集光点を一致させる回折素子を用いる、従来の光ピックアップ装置での集光点のず れと比較してみる。  When the optical pickup device of the present invention obtained in Example 1 is used, the deviation of the diffraction direction of the light flux of the two wavelengths is made to diffract and transmit the light beam of the first wavelength of 650 nm in the 0th order (that is, substantially Compared with the shift of the condensing point in the conventional optical pickup device using a diffraction element that diffracts and transmits the light beam of the second wavelength of 780 nm in the first order and matches the condensing point. Try.
従来の光ピックアップ装置では、第 1の波長 650nmの光束に対しては、 0次で回折 透過させるため、温度変化により波長の変動が生じても回折方向は変化しない。これ に対して、第 2の波長 780nmの光束は 1次回折させて回折透過させるため、温度変 化 ΔΤにより波長の変動 Δ λ が生じると、(11)式で表せる Δ α なる回折角の変動  In the conventional optical pickup device, the light beam having the first wavelength of 650 nm is diffracted and transmitted in the 0th order, so that the diffraction direction does not change even if the wavelength changes due to temperature change. On the other hand, the light beam with the second wavelength of 780 nm is first-order diffracted and diffracted and transmitted. Therefore, if a change in wavelength Δλ occurs due to a temperature change ΔΤ, a change in the diffraction angle Δ Δ represented by Eq.
2 2  twenty two
力叩き起こされる。  It is struck by force.
Δ α = Δ λ /p=W - ΔΤ/ρ (11)  Δ α = Δ λ / p = W-ΔΤ / ρ (11)
2 2 2  2 2 2
[0081] その結果、本例における、温度変化 ΔΤによる回折方向のずれ Δ aは、(12)式と なる。  As a result, the diffraction direction shift Δa due to the temperature change ΔΤ in this example is expressed by equation (12).
Δ α = I Δ α | = | W · ΔΤ/ρ | (12)  Δ α = I Δ α | = | W · ΔΤ / ρ | (12)
2 2  twenty two
ここで、 Wは 0.25nmZ°C程度であるので、(13)式が成立する。  Here, since W is about 0.25 nmZ ° C, equation (13) is established.
2  2
Δ α = I 0. 25· ΔΤ/ρ | (13) 例 1と例 2とを比べると、例 1の温度変化 ΔΤによる回折方向のずれ Δ αは、上記で 得られた例 2のずれの 1Z5と小さぐ第 1の波長の戻り光および第 2の波長の戻り光 をともに 1次回折させる本発明の光ピックアップ装置構成を用いることにより、集光点 のずれを効果的に抑制できることが示された。 Δ α = I 0. 25 · ΔΤ / ρ | (13) Comparing Example 1 and Example 2, the difference in diffraction direction Δ α due to the temperature change ΔΤ in Example 1 is less than 1Z5 of the deviation in Example 2 obtained above and the return light of the first wavelength and the second It was shown that the shift of the focal point can be effectively suppressed by using the configuration of the optical pickup device of the present invention that first-order diffracts both the return light of the wavelengths.
[0082] [例 3] [0082] [Example 3]
例 1では、回折素子を光学系の光軸に対して垂直に設置したが、光学系の光軸に 対して斜めに配置すると、例えば光学素子 2として平行平面形状のハーフミラーを用 Vヽた場合に発生する非点収差を低減する機能を持たせることができるので好ま ヽ。 図 7に示した本発明の光ピックアップ装置の回折素子周辺の構成図のように、回折素 子 8をノヽーフミラーの傾きと同じ方向に 4° 傾ける(以下、 4° 傾ける、という)と、前 記 2波長の戻り光の集光点を一致させるとともに、非点収差を第 1の波長 (DVD用) に対して 0.03 λ、第 2の波長(CD用)に対して 0.01 λ (いずれも波面収差 RMS値 であり、以下、収差値は同様に波面収差 RMS値であらわす)まで低減できる。  In Example 1, the diffractive element is installed perpendicular to the optical axis of the optical system. However, if the diffractive element is disposed obliquely with respect to the optical axis of the optical system, for example, a parallel plane half mirror is used as the optical element 2. It is preferable because it can have a function to reduce astigmatism that occurs in some cases. As shown in the configuration diagram around the diffraction element of the optical pickup device of the present invention shown in FIG. 7, when the diffraction element 8 is tilted 4 ° in the same direction as the tilt of the mirror mirror (hereinafter referred to as 4 ° tilt), The focal points of the return light of the two wavelengths are matched, and astigmatism is 0.03 λ for the first wavelength (for DVD) and 0.01 λ for the second wavelength (for CD) (both are wavefronts) Aberration RMS value. Hereinafter, the aberration value can be reduced to a wavefront aberration RMS value).
[0083] [例 4〜6] [0083] [Examples 4-6]
例 1では、回折素子として溝が平行な直線状で等間隔の格子を用いたが、これに 限定されず、溝を曲線状とした回折素子 (以下、曲線状溝の回折素子という)としても よい。曲線状溝の回折素子を用いることにより、例えば光学素子 2として平行平板型 のハーフミラーを用いた場合に発生するコマ収差および Ζまたは非点収差を補正す る機能を持たせることができ、またフォーカス検出手段に非点収差法を用いる場合の 光束の非点収差量を適切に設定する機能を付加することができて好ましい。  In Example 1, a straight and equidistant grating with parallel grooves is used as the diffraction element, but the present invention is not limited to this, and a diffraction element having a curved groove (hereinafter referred to as a curved groove diffraction element) may be used. Good. By using a diffractive element with a curved groove, for example, it is possible to provide a function for correcting coma and wrinkles or astigmatism that occurs when a parallel plate type half mirror is used as the optical element 2. It is preferable that a function for appropriately setting the amount of astigmatism of the light beam when using the astigmatism method for the focus detection means can be added.
力かる曲線状溝の回折素子の光学設計は、既知の位相関数法を用いて行うことが できる。  The optical design of a diffractive element having a curved groove can be performed using a known phase function method.
すなわち、位相関数  That is, the phase function
[0084] [数 1] [0084] [Equation 1]
0 = al ox + aoly + a2Ox2+a11xy + aO2y2 + - · · 0 = a lo x + a ol y + a 2O x 2 + a 11 xy + a O2 y 2 +-
+ an0xn+an L 11— + . ■ — 11-1十 a0nyn+ . · . (14) + A n0 x n + a n L 11 -. + ■ - 11 -.. 1 dozen a 0n y n + · (14 )
(a uは各項の係数、 nは正の整数) の各係数を最適化することによって、 2本の戻り光束を 1次で回折させ、光学系の他 の素子で発生する収差を除去する機能と所定の収差量を設定する機能のいずれか 一方もしくは両方と、集光点を一致させる機能とをあわせ持つ曲線状溝の形状を設 計することができる。 (a u is the coefficient of each term, n is a positive integer) By optimizing each coefficient of It is possible to design the shape of a curved groove that has one or both of the function of removing the aberration generated by the element and the function of setting a predetermined amount of aberration and the function of matching the focal point .
[0085] 表 2にまとめた位相関数の係数をもつ曲線状溝の回折素子を用いた各回折素子を 形成し、例 1の光ピックアップ装置における回折素子と置き換えた光ピックアップ装置 を構成すると、前記 2つの波長の戻り光の集光点を一致させるとともに、表 3にまとめ たコマ収差と非点収差が得られる。各例の曲線状溝の回折素子は、例 4はコマ収差 の低減、例 5はコマ収差および非点収差の低減、例 6はコマ収差の低減および所望 の値 (この例では 0.5 λ )の非点収差、がそれぞれ得られるように光学設計をおこな つたものである。  [0085] When each diffractive element using a curved groove diffractive element having a phase function coefficient summarized in Table 2 is formed and replaced with the diffractive element in the optical pickup apparatus of Example 1, the optical pickup apparatus is configured as described above. The converging points of the return light of the two wavelengths are matched, and the coma and astigmatism summarized in Table 3 are obtained. The curved groove diffractive element in each example has a coma aberration reduction in example 4, coma and astigmatism reduction in example 5, coma aberration reduction and a desired value (0.5 λ in this example). The optical design is designed to obtain astigmatism.
[0086] 例 4〜6の曲線状溝の回折素子を用いた光ピックアップ装置では前記 2つの波長の 戻り光の集光点を一致させるとともに、例 4では非点収差値を例 1と同等に保ちつつ コマ収差が低減されている。また例 5ではコマ収差および非点収差が同時に低減さ れており、例 6ではコマ収差が低減されると同時に非点収差値が 0.5えに調整され ている。  [0086] In the optical pickup device using the diffractive elements having the curved grooves in Examples 4 to 6, the return light condensing points of the two wavelengths are made to coincide with each other. In Example 4, the astigmatism value is made equal to Example 1. Coma is reduced while maintaining. In Example 5, coma and astigmatism are simultaneously reduced. In Example 6, coma is reduced and the astigmatism value is adjusted to 0.5 °.
[0087] [表 2]  [0087] [Table 2]
Figure imgf000031_0001
Figure imgf000031_0001
[0088] [表 3] 例 1 例 3 例 4 例 5 例 6 コマ収差 DVD 0. 047 A 0. 047 λ 0. 000 λ 0. 005 λ 0. 015 λ コマ収差 CD 0. 023 λ 0. 023 λ 0. 000 λ 0. 001 λ 0. 006 λ 非点収差 DVD 0. 180 λ 0. 03 λ 0. 177 λ 0. 009 λ 0. 501 λ 非点収差 C D 0. 074 λ 0. 01久 0. 078 λ 0. 014 λ 0. 497 λ [0089] 以上説明したように、本発明の第 1の実施態様に力かる光ピックアップ装置におい ては、回折素子は、第 1の波長の戻り光および第 2に波長の戻り光の各光束をともに 1次で回折させるため、環境温度の変化が各光束に及ぼす影響を同程度にすること ができる。これにより、環境温度の変化による、受光素子の受光面上での各戻り光の 集光点のずれが抑制される。 [0088] [Table 3] Example 1 Example 3 Example 4 Example 5 Example 6 Coma aberration DVD 0. 047 A 0. 047 λ 0. 000 λ 0. 005 λ 0. 015 λ coma aberration CD 0. 023 λ 0. 023 λ 0. 000 λ 0. 001 λ 0. 006 λ Astigmatism DVD 0. 180 λ 0. 03 λ 0. 177 λ 0. 009 λ 0. 501 λ Astigmatism CD 0. 074 λ 0. 01 078 λ 0. 014 λ 0. 497 λ As described above, in the optical pickup device according to the first embodiment of the present invention, the diffractive element transmits each light flux of the return light having the first wavelength and the second return light having the wavelength. Since both are diffracted in the first order, the effect of changes in ambient temperature on each beam can be made comparable. Thereby, the shift of the condensing point of each return light on the light receiving surface of the light receiving element due to the change of the environmental temperature is suppressed.
[0090] 上述の実施例では、 CDと DVDとの互換を前提として説明した力 ブルーレイディ スクまたは HD— DVD (High Definition DVD)と DVDとの互換や、ブルーレイ ディスクまたは HD— DVDと CDとの互換に対しても有効に適用できる。  [0090] In the above-described embodiment, the power described on the assumption that CD and DVD are compatible is compatible with Blu-ray Disc or HD—DVD (High Definition DVD) and DVD, or between Blu-ray Disc or HD—DVD and CD. It can be effectively applied to compatibility.
[0091] また、本実施例では、光学系が、コリメーターレンズを用いた、いわゆる、無限系の 光学系として構成されているが、本発明が適用される範囲は無限系の光学系には限 定されず、コリメーターレンズを使用しな 、有限系の光学系であってもよ 、。  Further, in this embodiment, the optical system is configured as a so-called infinite optical system using a collimator lens, but the range to which the present invention is applied is limited to the infinite optical system. It is not limited, and it can be a finite optical system without using a collimator lens.
[II]第 2の実施態様に対する実施例  [II] Example for the second embodiment
[0092] 第 2の実施態様に係る光ピックアップ装置は、上記の往路光学系と復路光学系とが 、それぞれ同じ格子ピッチの回折素子を有し、各回折素子が、第 1の波長の光束を 同一次数で回折させると共に、第 2の波長の光束を同一次数で回折させるように構 成される。  [0092] In the optical pickup device according to the second embodiment, the forward optical system and the backward optical system have diffractive elements having the same grating pitch, and each diffractive element emits a light beam having the first wavelength. While diffracting with the same order, the second wavelength light beam is diffracted with the same order.
[0093] 以下、各回折素子が、第 1の波長の光束を回折させる回折の次数が 1次であり、第 2の波長の光束を回折させる回折の次数力 ^次である構成についての実施例を [例 7 ]とし、各回折素子が、第 1の波長の光束を回折させる回折の次数力^次であり、第 2 の波長の光束を回折させる回折の次数が 1次である構成についての実施例を [例 8] として説明する。  [0093] In the following, an example of a configuration in which each diffraction element has a first order of diffraction for diffracting a light beam of the first wavelength and a diffraction order power for diffracting a light beam of the second wavelength ^ For a configuration in which each diffraction element is of the order of the diffraction order that diffracts the light beam of the first wavelength, and the order of diffraction that diffracts the light beam of the second wavelength is the first order. An example will be described as [Example 8].
