WO2004090598A1 - Imaging optical element and method of designing it - Google Patents

Imaging optical element and method of designing it Download PDF

Info

Publication number
WO2004090598A1
WO2004090598A1 PCT/JP2004/004762 JP2004004762W WO2004090598A1 WO 2004090598 A1 WO2004090598 A1 WO 2004090598A1 JP 2004004762 W JP2004004762 W JP 2004004762W WO 2004090598 A1 WO2004090598 A1 WO 2004090598A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
region
light
shape
diffraction
Prior art date
Application number
PCT/JP2004/004762
Other languages
French (fr)
Japanese (ja)
Inventor
Kouei Hatade
Norihisa Sakagami
Masato Okano
Original Assignee
Nalux Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalux Co., Ltd. filed Critical Nalux Co., Ltd.
Priority to JP2005505234A priority Critical patent/JP4649572B2/en
Publication of WO2004090598A1 publication Critical patent/WO2004090598A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/10Bifocal lenses; Multifocal lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to an imaging optical element used for an optical pickup system and an imaging system for optical recording and reproduction of an optical recording medium such as a compact disk (CD) and a digital versatal disk (DVD), and a design method thereof. About .
  • the present invention relates to an objective lens for condensing light beams having different wavelengths on different surfaces.
  • it relates to a single objective lens that focuses different wavelengths for each disc on the surface of an optical disc such as a Blu-ray disc (BD), a digital versatile disc (DVD) and a compact disc (CD).
  • an optical pickup optical system using the above objective lens.
  • Fig. 13 shows the configuration of an optical pickup system used for reproducing and recording on CD and DVD optical recording media.
  • Light beams emitted from semiconductor laser elements 7 and 8 of different wavelengths, in which photodiodes are unitized, are split by passing through diffraction gratings 9 and 10 used for tracking and focusing detection.
  • a collimating lens 12 for converting a light beam from the semiconductor laser into parallel light the direction of the optical axis is changed by a rising mirror 13.
  • the light flux is converged on the optical recording medium 15 by passing through the objective lens 14.
  • the light beam reflected by the optical recording medium 15 returns along the same optical path, reaches the split photodiode, and controls the tracking and focusing by the split photodiode signal.
  • the mirror 11 is a mirror having wavelength selectivity.
  • FIG. 14 shows an optical pickup system using one semiconductor laser element array 16 having light emitting portions of different wavelengths.
  • Light beams of different wavelengths emitted from a semiconductor device laser element array 16 in which photodiodes are unitized pass through a diffraction grating 17 and then pass through a collimator lens 18.
  • a collimator lens 18 For collimator lens The light flux becomes parallel light, the direction of the optical axis is changed by the rising mirror 19, and after passing through the objective lens 20, the light is focused on the optical recording medium 21.
  • optical systems for DVD and CD optical recording media are common, and various technologies have been developed to make them common.
  • the light beam passing through the first area at the center of the objective lens is focused on the first optical recording medium and the second optical recording medium to record or reproduce on the optical recording medium.
  • a method has been proposed in which the second area is mainly used for recording or reproduction on the second optical recording medium, and the third area extending outside the second area is mainly used for recording or reproduction on the first optical recording medium. (Japanese Unexamined Patent Publication No. Hei 11-96585).
  • Japanese Unexamined Patent Publication No. Hei 11-96585 Japanese Unexamined Patent Publication No. Hei 11-96585
  • the optical recording medium must have a light-condensing ability that is almost diffraction-limited. If an objective lens common to DVDs and CDs is condensed only with a normal aspherical shape and refractive power, spherical aberration will occur. Is difficult to capture. In particular, when different wavelengths are emitted from one laser unit due to the semiconductor laser element array, the distance from the laser light source to the surface of the optical recording medium is the same. Therefore, it was not possible to satisfy the permissible value of the amount of wavefront aberration necessary for recording or reproducing on an optical recording medium.
  • the two wavelengths of a semiconductor laser used for recording or reproducing on optical recording media of different thicknesses such as DVD and CD are relatively close. Therefore, by forming a lens surface using a common diffraction order in a common area necessary for reproducing or recording a DVD or a CD in an area having a diffractive portion, it is possible to record or reproduce on an optical recording medium.
  • the required allowable value of the wavefront aberration cannot be satisfied. For this reason, there has been proposed a method of performing optimization using different diffraction orders in a region having a diffraction portion (for example, supervised by the Japan Society of Applied Physics, Introduction to Diffractive Optical Elements, Optronitus, 1997).
  • the first edition of the first edition was issued on May 20, p.102-105).
  • the optimum depth of the diffraction grating is generally expressed by the following equation.
  • N is the number of steps, or the wavelength
  • n is the refractive index.
  • the depth obtained by the above equation is the depth at which the first-order diffracted light is maximized for the defined wavelength ⁇ . Therefore, if the optimal depth is the diffraction grating depth, the primary diffracted light occupies most of the light having a wavelength relatively close to the wavelength; L, which passes through the region having the diffraction portion.
  • the diffraction efficiency of the first-order diffracted light is improved for each of two wavelengths from a semiconductor laser for recording or reproduction of optical recording media having different thicknesses and from a semiconductor laser. That is, the diffraction efficiency of the zero-order diffracted light decreases.
  • Figure 15 is a graph that calculates the diffraction efficiency in a blazed shape by taking the diffraction grating depth on the X-axis and the diffraction efficiency on the ⁇ -axis. If the visible red wavelength 660 nm is defined as the 0th-order diffracted light and the near-infrared wavelength 780 ⁇ is defined as the 1st-order diffracted light, the depth at which the diffraction efficiency can be obtained for both the 0th-order diffracted light and the 1st-order diffracted light is about 0.74 zm. . In this case, the diffraction efficiency at different wavelengths is about 40%.
  • a Relief-type diffraction grating that gives the above-described diffraction efficiency value in the diffraction section region can also be used.
  • the market demands for DVDs that use visible red semiconductor lasers in particular are increasing their demands for higher speeds, while satisfying the optical characteristics required for optical pickup and the energy efficiency of semiconductor lasers. Need to be higher.
  • the 0th-order and the 1st-order diffracted light are reduced in order to reduce aberration at the time of focusing on the optical recording medium. It is necessary to use it.
  • improving both the diffraction efficiency of the 0th order and the 1st order diffracted light is not It has been difficult with conventional technology. For this reason, there is a great need to improve the diffraction efficiency of the 0th order and 1st order diffracted light.
  • Optical disks are used as recording media for storing large amounts of information.
  • CD compact discs
  • DVD digital versatile discs
  • the optical pickup system for CDs and DVDs be shared for the purpose of saving space and cost.
  • the required spot diameter for reading and writing is about 1.4 to 1.5 m for CDs, but about 0.8 to 0.9 ⁇ m for DVDs.
  • the light collection spot diameter is proportional to the wavelength used and inversely proportional to the image-side numerical aperture of the optical system. For this reason, DVDs use smaller wavelengths and larger numerical apertures than CDs to reduce the converging spot diameter.
  • the substrate thickness which is 1.2 mm in CDs, is set to 0.6 mm in order to suppress coma caused by disc tilt. Therefore, in order to share the optical pickup system between CD and DVD, it is necessary to change the focal position and the numerical aperture by changing the substrate thickness.
  • Optical disks are used as recording media for storing large amounts of information.
  • Optical disks that are widely used include compact disks (CDs) and digital versatile disks (DVDs).
  • BDs higher density pull-ray discs
  • the focused spot diameter that determines the storage density of an optical disk is proportional to the wavelength used and inversely proportional to the image-side numerical aperture of the optical system. For this reason, the focused spot diameter is reduced by reducing the wavelength and increasing the number of apertures.
  • the wavelengths of CD, DVD and BD are about 785 nm, 655 nm and 405 ⁇ m, respectively, and the numerical apertures are about 0.45, 0.65 and 0.85, respectively. is there
  • the optical pickup system for CD, DVD and BD is desirably shared for the purpose of saving space and cost.
  • a two-element high NA objective lens capable of coping with information recording media having different thicknesses without changing the lens interval for example, Japanese Patent Laid-Open No. 2001-174746.
  • No. 97 an objective lens for an optical head with high light use efficiency that enables recording and reproduction of a plurality of types of optical information recording media with one objective lens
  • No. 6 has been proposed.
  • the former has two lenses, so the number of parts is large and the cost is high.
  • the weight of the objective part is increased, so that the load for driving the lens diameter by an actuator is impeded, which hinders speeding up.
  • the latter cannot be applied to the optical pickup system for BD.
  • the present invention has been made under the above circumstances. That is, the present invention relates to an optical pickup system for an optical pickup system for recording and reproducing optical data having different substrate thicknesses, such as a compact disk (CD) and a digital versatile disk (DVD). It is an object of the present invention to provide an objective lens that improves both the diffraction efficiency of second- and first-order diffracted light and reduces energy loss, and a design method thereof.
  • CD compact disk
  • DVD digital versatile disk
  • a separate shield such as a liquid crystal panel in an optical pickup system or the like.
  • the number of parts and the cost of parts increase. In addition, it does not reduce the yield and increase the man-hours in the production process.
  • optical discs such as Blu-ray 'disc (BD), digital' versatile disc '(DVD) and compact' disc (CD)
  • An imaging optical element includes, on at least one surface, a first region including an optical axis and a second region having a diffractive portion around the first region, and a first light beam having a first wavelength. And a second light beam having a second wavelength different from the first wavelength.
  • the shape of the diffractive portion in the second region is a staircase shape when the substrate is flat, and the step amount of the staircase shape, the diffraction efficiency of the 0th-order diffracted light is one of the wavelengths of the first and second light beams. Is determined based on the one wavelength so as to approach the peak of the diffraction efficiency.
  • the number of steps is N, and the wavelength of the one light beam is. , If diffraction orders other than the 0th order are ⁇ and m and p are integers, the wavelength
  • the ratio of the difference between the first and second light beams and the other wavelength to the other wavelength is equal to or less than a predetermined value determined from the degree of reduction from the peak value of the diffraction efficiency.
  • the number of steps N is specified.
  • diffraction efficiency can be improved by using two different wavelengths as 0-order and ⁇ -order diffracted light.
  • the objective lens according to the present invention is an objective lens for converging a first light beam having a first wavelength and a second light beam having a second wavelength different from the first wavelength on the first and second surfaces, respectively.
  • Lens At least one lens surface includes a first region including an optical axis, a second region having a diffractive portion around the first region, and a third region around the second region.
  • the first ray is focused on the first surface after passing through the first and second regions
  • the second ray is focused on the second surface after passing through the first, second and third regions.
  • the lens surface shape in the second region is designed based on one of the optical paths of the first and second rays, and the phase function that defines the diffracting portion in the second region is the first and second rays. Is designed based on the other path of the light beam.
  • the method for designing an objective lens comprises the steps of:
  • the objective lens is for focusing a second light beam having a second wavelength different from the first wavelength on the first and second surfaces, respectively.
  • a design method comprising: defining at least one lens surface with a first region including an optical axis, a second region around the first region, and a third region around the second region; and a lens surface in the first region. Designing the shape.
  • the design method further includes a step of designing the lens surface shape in the second region based on one of the optical paths of the first and second rays, and a phase defining the shape of the diffraction portion in the second region. Determining a function based on the other optical path of the first and second light rays; and designing a lens surface shape in the third region.
  • the first region has no diffraction portion, there is no energy loss due to the diffraction portion.
  • one of the first and second light beams has an optical path defined by refraction according to the lens surface shape, and the other of the first and second light beams has a lens surface shape and a diffraction portion. Since the optical path can be determined according to the phase function of (1), aberration when converging on the first and second surfaces can be reduced. Therefore, energy loss and aberration can be reduced for light beams having two wavelengths condensed on the first and second surfaces, respectively.
  • the shape of the diffractive portion in the second region is a staircase shape when the substrate is a flat surface, and the step amount of the staircase shape is based on the wavelengths of the first and second light beams. Is determined.
  • the wavelength of the light beam defining the lens surface shape in the second region is obtained.
  • n is the refractive index of the lens
  • n 0 is the refractive index around the lens
  • 0 is the angle of incidence on the diffractive part
  • the step is determined based on an integer multiple of o 'cos e / (n—n 0 ).
  • the influence of the diffracting portion on the light beam that determines the lens surface shape in the second region as the zero-order diffracted light is reduced, and the diffraction efficiency is improved.
  • the width of the steps in the diffraction section is determined based on the phase function, the amount of steps, and the number of steps. Therefore, the influence of the diffracting portion on the other of the first and second light beams as the first-order diffracted light increases, and the diffraction efficiency is improved.
  • the objective lens according to one embodiment of the present invention includes a diffractive portion in the second region.
  • the light rays defining the shape of the lens surface in the second area pass mainly as the 0th-order diffracted light
  • the light rays defining the shape of the diffractive portion in the second area mainly pass as the first-order or -1st-order folded light. Therefore, it is possible to reduce aberrations when converging light on the first and second surfaces, respectively.
  • the lens surface shapes of the first, second and third regions are aspherical. Therefore, a design with a high degree of freedom can be performed to reduce aberrations.
  • an optical pickup device for recording or reproducing information on first and second optical recording media having different thicknesses, comprising: a first light beam having a first wavelength; A second light beam having a second wavelength different from the first wavelength is used in an optical pickup device used for the first and second optical recording media, respectively.
  • the first surface is a surface of the first optical recording medium
  • the second surface is a surface of the second optical recording medium. Therefore, it is possible to reduce energy loss and aberration with respect to light beams of two wavelengths that are respectively focused on the surfaces of the first and second optical recording media of the optical pickup device.
  • the first optical recording medium is a CD
  • the second optical recording medium is a DVD. Therefore, energy loss and aberration can be reduced for light beams of two wavelengths focused on the CD and DVD surfaces of the optical pickup device.
  • NA1 satisfies NA1 0.37
  • NA2 satisfies 0.3 NA2 0.51.
  • NA3 satisfies 0.4 ⁇ NA3 ⁇ 0.67.
  • a staircase-shaped diffraction grating shape is determined based on a phase function while considering diffraction efficiency using two different wavelengths as zero-order and first-order diffracted light.
  • Method of determining the diffraction grating pattern is further while operating the m as example 2 approaches the wavelength of the other light is first order diffracted light, the steps of determining the number of steps, based on the step amount and the phase function staircase Determining the width of
  • a computer program for determining a diffraction grating shape according to the present invention determines a staircase-shaped diffraction grating shape based on a phase function while considering diffraction efficiency using two different wavelengths as 0th-order and 1st-order diffracted light.
  • a computer program that determines the shape of the diffraction grating sends a light with a wavelength of ⁇ to the computer as the 0th-order diffracted light.
  • a step of determining a step amount based on the number of steps New, positive and integer as m, 1 any peak wavelength lambda 2 in order diffracted light, 2 N e
  • the computer program for determining the shape of the diffraction grating further includes a step of determining the number of steps while manipulating m so that the beam 2 approaches the wavelength of the other light that is the first-order diffracted light. Determining the width of the stairs based on the phase function.
  • An imaging optical element includes, on at least one surface, a first region including an optical axis and a second region having a diffractive portion around the first region, and has a first wavelength.
  • the first light ray passes through the first area and converges on the image plane, but does not converge on the image plane when passing through the second area, and has a second wavelength different from the first wavelength.
  • the light beam 2 passes through the first area or the second area and is focused on the image plane.
  • the surface shape in the second region is designed based on one of the optical paths of the first and second light beams, and the shape of the diffractive portion in the second region is first and second. It is designed based on the other path of the second ray.
  • a method of designing an imaging optical element according to the present invention includes, on at least one surface, a first region including an optical axis and a second region having a diffractive portion surrounding the first region, and having a first wavelength.
  • the first light ray passes through the first area and converges on the image plane, but does not converge on the image plane when passing through the second area, and has a second wavelength different from the first wavelength.
  • An imaging optical element is designed so that the two rays pass through the first area and the second area and converge on the image plane.
  • the method of designing an imaging optical element includes the steps of designing a surface shape in the second area based on one of the optical paths of the first and second light rays, and a step of designing the diffractive portion in the second area. Designing the shape based on the other optical path of the first and second light beams.
  • the optical paths of the first and second light beams are separated according to the surface shape in the second area and the shape of the diffractive portion, and the second light beam is imaged without focusing the first light beam on the image plane.
  • Light can be collected on a surface.
  • the shape of the diffractive portion in the second region is a stepped shape when the substrate is a plane, and the step amount of the stepped shape is such that the diffraction efficiency of the 0th-order diffracted light is the first and the second.
  • the second light beam is determined based on the one wavelength so as to approach a peak at the one wavelength.
  • 1 is an integral multiple of the one wavelength.
  • the refractive index of the imaging optical element is n
  • the refractive index around the imaging optical element is n Q
  • the incident angle with respect to the diffraction section is ⁇ . 'cos 0 It is determined based on the value of Z (n-n.). ⁇
  • the majority of one of the first and second rays passes through the diffraction section without being affected by the diffraction section as the 0th-order diffracted light, and the optical path is determined by the surface shape of the second region . Also, very few of the light rays pass through the diffraction portion as diffraction light of an order other than the 0th order and are affected by the diffraction portion.
  • the number of steps of the staircase shape is such that the diffraction efficiency of the 0th-order diffracted light at the other wavelength approaches 0%, and the diffraction efficiency of the diffracted lights of orders other than the 0th order is: It is determined based on the first and second wavelengths so as to be as large as possible.
  • the wavelength of the one light ray is; L 0 , the diffraction orders other than the 0th order are a; ⁇ [N / (N-m + a)] ⁇ ⁇ 0 ⁇ p
  • the number of steps N is determined so that the ratio of the difference between the first and second light beams and the other wavelength to the other wavelength is equal to or less than a predetermined value.
  • the optical path is determined by the shape of the diffraction portion. Also, very few of the other light beams pass through the diffraction portion as the 0th-order diffracted light and are not affected by the diffraction portion.
  • the objective lens according to the present invention is provided with a diffraction grating on at least one surface, and focuses light beams of different wavelengths on different surfaces.
  • the first wavelength and the second wavelength satisfy the relationship, in a region where both the first wavelength and the second wavelength pass, the first wavelength light flux is converted into the first wavelength as the second-order diffracted light.
  • the diffracted light is focused on the face, 1 as the second light flux of wavelength lambda 2 and the diffracted light is focused on the second surface defines a phase function and lenses surface shape of the diffraction grating, the grating depth of the diffraction grating of the diffraction efficiency of first-order diffracted light 2 in the diffraction efficiency and the second wavelength lambda 2 of the diffracted light at the first wavelength is specified in earthenware pots by greater than a predetermined value.
  • the luminous fluxes of the first and second wavelengths are condensed on the first and second surfaces as second-order and first-order diffracted light, respectively, and the diffraction efficiency becomes larger than a predetermined value.
  • the objective lens if satisfying the relation of the second wavelength lambda 3, the region where the first wavelength, the light flux of the second wavelength lambda 2 and third wavelength lambda 3 to pass through the co in, addition, as 1 third light flux with wavelength lambda 3 order diffracted light is focused on the third surface, defining a phase function and a lens surface shape of the diffraction grating, the grating depth of the diffraction grating, the third the diffraction efficiency of the wavelength lambda 3 in 1-order diffracted light is set to be larger than a predetermined value.
  • the luminous flux of the third wavelength is converged on the third surface as primary light, and the diffraction efficiency becomes larger than a predetermined value.
  • the diffraction grating has a blaze-ridden shape. Therefore, the processing is relatively simple.
  • n is the refractive index of the lens
  • the depth 1 of the diffraction grating is expressed by the following equation.
  • the diffraction efficiency of the second-order diffracted light at the first wavelength and the diffraction efficiency of the first-order diffracted light at the second and third wavelengths are each 70% or more.
  • At least one surface is divided into at least one band-shaped region surrounding the optical axis and a central region including the optical axis, and each region is defined by a separate surface.
  • a step in the optical axis direction is provided between the separate surfaces.
  • the separate surfaces are: ⁇ axis coincides with the optical axis, i is the number of the surface counted from the center, Ri is the radius of curvature, Ki is the eccentricity, Ai4, Ai6, Ai8, AilO is the aspherical coefficient, and di is the step on the optical axis of the other surface with respect to the first surface.
  • the light beam of the first wavelength is collected by the image-side numerical aperture NA1
  • the light beam of the second wavelength is collected by the image-side numerical aperture NA2
  • the outermost part of the light beam of the second wavelength divides at least one surface into at least one band-shaped region surrounding the optical axis and a central region including the optical axis, and separates each region separately. Is defined by
  • the light beam of the first wavelength is collected by the image-side numerical aperture NA1
  • the light beam of the second wavelength is collected by the image-side numerical aperture NA2
  • a diffraction grating is provided in a region away from the optical axis through which only the light beam of the first wavelength passes, and the phase of the diffraction grating is adjusted so that the light beam of the first wavelength is focused on the first surface.
  • the function defines the lens surface shape.
  • the degree of freedom of the lens surface shape is increased, and by adjusting various coefficients, it is possible to further reduce aberration when light beams having different wavelengths are condensed on different surfaces.
  • the wavefront aberration should be set to RMS0.07 or less in wavelength units.
  • the lattice slope has a shape in which at least a portion is steeper than the blazed slope.
  • the incident angle becomes larger as compared with the prior art (blazed shape), and the transmitted light is totally reflected without being generated.
  • the totally reflected light reenters the adjacent grating shape, where it is combined with another incident light by phase superposition, repeatedly reflected, and finally transmitted through a very small angle with respect to the slope (diffraction).
  • Light is emitted.
  • the diffraction efficiency is improved.
  • the diffraction efficiency is improved in a portion where the grating period is short.
  • the wavefront aberration is designed to be equal to or less than RMS 0.07 in terms of wavelength.
  • the first wavelength is a wavelength for a blue-ray disc
  • the second wavelength is The wavelength is the wavelength for Digital Versatile's disc.
  • a single lens can support Blu-ray discs and digital versatile discs, providing a compact optical pickup optical system. Therefore, high speed and low price are realized.
  • the third wavelength is a wavelength for a compact disk.
  • the luminous flux having the wavelength for the Blu-ray disc and the wavelength for the digital versatile disk is incident as parallel light on the objective lens, and the light having the wavelength for the compact disk.
  • the source and the elephant have a finite conjugate relationship.
  • FIG. 1 shows an optical pickup system using an objective lens according to an embodiment of the present invention.
  • FIG. 2 shows an optical pickup system using a conjugate lens without using a collimator lens according to an embodiment of the present invention.
  • FIG. 3 shows a lens shape of the objective lens according to the embodiment of the present invention.
  • FIG. 4 shows the shape of the diffraction portion of the objective lens according to the embodiment of the present invention.
  • FIG. 5 shows a method for designing an objective lens according to an embodiment of the present invention.
  • FIG. 6 shows a method for designing a diffraction portion of an objective lens according to an embodiment of the present invention.
  • FIG. 7 shows a design result by the design method of the objective lens according to the embodiment of the present invention.
  • FIG. 8 shows the result of calculating the diffraction efficiency with respect to the design result by the design method of the objective lens according to the embodiment of the present invention.
  • FIG. 9 is a numerical example of an optical system including an objective lens according to an embodiment of the present invention. '
  • FIG. 10 is a numerical example of the objective lens according to the embodiment of the present invention.
  • FIG. 11 is a diagram comparing the amount of spherical aberration in the objective lens according to the embodiment of the present invention with the spherical aberration in the objective lens constituted only by the aspherical shape having no diffraction area.
  • FIG. 12 shows spherical aberration in the objective lens according to the embodiment of the present invention.
  • Fig. 13 shows a conventional optical pickup system.
  • FIG. 14 shows a conventional optical pickup system using a semiconductor laser element array.
  • FIG. 15 shows the calculation results of the diffraction efficiency in the placed shape.
  • FIG. 16 is a diagram for explaining the optimum tilt amount.
  • FIG. 17 is a flowchart showing a method of designing an objective lens according to an embodiment of the present invention.
  • FIG. 18 is a flowchart showing a method for designing the shape of the grating portion in the objective lens according to the embodiment of the present invention.
  • FIG. 21 shows an optical path of the objective lens according to the embodiment of the present invention.
  • FIG. 22 shows the spherical aberration of the objective lens according to the embodiment of the present invention.
  • FIG. 23 shows a point image intensity distribution (P S F) of the objective lens according to the embodiment of the present invention.
  • FIG. 25 is a diagram showing an optical path of an objective lens according to another embodiment of the present invention.
  • FIG. 26 shows the diffraction efficiency of the first-order diffracted light and the second-order diffracted light with respect to the wavelength.
  • FIG. 27 shows a flow chart of the objective lens designing method of the present invention.
  • FIG. 28 shows an optical path diagram of a BD light beam by the objective lens according to one embodiment of the present invention.
  • FIG. 29 shows an optical path diagram of a DVD light beam by the objective lens of one embodiment of the present invention.
  • FIG. 30 shows an optical path diagram of a CD light beam by the objective lens according to one embodiment of the present invention.
  • FIG. 31 shows an intensity distribution diagram of a BD light beam by the objective lens according to one embodiment of the present invention.
  • FIG. 32 shows an intensity distribution diagram of a DVD light beam by the objective lens according to one embodiment of the present invention.
  • FIG. 33 shows an intensity distribution diagram of a CD light beam by the objective lens according to one embodiment of the present invention.
  • FIG. 34 shows an optical path diagram of a light beam for BD by an objective lens according to another embodiment of the present invention.
  • FIG. 35 shows an optical path diagram of a DVD light beam by an objective lens according to another embodiment of the present invention.
  • FIG. 36 shows an intensity distribution diagram of a BD light beam by an objective lens according to another embodiment of the present invention.
  • FIG. 37 shows an intensity distribution diagram of a DVD light beam by the objective lens according to another embodiment of the present invention.
  • FIG. 38 is a flowchart showing the procedure for designing the diffractive optical element of the present invention.
  • FIG. 39 is a flowchart showing the procedure for designing the diffractive optical element of the present invention.
  • FIG. 40 is a conceptual diagram showing the behavior of the diffracted light.
  • FIG. 41 shows the relationship between the grating period and the diffraction efficiency in the present invention and the conventional diffractive optical element.
  • FIG. 42 shows the cross-sectional shape and the first-order diffraction efficiency of the diffractive optical element of the present invention.
  • FIG. 43 shows the relationship between the numerical aperture and the diffraction efficiency in the diffractive optical element of the present invention.
  • FIG. 44 is a diagram showing a diffraction grating having a special shape according to the present invention.
  • the light beam 6a emitted from the semiconductor laser 1 has a visible red wavelength, and this light beam can be changed its optical axis direction by the rising mirror 2.
  • the light beam 6a emitted from the semiconductor laser 1 passes through an element 3 (for example, a collimator lens) that converts the light beam 6a into a parallel light, so that the light becomes a parallel light.
  • an element 3 for example, a collimator lens
  • the light is focused on a thin optical recording medium 5a (DVD).
  • the light beam 6b emitted from the semiconductor laser 1 has a near-infrared wavelength, and this light beam can be changed its optical axis direction by the rising mirror 2.
  • the light beam 6b emitted from the semiconductor laser 1 passes through the element 3 for converting the light beam into substantially parallel light, so that the light beam becomes substantially parallel light.
  • the thick optical recording medium 5b Focus on CD
  • the laser beam condensed on the optical recording medium must have a light-condensing ability that is almost diffraction-limited, and the wavefront aberration amount must be 0.07: RMS or less. Further, for DVD, 0.035 L RMS or less is preferable.
  • the semiconductor laser 1 may be an array of semiconductor laser elements emitting two different wavelengths.
  • Semiconductor lasers commonly used in DVDs have visible red wavelengths
  • semiconductor lasers used in CDs have near infrared wavelengths.
  • the light beam 6a has a visible red wavelength (for example, 660 nm)
  • the light beam 6b has a near-infrared wavelength (for example, 780 nm).
  • the objective lenses 4a and 4b according to the present invention are common objective lenses, the objective lenses 4a and 4b are shown moving in the optical axis direction due to the difference in wavelength and the difference in thickness of the optical recording medium.
  • the numerical aperture for focusing on a thin optical recording medium is 0.6
  • the numerical aperture for focusing on a thick optical recording medium eg, a CD with a thickness of 1.2 mm
  • the diffraction grating section is arranged on the optical recording medium side of the objective lens.
  • a collimator lens for making the light of the semiconductor laser parallel between the semiconductor laser and the objective lens for condensing the light of the semiconductor laser on the optical recording medium is used.
  • the present invention can be applied to a conjugate lens excluding the collimator lens as shown in FIG.
  • FIG. 3 shows a lens surface shape on the optical recording medium side of an objective lens including a diffraction grating portion according to one embodiment of the present invention.
  • the shape of the objective lens optical recording medium side is a central region having no diffraction portion, that is, a first region, a diffraction region surrounding the central region having no diffraction portion, that is, a second region, and diffraction surrounding the diffraction region. It is divided into a region having no part, that is, a third region. Each region has an aspheric shape, and the aspheric shape of each region is different.
  • the aspherical shape in each area is represented by the following formula, _ + ⁇
  • Figure 4 shows only the shape of the diffraction grating when the substrate in the diffraction area is flat.
  • the width of the staircase is variable according to the phase function of the staircase-shaped diffraction grating within one period.
  • phase function that determines the shape of the diffraction grating is represented by the following equation.
  • ⁇ f) C 2 + C 2 r 4 + C 3 r 6 + C 4 r 8 +
  • the ray tracing equation is 1 in the cosine of the ray in the X direction and 1 in the y direction. Is m,
  • phase function is determined by determining the coefficients of the equation by ray tracing so as to minimize the aberration of the light beam for CD.
  • the aspherical shape is changed for the region where the spherical aberration increases, and the diffraction by the diffraction grating is performed.
  • Aberration correction is performed using the effect described above.
  • first, second and third regions on the surface of the objective lens are determined.
  • the first area is a DVD and CD shared area. Since the first region does not have a diffraction grating structure, no energy loss occurs. Therefore, it is desirable to make the first area as large as possible. For this reason, the first area is set as large as possible so that the amount of aberration is allowed to an allowable value while checking the amount of aberration of DVD and CD. Assuming that the numerical aperture at which the light beam passing through the first area is focused on the optical recording medium is NA1, NA1 is preferably NA1 0.37.
  • the outer diameter of the second area is determined by the numerical aperture (NA) required for recording and reproducing the CD.
  • NA is in the range of 0.3-0.5.
  • the outer diameter of the third area is determined by the numerical aperture (NA) required for recording and reproducing to and from DVD. NA is 0, depending on DVD specifications The range is 4-0.
  • step S5020 the lens surface shape in the first area is designed. Since the first area is a common area for DVD and CD, the lens surface shape is determined in consideration of the optical path and aberration of both DVD light and CD light.
  • step S5030 the lens surface shape in the second area is designed.
  • the lens surface shape in the second area is the optical path of only the DVD light beam.
  • step S5040 the shape of the diffraction section in the second area is designed.
  • the shape design of the diffraction section will be described later in detail.
  • step S5050 the lens surface shape in the third area is designed. Since the third area is a DVD-only area, the lens surface shape in the third area is D
