JP2000339741A - Optical pickup device - Google Patents
Optical pickup deviceInfo
- Publication number
- JP2000339741A JP2000339741A JP11146153A JP14615399A JP2000339741A JP 2000339741 A JP2000339741 A JP 2000339741A JP 11146153 A JP11146153 A JP 11146153A JP 14615399 A JP14615399 A JP 14615399A JP 2000339741 A JP2000339741 A JP 2000339741A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- pickup device
- optical
- optical pickup
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Head (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は光学ピックアップ装
置に関する。詳しくは本発明は複数のレーザー光源を有
し、複数の規格の光学記録媒体を再生するための光学ピ
ックアップ装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pickup device. More particularly, the present invention relates to an optical pickup device having a plurality of laser light sources and reproducing an optical recording medium of a plurality of standards.
【0002】[0002]
【従来の技術】レーザー光源を利用してCD(コンパク
トディスク)、DVD(デジタルビデオディスク)等の
光学記録媒体から情報を読みとる光学ピックアップ装置
は広く普及している。これらの光学記録媒体は厚さが異
なるものもあるので、同一のピックアップ装置を使用し
て異なった基材厚さの光学記録媒体を読みとることは、
対物レンズが一定の厚みに対する球面収差を補正するよ
うに設計されているために一般に困難である。2. Description of the Related Art An optical pickup device that reads information from an optical recording medium such as a CD (compact disk) and a DVD (digital video disk) using a laser light source is widely used. Since some of these optical recording media have different thicknesses, reading optical recording media of different substrate thicknesses using the same pickup device is
This is generally difficult because the objective lens is designed to correct spherical aberration for a certain thickness.
【0003】これに対処する手段として異なった波長の
2つのレーザー光源を使用して異なった基材厚さの光学
記録媒体を再生することが特開平10−334504号
や、ジャパニーズ・ジャーナル・オブ・アプライド・フ
ィジックス第36巻第1部第1B号の460頁〜466
頁の図1に記載されている。図5はこれらに記載の光学
ピックアップ装置を説明するための説明図である。波長
λ1で光学記録媒体を再生するときは、λ1の光学系1
より出射した光ビームはビームスプリッタ3と回折素子
4を通過し、対物レンズ5にて厚みd1の光学記録媒体
6の記録表面に読み取りスポットを形成する。このとき
回折素子4は波面変換作用を有していないように構成さ
れている。波長λ2で光学記録媒体を再生するときは、
λ2の光学系2より出射した光ビームはビームスプリッ
タ3、回折素子4を通過し、対物レンズ5にて厚みd2
の光学記録媒体6’の記録表面に読み取りスポットを形
成する。波長λ1を使用したときに球面収差が0となる
対物レンズを使用すると、λ2を使用したときには球面
収差を補正できる波面変換が必要となるので、回折素子
4はλ2に対しては波面変換を行うように設計されてい
る。光学記録素子6又は6’からの反射光は回折格子4
の一次回折光が図示しない光電変換素子により検出され
処理される。As means for dealing with this, it is known to reproduce optical recording media having different substrate thicknesses by using two laser light sources having different wavelengths, Japanese Patent Application Laid-Open No. Hei 10-334504, Japanese Journal of Art. Applied Physics Vol. 36, Part 1, No. 1B, pp. 460-466
It is described in FIG. 1 of the page. FIG. 5 is an explanatory diagram for explaining the optical pickup device described therein. When reproducing the optical recording medium at the wavelength λ1, the optical system 1 of λ1 is used.
The emitted light beam passes through the beam splitter 3 and the diffraction element 4, and forms a reading spot on the recording surface of the optical recording medium 6 having a thickness d1 by the objective lens 5. At this time, the diffraction element 4 is configured so as not to have a wavefront conversion function. When reproducing the optical recording medium at the wavelength λ2,
The light beam emitted from the optical system 2 of λ2 passes through the beam splitter 3 and the diffractive element 4 and passes through the objective lens 5 to a thickness d2.
A reading spot is formed on the recording surface of the optical recording medium 6 '. If an objective lens having a spherical aberration of 0 when the wavelength λ1 is used is used, a wavefront transformation that can correct the spherical aberration is required when λ2 is used. Therefore, the diffraction element 4 performs the wavefront transformation on λ2. It is designed to be. The reflected light from the optical recording element 6 or 6 ′ is
Is detected and processed by a not-shown photoelectric conversion element.