[0094] [例 7]  [0094] [Example 7]
例 7に係る光ピックアップ装置 100は、図 4に示すように、第 1の波長 650nmの光束 を出射する第 1の光源 201aと、第 2の波長 780nmの光束を出射する第 2の光源 201 bと、各光源 201a、 201bが出射した光束 205と、対物レンズ 206と、各情報記録面 2 07a, 208aからの戻り光を分波する復路回折素子 209と、分波した後の第 1の波長 6 50nmの光束を受光する第 1受光素子 210aと、分波した後の第 2の波長 780nmの 光束を受光する第 2受光素子 210bとを備える。 [0095] 例 7に係る光ピックアップ装置 100は、各回折素子 202、 209力 第 1の波長 650η mの光束を回折させる回折の次数が 1次であり、第 2の波長 780nmの光束を回折さ せる回折の次数が 1次であるように構成されている。また、各回折素子 202、 209は、 同一の格子ピッチを有する回折格子力もなるものとする。まず、合波について説明す る。 As shown in FIG. 4, the optical pickup device 100 according to Example 7 includes a first light source 201a that emits a light beam with a first wavelength of 650 nm, and a second light source 201b that emits a light beam with a second wavelength of 780 nm. A light beam 205 emitted from each of the light sources 201a and 201b, an objective lens 206, a return diffraction element 209 for demultiplexing the return light from each information recording surface 207a and 208a, and a first wavelength after demultiplexing 6 includes a first light receiving element 210a that receives a light beam having a wavelength of 50 nm and a second light receiving element 210b that receives a light beam having a second wavelength of 780 nm after being demultiplexed. [0095] The optical pickup device 100 according to Example 7 includes a diffraction element 202, a 209 force, the first order of diffraction for diffracting a light beam having a first wavelength of 650 ηm, and a light beam having a second wavelength of 780 nm. The diffraction order is set to be the first order. Each diffraction element 202, 209 also has a diffraction grating force having the same grating pitch. First, multiplexing will be described.
[0096] 図 8は、例 7に係る光ピックアップ装置 100が行う合波についての説明図である。図 8において、第 1の光源 201aおよび第 2の光源 201bが出射した光束は、それぞれ、 符 221で示す線および符号 222で示す線を光軸として往路回折素子 202に入射す る。以下、光束が入射する回折素子の面のことを単に「入射面」という。  FIG. 8 is an explanatory diagram of multiplexing performed by the optical pickup device 100 according to the seventh example. In FIG. 8, the light beams emitted from the first light source 201a and the second light source 201b are incident on the forward diffraction element 202 with the line indicated by reference numeral 221 and the line indicated by reference numeral 222 as optical axes, respectively. Hereinafter, the surface of the diffraction element on which the light beam enters is simply referred to as “incident surface”.
[0097] ここで、各光束は、往路回折素子 202の入射面に垂直な方向(符号 223で示す線 の方向)と角度 0 、 Θ をなす方向から往路回折素子 202に入射する。以下、往路回 a b  Here, each light beam enters the forward diffraction element 202 from a direction perpendicular to the incident surface of the forward diffraction element 202 (direction of a line indicated by reference numeral 223) and angles 0 and Θ. Hereafter, outbound trip a b
折素子 202の入射面に垂直な方向と光束とがなす角度を入射角という。往路回折素 子 202に入射した各光束は、往路回折素子 202からほぼ垂直方向に出射する。また 、往路回折素子 202から出射する光束の方向は、コリメーターレンズ 204、対物レン ズ 206等によって構成される光学系の光軸(以下、光ピックアップ装置 100の光軸と いう。 )に平行な方向となっている。  The angle formed by the light beam and the direction perpendicular to the incident surface of the folding element 202 is referred to as the incident angle. Each light beam incident on the outward diffraction element 202 exits from the outward diffraction element 202 in a substantially vertical direction. In addition, the direction of the light beam emitted from the forward diffraction element 202 is parallel to the optical axis of an optical system configured by the collimator lens 204, the objective lens 206, and the like (hereinafter referred to as the optical axis of the optical pickup device 100). It has become a direction.
[0098] 第 1の光源 201aが出射した光束の波長 650nmをえ とし、往路回折素子 202の回 折格子の格子ピッチを Pとすると、第 1の光源 201aは、第 1の光源 201aから出射され た波長え の光束が往路回折素子 202に、(15)式で表される入射角 0 で入射する [0098] When the wavelength of the light beam emitted from the first light source 201a is 650 nm and the grating pitch of the diffraction grating of the forward diffraction element 202 is P, the first light source 201a is emitted from the first light source 201a. A light beam having a different wavelength is incident on the forward diffraction element 202 at an incident angle of 0 expressed by equation (15).
1 a  1 a
位置に配置される。  Placed in position.
θ = λ /p (15)  θ = λ / p (15)
a 1  a 1
同様に、第 2の光源 201bが出射した光束の波長 780nmをえ とし、往路回折素子  Similarly, the wavelength of the light beam emitted from the second light source 201b is 780 nm, and the forward diffraction element
2  2
202の回折格子の格子ピッチを pとすると、第 2の光源 201bは、第 2の光源 201bから 出射された波長え の光束が往路回折素子 202に、(16)式で表される入射角 0 で  Assuming that the grating pitch of the diffraction grating 202 is p, the second light source 201b is configured such that the light beam having the wavelength emitted from the second light source 201b is incident on the forward diffraction element 202 with an incident angle represented by equation (16) 0 so
2 b 入射する位置に配置される。  2 b Located at the incident position.
θ = λ /p (16)  θ = λ / p (16)
b 2  b 2
このように第 1の光源 201aと第 2の光源 201bとを配置することによって、各光源 20 la、 20 lbから出射された光束が往路回折素子 202で回折して出射したときの出射 方向が一致することになる。 By arranging the first light source 201a and the second light source 201b in this manner, the light emitted from each of the light sources 20 la and 20 lb is diffracted by the outward diffraction element 202 and emitted. The directions will match.
[0099] 次に、分波について説明する。図 9は、例 7に係る光ピックアップ装置が行う分波に ついての説明図である。以下、復路回折素子 209の回折格子の格子ピッチを qとす る。光ディスク 207の情報記録面 207aまたは光ディスク 208の情報記録面 208aから の戻り光は、図 9において、符号 231で示す線を光軸として復路回折素子 209の入 射面にほぼ垂直に入射し、それぞれ、以下の回折角で回折する。  [0099] Next, demultiplexing will be described. FIG. 9 is an explanatory diagram of the demultiplexing performed by the optical pickup device according to Example 7. Hereinafter, the grating pitch of the diffraction grating of the backward diffraction element 209 is assumed to be q. Return light from the information recording surface 207a of the optical disc 207 or the information recording surface 208a of the optical disc 208 enters the entrance surface of the return diffraction element 209 substantially perpendicularly with the line indicated by reference numeral 231 in FIG. Diffracts at the following diffraction angles.
[0100] すなわち、第 1の光源 201aが出射した波長え の光束は、 λ Zqで表される回折 角で回折し、第 2の光源 201bが出射した波長え の光束は、  [0100] That is, the light flux of the wavelength emitted from the first light source 201a is diffracted at the diffraction angle represented by λ Zq, and the light flux of the wavelength emitted from the second light source 201b is
2 λ 2 Zqで表される回折 角で回折し、それぞれ、符号 232で示す線または符号 233で示す線を光軸として復 路回折素子 209から出射する。  The light is diffracted at a diffraction angle represented by 2 λ 2 Zq and emitted from the backward diffraction element 209 using the line indicated by reference numeral 232 or the line indicated by reference numeral 233 as the optical axis.
第 1の光源 201aが出射した光束と第 2の光源 201bが出射した光束とは波長が異 なるため、これらの光束は、上記で説明したように復路回折素子 209によって分波さ れることになる。ここで、第 1受光素子 210aは、符号 232で示す線上に受光面が位 置するように配置される。同様に、第 2受光素子 210bは、符号 233で示す線上に受 光面が位置するように配置される。  Since the light beam emitted from the first light source 201a and the light beam emitted from the second light source 201b have different wavelengths, these light beams are demultiplexed by the backward diffraction element 209 as described above. . Here, the first light receiving element 210a is arranged such that the light receiving surface is positioned on a line indicated by reference numeral 232. Similarly, the second light receiving element 210b is arranged such that the light receiving surface is positioned on a line indicated by reference numeral 233.
[0101] 以下に、環境温度の変化に伴って光源の発振波長が変動する場合の、例 1に係る 光ピックアップ装置の挙動について説明する。図 10は、各光源 201a、 201bの発振 波長が変化した場合の、往路回折素子 202への入射光束の光軸方向と、回折後の 光束の光軸方向とを示す図であり、図 8に示すものと同様のものには、同一の符号を 付している。 [0101] The behavior of the optical pickup device according to Example 1 when the oscillation wavelength of the light source fluctuates with a change in environmental temperature is described below. FIG. 10 is a diagram illustrating the optical axis direction of the incident light beam to the forward diffraction element 202 and the optical axis direction of the diffracted light beam when the oscillation wavelengths of the light sources 201a and 201b change. Components similar to those shown are denoted by the same reference numerals.
[0102] まず、第 1の光源 201aの発振波長え 力 動作温度の変化によって発振波長え +  [0102] First, the oscillation wavelength power of the first light source 201a +
Δ λ に変化したとする。このとき、第 1の光源 201aから出射された光束が往路回折 素子 202で回折するときの回折角は、式(17)によって表される。  Assume that Δ λ is changed. At this time, the diffraction angle when the light beam emitted from the first light source 201a is diffracted by the forward diffraction element 202 is expressed by Expression (17).
( λ + Μ ) /ρ (17)  (λ + Μ) / ρ (17)
第 1の光源 201aの発振波長え の変動によって、波長の変動の無いときに比して Δ λ ΖΡだけ回折角が変動する。この量(Δ λ ΖΡ)を Δ 0 とすると、波長変動後の Due to the fluctuation of the oscillation wavelength of the first light source 201a, the diffraction angle fluctuates by ΔλΖΡ compared to when there is no fluctuation in wavelength. If this amount (Δ λ ΖΡ) is Δ 0,
1 1 a 1 1 a
光束は、往路回折素子 202の出射面に垂直な方向(符号 223で示す線の方向)と角 度 Δ Θ なす方向(符号 241で示す線の方向)に沿って進むことになる。 [0103] 同様に、第 2の光源 201bの発振波長 λ 1S 環境温度の変化によって発振波長 λ The light beam travels along a direction (line direction indicated by reference numeral 223) perpendicular to the exit surface of the forward diffraction element 202 and a direction (line direction indicated by reference numeral 241) formed by an angle ΔΘ. Similarly, the oscillation wavelength λ 1S of the second light source 201b is changed by the change in the environmental temperature.
2  2
+ Δ λ に変化したとする。このとき、第 2の光源 201bから出射された光束が第 1の Suppose that it has changed to + Δλ. At this time, the light beam emitted from the second light source 201b is
2 2 twenty two
回折素子 2で回折するときの回折角は、以下の式(18)によって表される。  The diffraction angle when diffracting by the diffraction element 2 is expressed by the following equation (18).
( λ + Μ ) /ρ (18)  (λ + Μ) / ρ (18)
b b  b b
第 2の光源 lbの発振波長え の変化によって、波長変化の無いときに比して Δ λ b b Δ λ b b due to the change in the oscillation wavelength of the second light source lb
ZPだけ回折角が変化する。この量(Δ λ ΖΡ)を Δ 0 とすると、波長変化後の光束 b b The diffraction angle changes by ZP. If this amount (Δ λ ΖΡ) is Δ 0, the light flux b b after wavelength change
は、往路回折素子 202の出射面と垂直な方向(符号 223で示す線の方向)と角度 Δ Θ なす方向(符号 242で示す線の方向)に沿って進むことになる。  Is along a direction perpendicular to the exit surface of the forward diffraction element 202 (direction of a line indicated by reference numeral 223) and an angle ΔΘ (direction of a line indicated by reference numeral 242).
b  b
[0104] このように、光源の波長の変動によって往路回折素子 202からの出射方向が Δ Θ a または Δ Θ ずれた光束は、それぞれ、第 1の光ディスク 207の情報記録面 207a、第 b  [0104] In this way, light fluxes whose emission directions from the forward diffraction element 202 are shifted by ΔΘa or ΔΘ due to fluctuations in the wavelength of the light source are the information recording surfaces 207a and b of the first optical disc 207, respectively.