  • the wavelength of the light beam for DVD is, for example, 655 nm
  • the wavelength of the light beam for CD is, for example, 790 nm.
  • an optical path difference function or a phase correlation number is determined so as to correct the optical path of the CD light beam.
  • the lens surface shape in the second area is D
  • the optical path of the CD light beam is corrected using a phase function.
  • step S6020 the step amount (per step) of the staircase-shaped grating portion is determined from the wavelength of the DVD light beam (for example, 655 nm), using the DVD light beam as the 0th-order diffracted light. Since the light beam for DVD is the 0th-order diffracted light, the step amount is the wavelength.
  • the refractive index of the lens is n and the refractive index around the lens is n.
  • the following equation is used because the shape of the diffraction grating has an upward-sloping shape as shown in FIG.
  • the refractive index of the lens is n and the refractive index around the lens is n.
  • the peak wavelengths (unit: nm) of the first-order diffracted light are 818.75, 786, 764.17, and 748.57, respectively.
  • the 0th-order diffracted light wavelength is L 0
  • the refractive index of the lens is ⁇
  • the refractive index around the lens is ⁇ .
  • the peak wavelengths (unit: nm) of the first-order diffracted light are 786, 748.57, 727.78, and 714.55, respectively.
  • step S6040 it is determined whether the peak wavelength ⁇ c obtained as described above is sufficiently close to the other CD light wavelength; I k (for example, 790 nm). Specifically, the following equation is calculated as the first-order diffracted light peak error.
  • the first-order diffracted light peak errors in the second and fifth rows are small. , (For example, 1% or less), so that the number of steps is six (the zero-order diffracted light wavelength is obtained.
  • the refractive index of the lens is n, the refractive index around the lens is n, and the step amount is ⁇ ./ ( n-n.), or three steps (obtain the 0th-order diffracted light wavelength, the refractive index of the lens is n, and the refractive index around the lens is n.) and the amount of step is ⁇ 0 / ( ⁇ — Twice of ⁇ 0 )).
  • the step amount and the number of steps of the staircase shape are determined based on the wavelength of the light beam for CD and the light beam for DVD.
  • the allowable range of the above peak error is determined from the relationship between the wavelength near the diffraction efficiency peak and the diffraction efficiency. In general, when the diffraction efficiency is allowed to fall from the peak value by about 20%, the allowable range of the above peak error is 10 to 15% for a two-stage diffraction grating, and for a three-stage diffraction grating. 4 to 8%, 2 for 4-stage grating ⁇ 7%, 2 ⁇ 5 ° / for a 5-stage grating. Range.
  • the optimum tilt amount (t l) indicates the tilt amount with respect to the diffraction grating bus as shown in FIG. Tilt by 2 X t 1 with respect to the grating bus. Thereby, the efficiency balance between the first-order diffracted light and the -1st-order diffracted light is adjusted.
  • the value of the optimum tilt amount (t 1) is, for example, 1 of the peak wavelength of the zero-order diffracted light.
  • step S6050 the width of the stair is determined from the amount of the step based on the shape of the phase function. That is, the width of the staircase is made variable by matching the staircase-shaped diffraction grating with the phase function within one period.
  • step S6060 the diffraction grating depth is recalculated based on the diffraction grating shape obtained by the above procedure, taking into account the angle of the light beam incident on the diffraction section. Specifically, assuming that the incident angle is e, a new step amount corresponding to the incident angle is obtained based on a value obtained by multiplying the step amount obtained above by cos ⁇ . The depth of the diffraction grating is obtained by multiplying the amount of step by (the number of steps is 1).
  • the lens surface shape is determined based on the optical path and aberration of the DVD light beam in the second region, and the optical path and aberration of the CD light beam are corrected by the phase correlation number.
  • the lens surface shape may be determined based on the optical path and aberration of the CD light beam in the second area, and the optical path and aberration of the DV light ray may be corrected by the position correlation number.
  • FIG. 8 is a graph showing the result of calculating the diffraction efficiency of the diffraction grating shape obtained by the design method of the present embodiment by vector calculation.
  • This graph plots wavelength on the X-axis and diffraction efficiency on the Y-axis.
  • the diffraction efficiency of the 0th-order diffracted light at the wavelength of 655 nm for DVD light is approximately 83% and slightly more than 6 ⁇ %, respectively, for the CD light at 790 nm. It can be seen that high diffraction efficiency is obtained.
  • the angle of the light beam incident on the diffraction section is 18 degrees
  • the number of steps of the diffraction grating is 5, and the depth of the diffraction grating is 4.
  • the optimal number of steps is 6 from the point of the peak wavelength, but the number is set to 5 considering the overall diffraction efficiency and workability including other orders.
  • FIG. 9 and 10 show numerical examples of the objective lens according to the present embodiment.
  • One embodiment shown here is a laser diode and a pick-up lens.
  • a collimator lens that converts the light from the semiconductor laser into parallel light during scanning is arranged.
  • APL indicates a cyclic olefin copolymer
  • PC indicates polycarbonate.
  • the paraxial R of the aspherical coefficient in FIG. 10 indicates the paraxial radius l Zc in the above equation representing the aspherical shape, and 'conic' indicates a constant k.
  • FIG. 11 shows a comparison between the spherical aberration of one embodiment of the present invention and the spherical aberration of an objective lens composed of only an aspherical surface having no diffraction region under the same conditions.
  • the spherical aberration of the embodiment of the present invention is very small, and shows sufficient optical characteristics for recording or reproducing on an optical recording medium.
  • the use of an objective lens composed of only an aspherical surface exceeds the standard value for recording or reproduction on an optical recording medium.
  • FIG. 12 shows a graph of spherical aberration in one embodiment of the present invention.
  • the two figures above show the spherical aberration for a thin optical recording medium (DVD) and the spherical aberration for a thick optical recording medium (CD).
  • the vertical axis indicates the lens height (pupil radius), and the horizontal axis indicates the aberration at the corresponding lens height.
  • the figure below shows the spherical aberration of a thick optical recording medium (CD) given the numerical aperture necessary for recording and reproducing on a thin optical recording medium.
  • the vertical axis shows the numerical aperture
  • the horizontal axis shows the aberration at the corresponding numerical aperture.
  • the spherical aberration of light passing outside the lens area corresponding to the numerical aperture required for a thick optical recording medium (CD) increases sharply, and becomes flare light on a thick optical recording medium. , Indicating that no light was collected.
  • the objective lens in one embodiment of the present invention can also be manufactured by force using a cyclic olefin copolymer as a material, or by other plastic materials. Another embodiment of the present invention will be described below for an objective lens in an optical pickup system for CD and DVD.
  • the first light beam is a laser beam having a wavelength of 785 nm for CD
  • the second light beam is a laser beam having a wavelength of 660 nm for DVD.
  • the optical paths of the first and second rays are considered.
  • the lens surface shape in the first area and the second area is designed with due consideration.
  • the lens surface shape of the second region is designed so as to converge on the image forming surface in consideration of only the optical path of the second light beam.
  • the surface shape of the surface other than the surface having the first and second regions is also designed at the same time.
  • the first region includes the optical axis, and is, for example, within a certain distance from the optical axis, and is a region where the first and second light beams are focused on the imaging surface.
  • the size of the first area is determined by the numerical aperture on the image side of the objective lens for the CD.
  • the numerical aperture on the objective lens image side for CD is, for example, 0.457.
  • the second region exists around the first region, and is, for example, within a certain distance from the optical axis, and does not focus the first light beam on the imaging surface, but transmits the second light beam on the imaging surface. This is the area where light is collected.
  • the size of the second area is determined from the numerical aperture on the image side of the objective lens for the DVD.
  • the numerical aperture on the objective lens image side for DVD is, for example, 0.652.
  • the shape of the diffraction portion in the second region is designed so that the first light beam, that is, one laser beam for CD, is not converged on the image plane. Specifically, when passing through the second area, most of the second light beam, that is, the laser beam for DVD, passes through the diffracting portion as the 0th-order diffracted light, and most of the first light beam has the first or higher order. It is designed to pass through the diffraction section as diffracted light of 1st order or less. Most of the second light beam that has passed through the diffraction portion as the 0th-order diffracted light is condensed on the image plane because the optical path is determined by the lens surface shape.
  • the lens surface shape in the second region is designed so that the second light beam, that is, the laser beam for DVD, is focused on the imaging surface, and the first light beam, that is, the laser beam for CD, is formed into an image.
  • the shape of the diffractive portion in the second area was designed so as not to focus on the surface, but the lens in the second area was designed so that the first light beam, that is, one laser beam for CD, was not focused on the imaging surface.
  • the surface shape may be designed, and the shape of the diffractive portion may be designed so that the second light beam, that is, the DVD laser beam, is focused on the imaging surface.
  • the details of the shape design of the diffraction section are described below based on the flowchart in Fig. 18. I do.
  • the shape of the diffraction portion in the second region is a stepped shape when the substrate is a flat surface.
  • a phase function that determines the shape of the diffraction section is designed so that the first light beam, that is, one laser light beam for CD is not converged on the image plane.
  • the phase function is expressed by the following equation, for example.
  • h is a distance from the Z axis in a plane perpendicular to the Z axis
  • h ⁇ jx 2 + y 2 .
  • the ray tracing equation when the phase function is expressed by the above equation is expressed by the following equation, where the cosine in the X direction of the ray is 1 and the cosine in the y direction is in.
  • the coefficients in the above equation of the position correlation coefficient are determined by ray tracing so as not to focus the first ray on the image plane.
  • phase function is not limited to the above equation as will be described later as a numerical example.
  • step S220 the step amount of the staircase shape is determined so that the diffraction efficiency of the 0th-order diffracted light approaches the peak in the wavelength of the second light beam, that is, the wavelength of the DVD laser light beam. Specifically, 1 is determined based on the following formula, assuming that the level difference (per step) is 1.
  • the second light beam ie, the laser beam for DVD
  • p is an integer.
  • step S 2030 the number of steps N is determined so that the difference between the wavelength obtained from the following equation; L i and the first wavelength, that is, the wavelength of the laser beam for CD, is equal to or less than a predetermined value. .
  • Equation (3) above is an equation based on an empirical rule for finding peak wavelengths of diffraction orders other than the 0th order.
  • the peak wavelength of the diffraction order approaches the first wavelength. Therefore, the energy of the first light beam increases in the diffracted light of the diffraction order ⁇ , and approaches 0 in the 0th-order diffracted light.
  • step S2040 the width of the steps is determined based on the phase function, the amount of steps, and the number of steps.
  • step S205 the diffraction efficiency of the diffraction section is obtained by vector calculation.
  • step S2060 it is determined whether or not the diffraction efficiency is within a desired range. If the diffraction efficiency is within the desired range, the process ends. If not, repeat steps S2020 to S2050 while adjusting various parameters.
  • steps S2020 and S203 will be described based on the following numerical examples.
  • the allowable range of the above peak error is determined from the relationship between the wavelength near the diffraction efficiency peak and the diffraction efficiency.
  • the allowable range of the above peak error is determined from the relationship between the wavelength near the diffraction efficiency peak and the diffraction efficiency.
  • FIGS. 19 and 20 show the case where the grating shape of the diffraction section obtained by the above procedure is combined with the aspherical shape of the lens surface and the case where it is used alone.
  • the laser beam from the semiconductor laser (LD) light source is a collimated second beam when using DVD.
  • an objective lens first lens in Table 1
  • first lens at a distance of 48.6 mm from the stop surface. If necessary, provide a collimator lens before the objective lens.
  • the center-to-center distance of the objective lens is 2.2 mm.
  • the distance from the image side of the objective lens to the substrate is 0.961 mm for DVD and 1.161 mm for ⁇ 0.
  • Substrate thickness is 0.6 mm for DVD, and for CD To 1.2 mm.
  • the image-side numerical aperture (NA) of the objective lens is 0.652 for DVD. It is 0.45 7 when it is 0.
  • the focal length of the objective lens is 2.74 for DVD and 2.75 for CD.
  • the surface on the light source side of the objective lens (the stop surface in Table 1) is a compound aspheric surface.
  • the three faces are defined by the formula below and Table 2 below. Note that h in the following equation is Defined by
  • kj is a constant indicating the shape of the curved surface
  • Rj is the central radius of curvature
  • A4j to A10j are correction coefficients.
  • dj is the shift amount of the surface along the Z axis.
  • the surface on the image side of the objective lens (the two surfaces in Table 1) is a special DOE surface with a diffraction part.
  • the aspheric surface of this surface is defined by the following equation and Table 3.
  • k is a constant indicating the shape of the curved surface
  • R is the center radius of curvature
  • A4 to A10 are correction coefficients.
  • phase function of the diffraction part is defined by the following equation (Table 4).
  • the inner diameter of the phase function is defined as the first area including the optical axis on the image side surface of the objective lens and the diffraction area provided around the first area, and the shape is determined by the phase function. This is the distance between the optical axis and the boundary with the second region. The outer edge of the second region whose shape is determined by the number of phase correlations is determined by the effective diameter of the image-side surface of the objective lens.
  • FIGS. 21 to 23 show the application results of the above numerical examples.
  • the upper part of FIG. 21 is an optical path diagram of a DVD light beam (second light beam).
  • the middle part of FIG. 21 is an optical path diagram when the CD light beam (first light beam) is converted to first-order diffracted light.
  • the lower part of FIG. 21 is an optical path diagram when the CD light beam (first light beam) is the first-order diffracted light.
  • the optical path diagram in the CD optical system, light rays outside the required image side numerical aperture flare on the image plane due to the wavelength selection diffraction grating, and in the DVD optical system, light rays are emitted at the specified numerical aperture. It is focused on one point on the image plane.
  • the image-side numerical aperture is controlled by the wavelength selection diffraction grating.
  • FIG. 22 shows a spherical aberration diagram.
  • the horizontal axis represents the distance in the optical axis direction
  • the vertical axis represents the height at which the ray enters the entrance pupil
  • the position where the ray intersects the optical axis is plotted.
  • the upper part of Fig. 22 is for DVD light (second light)
  • the middle part of Fig. 22 is for CD light (first light) as first-order diffracted light
  • the lower part of Fig. 22 is In this case, the light beam for CD (first light beam) is the first-order diffracted light.
  • the spherical aberration is almost optimized, and the power of the system is increased.
  • Figure 23 shows the point spread function (PSF).
  • the upper part of Fig. 23 is for DVD light (second light)
  • the middle part of Fig. 23 is CD light (first light) as first-order diffracted light
  • the lower part of Fig. 23 is This is the case where the CD light beam (first light beam) is the first-order diffracted light.
  • a point image intensity distribution (PSF) that satisfies recording and reproduction for DVDs and CDs is formed.
  • Table 5 shows the values of the focused spot diameter and sidelobe.
  • the side rope value (%) is the ratio of the side lobe height to the main beam height in the PSF diagram.
  • the diameter of the converging spot without the diffraction grating is 1.14, which is smaller than the converging spot diameter of the CD.
  • the diameter of the converging spot with the diffraction grating is 1.44, which is the specification of the converging spot diameter of CD.
  • the first wavelength has a diffraction efficiency of 37% for the first-order and first-order diffracted light, and a diffraction efficiency of 0% for the 0th-order diffracted light.
  • the diffraction efficiencies of the first-order and _first-order diffracted lights are each 0%, and the diffraction efficiency of the zero-order diffracted light is 80%.
  • Table 6 shows that the order is properly switched between the first and second wavelengths.
  • phase function of the diffraction unit is defined by the following equation and Table 7, the grating pitches of the diffraction unit are equally spaced.
  • Fig. 24 shows the case where the grating shape of the diffraction part is combined with the aspherical shape of the lens surface and the case where it is used alone.
  • Fig. 25 shows the application results when the data in Tables 1 to 3 are used in the above case where the grating pitch of the diffraction section is at equal intervals.
  • the upper part of FIG. 25 is an optical path diagram in the case where the light beam for CD (first light beam) is the first-order diffracted light.
  • the lower part of FIG. 25 is an optical path diagram when the CD light beam (first light beam) is the first-order diffracted light.
  • the optical path diagram in the CD optical system, light rays outside the required image-side numerical aperture flare on the image plane due to the wavelength-selective diffraction grating. It can be seen that the numerical aperture is controlled.
  • the objective lens in one embodiment of the present invention uses a cyclic olefin copolymer as a material, but can also be manufactured from other plastic materials.
  • a BD, DVD, and CD A description will be given of a single objective lens used.
  • the first wavelength light is for BD light (wavelength 405 nm)
  • the second wavelength light is for DVD light (wavelength 655 nm)
  • the third wavelength light is for CD It is a light beam (wavelength 785 nm).
  • the image side numerical apertures are 0.85, 0.65 and 0.47, respectively.
  • An objective lens includes a diffraction grating on at least one surface, wherein the light beam of the first wavelength passes through the diffraction grating as second-order diffracted light, and the second and third wavelengths Are designed to pass through the diffraction grating as first-order diffracted light.
  • the diffraction grating is a blazed grating.
  • the blazed grating is used for the following reasons.
  • the stepped shape having both spherical and aspherical surfaces is very difficult to process, and it is almost impossible to install dozens of zones.
  • the depth 1 of the diffraction grating is calculated so that n is the refractive index of the lens and the diffraction efficiency for the first or second order diffracted light of each wavelength is 70% or more.
  • Figure 26 shows the first and second order diffracted light when the grating depth is optimized (maximizing the diffraction efficiency) for the second order diffracted light having the first wavelength (405 nm for BD). 6 shows diffraction efficiency with respect to wavelength.
  • the solid line indicates the diffraction efficiency of the second-order diffracted light
  • the dashed line indicates the diffraction efficiency of the first-order diffracted light.
  • the diffraction efficiency of the first-order diffracted light is nearly optimized at 1 at the second wavelength (655 nm for DVD) and at 3rd wavelength (785 nm for CD). I have. Therefore, the diffraction efficiency is almost optimized for the second and third wavelengths by optimizing the diffraction efficiency for the first wavelength with the grating wavelength being the second-order diffracted light and optimizing the grating depth for the first wavelength. Is done.
  • step S1000 in Fig. 27 the entrance pupil diameter is set and the outermost ray angle is determined as a constraint so as to realize the image-side numerical aperture for each wavelength of light.
  • the lens surface shape and the phase function of the diffraction grating are determined so as to satisfy the constraint on the outermost ray angle.
  • step S1030 the aberrations of the light beams of each wavelength on the respective image planes are calculated. ⁇
  • step S104 it is determined whether the aberration is within an allowable range. For example, if the wavefront aberration is RMS0.07 or less in wavelength units, it is within the allowable range. RMS is the value obtained by calculating the average value of the square of the wavefront aberration over the entire reference wavefront and taking the square root thereof. If it is within the allowable range, the process ends. Step S if not within tolerance
  • step S1005 the correction amount of the lens surface shape and the phase difference function of the diffraction grating is determined, and the process returns to step S100.
  • the luminous flux for BD and DVD is incident on the objective lens as parallel light.
  • the light beam for CD is incident on the objective lens as a light beam with a spread angle from the light source at a distance of 21 mm from the stop surface. That is, the CD light source and the image constitute a finite conjugate system.
  • On the stop surface (incident side surface) of the lens a diffraction grating in the form of a plate is provided.
  • the exit side surface of the lens is composed of a special surface that is divided into at least one band-shaped region surrounding the optical axis and a central region including the optical axis, and each region is defined by a separate surface.
  • Table 10 shows the specifications of the incident surface.
  • the lens shape of the entrance side is expressed by the following aspherical formula
  • the z-axis coincides with the optical axis
  • R is the radius of curvature
  • K is the eccentricity
  • A4, A6, A8, and A10 are the aspheric coefficients.
  • d is assumed to be zero.
  • the phase function that determines the grating interval of the diffraction grating on the incident surface is represented by the following equation.
  • R C2xr 2 + C4xr + C6xr 6 + C8xr 8 + C10xr 10 + C12xr 12 (2)
  • C2, C4, C6, C8 , C10, C12 represents the phase function coefficients.
  • the surface of the central region including the optical axis is referred to as a first surface
  • the surface of the region surrounding the first surface is referred to as a second surface
  • the surface of the region surrounding the second surface is referred to as a third surface.
  • the shapes of the first to third surfaces are represented by the following aspherical expressions. .- / Rl xn + Ai4 xh 4 + Ai6 xh 6 + Ai8 xh s + AilO h '° + di l + ⁇ l- (l + Ki) x (l / Rf) 2 h 2 (3 ) here, z-axis coincides with the optical axis, i is represents the surface number counted from the center, Ri is the radius of curvature, Ki is eccentricity, Ai4, ai6, Ai8, AilO represent aspherical coefficients. di represents the movement amount (step amount) of the other surface on the optical axis with respect to the first surface. The amount of movement in the traveling direction of light is positive. H is the same as in the case of equation (1).
  • the boundary radius and the step amount are determined based on the following concept.
  • the boundary radius is set so that the optical path difference (ie, wavefront difference) of the light beam condensed on the image plane is minimized.
  • the step is set so that the variance of the optical path difference of the light beam condensed on the image plane is minimized, that is, the shape is numerically and differentially (slope) continuous in the boundary region.
  • FIGS. 34 and 35 show the optical path diagrams of BD and DVD of the objective lens of Numerical Example 5, respectively.
  • Table 12 shows lens data of Numerical Example 5.
  • the luminous flux for BD and DVD is incident on the objective lens as parallel light.
  • the aperture surface (incident side surface) of the lens is divided into a common area for DVD and BD on the inside and a dedicated area for BD on the outside, with different surface shapes and different diffraction gratings provided.
  • the exit side of the lens is composed of a special surface that is divided into at least one band-like region surrounding the optical axis and a central region containing the optical axis, each region being defined by a separate surface.
  • Table 13 shows the specifications of the incident side surface.
  • the lens shape on the incident side surface is represented by the above-mentioned aspherical expression (1). However, outside the radius of 1.45 mm around the optical axis, a plane perpendicular to the optical axis is formed.
  • the part represented by the aspherical formula (center area) is a common area for DVD and BD, and the part (band-shaped area) forming a plane perpendicular to the optical axis is a special area for BD. That is, the above boundary radius is determined from the DVD entrance pupil diameter of 2.9 mm.
  • phase function that determines the grating interval of the diffraction grating on the incident surface is represented by the above equation (2).
  • Table 13 shows the phase function of the common area (center area) for DVD and BD and the phase function of the dedicated area (band-shaped area) for BD.
  • Table 14 shows the specifications of the emission side surface.
  • the exit side surface is divided into one strip region surrounding the optical axis and a central region containing the optical axis, each region being defined by a separate surface.
  • the surface of the central region including the optical axis is referred to as a first surface, and the surface of a region surrounding the first surface is referred to as a second surface.
  • the shapes of the first and second surfaces are represented by the above equation (3).
  • the boundary radius and the step amount are determined based on the following concept.
  • the radius is determined from the optical path of the outermost ray of DVD.
  • the value of the step amount is determined so that the optical path difference between the light beam passing through the outermost part of the central area and the light ray passing through the most ⁇ side of the strip-shaped area is as small as possible.
  • Figures 36 and 37 show point image intensity distributions according to Numerical Example 5.
  • a diffractive optical element having a grating shape in the range of the above on the substrate, and in the periodic portion, a portion where the grating slope is steeper than the saw-shaped slope to increase the diffraction efficiency. It is configured to provide for at least a part of.
  • the incident angle becomes larger as compared with the conventional technology (blazed shape or saw-shaped shape), and transmitted light is totally reflected without generation. .
  • the totally reflected light is re-incident on the adjacent grating shape. At this time, it is combined with another incident light by phase superposition, and is repeatedly reflected and finally transmitted light at an extremely small angle with respect to the slope ( Diffracted light) Is done. As a result, the diffraction efficiency is improved.
  • phase function of the diffraction grating is ⁇
  • the distance from the optical axis is r
  • the grating period is
  • the steep portion is configured so that incident light causes total reflection. Therefore, coupling with another incident light by phase superposition is reliably performed, and the diffraction efficiency is improved.
  • a line representing a grid slope in a grid cross section forms at least one inflection point. Therefore, there are parts where the grid slope is steeper than the saw-shaped slope.
  • a line representing a lattice slope in a lattice cross section is composed of two or more curves having different curvatures. Therefore, there are parts where the grid slope is steeper than the saw-shaped slope.
  • the refractive index of the substrate is the refractive index of the medium on the emission light side, and the height of the grating in the periodic portion is
  • the above-described peripheral portion is used as a diffraction grating for the BD-only area (the band-shaped area in Table 6) on the incident side surface.
  • incident light is transmitted to the substrate.
  • it corresponds to incident light from above the grating portion. That is, a diffractive optical element that responds to incident light from above the grating can be obtained.
  • a diffractive optical lens will be described as an example of a diffractive optical element, but the present invention is not limited to a diffractive optical lens.
  • step S310 in FIG. 38 initialization is performed.
  • Initial settings include wavelength, refractive index, element size, target numerical aperture, and diffraction efficiency.
  • step S3200 a phase function is calculated.
  • step S300 the grid height of the element is calculated.
  • step S340 the lattice shape of the element is determined from the phase function.
  • step S350 it is determined to which region each grid belongs. If the period of the grating structure of the diffractive optical element satisfies the following formula, the grating belongs to region 2; otherwise, the grating belongs to region 1.
  • the above-mentioned region 2 is used as the diffraction grating of the BD-only region (the band-shaped region in Table 6) on the incident side surface.
  • step S360 the lattice Perform shape optimization.
  • e indicates the wavelength used. If the value is below the lower limit of the above equation, the first-order diffracted light does not appear and only the 0th-order light is transmitted, and condensing properties cannot be obtained. When the value exceeds the upper limit, the shape of the diffraction grating that maximizes the first-order diffracted light is a sawtooth shape known in the prior art. That is, since the grating period is sufficiently long with respect to the wavelength, there is no need to optimize the grating shape.
  • step S370 it is determined whether the determination of each grid has been completed. If not, the process returns to step S3050.
  • step S3800 the numerical aperture and the diffraction efficiency are calculated, and in step S3900, the calculation result is output.
  • step S3060 in FIG. 38 a method of optimizing the grid shape of the grid in the area 2 (step S3060 in FIG. 38) will be described with reference to FIG.
  • step S 4020 an arbitrary number R in the range of 0 to 1 is specified by a predetermined optimization algorithm for the area of P (I).
  • step S430 if R is larger than 0.5, P (I) is increased by a predetermined value, and if R is 0.5 or less, it is decreased by a predetermined value.
  • the optimization algorithm for example, the simulated annealing method (Simulated Annealing Method) or the transmission algorithm (Genetic Algorithm) is used.
  • step S4040 the corrected shape is updated.
  • the height li of the grid in region 2 is in the range of the following expression.
  • step S460 the diffraction efficiency is calculated using an exact analysis method of electromagnetic waves.
  • step S 470 an evaluation function is calculated.
  • the evaluation function ⁇ is obtained by calculating the difference between the calculated value of the diffraction efficiency ⁇ and the target value for each order i of the diffracted light, and adding the weight W i to obtain the sum.
  • step S470 it is determined whether the value of the evaluation function ⁇ is less than a predetermined value. If it is not less than the predetermined value, the process returns to step S4202, and if it is less than the predetermined value, the process ends.
  • Figure 41 shows the results of calculating the dependence of the first-order diffraction efficiency on each grating period.
  • (a) shows the case of ⁇ -polarized light
  • (b) shows the case of TM-polarized light.
  • the calculation used Rigorous Coupled Wave Analysis (RCWA) as a method to strictly reproduce the behavior of electromagnetic waves.
  • Figure 41 shows the results for the sawtooth shape of the conventional technology and the results for the shape optimized by the above procedure to maximize the first-order diffraction efficiency.
  • the refractive indices on the optical element substrate and the outgoing diffracted light side are 1.5 and 1.0, respectively.
  • the diffraction efficiency can obtain a value of about 90% or more, but as the period becomes shorter, It can be seen that the diffraction efficiency gradually decreases, and only about 20% can be obtained when the period is around 2 ⁇ .
  • the shape optimized to increase the first-order diffraction efficiency the obtained diffraction efficiency is almost the same as that of the conventional technology (saw shape) when the period is longer than the wavelength. However, it can be seen that the optimized shape maintains about 80% even if the period is short.
  • Figure 41 (c) shows the difference between the first-order diffraction efficiencies of the incident light with respect to the polarization directions of the ⁇ and ⁇ waves.
  • the prior art saw shape
  • the effect of the present invention is indicated by a solid line.
  • the difference in diffraction efficiency due to polarization is up to about 25% as the period becomes shorter in the saw-shaped shape, whereas the difference is It is about 13%, and the dependence of the diffraction efficiency on the polarization direction is smaller than that of the saw-shaped shape. This indicates that the dependency of the diffraction efficiency on the polarization direction of the incident light can be improved by the diffractive optical element of the present invention.
  • FIG. 42 shows the cross-sectional shape of the diffractive optical element and the diffraction efficiency at each point when the grating shape of region 2 is optimized. For comparison, the results of the diffraction efficiency according to the prior art are also indicated by dotted lines.
  • the lattice cross-sectional shape in region 2 is represented by a curve including an inflection point, and has a slope that is steeper than the saw-shaped slope.
  • Fig. 40 (b) when light is incident on the steep slope of the grid-shaped slope, the angle of incidence is larger than in the conventional technology, and there is no transmitted light and total reflection occurs. .
  • the totally reflected light re-enters the adjacent grating shape, where it is combined with another incident light by phase superposition, repeatedly reflected, and finally transmitted through a very small angle with respect to the slope (diffraction). Light) is emitted. As a result, the diffraction efficiency is improved.
  • Coupled by phase superposition means superposition of waves. Since the light intensity difference between the light due to total reflection and the adjacent light due to direct incidence is small, the superposition of waves on the grating slope is effectively performed. As a result, as shown in (b) of FIG. 40, the intensity of the waves is increased by the superposition of the waves, and the wavefront satisfying a certain condition advances as reflected light again. To reinforce each other, it is necessary that the directions of the amplitudes match. As the shape condition of the grating structure, it is considered that a structure in which the traveling distance of the reflected wave to meet the adjacent incident wave is less than the wavelength is the minimum.
  • the grating shape of the present invention makes it possible to obtain diffracted light having higher diffraction efficiency than the sawtooth shape of the prior art.
  • FIG. 43 shows the average value of the diffraction efficiency obtained with respect to the numerical aperture, which is a factor that determines the condensing intensity of the diffractive optical element.
  • the polarization direction of the incident light is the TE polarization, but the invention is applicable to any polarization.
  • the substrate material of the diffractive optical element according to the embodiment of the present invention is not limited to glass, plastic, optical crystals, and the like as long as the material has a sufficient transmission band in the wavelength region to be used.
  • diffractive optical elements can be manufactured using lithography technology (light source is ultraviolet light, X-ray, electron beam, etc.) by semiconductor manufacturing technology or cutting.
  • lithography technology light source is ultraviolet light, X-ray, electron beam, etc.
  • semiconductor manufacturing technology or cutting since it is a diffractive optical element with a continuous shape, a master is made by lithography technology or cutting, and a mold is manufactured, so that molding for the purpose of mass production with plastic glass etc. it can.
  • the diffractive optical element of the present invention reduces the spherical aberration as compared with the lens, and also increases the light collection efficiency by arranging the optimized grating structure at the peripheral edge, thereby reducing the problems of the prior art. It is possible to prevent a reduction in diffraction efficiency, which is a point.
  • the light-collecting efficiency of the entire element increases with the increase of the light-collecting efficiency of the peripheral portion, and an optical element having a high numerical aperture can be realized.
  • the diffractive optical element of the present invention the performance of the optical system and the optical device can be improved as compared with the conventional diffractive optical element, and the diffractive optical element structure can be used.
  • the weight of the apparatus can be reduced and the size of the optical system can be reduced.
  • FIG. 44 shows the diffraction grating having the special shape described above.