【0004】図6は上記特許公報に記載された回折素子
4を説明するものである。この回折素子は3ステップの
階段状位相型回折素子であり、パターンは同心円状をし
ている。この回折素子は、波長λ1の光ビームの場合、
面に対して垂直に入射した場合にはどこを通っても波面
変換を受けることがない。これは全てのステップによっ
て受ける位相差が2πの整数倍になるようにステップ間
の高さ関係が設計されているからである。ところが、波
長λ2の光ビームの場合は、位相差が上記の値からずれ
てくるために、波面変換を受けることになる。波長λ2
で球面収差を無くするには、この波面変換を基材厚み差
d1−d2により発生する球面収差と、量が同じで向き
が逆になるようにしておく必要がある。FIG. 6 illustrates the diffraction element 4 described in the above patent publication. This diffraction element is a three-step staircase phase type diffraction element, and the pattern is concentric. In the case of a light beam of wavelength λ1,
If the light is incident perpendicular to the surface, it will not undergo wavefront conversion anywhere. This is because the height relationship between the steps is designed so that the phase difference received by all the steps is an integral multiple of 2π. However, in the case of a light beam having the wavelength λ2, the phase difference deviates from the above value, so that the light beam undergoes wavefront conversion. Wavelength λ2
In order to eliminate spherical aberration, it is necessary to make the wavefront conversion the same in amount and in the opposite direction as the spherical aberration generated by the substrate thickness difference d1-d2.
【0005】例えば、上記特許公報記載の光学ピックア
ップ装置の場合には、図6に示したようなステップ3の
階段状回折素子が使用されており、650nm、780
nmの2種の波長のレーザー光源を実装しており、回折
素子の光量効率は理論値で、λ1のとき100%、λ2
のとき56.7%である。[0005] For example, in the case of the optical pickup device described in the above-mentioned patent publication, a step-like diffraction element of step 3 as shown in FIG. 6 is used.
A laser light source having two wavelengths of nm is mounted, and the light amount efficiency of the diffraction element is a theoretical value.
At the time of 56.7%.
【0006】[0006]
【発明が解決しようとする課題】従来の光学ピックアッ
プ装置は以下のような問題点を有している。再生時には
光ビームは往復2回、この回折格子を通過するため、真
の光量効率は片道の効率の2乗となり、λ1のとき10
0%、λ2のとき31.6%である。このためλ2用の
半導体レーザーは定格出力がλ1用のレーザー光源の少
なくとも3倍程度のものを使用しない限り、同等のS/
N比は得られなかった。このため、光学ピックアップ装
置は高価となり、大型化を招いていた。従って、本発明
は回折素子の光量効率を上げることにより低い電力で高
いS/N比を実現した光学ピックアップ装置を提供する
ことを課題とする。The conventional optical pickup device has the following problems. At the time of reproduction, the light beam passes through the diffraction grating twice, so that the true light amount efficiency is the square of the one-way efficiency.
0% and 31.6% at λ2. Therefore, unless the semiconductor laser for λ2 has a rated output at least about three times that of the laser light source for λ1, the equivalent S / S
No N ratio was obtained. For this reason, the optical pickup device is expensive and has been increased in size. Therefore, an object of the present invention is to provide an optical pickup device which realizes a high S / N ratio with low power by increasing the light amount efficiency of a diffraction element.
