WO2009147827A1 - Optical pickup and optical disc disk device, computer, optical disc disk player, optical disc disk recorder - Google Patents

Optical pickup and optical disc disk device, computer, optical disc disk player, optical disc disk recorder Download PDF

Info

Publication number
WO2009147827A1
WO2009147827A1 PCT/JP2009/002444 JP2009002444W WO2009147827A1 WO 2009147827 A1 WO2009147827 A1 WO 2009147827A1 JP 2009002444 W JP2009002444 W JP 2009002444W WO 2009147827 A1 WO2009147827 A1 WO 2009147827A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
lens
light beam
optical
Prior art date
Application number
PCT/JP2009/002444
Other languages
French (fr)
Japanese (ja)
Inventor
田中俊靖
山崎文朝
金馬慶明
若林寛爾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2009147827A1 publication Critical patent/WO2009147827A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention includes an optical pickup that includes a plurality of light sources having different wavelengths and optically records or reproduces information on an information recording medium such as a plurality of types of optical discs, and an optical disc apparatus including the optical pickup,
  • the present invention relates to a computer, an optical disc player, and an optical disc recorder provided with the optical disc apparatus.
  • Blu-ray Disc (hereinafter referred to as BD), which is a high-density and large-capacity optical information recording medium, has the same size as CD (Compact Disc) and DVD (Digital Versatile Disc) with the practical use of blue-violet semiconductor lasers. It has been put into practical use.
  • This BD uses a blue-violet laser light source with a wavelength of about 400 nm and an objective lens whose numerical aperture (NA) is increased to 0.85, and records or reproduces information.
  • NA numerical aperture
  • the protective substrate thickness is about 0.1 mm. This is an optical disc.
  • the information recording surfaces of the optical discs having different protective substrate thicknesses are compatible with recording or reproducing information by converging laser beams of different wavelengths using a single objective lens or a plurality of objective lenses.
  • Optical pickups have been proposed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-293765
  • the optical axes of laser beams of different wavelengths emitted from different light sources are matched, and a single coupling lens and a single objective lens are used.
  • An optical pickup for recording or reproducing information on an optical disc having different protective substrate thicknesses is shown.
  • a configuration example of a conventional optical pickup disclosed in Patent Document 1 is shown in FIG.
  • 101 is a light source that emits blue-violet laser light
  • 102 is a two-wavelength light source that emits red laser light and infrared laser light
  • 103 is an optical axis of light emitted from each of the light sources 101 and 102.
  • a compatible objective lens 131 is a compatible objective lens actuator for causing the compatible objective lens 105 to follow a rotating optical disk by focus control and tracking control, 132 is a coupling lens actuator for moving the coupling lens 104 in the optical axis direction, and 151 is a high density.
  • Optical disc (BD), 152 is DVD, 153 is A D.
  • the compatible objective lens 105 is designed when the incident light beam is substantially parallel light. A simple spot is formed on the information recording surface of each optical disc.
  • the coupling lens actuator 132 By the way, even if light beams having different wavelengths are converted into parallel light by the same coupling lens 104, the degree of divergence changes due to the difference in the refractive index of the lens material due to the difference in wavelength. Therefore, by moving the coupling lens 104 in the optical axis direction by the coupling lens actuator 132, the light beam incident on the compatible objective lens 105 becomes substantially parallel light at any wavelength.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-2834 discloses that the optical axes of laser beams of different wavelengths emitted from different light sources are made coincident and different protective substrate thicknesses are obtained using a single objective lens. A configuration of another optical pickup for recording or reproducing information on or from an optical disc having the following structure is shown.
  • FIG. 20B shows a configuration example of a conventional optical pickup shown in Patent Document 2.
  • 201 is a first light source that emits blue-violet laser light
  • 202 is a second light source that emits red laser light
  • 203 is a third light source that emits infrared laser light
  • 204 is A first optical path synthesis element 205 for matching the optical axes of the emitted light from the first and second light sources 201 and 202, and a cup for converting the divergence angle of the divergent light from the first or second light source 201 and 202
  • a ring lens, 206 is a second optical path synthesis element that matches the optical axis of the light emitted from the third light source 203 with the first or second light flux that has passed through the coupling lens 205
  • 207 is a laser having a plurality of wavelengths.
  • Compatible objective lens for condensing light onto optical discs of different protective substrate thicknesses 231 is a compatible objective lens for causing the compatible objective lens 207 to follow a rotating optical disc by focus control or tracking control.
  • 'S actuator, 232 the coupling lens actuator for moving the coupling lens 205 in the optical axis direction
  • 252 is DVD
  • 253 is CD.
  • the infrared laser light emitted from the third light source 203 is incident on the compatible objective lens 207 as divergent light, correcting spherical aberration caused by the difference in the thickness of the protective substrate, and compatible.
  • the distance (working distance (work distance WD)) from the surface of the objective lens 207 facing the optical disk to the protective substrate thickness surface of the optical disk can be increased.
  • the coupling lens 205 is moved in the optical axis direction by the coupling lens actuator 232 to change the divergence of the blue-violet laser light and the red laser light incident on the compatible objective lens 207, so that the protective base material thickness of each optical disk is changed. It is also possible to correct the spherical aberration caused by the difference between the two and to increase the working distance WD.
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-85806
  • a coupling lens that converts light emitted from a light source into parallel light is moved in the optical axis direction to change the parallelism of a light beam incident on the objective lens.
  • the configuration is shown.
  • BD high-density optical disc
  • the spherical aberration can be corrected with a simple configuration.
  • a configuration is disclosed in which an optimum spherical aberration correction amount can be applied by moving the coupling lens position when focusing on the information recording surface.
  • Patent Document 3 discloses a means for correcting spherical aberration caused by the protective substrate thickness error of an optical disk by moving the coupling lens in the optical axis direction and changing the degree of divergence of the light beam incident on the objective lens. It is shown. By applying this concept, in Patent Document 1 or Patent Document 2, the degree of divergence of a light beam from a light source having a plurality of wavelengths is changed by moving a single coupling lens in the optical axis direction. .
  • Patent Document 1 or Patent Document 2 shows a means for forming the.
  • the optical pickup compatible with a high-density optical disc corrects the amount of spherical aberration caused by the substrate thickness error of the optical disc with the configuration shown in Patent Document 3, and further supports the case of a multilayer disc.
  • the single coupling lens is used to move the coupling lens so as to be compatible with DVDs and CDs as in Patent Documents 1 and 2, working is performed. If an attempt is made to achieve this while ensuring a sufficient distance, the range of movement of the coupling lens will increase.
  • the moving range of the coupling lens is increased, it is difficult to reduce the size of the optical pickup, and there is a problem that an optical disk drive device or the like on which the optical pickup is mounted is increased in size.
  • the conventional optical pickup of the two wavelength type has the following problems.
  • the longer the smaller NA wavelength than the shorter NA larger wavelength the smaller the working distance due to the substrate thickness of the optical disk.
  • the longer objective lens f is made longer than the shorter objective lens f having a large NA, and the effective diameter of the objective lens for the longer wavelength is set to be larger than the effective diameter for the shorter wavelength.
  • the actual size should be increased.
  • An object of the present invention is to provide an optical pickup, an optical disc apparatus, a computer, an optical disc player, and an optical disc recorder, in which such issues are solved in consideration of the problems of the conventional optical pickup.
  • the first aspect of the present invention is A first light source that emits a divergent light beam of wavelength ⁇ 1, A second light source that emits a divergent light beam having a wavelength ⁇ 2 ( ⁇ 2> ⁇ 1) different from the wavelength ⁇ 1;
  • the light beam having the wavelength ⁇ 1 is condensed on the information recording surface of the first optical disk having the protective substrate thickness t1
  • the light beam having the wavelength ⁇ 2 is condensed on the information recording surface of the second optical disk having the protective substrate thickness t2 different from the t1.
  • an objective lens for focusing When converging the light beam having the wavelength ⁇ 1 on the information recording surface of the first optical disk, the divergence of the light beam incident on the objective lens is greater than that of the second optical disk. It is an optical pickup that is larger than the divergence of the light beam incident on the objective lens when condensing on the information recording surface.
  • the second aspect of the present invention The NA of the objective lens for condensing the light beam with the wavelength ⁇ 1 on the information recording surface of the first optical disc, and NA1 of the objective lens for condensing the light beam with the wavelength ⁇ 2 on the information recording surface of the second optical disc. If NA is NA2, the optical pickup according to the first aspect of the present invention satisfies NA1> NA2.
  • the third aspect of the present invention provides The combination of the wavelength ⁇ 1 and the wavelength ⁇ 2 is blue violet light (wavelength 350 nm to 450 nm) and red light (wavelength 600 nm to 700 nm), blue violet light and infrared light (750 nm to 850 nm), or red light and infrared light.
  • the optical pickup according to the first or second aspect of the present invention which is a combination of the above.
  • the fourth invention relates to Means for making the light beams emitted from the first and second light sources the same optical axis;
  • a coupling lens that converts the divergence of light beams emitted from the first and second light sources;
  • a lens actuator that moves the coupling lens along the optical axis direction of the objective lens in the same optical axis area;
  • the lens actuator is configured to condense the light beam having the wavelength ⁇ 1 on the information recording surface of the first optical disk and to collect the light beam having the wavelength ⁇ 2 on the information recording surface of the second optical disk.
  • the optical pickup according to any one of the first to third aspects of the present invention, wherein the coupling lens is condensed closer to the light source side than a position in the lens optical axis direction when the light is condensed on a recording surface.
  • the fifth aspect of the present invention relates to
  • the position of the coupling lens in the lens optical axis direction is a position where the light beam incident on the objective lens becomes parallel light.
  • the position of the coupling lens in the lens optical axis direction is that the light beam incident on the objective lens becomes convergent light.
  • the sixth invention relates to
  • the objective lens is the optical pickup according to any one of the first to fifth aspects of the present invention, which is a lens shared by the light beam having the wavelength ⁇ 1 and the light beam having the wavelength ⁇ 2.
  • the seventh invention relates to
  • the objective lens is the optical pickup according to any one of the first to fifth aspects of the present invention, which includes a lens for the light beam having the wavelength ⁇ 1 and a lens for the light beam having the wavelength ⁇ 2.
  • the eighth invention relates to A first light source that emits a divergent light beam of wavelength ⁇ 1, A second light source that emits a divergent light beam having a wavelength ⁇ 2 ( ⁇ 2> ⁇ 1) different from the wavelength ⁇ 1; A third light source that emits a divergent light beam having a wavelength ⁇ 3 ( ⁇ 3> ⁇ 2> ⁇ 1) different from the wavelengths ⁇ 1 and ⁇ 2.
  • the light beam having the wavelength ⁇ 1 is condensed on the information recording surface of the first optical disk having the protective substrate thickness t1
  • the light beam having the wavelength ⁇ 2 is condensed on the information recording surface of the second optical disk having the protective substrate thickness t2 different from the t1.
  • a lens actuator that moves the coupling lens along the optical axis direction of the objective lens in the same optical axis area;
  • the lens actuator condensing the light beam having the wavelength ⁇ 1 on the information recording surface of the first optical disc, condensing the light beam having the wavelength ⁇ 2 on the information recording surface of the second optical disc,
  • the coupling lens is moved to a different position,
  • the position of the coupling lens is an optical pickup in which the light beam having the wavelength ⁇ 3, the light beam having the wavelength ⁇ 1,
  • the ninth invention relates to
  • the luminous flux of wavelength ⁇ 1 is blue-violet light (wavelength 350 nm to 450 nm)
  • the luminous flux of wavelength ⁇ 2 is red light (wavelength 600 nm to 700 nm)
  • the light flux having the wavelength ⁇ 3 is infrared light (750 nm to 850 nm).
  • the tenth aspect of the present invention is When condensing the light beam having the wavelength ⁇ 2 on the information recording surface of the second optical disk, the position of the coupling lens in the lens optical axis direction is a position where the light beam incident on the objective lens becomes convergent light. Yes, When the light beam having the wavelength ⁇ 3 is condensed on the information recording surface of the third optical disk, the position of the coupling lens in the lens optical axis direction is a position where the light beam incident on the objective lens becomes divergent light.
  • An eighth or ninth optical pickup according to the present invention is a position where the light beam incident on the objective lens becomes divergent light.
  • the eleventh aspect of the present invention is The objective lens is the optical pickup according to any one of the eighth to tenth aspects of the present invention, wherein the objective lens is a lens shared by the light beam having the wavelength ⁇ 1, the light beam having the wavelength ⁇ 2, and the light beam having the wavelength ⁇ 3.
  • the twelfth aspect of the present invention is
  • the objective lens is an optical pickup according to any of the eighth to tenth aspects of the present invention, which includes a lens for a light beam having the wavelength ⁇ 1 and a lens shared by the light beams having the wavelength ⁇ 2 and the wavelength ⁇ 3. is there.
  • the thirteenth aspect of the present invention is
  • the first optical disc has a plurality of information recording surfaces, and spherical aberration caused by a difference in the substantial thickness of the transparent base material from the surface to each information recording layer surface is corrected by moving the coupling lens.
  • the fourth or eighth optical pickup of the present invention is
  • the fourteenth aspect of the present invention is Any one of the first to thirteenth optical pickups of the present invention;
  • It is an optical disc apparatus provided with the said optical pick-up and the control part which controls the said motor.
  • the fifteenth aspect of the present invention is A fourteenth optical disc apparatus according to the present invention; An input means for inputting information; A calculation means for performing calculation based on information reproduced from the optical disk device and / or information input from the input means; An output means for outputting information reproduced from the optical disk device and / or information input from the input means and / or a result calculated by the calculation means.
  • the sixteenth aspect of the present invention A fourteenth optical disc apparatus according to the present invention;
  • An optical disc player comprising a decoder for converting an information signal obtained from the optical disc device into image information.
  • the seventeenth aspect of the present invention provides A fourteenth optical disc apparatus according to the present invention;
  • An optical disk recorder comprising an encoder for converting image information into an information signal for recording by the optical disk device.
  • the effect of reducing the effective diameter of the optical component close to the objective lens is exhibited.
  • the computer, the optical disk player, and the optical disk recorder of the present invention can be realized in a compact manner.
  • FIG. 1 Schematic configuration diagram of an optical pickup when recording or reproducing a BD in Embodiment 1 of the present invention
  • FIG. 1 Schematic configuration diagram of an optical pickup when recording or reproducing a DVD in Embodiment 1 of the present invention
  • (b) The figure which shows typically the structure of an objective lens in Embodiment 1 of this invention.
  • Embodiment 1 of this invention the figure which shows the structure of a coupling lens actuator typically (A), (c), (c) The figure which shows typically the function of a coupling lens actuator in Embodiment 1 of this invention.
  • Embodiment 1 of the present invention the angle formed by the optical axis of the optical axis of the blue-violet laser light emitted from the light source and the optical axis of the red laser light emitted from the two-wavelength light source, and the incidence to the flat beam splitter and the wedge prism Illustration showing corners
  • positioning of a light source The figure which shows typically the mode of the light emission point of 2 wavelength laser light source in Embodiment 1 of this invention.
  • 1 is a schematic configuration diagram of an optical pickup using a relay lens in Embodiment 1 of the present invention.
  • FIG. 1 Schematic configuration diagram of an optical pickup when recording or reproducing BD in Embodiment 2 of the present invention
  • FIG. 1 Schematic configuration diagram of an optical disc apparatus according to the fifth embodiment of the present invention
  • FIG. 1 Schematic configuration diagram of a computer according to the sixth embodiment of the present invention.
  • FIG. 1 Schematic configuration diagram of an optical disc player according to Embodiment 7 of the present invention
  • FIG. 8 of the present invention Schematic configuration diagram of an optical disc recorder according to Embodiment 8 of the present invention.
  • FIG. 1 to 3 are schematic configuration diagrams of the optical pickup according to the first embodiment of the present invention.
  • 1 is a light source for emitting blue-violet laser light
  • 2 is a flat beam splitter
  • 3 is a relay lens
  • 4 is a wedge prism
  • 5 is a coupling lens
  • 6 is a quarter-wave plate
  • 7 is a mirror
  • 9 is a detection hologram
  • 10 is a detection lens
  • 11 is a two-wavelength light source that emits red laser light and infrared laser light
  • 12 is a diffraction grating
  • 20 is a light receiving element
  • 30 is an objective lens 8. It is an actuator to drive.
  • These components constitute the optical pickup 40 of the first embodiment.
  • the flat beam splitter 2 and the wedge prism 4 are examples of the same optical axis unit of the present invention.
  • Reference numeral 60 denotes a BD which is an optical disk having a protective substrate thickness of about 0.1 mm.
  • the blue-violet laser light having a wavelength of 405 nm emitted from the light source 1 is incident on the flat beam splitter 2 as S-polarized light.
  • the blue-violet laser light reflected by the flat beam splitter 2 is converted into divergent light having a different NA by passing through the relay lens 3.
  • the blue-violet laser light which is the diverging light, is reflected by the wedge prism 4 and then converted into substantially parallel light by the coupling lens 5 present at the position P0. After being converted into polarized light and reflected by the mirror 7, it is converged as a light spot on the information recording surface by the objective lens 8 through the protective substrate of the BD 60.
  • the blue-violet laser light reflected by the information recording surface of the BD 60 is transmitted again through the objective lens 8, reflected by the mirror 7, and converted into linearly polarized light different from the forward path by the quarter wavelength plate 6, and then the coupling lens 5 Is converted into convergent light, reflected by the wedge prism 4 and transmitted through the relay lens 3 to be converted into convergent light having a different NA.
  • the blue-violet laser light is incident on and transmitted through the flat plate beam splitter 2 with P-polarized light, and is incident on and transmitted through the detection hologram 9.
  • the blue-violet laser light passes through the detection hologram 9, zero-order light and ⁇ first-order diffracted light are generated.
  • the diffracted light is given astigmatism by the detection lens 10 and guided to the light receiving element 20.
  • the red laser light having a wavelength of 660 nm emitted from the two-wavelength light source 11 is separated by the diffraction grating 12 into a main beam that is 0th-order diffracted light and a sub-beam that is ⁇ 1st-order diffracted light. Incident with polarized light.
  • the red laser light transmitted through the wedge prism 4 is converted into a slightly convergent light by the coupling lens 5 present at the position P 1, converted from linearly polarized light to circularly polarized light by the quarter wavelength plate 6, and is reflected by the mirror 7. After being reflected, the light is converged as a light spot on the information recording surface by the objective lens 8 through the protective substrate of the DVD 70.
  • This position P1 is located closer to the objective lens 8 than the position P0 in the case of the blue-violet laser beam described above.
  • the red laser beam reflected by the information recording surface of the DVD 70 is transmitted again through the objective lens 8, reflected by the mirror 7, converted into linearly polarized light different from the forward path by the quarter wavelength plate 6, and then coupled to the coupling lens 5. Is converted into convergent light. Thereafter, the red laser light is incident on the wedge prism 4 as S-polarized light, reflected, converted into convergent light having a different NA by the relay lens 3, transmitted through the flat beam splitter 2 and the detection hologram 9, and astigmatism by the detection lens 10. Is given to the light receiving element 20.
  • the infrared laser light having a wavelength of 785 nm emitted from the two-wavelength light source 11 is separated into a main beam that is 0th-order diffracted light and a sub-beam that is ⁇ 1st-order diffracted light by the diffraction grating 12, and then a wedge.
  • the light enters the prism 4 as P-polarized light.
  • the infrared laser light transmitted through the wedge prism 4 is converted into slightly divergent light having a different NA by the coupling lens 5 existing at the position P2, and is converted from linearly polarized light to circularly polarized light by the quarter wavelength plate 6.
  • This position P2 is located closer to the light sources 1 and 11 than the position P0 in the case of the blue laser light described above.
  • the comparison of those positions is a comparison in the area where the laser beam is made into the same optical axis.
  • the area is between the wedge prism 4 and the quarter-wave plate 6.
  • the infrared laser light reflected by the information recording surface of the CD 80 is transmitted again through the objective lens 8, reflected by the mirror 7, and converted into linearly polarized light different from the forward path by the quarter wavelength plate 6, and then the coupling lens. 5 is converted into convergent light. Thereafter, the infrared laser light is incident on the wedge prism 4 as S-polarized light, reflected, converted into convergent light having a different NA by the relay lens 3, transmitted through the flat beam splitter 2 and the detection hologram 9, and astigmatized by the detection lens 10. After the aberration is given, the light is guided to the light receiving element 20.
  • the focus error signal for recording or reproducing the BD 60, DVD 70, and CD 80 is a so-called publicly known light detection method that detects a condensing spot given astigmatism by the detection lens 10 with a four-divided light receiving pattern in the light receiving element 20.
  • An astigmatism method or the like can be used.
  • the tracking error signal is obtained by detecting the 0th-order light and the 1st-order diffracted light generated when passing through the detection hologram 9 in a predetermined light receiving region of the light receiving element 20, thereby providing the BD 60 with the tracking error signal. Suppresses fluctuations in tracking error signals caused by variations in the position, width, and depth of formed information track grooves, and tracking error signals that occur when information is recorded on information tracks and reflectivity changes Is possible. Further, by using the detection hologram 9 and the light receiving element 20 as described above, in the BD 60 having a plurality of information recording surfaces, unnecessary reflection reflected on an information recording surface different from the information recording surface to be recorded or reproduced is unnecessary. It is also possible to prevent light (stray light) from entering the light receiving region for detecting the tracking error signal.
  • FIG. 4 schematically shows an example of the light beam splitting pattern of the detection hologram 9.
  • the wavy line in the figure indicates the beam diameter of the laser beam reflected on the information recording surface of the BD 60 on the detection hologram 9.
  • the detection hologram 9 has seven types of regions 9a to 9g, and divides laser light incident on each region into 0th-order diffracted light and ⁇ 1st-order diffracted light.
  • the tracking error signal TE uses current signals Ia to Ig corresponding to the amount of light received by the light receiving element 20 of the + 1st order diffracted light diffracted in the respective regions 9a to 9g.
  • TE (Ia ⁇ Ib) ⁇ k (Ic + Id ⁇ Ie ⁇ If) It is obtained by the operation of
  • a so-called three-beam method, a differential push-pull method (DPP method), or the like using a main beam and a sub beam generated by the diffraction grating 12 is used.
  • the detection of the focus error signal and the tracking error signal is not limited to these detection methods.
  • the BD 60 also uses a differential push-pull method (DPP) using a main beam and a sub beam generated by a diffraction grating. Method) or the like.
  • DPP differential push-pull method
  • the objective lens 8 has a wavelength of blue-violet laser light for recording or reproducing the BD 60, red laser light for recording or reproducing the DVD 70, and infrared laser light for recording or reproducing the CD 80.
  • the diffraction structure for converging each as a small light spot using the difference is provided.
  • a blazed diffractive structure having a sawtooth cross section is formed on at least one surface of the objective lens 8, for example, the incident surface of the objective lens 8 (surface on the light source side).
  • the blazed diffractive structure is combined with the refraction power of the objective lens 8 to diffract the laser light of each wavelength on the information recording surface of BD60, DVD70, CD80 recorded or reproduced by the laser light of each wavelength.
  • Aberration correction is applied so that it can be converged.
  • the objective lens 8 having a blazed diffraction structure that diffracts part of incident light can form diffraction-limited light spots on optical disks having different protective substrate thicknesses.