Abstract

An imaging optical element capable of improving a diffraction efficiency using two different wavelengths as zero-degree and α-degree diffraction lights. The imaging optical element is provided at least on one plane thereof with a first area including the optical axis and a second area having a diffraction part surrounding the first area, and handles a first light beam having a first wavelength and a second light beam having a second wavelength different from the first wavelength. The diffraction part in the second area has a stairway form with a substrate as a plane, and the step difference of the stairway form is determined based on one of the wavelengths of the first and second light beams so that the diffraction efficiency of the zero-degree diffraction light approaches the peak of a diffraction efficiency at that one wavelength. The number of steps N is determined, when the number of steps is N, the wavelength of one light beam λ0, a diffraction degree other than zero degree α, and m and p integers, so that a ratio between the difference, between a wavelength λi = [N/(N·m + α)] · λ0 · p and the other wavelength of those of the first and second light beams, and the other wavelength is up to a specified value defined from a degree of lowering from the peak value of a diffraction efficiency.

Description

明 細 書 結像光学素子およびその設計方法 技術分野  Description Imaging optical element and its design method
本発明は、 コンパク ト 'ディスク ( C D ) 、 デジタルバーサタルディスク ( D V D ) など光記録媒体の光記録、 再生のための光ピックアップシステム および撮像システムなどに利用される結像光学素子およびその設計方法に関 する。 .  The present invention relates to an imaging optical element used for an optical pickup system and an imaging system for optical recording and reproduction of an optical recording medium such as a compact disk (CD) and a digital versatal disk (DVD), and a design method thereof. About .
また、 本発明は、 異なる波長の光線を、異なる面に集光する対物レンズに関す る。 特に、 ブルーレイ 'ディスク ( B D ) 、 デジタル ·バーサタイル ·ディ スク ( D V D ) およびコンパク ト 'ディスク ( C D ) などの光ディスクの面 に、 それぞれのディスク用の異なる波長を集光させる単体対物レンズに関す る。 また、 上記の対物レンズを使用した光ピックアップ光学系に関する。 背景技術  Further, the present invention relates to an objective lens for condensing light beams having different wavelengths on different surfaces. In particular, it relates to a single objective lens that focuses different wavelengths for each disc on the surface of an optical disc such as a Blu-ray disc (BD), a digital versatile disc (DVD) and a compact disc (CD). . Further, the present invention relates to an optical pickup optical system using the above objective lens. Background art
C Dや D V Dの光記録媒体の再生や光記録媒体に記録に用いられる光ピッ クアップシステムの構成を図 1 3に示す。 フォトダイオードがユニット化さ れた、 異なる波長の半導体レーザー素子 7, 8 より発した光線は、 トラツキン グゃフォーカシング検出に用いられる回折格子 9, 10 を通過することにより 分波する。 つぎに、 半導体レーザーからの光束を平行光に変換するコリメ一 トレンズ 12を通過後、 立ち上げミラー 13によって光軸の向きが変えられる。 さらに、 対物レンズ 14を通過することによって光束は光記録媒体 15 に集光 される。 光記録媒体 15 で反射した光線は同一光路を戻り、 光線は分割フォト ダイォードに到達し、 分割フォトダイォードの信号により トラッキング、 フ オーカシングを制御する。 ミラー 11は波長選択性を持つミラーである。  Fig. 13 shows the configuration of an optical pickup system used for reproducing and recording on CD and DVD optical recording media. Light beams emitted from semiconductor laser elements 7 and 8 of different wavelengths, in which photodiodes are unitized, are split by passing through diffraction gratings 9 and 10 used for tracking and focusing detection. Next, after passing through a collimating lens 12 for converting a light beam from the semiconductor laser into parallel light, the direction of the optical axis is changed by a rising mirror 13. Further, the light flux is converged on the optical recording medium 15 by passing through the objective lens 14. The light beam reflected by the optical recording medium 15 returns along the same optical path, reaches the split photodiode, and controls the tracking and focusing by the split photodiode signal. The mirror 11 is a mirror having wavelength selectivity.
また、 異なる波長の発光部を持つ 1つの半導体レーザー素子アレイ 16を用 いた光ピックアップシステムを図 14に示す。 フォトダイオードがユニット化 された半導体素子レーザー素子アレイ 16 より発する、 異なる波長の光束は回 折格子 17 を通過後、 コリメータレンズ 18 を通過する。 コリメータレンズに より光束が平行光となり、 立ち上げミラー 19 によって光軸の向きが変えられ 、 対物レンズ 20を通過後、 光記録媒体 21に集光する。 FIG. 14 shows an optical pickup system using one semiconductor laser element array 16 having light emitting portions of different wavelengths. Light beams of different wavelengths emitted from a semiconductor device laser element array 16 in which photodiodes are unitized pass through a diffraction grating 17 and then pass through a collimator lens 18. For collimator lens The light flux becomes parallel light, the direction of the optical axis is changed by the rising mirror 19, and after passing through the objective lens 20, the light is focused on the optical recording medium 21.
DVD と CD の光記録媒体に対する光学系は共通化されており、 共通化する 為に様々な技術が開発されている。  The optical systems for DVD and CD optical recording media are common, and various technologies have been developed to make them common.
たとえば、 対物レンズの中心部の第一領域を通過する光束は第一の光記録 媒体、 第二の光記録媒体に集光させ光記録媒体への記録又は再生を行い、 中 心部の周辺の第二領域については主に第二光記録媒体の記録又は再生させ、 第二領域の外側に広がる第三領域については主に第一光記録媒体への記録又 は再生に使用する方法が提案されている (特開平 1 1— 9 6 5 8 5号公報)。 しかしながら、 上記の従来技術の方法では、 対物レンズを通過する光線が For example, the light beam passing through the first area at the center of the objective lens is focused on the first optical recording medium and the second optical recording medium to record or reproduce on the optical recording medium. A method has been proposed in which the second area is mainly used for recording or reproduction on the second optical recording medium, and the third area extending outside the second area is mainly used for recording or reproduction on the first optical recording medium. (Japanese Unexamined Patent Publication No. Hei 11-96585). However, in the prior art method described above, the light beam passing through the objective lens
、 通過する領域により厚みの異なる光記録媒体にそれぞれ対応するため、 半 導体レーザーからのエネルギーを効率良く光記録媒体に導くことができない また、 D V Dや C Dなどの光記録媒体に記録あるいは再生を行う場合、 光 記録媒体上でほぼ回折限界の集光能力を有しなければならず、 D V D、 C D 共通の対物レンズを通常の非球面形状、 且つ屈折力のみで集光させるようと すると、 球面収差を捕正するのが困難である。 特に、 半導体レーザー素子ァ レイによる、 異なる波長を 1つのレーザーュニットから発する場合はレーザー 光源から光記録媒体表面までの距離が同一であるので、 設計によっての D V Dと C D光路長差を利用することができず、 光記録媒体に記録、 あるいは再 生するために必要な波面収差量の許容値を満足することができなかつた。 Energy from a semiconductor laser cannot be efficiently guided to an optical recording medium because it corresponds to an optical recording medium with a different thickness depending on the area through which it passes, and recording or reproduction is performed on an optical recording medium such as a DVD or CD. In this case, the optical recording medium must have a light-condensing ability that is almost diffraction-limited. If an objective lens common to DVDs and CDs is condensed only with a normal aspherical shape and refractive power, spherical aberration will occur. Is difficult to capture. In particular, when different wavelengths are emitted from one laser unit due to the semiconductor laser element array, the distance from the laser light source to the surface of the optical recording medium is the same. Therefore, it was not possible to satisfy the permissible value of the amount of wavefront aberration necessary for recording or reproducing on an optical recording medium.
DVDや CD など厚みの異なる光記録媒体への記録、 あるいは再生に使用す る半導体レーザ一の二波長は比較的近い波長である。 したがって、 回折部を 有する領域について DVD、 CD を再生または記録するために必要な共通領域 に共通回折次数を使用してレンズ面を構成することによっては、 光記録媒体 に記録、 あるいは再生するために必要な波面収差量の許容値を満足すること ができない。 このため、 回折部を有する領域において異なる回折次数を使用 して最適化を行う方法が提案されている(たとえば、 社団法人応用物理学会監 修、 回折光学素子入門、 ォプトロ二タス社、 平成 9年 5月 2 0日第 1版第 1 刷発行、 p.102-105)。 回折部を有する領域における回折効率について、 一般的に回折格子の最適 深さはつぎの数式で示される。 ここで、 N は段数、 えは波長、 nは屈折率で ある。 The two wavelengths of a semiconductor laser used for recording or reproducing on optical recording media of different thicknesses such as DVD and CD are relatively close. Therefore, by forming a lens surface using a common diffraction order in a common area necessary for reproducing or recording a DVD or a CD in an area having a diffractive portion, it is possible to record or reproduce on an optical recording medium. The required allowable value of the wavefront aberration cannot be satisfied. For this reason, there has been proposed a method of performing optimization using different diffraction orders in a region having a diffraction portion (for example, supervised by the Japan Society of Applied Physics, Introduction to Diffractive Optical Elements, Optronitus, 1997). The first edition of the first edition was issued on May 20, p.102-105). Regarding the diffraction efficiency in the region having the diffraction portion, the optimum depth of the diffraction grating is generally expressed by the following equation. Here, N is the number of steps, or the wavelength, and n is the refractive index.
上記の数式によって得られる深さは定義される波長 λに対し 1 次回折光が最 大となる深さである。 したがって、 最適深さを回折格子深さとした場合、 波 長; Lに比較的近い波長の光のうち、 回折部を有する領域を通過するものは、 1 次回折光が大部分を占める。 厚みの異なる光記録媒体の記録、 あるいは再生 用の.、 半導体レーザーからの 2波長の光について、 それぞれ、 1次回折光の 回折効率が向上することとなる。 すなわち、 0次回折光の回折効率は共に低 くなる。 The depth obtained by the above equation is the depth at which the first-order diffracted light is maximized for the defined wavelength λ. Therefore, if the optimal depth is the diffraction grating depth, the primary diffracted light occupies most of the light having a wavelength relatively close to the wavelength; L, which passes through the region having the diffraction portion. The diffraction efficiency of the first-order diffracted light is improved for each of two wavelengths from a semiconductor laser for recording or reproduction of optical recording media having different thicknesses and from a semiconductor laser. That is, the diffraction efficiency of the zero-order diffracted light decreases.
図 1 5は X軸に回折格子深さをとり、 Υ軸に回折効率をとつて、 ブレーズ ド形状における回折効率を計算したグラフである。 可視赤色波長である 660nmを 0次回折光、 近赤外の波長である 780ηηιを 1次回折光として定義 した場合、 0次回折光、 1次回折光とも回折効率が得られる深さとしては 0.74 z m程度となる。 この場合、 それぞれ異なる波長における回折効率は 40%程 度となる。  Figure 15 is a graph that calculates the diffraction efficiency in a blazed shape by taking the diffraction grating depth on the X-axis and the diffraction efficiency on the Υ-axis. If the visible red wavelength 660 nm is defined as the 0th-order diffracted light and the near-infrared wavelength 780ηηι is defined as the 1st-order diffracted light, the depth at which the diffraction efficiency can be obtained for both the 0th-order diffracted light and the 1st-order diffracted light is about 0.74 zm. . In this case, the diffraction efficiency at different wavelengths is about 40%.
このように、 回折部領域において上記の回折効率値を与えるレリ一フ型回 折格子も使用可能である。 しかし、 市場の要求としては、 特に可視赤色半導 体レーザーを使用する DVDに対し高速化の要求が高くなつており、 光ピック アップとして要求する光学特性を満足すると共に、 半導体レーザーのェネル ギー効率を高くする必要がある。 言い換えれば、 半導体レーザーから発した 、 異なる波長の光線を、 0次および 1次回折光として効率良く光記録媒体に 導く、 対物レンズおょぴその設計方法に対する大きなニーズがある。  As described above, a Relief-type diffraction grating that gives the above-described diffraction efficiency value in the diffraction section region can also be used. However, the market demands for DVDs that use visible red semiconductor lasers in particular are increasing their demands for higher speeds, while satisfying the optical characteristics required for optical pickup and the energy efficiency of semiconductor lasers. Need to be higher. In other words, there is a great need for an objective lens and a method for designing the objective lens, which efficiently guide light beams having different wavelengths emitted from a semiconductor laser as 0th-order and 1st-order diffracted light to an optical recording medium.
このように、 DVDや CD など厚みの異なる光記録媒体への記録、 あるいは 再生に使用する対物レンズにおいては、 光記録媒体上への集光における収差 を小さくするため、 0次および 1次回折光を利用することが必要となる。 し かしながら、 0次おょぴ 1次回折光の回折効率をともに向上させることは従 来技術では困難であった。 このため、 0次おょぴ 1次回折光の回折効率をと もに向上させることに対する大きなニーズがある。 As described above, in an objective lens used for recording or reproducing on an optical recording medium having a different thickness such as a DVD or a CD, the 0th-order and the 1st-order diffracted light are reduced in order to reduce aberration at the time of focusing on the optical recording medium. It is necessary to use it. However, improving both the diffraction efficiency of the 0th order and the 1st order diffracted light is not It has been difficult with conventional technology. For this reason, there is a great need to improve the diffraction efficiency of the 0th order and 1st order diffracted light.
大容量の情報を保存するための記録媒体として光ディスクが使用されてい る。 光ディスクのうち、 広く使用されているものとしてコンパク ト 'ディス ク (CD) およびデジタルバーサタルディスク (DVD) などがある。  Optical disks are used as recording media for storing large amounts of information. Among the optical discs, compact discs (CD) and digital versatile discs (DVD) are widely used.
CDおよび DVD用の光ピックアップシステムは、 省スペースおよぴ省コ ストの目的から共用とするのが望ましい。 しかし、 読取り、 書き込みに必要 な集光スポッ ト径は、 CDでは 1. 4乃至 1. 5 m程度であるのに対し、 DVDでは 0. 8乃至 0. 9 μ m程度である。 集光スポッ ト径は、 使用され る波長に比例し、 光学系の像側の開口数に反比例する。 このため、 DVDで は、 CDに比較して波長を小さく し、 開口数を大きくすることにより集光ス ポッ ト径を小さく している。 さらに、 DVDでは、 ディスクチルトによって 生じるコマ収差を抑えるために C Dでは 1 · 2mmである基板厚みを 0. 6 mmとしている。 したがって、 光ピックアップシステムを CDと DVDで共 用とするには、 基板厚みの変化による焦点位置の変更や開口数の変更を行な う必要がある。  It is desirable that the optical pickup system for CDs and DVDs be shared for the purpose of saving space and cost. However, the required spot diameter for reading and writing is about 1.4 to 1.5 m for CDs, but about 0.8 to 0.9 μm for DVDs. The light collection spot diameter is proportional to the wavelength used and inversely proportional to the image-side numerical aperture of the optical system. For this reason, DVDs use smaller wavelengths and larger numerical apertures than CDs to reduce the converging spot diameter. Furthermore, in DVDs, the substrate thickness, which is 1.2 mm in CDs, is set to 0.6 mm in order to suppress coma caused by disc tilt. Therefore, in order to share the optical pickup system between CD and DVD, it is necessary to change the focal position and the numerical aperture by changing the substrate thickness.
このため、 従来技術においては、 焦点位置の変更を行なう 2焦点レンズ ( たとえば、 特開 2000 - 8 1 56 6号公報) を使用した光ピックァップゃ 、 液晶により開口数の変更を行なう開口切替え型光ピックアップ (たとえば 、 特開平 1 0— 1 0 6 0 20号公報) が提案されている。 しかし、 2焦点レ ンズによって基板厚みの変化による焦点位置の変更を行なうとしても、 開口 数の変更は別途行なうことが必要になる。 また、 開口数切替えのための液晶 パネルを別に設けると部品点数が増え部品コス トが増加する。 さらに、 生産 工程における歩留まりの低下および工数の増加にもつながる。  For this reason, in the prior art, an optical pickup using a bifocal lens for changing the focal position (for example, Japanese Patent Application Laid-Open No. 2000-81666), an aperture switching type light for changing the numerical aperture by using a liquid crystal. Pickups (for example, Japanese Patent Application Laid-Open No. H10-120620) have been proposed. However, even if the focal position is changed by changing the thickness of the substrate using a bifocal lens, it is necessary to separately change the numerical aperture. Also, if a liquid crystal panel for switching the numerical aperture is separately provided, the number of parts increases and the parts cost increases. Furthermore, it leads to a decrease in yield and an increase in man-hours in the production process.
このように、 従来技術において、 開口数選択機能を備えた結像光学素子は 提案されていない。  Thus, no imaging optical element having a numerical aperture selection function has been proposed in the prior art.
大容量の情報を保存するための記録媒体として光ディスクが使用されてい る。 光ディスクのうち、 広く使用されているものとしてコンパク ト ·デイス ク (CD) およびデジタルバーサタルディスク (DVD) などがある。 さら に、 より高密度のプル一レイ 'ディスク (BD) が開発されている。 光ディスクの記憶密度を決定する集光スポット径は、 使用される波長に比 例し、 光学系の像側の開口数に反比例する。 このため、 波長を小さく し、 開 口数を大きくすることにより集光スポット径を小さくしている。 C D、 D V Dおよび B Dの波長は、 それぞれ約 7 8 5 n m、 6 5 5 n mおよび 4 0 5 η mであり、 開口数は、 それぞれ約 0 . 4 5、 0 . 6 5および 0 . 8 5である Optical disks are used as recording media for storing large amounts of information. Optical disks that are widely used include compact disks (CDs) and digital versatile disks (DVDs). In addition, higher density pull-ray discs (BDs) are being developed. The focused spot diameter that determines the storage density of an optical disk is proportional to the wavelength used and inversely proportional to the image-side numerical aperture of the optical system. For this reason, the focused spot diameter is reduced by reducing the wavelength and increasing the number of apertures. The wavelengths of CD, DVD and BD are about 785 nm, 655 nm and 405 ηm, respectively, and the numerical apertures are about 0.45, 0.65 and 0.85, respectively. is there
C D、 D V Dおよび B D用の光ピックアップシステムは、 省スペースおよ び省コストの目的から共用とするのが望ましい。 The optical pickup system for CD, DVD and BD is desirably shared for the purpose of saving space and cost.
従来技術においては、 2枚構成の高 N A対物レンズであって、 レンズ間隔 を変化させずとも厚みの異なる情報記録媒体に対応できる対物レンズ (たと えば、 特開 2 0 0 1— 1 7 4 6 9 7号公報) や 1つの対物レンズで複数種類 の光情報記録媒体の記録再生を可能とする光利用効率の高い光へッド用対物 レンズ (たとえば、 特開 2 0 0 0 - 8 1 5 6 6号公報) が提案されている。 しかし、 前者は、 レンズが 2枚構成なので、 部品点数が多くコス トがかかる さらに対物部における重量が増すことにより、 レンズ径をァクチユエ一タ で駆動させる負荷がかかり高速化の妨げとなる。 また、 後者は、 B D用の光 ピックァップシステムに適用することはできない。  In the prior art, a two-element high NA objective lens capable of coping with information recording media having different thicknesses without changing the lens interval (for example, Japanese Patent Laid-Open No. 2001-174746). No. 97) and an objective lens for an optical head with high light use efficiency that enables recording and reproduction of a plurality of types of optical information recording media with one objective lens (for example, Japanese Patent Application Laid-Open No. 2000-815). No. 6) has been proposed. However, the former has two lenses, so the number of parts is large and the cost is high. Further, the weight of the objective part is increased, so that the load for driving the lens diameter by an actuator is impeded, which hinders speeding up. In addition, the latter cannot be applied to the optical pickup system for BD.
こ.のように、 従来技術において、 B Dを含むディスク用の異なる波長を集 光させる単体対物レンズは提案されていない。 発明の開示  As described above, in the prior art, no single objective lens for collecting different wavelengths for a disc including a BD has been proposed. Disclosure of the invention
本発明は、 上記の状況の下でなされたものである。 すなわち、 本発明は、 コンパク ト .ディスク ( C D ) 、 デジタルバーサタルディスク ( D V D ) な ど基板厚の異なる光記録、 再生のための光ピックアップシステムなどに利用 される対物レンズにおける回折部分の、 0次および 1次回折光の回折効率を ともに向上し、 エネルギーロスを小さくする対物レンズおよびその設計方法 を提供することを目的とする。  The present invention has been made under the above circumstances. That is, the present invention relates to an optical pickup system for an optical pickup system for recording and reproducing optical data having different substrate thicknesses, such as a compact disk (CD) and a digital versatile disk (DVD). It is an object of the present invention to provide an objective lens that improves both the diffraction efficiency of second- and first-order diffracted light and reduces energy loss, and a design method thereof.
また、 本発明は、 光ピックアップシステムなどにおいて、 液晶パネルなど 別個の遮蔽物を設ける必要の無い、 開口数切替え機能を備えた結像光学素子 を提供することを目的とする。 本発明によれば、 部品点数や部品コストが増 加せず、 生産工程における歩留まりの低下および工数の増加を生じさせない さらに、ブルーレイ'ディスク(BD)、デジタル 'バーサタイル ·ディスク(DVD)および コンパクト 'ディスク(CD)などの光ディスクの面に、それぞれのディスク用の異なる波長 を集光させる単体対物レンズに対する大きなニーズが存在する。 It is another object of the present invention to provide an imaging optical element having a numerical aperture switching function that does not require a separate shield such as a liquid crystal panel in an optical pickup system or the like. According to the present invention, the number of parts and the cost of parts increase. In addition, it does not reduce the yield and increase the man-hours in the production process. In addition, on the surface of optical discs such as Blu-ray 'disc (BD), digital' versatile disc '(DVD) and compact' disc (CD), There is a great need for single objectives that focus different wavelengths for discs.
本発明による結像光学素子は、 少なくとも 1つの面に、 光軸を含む第 1領域 と第 1領域の周囲の回折部を有する第 2領域とを備え、 第 1の波長を有する 第 1の光線と、 第 1の波長と異なる第 2の波長を有する第 2の光線を取り扱 う。 第 2領域における回折部の形状は、 基板を平面とした場合に階段形状で あり、 階段形状の段差量が、 0次回折光の回折効率が、 第 1および第 2の光 線の、 一方の波長において回折効率のピークに近づくように、 前記一方の波 長に基づいて定められている。 階段数を N、 前記一方の光線の波長を 。、 0 次以外の回折次数を《、 mおよび pを整数とした場合に、 波長  An imaging optical element according to the present invention includes, on at least one surface, a first region including an optical axis and a second region having a diffractive portion around the first region, and a first light beam having a first wavelength. And a second light beam having a second wavelength different from the first wavelength. The shape of the diffractive portion in the second region is a staircase shape when the substrate is flat, and the step amount of the staircase shape, the diffraction efficiency of the 0th-order diffracted light is one of the wavelengths of the first and second light beams. Is determined based on the one wavelength so as to approach the peak of the diffraction efficiency. The number of steps is N, and the wavelength of the one light beam is. , If diffraction orders other than the 0th order are << and m and p are integers, the wavelength
λ i = [N/ (N · m + α ) ] · λ 0 · p λ i = [N / (N · m + α)] · λ 0 · p
と第 1および第 2の光線の、 前記他方の波長との差の、 前記他方の波長に対 する比率が、 回折効率のピーク値からの低下の度合いから定めた所定の値以 下であるように、 階段数 Nが定められている。 The ratio of the difference between the first and second light beams and the other wavelength to the other wavelength is equal to or less than a predetermined value determined from the degree of reduction from the peak value of the diffraction efficiency. In addition, the number of steps N is specified.
したがって、 階段形状の回折格子形状を備える結像光学素子において、 異 なる二波長を 0次および α次回折光として回折効率を向上させることができ る。  Therefore, in an imaging optical element having a step-like diffraction grating shape, diffraction efficiency can be improved by using two different wavelengths as 0-order and α-order diffracted light.
本発明による対物レンズは、 第 1の波長を有する第 1の光線と第 1の波長 と異なる第 2の波長を有する第 2の光線を、 それぞれ第 1および第 2の面上 に集光させる対物レンズである。 少なく とも 1つのレンズ面に、 光軸を含む 第 1領域と第 1領域の周囲の回折部を有する第 2領域と第 2領域の周囲の第 3領域とを備える。 第 1の光線が第 1および第 2領域を通過後、 第 1の面上 に集光し、 第 2の光線が第 1、 第 2および第 3領域を通過後第 2の面上に集 光するように、 第 2領域におけるレンズ面形状が第 1およぴ第 2の光線の、 一方の光路に基づいて設計され、 第 2領域における回折部を定める位相関数 が第 1およぴ第 2の光線の、 他方の光路に基づいて設計されている。  The objective lens according to the present invention is an objective lens for converging a first light beam having a first wavelength and a second light beam having a second wavelength different from the first wavelength on the first and second surfaces, respectively. Lens. At least one lens surface includes a first region including an optical axis, a second region having a diffractive portion around the first region, and a third region around the second region. The first ray is focused on the first surface after passing through the first and second regions, and the second ray is focused on the second surface after passing through the first, second and third regions. Thus, the lens surface shape in the second region is designed based on one of the optical paths of the first and second rays, and the phase function that defines the diffracting portion in the second region is the first and second rays. Is designed based on the other path of the light beam.
本発明による対物レンズの設計方法は、 第 1の波長を有する第 1の光線と 第 1の波長と異なる第 2の波長を有する第 2の光線を、 それぞれ第 1および 第 2の面上に集光させる対物レンズを対象とする。 設計方法は、 少なくとも 1つのレンズ面に、 光軸を含む第 1領域と第 1領域の周囲の第 2領域と第 2 領域の周囲の第 3領域とを定めるステップと、 第 1領域におけるレンズ面形 状を設計するステップとを含む。 設計方法は、 さらに、 第 2領域におけるレ ンズ面形状を第 1および第 2.の光線の、 一方の光路に基づいて設計するステ ップと、 第 2領域における回折部の形状を規定する位相関数を第 1および第 2の光線の、 他方の光路に基づいて定めるステップと、 第 3領域におけるレン ズ面形状を設計するステップとを含む。 The method for designing an objective lens according to the present invention comprises the steps of: The objective lens is for focusing a second light beam having a second wavelength different from the first wavelength on the first and second surfaces, respectively. A design method comprising: defining at least one lens surface with a first region including an optical axis, a second region around the first region, and a third region around the second region; and a lens surface in the first region. Designing the shape. The design method further includes a step of designing the lens surface shape in the second region based on one of the optical paths of the first and second rays, and a phase defining the shape of the diffraction portion in the second region. Determining a function based on the other optical path of the first and second light rays; and designing a lens surface shape in the third region.
このように、 第 1領域は回折部を有していないので回折部によるエネルギ 一ロスがない。 また、 第 2領域において、 第 1およぴ第 2の光線の一方は、 レンズ面形状にしたがって屈折により光路を定められ、 第 1および第 2の光 線の他方は、 レンズ面形状および回折部の位相関数にしたがって光路を定め られるので、 第 1およぴ第 2の面上に集光させる場合の収差を小さくするこ とができる。 したがって、 それぞれ第 1および第 2の面上に集光させる二波 長の光線に対して、 エネルギーロスおよび収差を小さくすることができる。 本発明の 1実施形態によれば、 第 2領域における回折部の形状が、 基板を 平面とした場合に階段形状であり、 階段形状の段差量が第 1および第 2の光 線の波長に基づいて定められる。  As described above, since the first region has no diffraction portion, there is no energy loss due to the diffraction portion. In the second region, one of the first and second light beams has an optical path defined by refraction according to the lens surface shape, and the other of the first and second light beams has a lens surface shape and a diffraction portion. Since the optical path can be determined according to the phase function of (1), aberration when converging on the first and second surfaces can be reduced. Therefore, energy loss and aberration can be reduced for light beams having two wavelengths condensed on the first and second surfaces, respectively. According to one embodiment of the present invention, the shape of the diffractive portion in the second region is a staircase shape when the substrate is a flat surface, and the step amount of the staircase shape is based on the wavelengths of the first and second light beams. Is determined.
また、 本発明の 1実施形態によれば、 第 2領域におけるレンズ面形状を定 める光線の波長をえ。、 レンズの屈折率を n、 レンズの周囲の屈折率を n 0、 回折部に対する入射角を 0として、 段差量を o ' cos e / ( n— n 0 ) の整数 倍の値を基準として求める。 Further, according to one embodiment of the present invention, the wavelength of the light beam defining the lens surface shape in the second region is obtained. , Where n is the refractive index of the lens, n 0 is the refractive index around the lens, and 0 is the angle of incidence on the diffractive part, and the step is determined based on an integer multiple of o 'cos e / (n—n 0 ). .
したがって、 0次回折光としての第 2領域におけるレンズ面形状を定める 光線に対する回折部の影響が小さくなり、 回折効率が向上する。  Therefore, the influence of the diffracting portion on the light beam that determines the lens surface shape in the second region as the zero-order diffracted light is reduced, and the diffraction efficiency is improved.
本発明の 1実施形態によれば、 回折部における階段の幅が位相関数および 段差量と階段数に基づいて定められる。 したがって、 1次回折光としての第 1およぴ第 2の光線の他方に対する回折部の影響が大きくなり、 回折効率が 向上する。  According to one embodiment of the present invention, the width of the steps in the diffraction section is determined based on the phase function, the amount of steps, and the number of steps. Therefore, the influence of the diffracting portion on the other of the first and second light beams as the first-order diffracted light increases, and the diffraction efficiency is improved.
本発明の 1実施形態による対物レンズは、 第 2領域における回折部におい て、 第 2領域におけるレンズ面形状を定める光線が主に 0次回折光として通 過し、 第 2領域における回折部の形状を定める光線が主に 1次または- 1次回 折光として通過する。 したがって、 それぞれ第 1およぴ第 2の面上に集光さ せる際の収差を小さくすることができる。 The objective lens according to one embodiment of the present invention includes a diffractive portion in the second region. Thus, the light rays defining the shape of the lens surface in the second area pass mainly as the 0th-order diffracted light, and the light rays defining the shape of the diffractive portion in the second area mainly pass as the first-order or -1st-order folded light. Therefore, it is possible to reduce aberrations when converging light on the first and second surfaces, respectively.
本発明の 1実施形態によれば、 第 1、 第 2および第 3領域のレンズ面形状 が非球面である。 したがって、 収差を小さくするために自由度の高い設計を 行うことができる。  According to one embodiment of the present invention, the lens surface shapes of the first, second and third regions are aspherical. Therefore, a design with a high degree of freedom can be performed to reduce aberrations.
本発明の 1実施形態によれば、 厚みの異なる第 1および第 2の光記録媒体 への情報の記録または再生をおこなう光ピックアップ装置であって、 第 1の 波長を有する第 1の光線と第 1の波長と異なる第 2の波長を有する第 2の光 線を、 それぞれ第 1および第 2の光記録媒体に使用する光ピックアツプ装置 において使用される。 第 1の面が第 1の光記録媒体の面であり、 第 2の面が 第 2の光記録媒体の面である。 したがって、 光ピックアップ装置の第 1およ び第 2の光記録媒体の面上にそれぞれ集光させる二波長の光線に対して、 ェ ネルギーロスおよび収差を小さくすることができる。  According to one embodiment of the present invention, there is provided an optical pickup device for recording or reproducing information on first and second optical recording media having different thicknesses, comprising: a first light beam having a first wavelength; A second light beam having a second wavelength different from the first wavelength is used in an optical pickup device used for the first and second optical recording media, respectively. The first surface is a surface of the first optical recording medium, and the second surface is a surface of the second optical recording medium. Therefore, it is possible to reduce energy loss and aberration with respect to light beams of two wavelengths that are respectively focused on the surfaces of the first and second optical recording media of the optical pickup device.
本発明の 1実施形態によれば、 第 1の光記録媒体が CD であり、 第 2の光 記録媒体が DVD である。 したがって、 光ピックァップ装置の CD および DVD の面上にそれぞれ集光させる二波長の光線に対して、 エネルギーロスお よび収差を小さくすることができる。  According to one embodiment of the present invention, the first optical recording medium is a CD, and the second optical recording medium is a DVD. Therefore, energy loss and aberration can be reduced for light beams of two wavelengths focused on the CD and DVD surfaces of the optical pickup device.