2の光ディスク 208の情報記録面 208aで反射されると、復路回折素子 209に垂直な 方向と角度 Δ 0 または角度 Δ 0 をなして復路回折素子 209に入射することになる。  When reflected by the information recording surface 208 a of the second optical disk 208, the light enters the backward diffraction element 209 at an angle Δ 0 or an angle Δ 0 with the direction perpendicular to the backward diffraction element 209.
a b  a b
[0105] 以下、上記のように復路回折素子 209の入射面に垂直な方向と角度をなして復路 回折素子 209に入射する場合の光ピックアップ装置 100の作用について、図 11を用 いて説明する。図 11は、各光源 201a、 201bの発振波長が変化したときの、復路回 折素子 209に入射する光束の入射方向と、復路回折素子 209から出射する光束の 出射方向とを示す図であり、図 9に示すものと同様のものには、同一の符号を付して いる。  [0105] Hereinafter, the operation of the optical pickup device 100 when entering the return diffraction element 209 at an angle with the direction perpendicular to the incident surface of the return diffraction element 209 as described above will be described with reference to FIG. FIG. 11 is a diagram illustrating the incident direction of the light beam incident on the return path diffraction element 209 and the emission direction of the light beam output from the return path diffraction element 209 when the oscillation wavelengths of the light sources 201a and 201b change. Components similar to those shown in FIG. 9 are given the same reference numerals.
[0106] まず、波長( λ + Α λ )の光束が、復路回折素子 209の入射面に垂直な方向(符 号 231で示す線の方向)と角度 Δ 0 ( = Α λ  First, a light beam having a wavelength (λ + λ λ) is perpendicular to the incident surface of the return diffraction element 209 (the direction of the line indicated by reference numeral 231) and an angle Δ 0 (= Α λ
a 1 Ζρ)をなして復路回折素子 209に入 射して復路回折素子 209で回折するときの回折角は、以下の式(19)によって表され る。  The diffraction angle when a 1 路 ρ) is incident on the backward diffraction element 209 and diffracted by the backward diffraction element 209 is expressed by the following equation (19).
( λ + Α λ ) /q (19)  (λ + Α λ) / q (19)
復路回折素子 209に入射した光束は、符号 253で示す線を光軸とする方向に回折 するが、このときの回折の方向は、復路回折素子 209に垂直な方向(符号 231で示 す線の方向)と、以下の式(20)によって表される角度をなす。  The light beam incident on the backward diffraction element 209 is diffracted in the direction with the line indicated by reference numeral 253 as the optical axis. The direction of diffraction at this time is the direction perpendicular to the backward diffraction element 209 (the line indicated by reference numeral 231). Direction) and an angle represented by the following equation (20).
( λ + Α λ ) /q- M Zp (20)  (λ + Α λ) / q- M Zp (20)
同様に、波長( λ + Δ λ )の光束が、復路回折素子 209の入射面に垂直な方向( 符号 231で示す線の方向)と角度 Δ 0 (= Δ λ Ζρ)をなして復路回折素子 209に b 2 Similarly, a light beam having a wavelength (λ + Δλ) is directed in a direction perpendicular to the incident surface of the return diffraction element 209 ( The direction of the line indicated by reference numeral 231) and the angle Δ 0 (= Δ λ Ζρ) and b 2
入射して復路回折素子 209で回折するときの回折角は、以下の式(21)によって表さ れる。  The diffraction angle when incident and diffracted by the backward diffraction element 209 is expressed by the following equation (21).
( λ + Μ ) /q (21)  (λ + Μ) / q (21)
2 2  twenty two
復路回折素子 209に入射した光束は、符号 254で示す線を光軸とする方向に回折 するが、このときの回折の方向は、復路回折素子 209に垂直な方向(符号 231で示 す線の方向)と、以下の式(22)によって表される角度をなす。  The light beam incident on the backward diffraction element 209 is diffracted in the direction with the line indicated by reference numeral 254 as the optical axis. The direction of diffraction at this time is the direction perpendicular to the backward diffraction element 209 (the line indicated by reference numeral 231). Direction) and an angle represented by the following equation (22).
( λ + Μ ) /q- M  (λ + Μ) / q- M
2 2 2 Zp (22)  2 2 2 Zp (22)
ここで、復路回折素子 209の回折格子の格子ピッチ qを、往路回折素子 202の回 折格子の格子ピッチ Pに等しくすると、上記の式(20)の Δ λ Zqと Δ λ Zpとは打ち 消しあい、符号 253で示す復路回折素子 209で回折後の光束の方向は図 7におけ る符号 232で示す光束の方向と同一となる。同様に、符号 254で示す回折後の光束 の方向は図 7における符号 233で示す光束の方向と同一となる。  Here, if the grating pitch q of the diffraction grating of the backward diffraction element 209 is equal to the grating pitch P of the diffraction grating of the forward diffraction element 202, Δλ Zq and Δλ Zp in the above equation (20) cancel each other. In the meantime, the direction of the light beam after being diffracted by the backward diffraction element 209 indicated by reference numeral 253 is the same as the direction of the light beam indicated by reference numeral 232 in FIG. Similarly, the direction of the diffracted light beam indicated by reference numeral 254 is the same as the direction of the light beam indicated by reference numeral 233 in FIG.
[0107] これは、往路回折素子 202の回折格子の格子ピッチと復路回折素子 209の回折格 子の格子ピッチとを等しくすることによって、波長の変動の影響で合波したときに生ず る回折角の変動と、分波したときに生ずる回折角の変動とが相殺され、波長の変動が 生じても、復路回折素子 209で回折した後の出射方向は変化しないことを示している 。したがって、温度変化が生じたとしても、光束の集光する受光素子上の位置が変動 することがない。 [0107] This is caused by equalizing the grating pitch of the diffraction grating of the forward diffraction element 202 and the grating pitch of the diffraction grating of the backward diffraction element 209, thereby generating a circuit that occurs when multiplexing is performed due to the influence of wavelength variation. This shows that the change in bending angle and the change in diffraction angle that occurs when demultiplexing cancel each other, and even if the change in wavelength occurs, the exit direction after diffracting by the return path diffraction element 209 does not change. Therefore, even if a temperature change occurs, the position on the light receiving element where the light beam is collected does not change.
[0108] 以下に、第 1回折素子 202および第 2回折素子 209の具体的な構成を示す。図 12 は、本実施例に係る往路回折素子 202の断面の一部を概念的に示す断面図である 。ここで、符号 261で示す面は、各光源 201a、 201bから出射された光束が入射する 入射面であり、符号 262で示す面は、各光束が出射する出射面である。  [0108] Specific configurations of the first diffraction element 202 and the second diffraction element 209 are shown below. FIG. 12 is a cross-sectional view conceptually showing a part of the cross section of the forward diffraction element 202 according to the present embodiment. Here, a surface denoted by reference numeral 261 is an incident surface on which light beams emitted from the light sources 201a and 201b are incident, and a surface denoted by reference numeral 262 is an output surface from which each light beam is emitted.
[0109] 第 1の光源 201aが出射する光束および第 2の光源 201bが出射する光束は、それ ぞれ、符号 263で示す矢印の方向および符号 264で示す矢印の方向から、往路回 折素子 202に入射する。また、往路回折素子 202で回折された各光束は、共に符号 265で示す矢印の方向力も逸れた方向に出射されることになる。  The light beam emitted from the first light source 201a and the light beam emitted from the second light source 201b are respectively derived from the direction of the arrow indicated by reference numeral 263 and the direction of the arrow indicated by reference numeral 264, respectively. Is incident on. Further, each light beam diffracted by the forward diffraction element 202 is emitted in a direction in which the directional force indicated by the arrow 265 also deviates.
[0110] 往路回折素子 202の材料は、石英ガラスであり、往路回折素子 202の回折格子は エッチング技術を用いて形成されている。往路回折素子 202は、図 12に示すように、 階段状の形状が周期的に繰り返す周期構造を有する断面形状の回折格子によって 構成される。本実施例では、回折格子が 6ステップ力 なる階段を 1周期とする周期 構造を有する構成とし、各ステップ (段)の段差 dをそれぞれ 0. 254 mとした。 [0110] The material of the outward diffraction element 202 is quartz glass, and the diffraction grating of the outward diffraction element 202 is It is formed using an etching technique. As shown in FIG. 12, the forward diffraction element 202 is constituted by a diffraction grating having a cross-sectional shape having a periodic structure in which a stepped shape repeats periodically. In this embodiment, the diffraction grating has a periodic structure in which one step is a step with 6 step force, and the step d of each step (step) is 0.254 m.
[0111] また、ピッチが 10 mとなるよう、各階の出射面とほぼ平行な部分 (以下、平坦部と いう。)の幅を 1. とした。なお、係る回折格子はバイナリブレーズド回折格子と 称されるものである。上記のように、ステップ数 (換言すれば、 1周期中の平坦部の合 計個数)を 6とし、各段の段差 dをそれぞれ 0. 254 /z mに設定することによって、第 1 の光源が出射した波長 650nmの光束および第 2の光源が出射した波長 780nmの 光束の 1次回折の回折効率を、共に 80%にすることができる。  [0111] In addition, the width of the portion (hereinafter, referred to as a flat portion) substantially parallel to the exit surface of each floor was set to 1. so that the pitch was 10 m. Such a diffraction grating is called a binary blazed diffraction grating. As described above, by setting the number of steps (in other words, the total number of flat portions in one cycle) to 6 and setting each step d to 0.254 / zm, the first light source The diffraction efficiency of the first-order diffraction of the emitted light beam with a wavelength of 650 nm and the light beam with a wavelength of 780 nm emitted by the second light source can both be 80%.
[0112] 図 13は、本実施例に係る復路回折素子 20の断面の一部を概念的に示す断面図 である。  FIG. 13 is a cross-sectional view conceptually showing a part of a cross section of the backward diffraction element 20 according to the present example.
ここで、符号 271で示す面は、各戻り光の入射面であり、符号 272で示す面は、復路 回折素子 209の出射面である。  Here, the surface denoted by reference numeral 271 is the incident surface of each return light, and the surface denoted by reference numeral 272 is the exit surface of the return path diffraction element 209.
[0113] 第 1の光源 201aが出射する光束および第 2の光源 201bが出射する光束は、それ ぞれ、各光ディスク 207、 208の情報記録面 207a、 208aで反射され、復路回折素 子 209に対してほぼ垂直な方向(符号 273で示す線の方向)から入射する。なお、波 長の変動が生じたときは、上記の説明のように、この符号 273で示す線から逸れた方 向から入射することになる。 [0113] The light beam emitted from the first light source 201a and the light beam emitted from the second light source 201b are reflected by the information recording surfaces 207a and 208a of the optical disks 207 and 208, respectively, and are reflected on the return path diffraction element 209. The light enters from a direction substantially perpendicular to the line (the direction of the line indicated by reference numeral 273). When the wavelength fluctuates, the light enters from the direction deviating from the line indicated by reference numeral 273 as described above.
[0114] 復路回折素子 209で回折した波長え の光束 (第 1の光 201aからの光束)は、符号[0114] The light flux of the wavelength diffracted by the backward diffraction element 209 (the light flux from the first light 201a)
274で示す矢印の方向に出射し、復路回折素子 209で回折した波長え の光束 (第 A light beam having a wavelength (e.g., diffracted by the backward diffraction element 209)
2  2
2の光源 201bからの光束)は、符号 275で示す矢印の方向に出射する。復路回折素 子 209の材料、および、復路回折素子 209の回折格子の構造は、往路回折素子 20 2と同様である。  2) is emitted in the direction of the arrow indicated by reference numeral 275. The material of the return path diffraction element 209 and the structure of the diffraction grating of the return path diffraction element 209 are the same as those of the forward path diffraction element 202.
[0115] [例 8] [0115] [Example 8]
例 8に係る光ピックアップ装置 800は、図 14に示すように、例 1に係る光ピックアップ 装置 100と同様の光学素子を有するが、例 1に係る光ピックアップ装置 100とは、一 部の光学部材の相対的な配置が異なる。図 14では、例 1に係る光ピックアップ装置 1 00と同様の光学部材には、同一の符号を付した。 As shown in FIG. 14, the optical pickup device 800 according to Example 8 has the same optical elements as the optical pickup device 100 according to Example 1, but the optical pickup device 100 according to Example 1 is part of the optical member. The relative arrangement of is different. In FIG. 14, the optical pickup device 1 according to Example 1 is shown. The same reference numerals are assigned to optical members similar to those in 00.
[0116] 例 8に係る光ピックアップ装置 800は、各回折素子 202、 209力 第 1の波長 650η mの光束を回折させず(回折の次数が 0次)、第 2の波長 780nmの光束を回折させる (回折の次数は 1次)ように構成されている。まず、合波について説明する。  [0116] The optical pickup device 800 according to Example 8 does not diffract the light beam having the first wavelength of 650 ηm (the diffraction order is 0th order), and diffracts the light beam of the second wavelength of 780 nm. (The order of diffraction is the first order). First, multiplexing will be described.
[0117] 図 15は、例 8に係る光ピックアップ装置 800が行う合波についての説明図である。  FIG. 15 is an explanatory diagram of multiplexing performed by the optical pickup device 800 according to Example 8.