  • the region for converging the infrared laser light with respect to the CD 80 is limited to the lens central portion including the optical axis, and the region for converging the red laser light with respect to the DVD 70 is the lens central portion and the outside thereof.
  • the region for converging the blue-violet laser beam with respect to the BD 60 only in the middle peripheral portion is designed to use all of the lens central portion, the middle peripheral portion, and the outer peripheral portion on the outer side thereof, so that the NA for the CD 80 is increased.
  • the NA for DVD 70 can be limited to about 0.65
  • the NA for BD 60 can be expanded to about 0.85.
  • the objective lens 8 is not limited to an objective lens in which a blazed diffraction structure is formed on the entrance surface of the lens as shown in FIG. 5A.
  • a refractive positive power is used as shown in FIG. 5B.
  • the objective lens 8a and the separate hologram lens 8b may be integrally driven to record or reproduce the BD 60, DVD 70, or CD 80.
  • the diffraction structure of the hologram lens 8b is not limited to the structure formed on the light source side as shown in FIG. 5B, and may be formed on the surface on the objective lens 8a side. It may be formed on both surfaces.
  • the same effect can be obtained even when the refractive type positive power objective lens 8a ′ and the hologram lens 8b ′ having a staircase-shaped diffraction structure are integrally driven. Needless to say.
  • the objective lens may be, for example, a refractive objective lens using the wavelength dispersion characteristics of a plurality of glass materials.
  • a blue-violet laser beam for recording or reproducing the BD 60, and a red laser for recording or reproducing the DVD 70 It is only necessary to converge the light and the infrared laser beam for recording or reproducing the CD 80 as a minute light spot, and the present invention is not limited to the objective lens having the above-described diffraction structure.
  • the objective lens actuator 30 includes a table 30c, a movable objective lens holder 30b that holds the objective lens 8, and a plurality of suspension wires 30a that are fixed to the table 30c and hold the objective lens holder 30b. Is provided.
  • the objective lens actuator 30 uses the focus error signal and the tracking error signal described above to move the objective lens 8 in the focus direction (a) and the tracking direction (b) so that the light spot follows the information track of the rotating optical disk. Can drive.
  • the objective lens 8 can be tilted in the radial direction (c) of the optical disc.
  • the coupling lens 5 is movable in the optical axis direction of the coupling lens 5 by a coupling lens actuator 31 as shown in FIG.
  • FIG. 8 is a schematic configuration diagram of the coupling lens actuator 31.
  • 5 is a coupling lens
  • 32 is a stepping motor
  • 33 is a screw shaft
  • 34 is a main shaft
  • 35 is a secondary shaft
  • 36 is a lens holder.
  • FIG. 9 is a diagram for illustrating a corresponding method when the spherical aberration is corrected when the BD 60 is used, or when a plurality of information recording surfaces are provided.
  • the coupling lens 5 is moved to the light source side with respect to the reference position (a) of the coupling lens 5 where the light emitted from the coupling lens 5 becomes substantially parallel light.
  • the light emitted from the lens 5 becomes divergent light (b), and the spherical aberration that occurs when the protective substrate of the BD 60 becomes thick can be corrected.
  • the coupling lens 5 by moving the coupling lens 5 to the objective lens side, the light emitted from the coupling lens 5 becomes convergent light (c), and the spherical aberration generated when the protective substrate of the BD 60 becomes thin can be corrected. That is, in the BD 60 having a plurality of information recording surfaces, the spherical aberration is corrected by moving the coupling lens 5 according to the thickness of the protective substrate of each information recording surface, thereby improving the recording or reproducing performance. Can do.
  • the coupling lens actuator 31 has a position P0 of the coupling lens 5 at the time of recording or reproducing the BD 60, which is indicated by a dotted line 5, when recording or reproducing the DVD 70.
  • the coupling lens 5 is moved to the position P1 on the mirror 7 side so that the red laser light emitted from the two-wavelength light source 11 enters the objective lens 8 as convergent light.
  • the coupling lens 5 is set to the two-wavelength light source 11 with reference to the position P0 of the coupling lens 5 at the time of recording or reproducing the BD 60 indicated by the dotted line 5.
  • the infrared laser light emitted from the two-wavelength light source 11 is made incident on the objective lens 8 as divergent light.
  • the diffraction structure of the hologram lens 8 b ′ having the staircase-shaped diffraction structure is a structure in which the structure shown in FIG. 21 is periodically formed.
  • FIG. 21A shows the material shape of the lattice formed on the substrate.
  • B shows the amount of phase modulation for blue-violet light.
  • C has shown the phase modulation amount with respect to red light. Further, (d) shows the amount of phase modulation for red light.
  • nb is the refractive index of the element material for the blue-violet light beam.
  • the element material is BK7
  • nb 1.5302
  • One step d1 has an optical path length difference of about 1.25 wavelengths with respect to the blue-violet light beam, that is, an amount such that the phase difference is about 2 ⁇ + ⁇ / 2.
  • d1 0.97 ⁇ m.
  • FIG. 21 (a) shows that the optical path difference caused by the unit step d1 is 1.25 times the blue-violet wavelength ⁇ 1. Since the optical path difference caused by the unit step d1 is a step / (nb-1), 1.25 is a value obtained by dividing the step / (nb-1) by ⁇ 1. In (b), (c), and (d), they are simply represented by the form of optical path difference / wavelength, but they have the same meaning except that the integer part is subtracted.
  • the amount of phase modulation for blue-violet light due to this shape is an integral multiple of 2 ⁇ + ⁇ / 2, which is substantially phase modulated as shown in FIG. The amount will be ⁇ / 2 per stage.
  • the refractive index of the element material with respect to the red light beam is nr
  • nr 1.542 when the element material is BK7
  • nr 1.505 for the polyolefin resin.
  • the difference in optical path length generated in the red light beam due to the step d1 is d1 ⁇ (nr ⁇ 1) / ⁇ 2 ⁇ 0.75 regardless of whether the base material is quartz or resin. That is, the wavelength is about 3/4 times, and the phase modulation amount is about ⁇ / 2 per stage.
  • the refractive index of the element material with respect to the infrared light beam is ni
  • the element material is BK7
  • ni 1.51
  • the polyolefin resin 1.501.
  • the difference in optical path length generated in the infrared light beam due to the step d1 is d1 ⁇ (ni ⁇ 1) / ⁇ 3 ⁇ 0.625 regardless of whether the base material is quartz or resin. That is, it is about 2/3 times the wavelength, and the phase modulation amount can be considered to be -1/3 times the wavelength per stage, and is about -2 ⁇ / 3 when replaced with the phase.
  • the phase modulation amount changes by ⁇ / 2 per stage. That is, the optical path length difference changes by +1/4 of ⁇ 1.
  • the phase changes by 2 ⁇ , and the diffraction efficiency of the + 1st order diffracted light is calculated to be about 80% (scalar calculation), and becomes the strongest among the diffraction orders.
  • the phase modulation amount changes by ⁇ / 2 per step as shown in FIG. That is, the optical path length difference changes by 1 ⁇ 4 of ⁇ 2.
  • the phase changes by 2 ⁇ , and the diffraction efficiency of the ⁇ 1st order diffracted light is calculated to be about 80% (scalar calculation), and becomes the strongest among the diffraction orders.
  • one stage p1 is formed by superposing eight stages, but since the phase changes by ⁇ 2 ⁇ per four stages, the red light feels two periods of the period p2 (p2 is half of p1).
  • the red light has the strongest diffraction efficiency of -2nd order diffracted light of about 80%. Note that the fact that the diffraction order is negative means that the light bends in the opposite direction to the case where the diffraction order is positive.
  • the steps corresponding to 5 wavelengths of blue purple and 3 wavelengths of red correspond to 5 ⁇ 3 / 2, that is, the steps corresponding to 2.5 wavelengths, so the phase is changed.
  • FIG. 21 (d) it appears that there is a periodic structure of three periods in the period p1, and a third-order diffraction efficiency is generated by about 60% with respect to the periodic structure of the period p1, It becomes the strongest among the diffraction orders.
  • the reason why the third-order diffracted light becomes strong can be understood by simply adding the phase that each step gives to the infrared light. This will be described with reference to FIG.
  • FIG. 22 (a) is the same as FIG. 21 (a) and shows the material shape of the lattice formed on the substrate.
  • a phase change will become like FIG.22 (e), and the sawtooth shape like a dotted line by 7 steps
  • the blue-violet light approximates a sawtooth shape with two wavelengths of blue-violet light in the opposite direction to the infrared light by the seven steps and eight-level step shape forming the period p1, so that the + second-order diffracted light is Strongly occurs.
  • a sawtooth shape having a height of two wavelengths of the red light is approximated in the same direction as the infrared light, so that ⁇ 2nd order diffracted light is strongly generated.
  • the diffraction efficiency of a diffraction grating having the cross-sectional shape of FIG. 21A as one period was calculated by scalar calculation. As a result, the diffraction efficiency was as shown in FIG.
  • the horizontal axis represents the actual size of one step when the resin material is the element material
  • Reference numeral 8b ' denotes a diffractive or phase step type optical element, but the refracting surface may be formed on one side or both sides.
  • the entire optical element 8b ′ has zero lens power with respect to the reference wavelength of blue-violet light. Can do.
  • the refractive objective lens 8a ′ used in combination with the optical element 8b ′ may be designed so as to be converged by the numerical aperture NA1 or more through the base material thickness t1 of the optical disc 60. Therefore, at the time of manufacturing the objective lens 8a ′. There is an effect that the inspection can be easily performed.
  • the objective lens 8a ′ is designed to focus the blue-violet light beam having the wavelength ⁇ 1 on the recording surface 61 through the substrate thickness t1 of the optical disk 60 after being modulated by the optical element 8b ′ and further converged.
  • the red light beam having the wavelength ⁇ 2 is designed to be converged after being modulated by the diffraction grating of the optical element 8b ′ or the phase type optical element, and condensed onto the recording surface 71 through the substrate thickness t2 of the optical disk 70.
  • the infrared light beam having the wavelength ⁇ 3 is also designed to be converged after being modulated by the optical element 8b 'and condensed onto the recording surface 81 through the substrate thickness t3 of the optical disc 80.
  • the light beam of each wavelength uses the difference in wavelength, the difference in diffraction order as described above, or the difference in phase given by the phase step, and the difference in refractive index (dispersion) depending on the wavelength of the refractive objective lens. And can be designed to converge when passing through different substrate thicknesses.
  • CD, DVD, and BD have different numerical apertures NA suitable for converging light.
  • the numerical aperture NA1 suitable for BD is 0.85 or more.
  • the numerical aperture NA2 suitable for DVD is about 0.6 to 0.67.
  • the numerical aperture NA3 suitable for CD is about 0.45 to 0.55. If the numerical aperture is smaller than these, the light beam cannot be sufficiently reduced on the recording surface. On the other hand, if the numerical aperture is too large, large wavefront disturbances occur when the optical disk is deformed and tilted, and it is not suitable for stable information recording and reproduction.
  • the optical element 8b ' is provided with three concentric regions around the optical axis.
  • the diffraction element or the phase step described in the above embodiment is formed in the innermost region 8b '.
  • the infrared light beam 82 incident on the innermost peripheral region 8b'-C is converged on the information recording surface 81 through a transparent substrate of about 1.2 mm as shown by a dotted line.
  • the red light beam 72 incident on the innermost peripheral region 8b'-C and the outer peripheral intermediate region 8b'-B is converged on the information recording surface 71 through a transparent substrate of about 0.6 mm.
  • the blue-violet light beam 72 incident on the innermost peripheral region 8b'-C, the outer peripheral region 8b'-B provided on the outer side, and the outer peripheral region 8b'-F provided further on the outer peripheral region 8b'-C passes through a transparent substrate of about 0.1 mm. It converges on the information recording surface 61.
  • the innermost peripheral region 8b'-C is a region that is used for all of the infrared light CD, the red light DVD, and the blue-violet light BD. It is desirable to correct axial chromatic aberration because blue-violet light with the shortest wavelength has a large dispersion of the refractive objective lens 8a 'and a shallow focal depth. Correction of axial chromatic aberration can be realized by designing the diffractive element portion of the optical element 8b 'to have a convex lens action.
  • infrared light dotted line
  • red light two-dot chain line
  • the focal point is focused.
  • the distance gets longer.
  • infrared light has a longer wavelength than red light, it is strongly influenced by a concave lens.
  • the focal length is longer in red than blue violet and longer in infrared light than red. Then, the focal position of the red light or infrared light can be moved further away from the objective lens 8 a ′, and the focal point can be focused through the thick base material of the optical disks 70 and 80.
  • the optical pickup 40 moves the coupling lens 5 toward the mirror 7 when recording or reproducing the DVD 70.
  • the coupling lens 5 is moved to the two-wavelength light source 11 side and divergent light is incident on the objective lens 8 during recording or reproduction of the CD 80, the spherical surface of the light spot collected on the information recording surface Aberration is minimized.
  • the blue-violet laser light emitted from the light source 1 and the red laser light and infrared laser light emitted from the two-wavelength light source 11 are respectively converted into parallel light, convergent light, or divergent light.
  • Light can be incident on the objective lens 8, and spherical aberration caused by the difference in wavelength of each light source and the thickness of the protective substrate of the corresponding optical disk can be effectively corrected.
  • the laser light emitted from each light source is incident on the objective lens 8 among parallel light, convergent light, or divergent light depends on the design of the objective lens 8.
  • the present invention is not limited to the combination of the present embodiment in which the blue-violet laser light is substantially parallel light, the red laser is convergent light, and the infrared laser light is divergent light.
  • the movable distance La moved by the coupling lens actuator 31, that is, the moving range La of the coupling lens 5, is coupling during recording or reproduction of the DVD 70 as shown in FIG.
  • the position of the lens 5 and the position of the coupling lens 5 at the time of recording or reproduction of the CD 80 are both left and right ends.
  • the moving range Lb of the coupling lens 5 for correcting the spherical aberration corresponding to the thickness of the protective substrate of the information recording surface in the BD 60 is within the moving range La of the coupling lens 5.
  • the objective lens 8 is a compatible objective lens having a focal length of about 1.8 mm for blue-violet light, a focal length of about 2.0 mm for red light, and a focal length of about 2.1 mm for infrared light. Assume that the focal length for blue-violet light is approximately 11 mm.
  • the protective substrate thickness of the BD 60 is approximately 0.0875 mm and is on the information recording surface. Assume that the spherical aberration of the light spot is minimal.
  • the spherical aberration of the light spot on the information recording surface can be minimized by shifting the coupling lens 5 to the mirror 7 side by approximately 0.25 mm. It is. Further, in order to minimize the spherical aberration of the light spot on the information recording surface when the protective substrate thickness of the BD 60 is about 0.1 mm, it is possible to shift the coupling lens 5 to the light source 1 side by about 0.25 mm. is there.
  • the coupling lens 5 when recording or reproducing a DVD 70 having a protective substrate thickness of about 0.6 mm, when using red light, the coupling lens 5 is moved from the reference position to the mirror 7 side by about 2.5 mm to record information. The spherical aberration of the light spot on the surface is minimized.
  • the coupling lens 5 is moved approximately 1.5 mm from the reference position to the two-wavelength light source 11 side, The spherical aberration of the light spot on the information recording surface is minimized.
  • the moving range of the coupling lens 5 is approximately 1.5 mm from the reference position to the two-wavelength light source 11 side, and approximately 2.5 mm from the reference position to the objective lens 8 side.
  • the required moving distance of the coupling lens 5 is approximately 0.25 mm from the reference position on both the light source 1 side and the objective lens 8 side, and is sufficiently within the moving range of the coupling lens 5.
  • the amount of spherical aberration that can be corrected during recording or reproduction of the BD60 is sufficiently large, so that the range that the protective substrate thickness can take is large (for example, having three or more information recording surfaces), and can be used for the next generation BD. It is.
  • the configuration of the coupling lens actuator that moves the coupling lens 5 in the optical axis direction is not limited to the configuration using the stepping motor 32 as shown in FIG. 8, for example, driving of a magnetic circuit or a piezoelectric element. Any configuration may be used such as an actuator. In the configuration using the stepping motor 32 shown in FIG. 8, it is not necessary to monitor the position of the coupling lens 5 in the optical axis direction, and the system can be simplified.
  • an actuator driven by a magnetic circuit or a piezoelectric element has a driving part. Is suitable for downsizing of optical pickups.
  • the flat plate beam splitter 2 is designed so that it substantially reflects S-polarized light and substantially transmits P-polarized light with respect to blue-violet laser light having a wavelength of about 405 nm. Further, the film is designed so that it substantially transmits red laser light having a wavelength of about 660 nm and infrared laser light having a wavelength of about 785 nm regardless of the polarization direction.
  • the blue-violet laser light for recording the BD 60 is incident on the flat plate beam splitter 2 as S-polarized light. Therefore, it is desirable to increase the S-polarized reflectance of the flat beam splitter 2 in order to ensure the efficiency of the forward path.
  • the incident angle (Brewster angle) ⁇ that is totally reflected when S-polarized light is reflected at the boundary surface of substances having different refractive indexes is expressed by the following (Equation 1).
  • n1 is the refractive index of air
  • n2 is the refractive index of the plate beam splitter 2.
  • the incident angle ⁇ 1 exceeds the Brewster angle ⁇ , it is not possible to obtain a reflectance higher than the total reflection.
  • the incident angle ⁇ 1 is not less than the Brewster angle ⁇ . That is, ⁇ 1 ⁇ Arctan (n2 / n1) [rad] (Formula 2) It is preferable that
  • FIG. 10 shows the spectral characteristics of the flat plate beam splitter 2 according to the first embodiment.
  • the horizontal axis indicates the wavelength of the laser light incident on the flat beam splitter 2
  • the vertical axis indicates the transmittance at the wavelength.
  • the incident angle ⁇ 1 to the flat beam splitter 2 is 50 °.
  • the S-polarized light reflectance is about 80%
  • the transmittance is about 20%
  • the P-polarized light transmittance is about 90% for the blue-violet laser light having a wavelength of about 405 nm.
  • the transmittance of the red laser beam near the wavelength of 660 nm and the infrared laser beam near the wavelength of 785 nm is almost 95% regardless of the polarization direction.
  • the wedge prism 4 is designed so that it partially transmits and partially reflects red laser light having a wavelength of about 660 nm and infrared laser light having a wavelength of about 785 nm. Further, the film is designed so as to substantially reflect blue-violet laser light having a wavelength of about 405 nm regardless of the polarization direction.
  • FIG. 11 shows the spectral characteristics of the wedge prism 4 of the first embodiment.
  • the horizontal axis indicates the wavelength of the laser light incident on the wedge prism 4, and the vertical axis indicates the transmittance at the wavelength.
  • the incident angle ⁇ 3 to the wedge prism 4 is 40 °.
  • the transmittance of P-polarized light is about 60%
  • the transmittance of S-polarized light is about 50%
  • the reflectance is about 50% for red laser light having a wavelength of about 660 nm and infrared laser light having a wavelength of about 785 nm. It is.
  • the reflectivity of the blue-violet laser light near the wavelength of 405 nm is almost 95% regardless of the polarization direction.
  • the flat plate beam splitter 2 and the wedge prism 4 of the first embodiment have the spectral characteristics shown in FIGS. 10 and 11, respectively, in the blue-violet laser beam for recording or reproducing the BD 60, the flat plate beam splitter is used. Both the light utilization efficiency of the forward path, which is S-polarized reflection with respect to 2, and the light utilization efficiency of the return path, which is P-polarized light transmission with respect to the flat plate beam splitter 2, can be increased.
  • the light utilization efficiency of the return path can be made relatively high. Further, since the difference between the S-polarized light reflectance and the P-polarized light reflectance of the wedge prism 4 and the difference between the S-polarized light transmittance and the P-polarized light transmittance of the flat plate beam splitter 2 are small, the signal light amount (the light receiving element 20) due to the birefringence of the optical disc. Variation in the amount of received light) detected in (1) can be suppressed.
  • the wedge prism 4 according to the first embodiment is provided with a predetermined angle (vertical angle ⁇ ) between the incident surface 4a and the outgoing surface 4b.
  • the incident angles ( ⁇ 2, ⁇ 3) of the respective laser beams are defined as predetermined angles.
  • the optical pickup according to the first embodiment uses the optical axis of the blue-violet laser light emitted from the light source 1 as the optical axis A and the optical axis of the red laser light emitted from the two-wavelength light source 11 as light.
  • the S-polarized light reflectance in the flat beam splitter 2 increases as the incident angle ⁇ 1 approaches the Brewster angle ⁇ . Therefore, when diverging light is incident on the flat plate beam splitter 2 as in the first embodiment, the peripheral ray has an incident angle different from that of the principal ray. For example, as shown in FIG. 13, the blue-violet laser light emitted from the light source 1 has a higher reflectance because the incident angle of the (M) side light beam is larger than the principal light beam indicated by the alternate long and short dash line. The light beam on the (N) side with respect to the light beam has a small incident angle and thus a low reflectance.
  • the light quantity distribution of the FFP after being reflected by the flat beam splitter 2 with respect to the light quantity distribution of the far field pattern (far field image, FFP) of the blue-violet laser light before being reflected by the flat beam splitter 2 is Becomes asymmetric with respect to.
  • This asymmetry of the light quantity distribution depends on the NA of the laser beam incident on the flat beam splitter 2, and the smaller the NA of the laser beam incident on the flat beam splitter 2, the principal ray, the light beam (M), and the light beam (N). As a result, the asymmetry of the light quantity distribution is suppressed.
  • the relay lens 3 having a concave lens power is disposed between the flat beam splitter 2 and the wedge prism 4 to perform NA conversion.
  • the relay lens 3 is arranged in this way, the NA of the blue-violet laser light incident on the flat beam splitter 2 is relatively small compared to the case where the relay lens 3 is arranged between the light source 1 and the flat beam splitter 2.
  • the asymmetry of the light quantity distribution can be suppressed.
  • the relay lens 3 is disposed between the flat beam splitter 2 and the wedge prism 4, the relay lens 3 is irradiated as compared with the case where the relay lens 3 is disposed between the light source 1 and the flat beam splitter 2.
  • the laser light amount per unit area of the blue-violet laser light becomes relatively small. Therefore, it becomes easy to use a resin material that is less resistant to the irradiation of the blue-violet laser light than the glass material but can be molded at low cost as the material of the relay lens 3.
  • the optical pickup 40 of the first embodiment is used even when a large detection magnification is desired. Since the relay lens 3 having a concave lens power is disposed between the coupling lens 5 and the detection lens 10, the detection lens 10 does not require a large concave lens power. Accordingly, the radius of curvature of the detection lens 10 can be increased, and the detection lens 10 can be molded at a low cost.
  • the incident angle becomes smaller with respect to the principal light beam, so that the transmittance increases, and the light beam (N) becomes
  • the light beam (M) becomes
  • the incident angle with respect to the principal ray is increased, so that the transmittance is reduced. That is, the light intensity distribution of the blue-violet laser beam is always on the light (M) side, whether it is converged as a light spot on the information recording surface of the BD 60 or reflected by the information recording surface of the BD 60 and detected by the light receiving element 20. It becomes asymmetric in the direction in which the amount of light increases.
  • the light source 1 is inclined in advance by a predetermined angle in a direction in which the FFP light quantity distribution becomes uniform.
  • the BD 60 according to the first embodiment can obtain a good recording or reproducing performance by converging a light spot having a large rim intensity in the radial direction of the optical disk.