本発明の 1実施形態によれば、 第 1領域を通過する光線が光記録媒体に集 光する開口数を NA1 とすると NA1は、 NA1 0.37を満たし、 第 2領域を通 過し光記録媒体上に集光する開口数を NA2とすると NA2は 0.3 NA2 0.51 を満たし、 第 3領域を通過し光記録媒体上に集光する開口数を NA3 とすると NA3 は 0.4≤NA3≤0.67 を満たす。 このように、 開口数を適切に定めること により、 光ピックアップ装置の第 1および第 2の光記録媒体の面上にそれぞ れ集光させる二波長の光線に対して、 エネルギーロスおょぴ収差を小さくす ることができる。  According to one embodiment of the present invention, assuming that the numerical aperture at which the light beam passing through the first area converges on the optical recording medium is NA1, NA1 satisfies NA1 0.37, passes through the second area, and passes on the optical recording medium. Assuming that the numerical aperture for condensing light at NA2 is NA2, NA2 satisfies 0.3 NA2 0.51. If the numerical aperture at which light passes through the third area and converges on the optical recording medium is NA3, NA3 satisfies 0.4≤NA3≤0.67. By properly determining the numerical aperture in this manner, energy loss and aberration are reduced for light beams of two wavelengths that are respectively focused on the surfaces of the first and second optical recording media of the optical pickup device. Can be reduced.
本発明による回折格子形状を決定する方法は、 異なる二波長を 0次および 1次回折光として回折効率を考慮しながら、 位相関数に基づいて階段形状の 回折格子形状を決定する。 回折格子形状を決定する方法は、 一方の波長; の 光を 0次回折光として波長; に基づいて段差量を定めるステップと、 階段数 を N、 正の整数を mとして、 1次回折光における任意のピーク波長几 2を、 回 折格子形状が右上がり形状を持つ場合は i 2= N/(Nm+l) X とし、 回折格子 形状が左上がりの形状を持つ場合はえ 2=N/(Nm- l) Xえ Qとして求めるステップ とを含む。 回折格子形状を決定する方法は、 さらに、 え 2が 1次回折光である 他方の光の波長に近づくように m を操作しながら、 階段数を定めるステップ と、 段差量および位相関数に基づいて階段の幅を定めるステップとを含む。 本発明による回折格子形状を決定するコンピュータ ·プログラムは、 異な る二波長を 0次および 1次回折光として回折効率を考慮しながら、 位相関数 に基づいて階段形状の回折格子形状を決定する。 回折格子形状を決定するコ ンピュータ ·プログラムは、 コンピュータに、 一方の波長え 0の光を 0次回折 光として波長 λ。に基づいて段差量を定めるステップと、 階段数を Ν、 正の整 数を m として、 1次回折光における任意のピーク波長 λ 2を、 回折格子形状が 右上がり形状を持つ場合はえ 2 = N/(Nm+l) X λ ο とし、 回折格子形状が左上が り
Figure imgf000011_0001
X 0として求めるステップとを実行させ る。 回折格子形状を決定するコンピュータ ·プログラムは、 さらに、 コンビ ユータに、 え 2が 1次回折光である他方の光の波長に近づくように mを操作し ながら、 階段数を定めるステップと、 段差量および位相関数に基づいて階段 の幅を定めるステップとを実行させる。
In the method for determining a diffraction grating shape according to the present invention, a staircase-shaped diffraction grating shape is determined based on a phase function while considering diffraction efficiency using two different wavelengths as zero-order and first-order diffracted light. The method of determining the diffraction grating shape is one of the wavelengths; Wavelength light as zero-order diffracted light; a step of determining the step amount based on the number of steps N, as a positive integer m, 1 any peak wavelength几2 in order diffracted light, the diffraction grating pattern is upward sloping shape And the step of obtaining as 2 = N / (Nm-l) XeQ if the diffraction grating shape has a shape that rises to the left. Method of determining the diffraction grating pattern is further while operating the m as example 2 approaches the wavelength of the other light is first order diffracted light, the steps of determining the number of steps, based on the step amount and the phase function staircase Determining the width of A computer program for determining a diffraction grating shape according to the present invention determines a staircase-shaped diffraction grating shape based on a phase function while considering diffraction efficiency using two different wavelengths as 0th-order and 1st-order diffracted light. A computer program that determines the shape of the diffraction grating sends a light with a wavelength of λ to the computer as the 0th-order diffracted light. A step of determining a step amount based on the number of steps New, positive and integer as m, 1 any peak wavelength lambda 2 in order diffracted light, 2 = N e When the diffraction grating pattern has a right upward shape / (Nm + l) X λ ο and the diffraction grating shape goes to the upper left
Figure imgf000011_0001
And obtaining as X 0 Ru is executed. The computer program for determining the shape of the diffraction grating further includes a step of determining the number of steps while manipulating m so that the beam 2 approaches the wavelength of the other light that is the first-order diffracted light. Determining the width of the stairs based on the phase function.
したがって、 位相関数に基づいて階段形状の回折格子形状を決定する際に 、 異なる二波長を 0次および 1次回折光として回折効率を向上させるように することができる。  Therefore, when determining the step-like diffraction grating shape based on the phase function, it is possible to improve the diffraction efficiency by using two different wavelengths as 0th-order and 1st-order diffracted light.
本発明による結像光学素子は、 少なく とも 1つの面に、 光軸を含む第 1領 域と第 1領域の周囲の回折部を有する第 2領域とを備え、 第 1の波長を有す る第 1の光線は第 1領域を通過して結像面に集光するが第 2領域を通過した 場合は結像面に集光せず、 第 1の波長と異なる第 2の波長を有する第 2の光 線は第 1領域おょぴ第 2領域を通過して結像面に集光するようにする。 さら に、 本発明による結像光学素子は、 第 2領域における面形状が第 1および第 2の光線の、 一方の光路に基づいて設計され、 第 2領域における回折部の形 状が第 1および第 2の光線の、 他方の光路に基づいて設計されている。 本発明による結像光学素子を設計する方法は、 少なくとも 1つの面に、 光 軸を含む第 1領域と第 1領域の周囲の回折部を有する第 2領域とを備え、 第 1の波長を有する第 1の光線は第 1領域を通過して結像面に集光するが第 2 領域を通過した場合は結像面に集光せず、 第 1の波長と異なる第 2の波長を 有する第 2の光線は第 1領域および第 2領域を通過して結像面に集光するよ うにする結像光学素子を設計する。 さらに、 本発明による結像光学素子を設 計する方法は、 第 2領域における面形状を第 1および第 2の光線の、 一方の 光路に基づいて設計するステップと、 第 2領域における回折部の形状を第 1 およぴ第 2の光線の、 他方の光路に基づレ、て設計するステップと含む。 An imaging optical element according to the present invention includes, on at least one surface, a first region including an optical axis and a second region having a diffractive portion around the first region, and has a first wavelength. The first light ray passes through the first area and converges on the image plane, but does not converge on the image plane when passing through the second area, and has a second wavelength different from the first wavelength. The light beam 2 passes through the first area or the second area and is focused on the image plane. Further, in the imaging optical element according to the present invention, the surface shape in the second region is designed based on one of the optical paths of the first and second light beams, and the shape of the diffractive portion in the second region is first and second. It is designed based on the other path of the second ray. A method of designing an imaging optical element according to the present invention includes, on at least one surface, a first region including an optical axis and a second region having a diffractive portion surrounding the first region, and having a first wavelength. The first light ray passes through the first area and converges on the image plane, but does not converge on the image plane when passing through the second area, and has a second wavelength different from the first wavelength. An imaging optical element is designed so that the two rays pass through the first area and the second area and converge on the image plane. Further, the method of designing an imaging optical element according to the present invention includes the steps of designing a surface shape in the second area based on one of the optical paths of the first and second light rays, and a step of designing the diffractive portion in the second area. Designing the shape based on the other optical path of the first and second light beams.
したがって、 第 2領域における面形状と回折部の形状とによって第 1およ ぴ第 2の光線の光路を分離し、 第 1の光線を結像面に集光させず第 2の光線 を結像面に集光させることができる。  Therefore, the optical paths of the first and second light beams are separated according to the surface shape in the second area and the shape of the diffractive portion, and the second light beam is imaged without focusing the first light beam on the image plane. Light can be collected on a surface.
本発明の 1実施形態によれば、 第 2領域における回折部の形状が、 基板を 平面とした場合に階段形状であり、 階段形状の段差量が、 0次回折光の回折 効率が、 第 1および第 2の光線の、 前記一方の波長においてピークに近づく ように、 前記一方の波長に基づいて定められている。  According to one embodiment of the present invention, the shape of the diffractive portion in the second region is a stepped shape when the substrate is a plane, and the step amount of the stepped shape is such that the diffraction efficiency of the 0th-order diffracted light is the first and the second. The second light beam is determined based on the one wavelength so as to approach a peak at the one wavelength.
本発明の 1実施形態によれば、 前記一方の波長の整数倍を 1。、 結像光学素 子の屈折率を n、 結像光学素子の周囲の屈折率を n Q、 回折部に対する入射角 を Θとして、 回折部の段差量が、 L。 ' cos 0 Z ( n— n。) の値を基準として 定められている。 ■ According to one embodiment of the present invention, 1 is an integral multiple of the one wavelength. The refractive index of the imaging optical element is n, the refractive index around the imaging optical element is n Q , and the incident angle with respect to the diffraction section is Θ. 'cos 0 It is determined based on the value of Z (n-n.). ■
したがって、 第 1および第 2の光線のうち、 一方の光線の大部分は、 0次 回折光として回折部の影響を受けずに回折部を通過し、 第 2領域の面形状に よって光路が定まる。 また、 一方の光線のうち 0次以外の次数の回折光とし て回折部を通過し、 回折部の影響を受けるものは非常に少ない。  Therefore, the majority of one of the first and second rays passes through the diffraction section without being affected by the diffraction section as the 0th-order diffracted light, and the optical path is determined by the surface shape of the second region . Also, very few of the light rays pass through the diffraction portion as diffraction light of an order other than the 0th order and are affected by the diffraction portion.
本発明の 1実施形態によれば、 階段形状の階段数が、 前記他方の波長にお ける 0次回折光の回折効率が 0%に近づき、 0次以外の次数の回折光の回折効 率が、 できるだけ大きくなるように、 第 1およぴ第 2の波長に基づいて定め られる。  According to one embodiment of the present invention, the number of steps of the staircase shape is such that the diffraction efficiency of the 0th-order diffracted light at the other wavelength approaches 0%, and the diffraction efficiency of the diffracted lights of orders other than the 0th order is: It is determined based on the first and second wavelengths so as to be as large as possible.
本発明の 1実施形態によれば、 階段数を N、 前記一方の光線の波長を; L 0、 0次以外の回折次数を a;、 mおよび pを整数とした場合に、 波長 λ [ N/ ( N - m + a ) ] · λ 0 · p According to one embodiment of the present invention, when the number of steps is N, the wavelength of the one light ray is; L 0 , the diffraction orders other than the 0th order are a; λ [N / (N-m + a)] · λ 0 · p
と第 1および第 2の光線の、 前記他方の波長との差の前記他方の波長に対す る比率が所定の値以下であるように階段数 Nを定める。 The number of steps N is determined so that the ratio of the difference between the first and second light beams and the other wavelength to the other wavelength is equal to or less than a predetermined value.
したがって、 第 1および第 2の光線のうち、 他方の光線の大部分は、 0次 以外の次数の回折光として回折部を通過し、 回折部の形状によって光路が定 まる。 また、 他方の光線のうち 0次回折光として回折部を通過し、 回折部の 影響を受けないものは非常に少ない。  Therefore, of the first and second light beams, most of the other light beams pass through the diffraction portion as diffracted light of orders other than the 0th order, and the optical path is determined by the shape of the diffraction portion. Also, very few of the other light beams pass through the diffraction portion as the 0th-order diffracted light and are not affected by the diffraction portion.
本発明による対物レンズは、少なくとも 1つの面に回折格子を備えており、異なる波 長の光線を、異なる面に集光する。第 1の波長 および第 2の波長 が の関係を満たす場合に、第 1の波長 および第 2の波長 の光束が共に通過する領 域において、 2次回折光として第 1の波長 の光束が第 1の面に集光し、 1次回折光と して第 2の波長 λ2の光束が第 2の面に集光するように、回折格子の位相関数およびレ ンズ面形状を定め、回折格子の格子深さを、第 1の波長 における 2次回折光の回折 効率および第 2の波長 λ2における 1次回折光の回折効率が所定の値より大きくなるよ うに定める。 The objective lens according to the present invention is provided with a diffraction grating on at least one surface, and focuses light beams of different wavelengths on different surfaces. When the first wavelength and the second wavelength satisfy the relationship, in a region where both the first wavelength and the second wavelength pass, the first wavelength light flux is converted into the first wavelength as the second-order diffracted light. focused on the face, 1 as the second light flux of wavelength lambda 2 and the diffracted light is focused on the second surface defines a phase function and lenses surface shape of the diffraction grating, the grating depth of the diffraction grating of the diffraction efficiency of first-order diffracted light 2 in the diffraction efficiency and the second wavelength lambda 2 of the diffracted light at the first wavelength is specified in earthenware pots by greater than a predetermined value.
したがって、第 1および第 2の波長の光束が 2次および 1次回折光として、それぞれ 第 1および第 2の面に集光し、回折効率も所定の値より大きくなる。  Therefore, the luminous fluxes of the first and second wavelengths are condensed on the first and second surfaces as second-order and first-order diffracted light, respectively, and the diffraction efficiency becomes larger than a predetermined value.
本発明の実施形態による対物レンズにおいて、第 2の波長 λ3が の関係を満たす場合に、第 1の波長 、第 2の波長 λ2および第 3の波長 λ3の光束が共 に通過する領域において、さらに、 1次回折光として第 3の波長 λ3の光束が第 3の面に 集光するように、回折格子の位相関数およびレンズ面形状を定め、回折格子の格子 深さを、第 3の波長 λ3における 1次回折光の回折効率が所定の値より大きくなるように 定めている。 In the objective lens according to an embodiment of the present invention, if satisfying the relation of the second wavelength lambda 3, the region where the first wavelength, the light flux of the second wavelength lambda 2 and third wavelength lambda 3 to pass through the co in, addition, as 1 third light flux with wavelength lambda 3 order diffracted light is focused on the third surface, defining a phase function and a lens surface shape of the diffraction grating, the grating depth of the diffraction grating, the third the diffraction efficiency of the wavelength lambda 3 in 1-order diffracted light is set to be larger than a predetermined value.
したがって、第 3の波長の光束が 1次光として第 3の面に集光し、回折効率も所定の 値より大きくなる。  Therefore, the luminous flux of the third wavelength is converged on the third surface as primary light, and the diffraction efficiency becomes larger than a predetermined value.
本発明の実施形態による対物レンズにおいて、回折格子がブレーズィ匕形状である 。したがって、加工が比較的簡単である。 本発明の実施形態による対物レンズにおいて、 nをレンズの屈折率として、回折格 子の深さ 1が式In the objective lens according to the embodiment of the present invention, the diffraction grating has a blaze-ridden shape. Therefore, the processing is relatively simple. In the objective lens according to the embodiment of the present invention, n is the refractive index of the lens, and the depth 1 of the diffraction grating is expressed by the following equation.
Figure imgf000014_0001
Figure imgf000014_0001
によって定まる。この場合に、第 1の波長における 2次回折光の回折効率、第 2および 第 3の波長における 1次回折光の回折効率は、それぞれ 70%以上となる。 Is determined by In this case, the diffraction efficiency of the second-order diffracted light at the first wavelength and the diffraction efficiency of the first-order diffracted light at the second and third wavelengths are each 70% or more.
本発明の実施形態による対物レンズにおいて、少なくとも 1つの面を、光軸を取り囲 む少なくとも 1つの帯状領域および光軸を含む中心領域に分割し、それぞれの領域を 別個の面によって定義している。  In the objective lens according to the embodiment of the present invention, at least one surface is divided into at least one band-shaped region surrounding the optical axis and a central region including the optical axis, and each region is defined by a separate surface. .
本発明の実施形態による対物レンズにおいて、別個の面の間に光軸方向の段差を 備えている。  In the objective lens according to the embodiment of the present invention, a step in the optical axis direction is provided between the separate surfaces.
本発明の実施形態による対物レンズにおいて、別個の面が、 ζ軸は光軸と一致し、 i は中心から数えた面の番号、 Riは曲率半径、 Kiは離心率、 Ai4、 Ai6、 Ai8、 AilOは 非球面係数、 diは第 1面を基準とする他の面の光軸上の段差を表す場合に、式  In the objective lens according to the embodiment of the present invention, the separate surfaces are: ζ axis coincides with the optical axis, i is the number of the surface counted from the center, Ri is the radius of curvature, Ki is the eccentricity, Ai4, Ai6, Ai8, AilO is the aspherical coefficient, and di is the step on the optical axis of the other surface with respect to the first surface.
(11 Ri) χ ί r+ Ai4 χ ]ι + Ai6 x h6 + AfS χ h% + Ail0x o + di l+^jl-(l + Ki)x(l/Ri)2xh によって表される。 ― (11 Ri) χ ί r + Ai4 χ] ι + Ai6 xh 6 + AfS χ h % + Ail0x o + di l + ^ jl- (l + Ki) x (l / Ri) 2 xh ―
本発明の実施形態による対物レンズにおいて、第 1の波長の光束が像側開口数 N A1によって集光し、 第 2の波長の光束が像側開口数 NA2によって集光し、  In the objective lens according to the embodiment of the present invention, the light beam of the first wavelength is collected by the image-side numerical aperture NA1, the light beam of the second wavelength is collected by the image-side numerical aperture NA2,
NA1>NA2  NA1> NA2
の場合に、第 2の波長の光束の最も外側の部分によって、少なくとも 1つの面を、光 軸を取り囲む少なくとも 1つの帯状領域および光軸を含む中心領域に分割し、それぞ れの領域を別個の面によって定義している。  In this case, the outermost part of the light beam of the second wavelength divides at least one surface into at least one band-shaped region surrounding the optical axis and a central region including the optical axis, and separates each region separately. Is defined by
本発明の実施形態による対物レンズにおいて、第 1の波長の光束が像側開口数 N A1によって集光し、 第 2の波長の光束が像側開口数 NA2によって集光し、  In the objective lens according to the embodiment of the present invention, the light beam of the first wavelength is collected by the image-side numerical aperture NA1, the light beam of the second wavelength is collected by the image-side numerical aperture NA2,
NA1>NA2  NA1> NA2
の場合に、第 1の波長の光束のみが通過する光軸から離れた領域において、回折格 子を備え、第 1の波長 の光束が第 1の面に集光するように、回折格子の位相関数お ょぴレンズ面形状を定めている。 4762 In this case, a diffraction grating is provided in a region away from the optical axis through which only the light beam of the first wavelength passes, and the phase of the diffraction grating is adjusted so that the light beam of the first wavelength is focused on the first surface. The function defines the lens surface shape. 4762
13 したがって、レンズ面形状の自由度が高くなり、種々の係数を調整することにより、 異なる波長の光束を異なる面に集光させる場合の収差をより小さくさせることができる 。それぞれの面に集光させる場合に、波面収差を、波長単位で RMS0. 07以下とする こと力 Sでさる。  13 Therefore, the degree of freedom of the lens surface shape is increased, and by adjusting various coefficients, it is possible to further reduce aberration when light beams having different wavelengths are condensed on different surfaces. When condensing light on each surface, the wavefront aberration should be set to RMS0.07 or less in wavelength units.
本発明の実施形態による対物レンズにおいて、格子斜面がブレーズ化形状の斜面 よりも急な部分を少なくとも一部に備えるような形状である。 ·  In the objective lens according to the embodiment of the present invention, the lattice slope has a shape in which at least a portion is steeper than the blazed slope. ·
したがって、光が本発明による格子形状の斜面の傾きが急な部分に入射すると 、 従来技術 (ブレーズ化形状) と比較して入射角が大きくなり、 透過光が発 生せず全反射する。 全反射された光は隣り合う格子形状に再び入射し、 この とき別の入射光と位相重ね合わせによる結合が行われ、 繰り返し反射されて 最終的に斜面に対してきわめて小さい角度で透過光 (回折光) が出射される 。 この結果、 回折効率が向上する。 このように、 格子周期の短い部分におい て回折効率が向上する。  Therefore, when the light is incident on a portion where the inclination of the slope of the lattice shape according to the present invention is steep, the incident angle becomes larger as compared with the prior art (blazed shape), and the transmitted light is totally reflected without being generated. The totally reflected light reenters the adjacent grating shape, where it is combined with another incident light by phase superposition, repeatedly reflected, and finally transmitted through a very small angle with respect to the slope (diffraction). Light) is emitted. As a result, the diffraction efficiency is improved. As described above, the diffraction efficiency is improved in a portion where the grating period is short.
本発明の実施形態による対物レンズにぉレ、て、それぞれの面に集光させる場合に 、波面収差が、波長を単位として RMS0. 07以下となるように設計している。  In the case where the objective lens according to the embodiment of the present invention focuses light on each surface, the wavefront aberration is designed to be equal to or less than RMS 0.07 in terms of wavelength.
したがって、それぞれの波長に対して、個別の面に高精度に集光させることができる 本発明の実施形態による光ピックアップ光学系において、第 1の波長がブルーレ ィ ·ディスク用の波長、 第 2の波長がデジタル ·バーサタイル 'ディスク用 の波長である。  Therefore, with respect to each wavelength, it is possible to collect light with high precision on individual surfaces. In the optical pickup optical system according to the embodiment of the present invention, the first wavelength is a wavelength for a blue-ray disc, and the second wavelength is The wavelength is the wavelength for Digital Versatile's disc.
したがって、 単体レンズにより、 ブルーレイ ·ディスクおよぴデジタル · バーサタイル ·ディスクに対応することができるので、 コンパク トな光ピッ クアップ光学系が提供される。 このため、 高速化、 かつ低価額化が実現され る。  Therefore, a single lens can support Blu-ray discs and digital versatile discs, providing a compact optical pickup optical system. Therefore, high speed and low price are realized.
本発明の実施形態による光ピックアップ光学系において、第 3の波長を扱う場合 に、 第 3の波長がコンパク ト ·ディスク用の波長である。  In the case of handling the third wavelength in the optical pickup optical system according to the embodiment of the present invention, the third wavelength is a wavelength for a compact disk.
したがって、 単体レンズにより、 ブルーレイ 'ディスク、 デジタル ·パー サタイル ·ディスクおよびコンパク ト ·ディスクに対応することができるの で、 コンパク トな光ピックアップ光学系が提供される。 このため、 '高速化、 かつ低価額化が実現される。 本発明の実施形態による光ピックアップ光学系において、 ブルーレイ 'デ イスク用の波長およびデジタル ·バーサタイル ·ディスク用の波長の光束が 、 対物レンズに平行光として入射され、 コンパク ト ·ディスク用の波長の光 源と象とが有限共役関係にある。 Therefore, since a single lens can be used for Blu-ray 'disks, digital discs, and compact discs, a compact optical pickup optical system is provided. Therefore, high speed and low price are realized. In the optical pickup optical system according to the embodiment of the present invention, the luminous flux having the wavelength for the Blu-ray disc and the wavelength for the digital versatile disk is incident as parallel light on the objective lens, and the light having the wavelength for the compact disk. The source and the elephant have a finite conjugate relationship.
したがって、 コンパク ト .ディスク用波長の像側開口数を実現することが できる。 図面の簡単な説明  Therefore, an image-side numerical aperture of a wavelength for a compact disk can be realized. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態による対物レンズを使用した光ピックアップシ ステムを示す。  FIG. 1 shows an optical pickup system using an objective lens according to an embodiment of the present invention.
図 2は、 本発明の実施形態によるコリメータレンズを使用しない共役レン ズを使用した光ピックアップシステムを示す。  FIG. 2 shows an optical pickup system using a conjugate lens without using a collimator lens according to an embodiment of the present invention.
図 3は、 本発明の実施形態による対物レンズのレンズ形状を示す。  FIG. 3 shows a lens shape of the objective lens according to the embodiment of the present invention.
図 4は、 本発明の実施形態による対物レンズの回折部の形状を示す。  FIG. 4 shows the shape of the diffraction portion of the objective lens according to the embodiment of the present invention.
図 5は、 本発明の実施形態による対物レンズの設計方法を示す。  FIG. 5 shows a method for designing an objective lens according to an embodiment of the present invention.
図 6は、 本発明の実施形態による対物レンズの回折部の設計方法を示す。 図 7は、 本発明の実施形態による対物レンズの設計方法による設計結果を 示す。  FIG. 6 shows a method for designing a diffraction portion of an objective lens according to an embodiment of the present invention. FIG. 7 shows a design result by the design method of the objective lens according to the embodiment of the present invention.
図 8は、 本発明の実施形態による対物レンズの設計方法による設計結果に ついて、 回折効率を計算した結果を示す。  FIG. 8 shows the result of calculating the diffraction efficiency with respect to the design result by the design method of the objective lens according to the embodiment of the present invention.
図 9は、 本発明の実施形態による対物レンズを含む光学系の数値実施例で ある。 '  FIG. 9 is a numerical example of an optical system including an objective lens according to an embodiment of the present invention. '
図 1 0は、 本発明の実施形態による対物レンズの数値実施例である。  FIG. 10 is a numerical example of the objective lens according to the embodiment of the present invention.
図 1 1は、 本発明の実施形態による対物レンズおける球面収差量と回折領 域を持たない非球面形状のみで構成した対物レンズにおける球面収差を比較 した図である。  FIG. 11 is a diagram comparing the amount of spherical aberration in the objective lens according to the embodiment of the present invention with the spherical aberration in the objective lens constituted only by the aspherical shape having no diffraction area.
図 1 2は、 本発明の実施形態による対物レンズにおける球面収差を示す。 図 1 3は、 従来の光ピックアップシステムを示す。  FIG. 12 shows spherical aberration in the objective lens according to the embodiment of the present invention. Fig. 13 shows a conventional optical pickup system.
図 1 4は、 半導体レーザー素子アレイを用いた従来の光ピックアップシス テムを示す。 図 1 5は、 プレーズド形状における回折効率の計算結果を示す。 Fig. 14 shows a conventional optical pickup system using a semiconductor laser element array. FIG. 15 shows the calculation results of the diffraction efficiency in the placed shape.
図 1 6は、 最適傾け量を説明する図である。  FIG. 16 is a diagram for explaining the optimum tilt amount.
図 1 7は、 本発明の実施形態による対物レンズの設計方法を示す流れ図で ある。  FIG. 17 is a flowchart showing a method of designing an objective lens according to an embodiment of the present invention.
図 1 8は、 本発明の実施形態による対物レンズにおける格子部の形状の設 計方法を示す流れ図である。  FIG. 18 is a flowchart showing a method for designing the shape of the grating portion in the objective lens according to the embodiment of the present invention.
図 1 9は、 本発明の実施形態による回折部の形状(階段数 N = 2 )を示す。 図 2 0は、 本発明の実施形態による回折部の形状(階段数 N == 3 )を示す。 図 2 1は、 本発明の実施形態による対物レンズの光路を示す。  FIG. 19 shows the shape (the number of steps N = 2) of the diffraction portion according to the embodiment of the present invention. FIG. 20 shows the shape (the number of steps N == 3) of the diffraction section according to the embodiment of the present invention. FIG. 21 shows an optical path of the objective lens according to the embodiment of the present invention.
図 2 2は、 本発明の実施形態による対物レンズの球面収差を示す。  FIG. 22 shows the spherical aberration of the objective lens according to the embodiment of the present invention.
図 2 3は、 本発明の実施形態による対物レンズの点像強度分布(P S F )を 示す。  FIG. 23 shows a point image intensity distribution (P S F) of the objective lens according to the embodiment of the present invention.
図 2 4は、 本発明の別の実施形態による回折部の形状(階段数 N = 2 )を示 す。  FIG. 24 shows the shape (the number of steps N = 2) of the diffraction section according to another embodiment of the present invention.
図 2 5は、 本発明の別の実施形態による対物レンズの光路を示す図。  FIG. 25 is a diagram showing an optical path of an objective lens according to another embodiment of the present invention.
図 2 6は、 波長に対する、 1次回折光および 2次回折光の回折効率を示す 図 2 7は、 本発明の対物レンズの設計方法の流れ図を示す。  FIG. 26 shows the diffraction efficiency of the first-order diffracted light and the second-order diffracted light with respect to the wavelength. FIG. 27 shows a flow chart of the objective lens designing method of the present invention.
図 2 8は、 本発明の 1実施形態の対物レンズによる B D用光線の光路図を 示す。  FIG. 28 shows an optical path diagram of a BD light beam by the objective lens according to one embodiment of the present invention.
図 2 9は、 本癸明の 1実施形態の対物レンズによる D V D用光線の光路図 を示す。  FIG. 29 shows an optical path diagram of a DVD light beam by the objective lens of one embodiment of the present invention.
図 3 0は、 本発明の 1実施形態の対物レンズによる C D用光線の光路図を 示す。  FIG. 30 shows an optical path diagram of a CD light beam by the objective lens according to one embodiment of the present invention.
図 3 1は、 本発明の 1実施形態の対物レンズによる B D用光線の強度分布 図を示す。  FIG. 31 shows an intensity distribution diagram of a BD light beam by the objective lens according to one embodiment of the present invention.
図 3 2は、 本発明の 1実施形態の対物レンズによる D V D用光線の強度分 布図を示す。  FIG. 32 shows an intensity distribution diagram of a DVD light beam by the objective lens according to one embodiment of the present invention.
図 3 3は、 本発明の 1実施形態の対物レンズによる C D用光線の強度分布 図を示す。 図 3 4は、 本発明の他の実施形態の対物レンズによる B D用光線の光路図 を示す。 FIG. 33 shows an intensity distribution diagram of a CD light beam by the objective lens according to one embodiment of the present invention. FIG. 34 shows an optical path diagram of a light beam for BD by an objective lens according to another embodiment of the present invention.
図 3 5は、 本発明の他の実施形態の対物レンズによる D V D用光線の光路 図を示す。  FIG. 35 shows an optical path diagram of a DVD light beam by an objective lens according to another embodiment of the present invention.
図 3 6は、 本発明の他の実施形態の対物レンズによる B D用光線の強度分 布図を示す。  FIG. 36 shows an intensity distribution diagram of a BD light beam by an objective lens according to another embodiment of the present invention.
図 3 7は、 本発明の他の実施形態の対物レンズによる D V D用光線の強度 分布図を示す。  FIG. 37 shows an intensity distribution diagram of a DVD light beam by the objective lens according to another embodiment of the present invention.
図 3 8は、 本発明の回折光学素子の設計手順を示す流れ図である。  FIG. 38 is a flowchart showing the procedure for designing the diffractive optical element of the present invention.
図 3 9は、 本発明の回折光学素子の設計手順を示す流れ図である。  FIG. 39 is a flowchart showing the procedure for designing the diffractive optical element of the present invention.
図 4 0は、 回折光の振る舞いを示す概念図である。  FIG. 40 is a conceptual diagram showing the behavior of the diffracted light.
図 4 1は、 本発明および従来の回折光学素子における格子周期と回折効率 との関係を示す。  FIG. 41 shows the relationship between the grating period and the diffraction efficiency in the present invention and the conventional diffractive optical element.
図 4 2は、 本発明の回折光学素子の断面形状と 1次回折効率を示す。  FIG. 42 shows the cross-sectional shape and the first-order diffraction efficiency of the diffractive optical element of the present invention.
図 4 3は、 本発明の回折光学素子における開口数と回折効率との関係を示 す。  FIG. 43 shows the relationship between the numerical aperture and the diffraction efficiency in the diffractive optical element of the present invention.