図 15において、第 1の光源 201aが出射した光束は、往路回折素子 202の入射面に 対してほぼ垂直 (符号 291で示す線の方向)に入射し、往路回折素子 202で回折す ることなく(回折の次数が 0次)、往路回折素子 202の出射面に対してほぼ垂直の方 向(符号 291で示す線の方向)に出射される。  In FIG. 15, the light beam emitted from the first light source 201a is incident substantially perpendicular to the incident surface of the forward diffraction element 202 (in the direction of the line indicated by reference numeral 291), and is not diffracted by the forward diffraction element 202. (Diffraction order is 0th order), the light is emitted in a direction substantially perpendicular to the exit surface of the forward diffraction element 202 (the direction of the line indicated by reference numeral 291).
[0118] 第 2の光源 201bが出射した光束の波長 780nmをえ とし、往路回折素子 202の回  [0118] The wavelength of the light beam emitted from the second light source 201b is 780 nm.
2  2
折格子の格子ピッチを Pとすると、第 2の光源 201bは、第 2の光源 201bが出射した 光束の光軸が符 291で示す線と以下の式(23)で表される角度 Θ をなすように配置 b  When the grating pitch of the folded grating is P, the second light source 201b has an optical axis of the light beam emitted from the second light source 201b and an angle Θ represented by the following equation (23) with the line indicated by reference numeral 291. Arranged as b
される。  Is done.
θ = λ /p (23)  θ = λ / p (23)
b 2  b 2
第 2の光源 201bが出射した光束の往路回折素子 202への入射方向を、符号 292 を付した線で示す。往路回折素子 202は、第 2の光源 201bが出射した光束をこの方 向から入射させることによって、往路回折素子 202で 1次の回折をし、往路回折素子 202に垂直な方向(符号 291で示す線の方向)に沿って出射されるように構成されて いる。  The incident direction of the light beam emitted from the second light source 201b to the forward diffraction element 202 is indicated by a line denoted by reference numeral 292. The forward diffraction element 202 causes the light beam emitted from the second light source 201b to enter from this direction, so that the forward diffraction element 202 performs first-order diffraction, and a direction perpendicular to the forward diffraction element 202 (a line denoted by reference numeral 291). The light is emitted along the direction of
[0119] このように、第 1の光源 201aから出射された光束を往路回折素子 202で 0次の回折 をさせ、第 2の光源 201b力も出射された光束を往路回折素子 202で 1次の回折をさ せることによって、各光源 201a、 201bから出射された光束を合波することができる。  In this way, the light beam emitted from the first light source 201a is diffracted by the 0th order by the forward diffraction element 202, and the light beam also emitted by the second light source 201b is diffracted by the first diffraction order by the forward diffraction element 202. By performing the above, the light beams emitted from the light sources 201a and 201b can be combined.
[0120] 次に、分波について説明する。図 16は、例 8に係る光ピックアップ装置 800が行う 分波についての説明図である。ここで、復路回折素子 209の回折格子の格子ピッチ を qとする。  Next, demultiplexing will be described. FIG. 16 is an explanatory diagram of demultiplexing performed by the optical pickup device 800 according to Example 8. Here, the grating pitch of the diffraction grating of the backward diffraction element 209 is assumed to be q.
[0121] 図 16において、各光ディスク 207、 208の情報記録面 207a、 2078a力らの戻り光 は、復路回折素子 209の入射面に対してほぼ垂直 (符号 101で示す線の方向)に入 射する。ここで、第 1の波長え の光束 (第 1の光源から出射された光束)は、第 2の回 折素子 9で回折することなく(回折の次数が 0次)、第 2の回折素子 9の出射面に対し てほぼ垂直に出射する。 [0121] In FIG. 16, the return lights of the information recording surfaces 207a and 2078a of the optical disks 207 and 208 are incident substantially perpendicularly to the incident surface of the return diffraction element 209 (the direction of the line denoted by reference numeral 101). To do. Here, the light beam having the first wavelength (the light beam emitted from the first light source) is the second light beam. Without being diffracted by the folding element 9 (the order of diffraction is the 0th order), the light is emitted substantially perpendicular to the emission surface of the second diffraction element 9.
[0122] 一方、第 2の波長え の光束 (第 2の光源から出射された光束)は、復路回折素子 2 b On the other hand, the light beam having the second wavelength (the light beam emitted from the second light source)
09の出射面に垂直な方向に対して、以下の式(24)で表される出射角をなす方向( 符号 102で示す線の方向)出射される。  With respect to the direction perpendicular to the exit surface of 09, the light is emitted in a direction (direction of a line indicated by reference numeral 102) that forms an emission angle represented by the following expression (24).
λ /q (24)  λ / q (24)
2  2
ここで、第 1受光素子 210aは、符号 101で示す線上に配置され、また、第 2受光素 子 210bは、符号 102で示す線上に配置される。  Here, the first light receiving element 210 a is disposed on a line denoted by reference numeral 101, and the second light receiving element 210 b is disposed on a line denoted by reference numeral 102.
[0123] 以下に、環境温度の変化に伴って光源の発振波長が変動する場合の、例 8に係る 光ピックアップ装置の挙動について説明する。例 8に係る光ピックアップ装置では、第 1の光 201aから出射された光束は、往路回折素子 202および復路回折素子 209で 共に回折しない(回折の次数が共に 0次)ため、発振波長が変動しても、第 1の光源 2 Olaから出射された光束は、各回折素子 202、 209からの出射方向に影響を受ける ことなぐ第 1受光素子 210aに到達することになる。  [0123] Hereinafter, the behavior of the optical pickup device according to Example 8 when the oscillation wavelength of the light source fluctuates with a change in environmental temperature will be described. In the optical pickup device according to Example 8, the light beam emitted from the first light 201a is not diffracted by the forward diffraction element 202 and the backward diffraction element 209 (the diffraction orders are both 0th order), so the oscillation wavelength varies. However, the light beam emitted from the first light source 2 Ola reaches the first light receiving element 210a without being affected by the emission direction from each of the diffraction elements 202 and 209.
[0124] 次に、第 2の光源 201bから出射された光束については、上記の(例 1)で説明した ものと同様の作用を受けるものと考えればよい。すなわち、往路回折素子 202の回折 格子の格子ピッチと復路回折素子 209の回折格子の格子ピッチとを等しくすることに よって、波長の変動による往路回折素子 202での回折角の変動と、復路回折素子 2 09での回折角の変動とを、ほぼ同量でかつ相殺させるようにすることができ、復路回 折素子 209を出射する各光束の光軸方向は環境温度の変化の影響を受けなくなる 。したがって、復路回折素子 209から出射した光束は、波長の変動に拘わらず第 2受 光素子 210b上に達する。  Next, it can be considered that the light beam emitted from the second light source 201b is subjected to the same action as that described in the above (Example 1). That is, by making the grating pitch of the diffraction grating of the forward diffraction element 202 and the grating pitch of the diffraction grating of the backward diffraction element 209 equal, the fluctuation of the diffraction angle in the forward diffraction element 202 due to the fluctuation of the wavelength and the return diffraction element It is possible to cancel the fluctuation of the diffraction angle at 209 with substantially the same amount, and the optical axis direction of each light beam emitted from the return path diffusing element 209 is not affected by the change of the environmental temperature. Therefore, the light beam emitted from the backward diffraction element 209 reaches the second light receiving element 210b regardless of the change in wavelength.
[0125] 本実施例に係る往路回折素子 202および復路回折素子 209の具体的な構成を以 下に示す。図 17は、本実施例に係る往路回折素子 202の断面を概念的に示す断面 図である。往路回折素子 202は、第 1の波長板 111、偏光回折格子 112および第 2 の波長板 113を重ねて固定した構成を有する。ここで、各波長え 、 λ の光束は、直  [0125] Specific configurations of the forward diffraction element 202 and the backward diffraction element 209 according to the present embodiment are shown below. FIG. 17 is a sectional view conceptually showing a section of the forward diffraction element 202 according to the present example. The forward diffraction element 202 has a configuration in which a first wave plate 111, a polarization diffraction grating 112, and a second wave plate 113 are stacked and fixed. Here, the light flux of each wavelength λ is directly
1 2  1 2
線偏光とする。第 1の回折素子 2は、波長に応じて 0次の回折(回折しない)をさせる 力 1次の回折させるかを選択する必要がある。 [0126] そのため、往路回折素子 202は、第 1の波長板 111で所定の波長の光束 (以下、 波長 λ の光束とする。)の偏光方向を特定の偏光方向にして他の波長(以下、波長 λ の光束とする。)の光束の偏光方向と直交させ、偏光回折格子 112で特定の偏光Let it be linearly polarized light. The first diffractive element 2 needs to select whether or not the first-order diffraction is performed according to the wavelength. Therefore, the forward diffraction element 202 uses the first wavelength plate 111 to change the polarization direction of a light beam having a predetermined wavelength (hereinafter, referred to as a light beam having a wavelength λ) to a specific polarization direction, and to select other wavelengths (hereinafter, referred to as “wavelength λ”). The light beam with a wavelength of λ) is orthogonal to the polarization direction of the light beam of
2 2
方向の光束のみ回折させ、第 2の波長板 113で偏光方向を元に戻す構成となってい る。  Only the light beam in the direction is diffracted and the polarization direction is returned to the original by the second wave plate 113.
[0127] なお、第 1の光源 201aから出射された光束 (波長え )の偏光方向と、第 2の光源 2 Olbから出射された光束 (波長え )の偏光方向とは、互いに同じ方向で往路回折素  [0127] The polarization direction of the light beam (wavelength) emitted from the first light source 201a and the polarization direction of the light beam (wavelength) emitted from the second light source 2 Olb are the same in the forward direction. Diffraction element
2  2
子 202に入射するように光源が配置されている。第 1の波長板 111は、一軸延伸を施 したポリカーボネートをガラス基板に固定し、第 1の光源 201aから出射された波長 λ の光束に対して 5Ζ2波長板として機能し、第 2の光源 201bから出射された波長 λ  A light source is arranged to be incident on the child 202. The first wave plate 111 fixes uniaxially stretched polycarbonate to a glass substrate, functions as a 5 × 2 wave plate with respect to a light beam having a wavelength λ emitted from the first light source 201a, and from the second light source 201b. Emitted wavelength λ
2 の光束に対して 2波長板として機能する位相差板となるようにしたものを作成した。  A retardation plate that functions as a two-wavelength plate for two luminous fluxes was created.
[0128] 第 1の波長板 111が上記の位相差板の機能を有することにより、波長え の光束に 対しては実質 1Z2波長板として作用するため、波長え の入射光の偏光方向は、 90 ° 回転させることになる。一方、波長え 2の入射光に対しては、波長板が存在しない 場合と実質的に等価であり、偏光方向の回転は生じない。このように所定の波長(波 長え )かつ直線偏光の光束のみ偏光方向を回転させることによって、同一の方向に 偏光していた直線偏光の第 1の光源 201aからの出射光 (波長 λ )と第 2の光源 201 bからの出射光 (波長え )の偏光方向を直交させる。 [0128] Since the first wave plate 111 has the function of the above-mentioned retardation plate, it acts as a 1Z2 wave plate with respect to the light flux of the wavelength, so that the polarization direction of the incident light of the wavelength is 90 ° Will rotate. On the other hand, incident light having a wavelength of 2 is substantially equivalent to the case where there is no waveplate, and the polarization direction does not rotate. In this way, by rotating the polarization direction of only a linearly polarized light beam having a predetermined wavelength (wavelength), the light (wavelength λ) emitted from the linearly polarized first light source 201a polarized in the same direction can be changed. The polarization direction of the outgoing light (wavelength) from the second light source 201b is orthogonalized.
2  2
[0129] 図 18は、往路回折素子 202を構成する偏光回折格子 112の断面の一部を概念的 に示す断面図である。偏光回折格子 112は、複屈折性材料層 121と等方性材料層 1 22とが接合されてなり、複屈折性材料層 121が、階段状の形状が周期的に繰り返す 周期構造を有する断面形状の回折格子をなし、等方性材料層 122が、この階段状の 部分を充填する構成を有する。  FIG. 18 is a cross-sectional view conceptually showing a part of the cross section of the polarization diffraction grating 112 constituting the forward diffraction element 202. The polarization diffraction grating 112 is a cross-sectional shape having a periodic structure in which a birefringent material layer 121 and an isotropic material layer 122 are joined, and the birefringent material layer 121 repeats a stepped shape periodically. The isotropic material layer 122 is configured to fill the stepped portion.
[0130] ここで、複屈折性材料層 121および等方性材料層 122の材料として、以下に説明 する 2つの条件を満足する複屈折材料、等方性材料を用いた。  Here, as the material of the birefringent material layer 121 and the isotropic material layer 122, a birefringent material and an isotropic material satisfying the two conditions described below were used.