  • the flat plate beam splitter 2 is designed so as to substantially reflect S-polarized light and substantially transmit P-polarized light with respect to blue-violet laser light having a wavelength of about 405 nm (see FIG. 10).
  • the light source 1 is arranged so that the S-polarized light is incident on the flat beam splitter 2 as shown in FIG. 1, that is, the reflectance at the flat beam splitter 2 is increased.
  • an FFP with a large rim intensity in the radial direction of the optical disk can be obtained, so that a half-wave plate for rotating the polarization direction of the blue-violet laser light is not required.
  • the DVD 70 of the first embodiment can obtain a good recording or reproducing performance by converging a light spot having a large rim intensity in the tangential direction of the optical disk.
  • the wedge prism 4 of the first embodiment is designed so as to transmit P-polarized light and reflect S-polarized light more with respect to red laser light having a wavelength of about 660 nm (see FIG. 11).
  • the two-wavelength light source 11 is arranged so that the P-polarized light enters the wedge prism 4 as shown in FIG. 2, that is, the transmittance at the wedge prism 4 is increased.
  • an FFP having a large rim intensity in the optical disk tangential direction can be obtained, so that a half-wave plate for rotating the polarization direction of the red laser light is not required.
  • the general two-wavelength light source 11 is arranged such that the emission point 11b of the infrared laser beam is offset from the emission point 11a of the red laser beam. For this reason, since at least one of the red laser beam and the infrared laser beam is incident off-axis with respect to the objective lens 8, third-order coma aberration may occur.
  • the two-wavelength light source 11 is arranged so as to be P-polarized light incident on the wedge prism 4, so that, for example, the optical axis of the red laser light and the optical axis of the objective lens 8
  • the two-wavelength light source 11 is arranged so that they coincide with each other, the third-order coma aberration generated when the infrared laser light is incident off-axis with respect to the objective lens 8 is generated in the radial direction of the optical disk. Therefore, by tilting the objective lens 8 mounted on the objective lens actuator 30 in the radial direction, it is possible to correct the third-order coma aberration of the red laser light generated by off-axis incidence.
  • the third-order coma aberration generated by off-axis incidence is substantially proportional to the angle (field angle) of the light ray incident on the objective lens 8. Therefore, if the interval ⁇ between the emission points of the red laser beam and the infrared laser beam and the focal length of the objective lens are constant, the third-order coma aberration is inversely proportional to the (synthetic) focal length of the coupling lens. Therefore, as shown in FIG. 15, a relay lens 13 having a concave power is inserted between the coupling lens 5 and the two-wavelength light source 11, and the combined focal length is increased, so that the third order due to off-axis incidence is obtained. Coma can be suppressed.
  • the relay lens 13 can be integrated with the diffraction grating 12 to reduce the number of parts. At this time, by making any one of the entrance surface and the exit surface of the relay lens 13 into a plane and forming a diffraction grating on the plane side, it is possible to easily create a lens molding die. Note that when the distance between the relay lens 13 and the two-wavelength light source 11 is changed, the magnification is changed, and when the diffraction grating is integrated, the distance between the main beam and the sub-beam to be generated is also changed. 11 is preferably inserted into an integral holder so that the distance does not change.
  • the red laser light and the infrared laser light are emitted from the two-wavelength light source 11 .
  • a separate red laser light source and infrared laser light source are provided. Also good. Since the red laser light source and the infrared laser light source are separately provided, the optical axes of the red laser light and the infrared laser light can be made coincident with each other, so that coma aberration due to off-axis incidence can be suppressed.
  • the divergence of the light beam incident on the compatible objective lens in the configuration using one compatible objective lens corresponding to the BD / DVD / CD 3 wavelength is set to red.
  • the order of light beam ⁇ blue light beam ⁇ infrared light beam was used. For example, when a blue light beam is incident on a compatible objective lens as parallel light during BD recording / reproduction, a red light beam is incident on the compatible objective lens in a converged state during DVD recording / reproduction, and infrared light is incident on the compatible objective lens during CD recording / reproduction. The light beam was incident in a divergent state.
  • the infrared light beam with the shortest wavelength is used even though the wavelength difference between the red light beam and the infrared light beam is smaller than the wavelength difference between the red light beam and the blue light beam. A sufficient working distance can be secured even in the CD of the time.
  • the optical pickup can be downsized, and the operation time of the optical pickup can be shortened by shortening the moving time of the collimating lens.
  • the optical pickup 40 converges laser beams having different wavelengths on different types of optical disks, for example, BD 60, DVD 70, and CD 80, using one objective lens 8. Information can be recorded or reproduced.
  • FIG. 16 and 17 are schematic configuration diagrams of an optical pickup according to another embodiment 2 of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted below.
  • 7D is a first mirror
  • 7B is a second mirror
  • 8D is a first objective lens
  • 8B is a second objective lens
  • the operation of the optical pickup 41 that records or reproduces information on the BD 60 will be described.
  • the blue-violet laser light having a wavelength of 405 nm emitted from the light source 1 is incident on the flat beam splitter 2 as S-polarized light.
  • the blue-violet laser light reflected by the flat beam splitter 2 passes through the relay lens 3 and is converted into divergent light having a different NA. Thereafter, the blue-violet laser light is reflected by the wedge prism 4, then converted into substantially parallel light by the coupling lens 5, and converted from linearly polarized light to circularly polarized light by the quarter wavelength plate 6.
  • the second objective lens 8B converges as a light spot on the information recording surface over the protective substrate of the BD 60.
  • the blue-violet laser beam reflected by the information recording surface of the BD 60 is transmitted again through the second objective lens 8B, reflected by the second mirror 7B, transmitted through the first mirror 7D, and forwarded by the quarter wavelength plate 6. Is converted into convergent light by the coupling lens 5, reflected by the wedge prism 4, and converted into convergent light having a different NA by the relay lens 3. Further, the blue-violet laser light is incident on and transmitted through the flat beam splitter 2 as P-polarized light, and when it passes through the detection hologram 9, zero-order light and ⁇ first-order diffracted light are generated. Astigmatism is given and guided to the light receiving element 20.
  • red laser light having a wavelength of 660 nm emitted from the two-wavelength light source 11 is separated into a main beam that is 0th-order diffracted light and a sub-beam that is ⁇ 1st-order diffracted light by the diffraction grating 12, and Incident with polarized light.
  • the red laser light that has passed through the wedge prism 4 is converted into a slightly convergent light by the coupling lens 5, converted from linearly polarized light to circularly polarized light by the quarter wavelength plate 6, and reflected by the first mirror 7D.
  • the first objective lens 8D converges as a light spot on the information recording surface over the protective substrate of the DVD 70.
  • the red laser beam reflected by the information recording surface of the DVD 70 is transmitted again through the first objective lens 8D, reflected by the first mirror 7D, and converted by the quarter wavelength plate 6 into linearly polarized light different from the forward path. Thereafter, the light is converted into convergent light by the coupling lens 5.
  • the red laser light is incident on the wedge prism 4 as S-polarized light, reflected, converted into convergent light having a different NA by the relay lens 3, transmitted through the flat beam splitter 2 and the detection hologram 9, and astigmatism by the detection lens 10. Is given to the light receiving element 20.
  • the P-polarized infrared laser light having a wavelength of 785 nm emitted from the two-wavelength light source 11 is similarly converged as a light spot on the information recording surface through the protective substrate of the CD 80 by the first objective lens 8D.
  • the red laser beam reflected by the information recording surface is similarly guided to the light receiving element 20.
  • the first objective lens 8D converges the red laser beam for recording or reproducing the DVD 70 and the infrared laser beam for recording or reproducing the CD 80 as a minute light spot using the wavelength difference.
  • the second objective lens 8B can converge the blue-violet laser beam for recording or reproducing the BD 60 as a minute light spot.
  • the first objective lens 8D and the second objective lens 8B are mounted on the same objective lens actuator (not shown), and light is applied to the information track of the rotating optical disc using the focus error signal and the tracking error signal, respectively. The spot is driven to follow.
  • the optical pickup 41 according to the second embodiment also focuses laser beams having different wavelengths on different types of optical disks, for example, BD60, DVD70, and CD80. Information can be recorded or reproduced.
  • the movement of the coupling lens 5 by the coupling lens actuator 31 is also configured such that red convergent light is incident on the first objective lens 8D when the DVD 70 is used, and the first objective lens 8D when the CD 80 is used.
  • a disk with a different protective substrate thickness with a single coupling lens such as a configuration in which infrared divergent light is incident on, and a configuration in which substantially blue-violet parallel light is incident on the second objective lens 8B when the BD60 is used.
  • the coupling lens actuator 31 can have the same configuration as that of the first embodiment, and the same effect can be obtained.
  • the collimating lens when the collimating lens is commonly used in BD / DVD / CD, the collimating lens is commonly used in BD / DVD / CD.
  • the divergence of the light beam incident on each objective lens was set in the order of red light beam ⁇ blue light beam ⁇ infrared light beam.
  • a blue light beam is incident as a parallel light on a BD objective lens during BD recording / reproduction
  • a red light beam is incident on a convergent DVD / CD objective lens during DVD recording / reproduction
  • DVD / CD is reproduced during CD recording / reproduction.
  • An infrared light beam is incident on a CD-compatible objective lens in a divergent state.
  • the working distance difference between the DVD recording / reproducing and the CD recording / reproducing can be reduced, and the movement range of the objective lens actuator can be reduced. Therefore, it is possible to reduce the drive current of the objective lens actuator and to reduce the power consumption of the optical pickup.
  • the divergence of the blue light beam is changed.
  • the collimating lens when the collimating lens is moved in the optical axis direction, the collimating lens needs to move rather than the divergence of the light beam incident on the compatible objective lens in the order of blue light beam ⁇ red light beam ⁇ infrared light beam. Since the range can be reduced, the optical pickup can be downsized, and the operation time of the optical pickup can be shortened by shortening the moving time of the collimating lens.
  • FIG. 26 is a schematic configuration diagram of an optical pickup according to another embodiment 3 of the present invention.
  • the third embodiment is an optical pickup corresponding to two wavelengths of blue-violet laser light and infrared laser light. Constituent elements common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted below.
  • the position of the coupling lens 5 is the position P3 in the case of blue-violet laser light, and is located at the position P4 closer to the objective lens 8 than the position P3 in the case of infrared laser light.
  • the divergence of the infrared laser beam having a longer wavelength is smaller than the divergence of the blue-violet laser beam having a shorter wavelength.
  • the divergence of the laser light having a longer wavelength is smaller than the divergence of the laser light having a shorter wavelength.
  • the effect that the effective diameter of the optical component close to the lens is small is exhibited.
  • FIG. 27 is a schematic configuration diagram of an optical pickup according to another embodiment 4 of the present invention.
  • the fourth embodiment is an optical pickup corresponding to two wavelengths of red laser light and infrared laser light. Constituent elements common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted below.
  • a red laser beam having a wavelength of 660 nm and an infrared laser beam having a wavelength of 785 nm are emitted from the light source 11 ′′.
  • the position of the coupling lens 5 is the position of the position P5 in the case of red laser light, and is located at the position P6 closer to the objective lens 8 than the position P5 in the case of infrared laser light.
  • the divergence of the infrared laser beam having a longer wavelength is smaller than the divergence of the red laser beam having a shorter wavelength.
  • the divergence of the laser light having a longer wavelength is smaller than the divergence of the laser light having a shorter wavelength.
  • the effect that the effective diameter of the optical component close to the lens is small is exhibited. It is as follows when the effect in Embodiment 3 and Embodiment 4 mentioned above is put together.
  • the longer the smaller NA wavelength than the shorter NA larger wavelength the smaller the working distance due to the substrate thickness of the optical disk.
  • the longer objective lens f is made longer than the shorter objective lens f having a large NA, and the effective diameter of the objective lens for the longer wavelength is set to be larger than the effective diameter for the shorter wavelength.
  • the actual size should be increased.
  • the longer NA wavelength (large effective effective diameter) has the longer wavelength and the shorter NA wavelength (small effective effective diameter) has the shorter wavelength. It has a high divergence configuration. With such a configuration, a light beam with a small effective diameter of the objective lens is in a divergent state, and a light beam with a large effective diameter of the objective lens is in a condensed state. The effective diameter can be reduced.
  • the effective diameter of the optical component between the collimating lens and the objective lens can be made smaller than that of the conventional configuration.
  • FIG. 18A is a schematic configuration diagram of an optical disc apparatus according to Embodiment 5 of the present invention.
  • reference numeral 50 denotes an optical disk device, which includes an optical disk drive unit 51, a control unit 52, and an optical pickup 53 inside the optical disk device 50.
  • Reference numeral 60 denotes a BD, which can be replaced with a DVD 70 or a CD 80.
  • the optical disk drive unit 51 has a function of rotationally driving the BD 60 (or DVD 70, CD 80), and the optical pickup 53 is any one of the optical pickups described in the first embodiment or the second embodiment.
  • the control unit 52 has a function of driving and controlling the optical disc driving unit 51 and the optical pickup 53, a function of performing signal processing of a control signal and an information signal received by the optical pickup 53, and an information signal of the optical disc device 50. Has the function of interfacing externally and internally.
  • the optical disk device 50 according to the fifth embodiment is equipped with any one of the optical pickups described in the first or second embodiment, the optical disk device 50 according to the fifth embodiment is provided with a plurality of light sources. A plurality of types of corresponding optical discs can be recorded or reproduced satisfactorily.
  • FIG. 18B is a schematic configuration diagram of a computer according to the sixth embodiment of the present invention.
  • a computer 500 includes an optical disc device 50 according to the fifth embodiment, an input device 501 such as a keyboard or a mouse or a touch panel for inputting information, information input from the input device 501, An arithmetic device 502 such as a central processing unit (CPU) that performs an operation based on information read from the optical disk device 50, a cathode ray tube, a liquid crystal display device, a printer, or the like that displays information such as a result calculated by the arithmetic device 502 An output device 503 is provided.
  • CPU central processing unit
  • the computer 500 according to the sixth embodiment includes the optical disk device 50 according to the fifth embodiment, different types of optical disks can be satisfactorily recorded or reproduced, and thus has an effect that can be applied to a wide range of applications.
  • FIG. 19A is a schematic configuration diagram of an optical disc player according to Embodiment 7 of the present invention.
  • an optical disc player 600 includes the optical disc device 50 according to the fifth embodiment and an information-to-image conversion device (for example, a decoder 601) that converts an information signal obtained from the optical disc device 50 into an image signal. .
  • an information-to-image conversion device for example, a decoder 601 that converts an information signal obtained from the optical disc device 50 into an image signal.
  • the optical disc player 600 can also be used as a car navigation system by adding a position sensor such as GPS and a central processing unit (CPU). Further, a mode in which a display device 602 such as a liquid crystal monitor is added is also possible.
  • a position sensor such as GPS and a central processing unit (CPU).
  • CPU central processing unit
  • optical disc player 600 according to the seventh embodiment includes the optical disc device 50 according to the fifth embodiment, since different types of optical discs can be reproduced satisfactorily, it has the effect of being applicable to a wide range of applications.
  • FIG. 19B is a schematic configuration diagram of the optical disc recorder according to the eighth embodiment of the present invention.
  • an optical disc recorder 700 includes an optical disc device 50 according to the fifth embodiment and an image-to-information conversion device (for example, an encoder 701) that converts image information into an information signal recorded on the optical disc by the optical disc device 50.
  • an information-to-image conversion device (decoder 702) that converts an information signal obtained from the optical disk device 50 into image information is also provided, so that the recorded image can be reproduced.
  • an output device 703 such as a cathode ray tube, a liquid crystal display device, or a printer that displays information may be provided.
  • optical disk recorder 700 since the optical disk recorder 700 according to the eighth embodiment includes the optical disk device 50 according to the fifth embodiment, since different types of optical disks can be recorded or reproduced satisfactorily, there is an effect that can be applied to a wide range of applications. .
  • the optical pickup of the present invention is capable of recording or reproducing each of a plurality of types of optical disks satisfactorily. Further, since the configuration of the optical pickup is simplified, the productivity can be improved and the optical disc apparatus can be provided at a low cost.
  • the computer, the optical disc player, and the optical disc recorder provided with the optical disc apparatus of the present invention can record and reproduce different types of optical discs, respectively, and thus have an effect that can be applied to a wide range of applications.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

Provided are a compact and inexpensive optical pickup having fewer a reduced number of parts for an optical pickup capable of recording and reproducing a high density optical disk (BD) using a blue-violet laser light source, and an optical disc disk device. The traveling range La of a coupling lens (5) is the position at one end of the coupling lens (5) when recording or reproducing a DVD by red laser light and the position at the other end of the coupling lens (5) when recording or reproducing a CD by infrared laser light. The traveling range Lb of the coupling lens (5) for correcting the spherical aberrations according to the thickness of the protective substrate of the information recording surface in the BD caused by blue-violet laser light fits into the traveling range La of the coupling lens (5) because the spherical aberrations caused by the thickness of the protective substrate of the information recording surface in the BD are corrected by blue-violet laser light.

Description

光ピックアップおよび光ディスク装置、コンピュータ、光ディスクプレーヤ、光ディスクレコーダOptical pickup and optical disc apparatus, computer, optical disc player, optical disc recorder
 本発明は、互いに波長の異なる複数の光源を備え、複数種類の光ディスク等の情報記録媒体に対して、光学的に情報の記録または再生を行う光ピックアップおよびその光ピックアップを具備した光ディスク装置と、この光ディスク装置を具備したコンピュータ、光ディスクプレーヤおよび光ディスクレコーダに関するものである。 The present invention includes an optical pickup that includes a plurality of light sources having different wavelengths and optically records or reproduces information on an information recording medium such as a plurality of types of optical discs, and an optical disc apparatus including the optical pickup, The present invention relates to a computer, an optical disc player, and an optical disc recorder provided with the optical disc apparatus.
 近年、青紫半導体レーザの実用化に伴い、CD(Compact Disc)やDVD(Digital Versatile Disc)と同じサイズで、高密度・大容量の光情報記録媒体であるBlu-ray Disc(以下、BD)が実用化されている。このBDは、波長400nm程度の青紫レーザ光源と、開口数(Numerical Aperture、NA)を0.85まで高めた対物レンズとを用いて、情報の記録または再生を行う、保護基板厚約0.1mmの光ディスクである。 In recent years, Blu-ray Disc (hereinafter referred to as BD), which is a high-density and large-capacity optical information recording medium, has the same size as CD (Compact Disc) and DVD (Digital Versatile Disc) with the practical use of blue-violet semiconductor lasers. It has been put into practical use. This BD uses a blue-violet laser light source with a wavelength of about 400 nm and an objective lens whose numerical aperture (NA) is increased to 0.85, and records or reproduces information. The protective substrate thickness is about 0.1 mm. This is an optical disc.
 そこで、それぞれ保護基板厚が異なる光ディスクの情報記録面に対して、それぞれ異なる波長のレーザ光を、単一あるいは複数の対物レンズを用いて収束させて、情報の記録または再生を行う互換性を有する光ピックアップが提案されている。 Therefore, the information recording surfaces of the optical discs having different protective substrate thicknesses are compatible with recording or reproducing information by converging laser beams of different wavelengths using a single objective lens or a plurality of objective lenses. Optical pickups have been proposed.
 例えば特許文献1(特開2005-293765号公報)には、別々の光源から出射された異なる波長のレーザ光の光軸を一致させ、単一のカップリングレンズと単一の対物レンズを用いて、異なる保護基材厚を有する光ディスクへ、情報の記録または再生を行う光ピックアップが示されている。特許文献1に示された、従来の光ピックアップの構成例を図20(a)に示す。 For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-293765), the optical axes of laser beams of different wavelengths emitted from different light sources are matched, and a single coupling lens and a single objective lens are used. An optical pickup for recording or reproducing information on an optical disc having different protective substrate thicknesses is shown. A configuration example of a conventional optical pickup disclosed in Patent Document 1 is shown in FIG.
 図20(a)において、101は青紫色レーザ光を出射する光源、102は赤色レーザ光と赤外レーザ光を出射する2波長光源、103はそれぞれの光源101,102からの出射光の光軸を一致させるダイクロイックプリズム、104はそれぞれの光源101,102からの発散光の発散角を変換するカップリングレンズ、105は複数の波長のレーザ光を、それぞれ異なる保護基材厚の光ディスクに集光させる互換対物レンズ、131は回転する光ディスクへ互換対物レンズ105をフォーカス制御やトラッキング制御によって追従させる互換対物レンズアクチュエータ、132はカップリングレンズ104を光軸方向に移動させるカップリングレンズアクチュエータ、151は高密度光ディスク(BD)、152はDVD、153はCDである。 In FIG. 20A, 101 is a light source that emits blue-violet laser light, 102 is a two-wavelength light source that emits red laser light and infrared laser light, and 103 is an optical axis of light emitted from each of the light sources 101 and 102. , A dichroic prism 104 for coupling, a coupling lens for converting the divergence angle of divergent light from the respective light sources 101 and 102, and 105 for condensing laser beams having a plurality of wavelengths onto optical disks having different protective substrate thicknesses. A compatible objective lens, 131 is a compatible objective lens actuator for causing the compatible objective lens 105 to follow a rotating optical disk by focus control and tracking control, 132 is a coupling lens actuator for moving the coupling lens 104 in the optical axis direction, and 151 is a high density. Optical disc (BD), 152 is DVD, 153 is A D.
 このような構成において、高密度光ディスク(BD)151やDVD152やCD153のいずれの媒体に記録または再生を行う場合においても、互換対物レンズ105の設計は入射する光束が略平行光である時に、良好なスポットがそれぞれの光ディスクの情報記録面に形成されるように構成されている。 In such a configuration, even when recording or reproduction is performed on any medium such as a high-density optical disc (BD) 151, a DVD 152, or a CD 153, the compatible objective lens 105 is designed when the incident light beam is substantially parallel light. A simple spot is formed on the information recording surface of each optical disc.
 ところで波長の異なる光線を同一のカップリングレンズ104で平行光に変換しようとしても、波長の違いによるレンズ材料の屈折率の違いから、発散度合いが変わってしまう。そこで、カップリングレンズアクチュエータ132によってカップリングレンズ104を光軸方向に移動させることにより、いずれの波長においても互換対物レンズ105へ入射する光束が略平行光となるようにしている。 By the way, even if light beams having different wavelengths are converted into parallel light by the same coupling lens 104, the degree of divergence changes due to the difference in the refractive index of the lens material due to the difference in wavelength. Therefore, by moving the coupling lens 104 in the optical axis direction by the coupling lens actuator 132, the light beam incident on the compatible objective lens 105 becomes substantially parallel light at any wavelength.
 また、特許文献2(特開2004-281034号公報)にも、別々の光源から出射された異なる波長のレーザ光の光軸を一致させ、単一の対物レンズを用いて、異なる保護基材厚を有する光ディスクへ、情報の記録または再生を行う別の光ピックアップの構成が示されている。 Also, Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-2834) discloses that the optical axes of laser beams of different wavelengths emitted from different light sources are made coincident and different protective substrate thicknesses are obtained using a single objective lens. A configuration of another optical pickup for recording or reproducing information on or from an optical disc having the following structure is shown.