図 4 4は、 本発明の特殊形状の回折格子を示す図である。 発明を実施するための最良の形態  FIG. 44 is a diagram showing a diffraction grating having a special shape according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明による対物レンズの、 光ピックアップシステムに使用される 1 実施 形態について、 図 1を参照しながら説明する。  One embodiment of an objective lens according to the present invention used in an optical pickup system will be described with reference to FIG.
半導体レーザー 1 より発した光線 6a は可視赤色波長を持ち、 この光線は立 ち上げミラー 2 により光軸方向を変えられる。 つぎに、 半導体レーザー 1 より 発した光線 6a を平行光に変換する素子 3 (例えばコリメータレンズ) を通過 することにより、 光線は平行光となる。 さらに、 対物レンズ 4a を通過後、 厚 みの薄い光記録媒体 5a (DVD) に集光する。  The light beam 6a emitted from the semiconductor laser 1 has a visible red wavelength, and this light beam can be changed its optical axis direction by the rising mirror 2. Next, the light beam 6a emitted from the semiconductor laser 1 passes through an element 3 (for example, a collimator lens) that converts the light beam 6a into a parallel light, so that the light becomes a parallel light. Further, after passing through the objective lens 4a, the light is focused on a thin optical recording medium 5a (DVD).
半導体レーザー 1 より発した光線 6b は近赤外波長であり、 この光線は立ち 上げミラー 2 により光軸方向を変えられる。 つぎに、 半導体レーザー 1 より発 した光線 6bを略平行光に変換する素子 3を通過することにより、 光線は略平 行光となる。 さらに、 対物レンズ 4b を通過後、 厚みの厚い光記録媒体 5b ( CD) に集光する。 The light beam 6b emitted from the semiconductor laser 1 has a near-infrared wavelength, and this light beam can be changed its optical axis direction by the rising mirror 2. Next, the light beam 6b emitted from the semiconductor laser 1 passes through the element 3 for converting the light beam into substantially parallel light, so that the light beam becomes substantially parallel light. Further, after passing through the objective lens 4b, the thick optical recording medium 5b ( Focus on CD).
光記録媒体上に集光されるレーザー光線は、 ほぼ回折限界の集光能力が必 要となり波面収差量として 0.07 : RMS 以下でなければならない。 更に DVD においては 0.035 L RMS以下が好ましい。  The laser beam condensed on the optical recording medium must have a light-condensing ability that is almost diffraction-limited, and the wavefront aberration amount must be 0.07: RMS or less. Further, for DVD, 0.035 L RMS or less is preferable.
半導体レーザー 1は 2つの異なる波長を発する半導体レーザー素子アレイで あってもよい。 通常 DVDに使用される半導体レーザーは可視赤色の波長を持 ち、 CD に使用される半導体レーザーは近赤外の波長を持つ。 ここで、 6a の 光線は可視赤色の波長 (例えば 660nm) であり、 6bの光線は近赤外の波長 ( 例えば 780nm) である。  The semiconductor laser 1 may be an array of semiconductor laser elements emitting two different wavelengths. Semiconductor lasers commonly used in DVDs have visible red wavelengths, and semiconductor lasers used in CDs have near infrared wavelengths. Here, the light beam 6a has a visible red wavelength (for example, 660 nm), and the light beam 6b has a near-infrared wavelength (for example, 780 nm).
本発明による対物レンズ 4a、 4bは共通の対物レンズであるが、 波長の違い およぴ光記録媒体の厚みの違いにより対物レンズ 4a、 4bが光軸方向に移動し て示されている。  Although the objective lenses 4a and 4b according to the present invention are common objective lenses, the objective lenses 4a and 4b are shown moving in the optical axis direction due to the difference in wavelength and the difference in thickness of the optical recording medium.
薄い厚みを持つ光記録媒体 (例えば 0.6mmの厚みを持つ DVD) に集光す る開口数は 0.6、 厚い厚みを持つ光記録媒体 (例えば 1.2m mの厚みを持つ CD) に集光する開口数は、 略 0.45となっている。 また回折格子部は対物レン ズの光記録媒体側に配置してある。  The numerical aperture for focusing on a thin optical recording medium (eg, a DVD with a thickness of 0.6 mm) is 0.6, and the numerical aperture for focusing on a thick optical recording medium (eg, a CD with a thickness of 1.2 mm) Is approximately 0.45. The diffraction grating section is arranged on the optical recording medium side of the objective lens.
上記の実施形態は、 半導体レーザーと半導体レーザーの光線を光記録媒体 に集光させる対物レンズの間に半導体レ一ザ一の光線を平行にするコリメ一 タレンズを使用しているが、 本発明は、 図 2に示すようなコリメータレンズ を除いた共役レンズにも適用できる。  In the above embodiment, a collimator lens for making the light of the semiconductor laser parallel between the semiconductor laser and the objective lens for condensing the light of the semiconductor laser on the optical recording medium is used. Also, the present invention can be applied to a conjugate lens excluding the collimator lens as shown in FIG.
図 3は本発明の 1 実施形態における回折格子部を含む対物レンズの、 光記 録媒体側のレンズ面形状を示す。 対物レンズ光記録媒体側の形状は回折部を 有しない中心領域、 すなわち第 1領域と、 回折部を有しない中心領域を取り 卷く回折領域、 すなわち第 2領域と、 さらにその回折領域を取り巻く回折部 を有しない領域、 すなわち第 3領域に分割される。 それぞれの領域は、 非球 面形状であり、 それぞれの領域の非球面形状は異なっている。  FIG. 3 shows a lens surface shape on the optical recording medium side of an objective lens including a diffraction grating portion according to one embodiment of the present invention. The shape of the objective lens optical recording medium side is a central region having no diffraction portion, that is, a first region, a diffraction region surrounding the central region having no diffraction portion, that is, a second region, and diffraction surrounding the diffraction region. It is divided into a region having no part, that is, a third region. Each region has an aspheric shape, and the aspheric shape of each region is different.
それぞれの領域における非球面形状は以下の数式で表される、 _ +Υ The aspherical shape in each area is represented by the following formula, _ + Υ
Figure imgf000019_0001
04762
Figure imgf000019_0001
04762
18 図 4は回折部領域の基板を平面とした場合の回折格子の形状のみ示をしてい る。 階段形状の回折格子を 1 つの周期内で位相関数に合わせ階段の幅を可変 としている。  18 Figure 4 shows only the shape of the diffraction grating when the substrate in the diffraction area is flat. The width of the staircase is variable according to the phase function of the staircase-shaped diffraction grating within one period.
回折格子の形状を決定する位相関数は以下の数式で表される。 ≠f) = C 2 + C2r4 + C3r6 + C4r8 + 位相関数を上記の式によって設定した場合の光線追跡の式は、 光線の X方向 余弦を 1、 y方向余弦を mとすると、 The phase function that determines the shape of the diffraction grating is represented by the following equation. ≠ f) = C 2 + C 2 r 4 + C 3 r 6 + C 4 r 8 + When the phase function is set according to the above equation, the ray tracing equation is 1 in the cosine of the ray in the X direction and 1 in the y direction. Is m,
, λ δφ  , λ δφ
/―  / ―
2π ox λ φ  2π ox λ φ
m = - m =-
2π oy 2π oy
となる。 CD 用の光線の収差を極小化するように光線追跡によって式の係数を 決定することによつて位相関数が決定される。 It becomes. The phase function is determined by determining the coefficients of the equation by ray tracing so as to minimize the aberration of the light beam for CD.
このように、 DVD、 CDなどの厚みの異なる光記録媒体に記録、 または再生 を行う本発明による対物レンズにおいては、 球面収差が増大する領域に対し 非球面形状を変更するとともに、 回折格子による回折の効果を使用して収差 補正をおこなっている。  As described above, in the objective lens according to the present invention that records or reproduces data on optical recording media having different thicknesses such as DVDs and CDs, the aspherical shape is changed for the region where the spherical aberration increases, and the diffraction by the diffraction grating is performed. Aberration correction is performed using the effect described above.
本発明による対物レンズの設計手順を図 5の流れ図に基づいて説明する。 図 5のステツプ S5010において対物レンズの面における第 1、 第 2および第 3 領域を定める。 第 1領域は DVD、 CD共用領域である。 第 1領域は、 回折 格子構造を持たないのでエネルギーロスが発生しない。 したがって、 第 1領 域をできるだけ大きくとるのが望ましい。 このため、 DVD、 CDの収差量 を確認しながら、 収差量を許容値まで認めるように第 1領域をできるだけ大 きく定める。 第 1領域を通過する光線が光記録媒体に集光する開口数を NA1と すると NA1は、 NA1 0.37であるのが好ましい。 C D用の光線は第 1および第 2領域のみを通過するので、 第 2領域の外径は、 CDに対して記録、 再生を 行うのに必要な開口数(NA)から定める。 CDの仕様によるが、 NAは0. 3-0. 5 1の範囲である。 第 3領域の外径は、 DVDに対して記録、 再生を 行うのに必要な開口数(NA)から定める。 DVDの仕様によるが、 NAは 0 . 4-0. 6 7の範囲である。 The design procedure of the objective lens according to the present invention will be described based on the flowchart of FIG. In step S5010 of FIG. 5, first, second and third regions on the surface of the objective lens are determined. The first area is a DVD and CD shared area. Since the first region does not have a diffraction grating structure, no energy loss occurs. Therefore, it is desirable to make the first area as large as possible. For this reason, the first area is set as large as possible so that the amount of aberration is allowed to an allowable value while checking the amount of aberration of DVD and CD. Assuming that the numerical aperture at which the light beam passing through the first area is focused on the optical recording medium is NA1, NA1 is preferably NA1 0.37. Since the light beam for the CD passes only through the first and second areas, the outer diameter of the second area is determined by the numerical aperture (NA) required for recording and reproducing the CD. Depending on the specification of the CD, NA is in the range of 0.3-0.5. The outer diameter of the third area is determined by the numerical aperture (NA) required for recording and reproducing to and from DVD. NA is 0, depending on DVD specifications The range is 4-0.
ステップ S5020において、 第 1領域におけるレンズ面形状を設計する。 第 1 領域は DVD、 CD共用領域であるので、 DVD用光線、 CD用光線の双方 の光路、 収差を考慮してレンズ面形状を定める。  In step S5020, the lens surface shape in the first area is designed. Since the first area is a common area for DVD and CD, the lens surface shape is determined in consideration of the optical path and aberration of both DVD light and CD light.
ステップ S5030において、 第 2領域におけるレンズ面形状を設計する。 本実 施形態において第 2領域におけるレンズ面形状は、 D V D用光線のみの光路 In step S5030, the lens surface shape in the second area is designed. In this embodiment, the lens surface shape in the second area is the optical path of only the DVD light beam.
、 収差を考慮して定める。 Determined in consideration of aberration.
ステップ S5040において、 第 2領域における回折部の形状を設計する。 回折 部の形状設計については、 後で詳細に説明する。  In step S5040, the shape of the diffraction section in the second area is designed. The shape design of the diffraction section will be described later in detail.
ステップ S5050において、 第 3領域におけるレンズ面形状を設計する。 第 3 領域は、 DVD専用領域であるので、 第 3領域におけるレンズ面形状は、 D In step S5050, the lens surface shape in the third area is designed. Since the third area is a DVD-only area, the lens surface shape in the third area is D
VD用光線のみの光路、 収差を考慮して定める。 Determined in consideration of the optical path and aberration of only the VD light beam.
本発明による対物レンズの第 2領域における回折部の形状設計について、 図 6の流れ図に基づいて説明する。 ここで、 DVD用光線の波長は、 たとえ ば、 655 nm、 CD用光線の波長は、 たとえば、 790 n mとする。 ステップ The design of the shape of the diffraction portion in the second region of the objective lens according to the present invention will be described with reference to the flowchart of FIG. Here, the wavelength of the light beam for DVD is, for example, 655 nm, and the wavelength of the light beam for CD is, for example, 790 nm. Steps
S6010において、 CD用光線の光路を補正するように光路差関数または位相関 数を定める。 本実施形態においては、 第 2領域におけるレンズ面形状は、 DIn S6010, an optical path difference function or a phase correlation number is determined so as to correct the optical path of the CD light beam. In the present embodiment, the lens surface shape in the second area is D
VD用光線のみの光路、 収差を考慮して定めているので、 CD用光線の光路 を位相関数によつて補正する。 Since the optical path and aberration of only the VD light beam are taken into consideration, the optical path of the CD light beam is corrected using a phase function.
ステップ S6020において、 DVD用光線を 0次回折光として、 DVD用光線 の波長 (たとえば、 655nm) から、 階段形状格子部の段差量( 1段当り)を求 める。 DVD用光線を 0次回折光としているので、 段差量は、 当該波長をえ。 In step S6020, the step amount (per step) of the staircase-shaped grating portion is determined from the wavelength of the DVD light beam (for example, 655 nm), using the DVD light beam as the 0th-order diffracted light. Since the light beam for DVD is the 0th-order diffracted light, the step amount is the wavelength.
、 レンズの屈折率を n、 レンズの周囲の屈折率を n。として、 λ 0/ (η— η。The refractive index of the lens is n and the refractive index around the lens is n. As λ 0 / (η—η.
) の整数倍である。 本実施形態において η= 1. 5407、 η。= 1である。 ステップ S6030において、 階段数を Ν、 正の整数を mとして、 1次回折光に おける任意のピーク波長 λ 2を、 回折格子形状が右上がり形状を持つ場合は lz = W (Nra+1) X λ0 とし、 回折格子形状が左上がりの形状を持つ場合は 2 ). In the present embodiment, η = 1.5407, η. = 1. In step S6030, assuming that the number of steps is Ν and a positive integer is m, an arbitrary peak wavelength λ 2 in the first-order diffracted light is obtained.If the diffraction grating shape has an upward-sloping shape, l z = W (Nra + 1) X λ 0 , and if the diffraction grating shape has a shape that rises to the left, Two
20  20
X2=N/(Nm-l) X X0 として求める。 上記の式はデータ分析とデータ解析により経験的に求めたも のである。 · X 2 = N / (Nm-l) XX 0 The above equation was empirically obtained by data analysis and data analysis. ·
本実施形態は、 図 4に示すように回折格子形状が左上がりの形状を持つので 、 後の式を使用する。 0次回折光波長をえ。、 レンズの屈折率を n、 レンズの 周囲の屈折率を n。として、 段差量をえ。 (n— n0) とし、 正の整数を m = 1として、 N= 5、 6、 7、 8とした場合の結果を図 7に示した表の 1乃至 4行目に示す。 1次回折光のピーク波長(単位 nm)は、 それぞれ、 818. 75、 786、 764. 17、 748. 57となる。 また、 0次回折光波長を L 0、 レンズの屈折 率を η、 レンズの周囲の屈折率を η。として、 段差量をえ。/ (η— η 0) の 2 倍とし、 正の整数を πι= 1として、 Ν= 3、 4、 5、 6とした場合の結果を 図 7の 5乃至 8行目に示す。 1次回折光のピーク波長(単位 nm)は、 それぞ れ、 786、 748. 57、 727. 78、 714. 55となる。 In the present embodiment, the following equation is used because the shape of the diffraction grating has an upward-sloping shape as shown in FIG. Obtain the 0th order diffracted light wavelength. The refractive index of the lens is n and the refractive index around the lens is n. As a step amount. (n−n 0 ), the positive integer is m = 1, and the results when N = 5, 6, 7, 8 are shown in the first to fourth rows of the table shown in FIG. The peak wavelengths (unit: nm) of the first-order diffracted light are 818.75, 786, 764.17, and 748.57, respectively. Also, the 0th-order diffracted light wavelength is L 0 , the refractive index of the lens is η, and the refractive index around the lens is η. As a step amount. The result when (= 3, 4, 5, and 6 is set to 倍 = 3, 4, 5, and 6 when the positive integer is πι = 1 and the result is twice as large as / (η−η 0 ). The peak wavelengths (unit: nm) of the first-order diffracted light are 786, 748.57, 727.78, and 714.55, respectively.
ステップ S6040において、 上記のように求めたピーク波長 λ cが、 他方の C D用光線の波長; I k (たとえば、 790nm) に十分近いか判断する。 具体的に は、 1次回折光ピーク誤差として以下の式を計算する。  In step S6040, it is determined whether the peak wavelength λ c obtained as described above is sufficiently close to the other CD light wavelength; I k (for example, 790 nm). Specifically, the following equation is calculated as the first-order diffracted light peak error.
I ( λ k—ん c ) /' λ k I 図 7に示した表の第 1行目から第 8行目のうち、 第 2行目と第 5行目の 1 次回折光ピーク誤差が小さレ、(たとえば、 1 %以下)ので、 階段数は 6段(0次 回折光波長をえ。、 レンズの屈折率を n、 レンズの周囲の屈折率を n。として 、 段差量がぇ。/ (n— n。) の 1倍の場合)、 または 3段( 0次回折光波長を え。、 レンズの屈折率を n、 レンズの周囲の屈折率を n。として、 段差量が λ 0 / (η— η0) の 2倍の場合)となる。 このように階段形状の段差量および階 段数は、 CD用光線おょぴ DVD用光線の波長に基づいて定められる。 I (λ k-n c) / 'λ k I Of the first to eighth rows of the table shown in FIG. 7, the first-order diffracted light peak errors in the second and fifth rows are small. , (For example, 1% or less), so that the number of steps is six (the zero-order diffracted light wavelength is obtained. The refractive index of the lens is n, the refractive index around the lens is n, and the step amount is ぇ ./ ( n-n.), or three steps (obtain the 0th-order diffracted light wavelength, the refractive index of the lens is n, and the refractive index around the lens is n.) and the amount of step is λ 0 / (η — Twice of η 0 )). As described above, the step amount and the number of steps of the staircase shape are determined based on the wavelength of the light beam for CD and the light beam for DVD.
上記のピーク誤差の許容範囲は、 回折効率のピーク付近の波長と回折効率 との関係から定める。 一般的に、 回折効率のピーク値からの低下を約 20% 許容する場合に、 上記のピーク誤差の許容範囲は、 2段回折格子の場合に 1 0乃至 1 5%、 3段回折格子の場合に 4乃至 8 %、 4段回折格子の場合に 2 乃至 7 %、 5段回折格子の場合に 2乃至 5 ° /。の範囲である。 The allowable range of the above peak error is determined from the relationship between the wavelength near the diffraction efficiency peak and the diffraction efficiency. In general, when the diffraction efficiency is allowed to fall from the peak value by about 20%, the allowable range of the above peak error is 10 to 15% for a two-stage diffraction grating, and for a three-stage diffraction grating. 4 to 8%, 2 for 4-stage grating ~ 7%, 2 ~ 5 ° / for a 5-stage grating. Range.
図 7において最適傾け量 (t l ) とは、 図 1に示すように回折格子母線に対 する傾け量を示す。 回折格子母線に対して 2 X t 1傾ける。 これにより、 1次 回折光および- 1次回折光の効率バランスを調整する。 最適傾け量 ( t 1 ) の 値は、 たとえば 0次回折光のピーク波長の 1 / 2とする。  In FIG. 7, the optimum tilt amount (t l) indicates the tilt amount with respect to the diffraction grating bus as shown in FIG. Tilt by 2 X t 1 with respect to the grating bus. Thereby, the efficiency balance between the first-order diffracted light and the -1st-order diffracted light is adjusted. The value of the optimum tilt amount (t 1) is, for example, 1 of the peak wavelength of the zero-order diffracted light.
ステップ S6050において、 図 4に示すように、 段差量から位相関数の形状に 基づいて階段の幅を定める。 すなわち、 階段形状の回折格子を 1つの周期内 で位相関数に合わせ階段の幅を可変としている。  In step S6050, as shown in FIG. 4, the width of the stair is determined from the amount of the step based on the shape of the phase function. That is, the width of the staircase is made variable by matching the staircase-shaped diffraction grating with the phase function within one period.
ステップ S6060において、 回折部に入射する光線の角度を考慮し、 上記の手 順によつて求めた回折格子形状を基準として回折格子深さを再計算する。 具 体的に、 入射角を eとして、 上記で求めた段差量に cos Θを乗じた値を基準と して入射角に対応した新たな段差量を求める。 段差量に (階段数一 1 ) を乗 じたものが回折格子深さである。  In step S6060, the diffraction grating depth is recalculated based on the diffraction grating shape obtained by the above procedure, taking into account the angle of the light beam incident on the diffraction section. Specifically, assuming that the incident angle is e, a new step amount corresponding to the incident angle is obtained based on a value obtained by multiplying the step amount obtained above by cosΘ. The depth of the diffraction grating is obtained by multiplying the amount of step by (the number of steps is 1).
上記のように本実施形態においては、 第 2領域において D V D用光線の光 路、 収差に基づいてレンズ面形状を求め、 C D用光線の光路、 収差を位相関 数によって捕正した。 他の実施形態として、 第 2領域において C D用光線の 光路、 収差に基づいてレンズ面形状を求め、 D V D用光線の光路、 収差を位 相関数によって補正してもよい。  As described above, in the present embodiment, the lens surface shape is determined based on the optical path and aberration of the DVD light beam in the second region, and the optical path and aberration of the CD light beam are corrected by the phase correlation number. As another embodiment, the lens surface shape may be determined based on the optical path and aberration of the CD light beam in the second area, and the optical path and aberration of the DV light ray may be corrected by the position correlation number.
図 8は、 本実施形態の設計方法によって求めた回折格子形状の回折効率を ベク トル計算で計算.した結果のグラフである。 このグラフは X-軸に波長をと り、 Y-軸に回折効率をとつている。 D V D用光線の波長 655 n mにおける 0次 回折光の回折効率おょぴ C D用光線の波長 790 n mにおける一 1次回折光の回 折効率は、 それぞれ約 8 3 %強および約 6◦%強で、 高い回折効率が得られ ていることがわかる。 なお、 本実施形態において回折部に入射する光線の角 度を 1 8度、 回折格子階段数は 5段、 回折格子深さは 4 . とした。 な お、 上述のとおりピーク波長の点から階段数は 6段が最適であるが、 他の次 数を含めた総合的な回折効率および加工性などを考慮して 5段とした。  FIG. 8 is a graph showing the result of calculating the diffraction efficiency of the diffraction grating shape obtained by the design method of the present embodiment by vector calculation. This graph plots wavelength on the X-axis and diffraction efficiency on the Y-axis. The diffraction efficiency of the 0th-order diffracted light at the wavelength of 655 nm for DVD light is approximately 83% and slightly more than 6◦%, respectively, for the CD light at 790 nm. It can be seen that high diffraction efficiency is obtained. In the present embodiment, the angle of the light beam incident on the diffraction section is 18 degrees, the number of steps of the diffraction grating is 5, and the depth of the diffraction grating is 4. As described above, the optimal number of steps is 6 from the point of the peak wavelength, but the number is set to 5 considering the overall diffraction efficiency and workability including other orders.
(数値実施例 1)  (Numerical example 1)
図 9および図 1 0に本実施形態における対物レンズの数値実施例を示す。 ここで示されている 1 実施形態は、 半導体レーザーと対物 (Pick Up) レン ズの間に半導体レーザーからの光線を平行光に変換するコリメータ ( Collimator) レンズが配置されている。 図 9において、 APL は、 環状ォレフ インコポリマーを示し、 PC はポリカーボネートを示す。 図 1 0の非球面係数 の近軸 Rは、 非球面形状を表わす上記の数式における近軸半径 l Zcを示し、' conicは、 定数 kを示す。 9 and 10 show numerical examples of the objective lens according to the present embodiment. One embodiment shown here is a laser diode and a pick-up lens. A collimator lens that converts the light from the semiconductor laser into parallel light during scanning is arranged. In FIG. 9, APL indicates a cyclic olefin copolymer, and PC indicates polycarbonate. The paraxial R of the aspherical coefficient in FIG. 10 indicates the paraxial radius l Zc in the above equation representing the aspherical shape, and 'conic' indicates a constant k.
図 1 1に本発明の 1実施形態の球面収差と、 同一の条件で回折領域を持たな い非球面のみで構成された対物レンズの球面収差とを比較して示す。 図 1 1 の比較結果によれば本発明の 1実施形態の球面収差は非常に小さく、 光記録媒 体への記録、 あるいは再生に対し充分な光学特性を示している。 他方、 非球 面のみで構成した対物レンズを用いると光記録媒体への記録、 あるいは再生 に対しする規格値を超えていることがわかる。  FIG. 11 shows a comparison between the spherical aberration of one embodiment of the present invention and the spherical aberration of an objective lens composed of only an aspherical surface having no diffraction region under the same conditions. According to the comparison result of FIG. 11, the spherical aberration of the embodiment of the present invention is very small, and shows sufficient optical characteristics for recording or reproducing on an optical recording medium. On the other hand, it can be seen that the use of an objective lens composed of only an aspherical surface exceeds the standard value for recording or reproduction on an optical recording medium.
図 1 2は、 本発明の 1 実施形態における球面収差のグラフを示す。 上の 2 図は、 厚みの薄い光記録媒体 (DVD) に対する球面収差、 厚みの厚い光記録 媒体 (CD) に対する球面収差を示す。 縦軸はレンズ高さ (瞳半径) 、 横軸は 対応するレンズ高さにおける収差を示す。 下の図は、 厚みの厚い光記録媒体 (CD) に対し、 厚みの薄い光記録媒体へ記録、 再生を行うために必要な開口 数を与えた場合の球面収差を示す。 縦軸は開口数、 横軸は対応する開口数に おける収差を示す。 厚みの厚い光記録媒体 (CD) に必要な開口数に対応する レンズ領域の外側を通過する光線の球面収差は急峻に増大しており、 厚みの 厚い光記録媒体上でフレア光となっており、 集光していないことを示してい る。  FIG. 12 shows a graph of spherical aberration in one embodiment of the present invention. The two figures above show the spherical aberration for a thin optical recording medium (DVD) and the spherical aberration for a thick optical recording medium (CD). The vertical axis indicates the lens height (pupil radius), and the horizontal axis indicates the aberration at the corresponding lens height. The figure below shows the spherical aberration of a thick optical recording medium (CD) given the numerical aperture necessary for recording and reproducing on a thin optical recording medium. The vertical axis shows the numerical aperture, and the horizontal axis shows the aberration at the corresponding numerical aperture. The spherical aberration of light passing outside the lens area corresponding to the numerical aperture required for a thick optical recording medium (CD) increases sharply, and becomes flare light on a thick optical recording medium. , Indicating that no light was collected.
本発明の 1 実施形態における対物レンズは、 材料として環状ォレフィンコ ポリマーを使用している力、 他のプラスチック材料によっても製造できる。 本発明の別の実施形態として、 C Dおよび D V D用の光ピックアップシス テムにおける対物レンズを対象として以下に説明する。 第 1の光線は、 C D 用の波長 7 8 5 n mのレーザー光線、 第 2の光線は D V D用の波長 6 6 0 η mのレーザー光線とする。  The objective lens in one embodiment of the present invention can also be manufactured by force using a cyclic olefin copolymer as a material, or by other plastic materials. Another embodiment of the present invention will be described below for an objective lens in an optical pickup system for CD and DVD. The first light beam is a laser beam having a wavelength of 785 nm for CD, and the second light beam is a laser beam having a wavelength of 660 nm for DVD.
本発明の結像光学素子としての対物レンズの設計方法を図 1 7および図 1 8の流れ図に基づいて説明する。  A method for designing an objective lens as an imaging optical element according to the present invention will be described with reference to the flowcharts of FIGS.
図 1 7のステップ S 1 0 1 0において、 第 1およぴ第 2の光線の光路を考 慮して第 1領域および第 2領域におけるレンズ面形状を設計する。 なお、 第 2領域のレンズ面形状は、 第 2の光線の光路のみを考慮して結像面に集光す るように設計する。 第 1および第 2領域を有する面以外の面の面形状も同時 に設計する。 ここで、 第 1領域は光軸を含み、 たとえば光軸から一定の距離 以内であり、 第 1および第 2の光線を結像面に集光させる領域である。 第 1 領域の大きさは、 C Dに対する対物レンズ像側開口数から定める。 C Dに対 する対物レンズ像側開口数は、 たとえば、 0 . 4 5 7などである。 また、 第 2領域は、 第 1領域の周囲に存在し、 たとえば、 光軸から一定距離以内であ り、 第 1の光線を結像面に集光させないが第 2の光線を結像面に集光させる 領域である。 第 2領域の大きさは、 D V Dに対する対物レンズ像側開口数か ら定める。 D V Dに対する対物レンズ像側開口数は、 たとえば、 0 . 6 5 2 などである。 In step S1010 in Fig. 17, the optical paths of the first and second rays are considered. The lens surface shape in the first area and the second area is designed with due consideration. Note that the lens surface shape of the second region is designed so as to converge on the image forming surface in consideration of only the optical path of the second light beam. The surface shape of the surface other than the surface having the first and second regions is also designed at the same time. Here, the first region includes the optical axis, and is, for example, within a certain distance from the optical axis, and is a region where the first and second light beams are focused on the imaging surface. The size of the first area is determined by the numerical aperture on the image side of the objective lens for the CD. The numerical aperture on the objective lens image side for CD is, for example, 0.457. Further, the second region exists around the first region, and is, for example, within a certain distance from the optical axis, and does not focus the first light beam on the imaging surface, but transmits the second light beam on the imaging surface. This is the area where light is collected. The size of the second area is determined from the numerical aperture on the image side of the objective lens for the DVD. The numerical aperture on the objective lens image side for DVD is, for example, 0.652.
図 1 7のステップ S 1 0 2 0において、 第 1の光線すなわち C D用のレー ザ一光線を結像面に集光させないように第 2領域における回折部の形状を設 計する。 具体的に、 第 2領域を通過した場合に、 第 2の光線すなわち D V D 用のレーザー光線の大部分は、 0次回折光として回折部を通過し、 第 1の光 線の大部分は 1次以上または一 1次以下の回折光として回折部を通過するよ うに設計する。 0次回折光として回折部を通過した第 2の光線の大部分は、 レンズ面形状により光路を定められているので結像面に集光する。 1次以上 または一 1次以下の回折光として回折部を通過した第 1の光線の大部分は、 結像面に集光しない。 回折部の形状設計の詳細は、 図 1 8の流れ図に基づい て後で詳細に説明する。  In step S1020 in FIG. 17, the shape of the diffraction portion in the second region is designed so that the first light beam, that is, one laser beam for CD, is not converged on the image plane. Specifically, when passing through the second area, most of the second light beam, that is, the laser beam for DVD, passes through the diffracting portion as the 0th-order diffracted light, and most of the first light beam has the first or higher order. It is designed to pass through the diffraction section as diffracted light of 1st order or less. Most of the second light beam that has passed through the diffraction portion as the 0th-order diffracted light is condensed on the image plane because the optical path is determined by the lens surface shape. Most of the first light rays that have passed through the diffraction portion as first-order or first-order or less primary light do not converge on the image plane. The details of the shape design of the diffraction section will be described later in detail based on the flowchart of FIG.
なお、 上記の説明では、 第 2の光線すなわち D V D用のレーザー光線を結 像面に集光させるように第 2領域におけるレンズ面形状を設計し、 第 1の光 線すなわち C D用のレーザー光線を結像面に集光させないように第 2領域に おける回折部の形状を設計するとしたが、 第 1の光線すなわち C D用のレー ザ一光線を結像面に集光させないように第 2の領域におけるレンズ面形状を 設計し、 第 2の光線すなわち D V D用のレーザー光線を結像面に集光させる ように回折部の形状を設計してもよい。  In the above description, the lens surface shape in the second region is designed so that the second light beam, that is, the laser beam for DVD, is focused on the imaging surface, and the first light beam, that is, the laser beam for CD, is formed into an image. The shape of the diffractive portion in the second area was designed so as not to focus on the surface, but the lens in the second area was designed so that the first light beam, that is, one laser beam for CD, was not focused on the imaging surface. The surface shape may be designed, and the shape of the diffractive portion may be designed so that the second light beam, that is, the DVD laser beam, is focused on the imaging surface.
以下に、 図 1 8の流れ図に基づいて回折部の形状設計の詳細について説明 する。 第 2領域における回折部の形状は、 基板を平面とした場合に階段形状 である。 The details of the shape design of the diffraction section are described below based on the flowchart in Fig. 18. I do. The shape of the diffraction portion in the second region is a stepped shape when the substrate is a flat surface.
図 1 8のステップ S 2 0 1 0において、 第 1の光線すなわち CD用のレー ザ一光線は結像面に集光させないように、 回折部の形状を定める位相関数を 設計する。 XY Z直交座標系において、 光軸を Z軸としたときに、 位相関数 はたとえば以下の式で表現される。  In step S210 of FIG. 18, a phase function that determines the shape of the diffraction section is designed so that the first light beam, that is, one laser light beam for CD is not converged on the image plane. In the XYZ rectangular coordinate system, when the optical axis is set to the Z axis, the phase function is expressed by the following equation, for example.
^ = C2xA2 +C4xh4 +C6xh6 ^ = C2xA 2 + C4xh 4 + C6xh 6
ここで、 hは Z軸に垂直な平面内における Z軸からの距離であり、 h = ^jx2+y2 である。 位相関数を上記の式によって表現した場合の光線追跡の式は、 光線 の X方向余弦を 1 、 y方向余弦を inとすると、 以下の式で表現される。 Here, h is a distance from the Z axis in a plane perpendicular to the Z axis, and h = ^ jx 2 + y 2 . The ray tracing equation when the phase function is expressed by the above equation is expressed by the following equation, where the cosine in the X direction of the ray is 1 and the cosine in the y direction is in.
I λ δφ  I λ δφ
2π ox λ όφ  2π ox λ όφ
m =  m =
2π dy  2π dy
第 1の光線を結像面に集光させないように、 光線追跡によって上記の位相関 数の式における係数を決定する。 The coefficients in the above equation of the position correlation coefficient are determined by ray tracing so as not to focus the first ray on the image plane.