まず、第 1の条件は、第 1の波長板 111を透過した後の波長え の光束の偏光方向 が回折格子の長手方向と直交するようにした光学系の構成で、波長板 111を透過し た後の波長え の光束に対する複屈折材料層 121の屈折率を η ( λ )とし、等方性 材料層 122の屈折率を n ( λ )としたとき、以下の式(25)で表される関係がほぼ満 First, the first condition is the configuration of the optical system in which the polarization direction of the light beam having the wavelength after passing through the first wave plate 111 is orthogonal to the longitudinal direction of the diffraction grating. The refractive index of the birefringent material layer 121 with respect to the luminous flux after the wavelength is η (λ) and isotropic When the refractive index of the material layer 122 is n (λ), the relationship expressed by the following equation (25) is almost satisfied.
2 1  twenty one
たされていることである。  It is being done.
η ( λ ) =η ( λ ) (25)  η (λ) = η (λ) (25)
11 a 2 a  11 a 2 a
第 2の条件は、波長板 111を透過した後の波長え の光束の偏光方向が回折格子  The second condition is that the polarization direction of the light beam after transmission through the wave plate 111 is a diffraction grating.
2  2
の長手方向に平行になる光学系の構成で、波長板 111を透過した後の波長え の光 束に対する複屈折材料層 121の屈折率を η ( λ )とし、等方性材料層 122の屈折  The refractive index of the birefringent material layer 121 with respect to the light flux of the wavelength after passing through the wave plate 111 is η (λ), and the refractive index of the isotropic material layer 122 is
12 2  12 2
率を η ( λ )としたとき、以下の式(26)で表される関係がほぼ満たされていることであ When the rate is η (λ), the relationship expressed by the following equation (26) is almost satisfied.
2 2 twenty two
る。  The
η ( λ )≠η ( λ ) (26)  η (λ) ≠ η (λ) (26)
12 b 2 b  12 b 2 b
上記の条件を満足するように光学系および偏光回折格子 112を構成することによつ て、波長 λェの光束を回折させず(回折の次数が 0次)、波長 λェの光束とは偏光方向 が直交する波長え 2の光束を回折させることができる、選択的な回折の機能を往路回 折素子 202に持たせた。ここで、複屈折性材料としては高分子液晶を用い、等方性 材料としてはエポキシ系の紫外線硬化型榭脂を用いた。  By constructing the optical system and the polarization diffraction grating 112 so as to satisfy the above conditions, the light beam having the wavelength λ is not diffracted (the order of diffraction is the 0th order), and the light beam having the wavelength λ is polarized. The forward diffraction element 202 is provided with a selective diffraction function capable of diffracting a light beam having a wavelength of 2 with orthogonal directions. Here, a polymer liquid crystal was used as the birefringent material, and an epoxy ultraviolet curable resin was used as the isotropic material.
[0131] 偏光回折格子 112に用いた複屈折性材料および等方性材料の屈折率を、表 4〖こ 示す。 [0131] Table 4 shows the refractive indexes of the birefringent material and the isotropic material used for the polarizing diffraction grating 112.
[0132] [表 4] [0132] [Table 4]
Figure imgf000041_0001
Figure imgf000041_0001
[0133] 偏光回折格子 112は、等方性材料層 122側に厚さ 0. 5mmのカバーガラス (硝材 Β K7) 123を被うように重ねて固定し、複屈折性材料層 121側に厚さ 0. 5mmのカバ 一ガラス (硝材 BK7) 124を被うように重ねて固定される。本実施例では、 1周期の格 子が 8ステップの階段によって構成され、各段の段差がそれぞれ 0. 449 /z mで、格 子ピッチが 10 mとなるように各段の平坦部の幅を 1. 25 mの、形状を有する回折 格子を作製した。 [0134] 往路回折素子 202を上記のように構成することによって、 0次の回折をする波長 65 Onmの光束の透過率を 95%、波長 780nmの光束の 1次の回折の回折効率を 83% にすることができる。ここで、第 2の波長板 113も、上記の第 1の波長板 111と同様に 、一軸延伸を施したポリカーボネートをガラス基板に固定し、第 1の光源 201aから出 射された波長え の光束に対して 5Z2波長板として機能し、第 2の光源 201bから出 射された波長 λ の光束に対して 2波長板として機能する位相差板となるようにしたも [0133] The polarization diffraction grating 112 is fixed by being overlapped with a 0.5 mm-thick cover glass (glass material K7) 123 on the side of the isotropic material layer 122 and fixed on the birefringent material layer 121 side. A 0.5mm cover glass (glass material BK7) 124 is overlaid and fixed. In this example, the width of the flat part of each step is set so that one cycle of the scale is composed of 8 steps, each step has a height of 0.449 / zm and the pitch of the grid is 10 m. 1. A 25 m shaped diffraction grating was fabricated. [0134] By configuring the forward diffraction element 202 as described above, the transmittance of the light beam having a wavelength of 65 Onm that performs 0th-order diffraction is 95%, and the diffraction efficiency of the first-order diffraction of a light beam having a wavelength of 780nm is 83% Can be. Here, similarly to the first wave plate 111 described above, the second wave plate 113 also has a uniaxially stretched polycarbonate fixed to a glass substrate, and a light beam of a wavelength emitted from the first light source 201a. In contrast, it functions as a 5Z2 wave plate and a phase difference plate that functions as a two-wave plate for the light beam having the wavelength λ emitted from the second light source 201b.
2  2
のを作成した。  Created.
[0135] 第 2の波長板 113が上記の位相差板の機能を有することにより、波長え の光束に 対しては実質 1Z2波長板として作用するため、波長え の入射光の偏光方向は、 90 ° 回転させることになる。一方、波長え の入射光に対しては、波長板が存在しない  [0135] Since the second wave plate 113 has the function of the above-mentioned retardation plate, it acts as a 1Z2 wave plate for the wavelength beam, so that the polarization direction of the incident light at the wavelength is 90 ° Will rotate. On the other hand, there is no wave plate for incident light with a wavelength.
2  2
場合と実質的に等価であり、偏光方向の回転は生じない。このように所定の波長(波 長え )かつ直線偏光の光束のみ偏光方向を回転させることによって、直交していた 直線偏光の第 1の光源 201aからの出射光 (波長 λ )と第 2の光源 201bからの出射 光 (波長 λ )の偏光方向を、往路回折素子 202に入射したときの偏光方向に戻すこ  This is substantially equivalent to the case, and no rotation of the polarization direction occurs. In this way, by rotating the polarization direction of only a linearly polarized light beam having a predetermined wavelength (wavelength), the light emitted from the linearly polarized first light source 201a (wavelength λ) and the second light source The polarization direction of the outgoing light (wavelength λ) from 201b can be returned to the polarization direction when entering the forward diffraction element 202.
2  2
とがでさる。  Togashi.
[0136] 図 19は、本実施例に係る復路回折素子 209の断面を概念的に示す断面図である 。復路回折素子 209は、往路回折素子 202と同様に、第 1の波長板 131、偏光回折 格子 132、および、第 2の波長板 133によって構成される。また、復路回折素子 209 の作製に用いる材料、および、復路回折素子 209の回折格子の構造は、往路回折 素子 202の作製に用いる材料、および、回折格子の構造と同様にした。  FIG. 19 is a cross-sectional view conceptually showing a cross section of the backward diffraction element 209 according to the present example. The return path diffraction element 209 is configured by a first wave plate 131, a polarization diffraction grating 132, and a second wave plate 133, similarly to the forward path diffraction element 202. In addition, the material used for manufacturing the backward diffraction element 209 and the structure of the diffraction grating of the backward diffraction element 209 were the same as the material used for manufacturing the forward path diffraction element 202 and the structure of the diffraction grating.
[0137] なお、上記の実施例では、 CDと DVDとの互換を前提として説明した力 現在実用 化されようとして 、る BLURAY (登録商標)ディスクまたは HD - DVD (High Defin ition DVD)と、従来の DVDとの組み合わせに対しても有効に適用できる。同様に 、 BLURAY (登録商標)ディスクまたは HD— DVDと CDとの組み合わせに対しても 有効に適用できる。  [0137] In the above embodiment, the power described on the assumption that CD and DVD are compatible is currently being put into practical use, such as BLURAY (registered trademark) disc or HD-DVD (High Definition DVD), It can also be effectively applied to combinations with other DVDs. Similarly, the present invention can be effectively applied to a combination of BLURAY (registered trademark) disc or HD-DVD and CD.
[0138] また、本実施例では、光学系が、コリメーターレンズを用いた、所謂、無限系の光学 系として構成されているが、本発明が適用される範囲は無限系の光学系には限定さ れず、コリメーターレンズを使用しない有限系の光学系であってもよい。 [0139] また、本実施例では、断面形状が鋸波状の形状を繰り返す周期構造の回折格子を 有する回折素子を取り上げて説明したが、本発明は、波長板と偏光回折格子とを組 み合わせた回折素子を用いる構成に限定されるものではない。具体的には、断面形 状が鋸波状の形状を階段状の形状で近似した形状を繰り返す周期構造の回折格子 を有する回折素子を用いるのでも、その他の断面形状の回折格子を有する回折素 子を用いるのでもよい。 In this embodiment, the optical system is configured as a so-called infinite optical system using a collimator lens, but the range to which the present invention is applied is limited to the infinite optical system. The optical system is not limited and may be a finite optical system that does not use a collimator lens. [0139] In the present embodiment, the diffraction element having a diffraction grating having a periodic structure in which the cross-sectional shape repeats a sawtooth shape has been described. However, the present invention combines a wavelength plate and a polarization diffraction grating. However, the present invention is not limited to the configuration using the diffraction element. Specifically, even if a diffraction element having a diffraction grating having a periodic structure in which a cross-sectional shape approximates a sawtooth shape by a stepped shape is used, a diffraction element having diffraction gratings having other cross-sectional shapes is used. May be used.
[0140] さらに、本実施例では、波長選択性を有する回折素子として波長板と偏光回折格 子とを組み合わせた素子を取り上げて説明したが、本発明は、波長板と偏光回折格 子とを組み合わせた回折素子を用いる構成に限定されるものではない。具体的には 、格子深さが光路長に換算して一方の波長の整数倍となるような回折格子でも、一方 の波長に対して屈折率が等しくなるような、有機物顔料と充填材を組み合わせてなる 回折格子を用いる構成でも、その他の回折素子を用いる構成でもよ 、。  [0140] Furthermore, in the present embodiment, an element combining a wave plate and a polarization diffraction grating has been described as a diffraction element having wavelength selectivity. However, the present invention includes a wave plate and a polarization diffraction grating. It is not limited to the structure using the combined diffraction element. Specifically, a combination of an organic pigment and a filler that has a refractive index equal to one wavelength even in a diffraction grating in which the grating depth is converted to an optical path length and is an integral multiple of one wavelength. Either a configuration using a diffraction grating or a configuration using other diffraction elements.
[0141] 以上説明したように、本発明の実施の態様に係る光ピックアップ装置は、往路回折 素子と復路回折素子とが、相互に等しい格子ピッチの回折格子を有し、第 1の波長 の光束を相互に等しい回折の次数で回折させ、第 2の波長の光束を相互に等しい回 折の次数で回折させるため、回折素子を用いて合波を行う構成であっても、受光素 子上に集光する光束のスポットの位置ずれに対する環境温度の変化の影響を抑制 できる。  [0141] As described above, in the optical pickup device according to the embodiment of the present invention, the forward diffraction element and the backward diffraction element have diffraction gratings having the same grating pitch, and the light flux having the first wavelength. Are diffracted at the same diffraction order, and the light beams of the second wavelength are diffracted at the same diffraction order. It is possible to suppress the influence of changes in the environmental temperature on the positional deviation of the spot of the condensed light beam.
[0142] また、各回折素子での各回折の次数が全て 1次であるため、回折効率の高い回折 を利用した光の利用効率の高い光ピックアップ装置を実現できる。  [0142] Furthermore, since the diffraction orders of the diffraction elements are all first-order, it is possible to realize an optical pickup device with high use efficiency of light using diffraction with high diffraction efficiency.
[0143] また、各回折素子が、 1次以上の回折の次数で回折させる光の波長を選択すること ができる波長選択性を有するため、光の利用効率の高い光ピックアップ装置を実現 できる。  [0143] Furthermore, each diffraction element has a wavelength selectivity that can select the wavelength of light to be diffracted by the first or higher order of diffraction, so that an optical pickup device with high light utilization efficiency can be realized.
[0144] また、各回折素子が、第 1の波長の光束を共に 0次の回折の次数で回折させ、第 2 の波長の光束を共に 1次の回折の次数で回折させるため、さらに光の利用効率の高 V、光ピックアップ装置を実現できる。  [0144] In addition, since each diffraction element diffracts both the light flux of the first wavelength at the 0th-order diffraction order and diffracts the light flux of the second wavelength together at the first-order diffraction order, Highly efficient V and optical pickup device can be realized.