 この特許文献2に示された、従来の光ピックアップの構成例を図20(b)に示す。図20(b)において、201は青紫色レーザ光を出射する第1の光源、202は赤色レーザ光を出射する第2の光源、203は赤外レーザ光を出射する第3の光源、204は第1と第2の光源201,202からの出射光の光軸を一致させる第1の光路合成素子、205は第1または第2の光源201,202からの発散光の発散角を変換するカップリングレンズ、206はカップリングレンズ205を通過した第1または第2の光束と、第3の光源203からの出射光の光軸を一致させる第2の光路合成素子、207は複数の波長のレーザ光をそれぞれ異なる保護基材厚の光ディスクに集光させる互換対物レンズ、231は回転する光ディスクへ互換対物レンズ207をフォーカス制御やトラッキング制御によって追従させる互換対物レンズアクチュエータ、232はカップリングレンズ205を光軸方向に移動させるカップリングレンズアクチュエータ、251は高密度光ディスク(BD)、252はDVD、253はCDである。 FIG. 20B shows a configuration example of a conventional optical pickup shown in Patent Document 2. In FIG. 20B, 201 is a first light source that emits blue-violet laser light, 202 is a second light source that emits red laser light, 203 is a third light source that emits infrared laser light, and 204 is A first optical path synthesis element 205 for matching the optical axes of the emitted light from the first and second light sources 201 and 202, and a cup for converting the divergence angle of the divergent light from the first or second light source 201 and 202 A ring lens, 206 is a second optical path synthesis element that matches the optical axis of the light emitted from the third light source 203 with the first or second light flux that has passed through the coupling lens 205, and 207 is a laser having a plurality of wavelengths. Compatible objective lens for condensing light onto optical discs of different protective substrate thicknesses, 231 is a compatible objective lens for causing the compatible objective lens 207 to follow a rotating optical disc by focus control or tracking control. 'S actuator, 232 the coupling lens actuator for moving the coupling lens 205 in the optical axis direction, 251 high density optical disc (BD), 252 is DVD, 253 is CD.
 このような構成において、第3の光源203から出射された赤外レーザ光は発散光として互換対物レンズ207へ入射させており、保護基材厚の違いから発生する球面収差を補正するとともに、互換対物レンズ207の光ディスクに対向する面から光ディスクの保護基材厚表面までの距離(作動距離(ワークディスタンスWD))を長くできる構成としている。 In such a configuration, the infrared laser light emitted from the third light source 203 is incident on the compatible objective lens 207 as divergent light, correcting spherical aberration caused by the difference in the thickness of the protective substrate, and compatible. The distance (working distance (work distance WD)) from the surface of the objective lens 207 facing the optical disk to the protective substrate thickness surface of the optical disk can be increased.
 また、カップリングレンズ205をカップリングレンズアクチュエータ232によって光軸方向に移動し、互換対物レンズ207へ入射する青紫色レーザ光や赤色レーザ光の発散度を変えて、それぞれの光ディスクの保護基材厚の違いから発生する球面収差を補正するとともに、作動距離WDを長くできる構成も可能としている。 In addition, the coupling lens 205 is moved in the optical axis direction by the coupling lens actuator 232 to change the divergence of the blue-violet laser light and the red laser light incident on the compatible objective lens 207, so that the protective base material thickness of each optical disk is changed. It is also possible to correct the spherical aberration caused by the difference between the two and to increase the working distance WD.
 また、特許文献3(特開2003-85806号公報)には、光源からの出射光を平行光に変換するカップリングレンズを光軸方向に移動させ、対物レンズに入射する光束の平行度を変える構成が示されている。特に保護基材厚の厚み誤差によって球面収差が多量に発生する高密度光ディスク(BD)において、簡易な構成でその球面収差を補正できるとともに、2層ディスクなどの多層ディスクであっても、それぞれの情報記録面に集光させる際にカップリングレンズ位置を移動させて、最適な球面収差補正量を適用できる構成が開示されている。 In Patent Document 3 (Japanese Patent Laid-Open No. 2003-85806), a coupling lens that converts light emitted from a light source into parallel light is moved in the optical axis direction to change the parallelism of a light beam incident on the objective lens. The configuration is shown. In particular, in a high-density optical disc (BD) in which a large amount of spherical aberration occurs due to a thickness error of the protective base material thickness, the spherical aberration can be corrected with a simple configuration. A configuration is disclosed in which an optimum spherical aberration correction amount can be applied by moving the coupling lens position when focusing on the information recording surface.
特開2005-293765号公報JP 2005-293765 A 特開2004-281034号公報JP 2004-281034 A 特開2003-85806号公報JP 2003-85806 A
 上記特許文献3には、光ディスクの保護基材厚み誤差に起因する球面収差を、カップリングレンズを光軸方向に移動させて、対物レンズに入射する光束の発散度合いを変えることによって補正する手段が示されている。この考え方を応用し、特許文献1または特許文献2においては、複数の波長を有する光源からの光束の発散度合いを、単一のカップリングレンズを光軸方向に移動させることにより、変化させている。すなわち、波長毎に発散度合いを変えた光束を互換対物レンズに入射させることで、所定の球面収差を発生させ、異なる保護基材厚みを有する光ディスクの情報記録面上に、収差の少ない良好なスポットを形成する手段が、特許文献1または特許文献2に示されている。 Patent Document 3 discloses a means for correcting spherical aberration caused by the protective substrate thickness error of an optical disk by moving the coupling lens in the optical axis direction and changing the degree of divergence of the light beam incident on the objective lens. It is shown. By applying this concept, in Patent Document 1 or Patent Document 2, the degree of divergence of a light beam from a light source having a plurality of wavelengths is changed by moving a single coupling lens in the optical axis direction. . That is, a light beam having a different degree of divergence for each wavelength is incident on a compatible objective lens to generate a predetermined spherical aberration, and a good spot with less aberration on the information recording surface of an optical disc having a different protective substrate thickness Patent Document 1 or Patent Document 2 shows a means for forming the.
 しかしながら、以上説明した3波長タイプの従来の光ピックアップにおいては、次のような課題があった。 However, the conventional three-wavelength optical pickup described above has the following problems.
 すなわち、高密度光ディスク(BD)に対応させた光ピックアップにおいては、特許文献3で示される構成により光ディスクの基材厚み誤差に起因する球面収差量を補正し、さらには多層ディスクの場合にも対応していく構成が有効であるが、その単一のカップリングレンズを用いて、特許文献1や2のように、DVDやCDにも対応させるためにそのカップリングレンズを移動させるとすると、ワーキングディスタンスを十分確保しながら実現しようとした場合、そのカップリングレンズの移動範囲が大きくなってしまう。カップリングレンズの移動範囲が大きくなると、光ピックアップの小型化が困難になり、光ピックアップを搭載する光ディスクドライブ装置などが大型化してしまうといった課題がある。 In other words, the optical pickup compatible with a high-density optical disc (BD) corrects the amount of spherical aberration caused by the substrate thickness error of the optical disc with the configuration shown in Patent Document 3, and further supports the case of a multilayer disc. However, if the single coupling lens is used to move the coupling lens so as to be compatible with DVDs and CDs as in Patent Documents 1 and 2, working is performed. If an attempt is made to achieve this while ensuring a sufficient distance, the range of movement of the coupling lens will increase. When the moving range of the coupling lens is increased, it is difficult to reduce the size of the optical pickup, and there is a problem that an optical disk drive device or the like on which the optical pickup is mounted is increased in size.
 また、2波長タイプの従来の光ピックアップにおいては、次のような課題があった。 Further, the conventional optical pickup of the two wavelength type has the following problems.
 一般的に、NAの大きい波長の短い方よりも、NAの小さい波長の長い方が、光ディスクの基材厚の関係によってワーキングディスタンスが小さくなってしまうが、これを補うためにNAの小さい波長の長い方の対物レンズのfを、NAの大きい波長の短い方の対物レンズのfよりも長くし、相対的に波長の長い方に対する対物レンズの有効径を、波長の短い方に対する有効径よりも実寸法で大きくすると良い。 In general, the longer the smaller NA wavelength than the shorter NA larger wavelength, the smaller the working distance due to the substrate thickness of the optical disk. The longer objective lens f is made longer than the shorter objective lens f having a large NA, and the effective diameter of the objective lens for the longer wavelength is set to be larger than the effective diameter for the shorter wavelength. The actual size should be increased.
 他方で、従来の光ピックアップの場合、2波長互換対物レンズに入射させる光の発散度を2波長で異ならせる場合、NAの小さい(有効径の小さい)波長の長い方λ2を発散度大、NAの大きい(有効径の大きい)波長の短い方λ1を発散度小の構成としている。 On the other hand, in the case of the conventional optical pickup, when the divergence of the light incident on the two-wavelength compatible objective lens is different between the two wavelengths, the longer λ2 having the smaller NA (small effective diameter) and the longer λ2 The shorter wavelength λ1 having a larger wavelength (large effective diameter) has a low divergence.
 その結果、従来の光ピックアップの対物レンズに近い光学部品の有効径は大きくならざる得ないという課題があった。 As a result, there is a problem that the effective diameter of the optical component close to the objective lens of the conventional optical pickup must be large.
 本発明は、このような従来の光ピックアップの課題を考慮し、そのような課題を解消した、光ピックアップおよび光ディスク装置、コンピュータ、光ディスクプレーヤ、光ディスクレコーダを提供することを目的とする。 An object of the present invention is to provide an optical pickup, an optical disc apparatus, a computer, an optical disc player, and an optical disc recorder, in which such issues are solved in consideration of the problems of the conventional optical pickup.
 第1の本発明は、
 波長λ1の発散光束を出射する第1の光源と、
 前記波長λ1とは異なる波長λ2(λ2>λ1)の発散光束を出射する第2の光源と、
 前記波長λ1の光束を保護基板厚みt1である第1の光ディスクの情報記録面に集光させ、前記波長λ2の光束を前記t1とは異なる保護基板厚みt2である第2の光ディスクの情報記録面に集光させる対物レンズとを備え、
 前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時の、前記対物レンズに入射される光ビームの発散度の方が、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時の、前記対物レンズに入射される光ビームの発散度よりも大きい、光ピックアップである。
The first aspect of the present invention is
A first light source that emits a divergent light beam of wavelength λ1,
A second light source that emits a divergent light beam having a wavelength λ2 (λ2> λ1) different from the wavelength λ1;
The light beam having the wavelength λ1 is condensed on the information recording surface of the first optical disk having the protective substrate thickness t1, and the light beam having the wavelength λ2 is condensed on the information recording surface of the second optical disk having the protective substrate thickness t2 different from the t1. And an objective lens for focusing
When converging the light beam having the wavelength λ1 on the information recording surface of the first optical disk, the divergence of the light beam incident on the objective lens is greater than that of the second optical disk. It is an optical pickup that is larger than the divergence of the light beam incident on the objective lens when condensing on the information recording surface.
 第2の本発明は、
 前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光させる前記対物レンズのNAをNA1、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光させる前記対物レンズのNAをNA2とすると、NA1>NA2である、第1の本発明の光ピックアップである。
The second aspect of the present invention
The NA of the objective lens for condensing the light beam with the wavelength λ1 on the information recording surface of the first optical disc, and NA1 of the objective lens for condensing the light beam with the wavelength λ2 on the information recording surface of the second optical disc. If NA is NA2, the optical pickup according to the first aspect of the present invention satisfies NA1> NA2.
 第3の本発明は、
 前記波長λ1及び前記波長λ2の組合せは、青紫光(波長350nm~450nm)及び赤色光(波長600nm~700nm)、又は、青紫光及び赤外光(750nm~850nm)、又は赤色光及び赤外光の組合せである、第1又は2の本発明の光ピックアップである。
The third aspect of the present invention provides
The combination of the wavelength λ1 and the wavelength λ2 is blue violet light (wavelength 350 nm to 450 nm) and red light (wavelength 600 nm to 700 nm), blue violet light and infrared light (750 nm to 850 nm), or red light and infrared light. The optical pickup according to the first or second aspect of the present invention, which is a combination of the above.
 第4の本発明は、 
 前記第1、第2のそれぞれの光源から出射された光束を同一光軸化する手段と、
 前記第1、第2のそれぞれの光源から出射された光束の発散度を変換するカップリングレンズと、
 前記カップリングレンズを、前記同一光軸化のエリアにおいて、前記対物レンズの光軸方向に沿って移動させるレンズアクチュエータとを備え、
 前記レンズアクチュエータは、前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時と、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時で、前記カップリングレンズを異なる位置に移動させ、
 前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時の前記カップリングレンズの前記レンズ光軸方向の位置の方が、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時の前記カップリングレンズの前記レンズ光軸方向の位置よりも前記光源側に近い、第1~3のいずれかの本発明の光ピックアップである。
The fourth invention relates to
Means for making the light beams emitted from the first and second light sources the same optical axis;
A coupling lens that converts the divergence of light beams emitted from the first and second light sources;
A lens actuator that moves the coupling lens along the optical axis direction of the objective lens in the same optical axis area;
The lens actuator is configured to condense the light beam having the wavelength λ1 on the information recording surface of the first optical disk and to collect the light beam having the wavelength λ2 on the information recording surface of the second optical disk. Move the coupling lens to a different position,
The position of the coupling lens in the optical axis direction of the lens when the light beam having the wavelength λ1 is condensed on the information recording surface of the first optical disk is changed to the information on the second optical disk. The optical pickup according to any one of the first to third aspects of the present invention, wherein the coupling lens is condensed closer to the light source side than a position in the lens optical axis direction when the light is condensed on a recording surface.
 第5の本発明は、
 前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時に、前記カップリングレンズの前記レンズ光軸方向の位置は、前記対物レンズに入射する光ビームが平行光となる位置であり、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時に、前記カップリングレンズの前記レンズ光軸方向の位置は、前記対物レンズに入射する光ビームが収束光となる位置である、第4の本発明の光ピックアップである。
The fifth aspect of the present invention relates to
When the light beam having the wavelength λ1 is condensed on the information recording surface of the first optical disc, the position of the coupling lens in the lens optical axis direction is a position where the light beam incident on the objective lens becomes parallel light. Yes, when the light beam having the wavelength λ2 is condensed on the information recording surface of the second optical disc, the position of the coupling lens in the lens optical axis direction is that the light beam incident on the objective lens becomes convergent light. This is the optical pickup according to the fourth aspect of the present invention.
 第6の本発明は、
 前記対物レンズは、前記波長λ1の光束と前記波長λ2の光束とに共用されるレンズである、第1~5のいずれかの本発明の光ピックアップである。
The sixth invention relates to
The objective lens is the optical pickup according to any one of the first to fifth aspects of the present invention, which is a lens shared by the light beam having the wavelength λ1 and the light beam having the wavelength λ2.
 第7の本発明は、
 前記対物レンズは、前記波長λ1の光束用のレンズと、前記波長λ2の光束用のレンズとで構成されている、第1~5のいずれかの本発明の光ピックアップである。
The seventh invention relates to
The objective lens is the optical pickup according to any one of the first to fifth aspects of the present invention, which includes a lens for the light beam having the wavelength λ1 and a lens for the light beam having the wavelength λ2.
 第8の本発明は、
 波長λ1の発散光束を出射する第1の光源と、
 前記波長λ1とは異なる波長λ2(λ2>λ1)の発散光束を出射する第2の光源と、
 前記波長λ1及びλ2とは異なる波長λ3(λ3>λ2>λ1)の発散光束を出射する第3の光源と、
 前記波長λ1の光束を保護基板厚みt1である第1の光ディスクの情報記録面に集光させ、前記波長λ2の光束を前記t1とは異なる保護基板厚みt2である第2の光ディスクの情報記録面に集光させ、前記波長λ3の光束を前記t1及び前記t2とは異なる保護基板厚みt3である第3の光ディスクの情報記録面に集光させる、対物レンズと、
 前記第1、第2、第3のそれぞれの光源から出射された光束を同一光軸化する手段と、
 前記第1、第2、第3のそれぞれの光源から出射された光束の発散度を変換するカップリングレンズと、
 前記カップリングレンズを、前記同一光軸化のエリアにおいて、前記対物レンズの光軸方向に沿って移動させるレンズアクチュエータとを備え、
 前記レンズアクチュエータは、前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時と、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時と、前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時で、前記カップリングレンズを異なる位置に移動させ、
 前記カップリングレンズの位置は、前記光源から近い順に、前記波長λ3の光束の集光時、前記波長λ1の光束の集光時、前記波長λ2の光束の集光時である、光ピックアップである。
The eighth invention relates to
A first light source that emits a divergent light beam of wavelength λ1,
A second light source that emits a divergent light beam having a wavelength λ2 (λ2> λ1) different from the wavelength λ1;
A third light source that emits a divergent light beam having a wavelength λ3 (λ3>λ2> λ1) different from the wavelengths λ1 and λ2.
The light beam having the wavelength λ1 is condensed on the information recording surface of the first optical disk having the protective substrate thickness t1, and the light beam having the wavelength λ2 is condensed on the information recording surface of the second optical disk having the protective substrate thickness t2 different from the t1. An objective lens for condensing the light beam having the wavelength λ3 on the information recording surface of a third optical disc having a protective substrate thickness t3 different from the t1 and the t2.
Means for converting the light beams emitted from the first, second, and third light sources into the same optical axis;
A coupling lens that converts the divergence of the light beams emitted from the first, second, and third light sources;
A lens actuator that moves the coupling lens along the optical axis direction of the objective lens in the same optical axis area;
The lens actuator condensing the light beam having the wavelength λ1 on the information recording surface of the first optical disc, condensing the light beam having the wavelength λ2 on the information recording surface of the second optical disc, When condensing the light beam of wavelength λ1 on the information recording surface of the first optical disc, the coupling lens is moved to a different position,
The position of the coupling lens is an optical pickup in which the light beam having the wavelength λ3, the light beam having the wavelength λ1, and the light beam having the wavelength λ2 are collected in order from the light source. .
 第9の本発明は、
 前記波長λ1の光束は、青紫光(波長350nm~450nm)であり、
 前記波長λ2の光束は、赤色光(波長600nm~700nm)であり、
 前記波長λ3の光束は、赤外光(750nm~850nm)である、第8の本発明の光ピックアップである。
The ninth invention relates to
The luminous flux of wavelength λ1 is blue-violet light (wavelength 350 nm to 450 nm),
The luminous flux of wavelength λ2 is red light (wavelength 600 nm to 700 nm),
In the optical pickup according to the eighth aspect of the present invention, the light flux having the wavelength λ3 is infrared light (750 nm to 850 nm).
 第10の本発明は、
 前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時に、前記カップリングレンズの前記レンズ光軸方向の位置は、前記対物レンズに入射する光ビームが収束光となる位置であり、
 前記波長λ3の光束を前記第3の光ディスクの情報記録面に集光する時に、前記カップリングレンズの前記レンズ光軸方向の位置は、前記対物レンズに入射する光ビームが発散光となる位置である、第8又は9の本発明の光ピックアップである。
The tenth aspect of the present invention is
When condensing the light beam having the wavelength λ2 on the information recording surface of the second optical disk, the position of the coupling lens in the lens optical axis direction is a position where the light beam incident on the objective lens becomes convergent light. Yes,
When the light beam having the wavelength λ3 is condensed on the information recording surface of the third optical disk, the position of the coupling lens in the lens optical axis direction is a position where the light beam incident on the objective lens becomes divergent light. An eighth or ninth optical pickup according to the present invention.
 第11の本発明は、
 前記対物レンズは、前記波長λ1の光束と前記波長λ2の光束と前記波長λ3の光束に共用されるレンズである、第8~10のいずれかの本発明の光ピックアップである。
The eleventh aspect of the present invention is
The objective lens is the optical pickup according to any one of the eighth to tenth aspects of the present invention, wherein the objective lens is a lens shared by the light beam having the wavelength λ1, the light beam having the wavelength λ2, and the light beam having the wavelength λ3.
 第12の本発明は、
 前記対物レンズは、前記波長λ1の光束用のレンズと、前記波長λ2及び前記波長λ3の光束に共用されるレンズとで構成されている、第8~10のいずれかの本発明の光ピックアップである。
The twelfth aspect of the present invention is
The objective lens is an optical pickup according to any of the eighth to tenth aspects of the present invention, which includes a lens for a light beam having the wavelength λ1 and a lens shared by the light beams having the wavelength λ2 and the wavelength λ3. is there.
 第13の本発明は、
 前記第1の光ディスクは複数層の情報記録面を有し、表面から前記それぞれの情報記録層面までの前記透明基材の実質厚みの差によって発生する球面収差を、前記カップリングレンズの移動により補正する、第4又は8の本発明の光ピックアップである。
The thirteenth aspect of the present invention is
The first optical disc has a plurality of information recording surfaces, and spherical aberration caused by a difference in the substantial thickness of the transparent base material from the surface to each information recording layer surface is corrected by moving the coupling lens. The fourth or eighth optical pickup of the present invention.
 第14の本発明は、
 第1~13のいずれかの本発明の光ピックアップと、
 前記情報記録媒体を回転駆動するためのモータと、
 前記光ピックアップと前記モータを制御する制御部とを備えた、光ディスク装置である。
The fourteenth aspect of the present invention is
Any one of the first to thirteenth optical pickups of the present invention;
A motor for rotationally driving the information recording medium;
It is an optical disc apparatus provided with the said optical pick-up and the control part which controls the said motor.
 第15の本発明は、
 第14の本発明される光ディスク装置と、
 情報を入力するための入力手段と、
 前記光ディスク装置から再生された情報および/または前記入力手段から入力された情報に基づいて演算を行う演算手段と、
 前記光ディスク装置から再生された情報および/または前記入力手段から入力された情報および/または前記演算手段によって演算された結果を出力するための出力手段とを備えた、コンピュータである。
The fifteenth aspect of the present invention is
A fourteenth optical disc apparatus according to the present invention;
An input means for inputting information;
A calculation means for performing calculation based on information reproduced from the optical disk device and / or information input from the input means;
An output means for outputting information reproduced from the optical disk device and / or information input from the input means and / or a result calculated by the calculation means.
 第16の本発明は、 
 第14の本発明される光ディスク装置と、
 前記光ディスク装置から得られる情報信号を画像情報に変換するデコーダとを備えた、光ディスクプレーヤである。
The sixteenth aspect of the present invention
A fourteenth optical disc apparatus according to the present invention;
An optical disc player comprising a decoder for converting an information signal obtained from the optical disc device into image information.
 第17の本発明は、
 第14の本発明される光ディスク装置と、
 画像情報を前記光ディスク装置によって記録するための情報信号に変換するエンコーダとを備えた、光ディスクレコーダである。
The seventeenth aspect of the present invention provides
A fourteenth optical disc apparatus according to the present invention;
An optical disk recorder comprising an encoder for converting image information into an information signal for recording by the optical disk device.
 本発明によれば、2波長のレーザ光を用いて複数種類の光ディスクの記録または再生を行う場合、対物レンズに近い光学部品の有効径を小さく出来るという効果を発揮する。 According to the present invention, when a plurality of types of optical discs are recorded or reproduced using two-wavelength laser light, the effect of reducing the effective diameter of the optical component close to the objective lens is exhibited.
 また、本発明によれば、3波長のレーザ光を用いて複数種類の光ディスクの記録または再生を行う場合、コンパクトで高性能な光ピックアップ、光ディスク装置を実現することが可能となる。 In addition, according to the present invention, when a plurality of types of optical discs are recorded or reproduced using laser light of three wavelengths, a compact and high-performance optical pickup and optical disc apparatus can be realized.
 また、このような光ピックアップおよび光ディスク装置を実現できるので、本発明のコンピュータ、光ディスクプレーヤ、光ディスクレコーダを、コンパクトに実現できる。 Further, since such an optical pickup and an optical disk device can be realized, the computer, the optical disk player, and the optical disk recorder of the present invention can be realized in a compact manner.