なお、 位相関数の形は、 後で数値実施例として示すように上記の式に限定 されない。  It should be noted that the form of the phase function is not limited to the above equation as will be described later as a numerical example.
つぎに、 ステップ S 2 0 2 0において、 階段形状の段差量を、 0次回折光 の回折効率が、 第 2の光線すなわち D V D用のレーザー光線の波長において ピークに近づくように定める。 具体的に、 段差量(1段当り)を 1 として、 以下 の式に基づいて 1を定める。  Next, in step S220, the step amount of the staircase shape is determined so that the diffraction efficiency of the 0th-order diffracted light approaches the peak in the wavelength of the second light beam, that is, the wavelength of the DVD laser light beam. Specifically, 1 is determined based on the following formula, assuming that the level difference (per step) is 1.
1 = λ 0 · cos θ / \ η—— n 0j .1 j 1 = λ 0 · cos θ / \ η—— n 0 j .1 j
ここで、 第 2の光線すなわち DVD用のレーザー光線を 0次回折光とするの で、 pを整数として ' Here, since the second light beam, ie, the laser beam for DVD, is the 0th-order diffracted light, p is an integer.
え。 = p · 6 6 0 nm ( 2)  e. = p66 nm (2)
である。 また、 0は、 回折部に対する入射角、 nは対物レンズの屈,折率、 n。 は対物レンズの周囲の屈折率である。 つぎに、 ステップ S 2030において、 以下の式から求めた波長; L iと、 第 1の波長、 すなわち CD用のレーザー光線の波長との差が所定の値以下とな るように階段数 Nを定める。 It is. Also, 0 is the angle of incidence with respect to the diffraction part, n is the refractive and refractive index of the objective lens, n. Is the refractive index around the objective lens. Next, in step S 2030, the number of steps N is determined so that the difference between the wavelength obtained from the following equation; L i and the first wavelength, that is, the wavelength of the laser beam for CD, is equal to or less than a predetermined value. .
λ i = [N/ (N · m+ α) ] - λ0 (3) λ i = [N / (Nm + α)]-λ 0 (3)
ここで、 mは任意の整数、 は 0次以外の回折次数である。 上記の式(3)は、 0次以外の回折次数ひのピーク波長を求める経験則に基づく式である。 え;が 第 1の波長と近づけば、 回折次数 のピーク波長が第 1の波長と近づく。 し たがって、 第 1の光線のエネルギーは、 回折次数 αの回折光で大きくなり、 0次回折光では 0に近づく。 Here, m is an arbitrary integer, and is a diffraction order other than the 0th order. Equation (3) above is an equation based on an empirical rule for finding peak wavelengths of diffraction orders other than the 0th order. When the wavelength approaches the first wavelength, the peak wavelength of the diffraction order approaches the first wavelength. Therefore, the energy of the first light beam increases in the diffracted light of the diffraction order α, and approaches 0 in the 0th-order diffracted light.
つぎに、 ステップ S 2040において、 位相関数、 段差量および階段数に 基づいて階段の幅を定める。  Next, in step S2040, the width of the steps is determined based on the phase function, the amount of steps, and the number of steps.
つぎに、 ステップ S 20 5 0において回折部による回折効率をべク トル計 算により求める。  Next, in step S205, the diffraction efficiency of the diffraction section is obtained by vector calculation.
ステップ S 20 6 0において、 回折効率が所望の範囲内であるか否かを判 断し、 所望の範囲内であれば終了する。 所望の範囲内でなければ、 種々のパ ラメータを調整しながらステップ S 2020乃至 S 2050を繰り返す。  In step S2060, it is determined whether or not the diffraction efficiency is within a desired range. If the diffraction efficiency is within the desired range, the process ends. If not, repeat steps S2020 to S2050 while adjusting various parameters.
ここで、 ステップ S 20 20および S 2 0 3 0を以下の数値例に基づいて 説明する。  Here, steps S2020 and S203 will be described based on the following numerical examples.
η = 1. 54  η = 1.54
n Q = 1. 0 n Q = 1.0
0 = 25度  0 = 25 degrees
ここで、 p = 3とすると、 上記の式(2)から  Here, if p = 3, from the above equation (2)
。 =3 · 660 = 1 980  . = 3660 = 1980
となる。 It becomes.
この値を、 式 (1) に代入して、  Substituting this value into equation (1) gives
1 = λ a · cos θ / κ η—— η 0 1 = λ a · cos θ / κ η-- η 0
= 1 980 - cos (π · 25/1 80) / ( 1. 54— 1. 0)  = 1 980-cos (π25 / 1 80) / (1.54—1.0)
= 3323  = 3323
このようにして 1段当りの段差量 3. 323 μηιが求まる。 In this way, the step difference per step 3.323 μηι is obtained.
え。の値を式(3)に代入し、 さらに m= 3 e. Into the equation (3), and m = 3
a=- l  a =-l
とすると、 N=2の場合に、 ' λ i= (2/5) - 1 980 = 792 Then, when N = 2, 'λ i = (2/5)-1 980 = 792
となる。 この値は、 第 1の波長すなわち CD用レーザー光線の波長 7 8 5 n mに非常に近い。 差は 7 nmであるので、 第 1の波長に対する比率 (ピーク 誤差) は 0. 8 9%である。 したがって、 _ 1次回折光は、 第 1の波長付近 でピークに近づく。 第 1の光線のエネルギーは、 一 1次回折光で大きくなる ので、 0次回折光では 0に近づくことが予想される。 すなわち、 0次回折光 は、 第 2の波長でピークに近づき、 第 1の波長では 0に近づく。 このように して階段数 N== 2が求まる。 たとえば、 上記の比率 (ピーク誤差) が 5%以 下となるようにして階段数を定めてもよい。 It becomes. This value is very close to the first wavelength, ie, the wavelength of the CD laser beam, 785 nm. Since the difference is 7 nm, the ratio (peak error) to the first wavelength is 0.89%. Therefore, the first-order diffracted light approaches a peak near the first wavelength. Since the energy of the first ray increases in the first-order diffracted light, it is expected to approach zero in the zero-order diffracted light. That is, the zero-order diffracted light approaches the peak at the second wavelength, and approaches zero at the first wavelength. In this way, the number of steps N == 2 is obtained. For example, the number of steps may be determined so that the above ratio (peak error) is 5% or less.
上記のピーク誤差の許容範囲は、 回折効率のピーク付近の波長と回折効率 との関係から定める。  The allowable range of the above peak error is determined from the relationship between the wavelength near the diffraction efficiency peak and the diffraction efficiency.
また、 P = 2とすると、 上記の式(2)から  Also, if P = 2, from the above equation (2)
λ。=2 · 6 60 = 1 320  λ. = 2 6 60 = 1 320
となる。 It becomes.
この値を、 式 (1) に代入して、  Substituting this value into equation (1) gives
1 = L 0 · cos Θ / \ n一 n 0 1 = L 0cos Θ / \ n one n 0
= 1 320 - cos (π - 25/1 80) / ( 1. 54- 1. 0)  = 1 320-cos (π-25/1 80) / (1.54-1.0)
= 22 1 5  = 22 1 5
このようにして 1段当りの段差量 2. 21 5 /zmが求まる。 In this way, 2.215 / zm, the level difference per step, is obtained.
λ。の値を式(3)に代入し、 さらに  λ. Into the equation (3), and
m= 2  m = 2
α =— 1  α = — 1
とすると、 Ν=3の場合に、 Then, when Ν = 3,
λ i = (3/5) · 1 320 = 792  λ i = (3/5) 1 320 = 792
となる。 この値は、 第 1の波長すなわち CD用レーザー光線の波長 7 8 5 n mに非常に近い。 差は 7 nmであるので、 第 1の波長に対する比率 (ピーク 誤差) は 0. 8 9%である。 したがって、 一 1次回折光は、 第 1の波長付近 でピークに近づく。 第 1の光線のエネルギーは、 一 1次回折光で大きくなる ので、 0次回折光では 0に近づくことが予想される。 すなわち、 0次回折光 は、 第 2の波長でピークに近づき、 第 1の波長では 0に近づく。 このように して階段数 N= 3が求まる。 たとえば、 上記の比率 (ピーク誤差) が 5%以 下となるようにして階段数を定めてもよい。 It becomes. This value is very close to the first wavelength, ie, the wavelength of the CD laser beam, 785 nm. Since the difference is 7 nm, the ratio (peak error) to the first wavelength is 0.89%. Therefore, the first-order diffracted light is near the first wavelength At the peak. Since the energy of the first ray increases in the first-order diffracted light, it is expected to approach zero in the zero-order diffracted light. That is, the zero-order diffracted light approaches the peak at the second wavelength, and approaches zero at the first wavelength. In this way, the number of steps N = 3 is obtained. For example, the number of steps may be determined so that the above ratio (peak error) is 5% or less.
上記のピーク誤差の許容範囲は、 回折効率のピーク付近の波長と回折効率 との関係から定める。  The allowable range of the above peak error is determined from the relationship between the wavelength near the diffraction efficiency peak and the diffraction efficiency.
上記の手順によって求めた回折部の格子形状を、 レンズ面の非球面形状と 組み合わせた場合と単独の場合について図 1 9および図 20に示す。 図 2 0 は、 階段数 N= 2の場合、 図 20は、 階段数 N= 3の場合である。  FIGS. 19 and 20 show the case where the grating shape of the diffraction section obtained by the above procedure is combined with the aspherical shape of the lens surface and the case where it is used alone. FIG. 20 shows the case where the number of steps is N = 2, and FIG. 20 shows the case where the number of steps is N = 3.
(数値実施例 2 )  (Numerical example 2)
本実施形態の数値実施例を図 2 1に基づいて説明する。 階段数 N= 2であ る。 光学配置を以下の表 1に示す。 表 1  A numerical example of the present embodiment will be described based on FIG. The number of steps is N = 2. The optical configuration is shown in Table 1 below. table 1
Figure imgf000029_0001
半導体レーザ一 (LD) 光源からのレーザー光線は、 DVD使用時には第 2の光線としてコリメートしたものを使用する。 CD使用時には、 対物レン ズ (表 1の第一レンズ)の絞り面から 48. 6 mmの距離からのものを使用する 。 必要に応じて、 対物レンズの手前にコリメートレンズを設ける。
Figure imgf000029_0001
The laser beam from the semiconductor laser (LD) light source is a collimated second beam when using DVD. When using a CD, use an objective lens (first lens in Table 1) at a distance of 48.6 mm from the stop surface. If necessary, provide a collimator lens before the objective lens.
対物レンズの中心面間距離は、 2. 2 mmである。 対物レンズの像側の面 から基板までの距離は、 DVDの場合に 0. 9 6 1 mm、 〇0の場合に1. 1 6 1 mmである。 基板の厚みは、 DVDの場合に 0. 6 mm、 CDの場合 に 1. 2 mmである。 対物レンズの像側開口数 (NA) は、 DVDの場合に 0. 6 5 2、 。0の場合に0. 4 5 7である。 また、 対物レンズの焦点距離 は、 DVDの場合に 2. 7 4、 CDの場合に 2. 7 5である。 The center-to-center distance of the objective lens is 2.2 mm. The distance from the image side of the objective lens to the substrate is 0.961 mm for DVD and 1.161 mm for 〇0. Substrate thickness is 0.6 mm for DVD, and for CD To 1.2 mm. The image-side numerical aperture (NA) of the objective lens is 0.652 for DVD. It is 0.45 7 when it is 0. The focal length of the objective lens is 2.74 for DVD and 2.75 for CD.
対物レンズの光源側の面 (表 1 の絞り面) を複合非球面とする。 複合非球 面は、 光軸を中心とする 2個の同軸円によって区切られた 3個の面 j = 1、 2、 3である。 3個の面は、 以下の式および以下の表 2によって定義される 。 なお、 以下の式における hは、
Figure imgf000030_0001
によって定義される。
The surface on the light source side of the objective lens (the stop surface in Table 1) is a compound aspheric surface. The composite aspheric surface is three surfaces j = 1, 2, and 3 separated by two coaxial circles centered on the optical axis. The three faces are defined by the formula below and Table 2 below. Note that h in the following equation is
Figure imgf000030_0001
Defined by
z = A4j X h4 + A6j x h6 + ASj xhs + AlOj x h10 + d-
Figure imgf000030_0002
z = A4j Xh 4 + A6j xh 6 + ASj xh s + AlOj xh 10 + d-
Figure imgf000030_0002
ここで k j は、 曲面の形状を示す定数、 R j は中心曲率半径、 A 4 j乃至 A 1 0 jは、 補正係数である。 また、 d jは、 Z軸に沿った面のシフト量である 表 2における 2番目の面の面最内半径は、 DVDと C Dの収差状態を確認 しながら、 収差が所定の範囲に収まるようにできるだけ大きく定める。 3番 目の面の面最内半径は、 CDの像側開口数により定める。 Here, kj is a constant indicating the shape of the curved surface, Rj is the central radius of curvature, and A4j to A10j are correction coefficients. Also, dj is the shift amount of the surface along the Z axis.The innermost radius of the second surface in Table 2 is set so that the aberration is within a predetermined range while checking the aberration state of DVD and CD. Determine as large as possible. The innermost radius of the third surface is determined by the image-side numerical aperture of the CD.
JP2004/004762 JP2004 / 004762
29 表 2  29 Table 2
Figure imgf000031_0003
対物レンズの像側の面 (表 1 の 2面) を、 回折部を備えた特殊 DOE面と する。 この面の非球面を以下の式および表 3によって定義する。 z =
Figure imgf000031_0003
The surface on the image side of the objective lens (the two surfaces in Table 1) is a special DOE surface with a diffraction part. The aspheric surface of this surface is defined by the following equation and Table 3. z =
Figure imgf000031_0001
Figure imgf000031_0001
ここで kは、 曲面の形状を示す定数、 Rは中心曲率半径、 A4乃至 A 1 0は 、 補正係数である。 Here, k is a constant indicating the shape of the curved surface, R is the center radius of curvature, and A4 to A10 are correction coefficients.
表 3 Table 3
Figure imgf000031_0004
また、 回折部の位相関数を以下の式おょぴ表 4によって定義する,
Figure imgf000031_0002
Figure imgf000031_0004
The phase function of the diffraction part is defined by the following equation (Table 4).
Figure imgf000031_0002
.こで、 C 2、 C 4、 C 6は、 係数である。 表 4 Where C2, C4, and C6 are coefficients. Table 4
Figure imgf000032_0001
表 4において位相関数の内径とは、 対物レンズの像側の面において、 光軸 を含む第 1領域と、 第 1領域の周囲に設けられ、 回折部を有し、 したがって 位相関数によって形状が定まる第 2領域との境界と光軸との距離である。 位 相関数によって形状が定まる第 2領域の外縁は、 対物レンズの像側の面の有 効径によって定まる。
Figure imgf000032_0001
In Table 4, the inner diameter of the phase function is defined as the first area including the optical axis on the image side surface of the objective lens and the diffraction area provided around the first area, and the shape is determined by the phase function. This is the distance between the optical axis and the boundary with the second region. The outer edge of the second region whose shape is determined by the number of phase correlations is determined by the effective diameter of the image-side surface of the objective lens.
上記の数値実施例の適用結果を図 2 1乃至 2 3に示す。 図 2 1の上段は、 D V D用光線 (第 2の光線)の光路図である。 図 2 1の中段は、 C D用光線 (第 1の光線)を一 1次回折光とした場合の光路図である。 図 2 1の下段は、 C D 用光線 (第 1の光線)を 1次回折光とした場合の光路図である。 光路図より C D の光学系では像面上で波長選択回折格子によって必要像側開口数より外の光 線がフレアになっており、 また D V Dの光学系においては指定された開口数 において、 光線が像面において 1点に集光している。 このように、 波長選択 回折格子によって像側開口数の制御がなされていることがわかる。  FIGS. 21 to 23 show the application results of the above numerical examples. The upper part of FIG. 21 is an optical path diagram of a DVD light beam (second light beam). The middle part of FIG. 21 is an optical path diagram when the CD light beam (first light beam) is converted to first-order diffracted light. The lower part of FIG. 21 is an optical path diagram when the CD light beam (first light beam) is the first-order diffracted light. According to the optical path diagram, in the CD optical system, light rays outside the required image side numerical aperture flare on the image plane due to the wavelength selection diffraction grating, and in the DVD optical system, light rays are emitted at the specified numerical aperture. It is focused on one point on the image plane. Thus, it can be seen that the image-side numerical aperture is controlled by the wavelength selection diffraction grating.
図 2 2は球面収差図を示す。 球面収差図において横軸は光軸方向の距離、 縦軸は光線が入射瞳に入る高さを示し、 光線が光軸と交わる位置をプロット している。 図 2 2の上段は、 D V D用光線 (第 2の光線)の場合、 図 2 2の中段 は、 C D用光線 (第 1の光線)を一 1次回折光とした場合、 図 2 2の下段は、 C D用光線 (第 1の光線)を 1次回折光とした場合である。 D V Dの光学系におい て球面収差は略最適化されており、 系のパワーが大きくなつている。 C Dの 光学系において波長選択回折格子において 1次光を用いた場合も一 1次を用 いた場合も同様に、 必要像側開口数外の球面収差は大きくなつており、 C D の読取り、 書き込みに必要な像側開口数の分の光線だけを取り込んでいるこ とがわかる。 図 23は、 点像強度分布(P S F)を示す。 図 2 3の上段は、 DVD用光線( 第 2の光線)の場合、 図 2 3の中段は、 CD用光線 (第 1の光線)を一 1次回折 光とした場合、 図 23の下段は、 CD用光線 (第 1の光線)を 1次回折光とした 場合である。 DVD、 CDとも必要な像側開口数において収差は抑えられて いるので、 DVD、 CDに対し記録 ·再生を満足させる点像強度分布(P S F) を形成している。 集光スポット径及ぴサイ ドローブの数値については表 5に 示す。 サイドロープの値 (%)は、 P S F図におけるメインビームの高さに対す るサイ ドローブ高さの比率である。 表 5において、 回折格子が無い場合の集 光スポッ ト径は 1. 14であり、 CDの集光スポッ ト径より小さくなつてい る。 これに対して、 回折格子がある場合の集光スボット径は、 1. 44であ り、 CDの集光スポット径の仕様になっている。 表 5FIG. 22 shows a spherical aberration diagram. In the spherical aberration diagram, the horizontal axis represents the distance in the optical axis direction, the vertical axis represents the height at which the ray enters the entrance pupil, and the position where the ray intersects the optical axis is plotted. The upper part of Fig. 22 is for DVD light (second light), the middle part of Fig. 22 is for CD light (first light) as first-order diffracted light, and the lower part of Fig. 22 is In this case, the light beam for CD (first light beam) is the first-order diffracted light. In the optical system of DVD, the spherical aberration is almost optimized, and the power of the system is increased. Similarly, when the first-order light is used in the wavelength-selective diffraction grating and the first-order light is used in the optical system of the CD, the spherical aberration outside the required image-side numerical aperture is large, and the CD is read and written. It can be seen that only the required number of rays for the image-side numerical aperture are captured. Figure 23 shows the point spread function (PSF). The upper part of Fig. 23 is for DVD light (second light), the middle part of Fig. 23 is CD light (first light) as first-order diffracted light, and the lower part of Fig. 23 is This is the case where the CD light beam (first light beam) is the first-order diffracted light. Since the aberration is suppressed at the required image-side numerical aperture for both DVDs and CDs, a point image intensity distribution (PSF) that satisfies recording and reproduction for DVDs and CDs is formed. Table 5 shows the values of the focused spot diameter and sidelobe. The side rope value (%) is the ratio of the side lobe height to the main beam height in the PSF diagram. In Table 5, the diameter of the converging spot without the diffraction grating is 1.14, which is smaller than the converging spot diameter of the CD. On the other hand, the diameter of the converging spot with the diffraction grating is 1.44, which is the specification of the converging spot diameter of CD. Table 5
Figure imgf000033_0001
表 6に、 階段数 N = 2および 3の場合について、 第 1の波長 78 5 (腿)と 第 2の波長 6 6 0 (run)の光線の 0次及び土 1次での回折効率を示す。 たとえ ば、 階段数 N= 2の場合、 第 1の波長は、 1次および一 1次の回折光の回折 効率がそれぞれ 3 7 %であり、 0次の回折光の回折効率が 0 %である。 第 2 の波長は、 1次および _ 1次の回折光の回折効率がそれぞれ 0 %であり、 0 次の回折光の回折効率が 8 0 %である。 このように、 表 6の数値から、 第 1 および第 2の波長の間で次数の切替えが適切に行なわれていることがわかる 表 6
Figure imgf000033_0001
Table 6 shows the diffraction efficiencies of the light of the first wavelength 785 (thigh) and the light of the second wavelength 660 (run) in the 0th order and the 1st order of the soil for the number of steps N = 2 and 3. . For example, when the number of steps is N = 2, the first wavelength has a diffraction efficiency of 37% for the first-order and first-order diffracted light, and a diffraction efficiency of 0% for the 0th-order diffracted light. . In the second wavelength, the diffraction efficiencies of the first-order and _first-order diffracted lights are each 0%, and the diffraction efficiency of the zero-order diffracted light is 80%. Thus, the numerical values in Table 6 show that the order is properly switched between the first and second wavelengths. Table 6
Figure imgf000034_0001
Figure imgf000034_0001
(数値実施例 3 ) (Numerical example 3)
別の数値実施例として、 回折部の位相関数を以下の式および表 7によって 定義した場合には、 回折部の格子ピッチが等間隔となる。  As another numerical example, when the phase function of the diffraction unit is defined by the following equation and Table 7, the grating pitches of the diffraction unit are equally spaced.
Φ ( h ) = C X h Φ (h) = C X h
ここで、 Cは係数である。 表 7 Where C is a coefficient. Table 7
Figure imgf000034_0002
回折部の格子形状を、 レンズ面の非球面形状と組み合わせた場合と単独の 場合について図 2 4に示す。 また、 回折部の格子ピッチが等間隔となる上記 の場合について、 表 1乃至 3のデータを使用した場合の適用結果を図 2 5に 示す。 図 2 5の上段は、 C D用光線 (第 1の光線)を一 1次回折光とした場合の 光路図である。 図 2 5の下段は、 C D用光線 (第 1の光線)を 1次回折光とした 場合の光路図である。 光路図より C Dの光学系では像面上で波長選択回折格 子によって必要像側開口数より外の光線がフレアになっており、 先の数値実 施例と同様に波長選択回折格子によって像側開口数の制御がなされているこ とがわかる。
Figure imgf000034_0002
Fig. 24 shows the case where the grating shape of the diffraction part is combined with the aspherical shape of the lens surface and the case where it is used alone. Fig. 25 shows the application results when the data in Tables 1 to 3 are used in the above case where the grating pitch of the diffraction section is at equal intervals. The upper part of FIG. 25 is an optical path diagram in the case where the light beam for CD (first light beam) is the first-order diffracted light. The lower part of FIG. 25 is an optical path diagram when the CD light beam (first light beam) is the first-order diffracted light. According to the optical path diagram, in the CD optical system, light rays outside the required image-side numerical aperture flare on the image plane due to the wavelength-selective diffraction grating. It can be seen that the numerical aperture is controlled.
本発明の 1 実施形態における対物レンズは、 材料として環状ォレフィンコ ポリマーを使用しているが、 他のプラスチック材料によっても製造できる。 本発明のさらに別の実施形態として、 B D用、 D V D用および C D用に共 用される単体対物レンズを対象として説明する。 第 1の波長の光線は、 BD 用の光線 (波長 40 5 nm) 、 第 2の波長の光線は、 DVD用の光線 (波長 6 5 5 nm) 、 第 3の波長の光線は、 CD用の光線 (波長 7 8 5 nm) であ る。 像側開口数は、 それぞれ 0. 85、 0. 6 5および 0. 47である。 The objective lens in one embodiment of the present invention uses a cyclic olefin copolymer as a material, but can also be manufactured from other plastic materials. In yet another embodiment of the present invention, a BD, DVD, and CD A description will be given of a single objective lens used. The first wavelength light is for BD light (wavelength 405 nm), the second wavelength light is for DVD light (wavelength 655 nm), and the third wavelength light is for CD It is a light beam (wavelength 785 nm). The image side numerical apertures are 0.85, 0.65 and 0.47, respectively.
本発明のさらに別の実施形態による対物レンズは少なく とも 1つの面に回 折格子を備えており、 第 1の波長の光線は 2次回折光として回折格子を通過 し、 第 2および第 3の波長の光線は 1次回折光として回折格子を通過するよ うに設計される。  An objective lens according to yet another embodiment of the present invention includes a diffraction grating on at least one surface, wherein the light beam of the first wavelength passes through the diffraction grating as second-order diffracted light, and the second and third wavelengths Are designed to pass through the diffraction grating as first-order diffracted light.
回折格子は、 ブレ一ズ化(ブレーズド)形状の格子とする。 ブレーズ化形状の 格子とするのは以下の理由による。 球面乃至非球面のパヮーを併せ持つた階 段形状は、 加工が非常に難しく、 何十輪帯も設置することはほとんど不可能 である。  The diffraction grating is a blazed grating. The blazed grating is used for the following reasons. The stepped shape having both spherical and aspherical surfaces is very difficult to process, and it is almost impossible to install dozens of zones.
回折格子の深さ 1は、 nをレンズの屈折率として、それぞれの波長の 1次または 2次 回折光に対する回折効率を 70%以上とするように式  The depth 1 of the diffraction grating is calculated so that n is the refractive index of the lens and the diffraction efficiency for the first or second order diffracted light of each wavelength is 70% or more.
(7/4)X /(n-l) く 1く(9/4)X Z(n— 1)  (7/4) X / (n-l) 1 (9/4) X Z (n-1)
により定める。 この場合に、 それぞれの波長の回折効率は、 具体的に以下の 表 8に示される。 Determined by In this case, the diffraction efficiency of each wavelength is specifically shown in Table 8 below.
JP2004/004762 JP2004 / 004762
34 表 8  34 Table 8
2χλι/(η-1)の時 When 2χλι / (η-1)
Figure imgf000036_0001
Figure imgf000036_0001
7/4χλι/(η-1)の時  7 / 4χλι / (η-1)
Figure imgf000036_0002
Figure imgf000036_0002
9/4χλι/(η-1)の時  9 / 4χλι / (η-1)
Figure imgf000036_0003
図 2 6は、 第 1の波長 (B D用の 4 0 5 n m) を有する 2次回折光に対し て格子深さを最適化 (回折効率を最大化) した場合の、 1次および 2次回折光 の波長に対する回折効率を示す。 図 2 6において実線は 2次回折光の回折効 率を示し、 1点鎖線は 1次回折光の回折効率を示す。 1次回折光の回折効率 は、 第 2の波長 (D V D用の 6 5 5 n m) およぴ第 3の波長 (C D用の 7 8 5 n m) において、 回折効率は 1に近くほぼ最適化されている。 したがって 、 第 1の波長を 2次回折光とし、 格子深さを第 1の波長に対して回折効率を 最適化することにより、 第 2および第 3の波長に対しても回折効率がほぼ最 適化される。
Figure imgf000036_0003
Figure 26 shows the first and second order diffracted light when the grating depth is optimized (maximizing the diffraction efficiency) for the second order diffracted light having the first wavelength (405 nm for BD). 6 shows diffraction efficiency with respect to wavelength. In FIG. 26, the solid line indicates the diffraction efficiency of the second-order diffracted light, and the dashed line indicates the diffraction efficiency of the first-order diffracted light. The diffraction efficiency of the first-order diffracted light is nearly optimized at 1 at the second wavelength (655 nm for DVD) and at 3rd wavelength (785 nm for CD). I have. Therefore, the diffraction efficiency is almost optimized for the second and third wavelengths by optimizing the diffraction efficiency for the first wavelength with the grating wavelength being the second-order diffracted light and optimizing the grating depth for the first wavelength. Is done.
本発明の対物レンズの設計方法を図 2 7の流れ図に基づいて説明する。  The design method of the objective lens of the present invention will be described based on the flowchart of FIG.
図 2 7のステップ S 1 0 1 0において、 各波長の光線に関する像側開口数 を実現するように、 入射瞳径を設定し最外光線角度を制約条件として定める ステップ S 1 0 2 0において、 最外光線角度の制約条件を満足するように 、 レンズ面形状およぴ回折格子の位相関数を定める。 ステップ S 1 0 3 0において、 各波長の光線のそれぞれの像面上での収差 を計算する。 ― In step S1000 in Fig. 27, the entrance pupil diameter is set and the outermost ray angle is determined as a constraint so as to realize the image-side numerical aperture for each wavelength of light. The lens surface shape and the phase function of the diffraction grating are determined so as to satisfy the constraint on the outermost ray angle. In step S1030, the aberrations of the light beams of each wavelength on the respective image planes are calculated. ―
ステップ S 1 0 4 0において、 収差が許容範囲内かどうか判断する。 たと えば、 波面収差が、波長を単位として RMS0. 07以下とれば許容範囲内とする。 RMS とは、参照波面全域にわたって、波面収差の二乗の平均値を求め、その平方根をとつ た値である。許容範囲内であれば終了する。 許容範囲内でなければステップ S In step S104, it is determined whether the aberration is within an allowable range. For example, if the wavefront aberration is RMS0.07 or less in wavelength units, it is within the allowable range. RMS is the value obtained by calculating the average value of the square of the wavefront aberration over the entire reference wavefront and taking the square root thereof. If it is within the allowable range, the process ends. Step S if not within tolerance
1 0 5 0に進む。 Proceed to 1 0 5 0.
ステップ S 1 0 5 0において、 レンズ面形状および回折格子の位相差関数 の補正量を定め、 ステップ S 1 0 2 0に戻る。  In step S1005, the correction amount of the lens surface shape and the phase difference function of the diffraction grating is determined, and the process returns to step S100.
図および表に基づいて、 本発明の数値実施例について以下に説明する。  A numerical example of the present invention will be described below with reference to the drawings and tables.
(数値実施例 4 )  (Numerical example 4)
図 2 8乃至 3 0は、 数値実施例 4の対物レンズのそれぞれ B D、 D V Dお よび C Dの光路図を示す。 表 9は、 数値実施例 4のレンズデータを示す。 図 28 to 30 show optical path diagrams of BD, DVD, and CD of the objective lens of Numerical Example 4, respectively. Table 9 shows the lens data of Numerical Example 4. Figure
2 8および 2 9に示すように、 B D用および D V D用光束は、 平行光として 対物レンズに入射される。 C D用光束は絞り面から 2 1 m mの距離の光源か らの拡がり角度をもった光束として対物レンズに入射される。 すなわち、 C D用光源と像とは、 有限共役系を構成する。 レンズの絞り面 (入射側面) に は、 プレーズ化形状の回折格子が設けられている。 レンズの出射側面は、 光 軸を取り囲む少なくとも 1つの帯状領域および光軸を含む中心領域に分割し、それぞ れの領域を別個の面によって定義した、特殊面から構成されている。 As shown in FIGS. 28 and 29, the luminous flux for BD and DVD is incident on the objective lens as parallel light. The light beam for CD is incident on the objective lens as a light beam with a spread angle from the light source at a distance of 21 mm from the stop surface. That is, the CD light source and the image constitute a finite conjugate system. On the stop surface (incident side surface) of the lens, a diffraction grating in the form of a plate is provided. The exit side surface of the lens is composed of a special surface that is divided into at least one band-shaped region surrounding the optical axis and a central region including the optical axis, and each region is defined by a separate surface.
4004762 4004762
36 36
Figure imgf000038_0001
Figure imgf000038_0001
入射面側の面の仕様を表 10に示す。  Table 10 shows the specifications of the incident surface.
表 10Table 10
Figure imgf000038_0002
Figure imgf000038_0002
入射側面のレンズ形状は、以下の非球面式によって表される
Figure imgf000039_0001
The lens shape of the entrance side is expressed by the following aspherical formula
Figure imgf000039_0001
ここで、 z軸は光軸と一致し、 Rは曲率半径、 Kは離心率、 A4、 A6、 A8、 A10は非球 面係数を表す。 dはここではゼロとする。また、 hは光軸からの距離であり以下の式で表 される。 h = ^]x2 +y2 入射面の回折格子の格子間隔を定める位相関数は以下の式によって表される。 Here, the z-axis coincides with the optical axis, R is the radius of curvature, K is the eccentricity, and A4, A6, A8, and A10 are the aspheric coefficients. Here, d is assumed to be zero. H is the distance from the optical axis and is represented by the following equation. h = ^] x 2 + y 2 The phase function that determines the grating interval of the diffraction grating on the incident surface is represented by the following equation.
O = C2xr2+C4xr + C6xr6 + C8xr8+C10xr10+C12xr12 (2) ここで、 C2、 C4、 C6、 C8、 C10、 C12は、位相関数係数を表す。また、 rは以下の式 で表される。 r = ^x2 + 2 出射側面の仕様を表 1 1に示す。 出射側面は、 光軸を取り囲む 2つの帯状領域 および光軸を含む中心領域に分割され、それぞれの領域は別個の面によって定義さ れる。光軸を含む中心領域の面を第 1面、その周囲を取り囲む領域の面を第 2面、第 2面の領域を取り囲む領域の面を第 3面とする。 O = C2xr 2 + C4xr + C6xr 6 + C8xr 8 + C10xr 10 + C12xr 12 (2) where, C2, C4, C6, C8 , C10, C12 represents the phase function coefficients. R is represented by the following equation. the specification of r = ^ x 2 + 2 exit surface shown in Table 1. The exit side is divided into two strips surrounding the optical axis and a central area containing the optical axis, each area being defined by a separate surface. The surface of the central region including the optical axis is referred to as a first surface, the surface of the region surrounding the first surface is referred to as a second surface, and the surface of the region surrounding the second surface is referred to as a third surface.
第 1面 第 2面 第 3面 境界半径 0.3744 0.8722 Surface 1 Surface 2 Surface 3 Boundary radius 0.3744 0.8722
0.00115 0.00168 曲率半径 3.6267 4.7991 4.4313  0.00115 0.00168 Radius of curvature 3.6267 4.7991 4.4313
4次の係数 ■0.4560 -0.0285 -0.0532 4th order coefficient0.4560 -0.0285 -0.0532
6次の係数 2.8942 0.0141 0.0067 非球面係数 8次の係数 ■9.4556 -0.0822 0.0016 6th order coefficient 2.8942 0.0141 0.0067 Aspheric coefficient 8th order coefficient 係数 9.4556 -0.0822 0.0016
10次の係数 3.1137 0.0921 -0.0081 10th order coefficient 3.1137 0.0921 -0.0081
12次の係数 42.1682 -0.0356 0.0041 第 1乃至第 3面の形状は、以下の非球面式によって表される。 z - ·~· . -/Rl xn + Ai4 xh4+ Ai6 xh6+ Ai8 xhs + AilO h'° + di l + ^l-(l+Ki)x(l/Rf)2 h2 ( 3) ここで、 z軸は光軸と一致し、 iは中心から数えた面の番号を表し、 Riは曲率半径、 Ki は離心率、 Ai4、 Ai6、 Ai8、 AilOは非球面係数を表す。 diは第 1面を基準とする他 の面の光軸上の移動量(段差量)を表す。光の進行方向の移動量が正である。また、 hは式(1)の場合と同様である。 12th order coefficient 42.1682 -0.0356 0.0041 The shapes of the first to third surfaces are represented by the following aspherical expressions. .- / Rl xn + Ai4 xh 4 + Ai6 xh 6 + Ai8 xh s + AilO h '° + di l + ^ l- (l + Ki) x (l / Rf) 2 h 2 (3 ) here, z-axis coincides with the optical axis, i is represents the surface number counted from the center, Ri is the radius of curvature, Ki is eccentricity, Ai4, ai6, Ai8, AilO represent aspherical coefficients. di represents the movement amount (step amount) of the other surface on the optical axis with respect to the first surface. The amount of movement in the traveling direction of light is positive. H is the same as in the case of equation (1).