[0145] また、各回折素子が、断面形状が鋸波状の形状を繰り返す周期構造の回折格子を 有するため、回折素子を簡易に製作できる。 [0146] また、各回折素子が、断面形状が鋸波状の形状を階段状の形状で近似した形状を 繰り返す周期構造の回折格子を有するため、回折素子をさらに簡易に製作できる。 [0145] Furthermore, each diffraction element has a diffraction grating with a periodic structure in which the cross-sectional shape repeats a sawtooth shape, so that the diffraction element can be easily manufactured. [0146] Further, each diffraction element has a diffraction grating having a periodic structure in which a cross-sectional shape is similar to a stepped shape approximated to a sawtooth shape, so that the diffraction element can be manufactured more easily.
[III]第 3の実施態様に対する実施例  [III] Example for the third embodiment
[例 9]  [Example 9]
例 9に係る実施例を、図 5を用いて以下に説明する。  An embodiment according to Example 9 will be described below with reference to FIG.
光ピックアップ装置 310の光学配置は、図 5に示すように、波長 650nmの直線偏光 の光束を発する第 1の光源 301aと、波長 780nmの直線偏光の光束を出射する第 2 の光源 301bと、それぞれの光源からの光束を合波するための第 1の回折素子 302と 、 1/4波長板 304と、 =3リメ一ターレンズ 305と、絞り 306と、対物レンズ 307と、光デ イスク Dまたは Dの情報記録面 (D または D )で反射され光束を分波するための a b al bl  As shown in FIG. 5, the optical arrangement of the optical pickup device 310 includes a first light source 301a that emits a linearly polarized light beam with a wavelength of 650 nm and a second light source 301b that emits a linearly polarized light beam with a wavelength of 780 nm. First diffraction element 302 for combining light beams from the light source, quarter wave plate 304, = 3 refraction lens 305, aperture 306, objective lens 307, optical disk D or D A b al bl for demultiplexing the light beam reflected on the information recording surface (D or D)
第 2の回折素子 303と、分波された波長 650nmの光束を受光する第 1の受光素子 8 aと、分波された波長 780nmの光束を受光する第 2の受光素子 8bとを備える。  A second diffractive element 303, a first light receiving element 8a for receiving a demultiplexed light beam having a wavelength of 650 nm, and a second light receiving element 8b for receiving a light beam having a demultiplexed wavelength of 780 nm are provided.
なお、本実施例の光ピックアップ装置 310は、第 1の波長の光束に対する、第 1の 回折素子 302による回折および第 2の回折素子 303による回折が共に 1次の回折で あり、また第 2の波長の光束に対する、第 1の回折素子 302による回折および第 2の 回折素子 303による回折もまた共に 1次の回折を用いるものである。  In the optical pickup device 310 of the present embodiment, the diffraction by the first diffractive element 302 and the diffraction by the second diffractive element 303 are both the first-order diffraction with respect to the light beam having the first wavelength. The diffraction by the first diffractive element 302 and the diffraction by the second diffractive element 303 both use the first-order diffraction for the light flux having the wavelength.
[0147] まず、合波について説明する。 First, the multiplexing will be described.
図 20は、光ピックアップ装置 310が行う合波作用についての説明図である。この図 20において、第 1の光源 301aおよび第 2の光源 301bから出射した光束は、それぞ れ、光軸 α、 j8 力 第 1の回折素子 302に対してこの第 1の回折素子 302の垂直方 向(符号 Ύ の  FIG. 20 is an explanatory diagram of the multiplexing action performed by the optical pickup device 310. In FIG. 20, the light beams emitted from the first light source 301a and the second light source 301b are respectively perpendicular to the first diffractive element 302 with respect to the first diffractive element 302 with respect to the optical axis α, j8 force. Direction (sign Ύ
1で示す線)からの角度 0  Angle from (line shown by 1) 0
a、 Θ  a, Θ
bとなるような状態で入射し、こ 第 1の回折 素子 302に対してほぼ垂直に出射する。また、この出射する方向は、コリメーターレン ズ 305、対物レンズ 307等で構成される光学系の光軸と一致する。  The light enters in the state of b, and exits almost perpendicularly to the first diffraction element 302. Further, the emission direction coincides with the optical axis of an optical system including the collimator lens 305, the objective lens 307, and the like.
[0148] ここで、第 1の光源 301aは、ここから出射した光束の第 1の回折素子 302への入射 角 0 力 第 1の光源 301aの波長をえ 、この第 1の回折素子 302の格子のピッチを p a 1 [0148] Here, the first light source 301a has an incident angle 0 force of the light beam emitted from the first light source 301a on the first diffractive element 302. The wavelength of the first light source 301a is obtained, and the grating of the first diffractive element 302 The pitch of pa 1
として、(27)式を満たすように配置する。  As shown in FIG.
θ = λ /p (27)  θ = λ / p (27)
a 1  a 1
一方、第 2の光源 301bは、第 2の光源 301bが出射した光束の第 1の回折素子 30 2への入射角 0 力 第 2の光源 301bの波長をえ 、この第 1の回折素子 302の回折 b 2 On the other hand, the second light source 301b includes the first diffraction element 30 of the light beam emitted from the second light source 301b. Incident angle to 2 0 force The wavelength of the second light source 301b is obtained, and the diffraction b 2 of this first diffraction element 302
格子のピッチを pとして、(28)式となるように配置する。  The pitch of the lattice is set as p, and it is arranged so as to satisfy equation (28).
θ = λ /p (28)  θ = λ / p (28)
B B  B B
[0149] このように、第 1の光源 301aと第 2の光源 301bとを配置することによって、それぞれ の光源 la, lbから出射された光束の第 1の回折素子 302による回折後の出射方向 がー致することになる。そして、合波された光束は、第 2の回折素子 303を透過し、 1 Z4波長板 304、コリメーターレンズ 305、絞り 306、対物レンズ 307を通り、光デイス ク情報記録面 (D または D )で反射される。そして、この反射された光束は、上記の al bl  As described above, by arranging the first light source 301a and the second light source 301b, the emission directions of the light beams emitted from the respective light sources la and lb after being diffracted by the first diffraction element 302 are changed. -It will match. The combined light beam passes through the second diffraction element 303, passes through the 1 Z4 wavelength plate 304, the collimator lens 305, the stop 306, and the objective lens 307, and passes through the optical disk information recording surface (D or D). Reflected by. And this reflected light flux is the above al bl
進行方向のときとは逆順に、対物レンズ 307、絞り 306、コリメーターレンズ 305、 1/ 4波長板 304を通り、第 2の回折素子 303で分波される。  In the reverse order of the traveling direction, the light passes through the objective lens 307, the diaphragm 306, the collimator lens 305, and the quarter wavelength plate 304, and is demultiplexed by the second diffraction element 303.
[0150] 次に、分波について以下に説明する。 [0150] Next, demultiplexing will be described below.
図 21は、光ピックアップ装置 310が行う分波作用についての説明図である。ここで 、第 2の回折素子 303の回折格子のピッチを qとする。  FIG. 21 is an explanatory diagram of the demultiplexing effect performed by the optical pickup device 310. FIG. Here, the pitch of the diffraction grating of the second diffraction element 303 is q.
戻り光束は、図 21において、光軸 γ が第 2の回折素子 303にほぼ垂直になるよう  In FIG. 21, the return beam is such that the optical axis γ is substantially perpendicular to the second diffraction element 303.
2  2
な状態で図中右側から入射し、波長え の光束 (第 1の光源力 出射した光束)は、( 29)式で表せる回折角で回折し、符号 α で示す線を光軸として出射する。  In this state, the incident light beam from the right side of the figure (the light beam emitted from the first light source) is diffracted at the diffraction angle expressed by Equation (29), and is emitted with the line indicated by the symbol α as the optical axis.
2  2
λ Zq (29)  λ Zq (29)
一方、波長え の光束 (第 2の光源から出射した光束)は、(30)式で表せる回折角  On the other hand, the light flux of the wavelength (the light emitted from the second light source) is the diffraction angle expressed by equation (30).
2  2
で回折し、符号 j8  Diffracted at the sign j8
2で示す線を光軸として出射する。  The line indicated by 2 is emitted as the optical axis.
λ Zq (30)  λ Zq (30)
2  2
このように、第 2の回折素子 303により、異なる波長の光束の分波がなされる。第 1 の受光素子 308aは、符号 α で示す線上に、また、第 2の受光素子 308bは、符号  Thus, the second diffraction element 303 demultiplexes light beams having different wavelengths. The first light receiving element 308a is on the line indicated by the symbol α, and the second light receiving element 308b is the symbol
2  2
で示す線上に配置する。なお、上記分波された各光束は、第 1の回折格子 302を透 Place on the line indicated by. The demultiplexed light beams pass through the first diffraction grating 302.
2 2
過し、受光素子 308aまたは 308bに達する。  And reaches the light receiving element 308a or 308b.
上記のように、第 1の回折素子 302および第 2の回折素子 303は、それぞれ、往復 で異なる次数の回折を利用する力 往復ともにその回折効率を高めるために、それ ぞれ複屈折性材料を備えた偏光性の回折素子とする。  As described above, the first diffractive element 302 and the second diffractive element 303 are each made of a birefringent material in order to increase the diffraction efficiency in both the reciprocal force and the reciprocal force using diffraction of different orders. The polarizing diffraction element is provided.
[0151] 第 1の回折素子 302は、光源力も出射される直線偏光の光束に対して、回折機能 を有するよう、この第 1の回折素子 302を構成する複屈折材料の遅相軸の方向を、光 源からの直線偏光の偏光方向に一致させるとともに、この第 1の回折格子 302の周 期方向は、前記遅相軸の方向とは直交させる。 [0151] The first diffractive element 302 has a diffractive function for linearly polarized light beams that also emit light. The direction of the slow axis of the birefringent material constituting the first diffraction element 302 is made to coincide with the polarization direction of the linearly polarized light from the light source so that the first diffraction grating 302 has a periodic direction. Is perpendicular to the direction of the slow axis.
一方、第 2の回折格子 303は、光源から出射される直線偏光の光束に対して、回折 機能を有しないよう、この第 2の回折素子 303を構成する複屈折材料の遅相軸の方 向を、光源からの直線偏光の偏光方向とは直交する方向に一致させるとともに、この 第 2の回折格子 303の周期方向は、前記遅相軸の方向とする。  On the other hand, the second diffraction grating 303 is directed in the direction of the slow axis of the birefringent material constituting the second diffraction element 303 so that it does not have a diffraction function with respect to the linearly polarized light beam emitted from the light source. Are matched with the direction orthogonal to the polarization direction of the linearly polarized light from the light source, and the periodic direction of the second diffraction grating 303 is the direction of the slow axis.
[0152] 以下、第 1の回折素子 302及び第 2の回折素子 303の具体的な構成について説明 する。 [0152] Hereinafter, specific configurations of the first diffraction element 302 and the second diffraction element 303 will be described.
図 22は、第 1の回折素子 302及び第 2の回折素子 303の構成を示す概略図である 第 1の回折素子 302は、複屈折性材料層 321と等方性材料層 322とが 2枚の石英 ガラス基板(323、 324)で挟まれた構造となっており、各石英ガラスの外側の面(32 5、 326)には、使用波長に対する反射防止膜が施されている。  FIG. 22 is a schematic diagram illustrating the configuration of the first diffractive element 302 and the second diffractive element 303. The first diffractive element 302 includes two birefringent material layers 321 and isotropic material layers 322. The quartz glass substrate (323, 324) is sandwiched between the outer surfaces (325, 326) of each quartz glass, and an antireflection film for the wavelength used is applied.
前述の複屈折材料層 321として高分子液晶を用い、石英ガラス基板 323上に高分 子液晶層を形成し、その表面をフォトリソグラフィ加工することによって鋸歯状の断面 形状をもつ凸部の繰り返しからなる格子面を形成する。そして、等方性材料としてェ ポキシ系の紫外線硬化型榭脂を用い、前記格子面の凹部を充填して表面が平滑に なるように積層し (等方性材料層 322)、硬化させ、石英ガラス (ガラス基板 324)で力 バーする。  By using a polymer liquid crystal as the birefringent material layer 321 described above, a polymer liquid crystal layer is formed on a quartz glass substrate 323, and the surface is subjected to photolithography processing, thereby repeating convex portions having a sawtooth cross-sectional shape. A lattice plane is formed. Then, using an epoxy-based ultraviolet curable resin as an isotropic material, the concave portions of the lattice surface are filled and laminated so that the surface becomes smooth (isotropic material layer 322), cured, and quartz Power bar with glass (glass substrate 324).
ここで、複屈折性材料層 321に用いる高分子液晶としては、第 1の波長 650nmお よび第 2の波長 780nmにおいて、常光屈折率が、等方性材料層 322として用いる紫 外線硬化型エポキシ榭脂の屈折率と実質的に等しぐかつ、常光屈折率と異常光屈 折率の差が 0. 221、 0. 211と大きい値を有するものを用いる。その材料の屈折率を 表 1に示す。  Here, the polymer liquid crystal used for the birefringent material layer 321 includes an ultraviolet curable epoxy film having an ordinary refractive index at the first wavelength of 650 nm and the second wavelength of 780 nm, which is used as the isotropic material layer 322. A material having substantially the same refractive index as that of fat and having a large difference between ordinary light refractive index and extraordinary light refractive index of 0.221 and 0.211 is used. Table 1 shows the refractive index of the material.