本発明の実施の形態1において、BDを記録または再生する場合の光ピックアップの概略構成図Schematic configuration diagram of an optical pickup when recording or reproducing a BD in Embodiment 1 of the present invention 本発明の実施の形態1において、DVDを記録または再生する場合の光ピックアップの概略構成図Schematic configuration diagram of an optical pickup when recording or reproducing a DVD in Embodiment 1 of the present invention 本発明の実施の形態1において、CDを記録または再生する場合の光ピックアップの概略構成図Schematic configuration diagram of an optical pickup when recording or reproducing a CD in Embodiment 1 of the present invention 本発明の実施の形態1において、検出ホログラムの光束分割パターンを模式的に示す図The figure which shows typically the light beam splitting pattern of a detection hologram in Embodiment 1 of this invention. (a),(b)本発明の実施の形態1において、対物レンズの構成を模式的に示す図(A), (b) The figure which shows typically the structure of an objective lens in Embodiment 1 of this invention. 本発明の実施の形態1において、別の対物レンズの構成を模式的に示す図The figure which shows typically the structure of another objective lens in Embodiment 1 of this invention. 本発明の実施の形態1において、対物レンズアクチュエータの動作を模式的に示す図The figure which shows typically operation | movement of an objective lens actuator in Embodiment 1 of this invention. 本発明の実施の形態1において、カップリングレンズアクチュエータの構成を模式的に示す図In Embodiment 1 of this invention, the figure which shows the structure of a coupling lens actuator typically (a),(c),(c)本発明の実施の形態1において、カップリングレンズアクチュエータの機能を模式的に示す図(A), (c), (c) The figure which shows typically the function of a coupling lens actuator in Embodiment 1 of this invention. 本発明の実施の形態1において、平板ビームスプリッタの分光特性を示す図The figure which shows the spectral characteristics of a flat beam splitter in Embodiment 1 of this invention. 本発明の実施の形態1において、ウェッジプリズムの分光特性を示す図The figure which shows the spectral characteristic of a wedge prism in Embodiment 1 of this invention. 本発明の実施の形態1において、光源から出射された青紫レーザ光の光軸と2波長光源から出射された赤色レーザ光の光軸を光軸のなす角および平板ビームスプリッタとウェッジプリズムへの入射角を示す図In Embodiment 1 of the present invention, the angle formed by the optical axis of the optical axis of the blue-violet laser light emitted from the light source and the optical axis of the red laser light emitted from the two-wavelength light source, and the incidence to the flat beam splitter and the wedge prism Illustration showing corners 本発明の実施の形態1において、平板ビームスプリッタの反射率の入射角依存性と、光源の配置を説明する図In Embodiment 1 of this invention, the figure explaining the incident angle dependence of the reflectance of a flat beam splitter, and arrangement | positioning of a light source 本発明の実施の形態1において、2波長レーザ光源の発光点の様子を模式的に示す図The figure which shows typically the mode of the light emission point of 2 wavelength laser light source in Embodiment 1 of this invention. 本発明の実施の形態1において、リレーレンズを用いた光ピックアップの概略構成図1 is a schematic configuration diagram of an optical pickup using a relay lens in Embodiment 1 of the present invention. 本発明の実施の形態2において、BDを記録または再生する場合の光ピックアップの概略構成図Schematic configuration diagram of an optical pickup when recording or reproducing BD in Embodiment 2 of the present invention 本発明の実施の形態2において、DVDを記録または再生する場合の光ピックアップの概略構成図Schematic configuration diagram of an optical pickup when recording or reproducing a DVD in Embodiment 2 of the present invention (a)本発明の実施の形態5における光ディスク装置の概略構成図、(b)本発明の実施の形態6におけるコンピュータの概略構成図(A) Schematic configuration diagram of an optical disc apparatus according to the fifth embodiment of the present invention, (b) Schematic configuration diagram of a computer according to the sixth embodiment of the present invention. (a)本発明の実施の形態7における光ディスクプレーヤの概略構成図、(b)本発明の実施の形態8における光ディスクレコーダの概略構成図(A) Schematic configuration diagram of an optical disc player according to Embodiment 7 of the present invention, (b) Schematic configuration diagram of an optical disc recorder according to Embodiment 8 of the present invention. (a),(b)従来の互換性を有する光ピックアップの概略構成図(A), (b) Schematic configuration diagram of conventional optical pickup having compatibility (a),(b),(c),(d)本発明の実施の形態1において、ホログラムレンズの階段形状の回折構造を示す図(A), (b), (c), (d) The figure which shows the step-shaped diffraction structure of a hologram lens in Embodiment 1 of this invention. (a),(e)本発明の実施の形態1において、ホログラムレンズの階段形状の回折構造を示す図(A), (e) The figure which shows the diffraction structure of the step shape of a hologram lens in Embodiment 1 of this invention. 本発明の実施の形態1において、回折格子の回折効率を示す図The figure which shows the diffraction efficiency of a diffraction grating in Embodiment 1 of this invention. 本発明の実施の形態1において、光学素子を用いた場合の、CD/DVD/BDの互換レンズを構成する例を示す図The figure which shows the example which comprises the compatible lens of CD / DVD / BD at the time of using an optical element in Embodiment 1 of this invention. 本発明の実施の形態1において、カップリングレンズの移動範囲を示す図The figure which shows the movement range of a coupling lens in Embodiment 1 of this invention. 本発明の実施の形態3において、BDとDVDを記録または再生する場合の光ピックアップの概略構成図Schematic configuration diagram of an optical pickup when recording or reproducing BD and DVD in Embodiment 3 of the present invention 本発明の実施の形態4において、DVDとCDを記録または再生する場合の光ピックアップの概略構成図Schematic configuration diagram of an optical pickup when recording or reproducing a DVD and a CD in Embodiment 4 of the present invention
 以下、本発明の光ピックアップおよび光ディスク装置、コンピュータ、光ディスクプレーヤ、光ディスクレコーダの実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of an optical pickup and an optical disc apparatus, a computer, an optical disc player, and an optical disc recorder of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1から図3は本発明の一実施の形態1における光ピックアップの概略構成図である。
(Embodiment 1)
1 to 3 are schematic configuration diagrams of the optical pickup according to the first embodiment of the present invention.
 図1において、1は青紫レーザ光を出射する光源、2は平板ビームスプリッタ、3はリレーレンズ、4はウェッジプリズム、5はカップリングレンズ、6は1/4波長板、7はミラー、8は互換性を有する対物レンズ、9は検出ホログラム、10は検出レンズ、11は赤色レーザ光と赤外レーザ光を出射する2波長光源、12は回折格子、20は受光素子、30は対物レンズ8を駆動するアクチュエータである。これらの構成要素が本実施の形態1の光ピックアップ40を構成している。また、平板ビームスプリッタ2やウェッジプリズム4などは本発明の同一光軸化する手段の一例である。 In FIG. 1, 1 is a light source for emitting blue-violet laser light, 2 is a flat beam splitter, 3 is a relay lens, 4 is a wedge prism, 5 is a coupling lens, 6 is a quarter-wave plate, 7 is a mirror, Compatible objective lens, 9 is a detection hologram, 10 is a detection lens, 11 is a two-wavelength light source that emits red laser light and infrared laser light, 12 is a diffraction grating, 20 is a light receiving element, and 30 is an objective lens 8. It is an actuator to drive. These components constitute the optical pickup 40 of the first embodiment. The flat beam splitter 2 and the wedge prism 4 are examples of the same optical axis unit of the present invention.
 また、60は保護基板厚約0.1mmの光ディスクであるBDである。 Reference numeral 60 denotes a BD which is an optical disk having a protective substrate thickness of about 0.1 mm.
 始めに、BD60に対して情報の記録または再生を行う場合の光ピックアップ40の動作について述べる。光源1から出射された波長405nmの青紫レーザ光は、平板ビームスプリッタ2にS偏光で入射する。平板ビームスプリッタ2で反射された青紫レーザ光は、リレーレンズ3を透過することによって、NAの異なる発散光に変換される。 First, the operation of the optical pickup 40 when information is recorded on or reproduced from the BD 60 will be described. The blue-violet laser light having a wavelength of 405 nm emitted from the light source 1 is incident on the flat beam splitter 2 as S-polarized light. The blue-violet laser light reflected by the flat beam splitter 2 is converted into divergent light having a different NA by passing through the relay lens 3.
 この発散光である青紫レーザ光は、ウェッジプリズム4で反射された後、位置P0に存在しているカップリングレンズ5で略平行光に変換され、その後1/4波長板6によって直線偏光が円偏光に変換され、ミラー7で反射された後、対物レンズ8によって、BD60の保護基板越しにその情報記録面に光スポットとして収束される。 The blue-violet laser light, which is the diverging light, is reflected by the wedge prism 4 and then converted into substantially parallel light by the coupling lens 5 present at the position P0. After being converted into polarized light and reflected by the mirror 7, it is converged as a light spot on the information recording surface by the objective lens 8 through the protective substrate of the BD 60.
 BD60の情報記録面で反射した青紫レーザ光は、再び対物レンズ8を透過し、ミラー7で反射され、1/4波長板6によって往路とは異なる直線偏光に変換された後、カップリングレンズ5で収束光に変換され、ウェッジプリズム4で反射されて、リレーレンズ3を透過することによってNAの異なる収束光に変換される。 The blue-violet laser light reflected by the information recording surface of the BD 60 is transmitted again through the objective lens 8, reflected by the mirror 7, and converted into linearly polarized light different from the forward path by the quarter wavelength plate 6, and then the coupling lens 5 Is converted into convergent light, reflected by the wedge prism 4 and transmitted through the relay lens 3 to be converted into convergent light having a different NA.
 さらにその青紫レーザ光は、平板ビームスプリッタ2にP偏光で入射し透過して、検出ホログラム9に入射し透過する。その青紫レーザ光が検出ホログラム9を透過する際に、0次光と±1次回折光が生成され、それら回折光は検出レンズ10で非点収差が与えられて、受光素子20に導かれる。 Further, the blue-violet laser light is incident on and transmitted through the flat plate beam splitter 2 with P-polarized light, and is incident on and transmitted through the detection hologram 9. When the blue-violet laser light passes through the detection hologram 9, zero-order light and ± first-order diffracted light are generated. The diffracted light is given astigmatism by the detection lens 10 and guided to the light receiving element 20.
 次に、図2を用いて保護基板厚0.6mmの光ディスクであるDVD70の記録または再生を行う場合、図3を用いて保護基板厚1.2mmの光ディスクであるCD80の記録または再生を行う場合の光ピックアップ40の動作について述べる。 Next, when recording or reproducing the DVD 70, which is an optical disk having a protective substrate thickness of 0.6 mm, using FIG. 2, and when recording or reproducing the CD 80, which is an optical disk having a protective substrate thickness of 1.2 mm, using FIG. The operation of the optical pickup 40 will be described.
 図2において、2波長光源11から出射された波長660nmの赤色レーザ光は、回折格子12で0次回折光であるメインビームと±1次回折光であるサブビームに分離された後、ウェッジプリズム4にP偏光で入射する。ウェッジプリズム4を透過した赤色レーザ光は、位置P1に存在しているカップリングレンズ5で若干の収束光に変換され、1/4波長板6によって直線偏光から円偏光に変換され、ミラー7で反射された後、対物レンズ8によって、DVD70の保護基板越しに情報記録面に光スポットとして収束される。この位置P1は、上述した青紫色レーザ光の場合の位置P0よりも、対物レンズ8寄りに位置している。 In FIG. 2, the red laser light having a wavelength of 660 nm emitted from the two-wavelength light source 11 is separated by the diffraction grating 12 into a main beam that is 0th-order diffracted light and a sub-beam that is ± 1st-order diffracted light. Incident with polarized light. The red laser light transmitted through the wedge prism 4 is converted into a slightly convergent light by the coupling lens 5 present at the position P 1, converted from linearly polarized light to circularly polarized light by the quarter wavelength plate 6, and is reflected by the mirror 7. After being reflected, the light is converged as a light spot on the information recording surface by the objective lens 8 through the protective substrate of the DVD 70. This position P1 is located closer to the objective lens 8 than the position P0 in the case of the blue-violet laser beam described above.
 DVD70の情報記録面で反射した赤色レーザ光は、再び対物レンズ8を透過し、ミラー7で反射され、1/4波長板6で往路とは異なる直線偏光に変換された後、カップリングレンズ5で収束光に変換される。その後赤色レーザ光はウェッジプリズム4にS偏光で入射し反射され、リレーレンズ3でNAの異なる収束光に変換されて、平板ビームスプリッタ2と検出ホログラム9を透過し、検出レンズ10で非点収差が与えられた後、受光素子20に導かれる。 The red laser beam reflected by the information recording surface of the DVD 70 is transmitted again through the objective lens 8, reflected by the mirror 7, converted into linearly polarized light different from the forward path by the quarter wavelength plate 6, and then coupled to the coupling lens 5. Is converted into convergent light. Thereafter, the red laser light is incident on the wedge prism 4 as S-polarized light, reflected, converted into convergent light having a different NA by the relay lens 3, transmitted through the flat beam splitter 2 and the detection hologram 9, and astigmatism by the detection lens 10. Is given to the light receiving element 20.
 同様に、図3において、2波長光源11から出射された波長785nmの赤外レーザ光は、回折格子12で0次回折光であるメインビームと±1次回折光であるサブビームに分離された後、ウェッジプリズム4にP偏光で入射する。ウェッジプリズム4を透過した赤外レーザ光は、位置P2に存在しているカップリングレンズ5でNAの異なる若干の発散光に変換され、1/4波長板6によって直線偏光から円偏光に変換され、ミラー7で反射された後、対物レンズ8によって、CD80の保護基板越しに情報記録面に光スポットとして収束される。この位置P2は、上述した青色レーザ光の場合の位置P0より、光源1,11寄りに位置している。 Similarly, in FIG. 3, the infrared laser light having a wavelength of 785 nm emitted from the two-wavelength light source 11 is separated into a main beam that is 0th-order diffracted light and a sub-beam that is ± 1st-order diffracted light by the diffraction grating 12, and then a wedge. The light enters the prism 4 as P-polarized light. The infrared laser light transmitted through the wedge prism 4 is converted into slightly divergent light having a different NA by the coupling lens 5 existing at the position P2, and is converted from linearly polarized light to circularly polarized light by the quarter wavelength plate 6. After being reflected by the mirror 7, it is converged as an optical spot by the objective lens 8 on the information recording surface through the protective substrate of the CD 80. This position P2 is located closer to the light sources 1 and 11 than the position P0 in the case of the blue laser light described above.
 なお、上述した対物レンズ8寄りと言う場合、あるいは光源1,11寄りと言う場合、それらの位置の比較は、レーザ光が同一光軸化されているエリア内での比較である。たとえば、図1の場合、ウェッジプリズム4と1/4波長板6との間のエリアである。 In addition, when it says near the objective lens 8 mentioned above, or when it says near the light sources 1 and 11, the comparison of those positions is a comparison in the area where the laser beam is made into the same optical axis. For example, in the case of FIG. 1, the area is between the wedge prism 4 and the quarter-wave plate 6.
 CD80の情報記録面で反射した赤外レーザ光は、再び対物レンズ8を透過し、ミラー7で反射され、1/4波長板6で往路とは異なる直線偏光に変換された後、カップリングレンズ5で収束光に変換される。その後赤外レーザ光はウェッジプリズム4にS偏光で入射し反射され、リレーレンズ3でNAの異なる収束光に変換されて、平板ビームスプリッタ2と検出ホログラム9を透過し、検出レンズ10で非点収差が与えられた後、受光素子20に導かれる。 The infrared laser light reflected by the information recording surface of the CD 80 is transmitted again through the objective lens 8, reflected by the mirror 7, and converted into linearly polarized light different from the forward path by the quarter wavelength plate 6, and then the coupling lens. 5 is converted into convergent light. Thereafter, the infrared laser light is incident on the wedge prism 4 as S-polarized light, reflected, converted into convergent light having a different NA by the relay lens 3, transmitted through the flat beam splitter 2 and the detection hologram 9, and astigmatized by the detection lens 10. After the aberration is given, the light is guided to the light receiving element 20.
 一方、BD60、DVD70およびCD80を記録または再生するためのフォーカス誤差信号は、検出レンズ10によって非点収差を与えられた集光スポットを受光素子20内の4分割受光パターンで検出する、いわゆる公知の非点収差法等を用いることが可能である。 On the other hand, the focus error signal for recording or reproducing the BD 60, DVD 70, and CD 80 is a so-called publicly known light detection method that detects a condensing spot given astigmatism by the detection lens 10 with a four-divided light receiving pattern in the light receiving element 20. An astigmatism method or the like can be used.
 一方、トラッキング誤差信号は、例えばBD60においては、検出ホログラム9を透過する際に生成された0次光と1次回折光を、受光素子20の所定の受光領域で検出して行うことで、BD60に形成される情報トラックの溝の位置、幅、深さにばらつきがある場合に生じるトラッキング誤差信号の変動、および情報トラックに情報が記録され、反射率が変わることで生じるトラッキング誤差信号の変動を抑制することが可能である。また、上述のように検出ホログラム9と受光素子20を用いることによって、複数の情報記録面を有するBD60において、記録または再生の対象となる情報記録面とは異なる情報記録面で反射された不要な光(迷光)が、トラッキング誤差信号を検出する受光領域に入射することを避けることもできる。 On the other hand, for example, in the BD 60, the tracking error signal is obtained by detecting the 0th-order light and the 1st-order diffracted light generated when passing through the detection hologram 9 in a predetermined light receiving region of the light receiving element 20, thereby providing the BD 60 with the tracking error signal. Suppresses fluctuations in tracking error signals caused by variations in the position, width, and depth of formed information track grooves, and tracking error signals that occur when information is recorded on information tracks and reflectivity changes Is possible. Further, by using the detection hologram 9 and the light receiving element 20 as described above, in the BD 60 having a plurality of information recording surfaces, unnecessary reflection reflected on an information recording surface different from the information recording surface to be recorded or reproduced is unnecessary. It is also possible to prevent light (stray light) from entering the light receiving region for detecting the tracking error signal.
 図4は検出ホログラム9の光束分割パターンの例を模式的に示したものである。図中の波線はBD60の情報記録面で反射されたレーザ光の、検出ホログラム9上での光束径を示している。検出ホログラム9は、7種類の領域9a~9gを有しており、それぞれの領域に入射したレーザ光を0次回折光と±1次回折光に分割する。トラッキング誤差信号TEは、それぞれの領域9a~9gで回折された+1次回折光の、受光素子20での受光量に応じた電流信号Ia~Igを用いて、
 TE=(Ia-Ib)-k(Ic+Id-Ie-If)
の演算により得られる。
FIG. 4 schematically shows an example of the light beam splitting pattern of the detection hologram 9. The wavy line in the figure indicates the beam diameter of the laser beam reflected on the information recording surface of the BD 60 on the detection hologram 9. The detection hologram 9 has seven types of regions 9a to 9g, and divides laser light incident on each region into 0th-order diffracted light and ± 1st-order diffracted light. The tracking error signal TE uses current signals Ia to Ig corresponding to the amount of light received by the light receiving element 20 of the + 1st order diffracted light diffracted in the respective regions 9a to 9g.
TE = (Ia−Ib) −k (Ic + Id−Ie−If)
It is obtained by the operation of
 DVD70およびCD80においては、回折格子12によって生成されたメインビームとサブビームを用いた、いわゆる3ビーム法や差動プッシュプル法(DPP法)等が用いられる。 In the DVD 70 and the CD 80, a so-called three-beam method, a differential push-pull method (DPP method), or the like using a main beam and a sub beam generated by the diffraction grating 12 is used.
 なお、フォーカス誤差信号およびトラッキング誤差信号の検出は、これらの検出方法に限定されるものではなく、例えば、BD60も、回折格子によって生成されたメインビームとサブビームを用いた差動プッシュプル法(DPP法)等を用いることが可能である。 The detection of the focus error signal and the tracking error signal is not limited to these detection methods. For example, the BD 60 also uses a differential push-pull method (DPP) using a main beam and a sub beam generated by a diffraction grating. Method) or the like.
 本実施の形態1の対物レンズ8は、BD60を記録または再生するための青紫レーザ光、DVD70を記録または再生するための赤色レーザ光、CD80を記録または再生するための赤外レーザ光を、波長の差を利用してそれぞれ微小な光スポットとして収束するための回折構造を備えている。 The objective lens 8 according to the first embodiment has a wavelength of blue-violet laser light for recording or reproducing the BD 60, red laser light for recording or reproducing the DVD 70, and infrared laser light for recording or reproducing the CD 80. The diffraction structure for converging each as a small light spot using the difference is provided.
 具体的には図5(a)に示すように、対物レンズ8の少なくとも1面、例えば対物レンズ8の入射面(光源側の面)に、断面が鋸歯状のブレーズ型回折構造が形成されている。ブレーズ型回折構造は、対物レンズ8の屈折のパワーと合わせて、それぞれの波長のレーザ光によって記録または再生されるBD60、DVD70、CD80の情報記録面上に、それぞれの波長のレーザ光を回折限界まで収束できるよう収差補正を施されている。このように入射光の一部を回折するブレーズ型回折構造を備えた対物レンズ8は、異なる保護基板厚の光ディスク上にそれぞれ回折限界の光スポットを形成することができる。 Specifically, as shown in FIG. 5A, a blazed diffractive structure having a sawtooth cross section is formed on at least one surface of the objective lens 8, for example, the incident surface of the objective lens 8 (surface on the light source side). Yes. The blazed diffractive structure is combined with the refraction power of the objective lens 8 to diffract the laser light of each wavelength on the information recording surface of BD60, DVD70, CD80 recorded or reproduced by the laser light of each wavelength. Aberration correction is applied so that it can be converged. In this way, the objective lens 8 having a blazed diffraction structure that diffracts part of incident light can form diffraction-limited light spots on optical disks having different protective substrate thicknesses.
 なお、赤外レーザ光をCD80に対して収束させるための領域は、光軸を含むレンズ中央部分に限り、赤色レーザ光をDVD70に対して収束させるための領域は、レンズ中央部分とその外側の中周部分に限り、青紫レーザ光をBD60に対して収束させるための領域は、レンズ中央部分と前記中周部分と、さらにその外側の外周部分の全て用いるように設計することにより、CD80に対するNAを約0.50に制限し、DVD70に対するNAを約0.65に制限し、BD60に対するNAを約0.85に拡大することができる。 Note that the region for converging the infrared laser light with respect to the CD 80 is limited to the lens central portion including the optical axis, and the region for converging the red laser light with respect to the DVD 70 is the lens central portion and the outside thereof. The region for converging the blue-violet laser beam with respect to the BD 60 only in the middle peripheral portion is designed to use all of the lens central portion, the middle peripheral portion, and the outer peripheral portion on the outer side thereof, so that the NA for the CD 80 is increased. Can be limited to about 0.50, the NA for DVD 70 can be limited to about 0.65, and the NA for BD 60 can be expanded to about 0.85.