【0007】[0007]
【課題を解決するための手段】かかる課題を解決するた
めに、階段状の位相型回折格子のステップ数と段差量
を、2つの波長の量的関係と回折格子の材料の物性値か
ら決定できる特異な値とした。また、これにより波面変
換時の光量効率が実用上は100%とみなせる値となる
ので、通常の出力の半導体レーザーを用い、高SN比で
安価な光学ピックアップ装置を構成した。すなわち本発
明は、波長λ1のレーザ光源と、これより長い波長λ2
のレーザ光源と、これらの光源から発した光ビームを光
学記録媒体表面に導く光学系と、光学記録媒体表面から
の反射光ビームを光電変換する受光素子を有している光
学ピックアップ装置において、前記光学系の一部に、 有理数N=1/((λ2/λ1)−1) を超えない最大の整数をN1とし、前記Nを超える最小
の整数をN2としたときに、ステップ数がN1+1また
はN2+1であって、1ステップあたりの段差量をλ1
/(n−1)とした屈折率nの階段状位相回折格子素子
を備えていることを特徴とする光学ピックアップ装置に
より従来の課題を解決する。ここに段差量をλ1/(n
−1)としたのは波長λ1に対して階段状回折格子素子
の光量効率をほぼ100%にするためである。ここにス
テップ数をN1+1またはN2+1としたのは、波長λ
2に対して最大の光量効率を得るためである。この場
合、前記階段状位相回折格子素子が、波長λ1を用いて
再生する光学記録媒体の材料厚みと波長λ2を用いて再
生する光学記録媒体の基材厚みの差に起因するλ2に対
する球面収差を補正するための波面変換を調整するよう
に賦形されていることが好ましい。In order to solve the above-mentioned problems, the number of steps and the amount of steps of a stepped phase diffraction grating can be determined from the quantitative relationship between two wavelengths and the physical properties of the material of the diffraction grating. Unique values. In addition, since the light amount efficiency at the time of wavefront conversion becomes a value that can be regarded as 100% in practical use, a semiconductor laser having a normal output is used, and an inexpensive optical pickup device with a high SN ratio is configured. That is, the present invention provides a laser light source having a wavelength λ1 and a longer wavelength λ2.
A laser light source, an optical system for guiding a light beam emitted from these light sources to the surface of the optical recording medium, and an optical pickup device having a light receiving element for photoelectrically converting a reflected light beam from the surface of the optical recording medium, In a part of the optical system, when the maximum integer not exceeding rational number N = 1 / ((λ2 / λ1) −1) is N1, and the minimum integer exceeding N is N2, the number of steps is N1 + 1 or N1 + 1. N2 + 1, and the step amount per step is λ1
The conventional problem is solved by an optical pickup device comprising a step-like phase diffraction grating element having a refractive index n of / (n-1). Here, the step amount is λ1 / (n
The reason for -1) is to make the light intensity efficiency of the step-like diffraction grating element approximately 100% with respect to the wavelength λ1. The reason why the number of steps is set to N1 + 1 or N2 + 1 is that the wavelength λ
This is in order to obtain the maximum light intensity efficiency with respect to 2. In this case, the step-like phase diffraction grating element reduces the spherical aberration with respect to λ2 caused by the difference between the material thickness of the optical recording medium reproduced using the wavelength λ1 and the base material thickness of the optical recording medium reproduced using the wavelength λ2. Preferably, it is shaped so as to adjust the wavefront transformation for correction.
【0008】[0008]
【発明の実施の形態】以下に図面を参照して本発明の好
適な実施の形態について説明する。図1は本発明にかか
る光学ピックアップ装置の構成図である。光学系の構成
そのものは、従来の光学ピックアップ装置とほとんど変
わらない。使用したレーザー光源は、波長λ1として、
GaInP系・655nm・定格出力5mWの半導体レ
ーザー、波長λ2としてGaAlAs系・785nm・
定格出力5mWの半導体レーザーである。λ1の光学系
とλ2の光学系の光路は、ビームスプリッタ12で光束
合流されるが、ビームスプリッタ膜12は誘電体多層膜
で、λ1の波長の光ビームを100%透過させ、λ2の
波長の光ビームを100%反射させるものを用いた。光
ビームは回折素子13を通過して対物レンズ14にて光
学記録媒体15、15’に集光される。光学記録媒体
は、波長655nmのとき基材厚み0.6mmの媒体1
5を、波長785nmのとき基材厚み1.2mmの媒体
15’を用いた。655nmの光ビームは回折素子13
を0次光として透過し、回折素子は存在しないかのごと
くに振る舞う。785nmの光ビームは、回折素子13
で+1次光として回折され、波面変換される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an optical pickup device according to the present invention. The configuration of the optical system itself is almost the same as the conventional optical pickup device. The laser light source used was a wavelength λ1,
GaInP-based semiconductor laser of 655 nm / rated output 5 mW, GaAlAs-based / 785 nm-wavelength λ2
It is a semiconductor laser with a rated output of 5 mW. The optical paths of the optical system of λ1 and the optical system of λ2 are combined by the beam splitter 12, but the beam splitter film 12 is a dielectric multilayer film, which transmits 100% of the light beam of the wavelength of λ1 and has the wavelength of λ2. One that reflects a light beam by 100% was used. The light beam passes through the diffraction element 13 and is condensed on the optical recording media 15 and 15 ′ by the objective lens 14. The optical recording medium is a medium 1 having a substrate thickness of 0.6 mm at a wavelength of 655 nm.