[0153] [表 5] 6 5 0 n m 7 8 0 n m [0153] [Table 5] 6 5 0 nm 7 80 0 nm
複屈折材料 常光屈折率 1 . 5 4 6 1 . 5 3 9  Birefringent material Ordinary refractive index 1.5 5 6 1 1.5 3 9
異常光屈折率 1 . 7 6 7 1 . 7 5 0  Extraordinary refractive index 1.7 6 7 1. 7 5 0
等方性材料 屈折率 1 . 5 4 2 1 . 5 3 9  Isotropic material Refractive index 1.5 4 2 1.5 5 9
[0154] 第 1の回折素子 302は、光源力も出射される直線偏光の光束に対して、回折機能 を有するよう、第 1の回折素子 302を構成する複屈折性材料層 321の遅相軸の方向 を、光源からの直線偏光の偏光方向に一致させ、回折格子の周期方向は、前記遅 相軸の方向とは直交させる。 [0154] The first diffractive element 302 has a slow axis of the birefringent material layer 321 constituting the first diffractive element 302 so as to have a diffractive function with respect to linearly polarized light flux that also emits light source power. The direction is matched with the polarization direction of the linearly polarized light from the light source, and the periodic direction of the diffraction grating is orthogonal to the direction of the slow axis.
図 22を用いて説明すると、図示外の光源力も出射される直線偏光の偏光方向を y 方向として、また、複屈折性材料層 321に用いる高分子液晶の遅相軸を y方向とする 。また複屈折性材料層 321に形成する回折格子の周期方向を X方向とする。本実施 例では、具体的な回折格子形状として、回折格子の周期構造の 1周期が 8ステップの 階段によって構成し、各階段の段差をそれぞれ 0. 41 mとした。また、ピッチ 10 mとなるよう、各階段部の平坦部の幅を 1. とした。  Referring to FIG. 22, the polarization direction of linearly polarized light that is also emitted from a light source force not shown is defined as the y direction, and the slow axis of the polymer liquid crystal used for the birefringent material layer 321 is defined as the y direction. The periodic direction of the diffraction grating formed in the birefringent material layer 321 is defined as the X direction. In this example, as a specific diffraction grating shape, one period of the periodic structure of the diffraction grating is composed of 8 steps, and the step of each step is 0.41 m. In addition, the width of the flat part of each staircase is set to 1. so that the pitch is 10 m.
[0155] このように設定することにより、波長 650nmおよび波長 780nmの光束に対する 1次 回折の回折効率を、ともに 84%にすることができる。また、透過率 (0次の回折効率) は、両波長で 99%である。  [0155] By setting as described above, the diffraction efficiency of the first-order diffraction for the light beams having the wavelength of 650 nm and the wavelength of 780 nm can be both 84%. The transmittance (0th-order diffraction efficiency) is 99% at both wavelengths.
なお、上記実施例では、 8ステップの階段によって格子の 1周期の構造を構成した 力 鋸歯状形状を多段の階段状で近似するのではなぐグレースケールマスクを利 用して加工されるブレーズド形状を用いると、いずれの波長に対しても 1次の回折効 率で 87%の回折効率が得られ、より望ましい。透過率は両波長で 99%である。  In the above embodiment, a blazed shape that is processed using a gray scale mask is used instead of approximating the force saw-tooth shape, which forms the structure of one period of the grating by 8 steps, in a multi-step manner. If used, a diffraction efficiency of 87% is obtained with a first-order diffraction efficiency for any wavelength, which is more desirable. The transmittance is 99% at both wavelengths.
[0156] 第 2の回折素子 303の構造も、前述の第 1の回折素子 302と基本的の同様である 力 複屈折性材料層として用いた高分子液晶の遅相軸の方向が異なる。図 22を用 いて説明すると、光源力ゝら出射される直線偏光の偏光方向を y方向として、複屈折性 材料層 321に用いる高分子液晶の遅相軸を X方向とする。また、複屈折性材料層 32 1に形成する回折格子の周期方向も X方向とする。本実施例では、具体的な回折格 子形状として、回折格子の周期構造の 1周期が 8ステップの階段によって構成し、各 階段の段差をそれぞれ 0. 41 μ mとした。また、ピッチ 10 mとなるよう、各階段部の 平坦部の幅を 1. 25 mとした。 このように設定することにより、波長 650nmおよび波長 780nmの光束の 1次回折の 回折効率を 85%にすることができる。また、透過率 (0次の回折効率)は、両波長で 9 9%である。 The structure of the second diffractive element 303 is also basically the same as that of the first diffractive element 302 described above. The direction of the slow axis of the polymer liquid crystal used as the force birefringent material layer is different. Referring to FIG. 22, the polarization direction of linearly polarized light emitted from the light source force is defined as the y direction, and the slow axis of the polymer liquid crystal used for the birefringent material layer 321 is defined as the X direction. The periodic direction of the diffraction grating formed in the birefringent material layer 321 is also the X direction. In this example, as a specific diffraction grating shape, one period of the periodic structure of the diffraction grating is composed of 8 steps, and the step of each step is set to 0.41 μm. The width of the flat part of each staircase was set to 1.25 m so that the pitch would be 10 m. By setting in this way, the diffraction efficiency of the first-order diffraction of a light beam having a wavelength of 650 nm and a wavelength of 780 nm can be made 85%. The transmittance (0th-order diffraction efficiency) is 99% at both wavelengths.
なお、第 2の回折素子 303でも、第 1の回折素子 302と同様に、 8ステップの階段に よって格子の 1周期の構造を構成したが、鋸歯状形状を多段の階段状で近似するの ではなぐグレースケールマスクを利用してカ卩ェされるブレーズド形状を用いると、い ずれの波長に対しても 1次の回折効率で 87%の回折効率が得られ、より望ましい。 透過率は両波長で 99%である。  In the second diffractive element 303 as well, as in the first diffractive element 302, the structure of one period of the grating is configured by the 8-step staircase. However, if the sawtooth shape is approximated by a multi-step staircase shape, Using a blazed shape that is covered by using a gray scale mask, a diffraction efficiency of 87% is obtained with the first-order diffraction efficiency for any wavelength, which is more desirable. The transmittance is 99% at both wavelengths.
[0157] 以上説明したように、本発明に係る光ピックアップ装置は、格子ピッチの等 、2枚 の偏光性回折素子を用いることで、環境温度の変化による波長の変動に伴う光束の 受光素子上の集光位置の変動を抑制できる。なお、上記実施例では、 CDと DVDと の互換を前提として説明した力 現在実用化されようとしている BLURAYあるいは H D— DVDと従来の DVDとの組合せに対しても有効に実施可能である。あるいは、 B LURAYまたは HD— DVDと CDとの組合せに対しても有効に実施可能である。また 、本発明の光ピックアップ装置では、コリメーターレンズを用いた、所謂、無限系の光 学系として構成したが、本発明が適用される範囲は、無限系の光学系には限定され ず、コリメーターレンズを使用しない有限系の光学系であってもよい。さらに、第 2の 回折素子 303と 1Z4波長板 304は別体で構成したが、積層一体ィ匕しても良い。  [0157] As described above, the optical pickup device according to the present invention uses two polarizing diffraction elements such as a grating pitch on the light receiving element for the light flux accompanying the wavelength variation due to the change in the environmental temperature. The fluctuation | variation of the condensing position can be suppressed. In the above-described embodiment, the description has been made on the assumption that CD and DVD are compatible. The present invention can also be effectively implemented for a combination of BLURAY or HD DVD and a conventional DVD that are currently being put into practical use. Alternatively, it can be effectively implemented for a combination of B LURAY or HD—DVD and CD. The optical pickup device of the present invention is configured as a so-called infinite optical system using a collimator lens. However, the scope to which the present invention is applied is not limited to an infinite optical system, It may be a finite optical system that does not use a collimator lens. Further, although the second diffraction element 303 and the 1Z4 wave plate 304 are configured separately, they may be laminated and integrated.
[0158] なお、上記において本発明の第 1、 2および 3の実施態様について述べた力 本発 明はこれらの実施態様に何ら限定されるものではなぐその要旨を逸脱しない範囲に お 、て種々の態様で実施し得るものである。  [0158] It should be noted that the power described in the first, second and third embodiments of the present invention is not limited to these embodiments at all, and various modifications can be made without departing from the scope of the present invention. It can implement in the aspect of.
産業上の利用可能性  Industrial applicability
[0159] 本発明のピックアップ装置は、格子ピッチの等しい 2枚の回折素子を設けることで、 動作温度の変動による波長の変化に伴う光束の受光素子上の集光位置の変動を抑 制できる効果を有し、複数の異なる種類の光ディスクの記録再生を行う光ピックアップ 装置などに有効に利用される。 なお、 2004年 8月 4曰〖こ出願された曰本特許出願 2004— 227846号、 2004年 8 月 31日に出願された日本特許出願 2004— 252148号の明細書、及び 2004年 9月 14日に出願された日本特許出願 2004— 266596号特許請求の範囲、図面及び要 約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである [0159] The pickup device of the present invention has the effect of suppressing the fluctuation of the light condensing position on the light receiving element due to the change of the wavelength due to the change of the operating temperature by providing two diffraction elements having the same grating pitch. And is effectively used for an optical pickup device that records and reproduces a plurality of different types of optical disks. In August 2004, this patent application was filed 2004–227846, 2004 8 Japanese Patent Application No. 2004-252148 filed on May 31, and Japanese Patent Application No. 2004-266596 filed on September 14, 2004 Full content of claims, drawings and summary It is cited here and incorporated as the disclosure of the specification of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 異なる 2つの波長の光束をそれぞれ出射する 2つの光源と、光源と光記録媒体との 間に設置された対物レンズと、対物レンズと光記録媒体との間に設置された 1つまた は 2つの回折素子と、光記録媒体で反射された光束を検出する受光素子とを備える 光ピックアップ装置において、回折素子は 2つの光束を同一次数または異なる次数 で回折させて、受光素子へ導くことを特徴とする光ピックアップ装置。  [1] Two light sources that respectively emit light beams of two different wavelengths, an objective lens installed between the light source and the optical recording medium, and one or two installed between the objective lens and the optical recording medium In an optical pickup device comprising two diffractive elements and a light receiving element that detects the light beam reflected by the optical recording medium, the diffractive element diffracts the two light beams with the same or different orders and guides them to the light receiving element. An optical pickup device characterized by the above.
[2] 第 1の波長の光束を出射する第 1の光源と、前記第 1の波長とは異なる第 2の波長 の光束を出射する第 2の光源と、光記録媒体で反射された前記 2つの波長の戻り光 束を集光させる対物レンズと、前記対物レンズとその集光点との間に配設され、前記 対物レンズを経て入射した前記 2つの波長の戻り光束を回折させ透過させる 1つの回 折素子と、前記対物レンズで集光され前記回折素子により回折され透過された前記 2つの波長の戻り光束の集光点に配設され、前記戻り光束を受光する受光素子とを 備えてなり、前記回折素子が、戻り光束を同一次数で回折させ透過させることにより 前記 2つの波長の集光点を受光素子の受光面上で略一致させる請求項 1に記載の 光ピックアップ装置。  [2] A first light source that emits a light beam having a first wavelength, a second light source that emits a light beam having a second wavelength different from the first wavelength, and the 2 reflected by an optical recording medium An objective lens for condensing return light fluxes of one wavelength; and an objective lens disposed between the objective lens and a condensing point thereof, and diffracting and transmitting the return light beams of the two wavelengths incident through the objective lens 1 Two diffraction elements, and a light receiving element that is disposed at a condensing point of the return light beams of the two wavelengths that are collected by the objective lens, diffracted by the diffraction element, and transmitted, and that receives the return light beam. 2. The optical pickup device according to claim 1, wherein the diffraction element diffracts and transmits the return light beam with the same order so that the light collection points of the two wavelengths substantially coincide on the light receiving surface of the light receiving element.