ここで、 境界半径および段差量は、 以下の考え方により決定される。 図 2 7の設計方法にいて、 像面上に集光する光線束の光路差 (すなわち、 波面収 差) が最小となるように境界半径を設定する。 段差量は、 像面上に集光する 光線束の光路差の分散値が最小になるように、 すなわち、 境界領域において 形状が数値的および微分 (傾き) 的に連続になるように設定する。  Here, the boundary radius and the step amount are determined based on the following concept. In the design method of Fig. 27, the boundary radius is set so that the optical path difference (ie, wavefront difference) of the light beam condensed on the image plane is minimized. The step is set so that the variance of the optical path difference of the light beam condensed on the image plane is minimized, that is, the shape is numerically and differentially (slope) continuous in the boundary region.
数値実施例 4による点像強度分布を図 3 1乃至 33に示す。  31 to 33 show point image intensity distributions according to Numerical Example 4.
(数値実施例 5 )  (Numerical example 5)
図 34および 3 5は、 数値実施例 5の対物レンズのそれぞれ B Dおよび D VDの光路図を示す。 表 1 2は、 数値実施例 5のレンズデータを示す。 図 3 4および 3 5に示すように、 B D用および D VD用光束は、 平行光として対 物レンズに入射される。 レンズの絞り面 (入射側面) は、 内側の、 DVDお よび BD用の共用領域と外側の、 BD用専用領域とに分割され、 異なった表 面形状を有し、 それぞれ異なった回折格子が設けられている。 レンズの出射 側面は、 光軸を取り囲む少なくとも 1つの帯状領域および光軸を含む中心領域に分 割し、それぞれの領域を別個の面によって定義した、特殊面から構成されている。 34 and 35 show the optical path diagrams of BD and DVD of the objective lens of Numerical Example 5, respectively. Table 12 shows lens data of Numerical Example 5. As shown in FIGS. 34 and 35, the luminous flux for BD and DVD is incident on the objective lens as parallel light. The aperture surface (incident side surface) of the lens is divided into a common area for DVD and BD on the inside and a dedicated area for BD on the outside, with different surface shapes and different diffraction gratings provided. Has been. The exit side of the lens is composed of a special surface that is divided into at least one band-like region surrounding the optical axis and a central region containing the optical axis, each region being defined by a separate surface.
表 12 Table 12
Figure imgf000041_0001
入射側の面の仕様を表 13に示す。入射側面のレンズ形状は、上記の非球面式(1) によって表される。ただし、光軸を中心とする半径 1. 45mmより外側は、光軸に垂直 な面を形成する。非球面式によって表される部分(中心領域)は、 D V Dおよび B D 用の共用領域であり、 光軸に垂直な面を形成する部分(帯状領域)は、 B D用専 用領域である。 すなわち、 D V Dの入射瞳径 2. 9mmから、 上記の境界半径が 決められる。
Figure imgf000041_0001
Table 13 shows the specifications of the incident side surface. The lens shape on the incident side surface is represented by the above-mentioned aspherical expression (1). However, outside the radius of 1.45 mm around the optical axis, a plane perpendicular to the optical axis is formed. The part represented by the aspherical formula (center area) is a common area for DVD and BD, and the part (band-shaped area) forming a plane perpendicular to the optical axis is a special area for BD. That is, the above boundary radius is determined from the DVD entrance pupil diameter of 2.9 mm.
入射面の回折格子の格子間隔を定める位相関数は上記の式(2)によって表される 。表 13は、 D V Dおよび B D用の共用領域(中心領域)の位相関数と B D用専用 領域 (帯状領域)の位相関数を示す。 The phase function that determines the grating interval of the diffraction grating on the incident surface is represented by the above equation (2). Table 13 shows the phase function of the common area (center area) for DVD and BD and the phase function of the dedicated area (band-shaped area) for BD.
表 1 3 Table 13
Figure imgf000042_0001
出射側面の仕様を表 1 4に示す。 出射側面は、 光軸を取り囲む 1つの帯状領域 および光軸を含む中心領域に分割され、それぞれの領域は別個の面によって定義さ れる。光軸を含む中心領域の面を第 1面、その周囲を取り囲む領域の面を第 2面とす る。第 1および第 2面の形状は、上記の式(3)によって表される。 表 1 4
Figure imgf000042_0001
Table 14 shows the specifications of the emission side surface. The exit side surface is divided into one strip region surrounding the optical axis and a central region containing the optical axis, each region being defined by a separate surface. The surface of the central region including the optical axis is referred to as a first surface, and the surface of a region surrounding the first surface is referred to as a second surface. The shapes of the first and second surfaces are represented by the above equation (3). Table 14
Figure imgf000043_0001
ここで、 境界半径および段差量は、 以下の考え方により決定される。
Figure imgf000043_0001
Here, the boundary radius and the step amount are determined based on the following concept.
半径は、 D V Dの最外光線の光路から決める。 段差量の値は、 中心領域の最 も外側を通過する光線と帯状領域の最も內側を通過する光線の光路差をでき るだけ小さくするように決定する。 The radius is determined from the optical path of the outermost ray of DVD. The value of the step amount is determined so that the optical path difference between the light beam passing through the outermost part of the central area and the light ray passing through the most 內 side of the strip-shaped area is as small as possible.
数値実施例 5による点像強度分布を図 3 6および 3 7に示す。  Figures 36 and 37 show point image intensity distributions according to Numerical Example 5.
なお、 数値実施例 5において入射側面の B D専用領域の回折格子として、 ブレーズ化格子に代わり、 以下に説明する特殊形状の回折格子 (回折光学素 子) を使用している。  In Numerical Example 5, a specially shaped diffraction grating (diffractive optical element) described below is used instead of the blazed grating as the diffraction grating in the BD-only area on the incident side surface.
本発明の回折光学素子は、 少なくとも一部の格子周期人が  In the diffractive optical element of the present invention, at least a part of the grating period
λ < Α≤4λ  λ <Α≤4λ
の範囲である格子形状を基板上に有する回折光学素子であって、 当該周期部 分において、 回折効率を上げるように、 格子斜面が鋸型の斜面よりも傾きが 急な部分を、 当該格子斜面の少なくとも一部に備えるように構成されている 。 光が本発明による格子形状の斜面の傾きが急な部分に入射すると、 従来技 術 (ブレーズ化形状または鋸型形状) と比較して入射角が大きくなり、 透過 光が発生せず全反射する。 全反射された光は隣り合う格子形状に再ぴ入射し 、 このとき別の入射光と位相重ね合わせによる結合が行われ、 繰り返し反射 されて最終的に斜面に対してきわめて小さい角度で透過光 (回折光) が出射 される。 この結果、 回折効率が向上する。 A diffractive optical element having a grating shape in the range of the above on the substrate, and in the periodic portion, a portion where the grating slope is steeper than the saw-shaped slope to increase the diffraction efficiency. It is configured to provide for at least a part of. When light is incident on a steeply inclined portion of the lattice shape according to the present invention, the incident angle becomes larger as compared with the conventional technology (blazed shape or saw-shaped shape), and transmitted light is totally reflected without generation. . The totally reflected light is re-incident on the adjacent grating shape. At this time, it is combined with another incident light by phase superposition, and is repeatedly reflected and finally transmitted light at an extremely small angle with respect to the slope ( Diffracted light) Is done. As a result, the diffraction efficiency is improved.
一般的に回折格子の位相関数を Ψ、 光軸からの距離を rとし、 格子周期を  Generally, the phase function of the diffraction grating is Ψ, the distance from the optical axis is r, and the grating period is
2 π =Λ · ( d /d r ) 2 π = Λ (d / d r)
の関係が成立する。 この式を Is established. This equation
λ <λ< 4 λ  λ <λ <4 λ
に代入すると、 Substituting into
(2 π/4 λ) < {ά / ά r) < (2 π/λ)  (2 π / 4 λ) <(ά / ά r) <(2 π / λ)
ここで、 えに第 1の波長 Xi- OSnmを代入すると、 Here, substituting the first wavelength Xi-OSnm,
3879(rad/mm) < ( d / d r ) < 15514 (rad/mm)  3879 (rad / mm) <(d / dr) <15514 (rad / mm)
となる。 It becomes.
他方、数値実施例 5の帯状領域 (周辺領域) の位相関数から、 帯状領域の範 囲として、 1.45mm<r<l.9mmとすると、  On the other hand, from the phase function of the band-shaped region (peripheral region) in Numerical Example 5, if the range of the band-shaped region is 1.45 mm <r <l.9 mm,
8900 (rad/mm) < ( d φ/ d r ) く 11070 (rad/mm)  8900 (rad / mm) <(d φ / d r) 110 11070 (rad / mm)
となる。したがって、 λ <Α< 4 1の条件は満たされている。 It becomes. Therefore, the condition of λ <Α <41 is satisfied.
本発明の 1実施形態によれば、 前記傾きが急な部分が、 入射光が全反射を 起こすように構成されている。 したがって、 別の入射光と位相重ね合わせに よる結合が確実に行われ、 回折効率が向上する。  According to one embodiment of the present invention, the steep portion is configured so that incident light causes total reflection. Therefore, coupling with another incident light by phase superposition is reliably performed, and the diffraction efficiency is improved.
本発明の 1実施形態によれば、 格子断面における格子斜面を表す線が、 少 なくとも 1つの変曲点をする。 したがって、 格子斜面が鋸型の斜面よりも傾 きが急な部分が存在する。  According to one embodiment of the present invention, a line representing a grid slope in a grid cross section forms at least one inflection point. Therefore, there are parts where the grid slope is steeper than the saw-shaped slope.
本発明の 1実施形態によれば、 格子断面における格子斜面を表す線が、 異 なる曲率を有する 2つ以上の曲線から構成される。 したがって、 格子斜面が 鋸型の斜面よりも傾きが急な部分が存在する。  According to one embodiment of the present invention, a line representing a lattice slope in a lattice cross section is composed of two or more curves having different curvatures. Therefore, there are parts where the grid slope is steeper than the saw-shaped slope.
本発明の 1実施形態によれば、 ま基板の屈折率, は出射光側の媒質の屈 折率として、 前記周期部分における格子の高さが
Figure imgf000044_0001
According to one embodiment of the present invention, the refractive index of the substrate is the refractive index of the medium on the emission light side, and the height of the grating in the periodic portion is
Figure imgf000044_0001
の範囲で、 回折効率を上げるように設定されている。 したがって、 格子構造 内を進行中の位相変化を考慮して格子高さが最適化される。 本発明の 1実施形態によれば、 4 λより大きな周期を有する中央部と、 λ < Α≤4λ The range is set to increase the diffraction efficiency. Therefore, the grating height is optimized taking into account the phase change that is proceeding in the grating structure. According to one embodiment of the invention, a central portion having a period greater than 4 λ, and λ <Α≤4λ
の範囲の周期を有する周縁部とを備える回折光学レンズである。 したがって 、 回折光学レンズの格子周期が短い部分の回折効率を高めることによって集 光強度を改善させ、 その結果開口数を高めることができる。 また、 従来より も高性能な回折光学素子を読取り光学系などの光学装置の一部として用いる ことにより、 装置の高性能化を図ることができる。  And a peripheral edge having a period in the range of. Therefore, by increasing the diffraction efficiency of the portion where the grating period of the diffractive optical lens is short, the light collection intensity is improved, and as a result, the numerical aperture can be increased. Further, by using a diffractive optical element having higher performance than before as a part of an optical device such as a reading optical system, the performance of the device can be improved.
なお、 数値実施例 5において、 入射側面の B D専用領域 (表 6の帯状領域 ) の回折格子として使用するのは、 上記の周縁部である。  In Numerical Example 5, the above-described peripheral portion is used as a diffraction grating for the BD-only area (the band-shaped area in Table 6) on the incident side surface.
本発明の 1実施形態によれば、 入射光が基板に対して透過する。 すなわち According to one embodiment of the present invention, incident light is transmitted to the substrate. Ie
、 透過型の回折光学素子が得られる。 Thus, a transmission type diffractive optical element is obtained.
本発明の 1実施形態によれば、 格子部上方からの入射光に対応する。 すな わち、 格子上方からの入射光に对応する回折光学素子が得られる。  According to one embodiment of the present invention, it corresponds to incident light from above the grating portion. That is, a diffractive optical element that responds to incident light from above the grating can be obtained.
以下においては、 回折光学素子として回折光学レンズを例として説明を行 うが、 本発明は回折光学レンズに限定されるものではない。  In the following, a diffractive optical lens will be described as an example of a diffractive optical element, but the present invention is not limited to a diffractive optical lens.
図 3 8および 3 9の流れ図にしたがって、 本発明による回折光学素子の設 計方法について説明する。  The design method of the diffractive optical element according to the present invention will be described with reference to the flowcharts of FIGS.
図 3 8のステップ S 3 0 1 0において、 初期設定を行う。 初期設定の対象 は、 波長、 屈折率、 素子の大きさ、 目標とする開口数および回折効率などで ある。 ステップ S 3 0 2 0において位相関数を計算する。 ステップ S 3 0 3 0において、 素子の格子高さを計算する。 ステップ S 3 0 4 0において位相 関数から素子の格子形状を決定する。  In step S310 in FIG. 38, initialization is performed. Initial settings include wavelength, refractive index, element size, target numerical aperture, and diffraction efficiency. In step S3200, a phase function is calculated. In step S300, the grid height of the element is calculated. In step S340, the lattice shape of the element is determined from the phase function.
ステップ S 3 0 5 0において、 それぞれの格子がどの領域に属するか判定す る。 回折光学素子の格子構造の周期が以下の式を満たす場合に、 格子は領域 2に属するとし、 以下の式を満たさない場合は、 格子は領域 1に属するとす る。  In step S350, it is determined to which region each grid belongs. If the period of the grating structure of the diffractive optical element satisfies the following formula, the grating belongs to region 2; otherwise, the grating belongs to region 1.
λ < Α≤4λ  λ <Α≤4λ
' なお、 数値実施例 5において、 入射側面の B D専用領域 (表 6の帯状領域 ) の回折格子として使用するのは、 上記の領域 2である。  'In Numerical Example 5, the above-mentioned region 2 is used as the diffraction grating of the BD-only region (the band-shaped region in Table 6) on the incident side surface.
領域 2に属する周期の格子に対しては、 ステップ S 3 0 6 0において格子 形状の最適化を行う。 ここで、 えは使用波長を表す。 上記の式の下限を下回 ると、 1次の回折光が出現せず 0次光のみが透過することになり、 集光性を得 ることができない。 また上限を上回ると 1次回折光が最大となる回折格子の形 状は、 従来技術で知られる鋸型形状となる。 すなわち、 格子周期が波長に対 して十分に長いため格子形状を最適化する必要がない。 したがって、 上記の 式を満たさない領域 1に属する周期の格子に対しては、 格子形状の最適化は 行わない。 ステップ S 3 0 70において、 それぞれの格子の判定が終了した か否かを判断する。 終了していなければ、 ステップ S 3050に戻る。 For the lattice with the period belonging to region 2, in step S360, the lattice Perform shape optimization. Here, “e” indicates the wavelength used. If the value is below the lower limit of the above equation, the first-order diffracted light does not appear and only the 0th-order light is transmitted, and condensing properties cannot be obtained. When the value exceeds the upper limit, the shape of the diffraction grating that maximizes the first-order diffracted light is a sawtooth shape known in the prior art. That is, since the grating period is sufficiently long with respect to the wavelength, there is no need to optimize the grating shape. Therefore, optimization of the lattice shape is not performed for a lattice with a period belonging to region 1 that does not satisfy the above expression. In step S370, it is determined whether the determination of each grid has been completed. If not, the process returns to step S3050.
ステップ S 3 0 8 0において開口数と回折効率を計算し、 ステップ S 3 0 90において計算結果を出力する。  In step S3800, the numerical aperture and the diffraction efficiency are calculated, and in step S3900, the calculation result is output.
つぎに、 図 3 9にしたがって、 領域 2における格子の格子形状を最適化す る方法 (図 38のステップ S 3060) について説明する。  Next, a method of optimizing the grid shape of the grid in the area 2 (step S3060 in FIG. 38) will be described with reference to FIG.
図 3 9のステップ S 40 1 0において、 各々の格子形状を細かく M分割し てそれぞれの高さ位置座標値を P ( I ) ( I = 1, . . . , M) とおく。 ス テツプ S 4 020において、 P ( I ) の領域に対して所定の最適化アルゴリ ズムにより、 0から 1までの範囲の任意数 Rを指定する。 ステップ S 4 0 3 0において、 Rが 0. 5よりも大きければ P ( I ) を所定値分だけ増加させ 、 Rが 0. 5以下であれば所定値分だけ減少させる。 最適化アルゴリズムと しては、 たとえば焼き鈍し法 (Simulated Annealing Method) や遣伝ァルゴ リズム (Genetic Algorithm) などを使用する。 ステップ S 4040において 、 修正後の形状を更新する。 ステップ S 40 5 0において、 I =Mであるか 否か判定する。 I =Mでなければステップ S 4 0 20に戻る。 I =Mであれ ば、 ステップ S 4060に進む。  In step S4010 in FIG. 39, each grid shape is finely divided into M, and each height position coordinate value is set to P (I) (I = 1,..., M). In step S 4020, an arbitrary number R in the range of 0 to 1 is specified by a predetermined optimization algorithm for the area of P (I). In step S430, if R is larger than 0.5, P (I) is increased by a predetermined value, and if R is 0.5 or less, it is decreased by a predetermined value. As the optimization algorithm, for example, the simulated annealing method (Simulated Annealing Method) or the transmission algorithm (Genetic Algorithm) is used. In step S4040, the corrected shape is updated. In step S405, it is determined whether or not I = M. If I = M, the process returns to step S4020. If I = M, proceed to step S4060.
領域 2における格子の高さ liは以下の式の範囲となる。  The height li of the grid in region 2 is in the range of the following expression.
3 λ , .3 λ  3 λ, .3 λ
4|η-κ0| 2|η-«0| ここで7は基板の屈折率, は出射光側の媒質の屈折率を示す。 このとき高さ h が上記の式の範囲外となると 1次回折効率が減少し、 回折光学素子の集光強度 が低下する。 領域 2において、 格子高さがフレネルレンズの場合の一定の高 λ 4 | η-κ 0 | 2 | η- « 0 | where 7 is the refractive index of the substrate, and is the refractive index of the medium on the exit light side. At this time, if the height h is out of the range of the above expression, the first-order diffraction efficiency is reduced, and the condensing intensity of the diffractive optical element is reduced. In region 2, the grating height is constant for the Fresnel lens. λ
h = - n - \  h =-n-\
から変化するのは、 格子周期が波長に近い領域 2においては格子構造内を進 行中の位相変化を考慮する必要があるからである。 すなわち、 最終的な位相 差が格子周期が波長に対して十分に大きな場合と異なってくる。 その結果、 位相差に釣り合いをとらせるために格子高さに変化を与える必要が生じる。 ステップ S 4 0 6 0において、 電磁波の厳密解析法を使用して回折効率を 計算する。 ステップ S 4 0 7 0において、 評価関数を算出する。 評価関数 φ は、 回折光の次数 iごとに回折効率 ηの計算値と目標値との差を求め、 重み W iを付けて和を求めたものである。 ステップ S 4 0 7 0において、 評価関 数 φの値が所定値未満であるか否か判断する。 所定値未満でなければステツ プ S 4 0 2 0に戻り、 所定値未満であれば終了する。 The reason is that in the region 2 where the grating period is close to the wavelength, it is necessary to consider the phase change while traveling in the grating structure. That is, the final phase difference differs from the case where the grating period is sufficiently large with respect to the wavelength. As a result, it is necessary to change the grating height in order to balance the phase difference. In step S460, the diffraction efficiency is calculated using an exact analysis method of electromagnetic waves. In step S 470, an evaluation function is calculated. The evaluation function φ is obtained by calculating the difference between the calculated value of the diffraction efficiency η and the target value for each order i of the diffracted light, and adding the weight W i to obtain the sum. In step S470, it is determined whether the value of the evaluation function φ is less than a predetermined value. If it is not less than the predetermined value, the process returns to step S4202, and if it is less than the predetermined value, the process ends.
図 4 1は各々の格子周期に対する 1 次回折効率の依存性を計算にて求めた 結果を示している。 a)は ΤΈ 偏光を、 (b)では TM偏光の場合を示している。 ここで、 計算は電磁波の振舞いを厳密に再現するための手法として、 厳密結 合波解析 (Rigorous Coupled Wave Analysis, RCWA) を用いた。 図 4 1は従 来技術の鋸型形状での結果と、 1次回折効率が最大となるように上記の手順で 最適化された形状での結果を併記している。 なお、 光学素子基板および出射 回折光側の屈折率はそれぞれ 1.5、 1.0 である。 このとき、 従来技術の鋸型形 状では偏光方向にかかわらず周期が波長に対してきわめて長い場合、 回折効 率は約 90%以上の値を得ることができるが、 周期が短くなつていくにつれて 回折効率は徐々に低下し、 周期が約 2 λ前後では 20%しか得られないことが わかる。 一方、 1次回折効率を高めるように最適化された形状においては、 周 期が波長に対して長い場合では、 得られる回折効率は従来技術 (鋸型形状) のそれとほとんど変わらない。 しかし、 最適化された形状では周期が短くな つても、 ほぼ 80%程度を維持していることがわかる。  Figure 41 shows the results of calculating the dependence of the first-order diffraction efficiency on each grating period. (a) shows the case of 偏光 -polarized light, and (b) shows the case of TM-polarized light. Here, the calculation used Rigorous Coupled Wave Analysis (RCWA) as a method to strictly reproduce the behavior of electromagnetic waves. Figure 41 shows the results for the sawtooth shape of the conventional technology and the results for the shape optimized by the above procedure to maximize the first-order diffraction efficiency. The refractive indices on the optical element substrate and the outgoing diffracted light side are 1.5 and 1.0, respectively. At this time, if the period is extremely long with respect to the wavelength regardless of the polarization direction in the conventional saw-tooth shape, the diffraction efficiency can obtain a value of about 90% or more, but as the period becomes shorter, It can be seen that the diffraction efficiency gradually decreases, and only about 20% can be obtained when the period is around 2λ. On the other hand, in the shape optimized to increase the first-order diffraction efficiency, the obtained diffraction efficiency is almost the same as that of the conventional technology (saw shape) when the period is longer than the wavelength. However, it can be seen that the optimized shape maintains about 80% even if the period is short.
図 4 1 (c)は入射光が ΤΕ波と ΤΜ波のそれぞれの偏光方向に対する 1次回 折効率の差を表している。 従来技術 (鋸型形状) は点線で、 本発明による効 果を実線で表示している。 鋸型形状では周期が短くなるにつれて偏光による 回折効率の差が最大 25%程度であるのに対して、 最適化された形状では最大 13%程度となり、 偏光方向による回折効率の依存性は鋸型形状と比較して小 さい。 このことは本発明の回折光学素子により、 入射光の偏光方向に対する 回折効率の依存性を改善できることを示している。 Figure 41 (c) shows the difference between the first-order diffraction efficiencies of the incident light with respect to the polarization directions of the ΤΕ and ΤΜ waves. The prior art (saw shape) is indicated by a dotted line, and the effect of the present invention is indicated by a solid line. The difference in diffraction efficiency due to polarization is up to about 25% as the period becomes shorter in the saw-shaped shape, whereas the difference is It is about 13%, and the dependence of the diffraction efficiency on the polarization direction is smaller than that of the saw-shaped shape. This indicates that the dependency of the diffraction efficiency on the polarization direction of the incident light can be improved by the diffractive optical element of the present invention.
'図 4 2は領域 2 の格子形状を最適化したときの回折光学素子の断面形状お よび各々の地点での回折効率を示している。 なお比較のため、 従来技術によ る回折効率の結果も点線で示している。  'FIG. 42 shows the cross-sectional shape of the diffractive optical element and the diffraction efficiency at each point when the grating shape of region 2 is optimized. For comparison, the results of the diffraction efficiency according to the prior art are also indicated by dotted lines.
領域 2における格子断面形状は、 変曲点を含む曲線で表わされ、 鋸型形状 の斜面よりも傾きが急な斜面を備える。 図 4 0の (b) に示すように、 光が格 子形状の斜面の傾きが急な部分に入射すると、 従来技術と比較して入射角が 大きくなり、 透過光が発生せず全反射する。 全反射された光は隣り合う格子 形状に再び入射し、 このとき別の入射光と位相重ね合わせによる結合が行わ れ、 繰り返し反射されて最終的に斜面に対してきわめて小さい角度で透過光 (回折光) が出射される。 この結果、 回折効率が向上する。  The lattice cross-sectional shape in region 2 is represented by a curve including an inflection point, and has a slope that is steeper than the saw-shaped slope. As shown in Fig. 40 (b), when light is incident on the steep slope of the grid-shaped slope, the angle of incidence is larger than in the conventional technology, and there is no transmitted light and total reflection occurs. . The totally reflected light re-enters the adjacent grating shape, where it is combined with another incident light by phase superposition, repeatedly reflected, and finally transmitted through a very small angle with respect to the slope (diffraction). Light) is emitted. As a result, the diffraction efficiency is improved.
ここで、 「位相重ね合わせによる結合」 とは、 波の重ね合わせを意味する 。 全反射による光と直接入射による隣の入射光は互レ、に光強度の差が小さレ、 ため、 格子斜面部における波の重ね合わせが有効に行われる。 その.結果、 図 4 0の (b) に示すように、 波の重ね合わせによって互いに強度を強めある条 件を満たす波面が再び反射光として進行する。 互いに強度を強めあうには振 幅の方向が一致していることが必要となる。 格子構造の形状条件としては、 反射波が隣り合う入射波に会うまでの進行距離が波長以下である構造が最低 限必要と考えられる。  Here, “coupling by phase superposition” means superposition of waves. Since the light intensity difference between the light due to total reflection and the adjacent light due to direct incidence is small, the superposition of waves on the grating slope is effectively performed. As a result, as shown in (b) of FIG. 40, the intensity of the waves is increased by the superposition of the waves, and the wavefront satisfying a certain condition advances as reflected light again. To reinforce each other, it is necessary that the directions of the amplitudes match. As the shape condition of the grating structure, it is considered that a structure in which the traveling distance of the reflected wave to meet the adjacent incident wave is less than the wavelength is the minimum.
なお、 従来技術においても格子周期が波長と同程度の領域においては、 上 述の効果が確認されると考えられる。 しかしながら、 従来技術においては反 射光の強度に比較して隣の入射光の強度が大きいため、 波の重ね合わせは入 射光に優勢に働き、 図 4 0の (a ) に示すように、 そのまま格子内へ 0次光 として通過し結果的に 1次回折光の増加につながらない。  It should be noted that even in the prior art, the above-described effect is considered to be confirmed in a region where the grating period is almost equal to the wavelength. However, in the prior art, since the intensity of the adjacent incident light is larger than the intensity of the reflected light, the superposition of the waves predominates on the incident light, and the grid is directly used as shown in (a) of FIG. It passes through as 0th order light and does not result in an increase in 1st order diffracted light.
このように、 本発明の格子形状により従来技術の鋸型形状よりも高い回折 効率を有する回折光を得ることが可能となる。  Thus, the grating shape of the present invention makes it possible to obtain diffracted light having higher diffraction efficiency than the sawtooth shape of the prior art.
図 4 2に戻り、 波長よりも十分に長い周期の格子構造が配置される領域 1 においては、 従来技術と本発明による回折効率の値はほぼ同一であり、 本発 明による特徴的な差異はほとんど現われ,ていない。 しかしながら、 周期の短 い格子構造が配置されている領域 2 では、 従来技術における格子構造では回 折効率が領域 1 よりも大きく減少するが、 本発明では回折効率の減少が従来 技術よりも改善されている。 このことは集光強度にも大きく影響し、 従来技 術では領域 2 の影響により十分な集光強度を維持することができないが、 本 発明による回折光学素子では集光強度を維持することが可能となる。 これを 端的に表したグラフが図 4 3である。 Referring back to FIG. 42, in region 1 where the grating structure having a period sufficiently longer than the wavelength is arranged, the values of the diffraction efficiency according to the prior art and the present invention are almost the same. The characteristic differences due to Ming appear little and little. However, in region 2 where the grating structure having a short period is arranged, the diffraction efficiency is significantly reduced in the conventional grating structure as compared with region 1, but in the present invention, the reduction in diffraction efficiency is improved as compared with the conventional technology. ing. This greatly affects the light-collecting intensity. Conventional technology cannot maintain a sufficient light-collecting intensity due to the influence of region 2, but the diffractive optical element according to the present invention can maintain the light-collecting intensity. It becomes. Fig. 43 shows a simple graph of this.
図 4 3では回折光学素子の集光強度を決定する因子である開口数に対して 得られる回折効率の平均値を表している。 点線部で示された従来技術による 結果と比較して、 本発明による結果は開口数が大きい場合においても高い回 折効率を維持していることがわかる。 したがって、 従来技術よりも高性能な 大きい開口数をもつ回折光学素子を実現することが可能であり、 これを利用 することによってより高い性能をもつ光学装置を提供することができる。  FIG. 43 shows the average value of the diffraction efficiency obtained with respect to the numerical aperture, which is a factor that determines the condensing intensity of the diffractive optical element. It can be seen that the results of the present invention maintain a high diffraction efficiency even when the numerical aperture is large, as compared with the results of the prior art indicated by the dotted line. Therefore, it is possible to realize a diffractive optical element having a large numerical aperture that is higher in performance than the conventional technology, and it is possible to provide an optical device having higher performance by using this.
前述した回折光学素子の実施例では、 入射光の偏光方向を TE偏光であると 仮定したが任意の偏光においても成立する。  In the above-described embodiment of the diffractive optical element, it is assumed that the polarization direction of the incident light is the TE polarization, but the invention is applicable to any polarization.
また本発明の実施形態に係る回折光学素子の基板材料は、 使用する波長領 域において十分な透過域を有する材質であれば、 ガラス、 プラスチック、 光 学結晶などについて限定するものではない。  In addition, the substrate material of the diffractive optical element according to the embodiment of the present invention is not limited to glass, plastic, optical crystals, and the like as long as the material has a sufficient transmission band in the wavelength region to be used.
また、 回折光学素子は半導体製造技術によるリソグラフィー技術 (光源が 紫外線、 X線およぴ電子ビームなど) や切削加工を用いて製造することができ る。 あるいは、 連続的な形状をもつ回折光学素子であることからリソグラフ ィ一技術や切削加工で原版を作り、 金型を製作することによって、 プラスチ ックゃガラスなどによる大量生産を目的とする成形もできる。  In addition, diffractive optical elements can be manufactured using lithography technology (light source is ultraviolet light, X-ray, electron beam, etc.) by semiconductor manufacturing technology or cutting. Alternatively, since it is a diffractive optical element with a continuous shape, a master is made by lithography technology or cutting, and a mold is manufactured, so that molding for the purpose of mass production with plastic glass etc. it can.
このように、 本発明の回折光学素子は、 レンズと比較して球面収差を低下 させ、 また、 周縁部において最適化させた格子構造を配置することにより集 光効率を増加させ、 従来技術の問題点である回折効率の低下を防ぐことがで きる。 周縁部の集光効率の増加に伴って素子全体の集光効率が増加し、 開口 数の高い光学素子を実現することが可能となる。 この結果、 本発明の回折光 学素子を用いることによって、 従来の回折光学素子よりも光学系、 光学装置 の高性能化を図ることができ、 また回折光学素子構造を使用可能とすること T/JP2004/004762 As described above, the diffractive optical element of the present invention reduces the spherical aberration as compared with the lens, and also increases the light collection efficiency by arranging the optimized grating structure at the peripheral edge, thereby reducing the problems of the prior art. It is possible to prevent a reduction in diffraction efficiency, which is a point. The light-collecting efficiency of the entire element increases with the increase of the light-collecting efficiency of the peripheral portion, and an optical element having a high numerical aperture can be realized. As a result, by using the diffractive optical element of the present invention, the performance of the optical system and the optical device can be improved as compared with the conventional diffractive optical element, and the diffractive optical element structure can be used. T / JP2004 / 004762
48 によつて装置の軽量化と光学系の小型化を図ることができる。  According to 48, the weight of the apparatus can be reduced and the size of the optical system can be reduced.
図 4 4は、 以上において説明した特殊形状の回折格子を示す。  FIG. 44 shows the diffraction grating having the special shape described above.