5 was a medium 15 'having a substrate thickness of 1.2 mm at a wavelength of 785 nm. The 655 nm light beam is
As the zero-order light, and behaves as if no diffraction element exists. The 785 nm light beam is
Are diffracted as + 1st order light and wavefront transformed.
【0009】図2は回折素子の説明図である。回折素子
13は階段状位相型回折素子である。その波面変換のた
めに設けられたパターンは基材厚み差0.6mmの球面
収差に対してもっとも残差の少なくなる物像関係を実現
できるものにした。次に、段数の決定は上式に上記波長
の数値を入れると、 1/((λ2/λ1)−1)=1/(785/655−
1)=5.04 であるので、ステップ数は5.04の最近接整数である
5または6に1を足した、6または7が適当である。こ
れとは異なるステップ数を選択すると、λ2の光に与え
る位相差の2πの剰余が、0から2πの範囲のうち、一
部の範囲に偏ってしまうので、+1次光の回折効率が著
しく悪化する。できれば、より近い整数を選択するほう
が望ましい。本実施例ではステップ数を6とし、ガラス
の屈折率は1.52のものを用いた。段差量は1段あた
りλ1/(n−1)=0.655/(1.52−1)=
1.26μmとした。この量からの偏差が大きいとき、
0次光の光量効率が著しく悪化するので、注意が必要で
ある。この階段形状の断面図を図3に示す。図に示すよ
うに、階段状の部分が円の外側を向くような形状にす
る。FIG. 2 is an explanatory view of a diffraction element. The diffraction element 13 is a step-like phase type diffraction element. The pattern provided for the wavefront conversion can realize an object-image relationship that minimizes the residual with respect to the spherical aberration having a substrate thickness difference of 0.6 mm. Next, the number of stages is determined by putting the numerical value of the wavelength in the above equation, and 1 / ((λ2 / λ1) −1) = 1 / (785/655)
Since 1) = 5.04, the number of steps is appropriately 6 or 7 obtained by adding 1 to 5 or 6, which is the nearest integer of 5.04. If a different number of steps is selected, the remainder of the phase difference of 2π given to the light of λ2 is biased to a part of the range from 0 to 2π, so that the diffraction efficiency of the + 1st-order light is significantly deteriorated. I do. If possible, it is better to choose a closer integer. In this embodiment, the number of steps is 6, and the refractive index of glass is 1.52. The step amount is λ1 / (n−1) = 0.655 / (1.52-1) = per step
1.26 μm. When the deviation from this amount is large,
Attention must be paid to the fact that the light intensity efficiency of the zero-order light is significantly deteriorated. FIG. 3 shows a cross-sectional view of this step shape. As shown in the figure, the shape is such that the stepped portion faces the outside of the circle.
【0010】本回折素子の光量効率は以下の通りであ
る。 波長655nmのとき −3次回折光 −1次回折光 0次光 +1次回折光 +3次回折光 0% 0% 100% 0% 0% 波長785nmのとき −3次回折光 −1次回折光 0次光 +1次回折光 +3次回折光 0% 0% 0% 91% 0%The light intensity efficiency of the diffraction element is as follows. At a wavelength of 655 nm -3 order diffracted light -1 order diffracted light 0 order light +1 order diffracted light + 3rd order diffracted light 0% 0% 100% 0% 0% At a wavelength of 785 nm -3 order diffracted light -1 order diffracted light 0 order light +1 order diffracted light +3 Next order diffracted light 0% 0% 0% 91% 0%
【0011】+1次回折光の光量が多く0次光の光量が
小さい回折素子としては、断面が鋸刃様のブレーズ型回
折格子が広く知られており、理論的には1次回折効率が
100%であるが、これは上述のような構成の光学ピッ
クアップ装置には応用できないことに注意されたい。理
由は、波長785nmで高い回折効率が得られるかもし
れないが、波長655nmでは4%程度しか0次光が得
られないからである。As a diffractive element having a large amount of + 1st-order diffracted light and a small amount of 0th-order light, a blazed diffraction grating having a sawtooth-like cross section is widely known. Theoretically, the first-order diffraction efficiency is 100%. However, it should be noted that this cannot be applied to the optical pickup device having the above configuration. The reason is that high diffraction efficiency may be obtained at a wavelength of 785 nm, but only about 4% of 0-order light can be obtained at a wavelength of 655 nm.