[3] 第 1の波長の光束を出射する第 1の光源と、前記第 1の波長とは異なる第 2の波長 の光束を出射する第 2の光源と、前記第 1の波長の光束および前記第 2の波長の光 束を光記録媒体に向けて導く対物レンズを含む往路光学系と、前記光記録媒体から の前記第 1の波長の戻り光束を受光する第 1受光素子と、前記光記録媒体からの前 記第 2の波長の戻り光束を受光する第 2受光素子と、前記光記録媒体からの前記第 1の波長の戻り光束を前記第 1受光素子に導くと共に、前記光記録媒体からの前記 第 2の波長の戻り光束を前記第 2受光素子に導く対物レンズを含む復路光学系とを 備えてなり、  [3] A first light source that emits a light beam having a first wavelength, a second light source that emits a light beam having a second wavelength different from the first wavelength, the light beam having the first wavelength, and the A forward optical system including an objective lens that guides the light flux of the second wavelength toward the optical recording medium, a first light receiving element that receives the return light beam of the first wavelength from the optical recording medium, and the optical recording A second light receiving element that receives the return light beam having the second wavelength from the medium, and a return light beam having the first wavelength from the optical recording medium to the first light receiving element and from the optical recording medium. A return optical system including an objective lens that guides the return light beam of the second wavelength to the second light receiving element,
前記往路光学系は、前記第 1の波長の光束および前記第 2の波長の光束の少なく とも一方の光束を回折させる往路回折素子を有し、  The outward optical system includes an outward diffraction element that diffracts at least one of the light beam having the first wavelength and the light beam having the second wavelength,
前記復路光学系は、前記第 1の波長の戻り光束および前記第 2の波長の戻り光束 の少なくとも一方の光束を回折させる復路回折素子を有し、  The return path optical system has a return path diffraction element that diffracts at least one of the return light beam of the first wavelength and the return light beam of the second wavelength,
前記往路回折素子と前記復路回折素子とは、相互に等しい格子ピッチの回折格子 を有し、前記第 1の波長の光束を相互に等しい回折の次数で回折させ、前記第 2の 波長の光束を相互に等しい回折の次数で回折させる請求項 1に記載の光ピックアツ プ装置。 The forward diffraction element and the backward diffraction element are diffraction gratings having an equal grating pitch. 2. The optical pick-up device according to claim 1, wherein the first wavelength light beam is diffracted with the same diffraction order, and the second wavelength light beam is diffracted with the same diffraction order.
[4] 第 1の波長の光束を出射する第 1の光源と、前記第 1の波長とは異なる第 2の波長 の光束を出射する第 2の光源と、前記光源からの前記光束を所定の光記録媒体へ 集光する対物レンズと、この対物レンズで集光され前記光記録媒体で反射された光 束を検出する受光素子と、前記第 1の光源および前記第 2の光源から出射する光束 に対しては回折機能を有し、前記光記録媒体で反射された光束に対しては回折機 能を有しない第 1の回折素子と、前記第 1の光源および前記第 2の光源から出射する 光束に対しては回折機能を有せず、前記光記録媒体で反射された光束に対しては 回折機能を有する第 2の回折素子とを備えてなり、  [4] A first light source that emits a light beam having a first wavelength, a second light source that emits a light beam having a second wavelength different from the first wavelength, and the light beam from the light source An objective lens for focusing on the optical recording medium, a light receiving element for detecting a light flux collected by the objective lens and reflected by the optical recording medium, and a light beam emitted from the first light source and the second light source The first diffractive element having a diffraction function and having no diffraction function with respect to the light beam reflected by the optical recording medium, the first light source, and the second light source emit light. A second diffractive element that does not have a diffractive function for a light beam and has a diffractive function for a light beam reflected by the optical recording medium,
前記第 1の回折素子と前記第 2の回折素子は、回折格子ピッチが等しぐ 前記第 1の光源からの前記第 1の波長の光束に対する、前記第 1の回折素子にお ける回折の次数と、前記光記録媒体で反射された前記第 1の波長の光束に対する前 記第 2の回折素子における回折の次数とは等しぐ  The first diffraction element and the second diffraction element have the same diffraction grating pitch. The order of diffraction in the first diffraction element with respect to the light beam having the first wavelength from the first light source. And the order of diffraction in the second diffraction element with respect to the light beam having the first wavelength reflected by the optical recording medium is equal to
前記第 2の光源からの前記第 2の波長の光束に対する、前記第 1の回折素子にお ける回折の次数と、前記光記録媒体で反射された前記第 2の波長の光束に対する前 記第 2の回折素子における回折の次数とは等しぐ  The order of diffraction in the first diffraction element with respect to the light beam having the second wavelength from the second light source, and the second light beam with respect to the light beam having the second wavelength reflected by the optical recording medium. Is equal to the order of diffraction in a diffractive element
前記第 1の回折素子および前記第 2の回折素子は、光源と対物レンズとの間にほ ぼ平行に配置され、  The first diffractive element and the second diffractive element are disposed substantially parallel between the light source and the objective lens,
前記第 1の回折素子は、前記第 1の波長の光束と前記第 2の波長の光束を合波し 対物レンズに導くとともに、前記第 2の回折素子は前記光記録媒体で反射された光 束を分波し前記受光素子に導く請求項 1に記載の光ピックアップ装置。  The first diffractive element combines the first wavelength light flux and the second wavelength light flux and guides them to the objective lens, and the second diffractive element reflects the light flux reflected by the optical recording medium. 2. The optical pickup device according to claim 1, wherein the optical pickup device is demultiplexed and guided to the light receiving element.
[5] 前記回折素子による回折は 1次の回折が用いられる請求項 2、 3または 4に記載の 光ピックアップ装置。 5. The optical pickup device according to claim 2, 3 or 4, wherein first-order diffraction is used for diffraction by the diffraction element.
[6] 前記回折素子は、透明基板に直線状または曲線状の溝が周期的に形成された回 折素子であって、該溝のピッチが 5〜20 mである請求項 2または 5に記載の光ピッ クアップ装置。 6. The diffraction element according to claim 2 or 5, wherein the diffraction element is a diffraction element in which linear or curved grooves are periodically formed on a transparent substrate, and the pitch of the grooves is 5 to 20 m. Optical pick-up device.
[7] 前記往路回折素子および前記復路回折素子は、 1次以上の回折の次数で回折さ せる光の波長を選択することができる波長選択性を有する請求項 3に記載の光ピック アップ装置。 7. The optical pick-up device according to claim 3, wherein the forward diffraction element and the backward diffraction element have wavelength selectivity capable of selecting a wavelength of light to be diffracted by a first-order diffraction order or higher.
[8] 前記往路回折素子と前記復路回折素子とは、前記第 1の波長の光束を共に 0次の 回折の次数で回折させ、前記第 2の波長の光束を共に 1次の回折の次数で回折させ る請求項 3または 7に記載の光ピックアップ装置。  [8] The forward diffraction element and the backward diffraction element both diffract the light beam having the first wavelength at the 0th diffraction order, and both the light beam at the second wavelength at the first diffraction order. 8. The optical pickup device according to claim 3, wherein the optical pickup device is diffracted.
[9] 前記回折格子は、断面形状が鋸波状の形状を繰り返す周期構造の回折格子、ま たは断面形状が鋸波状の形状を階段状の形状で近似した形状を繰り返す周期構造 の回折格子を有する請求項 2〜8のいずれか 1項に記載の光ピックアップ装置。 [9] The diffraction grating is a periodic structure diffraction grating whose cross-sectional shape repeats a sawtooth shape, or a periodic structure diffraction grating whose cross-sectional shape repeats a shape approximating a sawtooth shape by a staircase shape. The optical pickup device according to any one of claims 2 to 8.
[10] 前記第 1の回折素子および前記第 2の回折素子は、透明基板上に、複屈折性材料 層と等方性材料層とが、鋸歯状の断面形状をもつ凸部の繰り返しからなる格子状構 造の界面を有するように積層されている偏光性回折素子である請求項 4または 5に記 載の光ピックアップ装置。 [10] The first diffractive element and the second diffractive element each include a birefringent material layer and an isotropic material layer on a transparent substrate, each of which is a convex portion having a sawtooth cross-sectional shape. 6. The optical pickup device according to claim 4, wherein the optical pickup device is a polarizing diffraction element laminated so as to have an interface having a lattice structure.
[11] 前記第 1の回折素子の複屈折性材料層は、第 1の直線偏光の偏光方向の光束に 対して異常光屈折率が対応するように配向されて 、るとともに、 [11] The birefringent material layer of the first diffractive element is oriented so that the extraordinary refractive index corresponds to the light flux in the polarization direction of the first linearly polarized light, and
前記第 2の回折素子の複屈折性材料層は、第 1の直線偏光と直交する第 2の直線 偏光に対して異常光屈折率が対応するように配向されている請求項 4、 5または 10の The birefringent material layer of the second diffractive element is oriented so that the extraordinary refractive index corresponds to the second linearly polarized light orthogonal to the first linearly polarized light. of
V、ずれか 1項に記載の光ピックアップ装置。 The optical pickup device according to item 1, wherein V is a deviation.
[12] 前記格子断面形状の鋸歯状形状は、所望の鋸歯状形状を階段状に近似した形状 である請求項 4、 5、 9、 10または 11のいずれ力 1項に記載の光ピックアップ装置。 12. The optical pickup device according to any one of claims 4, 5, 9, 10, or 11, wherein the sawtooth shape having a lattice cross-sectional shape is a shape that approximates a desired sawtooth shape in a staircase shape.
PCT/JP2005/014219 2004-08-04 2005-08-03 Optical pickup WO2006013897A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004227846A JP4501583B2 (en) 2004-08-04 2004-08-04 Optical pickup device
JP2004-227846 2004-08-04
JP2004252148A JP2006073046A (en) 2004-08-31 2004-08-31 Optical pickup device
JP2004-252148 2004-08-31
JP2004-266596 2004-09-14
JP2004266596A JP4501609B2 (en) 2004-09-14 2004-09-14 Optical pickup device

Publications (1)

Publication Number Publication Date
WO2006013897A1 true WO2006013897A1 (en) 2006-02-09

Family

ID=35787178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014219 WO2006013897A1 (en) 2004-08-04 2005-08-03 Optical pickup

Country Status (2)

Country Link
TW (1) TW200615579A (en)
WO (1) WO2006013897A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3657216A4 (en) * 2017-07-18 2021-04-07 Pioneer Corporation Optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289468A (en) * 1997-04-10 1998-10-27 Konica Corp Optical pickup device and light source unit for the device
JPH11134702A (en) * 1997-10-30 1999-05-21 Sanyo Electric Co Ltd Optical pickup device
JP2001256670A (en) * 2000-03-10 2001-09-21 Sony Corp Optical pickup device and optical disk device
JP2001256667A (en) * 2000-03-10 2001-09-21 Sankyo Seiki Mfg Co Ltd Optical pickup device and its light-receiving method
JP2002015448A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Optical device, light source device, optical head device and optical information processing device
JP2002014228A (en) * 2000-04-26 2002-01-18 Asahi Glass Co Ltd Phase shifter and optical head device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289468A (en) * 1997-04-10 1998-10-27 Konica Corp Optical pickup device and light source unit for the device
JPH11134702A (en) * 1997-10-30 1999-05-21 Sanyo Electric Co Ltd Optical pickup device
JP2001256670A (en) * 2000-03-10 2001-09-21 Sony Corp Optical pickup device and optical disk device
JP2001256667A (en) * 2000-03-10 2001-09-21 Sankyo Seiki Mfg Co Ltd Optical pickup device and its light-receiving method
JP2002014228A (en) * 2000-04-26 2002-01-18 Asahi Glass Co Ltd Phase shifter and optical head device
JP2002015448A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Optical device, light source device, optical head device and optical information processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3657216A4 (en) * 2017-07-18 2021-04-07 Pioneer Corporation Optical device
JP2022003356A (en) * 2017-07-18 2022-01-11 パイオニア株式会社 Optical device
JP7117437B2 (en) 2017-07-18 2022-08-12 パイオニア株式会社 optical device

Also Published As

Publication number Publication date
TW200615579A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
JP2002116314A (en) Diffracting element and optical pickup device
WO2004003901A1 (en) Optical pickup
JP4846975B2 (en) Optical element, objective optical system, and optical pickup device
JP4833797B2 (en) Optical pickup and optical information processing apparatus
JP4377281B2 (en) Objective optical system for optical recording medium and optical pickup device using the same
KR100384674B1 (en) Method and apparatus for optical head and optical information recording and reproducing
US20050105447A1 (en) Optical pickup device and optical system used for the same
WO2009147827A1 (en) Optical pickup and optical disc disk device, computer, optical disc disk player, optical disc disk recorder
JP2010020855A (en) Reflection type diffraction grating for a plurality of wavelengths and optical pickup device including the same
WO2006013897A1 (en) Optical pickup
JP2001155375A (en) Optical head device
JP4389658B2 (en) Optical pickup device
JP2003223738A (en) Optical pickup device and optical disk device, and optical device and composite optical element
KR101046680B1 (en) Optical pickup and optical device
JP4501609B2 (en) Optical pickup device
JP4321363B2 (en) Optical pickup device and method for manufacturing flat optical element
JP4501583B2 (en) Optical pickup device
JP2000339741A (en) Optical pickup device
US20060118704A1 (en) Optical pickup device and optical element
JP5082792B2 (en) Optical head device
JP3389416B2 (en) Optical pickup device
JP2005346885A (en) Optical pickup device
KR20070031317A (en) Optical pickup
JP2006073046A (en) Optical pickup device
JP2002237085A (en) Optical pickup and optical information reproducing device or recording device using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067025437

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 1020067025437

Country of ref document: KR

122 Ep: pct application non-entry in european phase