 なお、対物レンズ8は、図5(a)のようにレンズの入射面にブレーズ型回折構造を形成した対物レンズに限らず、例えば図5(b)に示すように、屈折型の正のパワーの対物レンズ8aと、別体のホログラムレンズ8bとを一体駆動し、BD60、DVD70、CD80の記録または再生を行うようにしてもよい。なお、このような別体のホログラムレンズ8bを用いることで、傾斜角度の大きい対物レンズ8の入射面に回折構造を形成する必要がなく、金型を製作しやすいという効果がある。なお、ホログラムレンズ8bの回折構造は、図5(b)のように光源側に形成する構成に限らず、対物レンズ8a側の面に形成してもよく、対物レンズ8側の面と光源側の面の両方に形成してもよい。 The objective lens 8 is not limited to an objective lens in which a blazed diffraction structure is formed on the entrance surface of the lens as shown in FIG. 5A. For example, as shown in FIG. 5B, a refractive positive power is used. The objective lens 8a and the separate hologram lens 8b may be integrally driven to record or reproduce the BD 60, DVD 70, or CD 80. By using such a separate hologram lens 8b, there is no need to form a diffractive structure on the incident surface of the objective lens 8 having a large tilt angle, and there is an effect that it is easy to manufacture a mold. The diffraction structure of the hologram lens 8b is not limited to the structure formed on the light source side as shown in FIG. 5B, and may be formed on the surface on the objective lens 8a side. It may be formed on both surfaces.
 また、図6に示すように、屈折型の正のパワーの対物レンズ8a’と、階段形状の回折構造を備えたホログラムレンズ8b’とを一体駆動する構成であっても同様の効果が得られることは言うまでもない。 In addition, as shown in FIG. 6, the same effect can be obtained even when the refractive type positive power objective lens 8a ′ and the hologram lens 8b ′ having a staircase-shaped diffraction structure are integrally driven. Needless to say.
 なお、対物レンズは、例えば複数の硝材の波長分散特性を利用した屈折型の対物レンズ等でもよく、要するに、BD60を記録または再生するための青紫レーザ光、DVD70を記録または再生するための赤色レーザ光、CD80を記録または再生するための赤外レーザ光を、それぞれ微小な光スポットとして収束することができさえすればよく、上述の回折構造を備えた対物レンズに限定されるものではない。 The objective lens may be, for example, a refractive objective lens using the wavelength dispersion characteristics of a plurality of glass materials. In short, a blue-violet laser beam for recording or reproducing the BD 60, and a red laser for recording or reproducing the DVD 70. It is only necessary to converge the light and the infrared laser beam for recording or reproducing the CD 80 as a minute light spot, and the present invention is not limited to the objective lens having the above-described diffraction structure.
 対物レンズアクチュエータ30は、図7に示すように、台30cと、対物レンズ8を保持する、可動な対物レンズホルダ30bと、台30cに固定され対物レンズホルダ30bを保持する複数のサスペンションワイヤ30aとを備える。この対物レンズアクチュエータ30は、上述したフォーカス誤差信号とトラッキング誤差信号を用いて、回転する光ディスクの情報トラックに光スポットが追従するよう、フォーカス方向(a)およびトラッキング方向(b)に対物レンズ8を駆動出来る。 As shown in FIG. 7, the objective lens actuator 30 includes a table 30c, a movable objective lens holder 30b that holds the objective lens 8, and a plurality of suspension wires 30a that are fixed to the table 30c and hold the objective lens holder 30b. Is provided. The objective lens actuator 30 uses the focus error signal and the tracking error signal described above to move the objective lens 8 in the focus direction (a) and the tracking direction (b) so that the light spot follows the information track of the rotating optical disk. Can drive.
 さらに、フォーカス方向(a)、トラッキング方向(b)の変位に加えて、光ディスクの半径方向(c)に対物レンズ8を傾けることも可能である。 Further, in addition to the displacement in the focus direction (a) and the tracking direction (b), the objective lens 8 can be tilted in the radial direction (c) of the optical disc.
 カップリングレンズ5は、図8に示すように、カップリングレンズアクチュエータ31によって、カップリングレンズ5の光軸方向に移動可能となっている。 The coupling lens 5 is movable in the optical axis direction of the coupling lens 5 by a coupling lens actuator 31 as shown in FIG.
 図8はカップリングレンズアクチュエータ31の概略構成図である。図8において、5はカップリングレンズ、32はステッピングモータ、33はスクリューシャフト、34は主軸、35は副軸、36はレンズホルダである。ステッピングモータ32を駆動してスクリューシャフト33を回転させることにより、カップリングレンズ5を保持するレンズホルダ36は、主軸34および副軸35に沿ってカップリングレンズ5の光軸方向に移動する。 FIG. 8 is a schematic configuration diagram of the coupling lens actuator 31. In FIG. 8, 5 is a coupling lens, 32 is a stepping motor, 33 is a screw shaft, 34 is a main shaft, 35 is a secondary shaft, and 36 is a lens holder. By driving the stepping motor 32 and rotating the screw shaft 33, the lens holder 36 that holds the coupling lens 5 moves along the main shaft 34 and the sub shaft 35 in the optical axis direction of the coupling lens 5.
 図9は、BD60を利用する場合、その球面収差を補正する際、あるいは複数の情報記録面を備えた場合の対応方法を示すための図である。 FIG. 9 is a diagram for illustrating a corresponding method when the spherical aberration is corrected when the BD 60 is used, or when a plurality of information recording surfaces are provided.
 図9に示すように、カップリングレンズ5の出射光が略平行光となる、カップリングレンズ5の基準位置(a)に対して、カップリングレンズ5を光源側に移動させることによって、カップリングレンズ5の出射光は発散光となり(b)、BD60の保護基板が厚くなった場合に発生する球面収差を補正できる。 As shown in FIG. 9, the coupling lens 5 is moved to the light source side with respect to the reference position (a) of the coupling lens 5 where the light emitted from the coupling lens 5 becomes substantially parallel light. The light emitted from the lens 5 becomes divergent light (b), and the spherical aberration that occurs when the protective substrate of the BD 60 becomes thick can be corrected.
 一方、カップリングレンズ5を対物レンズ側に移動させることによって、カップリングレンズ5の出射光は収束光となり(c)、BD60の保護基板が薄くなった場合に発生する球面収差を補正できる。すなわち、複数の情報記録面を備えたBD60において、それぞれの情報記録面の保護基板の厚さに応じてカップリングレンズ5を移動させることにより球面収差を補正し、記録または再生性能を向上させることができる。 On the other hand, by moving the coupling lens 5 to the objective lens side, the light emitted from the coupling lens 5 becomes convergent light (c), and the spherical aberration generated when the protective substrate of the BD 60 becomes thin can be corrected. That is, in the BD 60 having a plurality of information recording surfaces, the spherical aberration is corrected by moving the coupling lens 5 according to the thickness of the protective substrate of each information recording surface, thereby improving the recording or reproducing performance. Can do.
 他方、BD60を記録または再生するための青紫レーザ光、DVD70を記録または再生するための赤色レーザ光、CD80を記録または再生するための赤外レーザ光をそれぞれ利用する場合の、カップリングレンズ5のそれぞれの位置は、図1、図2、図3に示されている。 On the other hand, in the case of using the blue-violet laser beam for recording or reproducing the BD 60, the red laser beam for recording or reproducing the DVD 70, and the infrared laser beam for recording or reproducing the CD 80, respectively, The respective positions are shown in FIG. 1, FIG. 2, and FIG.
 すなわち、本実施の形態1のカップリングレンズアクチュエータ31は、図2に示すように、DVD70の記録または再生時は、点線5で示す、BD60を記録または再生する際のカップリングレンズ5の位置P0を基準として、カップリングレンズ5をミラー7側の位置P1に移動させることによって、2波長光源11から出射された赤色レーザ光を収束光として対物レンズ8に入射させる。一方、図3に示すように、CD80の記録または再生時は、点線5で示す、BD60を記録または再生する際のカップリングレンズ5の位置P0を基準として、カップリングレンズ5を2波長光源11側の位置P2に移動させることによって、2波長光源11から出射された赤外レーザ光を発散光として対物レンズ8に入射させる。 That is, as shown in FIG. 2, the coupling lens actuator 31 according to the first embodiment has a position P0 of the coupling lens 5 at the time of recording or reproducing the BD 60, which is indicated by a dotted line 5, when recording or reproducing the DVD 70. As a reference, the coupling lens 5 is moved to the position P1 on the mirror 7 side so that the red laser light emitted from the two-wavelength light source 11 enters the objective lens 8 as convergent light. On the other hand, as shown in FIG. 3, at the time of recording or reproducing the CD 80, the coupling lens 5 is set to the two-wavelength light source 11 with reference to the position P0 of the coupling lens 5 at the time of recording or reproducing the BD 60 indicated by the dotted line 5. By moving to the side position P2, the infrared laser light emitted from the two-wavelength light source 11 is made incident on the objective lens 8 as divergent light.
 次に、そのようにカップリングレンズ5の位置を適切に移動させ、レーザ光を対物レンズ8へ入射させる場合の、対物レンズ8等の作用について説明する。例えば、対物レンズ8に図6の構成を用いた場合を説明する。ここで、階段形状の回折構造を備えたホログラムレンズ8b’の回折構造が、図21に示される構造が周期的に形成されている構造であるとする。図21(a)は、基材上に形成した格子の物質的な形状を示している。(b)は、青紫光に対する位相変調量を示している。(c)は、赤色光に対する位相変調量を示している。そしてさらに(d)は、赤色光に対する位相変調量を示している。 Next, the operation of the objective lens 8 and the like when the position of the coupling lens 5 is appropriately moved and laser light is incident on the objective lens 8 will be described. For example, the case where the configuration of FIG. 6 is used for the objective lens 8 will be described. Here, it is assumed that the diffraction structure of the hologram lens 8 b ′ having the staircase-shaped diffraction structure is a structure in which the structure shown in FIG. 21 is periodically formed. FIG. 21A shows the material shape of the lattice formed on the substrate. (B) shows the amount of phase modulation for blue-violet light. (C) has shown the phase modulation amount with respect to red light. Further, (d) shows the amount of phase modulation for red light.
 (a)において縦方向は基材の光軸方向の厚さ、あるいは高さを示している。nbは、青紫光ビームに対する素子材料の屈折率である。素子材料を、例えば、BK7とすると、nb=1.5302、ポリオレフィン系の樹脂ではnb=1.522程度のものがある。 In (a), the vertical direction indicates the thickness or height of the substrate in the optical axis direction. nb is the refractive index of the element material for the blue-violet light beam. For example, when the element material is BK7, there are nb = 1.5302 and some polyolefin-based resins have nb = 1.522.
 1段差d1は、青紫光ビームに対して光路長差が約1.25波長、すなわち位相差が約2π+π/2になる量にする。例えば、単位段差d1は基材が石英であれば、
d1=λ1/(nb-1)×1.25=0.96μmとなる。
また、同様に樹脂であれば、d1=0.97μmとなる。
One step d1 has an optical path length difference of about 1.25 wavelengths with respect to the blue-violet light beam, that is, an amount such that the phase difference is about 2π + π / 2. For example, if the unit step d1 is quartz,
d1 = λ1 / (nb−1) × 1.25 = 0.96 μm.
Similarly, in the case of a resin, d1 = 0.97 μm.
 図21(a)は単位段差d1によって生じる光路差が、青紫波長λ1の1.25倍であることを示している。単位段差d1によって生じる光路差は、段差/(nb-1)なので、1.25というのは段差/(nb-1)をλ1によって割り算した値である。(b)、(c)、(d)では単に、光路差/波長という形によって表記したが、整数部分を差し引いた以外は同様の意味である。 FIG. 21 (a) shows that the optical path difference caused by the unit step d1 is 1.25 times the blue-violet wavelength λ1. Since the optical path difference caused by the unit step d1 is a step / (nb-1), 1.25 is a value obtained by dividing the step / (nb-1) by λ1. In (b), (c), and (d), they are simply represented by the form of optical path difference / wavelength, but they have the same meaning except that the integer part is subtracted.
 格子の高さ(レベル)をd1の整数倍にすると、この形状による青紫光に対する位相変調量は2π+π/2の整数倍となり、これは実質的に、図21(b)に示すように位相変調量が一段あたりπ/2であることになる。 When the height (level) of the grating is an integral multiple of d1, the amount of phase modulation for blue-violet light due to this shape is an integral multiple of 2π + π / 2, which is substantially phase modulated as shown in FIG. The amount will be π / 2 per stage.
 一方赤色光ビームに対する素子材料の屈折率をnrとすると、素子材料がBK7の場合は、nr=1.5142、ポリオレフィン系の樹脂ではnr=1.505程度のものがある。段差d1によって赤色光ビームに発生する光路長差は、基材が石英の場合も樹脂の場合もd1×(nr-1)/λ2≒0.75。すなわち、波長の約3/4倍となり、位相変調量は一段あたり約-π/2となる。 On the other hand, when the refractive index of the element material with respect to the red light beam is nr, there are nr = 1.542 when the element material is BK7 and nr = 1.505 for the polyolefin resin. The difference in optical path length generated in the red light beam due to the step d1 is d1 × (nr−1) /λ2≈0.75 regardless of whether the base material is quartz or resin. That is, the wavelength is about 3/4 times, and the phase modulation amount is about −π / 2 per stage.
 さらに赤外光ビームに対する素子材料の屈折率をniとすると、素子材料がBK7の場合は、ni=1.51、ポリオレフィン系の樹脂ではni=1.501程度のものがある。段差d1によって赤外光ビームに発生する光路長差は、基材が石英の場合も樹脂の場合もd1×(ni-1)/λ3≒0.625。すなわち、波長の約2/3倍となり、位相変調量は一段あたり波長の-1/3倍と考えることができ、位相に置き換えると約-2π/3となる。 Further, assuming that the refractive index of the element material with respect to the infrared light beam is ni, when the element material is BK7, there are ni = 1.51, and for the polyolefin resin, ni = 1.501. The difference in optical path length generated in the infrared light beam due to the step d1 is d1 × (ni−1) /λ3≈0.625 regardless of whether the base material is quartz or resin. That is, it is about 2/3 times the wavelength, and the phase modulation amount can be considered to be -1/3 times the wavelength per stage, and is about -2π / 3 when replaced with the phase.
 図21(a)のように、格子の1段差をd1の整数倍にし、階段状の断面形状にすると、青紫光ビームに対しては、1段差を重ねていくと、図21(b)のように位相変調量が一段あたりπ/2ずつ変化する。すなわち光路長差はλ1の+1/4ずつ変化する。4段形成することにより位相が2π変化し、+1次回折光の回折効率が約80%と、計算(スカラー計算)され、回折次数の中で、最も強くなる。図21(a)は8段重ねて一周期p1を形成しているが、4段あたり位相が2π変化するので、青紫光は周期p2(p2はp1の半分)の2周期を感じる。p1の周期構造と捉えれば、青紫光は+2次回折光の回折効率が約80%となって、最も強いことになる。 As shown in FIG. 21 (a), if one step of the lattice is an integral multiple of d1, and a stepped cross-sectional shape is obtained, when one step is overlapped for the blue-violet light beam, Thus, the phase modulation amount changes by π / 2 per stage. That is, the optical path length difference changes by +1/4 of λ1. By forming four stages, the phase changes by 2π, and the diffraction efficiency of the + 1st order diffracted light is calculated to be about 80% (scalar calculation), and becomes the strongest among the diffraction orders. In FIG. 21A, eight stages are stacked to form one period p1, but since the phase changes by 2π per four stages, blue-violet light feels two periods of period p2 (p2 is half of p1). If considered as a periodic structure of p1, blue-violet light has the strongest diffraction efficiency of + 2nd order diffracted light of about 80%.
 赤色光ビームに対しては、1段差を重ねていくと、図21(c)のように位相変調量が一段あたり-π/2ずつ変化する。すなわち光路長差はλ2の-1/4ずつ変化する。4段形成することにより位相が2π変化し、-1次回折光の回折効率が約80%と、計算(スカラー計算)され、回折次数の中で、最も強くなる。図21(a)は8段重ねて一周期p1を形成しているが、4段あたり位相が-2π変化するので、赤色光は周期p2(p2はp1の半分)の2周期を感じる。p1の周期構造と捉えれば、赤色光は-2次回折光の回折効率が約80%となって、最も強いことになる。なお、回折次数が負であるのは、回折次数が正の場合とは逆方向に光が曲がることを意味している。 For the red light beam, when one step is overlapped, the phase modulation amount changes by −π / 2 per step as shown in FIG. That is, the optical path length difference changes by ¼ of λ2. By forming four stages, the phase changes by 2π, and the diffraction efficiency of the −1st order diffracted light is calculated to be about 80% (scalar calculation), and becomes the strongest among the diffraction orders. In FIG. 21A, one stage p1 is formed by superposing eight stages, but since the phase changes by −2π per four stages, the red light feels two periods of the period p2 (p2 is half of p1). If viewed as the periodic structure of p1, the red light has the strongest diffraction efficiency of -2nd order diffracted light of about 80%. Note that the fact that the diffraction order is negative means that the light bends in the opposite direction to the case where the diffraction order is positive.
 赤外光ビームに対しては青紫の5波長、赤色の3波長分の段差は5λ3/2、つまり、2.5波長分の段差に当たるので、位相を変化させる。図21(d)に示すように周期p1の中にあたかも3周期の周期構造があるように見えて、周期p1の周期構造に対して-3次の回折効率が60%程度発生し、すべての回折次数の中で最も強くなる。ここで、-3次回折光が強くなる理由は、単純に各段差が赤外光に与える位相を加えていくと理解できる。これを図22を用いて説明する。 For the infrared light beam, the steps corresponding to 5 wavelengths of blue purple and 3 wavelengths of red correspond to 5λ3 / 2, that is, the steps corresponding to 2.5 wavelengths, so the phase is changed. As shown in FIG. 21 (d), it appears that there is a periodic structure of three periods in the period p1, and a third-order diffraction efficiency is generated by about 60% with respect to the periodic structure of the period p1, It becomes the strongest among the diffraction orders. Here, the reason why the third-order diffracted light becomes strong can be understood by simply adding the phase that each step gives to the infrared light. This will be described with reference to FIG.
 図22(a)は図21(a)と同じであり、基材上に形成した格子の物質的な形状を示している。単純に各段差が赤外光に与える位相を加えていくと、位相変化は図22(e)のようになり、周期p1を形成する7段8レベルの階段形状により、点線のような鋸歯形状が近似されていることがわかる。点線の鋸歯形状の高さは赤外光3波長に相当するため、-3次回折が強く生じる。同様に、周期p1を形成する7段8レベルの階段形状により、青紫光では、赤外光と逆の方向に青紫光2波長の高さの鋸歯形状が近似されているので、+2次回折光が強く生じる。赤色光では、赤外光と同じ方向に赤色光2波長の高さの鋸歯形状が近似されているので、-2次回折光が強く生じる。図21(a)の断面形状を1周期とする回折格子の回折効率をスカラー計算によって計算した。その結果、回折効率は図23のようになった。 FIG. 22 (a) is the same as FIG. 21 (a) and shows the material shape of the lattice formed on the substrate. When the phase which each level | step difference gives to infrared light simply is added, a phase change will become like FIG.22 (e), and the sawtooth shape like a dotted line by 7 steps | paragraphs of 8 steps | paragraphs which form the period p1. It can be seen that is approximated. Since the height of the dotted sawtooth shape corresponds to three wavelengths of infrared light, strong third-order diffraction occurs. Similarly, the blue-violet light approximates a sawtooth shape with two wavelengths of blue-violet light in the opposite direction to the infrared light by the seven steps and eight-level step shape forming the period p1, so that the + second-order diffracted light is Strongly occurs. In the red light, a sawtooth shape having a height of two wavelengths of the red light is approximated in the same direction as the infrared light, so that −2nd order diffracted light is strongly generated. The diffraction efficiency of a diffraction grating having the cross-sectional shape of FIG. 21A as one period was calculated by scalar calculation. As a result, the diffraction efficiency was as shown in FIG.
 図23において横軸は樹脂材料を素子材料としたときの1段差の実寸法、縦軸は回折効率である。縦の点線で示したあたりに段差を設定すれば、青紫の+2次回折光と、赤色の-2次回折光の回折効率は約80%、赤外の-3次回折光の回折効率は約60%であり、いずれも50%を越えているので、他の次数より大きくなる。青紫光、赤色光だけでなく、赤外光の回折効率も50%以上にできたのは、図21(a)の構造によるものである。各設計波長はλ1=408nm、λ2=660nm、λ3=780nmである。 23, the horizontal axis represents the actual size of one step when the resin material is the element material, and the vertical axis represents the diffraction efficiency. If a step is set around the vertical dotted line, the diffraction efficiency of blue-violet + 2nd order diffracted light and red -2nd order diffracted light is about 80%, and that of infrared −3rd order diffracted light is about 60%. Yes, both are over 50%, so they are larger than other orders. The reason why the diffraction efficiency of not only blue-violet light and red light but also infrared light can be increased to 50% or more is due to the structure shown in FIG. Each design wavelength is λ1 = 408 nm, λ2 = 660 nm, and λ3 = 780 nm.
 この素子を用いた場合の、CD/DVD/BDの互換レンズを構成する例を図24を用いて説明する。8b’は回折型、あるいは位相段差型の光学素子であるが、屈折面を片面あるいは両面に形成しても良い。凹面の屈折面を形成し、青紫光に対して凸レンズ型の回折素子あるいは位相段差素子と組み合わせてレンズパワーを相殺すると、光学素子8b’全体として青紫光の基準波長に対するレンズパワーをゼロにすることができる。そうすれば、光学素子8b’と組み合わせて用いる屈折型の対物レンズ8a’を光ディスク60の基材厚t1を通して開口数NA1以上によって収束できるよう設計すればよいので、対物レンズ8a’の製造時の検査が容易にできるという効果がある。いずれにせよ、対物レンズ8a’は、波長λ1の青紫光ビームを、光学素子8b’によって変調した後さらに収束させて光ディスク60の基材厚t1を通して記録面61上へ集光するように設計される。 An example of constructing a CD / DVD / BD compatible lens using this element will be described with reference to FIG. Reference numeral 8b 'denotes a diffractive or phase step type optical element, but the refracting surface may be formed on one side or both sides. By forming a concave refracting surface and canceling the lens power in combination with a convex lens type diffractive element or phase step element with respect to blue-violet light, the entire optical element 8b ′ has zero lens power with respect to the reference wavelength of blue-violet light. Can do. Then, the refractive objective lens 8a ′ used in combination with the optical element 8b ′ may be designed so as to be converged by the numerical aperture NA1 or more through the base material thickness t1 of the optical disc 60. Therefore, at the time of manufacturing the objective lens 8a ′. There is an effect that the inspection can be easily performed. In any case, the objective lens 8a ′ is designed to focus the blue-violet light beam having the wavelength λ1 on the recording surface 61 through the substrate thickness t1 of the optical disk 60 after being modulated by the optical element 8b ′ and further converged. The
 また、波長λ2の赤色光ビームを、光学素子8b’の回折格子や位相型光学素子によって変調した後さらに収束させて光ディスク70の基材厚t2を通して記録面71上へ集光するように設計される。 Further, the red light beam having the wavelength λ2 is designed to be converged after being modulated by the diffraction grating of the optical element 8b ′ or the phase type optical element, and condensed onto the recording surface 71 through the substrate thickness t2 of the optical disk 70. The
 さらに、波長λ3の赤外光ビームも、光学素子8b’によって変調した後さらに収束させて光ディスク80の基材厚t3を通して記録面81上へ集光するように設計される。 Further, the infrared light beam having the wavelength λ3 is also designed to be converged after being modulated by the optical element 8b 'and condensed onto the recording surface 81 through the substrate thickness t3 of the optical disc 80.