【0012】階段状回折格子(ホログラム)は同心円輪
帯状をしている。図4はこの同心円輪帯の形状を決定す
る方法の説明図である。(a)に示したように対物レン
ズ20は厚み0.6mmの基材22について、平行光線
が入射した際に無収差となるよう設計されている。とこ
ろが厚み1.2mmの基材23を使用する際は球面収差
が生じる。このような時にもっとも無収差に近い物像関
係となる物点24と像点25が存在するので、回折素子
21は、同図(b)のように平行光線を物点24から出
射した光ビームの波面に変換するような波面変換作用を
持たせることにより厚み1.2mmの基材に対しても無
収差にする。円輪帯の半径の一例を単位μmで示すと、
0.000、231.042、326.745、40
0.182、462.093、516.639、56
5.952、611.302、653.513、69
3.159、730.658、766.325、80
0.405、833.093、864.547、89
4.896、924.250、952.700である。
このように、同心円輪帯は外側にいくに従って狭いピッ
チとなる。一般にこのような回折格子はホログラムの原
理を用いて容易に設計できる。The step-like diffraction grating (hologram) has a concentric annular shape. FIG. 4 is an explanatory diagram of a method for determining the shape of the concentric annular zone. As shown in (a), the objective lens 20 is designed such that a base material 22 having a thickness of 0.6 mm has no aberration when a parallel light beam enters. However, when the base material 23 having a thickness of 1.2 mm is used, spherical aberration occurs. In such a case, since there is an object point 24 and an image point 25 which have the object-image relationship closest to the aberration-free, the diffraction element 21 emits a parallel light beam from the object point 24 as shown in FIG. By providing a wavefront converting effect of converting the wavefront into a wavefront having a thickness of 1.2 mm, a substrate having a thickness of 1.2 mm is made aberration-free. When an example of the radius of the annular zone is shown in units of μm,
0.000, 231.042, 326.745, 40
0.182, 462.093, 516.639, 56
5.952, 611.302, 653.513, 69
3.159, 730.658, 766.325, 80
0.405, 833.093, 864.547, 89
4.896, 924.250, 952.700.
In this way, the concentric annular zone has a narrower pitch toward the outer side. Generally, such a diffraction grating can be easily designed using the principle of a hologram.
【0013】[0013]
【発明の効果】本発明は以下の効果を有している。本発
明にかかる光学ピックアップ装置は以下のごとくの効果
を有している。再生時には光ビームは、この回折素子を
通過しても、真の光量効率は両方の波長に対して100
%と見なしても実用上問題がないレベルとなった。この
ため半導体レーザーは定格出力が従来の1/3以下の5
mWのものを使用しても、従来レベルのS/Nを得た。
このため、光学ピックアップ装置は安価で小型となっ
た。The present invention has the following effects. The optical pickup device according to the present invention has the following effects. At the time of reproduction, even if the light beam passes through this diffraction element, the true light amount efficiency is 100 for both wavelengths.
Even if it was regarded as%, it was at a level with no practical problem. For this reason, the rated output of the semiconductor laser is 5
Even with the use of mW, a conventional level of S / N was obtained.
For this reason, the optical pickup device was inexpensive and small.
【図1】本発明の光学ピックアップ装置の構成図であ
る。FIG. 1 is a configuration diagram of an optical pickup device of the present invention.
【図2】本発明の光学ピックアップ装置に使用される回
折格子を示し、(a)は(b)の線A−A断面図、
(b)は平面図である。FIGS. 2A and 2B show a diffraction grating used in the optical pickup device of the present invention, wherein FIG.
(B) is a plan view.
【図3】本発明の実施例による回折格子の拡大図であ
る。FIG. 3 is an enlarged view of a diffraction grating according to the embodiment of the present invention.
【図4】本発明の回折格子(ホログラム)の同心円輪帯
の形状を決定する方法の説明図であり、(a)は第1の
厚さの光学記録媒体に対して無収差の光学系を示し、
(b)は第2の厚さの光学的記録媒体に対して回折格子
の同心円輪帯による収差修正の方法を示す。4A and 4B are explanatory diagrams of a method of determining the shape of a concentric annular zone of a diffraction grating (hologram) according to the present invention, and FIG. 4A illustrates an aberration-free optical system for an optical recording medium having a first thickness. Show,
(B) shows a method of correcting aberrations using a concentric annular zone of a diffraction grating for an optical recording medium having a second thickness.