Claims

請 求 の 範 囲 The scope of the claims
1 . 少なくとも 1つの面に、 光軸を含む第 1領域と第 1領域の周囲の回折 部を有する第 2領域とを備え、 第 1の波長を有する第 1の光線と、 第 1の波 長と異なる第 2の波長を有する第 2の光線を取り扱う結像光学素子であって 第 2領域における回折部の形状が、 基板を平面とした場合に階段形状であ り、 階段形状の段差量が、 0次回折光の回折効率が、 第 1および第 2の光線 の、 —方の波長において回折効率のピークに近づくように、 前記一方の波長 に基づいて定められており、 1. At least one surface includes a first region including an optical axis and a second region having a diffractive portion surrounding the first region, a first light beam having a first wavelength, and a first wavelength. An imaging optical element for handling a second light beam having a second wavelength different from the above, wherein the shape of the diffractive portion in the second region is a stepped shape when the substrate is a flat surface, and the step amount of the stepped shape is , The diffraction efficiency of the 0th-order diffracted light is determined based on the one of the first and second rays based on the one wavelength such that the diffraction efficiency approaches the peak of the diffraction efficiency at the negative wavelength.
階段数を N、 前記一方の光線の波長をえ。、 0次以外の回折次数を a、 mお よび pを整数とした場合に、 波長  The number of steps is N, and the wavelength of the one light beam is obtained. , Where the diffraction orders other than the 0th order are a, m and p are integers, the wavelength
λ; = [N/ (N · m + a ) ] · /1 0 · p λ; = [N / (N · m + a)] · / 1 0 · p
と第 1および第 2の光線の、 前記他方の波長との差の、 前記他方の波長に対 する比率が、 回折効率のピーク値からの低下の度合いから定めた所定の値以 下であるように、 階段数 Nが定められた結像光学素子。 The ratio of the difference between the first and second light beams and the other wavelength to the other wavelength is equal to or less than a predetermined value determined from the degree of reduction from the peak value of the diffraction efficiency. An imaging optical element in which the number of steps N is determined.
2 . 第 1の波長を有する第 1の光線と第 1の波長と異なる第 2の波長を有 する第 2の光線を、 それぞれ第 1および第 2の面上に集光させる結像光学素 子としての対物レンズであって、  2. An imaging optical element that focuses a first light beam having a first wavelength and a second light beam having a second wavelength different from the first wavelength on the first and second surfaces, respectively. The objective lens as
少なくとも 1つのレンズ面に、 光軸を含む第 1領域と第 1領域の周囲の回 折部を有する第 2領域と第 2領域の周囲の第 3領域とを備え、 第 1の光線が 第 1および第 2領域を通過後、 第 1の面上に集光し、 第 2の光線が第 1、 第 2および第 3領域を通過後第 2の面上に集光するように、 第 2領域における レンズ面形状が第 1およぴ第 2の光線の、 一方の光路に基づいて設計され、 第 2領域における回折部を定める位相関数が第 1および第 2の光線の、 他方 の光路に基づいて設計された、 請求項 1に記載の結像光学素子としての対物 レンズ。 At least one lens surface includes a first region including an optical axis, a second region having a diffraction portion around the first region, and a third region around the second region. And after passing through the second region, the second region is focused on the first surface, and the second light beam is focused on the second surface after passing through the first, second and third regions. The lens surface shape at is designed based on one of the optical paths of the first and second rays, and the phase function defining the diffractive portion in the second region is based on the other optical path of the first and second rays. The objective lens as the imaging optical element according to claim 1, wherein the objective lens is designed as follows.
3 . 第 2領域における回折部の形状が、 基板を平面とした場合に階段形状 であり、 階段形状の段差量が第 1および第 2の光線の波長に基づいて定めら れる請求項 2に記載の対物レンズ。 3. The shape of the diffractive portion in the second area is a stepped shape when the substrate is a plane, and the step amount of the stepped shape is determined based on the wavelengths of the first and second light beams. Objective lens.
4 . 第 2領域におけるレンズ面形状を定める光線の波長をえ。、 レンズの屈 折率を n、 レンズの周囲の屈折率を n。、 回折部に対する入射角を Θとして、 段差量をえ。 ' cos ^ Z ( n— n。) の整数倍の値を基準として求める請求項 3 に記載の対物レンズ。  4. Obtain the wavelength of the light beam that determines the lens surface shape in the second area. N is the refractive index of the lens, and n is the refractive index around the lens. , Let に 対 す る be the angle of incidence with respect to the diffraction part, and obtain the amount of step. 4. The objective lens according to claim 3, wherein the objective lens is determined based on an integral multiple of 'cos ^ Z (n-n.).
5 . 回折部における階段の幅が位相関数および段差量と階段数に基づいて 定められる請求項 3または 4に記載の対物レンズ。  5. The objective lens according to claim 3, wherein the width of the step in the diffraction section is determined based on the phase function, the amount of the step, and the number of steps.
6 . 第 2領域における回折部において、 第 2領域におけるレンズ面形状を 定める光線が主に 0次回折光として通過し、 第 2領域における回折部の形状 を定める光線が主に 1次または- 1次回折光として通過する請求項 2から 5の レ、ずれか 1項に記載の対物レンズ。 6. In the diffractive portion in the second region, the light beam that determines the lens surface shape in the second region passes mainly as the 0th-order diffracted light, and the light beam that determines the shape of the diffractive portion in the second region is mainly the first or first-order light. 6. The objective lens according to claim 2, wherein the objective lens passes as folded light.
7 . 第 1、 第 2および第 3領域のレンズ面形状が非球面である請求項 2か ら 6のいずれか 1項に記載の対物レンズ。  7. The objective lens according to any one of claims 2 to 6, wherein the lens surface shapes of the first, second, and third regions are aspherical.
8 . 厚みの異なる第 1および第 2の光記録媒体への情報の記録または再生 をおこなう光ピックアップ装置であって、 第 1の波長を有する第 1の光線と 第 1の波長と異なる第 2の波長を有する第 2の光線を、 それぞれ第 1および 第 2の光記録媒体に使用する光ピックアツプ装置において使用される対物レ ンズであって、 前記第 1の面が第 1の光記録媒体の面であり、 前記第 2の面 が第 2の光記録媒体の面である請求項 2から 6のいずれか 1項に記載の対物 レンズ。  8. An optical pickup device for recording or reproducing information on first and second optical recording media having different thicknesses, wherein a first light beam having a first wavelength and a second light beam different from the first wavelength are provided. An objective lens used in an optical pickup device that uses a second light beam having a wavelength for the first and second optical recording media, respectively, wherein the first surface is a surface of the first optical recording medium. The objective lens according to any one of claims 2 to 6, wherein the second surface is a surface of a second optical recording medium.
9 . 第 1領域を通過する光線が光記録媒体に集光する開口数を NA1 とする と NA1は、 を満たし、 第 2領域を通過し光記録媒体上に集光する開 口数を NA2 とすると NA2は 0. 3≤NA2≤0. 51を満たし、 第 3領域を通過し光記 録媒体上に集光する開口数を NA3とすると NA3は 0. 4≤NA3≤0. 67を満たす請 求項 8に記載の対物レンズ。  9. Let NA1 be the numerical aperture at which the light beam passing through the first area converges on the optical recording medium, and NA1 satisfy NA, and let NA2 be the numerical aperture that passes through the second area and converge on the optical recording medium. NA2 satisfies 0.3 ≤ NA2 ≤ 0.51, and NA3 satisfies 0.4 ≤ NA3 ≤ 0.67, where NA3 is the numerical aperture that passes through the third region and converges on the optical recording medium. Item 9. The objective lens according to Item 8.
1 0 . 少なくとも 1つの面に、 光軸を含む第 1領域と第 1領域の周囲の回 折部を有する第 2領域とを備え、 第 1の波長を有する第 1の光線は第 1領域 を通過して結像面に集光するが第 2領域を通過した場合は結像面に集光せず 、 第 1の波長と異なる第 2の波長を有する第 2の光線は第 1領域および第 2 領域を通過して結像面に集光するようにする結像光学素子であって、 第 2領域における面形状が第 1および第 2の光線の、 一方の光路に基づいて 設計され、 第 2領域における回折部の形状が第 1および第 2の光線の、 他方 の光路に基づいて設計された請求項 1に記載の結像光学素子。 10. At least one surface includes a first region including an optical axis and a second region having a diffraction portion around the first region, and a first light beam having a first wavelength has a first region. Light passes through and condenses on the image plane, but does not converge on the image plane when passing through the second area. A second light beam having a second wavelength different from the first wavelength passes through the first area and the second area and is focused on an imaging surface; The surface shape at is designed based on one of the optical paths of the first and second rays, and the shape of the diffractive portion in the second region is designed based on the other optical path of the first and second rays. Item 2. The imaging optical element according to Item 1.
1 1 . 第 2領域における回折部の形状が、 基板を平面とした場合に階段形 状であり、 階段形状の段差量が、 0次回折光の回折効率が、 第 1および第 2 の光線の、 前記一方の波長においてピークに近づくように、 前記一方の波長 に基づいて定められた請求項 1 0に記載の結像光学素子。  1 1. The shape of the diffractive portion in the second region is a stepped shape when the substrate is a plane, and the stepped amount of the stepped shape, the diffraction efficiency of the 0th-order diffracted light, and the first and second light beams 10. The imaging optical element according to claim 10, wherein the imaging optical element is determined based on the one wavelength so as to approach a peak at the one wavelength.
1 2 . 前記一方の波長の整数倍を 1。、 結像光学素子の屈折率を n、 結像光 学素子の周囲の屈折率を n。、 回折部に対する入射角を Θとして、 回折部の段 差量が、 え。 · cos 0 Z ( n— n。) の値を基準として定められる請求項 1 1に 記載の結像光学素子。  1 2. An integer multiple of the one wavelength. The refractive index of the imaging optical element is n, and the refractive index around the imaging optical element is n. The incident angle to the diffractive part is Θ, and the amount of step in the diffractive part is: The imaging optical element according to claim 11, wherein the imaging optical element is determined based on a value of cos 0 Z (n-n.).
1 3 . 前記他方の波長における 0次回折光の回折効率が 0%に近づき、 0次 以外の次数の回折光の回折効率が、 できるだけ大きくなるように、 階段形状 の階段数が、 第 1およぴ第 2の波長に基づいて定められる請求項 1 1または 1 2に記載の結像光学素子。  13. The number of steps in the staircase shape is set so that the diffraction efficiency of the 0th-order diffracted light at the other wavelength approaches 0% and the diffraction efficiency of the diffracted lights of orders other than the 0th-order becomes as large as possible. 13. The imaging optical element according to claim 11, which is determined based on the second wavelength.
1 4 . 階段数を N、 前記一方の光線の波長をえ。、 0次以外の回折次数を α 、 mおよび ρを整数とした場合に、 波長  1 4. The number of steps is N, and the wavelength of the one light beam is obtained. , Where diffraction orders other than the 0th order are α, m and ρ are integers, the wavelength
λ j = [ N/ ( N - m + a ) ] · 0 · p λ j = [N / (N-m + a)] · 0 · p
と第 1および第 2の光線の、 前記他方の波長との差の前記他方の波長に対す る比率が所定の値以下であるように階段数 Nを定める請求項 1 3に記載の結 像光学素子。 14. The imaging optics according to claim 13, wherein the number of steps N is determined such that a ratio of a difference between the other wavelength and the first and second light rays to the other wavelength is equal to or less than a predetermined value. element.
1 5 . 階段の幅が、 段差量、 階段数および前記他方の光路に基づいて定め られる請求項 1 1乃至 1 4のいずれか 1項に記載の結像光学素子。  15. The imaging optical element according to any one of claims 11 to 14, wherein the width of the stairs is determined based on the amount of steps, the number of steps, and the other optical path.
1 6 . レンズである請求項 1 0から 1 5のいずれか 1項に記載の結像光学 素子。  16. The imaging optical element according to any one of claims 10 to 15, which is a lens.
1 7 . 少なくとも 1つの面に、 光軸を含む第 1領域と第 1領域の周囲の回 折部を有する第 2領域とを備え、 第 1の波長を有する第 1の光線と、 第 1の 波長と異なる第 2の波長を有する第 2の光線を取り扱う結像光学素子を設計 する方法であって、 第 2領域における回折部の形状が、 基板を平面とした場 合に階段形状であり、 17. At least one surface includes a first region including an optical axis and a second region having a diffraction portion around the first region, and a first light beam having a first wavelength; Design imaging optics to handle a second light beam with a second wavelength different from the wavelength Wherein the shape of the diffractive portion in the second region is a staircase shape when the substrate is flat,
階段形状の段差量を、 0次回折光の回折効率が、 第 1および第 2の光線の 、 一方の波長において回折効率のピークに近づくように、 前記一方の波長に 基づいて定めるステップと、  Determining a step amount of the staircase shape based on the one wavelength so that the diffraction efficiency of the zero-order diffracted light approaches the peak of the diffraction efficiency at one wavelength of the first and second light beams;
階段数を N、 前記一方の光線の波長を; 。、 0次以外の回折次数を a、 mお ょぴ pを整数とした場合に、 波長  The number of steps is N, the wavelength of the one light beam; , If the diffraction orders other than the 0th order are a and m and p are integers, the wavelength
λ;= [ N/ ( N · m + α ) ] · λ。 · p  λ; = [N / (N · m + α)] · λ. · P
と第 1および第 2の光線の、 前記他方の波長との差の、 前記他方の波長に対 する比率が、 回折効率のピーク値からの低下の度合いから定めた所定の値以 下であるように、 階段数 Nを定めるステップと、 を含む方法。 The ratio of the difference between the first and second light beams and the other wavelength to the other wavelength is equal to or less than a predetermined value determined from the degree of reduction from the peak value of the diffraction efficiency. Determining the number of steps N.
1 8 . 第 1の波長を有する第 1の光線と第 1の波長と異なる第 2の波長を 有する第 2の光線を、 それぞれ第 1およぴ第 2の面上に集光させる、 結像光 学素子としての対物レンズを設計する方法であって、  18. Focusing a first light beam having a first wavelength and a second light beam having a second wavelength different from the first wavelength on the first and second surfaces, respectively. A method of designing an objective lens as an optical element,
少なくとも 1つのレンズ面に、 光軸を含む第 1領域と第 1領域の周囲の第 2領域と第 2領域の周囲の第 3領域とを定めるステップと、  Defining at least one lens surface with a first region including the optical axis, a second region around the first region, and a third region around the second region;
第 1領域におけるレンズ面形状を設計するステップと、 Designing a lens surface shape in the first region;
第 2領域におけるレンズ面形状を第 1および第 2の光線の、 一方の光路に基 づいて設計するステップと、 Designing a lens surface shape in the second region based on one of the optical paths of the first and second light rays; and
第 2領域における回折部の形状を規定する位相関数を第 1および第 2の光 線の、 他方の光路に基づいて定めるステップと、  Determining a phase function defining the shape of the diffractive portion in the second region based on the other optical path of the first and second light beams;
第 3領域におけるレンズ面形状を設計するステップと、 を含む請求項 1 7に 記載の設計方法。 The design method according to claim 17, further comprising: designing a lens surface shape in the third region.
1 9 . 第 2領域における回折部の形状が、 基板を平面とした場合に階段形 状であり、 階段形状の段差量を、 第 1および第 2の光線の波長に基づいて定 めるステップをさらに含む請求項 1 8に記載の設計方法。  19. The shape of the diffractive portion in the second area is step-like when the substrate is a plane, and the step of determining the step amount of the step-like shape based on the wavelengths of the first and second light beams is performed. 19. The design method according to claim 18, further comprising:
2 0 . 第 2領域におけるレンズ面形状を定める光線の波長を; L。、 レンズの 屈折率を!!、 レンズの周囲の屈折率を n。、 回折部に対する入射角を Θとして 、 段差量を; l。 ' cos 0 / ( n— n 0 ) の整数倍の値を基準として求める請求項 1 9に記載の設計方法。 20. The wavelength of the light beam that determines the lens surface shape in the second area; The refractive index of the lens! ! The refractive index around the lens n. The incident angle with respect to the diffractive part is Θ, and the amount of step is; 'Cos 0 / design method of claim 1 9 for determining, based on the integer multiple of the (n- n 0).
2 1 . 第 2領域における回折部の階段数を第 1および第 2の光線の波長に 基づいて回折効率を考慮して定めるステップをさらに含む請求項 1 9または 2 0に記載の設計方法。 21. The design method according to claim 19, further comprising the step of determining the number of steps of the diffractive portion in the second region in consideration of the diffraction efficiency based on the wavelengths of the first and second light beams.
2 2 . 回折部における階段の幅を位相関数および段差量と階段数に基づい て定める請求項 1 9から 2 1のいずれか 1項に記載の設計方法。  22. The design method according to any one of claims 19 to 21, wherein the width of the step in the diffraction section is determined based on the phase function, the amount of step, and the number of steps.
2 3 . 第 2領域における回折部において、 第 2領域におけるレンズ面形状 を定める光線が主に 0次回折光として通過し、 第 2領域における回折部の形 状を定める光線が主に 1次または- 1次回折光として通過するように設計する 請求項 1 8から 2 2のいずれか 1項に記載の設計方法。  23. In the diffractive portion in the second region, the light beam that determines the lens surface shape in the second region mainly passes as the 0th-order diffracted light, and the light beam that determines the shape of the diffractive portion in the second region is mainly the primary or negative beam. The design method according to any one of claims 18 to 22, wherein the design method is designed to pass as first-order diffracted light.
2 4 . 第 1、 第 2および第 3領域のレンズ面形状を非球面として設計する 請求項 1 8から 2 3のいずれか 1項に記載の設計方法。 24. The design method according to any one of claims 18 to 23, wherein the lens surface shapes of the first, second, and third regions are designed as aspherical surfaces.
2 5 . 厚みの異なる第 1および第 2の光記録媒体への情報の記録または再 生をおこなう光ピックアップ装置であって、 第 1の波長を有する第 1の光線 と第 1の波長と異なる第 2の波長を有する第 2の光線を、 それぞれ第 1およ び第 2の光記録媒体に使用する光ピックアツプ装置において使用される対物 レンズの設計方法であって、 前記第 1の面が第 1の光記録媒体の面であり、 前記第 2の面が第 2の光記録媒体の面である請求項 1 8から 2 4のいずれか 1項に記載の設計方法。  25. An optical pickup device for recording or reproducing information on first and second optical recording media having different thicknesses, wherein a first light beam having a first wavelength and a second light beam different from the first wavelength. A method of designing an objective lens used in an optical pickup device for using a second light beam having a wavelength of 2 for first and second optical recording media, respectively, wherein the first surface is the first light beam. 26. The design method according to claim 18, wherein the second surface is a surface of the second optical recording medium.
2 6 . 第 1領域を通過する光線が光記録媒体に集光する開口数を NA1 とす ると A1は、 NA1≤0. 37を満たし、 第 2領域を通過し光記録媒体上に集光する 開口数を NA2 とすると NA2は 0. 3≤NA2≤0. 51を満たし、 第 3領域を通過し光 記録媒体上に集光する開口数を NA3 とすると NA3は 67を満たす 請求項 2 5に記載の設計方法。  26. Assuming that the numerical aperture at which light rays passing through the first area converge on the optical recording medium is NA1, A1 satisfies NA1 ≤ 0.37, passes through the second area and converges on the optical recording medium. If the numerical aperture is NA2, NA2 satisfies 0.3 ≦ NA2 ≦ 0.51 and NA3 satisfies 67 if the numerical aperture passing through the third area and condensing on the optical recording medium is NA3. Design method described in.
2 7 . 少なくとも 1つの面に、 光軸を含む第 1領域と第 1領域の周囲の回 折部を有する第 2領域とを備え、 第 1 の波長を有する第 1の光線は第 1領域 を通過して結像面に集光するが第 2領域を通過した場合は結像面に集光せず 、 第 1の波長と異なる第 2の波長を有する第 2の光線は第 1領域および第 2 領域を通過して結像面に集光するようにする結像光学素子を設計する方法で あって、 第 2領域における面形状を第 1およぴ第 2の光線の、 一方の光路に基づい 'て設計するステップと、 27. At least one surface includes a first region including an optical axis and a second region having a diffraction portion around the first region, and a first light beam having a first wavelength has a first region. When the light passes through and converges on the imaging surface, but does not converge on the imaging surface when passing through the second region, the second light beam having a second wavelength different from the first wavelength is transmitted to the first region and the second region. (2) A method of designing an imaging optical element that passes through a region and converges on an imaging surface, Designing a surface shape in the second region based on one of the optical paths of the first and second rays;
第 2領域における回折部の形状を第 1およぴ第 2の光線の、 他方の光路に 基づいて設計するステップと含む請求項 1 7に記載の設計方法。  18. The design method according to claim 17, further comprising the step of designing the shape of the diffraction portion in the second region based on the other optical path of the first and second light beams.
28. 第 2領域における回折部の形状が、 基板を平面とした場合に階段形 状であり、 階段形状の段差量を、 0次回折光の回折効率が、 第 1および第 2 の光線の、 前記一方の波長においてピークに近づくように、 前記一方の波長 に基づいて定められるステップをさらに含む請求項 27に記載の設計方法。 28. The shape of the diffractive portion in the second region is step-like when the substrate is a plane, and the step amount of the step-like shape, the diffraction efficiency of the 0th-order diffracted light, and the first and second rays 28. The design method according to claim 27, further comprising a step of being determined based on said one wavelength so as to approach a peak at one wavelength.
29. 前記一方の波長の整数倍をえ。、 結像光学素子の屈折率を n、 結像光 学素子の周囲の屈折率を n。、.回折部に対する入射角を Θとして、 回折部の段 差量を i。 * COS 0 Z (n— nQ) の整数倍の値を基準として求める請求項 2 7 に記載の設計方法。 29. Obtain an integer multiple of the one wavelength. The refractive index of the imaging optical element is n, and the refractive index around the imaging optical element is n. The incident angle with respect to the diffraction part is Θ, and the amount of step in the diffraction part is i. 28. The design method according to claim 27, wherein the value is obtained based on an integer multiple of COS 0 Z (n—n Q ).
30. 前記他方の波長における 0次回折光の回折効率が 0%に近づき、 0次 以外の次数の回折光の回折効率が、 できるだけ大きくなるように、 階段形状 の階段数を、 第 1および第 2の波長に基づいて定めるステップをさらに含む 請求項 28または 29に記載の設計方法。  30. The number of steps in the staircase shape is set to be 1st and 2nd so that the diffraction efficiency of the 0th-order diffracted light at the other wavelength approaches 0% and the diffraction efficiency of the diffracted lights of orders other than 0th-order becomes as large as possible. 30. The design method according to claim 28, further comprising the step of determining based on the wavelength of the light.
3 1. 階段数を N、 前記一方の光線の波長を λ。、 0次以外の回折次数を ο; 、 mおよび ρを整数とした場合に、 波長  3 1. The number of steps is N, and the wavelength of the one light beam is λ. , And m and ρ are integers.
λ i = [N/ (N · m+ α) ] · λ 0 · p λ i = [N / (N · m + α)] · λ 0 · p
と第 1および第 2の光線の、 前記他方の波長との差の前記他方の波長に対す る比率が所定の値以下であるように階段数 Nを定める請求項 3 0に記載の設 計方法。  30. The design method according to claim 30, wherein the number of steps N is determined such that a ratio of a difference between the other wavelength and the first and second light rays to the other wavelength is equal to or less than a predetermined value. .
3 2. 階段の幅を、 段差量、 階段数おょぴ前記他方の光路に基づいて定め る請求項 28乃至 31のいずれか 1項に記載の設計方法。 ·  32. The design method according to any one of claims 28 to 31, wherein the width of the stairs is determined based on the amount of steps, the number of steps, and the other optical path. ·
3 3. 結像光学素子がレンズである請求項 2 7から 3 2のいずれか 1項に 記載の設計方法。 '  3 3. The design method according to any one of claims 27 to 32, wherein the imaging optical element is a lens. '
34. 異なる二波長を 0次および 1次回折光として 0次および 1次回折光 の回折効率を考慮しながら、 位相関数に基づいて階段形状の回折格子形状を 決定する方法であって、 一方の波長え。の光を 0次回折光として波長; L。に基づいて段差量を定めるス 階段数を N、 正の整数を mとして、 1次回折光における任意のピーク波長又2 を、 回折格子形状が右上がり形状を持つ場合は λ 2=Ν/ (Νηι+1) Χ λ。とし、 回折 格子形状が左上がりの形状を持つ場合は; 2=N/ (Nm- 1) Xえ。として求めるステ ップと、 34. A method of determining a staircase-shaped diffraction grating shape based on a phase function while considering diffraction efficiencies of the 0th-order and 1st-order diffracted light as two different wavelengths as 0th-order and 1st-order diffracted light, One wavelength. Wavelength as the 0th order diffracted light; L. Where N is the number of steps and m is a positive integer, and any peak wavelength or 2 in the first-order diffracted light is obtained.If the diffraction grating has a right-up shape, λ 2 = Ν / (Νηι +1) Χ λ. If the diffraction grating shape has a shape that rises to the left; 2 = N / (Nm-1) X And the steps required
2が 1次回折光である他方の光の波長に近づくように m を操作しながら、 階段数を定めるステップと、  Determining the number of steps while manipulating m so that 2 approaches the wavelength of the other light that is the first order diffracted light;
段差量および位相関数に基づいて階段の幅を定めるステップとを含む回折 格子形状を決定する方法。  Determining the width of the step based on the step amount and the phase function.
3 5 . 異なる二波長を 0次および 1次回折光として 0次および 1次回折光 の回折効率を考慮しながら、 位相関数に基づいて階段形状の回折格子形状を 決定するコンピュータ ·プログラムであって、 コンピュータに  35. A computer program for determining a step-shaped diffraction grating shape based on a phase function while considering diffraction efficiencies of the 0th-order and 1st-order diffracted light as two different wavelengths as a 0th-order and a 1st-order diffracted light. To
—方の波長 λ。の光を 0次回折光として波長 λ。に基づいて段差量を定めるス テツプと、  —Wavelength λ. Is the wavelength λ as the 0th-order diffracted light. A step for determining the amount of step based on
階段数を Ν、 正の整数を mとして、 1次回折光における任意のピ一ク波長 λ 2 を、 回折格子形状が右上がり形状を持つ場合は L 2=N/ (Nm+l) Xえ。とし、 回折 格子形状が左上がりの形状を持つ場合は 2=N/ (Nm- 1 ) X λ 0 して求めるステ ップと、 If the number of steps is Ν and a positive integer is m, an arbitrary peak wavelength λ 2 in the first-order diffracted light is obtained. If the shape of the diffraction grating rises to the right, L 2 = N / (Nm + l) X. If the shape of the diffraction grating has a shape that rises to the left, 2 = N / (Nm-1) X λ 0
λ 2が 1次回折光である他方の光の波長に近づくように raを操作しながら、 階段数を定めるステップと、 determining the number of steps while manipulating ra so that λ 2 approaches the wavelength of the other light that is the first-order diffracted light;
段差量および位相関数に基づいて階段の幅を定めるステップと、 を実行さ せるコンピュータ ·プログラム。  A computer program for executing a step of determining a width of a stair based on a step amount and a phase function;
3 6 . 異なる波長の光線を、 異なる面に集光する対物レンズであって、 少 なくとも 1つの面に回折格子を備えており、 第 1の波長 および第 2の波長 λ23 6. The rays of different wavelengths, a objective lens for focusing on different surfaces, provided with a diffraction grating on one surface even without small, the first and second wavelengths lambda 2 is
λ ! <λ 2 λ! <λ 2
の関係を満たす場合に、 第 1の波長 および第 2の波長 λ 2の光束が共に通過 する領域において、 2次回折光として第 1の波長 の光束が第 1の面に集光 し、 1次回折光として第 2の波長 λ 2の光束が第 2の面に集光するように、 回 折格子の位相関数およびレンズ面形状を定め、 回折格子の格子深さを、 第 1 の波長 λ における 2次回折光の回折効率おょぴ第 2の波長 λ2における 1次回 折光の回折効率が所定の値より大きくなるように定めた対物レンズ。 In the region where both the first wavelength and the second wavelength λ 2 pass through when the relationship of So that the luminous flux of the second wavelength λ 2 is focused on the second surface. Determine the phase function of the folded grating and the lens surface shape, and set the grating depth of the grating to the diffraction efficiency of the second-order diffracted light at the first wavelength λ and the diffraction efficiency of the first-order folded light at the second wavelength λ2. Objective lens set to be larger than the value of.
3 7. 第 2の波長 λ33 7. The second wavelength λ 3
λ2 \八 3 λ 2 \ 8 3
の関係を満たす場合に、 第 1の波長 第 2の波長 λ2およぴ第 3の波長 λ3 の光束が共に通過する領域において、 さらに、 1次回折光として第 3の波長 λ 3の光束が第 3の面に集光するように、 回折格子の位相関数およびレンズ面形 状を定め、 回折格子の格子深さを、 第 3の波長 λ3における 1次回折光の回折 効率が所定の値より大きくなるように定めた請求項 3 6に記載の対物 In the region where the first wavelength, the second wavelength λ 2 and the third wavelength λ 3 pass together, the light beam of the third wavelength λ 3 as the first-order diffracted light is as condensed to a third aspect, define a phase function and a lens surface shape of a diffraction grating, the grating depth of the diffraction grating, the diffraction efficiency of first-order diffracted light of the third wavelength lambda 3 is higher than a predetermined value The objective according to claim 36, which is set to be large.
3 8. 回折格子がブレーズ化形状である請求項 3 6または 3 7に記載の対 物レンズ。 38. The objective lens according to claim 36, wherein the diffraction grating has a blazed shape.
3 9 · ηをレンズの屈折率として、 回折格子の深さ 1が式  3 9η is the refractive index of the lens.
(7/4) χλノ (η - 1 ) く 1 < (9/4) χλノ (η— 1)  (7/4) χλno (η-1) ku 1 <(9/4) χλno (η- 1)
によって定まる請求項 3 8に記載の対物レンズ。 The objective lens according to claim 38, wherein the objective lens is determined by:
4 0. 少なくとも 1つの面を、 光軸を取り囲む少なくとも 1つの帯状領域 および光軸を含む中心領域に分割し、 それぞれの領域を別個の面によって定 義した、 請求項 3 6から 3 9のいずれか 1項に記載の対物レンズ。  40. Any of claims 36 to 39, wherein at least one surface is divided into at least one strip region surrounding the optical axis and a central region including the optical axis, and each region is defined by a separate surface. Or the objective lens according to item 1.
4 1. 別個の面の間に光軸方向の段差を備えた請求項 4 0に記載の対物レ ンズ。  41 1. The objective lens according to claim 40, wherein a step in the optical axis direction is provided between the separate surfaces.
4 2. 別個の面が、 ζ軸は光軸と一致し、 iは中心から数えた面の番号、 R iは曲率半径、 K iは離心率、 A i 4、 A i 6、 A i 8、 A i 1 0は非球 面係数、 d iは第 1面を基準とする他の面の光軸上の段差を表す場合に、 式 z— ~~ . (l/Rl)x- + i4 xh +Ai6xh6+ Ai8 xhs + Ail 0xhlo+ di によって表される請求項 4 1に記載の対物レンズ。 4 2. Separate surfaces, ζ axis coincides with optical axis, i is the number of the surface counted from the center, R i is radius of curvature, K i is eccentricity, A i 4, A i 6, A i 8 Where A i 10 is the aspherical surface coefficient and di is the step on the optical axis of the other surface with respect to the first surface, the expression z— ~~. ( L / Rl ) x- + i4 xh + Ai6xh 6 + Ai8 xh s + Ail 0xh lo + objective lens according to claim 4 1, represented by di.
4 3. 第 1の波長の光束が像側開口数 N A 1によって集光し、 第 2の波長 の光束が像側開口数 N A 2によつて集光し、 N A 1 > N A 2 4 3. The light beam of the first wavelength is focused by the image-side numerical aperture NA1, the light beam of the second wavelength is focused by the image-side numerical aperture NA2, NA 1> NA 2
の場合に、 第 2の波長の光束の最も外側の部分によって、 少なくとも 1つの 面を、 光軸を取り囲む少なくとも 1つの帯状領域および光軸を含む中心領域 に分割し、 それぞれの領域を別個の面によって定義した、 請求項 3 6から 3 9のいずれか 1項に記載の対物レンズ。 In the case of, the outermost part of the light beam of the second wavelength divides at least one surface into at least one band surrounding the optical axis and a central region including the optical axis, each region being a separate surface. The objective lens according to any one of claims 36 to 39, defined by:
4 4 . 第 1の波長の光束が像側開口数 N A 1によって集光し、 第 2の波長 の光束が像側開口数 N A 2によつて集光し、  4 4. A light beam of the first wavelength is collected by the image-side numerical aperture N A 1, a light beam of the second wavelength is collected by the image-side numerical aperture N A 2,
N A 1 > N A 2  N A 1> N A 2
の場合に、 第 1 の波長の光束のみが通過する光軸から離れた領域において、 回折格子を備え、 第 1の波長 の光束が第 1の面に集光するように、 回折格 子の位相関数およびレンズ面形状を定めた、 請求項 3 6から 3 9のいずれか 1項に記載の対物レンズ。 In the case of, the diffraction grating is provided in a region distant from the optical axis through which only the light beam of the first wavelength passes, and the phase of the diffraction grating is so set that the light beam of the first wavelength is focused on the first surface. The objective lens according to any one of claims 36 to 39, wherein a function and a lens surface shape are determined.
4 5 . 格子斜面がブレーズ化形状の斜面よりも急な部分を少なくとも一部 に備えるような形状である請求項 4 4に記載の対物レンズ。  45. The objective lens according to claim 44, wherein the lattice slope is shaped so that at least a portion thereof is steeper than the blazed slope.
4 6 . それぞれの面に集光させる場合に、 波面収差が、 波長を単位として RMS0. 0 7以下となるように設計した請求項 3 6から 4 5のいずれか 1 項に記 載の対物レンズ。 46. The objective lens according to any one of claims 36 to 45, wherein the wavefront aberration is designed to be less than RMS 0.07 in terms of wavelength when condensing on each surface. .
4 7 . 請求項 3 6から 4 6のいずれか 1 項に記載の対物レンズを使用した 光ピックァップ光学系であり、 第 1の波長がブルーレイ · ディスク用の波長 、 第 2の波長がデジタル ·バーサタイル ·ディスク用の波長である光ピック アップ光学系。  47. An optical pickup optical system using the objective lens according to any one of claims 36 to 46, wherein the first wavelength is a wavelength for a Blu-ray disc, and the second wavelength is a digital versatile. · Optical pick-up optics that is the wavelength for the disc.
4 8 . 請求項 3 7から 4 6のいずれか 1 項に記載の対物レンズを使用した 光ピックアツプ光学系であり、 第 3の波長を扱う場合に、 第 3の波長がコン パクト ·デイスク用の波長である光ピックアツプ光学系。  48. An optical pickup optical system using the objective lens according to any one of claims 37 to 46, wherein the third wavelength is used for a compact disc when the third wavelength is handled. Optical pick-up optical system that is wavelength.
4 9 . ブルーレイ .ディスク用の波長およびデジタル ·バーサタイル ·デ イスク用の波長の光束が、 対物レンズに平行光として入射され、 コンパクト •ディスク用の波長の光源と象とが有限共役関係にある請求項 4 7または 4 8に記載の光ピックァップ光学系。 4 9. The luminous flux of the wavelength for the Blu-ray disc and the wavelength for the digital versatile disc is incident on the objective lens as parallel light, and the light source for the compact disc and the elephant have a finite conjugate relationship. Item 47. An optical pickup optical system according to Item 47 or 48.
PCT/JP2004/004762 2003-04-03 2004-04-01 Imaging optical element and method of designing it WO2004090598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505234A JP4649572B2 (en) 2003-04-03 2004-04-01 Optical pickup optical system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003100648 2003-04-03
JP2003-100648 2003-04-03
JP2003148896 2003-05-27
JP2003-148896 2003-05-27
JP2003-345964 2003-10-03
JP2003345964 2003-10-03

Publications (1)

Publication Number Publication Date
WO2004090598A1 true WO2004090598A1 (en) 2004-10-21

Family

ID=33162775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004762 WO2004090598A1 (en) 2003-04-03 2004-04-01 Imaging optical element and method of designing it

Country Status (2)

Country Link
JP (1) JP4649572B2 (en)
WO (1) WO2004090598A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531530A (en) * 2019-08-30 2019-12-03 苏州大学 A kind of quick calculation method for realizing partially coherent light tightly focused

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151221A1 (en) * 2017-02-15 2018-08-23 ナルックス株式会社 Lens
WO2020035894A1 (en) 2018-08-13 2020-02-20 スタンレー電気株式会社 Illumination optical system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306018A (en) * 1996-05-16 1997-11-28 Sony Corp Recording and reproducing device and method
JPH1123819A (en) * 1997-07-07 1999-01-29 Matsushita Electric Ind Co Ltd Color separating phase grating, image display device using the same, lens, and optical information recording and reproducing device
JP2000131604A (en) * 1998-10-23 2000-05-12 Samsung Electronics Co Ltd Optical recording/pickup head for dvd compatible with cd-rw employing plane lens with staircase type diffraction grating structure
JP2000339741A (en) * 1999-05-26 2000-12-08 Tdk Corp Optical pickup device
JP2001060336A (en) * 1998-10-28 2001-03-06 Matsushita Electric Ind Co Ltd Optical head
JP2001093179A (en) * 1999-09-21 2001-04-06 Pioneer Electronic Corp Optical pickup
JP2001134976A (en) * 1999-11-02 2001-05-18 Matsushita Electric Ind Co Ltd Optical head and optical disk device
JP2002298422A (en) * 2001-03-30 2002-10-11 Asahi Optical Co Ltd Objective lens for optical head
JP2002311220A (en) * 2001-04-18 2002-10-23 Alps Electric Co Ltd Optical member and optical device which uses the same
JP2002311221A (en) * 2001-04-18 2002-10-23 Alps Electric Co Ltd Optical member and optical device which uses the same
JP2002333576A (en) * 2001-03-09 2002-11-22 Asahi Optical Co Ltd Objective lens for optical head
JP2003302512A (en) * 2002-04-09 2003-10-24 Sankyo Seiki Mfg Co Ltd Optical element for diffraction and optical pickup unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043559A (en) * 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd Optical head and optical disk device
JP3887139B2 (en) * 2000-04-21 2007-02-28 株式会社日立製作所 Objective lens, optical head using the same
JP4300914B2 (en) * 2002-12-18 2009-07-22 コニカミノルタホールディングス株式会社 Optical pickup device and optical element

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306018A (en) * 1996-05-16 1997-11-28 Sony Corp Recording and reproducing device and method
JPH1123819A (en) * 1997-07-07 1999-01-29 Matsushita Electric Ind Co Ltd Color separating phase grating, image display device using the same, lens, and optical information recording and reproducing device
JP2000131604A (en) * 1998-10-23 2000-05-12 Samsung Electronics Co Ltd Optical recording/pickup head for dvd compatible with cd-rw employing plane lens with staircase type diffraction grating structure
JP2001060336A (en) * 1998-10-28 2001-03-06 Matsushita Electric Ind Co Ltd Optical head
JP2000339741A (en) * 1999-05-26 2000-12-08 Tdk Corp Optical pickup device
JP2001093179A (en) * 1999-09-21 2001-04-06 Pioneer Electronic Corp Optical pickup
JP2001134976A (en) * 1999-11-02 2001-05-18 Matsushita Electric Ind Co Ltd Optical head and optical disk device
JP2002333576A (en) * 2001-03-09 2002-11-22 Asahi Optical Co Ltd Objective lens for optical head
JP2002298422A (en) * 2001-03-30 2002-10-11 Asahi Optical Co Ltd Objective lens for optical head
JP2002311220A (en) * 2001-04-18 2002-10-23 Alps Electric Co Ltd Optical member and optical device which uses the same
JP2002311221A (en) * 2001-04-18 2002-10-23 Alps Electric Co Ltd Optical member and optical device which uses the same
JP2003302512A (en) * 2002-04-09 2003-10-24 Sankyo Seiki Mfg Co Ltd Optical element for diffraction and optical pickup unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531530A (en) * 2019-08-30 2019-12-03 苏州大学 A kind of quick calculation method for realizing partially coherent light tightly focused

Also Published As

Publication number Publication date
JP4649572B2 (en) 2011-03-09
JPWO2004090598A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
US6671247B1 (en) Optical pick-up apparatus, optical element, and objective lens having diffracting section
US7463568B2 (en) Objective optical element and optical pickup apparatus
US8472301B2 (en) Objective optical element and optical pickup device
WO2006040902A9 (en) Diffraction optical element, objective lens module, optical pickup, and optical information recording/reproducing apparatus
US8406111B2 (en) Objective lens and optical pickup device
WO2006085444A1 (en) Objective optical system, optical pickup device and optical information recording/reproducing device
JP2004071134A (en) Compound objective lens, optical head device, optical information device, computer, optical disk player, car navigation system, optical disk recorder, optical disk server
WO2007145202A1 (en) Optical element designing method, optical element and optical pickup device
US8385181B2 (en) Objective lens and optical pickup apparatus
JP4846975B2 (en) Optical element, objective optical system, and optical pickup device
US7843792B2 (en) Optical information recording /reproducing device and objective lens for the same
US7801008B2 (en) Diffractive optical element, objective optical system including the same, and optical pickup including the same
JP4787060B2 (en) Optical pickup and optical information processing apparatus
US8208361B2 (en) Objective lens and optical pickup apparatus
JP4349520B2 (en) Objective optical system for optical recording medium and optical pickup device using the same
JP2008532081A (en) Optical scanning device
JP2010061764A (en) Optical element
JP4377281B2 (en) Objective optical system for optical recording medium and optical pickup device using the same
WO2009147827A1 (en) Optical pickup and optical disc disk device, computer, optical disc disk player, optical disc disk recorder
WO2004090598A1 (en) Imaging optical element and method of designing it
WO2010116852A1 (en) Objective lens, coupling element, and optical pickup device
JP2009181645A (en) Objective optical element and optical pickup device
WO2013099291A1 (en) Optical element and optical head device provided therewith
WO2013108610A1 (en) Optical element and optical head device provided therewith
JP2008097676A (en) Objective optical system for optical recording medium and optical pickup device using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505234

Country of ref document: JP

122 Ep: pct application non-entry in european phase