 各波長の光ビームは波長の違いと、前述した回折次数の違い、あるいは、位相段差から与えられる位相の違い、そして、屈折型対物レンズの波長に依存する屈折率の違い(分散)を利用して、異なる厚さの基材厚を通したときに収束できるように設計できる。 The light beam of each wavelength uses the difference in wavelength, the difference in diffraction order as described above, or the difference in phase given by the phase step, and the difference in refractive index (dispersion) depending on the wavelength of the refractive objective lens. And can be designed to converge when passing through different substrate thicknesses.
 他方、CDとDVDとBDはそれぞれ光を収束する際に適した開口数NAが異なる。BDに適した開口数NA1は0.85以上である。DVDに適した開口数NA2は0.6~0.67程度である。CDに適した開口数NA3は0.45~0.55程度である。これらより開口数が小さければ光ビームを記録面上において十分に小さく絞ることができない。また、これらより開口数が大きすぎれば、光ディスクが変形して傾いた場合等に大きな波面の乱れが生じ、安定な情報記録や再生に適さない。NA3を、NA2やNA1に比べて小さくするため、光学素子8b’には光軸を中心とした同心円状の領域を3カ所設ける。最内周の領域8b’に上述の実施の形態で述べた、回折素子、あるいは位相段差を形成する。最内周領域8b’-Cに入射した赤外光ビーム82は点線のように約1.2mmの透明基材を通して情報記録面81上に収束される。 On the other hand, CD, DVD, and BD have different numerical apertures NA suitable for converging light. The numerical aperture NA1 suitable for BD is 0.85 or more. The numerical aperture NA2 suitable for DVD is about 0.6 to 0.67. The numerical aperture NA3 suitable for CD is about 0.45 to 0.55. If the numerical aperture is smaller than these, the light beam cannot be sufficiently reduced on the recording surface. On the other hand, if the numerical aperture is too large, large wavefront disturbances occur when the optical disk is deformed and tilted, and it is not suitable for stable information recording and reproduction. In order to make NA3 smaller than NA2 and NA1, the optical element 8b 'is provided with three concentric regions around the optical axis. The diffraction element or the phase step described in the above embodiment is formed in the innermost region 8b '. The infrared light beam 82 incident on the innermost peripheral region 8b'-C is converged on the information recording surface 81 through a transparent substrate of about 1.2 mm as shown by a dotted line.
 最内周領域8b’-Cおよび外側に設けた中周領域8b’-Bに入射した赤色光ビーム72は約0.6mmの透明基材を通して情報記録面71上に収束される。 The red light beam 72 incident on the innermost peripheral region 8b'-C and the outer peripheral intermediate region 8b'-B is converged on the information recording surface 71 through a transparent substrate of about 0.6 mm.
 最内周領域8b’-Cおよび外側に設けた中周領域8b’-Bそしてさらにその外側に設けた外周領域8b’-Fに入射した青紫光ビーム72は約0.1mmの透明基材を通して情報記録面61上に収束される。 The blue-violet light beam 72 incident on the innermost peripheral region 8b'-C, the outer peripheral region 8b'-B provided on the outer side, and the outer peripheral region 8b'-F provided further on the outer peripheral region 8b'-C passes through a transparent substrate of about 0.1 mm. It converges on the information recording surface 61.
 このように最内周領域8b’-Cは赤外光のCD、赤色光のDVD、青紫光のBDすべてに兼用する領域である。最も短波長の青紫光は屈折対物レンズ8a’の分散が大きい上に、焦点深度が浅いので軸上色収差の補正を行うことが望ましい。軸上色収差の補正は、光学素子8b’の回折素子部分を凸レンズ作用を持つように設計することよって実現できる。上述の実施の形態1の回折素子構造を用いれば、赤外色光(点線)や赤色光(2点鎖線)では、青紫光の場合とは逆の作用を受けるので、凹レンズ作用が発揮され、焦点距離が長くなる。特に赤外光は赤色光より波長が長いために凹レンズ作用を強く受ける。このため、焦点距離は青紫より赤色、赤色より赤外光が長くなる。そして、赤色光や赤外光の焦点位置をより対物レンズ8a’から遠くへ移動することができて、光ディスク70や80の厚い基材を通して焦点を結ぶことができる。つまり、対物レンズ8a’表面と光ディスク70や80の表面との間隔、すなわち作動距離(ワーキングディスタンス:WD)を確保できるという効果がある。この構成の対物レンズを用いた本実施の形態1の光ピックアップ40は、図1から図3に示すように、DVD70の記録または再生時にはカップリングレンズ5をミラー7側に移動させ対物レンズ8に収束光を入射し、CD80の記録または再生時にはカップリングレンズ5を2波長光源11側に移動させ対物レンズ8に発散光を入射させた場合に、情報記録面に集光される光スポットの球面収差が最も小さくなる。 Thus, the innermost peripheral region 8b'-C is a region that is used for all of the infrared light CD, the red light DVD, and the blue-violet light BD. It is desirable to correct axial chromatic aberration because blue-violet light with the shortest wavelength has a large dispersion of the refractive objective lens 8a 'and a shallow focal depth. Correction of axial chromatic aberration can be realized by designing the diffractive element portion of the optical element 8b 'to have a convex lens action. If the diffractive element structure of the first embodiment described above is used, infrared light (dotted line) and red light (two-dot chain line) are subjected to the reverse action of blue-violet light, so that the concave lens action is exhibited and the focal point is focused. The distance gets longer. In particular, since infrared light has a longer wavelength than red light, it is strongly influenced by a concave lens. For this reason, the focal length is longer in red than blue violet and longer in infrared light than red. Then, the focal position of the red light or infrared light can be moved further away from the objective lens 8 a ′, and the focal point can be focused through the thick base material of the optical disks 70 and 80. That is, there is an effect that a distance between the surface of the objective lens 8a 'and the surface of the optical disk 70 or 80, that is, a working distance (working distance: WD) can be secured. As shown in FIGS. 1 to 3, the optical pickup 40 according to the first embodiment using the objective lens having this configuration moves the coupling lens 5 toward the mirror 7 when recording or reproducing the DVD 70. When convergent light is incident and the coupling lens 5 is moved to the two-wavelength light source 11 side and divergent light is incident on the objective lens 8 during recording or reproduction of the CD 80, the spherical surface of the light spot collected on the information recording surface Aberration is minimized.
 このようにカップリングレンズアクチュエータ31を用いることで、光源1から出射された青紫レーザ光と、2波長光源11から出射された赤色レーザ光および赤外レーザ光を、それぞれ平行光、収束光あるいは発散光で対物レンズ8に入射させることができ、それぞれの光源の波長、および対応する光ディスクの保護基板厚の違いによって生じる球面収差を効果的に補正できる。なお、それぞれの光源から出射されたレーザ光を、平行光、収束光あるいは発散光のうち、いずれの状態で対物レンズ8に入射させるかは、対物レンズ8の設計に因るものであって、青紫レーザ光を略平行光、赤色レーザを収束光、赤外レーザ光を発散光とする本実施の形態の組み合わせに限定されるものではない。 By using the coupling lens actuator 31 in this way, the blue-violet laser light emitted from the light source 1 and the red laser light and infrared laser light emitted from the two-wavelength light source 11 are respectively converted into parallel light, convergent light, or divergent light. Light can be incident on the objective lens 8, and spherical aberration caused by the difference in wavelength of each light source and the thickness of the protective substrate of the corresponding optical disk can be effectively corrected. Whether the laser light emitted from each light source is incident on the objective lens 8 among parallel light, convergent light, or divergent light depends on the design of the objective lens 8. The present invention is not limited to the combination of the present embodiment in which the blue-violet laser light is substantially parallel light, the red laser is convergent light, and the infrared laser light is divergent light.
 なお、本実施の形態1の構成においては、カップリングレンズアクチュエータ31が移動させる可動距離La、すなわちカップリングレンズ5の移動範囲Laは図25に示すように、DVD70の記録または再生時のカップリングレンズ5の位置と、CD80の記録または再生時のカップリングレンズ5の位置とがそれぞれ左右両端である。ここで、BD60における情報記録面の保護基板の厚さに応じた球面収差を補正するための、カップリングレンズ5の移動範囲Lbはカップリングレンズ5の移動範囲Laの間に収めている。このような構成とすることで、カップリングレンズ5の移動範囲Laを小さくできるため、光ピックアップ全体を小型化することができるという効果がある。 In the configuration of the first embodiment, the movable distance La moved by the coupling lens actuator 31, that is, the moving range La of the coupling lens 5, is coupling during recording or reproduction of the DVD 70 as shown in FIG. The position of the lens 5 and the position of the coupling lens 5 at the time of recording or reproduction of the CD 80 are both left and right ends. Here, the moving range Lb of the coupling lens 5 for correcting the spherical aberration corresponding to the thickness of the protective substrate of the information recording surface in the BD 60 is within the moving range La of the coupling lens 5. With such a configuration, the moving range La of the coupling lens 5 can be reduced, so that the entire optical pickup can be reduced in size.
 次に、カップリングレンズ5の移動範囲の一例を示す。対物レンズ8の青紫光に対する焦点距離が略1.8mm、赤色光に対する焦点距離が略2.0mm、赤外光に対する焦点距離が略2.1mmである互換対物レンズであり、カップリングレンズ5の青紫光に対する焦点距離が略11mmであるとする。ここで、青紫光使用時にカップリングレンズ5が基準位置にある、すなわちカップリングレンズ5の青紫出射光が平行光であるときは、BD60の保護基板厚みが略0.0875mmで情報記録面上の光スポットの球面収差が最小であるとする。このとき、BD60の保護基板厚みが略0.075mmの時に情報記録面上の光スポットの球面収差を最小にするには、カップリングレンズ5をミラー7側に略0.25mmシフトさせることで可能である。また、BD60の保護基板厚みが略0.1mmの時に情報記録面上の光スポットの球面収差を最小にするには、カップリングレンズ5を光源1側に略0.25mmシフトさせることで可能である。 Next, an example of the moving range of the coupling lens 5 is shown. The objective lens 8 is a compatible objective lens having a focal length of about 1.8 mm for blue-violet light, a focal length of about 2.0 mm for red light, and a focal length of about 2.1 mm for infrared light. Assume that the focal length for blue-violet light is approximately 11 mm. Here, when the coupling lens 5 is in the reference position when the blue-violet light is used, that is, when the blue-violet emission light of the coupling lens 5 is parallel light, the protective substrate thickness of the BD 60 is approximately 0.0875 mm and is on the information recording surface. Assume that the spherical aberration of the light spot is minimal. At this time, when the thickness of the protective substrate of the BD 60 is approximately 0.075 mm, the spherical aberration of the light spot on the information recording surface can be minimized by shifting the coupling lens 5 to the mirror 7 side by approximately 0.25 mm. It is. Further, in order to minimize the spherical aberration of the light spot on the information recording surface when the protective substrate thickness of the BD 60 is about 0.1 mm, it is possible to shift the coupling lens 5 to the light source 1 side by about 0.25 mm. is there.
 一方で、保護基板厚みが略0.6mmであるDVD70の記録または再生を行うために赤色光使用時には、カップリングレンズ5を基準位置からミラー7側に略2.5mm移動させることで、情報記録面上の光スポットの球面収差が最小となる。 On the other hand, when recording or reproducing a DVD 70 having a protective substrate thickness of about 0.6 mm, when using red light, the coupling lens 5 is moved from the reference position to the mirror 7 side by about 2.5 mm to record information. The spherical aberration of the light spot on the surface is minimized.
 また、保護基板厚みが略1.2mmであるCD80の記録または再生を行うために赤外光使用時には、カップリングレンズ5を基準位置から2波長光源11側に略1.5mm移動させることで、情報記録面上の光スポットの球面収差が最小となる。 In addition, when using infrared light to record or reproduce CD80 having a protective substrate thickness of approximately 1.2 mm, the coupling lens 5 is moved approximately 1.5 mm from the reference position to the two-wavelength light source 11 side, The spherical aberration of the light spot on the information recording surface is minimized.
 すなわち、カップリングレンズ5の移動範囲は基準位置から2波長光源11側に略1.5mm、基準位置から対物レンズ8側に略2.5mmであり、例えばBD60の2層ディスクの記録または再生をする場合のカップリングレンズ5の必要移動距離は基準位置から光源1側にも対物レンズ8側にも略0.25mmあればよく、十分カップリングレンズ5の移動範囲内に収まっている。 That is, the moving range of the coupling lens 5 is approximately 1.5 mm from the reference position to the two-wavelength light source 11 side, and approximately 2.5 mm from the reference position to the objective lens 8 side. The required moving distance of the coupling lens 5 is approximately 0.25 mm from the reference position on both the light source 1 side and the objective lens 8 side, and is sufficiently within the moving range of the coupling lens 5.
 なお、BD60の記録または再生時に補正可能な球面収差量は十分に大きいので、保護基板厚の取りうる範囲が大きい(例えば3つ以上の情報記録面を備えた)次世代のBDにも対応可能である。 Note that the amount of spherical aberration that can be corrected during recording or reproduction of the BD60 is sufficiently large, so that the range that the protective substrate thickness can take is large (for example, having three or more information recording surfaces), and can be used for the next generation BD. It is.
 なお、カップリングレンズ5を光軸方向に移動するカップリングレンズアクチュエータの構成は、図8のようなステッピングモータ32を用いた構成に限定されるものではなく、例えば、磁気回路や圧電素子の駆動によるアクチュエータ等、いかなる構成であっても良い。図8に示したステッピングモータ32を用いた構成では、カップリングレンズ5の光軸方向の位置をモニタする必要がなくシステムを簡素化でき、一方、磁気回路や圧電素子の駆動によるアクチュエータは駆動部分が小さいため、光ピックアップの小型化に適している。 Note that the configuration of the coupling lens actuator that moves the coupling lens 5 in the optical axis direction is not limited to the configuration using the stepping motor 32 as shown in FIG. 8, for example, driving of a magnetic circuit or a piezoelectric element. Any configuration may be used such as an actuator. In the configuration using the stepping motor 32 shown in FIG. 8, it is not necessary to monitor the position of the coupling lens 5 in the optical axis direction, and the system can be simplified. On the other hand, an actuator driven by a magnetic circuit or a piezoelectric element has a driving part. Is suitable for downsizing of optical pickups.
 次に、本実施の形態1の平板ビームスプリッタ2およびウェッジプリズム4について詳細に説明を行う。 Next, the flat plate beam splitter 2 and the wedge prism 4 of the first embodiment will be described in detail.
 平板ビームスプリッタ2は、波長405nm近傍の青紫レーザ光に対して、S偏光を概ね反射し、P偏光を概ね透過するように膜設計されている。また、波長660nm近傍の赤色レーザ光および波長785nm近傍の赤外レーザ光に対して、偏光方向に因らず、ほぼ透過するように膜設計されている。 The flat plate beam splitter 2 is designed so that it substantially reflects S-polarized light and substantially transmits P-polarized light with respect to blue-violet laser light having a wavelength of about 405 nm. Further, the film is designed so that it substantially transmits red laser light having a wavelength of about 660 nm and infrared laser light having a wavelength of about 785 nm regardless of the polarization direction.
 本実施の形態1の光ピックアップ40では、BD60を記録するための青紫レーザ光は、光源1から平板ビームスプリッタ2に対してS偏光で入射させる。従って、往路の効率を確保するために、平板ビームスプリッタ2のS偏光反射率を大きくすることが望ましい。ここで、S偏光が屈折率の異なる物質の境界面で反射される場合に全反射となる入射角(ブリュースター角)θは、以下の(式1)で表される。 In the optical pickup 40 of the first embodiment, the blue-violet laser light for recording the BD 60 is incident on the flat plate beam splitter 2 as S-polarized light. Therefore, it is desirable to increase the S-polarized reflectance of the flat beam splitter 2 in order to ensure the efficiency of the forward path. Here, the incident angle (Brewster angle) θ that is totally reflected when S-polarized light is reflected at the boundary surface of substances having different refractive indexes is expressed by the following (Equation 1).
 θ=Arctan(n2/n1)                   (式1)
 n1は空気の屈折率、n2は平板ビームスプリッタ2の屈折率である。
θ = Arctan (n2 / n1) (Formula 1)
n1 is the refractive index of air, and n2 is the refractive index of the plate beam splitter 2.
 例えば、平板ビームスプリッタ2の材質をBK7とし、波長405nmにおける屈折率n2=1.530とすると、θ=56.83°である。これは、平板ビームスプリッタ2のS偏光反射率を大きくするためには、平板ビームスプリッタ2に対する青紫レーザ光の入射角θ1をブリュースター角θ=56.83°に近づければよいことを示している。一方、入射角θ1がブリュースター角θを超えても、全反射以上の反射率を得ることはできない。ここで入射角θ1が大きくなるほど、平板ビームスプリッタ2を透過して受光素子20で検出されるレーザ光に生じる非点収差が大きくなる。従って、入射角θ1をブリュースター角θ以上にすることは好ましくない。すなわち、
 θ1<Arctan(n2/n1)   [rad]          (式2)
であることが好ましい。
For example, if the material of the plate beam splitter 2 is BK7 and the refractive index n2 = 1.530 at a wavelength of 405 nm is θ = 56.83 °. This indicates that in order to increase the S-polarized light reflectance of the plate beam splitter 2, the incident angle θ1 of the blue-violet laser beam with respect to the plate beam splitter 2 should be close to the Brewster angle θ = 56.83 °. Yes. On the other hand, even if the incident angle θ1 exceeds the Brewster angle θ, it is not possible to obtain a reflectance higher than the total reflection. Here, as the incident angle θ1 increases, the astigmatism that occurs in the laser light that is transmitted through the plate beam splitter 2 and detected by the light receiving element 20 increases. Therefore, it is not preferable that the incident angle θ1 is not less than the Brewster angle θ. That is,
θ1 <Arctan (n2 / n1) [rad] (Formula 2)
It is preferable that
 図10に本実施の形態1の平板ビームスプリッタ2の分光特性を示す。図10において、横軸は平板ビームスプリッタ2に入射するレーザ光の波長を示し、縦軸は該波長における透過率を示している。なお、平板ビームスプリッタ2への入射角θ1は50°である。図10より、波長405nm近傍の青紫レーザ光に対して、S偏光の反射率は約80%、透過率は約20%、P偏光の透過率は約90%である。一方、波長660nm近傍の赤色レーザ光および波長785nm近傍の赤外レーザ光に対しては、偏光方向に因らず、透過率がほぼ95%となっている。 FIG. 10 shows the spectral characteristics of the flat plate beam splitter 2 according to the first embodiment. In FIG. 10, the horizontal axis indicates the wavelength of the laser light incident on the flat beam splitter 2, and the vertical axis indicates the transmittance at the wavelength. The incident angle θ1 to the flat beam splitter 2 is 50 °. As shown in FIG. 10, the S-polarized light reflectance is about 80%, the transmittance is about 20%, and the P-polarized light transmittance is about 90% for the blue-violet laser light having a wavelength of about 405 nm. On the other hand, the transmittance of the red laser beam near the wavelength of 660 nm and the infrared laser beam near the wavelength of 785 nm is almost 95% regardless of the polarization direction.
 次に、ウェッジプリズム4は、波長660nm近傍の赤色レーザ光および波長785nm近傍の赤外レーザ光に対して、一部を透過、一部を反射するように膜設計されている。また、波長405nm近傍の青紫レーザ光に対して、偏光方向に因らず、ほぼ反射するように膜設計されている。 Next, the wedge prism 4 is designed so that it partially transmits and partially reflects red laser light having a wavelength of about 660 nm and infrared laser light having a wavelength of about 785 nm. Further, the film is designed so as to substantially reflect blue-violet laser light having a wavelength of about 405 nm regardless of the polarization direction.
 図11に本実施の形態1のウェッジプリズム4の分光特性を示す。図11において、横軸はウェッジプリズム4に入射するレーザ光の波長を示し、縦軸は該波長における透過率を示している。なお、図12に示すように、ウェッジプリズム4への入射角θ3は40°である。図11より、波長660nm近傍の赤色レーザ光および波長785nm近傍の赤外レーザ光に対して、P偏光の透過率は約60%、S偏光の透過率は約50%、反射率は約50%である。一方、波長405nm近傍の青紫レーザ光に対しては、偏光方向に因らず、反射率はほぼ95%となっている。 FIG. 11 shows the spectral characteristics of the wedge prism 4 of the first embodiment. In FIG. 11, the horizontal axis indicates the wavelength of the laser light incident on the wedge prism 4, and the vertical axis indicates the transmittance at the wavelength. As shown in FIG. 12, the incident angle θ3 to the wedge prism 4 is 40 °. From FIG. 11, the transmittance of P-polarized light is about 60%, the transmittance of S-polarized light is about 50%, and the reflectance is about 50% for red laser light having a wavelength of about 660 nm and infrared laser light having a wavelength of about 785 nm. It is. On the other hand, the reflectivity of the blue-violet laser light near the wavelength of 405 nm is almost 95% regardless of the polarization direction.
 本実施の形態1の平板ビームスプリッタ2およびウェッジプリズム4は、それぞれ図10および図11に示した分光特性を有しているので、BD60を記録または再生するための青紫レーザ光において、平板ビームスプリッタ2に対してS偏光反射となる往路の光利用効率および平板ビームスプリッタ2に対してP偏光透過となる復路の光利用効率をいずれも高くすることができる。 Since the flat plate beam splitter 2 and the wedge prism 4 of the first embodiment have the spectral characteristics shown in FIGS. 10 and 11, respectively, in the blue-violet laser beam for recording or reproducing the BD 60, the flat plate beam splitter is used. Both the light utilization efficiency of the forward path, which is S-polarized reflection with respect to 2, and the light utilization efficiency of the return path, which is P-polarized light transmission with respect to the flat plate beam splitter 2, can be increased.
 一方、DVD70およびCD80を記録または再生するための赤色レーザ光および赤外レーザ光においては、ウェッジプリズム4に対してP偏光透過となる往路の光利用効率およびウェッジプリズム4に対してS偏光反射となる復路の光利用効率を比較的高くすることができる。さらに、ウェッジプリズム4のS偏光反射率とP偏光反射率の差、および平板ビームスプリッタ2のS偏光透過率とP偏光透過率の差が小さいので、光ディスクの複屈折による信号光量(受光素子20で検出される受光量)の変動を抑制することができる。 On the other hand, in the red laser light and the infrared laser light for recording or reproducing the DVD 70 and the CD 80, the light utilization efficiency of the forward path that transmits the P-polarized light to the wedge prism 4 and the S-polarized light reflection to the wedge prism 4. The light utilization efficiency of the return path can be made relatively high. Further, since the difference between the S-polarized light reflectance and the P-polarized light reflectance of the wedge prism 4 and the difference between the S-polarized light transmittance and the P-polarized light transmittance of the flat plate beam splitter 2 are small, the signal light amount (the light receiving element 20) due to the birefringence of the optical disc. Variation in the amount of received light) detected in (1) can be suppressed.