【図5】従来の光学ピックアップ装置の概略図である。FIG. 5 is a schematic view of a conventional optical pickup device.
【図6】従来の光学ピックアップ装置の回折格子を示
し、(a)は(b)の線B−B断面図、(b)は平面図
である。6A and 6B show a diffraction grating of a conventional optical pickup device, wherein FIG. 6A is a cross-sectional view taken along line BB of FIG. 6B, and FIG. 6B is a plan view.
10 λ1の光学系 11 λ2の光学系 12 ビームスプリッター 13 階段状回折格子(ホログラム) 14 集光レンズ 15、15’ 光学記録媒体 Reference Signs List 10 λ1 optical system 11 λ2 optical system 12 Beam splitter 13 Step diffraction grating (hologram) 14 Condensing lens 15, 15 'Optical recording medium
フロントページの続き (72)発明者 木練 透 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 Fターム(参考) 5D119 AA41 AA43 BA01 DA01 DA05 EC01 EC47 FA05 JA09 JA43 JA47 JB03 Continuation of the front page (72) Inventor Toru Kineri F-term (reference) 5D119 AA41 AA43 BA01 DA01 DA05 EC01 EC47 FA05 JA09 JA43 JA47 JB03 1-13-1 Nihonbashi, Chuo-ku, Tokyo
Claims (2)
波長λ2のレーザ光源と、これらの光源から発した光ビ
ームを光学記録媒体表面に導く光学系と、光学記録媒体
表面からの反射光ビームを光電変換する受光素子を有し
ている光学ピックアップ装置において、前記光学系の一
部に、 有理数N=1/((λ2/λ1)−1) を超えない最大の整数をN1とし、前記Nを超える最小
の整数をN2としたときに、ステップ数がN1+1また
はN2+1であって、1ステップあたりの段差量をλ1
/(n−1)とした屈折率nの階段状位相回折格子素子
を備えていることを特徴とする光学ピックアップ装置。1. A laser light source having a wavelength λ1, a laser light source having a longer wavelength λ2, an optical system for guiding a light beam emitted from these light sources to an optical recording medium surface, and a reflected light beam from the optical recording medium surface In the optical pickup device having a light receiving element for performing photoelectric conversion of the following, a maximum integer not exceeding a rational number N = 1 / ((λ2 / λ1) −1) is set to N1, Is the minimum integer exceeding N2, the number of steps is N1 + 1 or N2 + 1, and the step amount per step is λ1
An optical pickup device comprising a step-like phase diffraction grating element having a refractive index n of / (n-1).
1を用いて再生する光学記録媒体の材料厚みと波長λ2
を用いて再生する光学記録媒体の基材厚みの差に起因す
る球面収差を補正するための波面変換を調整するように
賦形されている、請求項1の光学ピックアップ装置。2. The method according to claim 1, wherein the step-like phase diffraction grating element has a wavelength λ.
Thickness and wavelength λ2 of the optical recording medium reproduced using
The optical pickup device according to claim 1, wherein the optical pickup device is shaped so as to adjust a wavefront transformation for correcting a spherical aberration caused by a difference in substrate thickness of an optical recording medium to be reproduced by using the optical recording medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11146153A JP2000339741A (en) | 1999-05-26 | 1999-05-26 | Optical pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11146153A JP2000339741A (en) | 1999-05-26 | 1999-05-26 | Optical pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000339741A true JP2000339741A (en) | 2000-12-08 |
Family
ID=15401340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11146153A Pending JP2000339741A (en) | 1999-05-26 | 1999-05-26 | Optical pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000339741A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001147367A (en) * | 1999-11-19 | 2001-05-29 | Konica Corp | Objective lens and light pick up device |
JP2003066326A (en) * | 2001-08-30 | 2003-03-05 | Konica Corp | Optical element used for optical pickup device, optical pickup device, and optical information recording/ reproducing device |
WO2003091764A1 (en) | 2002-04-18 | 2003-11-06 | Matsushita Electric Industrial Co., Ltd. | Optical element, optical head, optical information recording/reproduction device, computer, video recording device, video reproduction device, server, and car navigation system |
WO2004090598A1 (en) * | 2003-04-03 | 2004-10-21 | Nalux Co., Ltd. | Imaging optical element and method of designing it |
CN100346411C (en) * | 2002-04-09 | 2007-10-31 | 株式会社三协精机制作所 | Optical element, metal die for moulding same and optical pick up apparatus |
-
1999
- 1999-05-26 JP JP11146153A patent/JP2000339741A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001147367A (en) * | 1999-11-19 | 2001-05-29 | Konica Corp | Objective lens and light pick up device |
JP4644891B2 (en) * | 1999-11-19 | 2011-03-09 | コニカミノルタホールディングス株式会社 | Objective lens and optical pickup device |
JP2003066326A (en) * | 2001-08-30 | 2003-03-05 | Konica Corp | Optical element used for optical pickup device, optical pickup device, and optical information recording/ reproducing device |
CN100346411C (en) * | 2002-04-09 | 2007-10-31 | 株式会社三协精机制作所 | Optical element, metal die for moulding same and optical pick up apparatus |
WO2003091764A1 (en) | 2002-04-18 | 2003-11-06 | Matsushita Electric Industrial Co., Ltd. | Optical element, optical head, optical information recording/reproduction device, computer, video recording device, video reproduction device, server, and car navigation system |
JPWO2003091764A1 (en) * | 2002-04-18 | 2005-09-02 | 松下電器産業株式会社 | Optical element, optical head, optical information recording / reproducing apparatus, computer, video recording apparatus, video reproducing apparatus, server, and car navigation system |
CN100354660C (en) * | 2002-04-18 | 2007-12-12 | 松下电器产业株式会社 | Optical element, optical head, optical information recording/reproduction device, computer, video recording device, video reproduction device, server, and car navigation system |
US7466642B2 (en) | 2002-04-18 | 2008-12-16 | Panasonic Corporation | Optical element, optical head, optical information recording/reproduction device, computer, video recording device, video reproduction device, server, and car navigation system |
US7693026B2 (en) | 2002-04-18 | 2010-04-06 | Panasonic Corporation | Optical element, optical head, optical information recording and reproduction apparatus, computer, image recording device, image reproduction device, server and car navigation system |
JP4504180B2 (en) * | 2002-04-18 | 2010-07-14 | パナソニック株式会社 | Optical element, optical head, optical information recording / reproducing apparatus, computer, video recording apparatus, video reproducing apparatus, server, and car navigation system |
US7864650B2 (en) | 2002-04-18 | 2011-01-04 | Panasonic Corporation | Optical element, optical head, optical information recording and reproduction apparatus, computer, image recording device, image reproduction device, server and car navigation system |
WO2004090598A1 (en) * | 2003-04-03 | 2004-10-21 | Nalux Co., Ltd. | Imaging optical element and method of designing it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7710849B2 (en) | Optical head device and optical information recording or reproducing device | |
KR101013278B1 (en) | Objective lens for optical pickup apparatus, optical pickup apparatus, and optical information recording reproducing apparatus | |
KR20060110272A (en) | Optical pickup device and divergent angle conversion element | |
KR20060063943A (en) | Optical pickup device | |
JP4396596B2 (en) | Optical pickup | |
JP2000339741A (en) | Optical pickup device | |
US7602691B2 (en) | Diffractive part | |
JP4098989B2 (en) | Objective lens for optical head | |
JPH10312575A (en) | Optical pickup | |
JP3338290B2 (en) | Transmission hologram element and optical pickup device | |
US20070115520A1 (en) | Optical device and optical pickup device | |
JP3550914B2 (en) | Optical pickup device | |
JP2005141800A (en) | Divergent angle conversion element and optical pickup device | |
JP3389416B2 (en) | Optical pickup device | |
KR100464419B1 (en) | Compatible optical pickup for recording and/or reproducing | |
JP4329329B2 (en) | Optical element and optical pickup device | |
JP2001028145A (en) | Optical head device and disk recording/reproducing device | |
WO2007049481A1 (en) | Diffractive optical element and optical head apparatus | |
JP2001076371A (en) | Optical pickup device | |
JP4329330B2 (en) | Objective optical element and optical pickup device | |
JP2002140829A (en) | Two-wavelength light source device and optical head device | |
EP1530207A2 (en) | Optical pickup device with correcting element | |
WO2006013897A1 (en) | Optical pickup | |
JP2001076376A (en) | Light pickup device | |
JP4788783B2 (en) | Objective optical element and optical pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080812 |