 ところで、2波長光源11から出射された赤色レーザ光と赤外レーザ光は発散光であるため、光軸に対して傾斜した平行平板を透過すると非点収差とコマ収差が発生し、対物レンズ8によって収束される光ディスク上の光スポットは十分な性能が得られない。そこで本実施の形態1のウェッジプリズム4は、図12に示すように、入射面4aと出射面4bの間に所定の角度(頂角α)を設け、その頂角αとウェッジプリズム4へのそれぞれのレーザ光の入射角(θ2、θ3)を所定の角度に規定している。例えば、本実施の形態1のウェッジプリズム4は、
 ウェッジプリズム4の硝材:BK7ウェッジプリズム4の頂角α=0.9°
 ウェッジプリズム4の中央部の厚みT=1.0mm
 赤色レーザ光の入射角θ2=42.2°
 赤色レーザ光の出射角θ3=40.6°
としたので、ウェッジプリズム4を透過した赤色レーザ光を、カップリングレンズ5および対物レンズ8で収束したときの3次非点収差と3次コマ収差は共に略ゼロとなる。
By the way, since the red laser light and the infrared laser light emitted from the two-wavelength light source 11 are diverging light, astigmatism and coma aberration are generated when passing through a parallel plate inclined with respect to the optical axis, and the objective lens 8 As a result, the light spot on the optical disk converged by the above cannot obtain sufficient performance. Therefore, as shown in FIG. 12, the wedge prism 4 according to the first embodiment is provided with a predetermined angle (vertical angle α) between the incident surface 4a and the outgoing surface 4b. The incident angles (θ2, θ3) of the respective laser beams are defined as predetermined angles. For example, the wedge prism 4 of the first embodiment is
Glass material of wedge prism 4: apex angle α of BK7 wedge prism 4 = 0.9 °
Thickness T = 1.0 mm at the center of the wedge prism 4
Red laser beam incident angle θ2 = 42.2 °
Red laser light emission angle θ3 = 40.6 °
Therefore, both the third-order astigmatism and the third-order coma aberration when the red laser light transmitted through the wedge prism 4 is converged by the coupling lens 5 and the objective lens 8 are substantially zero.
 本実施の形態1の光ピックアップは、図12に示すように、光源1から出射された青紫レーザ光の光軸を光軸A、2波長光源11から出射された赤色レーザ光の光軸を光軸B、平板ビームスプリッタ2に対する青紫レーザ光の主光線の入射角(=出射角)をθ1、ウェッジプリズム4に対する青紫レーザ光の主光線の入射角(=出射角)θ3は、それぞれ、
 π/4<θ1<Arctan(n2/n1)   [rad]       (式3)
 π/4>θ3                   [rad]       (式4)
としているので、光軸Aと光軸Bのなす角βは、
 β=2×(θ1-θ3)≠0
となる。例えば、本実施の形態1においては、θ1=50°、θ3=40.6°としたので、β=18.8°となる。すなわち、光軸Aと光軸Bが平行ではなく、所定の角度をなしているため、光源1と2波長光源11の間隔よりも、平板ビームスプリッタ2とウェッジプリズム4の間隔を小さくすることができ、光学素子をコンパクトに配置することができるので、光ピックアップを小型化することができる。
As shown in FIG. 12, the optical pickup according to the first embodiment uses the optical axis of the blue-violet laser light emitted from the light source 1 as the optical axis A and the optical axis of the red laser light emitted from the two-wavelength light source 11 as light. The incident angle (= emission angle) of the chief ray of the blue-violet laser beam with respect to the axis B, the flat plate beam splitter 2 is θ1, and the incident angle (= emission angle) θ3 of the chief ray of the blue-violet laser beam with respect to the wedge prism 4 is respectively
π / 4 <θ1 <Arctan (n2 / n1) [rad] (Formula 3)
π / 4> θ3 [rad] (Formula 4)
Therefore, the angle β between the optical axis A and the optical axis B is
β = 2 × (θ1-θ3) ≠ 0
It becomes. For example, in the first embodiment, θ1 = 50 ° and θ3 = 40.6 °, so β = 18.8 °. That is, since the optical axis A and the optical axis B are not parallel but form a predetermined angle, the distance between the flat beam splitter 2 and the wedge prism 4 can be made smaller than the distance between the light source 1 and the two-wavelength light source 11. In addition, since the optical element can be arranged in a compact manner, the optical pickup can be reduced in size.
 上述したように、平板ビームスプリッタ2におけるS偏光反射率は、入射角θ1がブリュースター角θに近づくほど大きくなる。従って、本実施の形態1のように、平板ビームスプリッタ2に対して発散光を入射させる場合は、周辺光線は主光線とは異なる入射角となる。例えば図13に示すように、光源1から出射された青紫レーザ光は、1点鎖線で示した主光線に対して(M)側の光線の入射角が大きくなるため反射率が大きくなり、主光線に対して(N)側の光線は入射角が小さくなるため反射率が小さくなる。従って、平板ビームスプリッタ2で反射される前の青紫レーザ光のファーフィールドパターン(遠視野像、FFP)の光量分布に対し、平板ビームスプリッタ2で反射された後のFFPの光量分布は、光軸に対して非対称になる。この光量分布の非対称性は、平板ビームスプリッタ2に入射するレーザ光のNAに依存し、平板ビームスプリッタ2に入射するレーザ光のNAが小さいほど、主光線と光線(M)および光線(N)の入射角の差が小さくなるので、光量分布の非対称性が抑制される。 As described above, the S-polarized light reflectance in the flat beam splitter 2 increases as the incident angle θ1 approaches the Brewster angle θ. Therefore, when diverging light is incident on the flat plate beam splitter 2 as in the first embodiment, the peripheral ray has an incident angle different from that of the principal ray. For example, as shown in FIG. 13, the blue-violet laser light emitted from the light source 1 has a higher reflectance because the incident angle of the (M) side light beam is larger than the principal light beam indicated by the alternate long and short dash line. The light beam on the (N) side with respect to the light beam has a small incident angle and thus a low reflectance. Therefore, the light quantity distribution of the FFP after being reflected by the flat beam splitter 2 with respect to the light quantity distribution of the far field pattern (far field image, FFP) of the blue-violet laser light before being reflected by the flat beam splitter 2 is Becomes asymmetric with respect to. This asymmetry of the light quantity distribution depends on the NA of the laser beam incident on the flat beam splitter 2, and the smaller the NA of the laser beam incident on the flat beam splitter 2, the principal ray, the light beam (M), and the light beam (N). As a result, the asymmetry of the light quantity distribution is suppressed.
 本実施の形態1の光ピックアップ40は、凹レンズのパワーを備えたリレーレンズ3を平板ビームスプリッタ2とウェッジプリズム4の間に配置してNA変換を行っている。このようにリレーレンズ3を配置した場合、リレーレンズ3を光源1と平板ビームスプリッタ2の間に配置した場合と比較して、平板ビームスプリッタ2に入射する青紫レーザ光のNAが相対的に小さくなり、光量分布の非対称性を抑制できる。 In the optical pickup 40 according to the first embodiment, the relay lens 3 having a concave lens power is disposed between the flat beam splitter 2 and the wedge prism 4 to perform NA conversion. When the relay lens 3 is arranged in this way, the NA of the blue-violet laser light incident on the flat beam splitter 2 is relatively small compared to the case where the relay lens 3 is arranged between the light source 1 and the flat beam splitter 2. Thus, the asymmetry of the light quantity distribution can be suppressed.
 さらに、リレーレンズ3を平板ビームスプリッタ2とウェッジプリズム4の間に配置したので、リレーレンズ3を光源1と平板ビームスプリッタ2の間に配置した場合と比較して、リレーレンズ3に照射される青紫レーザ光の単位面積当たりのレーザ光量が相対的に小さくなる。従って、ガラス材料と比較して青紫レーザ光の照射に対する耐性は低いが安価に成形できる樹脂材料を、リレーレンズ3の材料として使用することが容易となる。 Further, since the relay lens 3 is disposed between the flat beam splitter 2 and the wedge prism 4, the relay lens 3 is irradiated as compared with the case where the relay lens 3 is disposed between the light source 1 and the flat beam splitter 2. The laser light amount per unit area of the blue-violet laser light becomes relatively small. Therefore, it becomes easy to use a resin material that is less resistant to the irradiation of the blue-violet laser light than the glass material but can be molded at low cost as the material of the relay lens 3.
 なお、記録または再生の対象となる情報記録面に隣接する別の情報記録面からのクロストークを低減するため、検出倍率を大きく設定したい場合であっても、本実施の形態1の光ピックアップ40は、凹レンズのパワーを備えたリレーレンズ3がカップリングレンズ5と検出レンズ10の間に配置されているので、検出レンズ10に大きな凹レンズパワーを必要としない。従って、検出レンズ10の曲率半径を大きくでき、検出レンズ10を安価に成形することができる。 In order to reduce crosstalk from another information recording surface adjacent to the information recording surface to be recorded or reproduced, the optical pickup 40 of the first embodiment is used even when a large detection magnification is desired. Since the relay lens 3 having a concave lens power is disposed between the coupling lens 5 and the detection lens 10, the detection lens 10 does not require a large concave lens power. Accordingly, the radius of curvature of the detection lens 10 can be increased, and the detection lens 10 can be molded at a low cost.
 ところで図13に示した光線(M)は、BD60で反射して平板ビームスプリッタ2を透過するときは、主光線に対して入射角が小さくなるため透過率が大きくなり、光線(N)は、BD60で反射して平板ビームスプリッタ2を透過するときは、主光線に対して入射角が大きくなるため透過率が小さくなる。すなわち青紫レーザ光の光量分布は、BD60の情報記録面に光スポットとして収束されるときも、BD60の情報記録面で反射して受光素子20で検出されるときも、常に光線(M)側の光量が大きくなる方向に非対称となる。このような光量分布の非対称性を抑制するため、例えば、図13に破線1Bで示したように、FFPの光量分布が均等になる方向に、予め光源1を所定角度傾けておくことが好ましい。 By the way, when the light beam (M) shown in FIG. 13 is reflected by the BD 60 and passes through the flat beam splitter 2, the incident angle becomes smaller with respect to the principal light beam, so that the transmittance increases, and the light beam (N) becomes When the light is reflected by the BD 60 and transmitted through the flat beam splitter 2, the incident angle with respect to the principal ray is increased, so that the transmittance is reduced. That is, the light intensity distribution of the blue-violet laser beam is always on the light (M) side, whether it is converged as a light spot on the information recording surface of the BD 60 or reflected by the information recording surface of the BD 60 and detected by the light receiving element 20. It becomes asymmetric in the direction in which the amount of light increases. In order to suppress such asymmetry of the light quantity distribution, for example, as indicated by a broken line 1B in FIG. 13, it is preferable that the light source 1 is inclined in advance by a predetermined angle in a direction in which the FFP light quantity distribution becomes uniform.
 本実施の形態1のBD60は、光ディスクの半径方向のリム強度が大きい光スポットを収束させることで、良好な記録または再生性能が得られる。 The BD 60 according to the first embodiment can obtain a good recording or reproducing performance by converging a light spot having a large rim intensity in the radial direction of the optical disk.
 すなわち、本実施の形態1の平板ビームスプリッタ2は、波長405nm近傍の青紫レーザ光に対して、S偏光を概ね反射し、P偏光を概ね透過するように膜設計されている(図10参照)。ここで、本実施の形態1の光ピックアップ40は、図1のようにS偏光が平板ビームスプリッタ2に入射するよう、すなわち平板ビームスプリッタ2での反射率が大きくなるように光源1を配置することで、光ディスク半径方向のリム強度が大きいFFPが得られるので、青紫レーザ光の偏光方向を回転させるための1/2波長板を必要としない。 That is, the flat plate beam splitter 2 according to the first embodiment is designed so as to substantially reflect S-polarized light and substantially transmit P-polarized light with respect to blue-violet laser light having a wavelength of about 405 nm (see FIG. 10). . Here, in the optical pickup 40 of the first embodiment, the light source 1 is arranged so that the S-polarized light is incident on the flat beam splitter 2 as shown in FIG. 1, that is, the reflectance at the flat beam splitter 2 is increased. As a result, an FFP with a large rim intensity in the radial direction of the optical disk can be obtained, so that a half-wave plate for rotating the polarization direction of the blue-violet laser light is not required.
 一方、本実施の形態1のDVD70は、光ディスクの接線方向のリム強度が大きい光スポットを収束させることで、良好な記録または再生性能が得られる。 On the other hand, the DVD 70 of the first embodiment can obtain a good recording or reproducing performance by converging a light spot having a large rim intensity in the tangential direction of the optical disk.
 本実施の形態1のウェッジプリズム4は、波長660nm近傍の赤色レーザ光に対して、P偏光をより透過させ、S偏光をより反射するように膜設計されているの(図11参照)。ここで、本実施の形態1の光ピックアップ40は、図2のようにP偏光がウェッジプリズム4に入射するよう、すなわちウェッジプリズム4での透過率が大きくなるように2波長光源11を配置することで、光ディスク接線方向のリム強度が大きいFFPが得られるので、赤色レーザ光の偏光方向を回転させるための1/2波長板を必要としない。 The wedge prism 4 of the first embodiment is designed so as to transmit P-polarized light and reflect S-polarized light more with respect to red laser light having a wavelength of about 660 nm (see FIG. 11). Here, in the optical pickup 40 of the first embodiment, the two-wavelength light source 11 is arranged so that the P-polarized light enters the wedge prism 4 as shown in FIG. 2, that is, the transmittance at the wedge prism 4 is increased. Thus, an FFP having a large rim intensity in the optical disk tangential direction can be obtained, so that a half-wave plate for rotating the polarization direction of the red laser light is not required.
 ところで、一般的な2波長光源11は、図14に示すように、赤色レーザ光の発光点11aに対し、赤外レーザ光の発光点11bがオフセットして配置されている。このため、赤色レーザ光と赤外レーザ光の少なくとも一方は対物レンズ8に対して軸外入射となるため、3次コマ収差が発生する場合がある。 Incidentally, as shown in FIG. 14, the general two-wavelength light source 11 is arranged such that the emission point 11b of the infrared laser beam is offset from the emission point 11a of the red laser beam. For this reason, since at least one of the red laser beam and the infrared laser beam is incident off-axis with respect to the objective lens 8, third-order coma aberration may occur.
 ここで本実施の形態1の光ピックアップ40は、2波長光源11をウェッジプリズム4に対してP偏光入射となるように配置したので、例えば、赤色レーザ光の光軸と対物レンズ8の光軸が一致するように2波長光源11を配置した場合、赤外レーザ光が対物レンズ8に対して軸外入射となることによって発生する3次コマ収差は、光ディスクの半径方向に発生する。従って、対物レンズアクチュエータ30に搭載された対物レンズ8を半径方向に傾けることで、軸外入射によって発生する赤色レーザ光の3次コマ収差を補正することが可能である。 Here, in the optical pickup 40 of the first embodiment, the two-wavelength light source 11 is arranged so as to be P-polarized light incident on the wedge prism 4, so that, for example, the optical axis of the red laser light and the optical axis of the objective lens 8 When the two-wavelength light source 11 is arranged so that they coincide with each other, the third-order coma aberration generated when the infrared laser light is incident off-axis with respect to the objective lens 8 is generated in the radial direction of the optical disk. Therefore, by tilting the objective lens 8 mounted on the objective lens actuator 30 in the radial direction, it is possible to correct the third-order coma aberration of the red laser light generated by off-axis incidence.
 一般的に、軸外入射によって発生する3次コマ収差は、対物レンズ8に入射する光線の角度(画角)に略比例する。従って、赤色レーザ光と赤外レーザ光の発光点の間隔δおよび対物レンズの焦点距離を一定とすると、3次コマ収差はカップリングレンズの(合成)焦点距離に反比例する。従って、図15に示すように、カップリングレンズ5と2波長光源11の間に、凹のパワーを備えたリレーレンズ13を挿入し、合成焦点距離を拡大することで、軸外入射による3次コマ収差を抑制することができる。 In general, the third-order coma aberration generated by off-axis incidence is substantially proportional to the angle (field angle) of the light ray incident on the objective lens 8. Therefore, if the interval δ between the emission points of the red laser beam and the infrared laser beam and the focal length of the objective lens are constant, the third-order coma aberration is inversely proportional to the (synthetic) focal length of the coupling lens. Therefore, as shown in FIG. 15, a relay lens 13 having a concave power is inserted between the coupling lens 5 and the two-wavelength light source 11, and the combined focal length is increased, so that the third order due to off-axis incidence is obtained. Coma can be suppressed.
 一方、軸外入射による3次コマ収差が比較的小さい対物レンズを用いる場合は、凸のパワーを備えたリレーレンズ13を用いて合成焦点距離を小さくし、光利用効率を高めることが可能である。 On the other hand, in the case of using an objective lens having a relatively small third-order coma due to off-axis incidence, it is possible to reduce the combined focal length by using the relay lens 13 having a convex power and increase the light utilization efficiency. .
 リレーレンズ13は、回折格子12と一体化することで、部品点数を削減することができる。この時、リレーレンズ13の入射面あるいは出射面のいずれか1面を平面にして、平面側に回折格子を形成することで、レンズ成形用の金型の作成を容易にすることができる。なお、リレーレンズ13と2波長光源11との間隔が変わると倍率が変化し、回折格子を一体化した場合は生成されるメインビームとサブビームの間隔も変化するので、リレーレンズ13と2波長光源11は一体のホルダに挿入されて、間隔が変化しないように構成することが好ましい。 The relay lens 13 can be integrated with the diffraction grating 12 to reduce the number of parts. At this time, by making any one of the entrance surface and the exit surface of the relay lens 13 into a plane and forming a diffraction grating on the plane side, it is possible to easily create a lens molding die. Note that when the distance between the relay lens 13 and the two-wavelength light source 11 is changed, the magnification is changed, and when the diffraction grating is integrated, the distance between the main beam and the sub-beam to be generated is also changed. 11 is preferably inserted into an integral holder so that the distance does not change.
 なお、本実施の形態1においては、2波長光源11から赤色レーザ光と赤外レーザ光が出射される場合について説明を行ったが、それぞれ別体の赤色レーザ光源と赤外レーザ光源を備えてもよい。赤色レーザ光源と赤外レーザ光源を別々に備えることで、赤色レーザ光と赤外レーザ光の光軸を一致させることができるので、軸外入射によるコマ収差を抑制できる。 In the first embodiment, the case where the red laser light and the infrared laser light are emitted from the two-wavelength light source 11 has been described. However, a separate red laser light source and infrared laser light source are provided. Also good. Since the red laser light source and the infrared laser light source are separately provided, the optical axes of the red laser light and the infrared laser light can be made coincident with each other, so that coma aberration due to off-axis incidence can be suppressed.
 以上説明したように、本実施の形態1では、BD/DVD/CD3波長に対応した、一つの互換対物レンズを使用するような構成において、互換対物レンズへ入射させる光ビームの発散度を、赤色光ビーム<青色光ビーム<赤外光ビームの順番とした。例えばBD記録再生時には互換対物レンズに青色光ビームを平行光で入射させるような場合、DVD記録再生時には互換対物レンズに赤色光ビームを収束状態で入射し、CD記録再生時には互換対物レンズに赤外光ビームを発散状態で入射した。 As described above, in the first embodiment, the divergence of the light beam incident on the compatible objective lens in the configuration using one compatible objective lens corresponding to the BD / DVD / CD 3 wavelength is set to red. The order of light beam <blue light beam <infrared light beam was used. For example, when a blue light beam is incident on a compatible objective lens as parallel light during BD recording / reproduction, a red light beam is incident on the compatible objective lens in a converged state during DVD recording / reproduction, and infrared light is incident on the compatible objective lens during CD recording / reproduction. The light beam was incident in a divergent state.
 このような構成とすることにより、青色光ビームに対する赤色光ビームの波長差よりも赤色光ビームと赤外光ビームの波長差の方が小さいにも関わらず、最も波長が短い赤外光ビーム使用時のCDにおいても十分なワーキングディスタンスを確保することが出来る。 With such a configuration, the infrared light beam with the shortest wavelength is used even though the wavelength difference between the red light beam and the infrared light beam is smaller than the wavelength difference between the red light beam and the blue light beam. A sufficient working distance can be secured even in the CD of the time.
 従って、互換対物レンズを使用して最もNAが小さくディスクの基材厚が厚いCD(赤外光ビーム)記録再生時でも、ワーキングディスタンスを十分確保することが可能となる。 Therefore, it is possible to ensure a sufficient working distance even during CD (infrared light beam) recording / reproduction using the compatible objective lens and having the smallest NA and the thickest disk base material.
 また、BDの記録再生時は2層以上の多層ディスクに対応させるため、さらに青色光ビームの発散度を変化させる必要があるが、上記の構成とすると、光ビームの発散度を変化させるために例えばコリメートレンズを光軸方向に動かす構成の場合、互換対物レンズへ入射させる光ビームの発散度を青色光ビーム<赤色光ビーム<赤外光ビームの順番とするよりも、コリメートレンズの移動必要範囲を小さくできるため、光ピックアップを小型化でき、またコリメートレンズの移動時間短縮による光ピックアップの動作時間短縮を図れるといった効果もある。 Also, when recording / reproducing BD, it is necessary to change the divergence of the blue light beam in order to correspond to a multi-layer disc having two or more layers. With the above configuration, the divergence of the light beam is changed. For example, when the collimating lens is moved in the direction of the optical axis, the collimating lens needs to move rather than the divergence of the light beam incident on the compatible objective lens in the order of blue light beam <red light beam <infrared light beam. Therefore, the optical pickup can be downsized, and the operation time of the optical pickup can be shortened by shortening the moving time of the collimating lens.
 以上のように、本実施の形態1の光ピックアップ40は、それぞれ異なる種類の光ディスク、例えばBD60、DVD70およびCD80に対して、それぞれ異なる波長のレーザ光を一つの対物レンズ8を用いて収束させて情報の記録または再生を行うことができる。 As described above, the optical pickup 40 according to the first embodiment converges laser beams having different wavelengths on different types of optical disks, for example, BD 60, DVD 70, and CD 80, using one objective lens 8. Information can be recorded or reproduced.
 (実施の形態2)
 図16および図17は本発明の別の実施の形態2における光ピックアップの概略構成図である。本実施の形態2において、実施の形態1と共通の構成要素については同一の符号を付して以下、その説明を省略する。
(Embodiment 2)
16 and 17 are schematic configuration diagrams of an optical pickup according to another embodiment 2 of the present invention. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted below.
 図16において、7Dは第1のミラー、7Bは第2のミラー、8Dは第1の対物レンズ、8Bは第2の対物レンズであり、これらが光ピックアップ41を構成している。 16, 7D is a first mirror, 7B is a second mirror, 8D is a first objective lens, and 8B is a second objective lens, and these constitute an optical pickup 41.
 BD60に対して、情報の記録または再生を行う光ピックアップ41の動作について述べる。光源1から出射された波長405nmの青紫レーザ光は、平板ビームスプリッタ2にS偏光で入射する。平板ビームスプリッタ2で反射された青紫レーザ光は、リレーレンズ3を透過して、NAの異なる発散光に変換される。その後青紫レーザ光は、ウェッジプリズム4で反射された後、カップリングレンズ5で略平行光に変換され、1/4波長板6によって直線偏光から円偏光に変換される。続いて、第1のミラー7Dを透過し、第2のミラー7Bで反射された後、第2の対物レンズ8Bによって、BD60の保護基板越しに情報記録面に光スポットとして収束される。 The operation of the optical pickup 41 that records or reproduces information on the BD 60 will be described. The blue-violet laser light having a wavelength of 405 nm emitted from the light source 1 is incident on the flat beam splitter 2 as S-polarized light. The blue-violet laser light reflected by the flat beam splitter 2 passes through the relay lens 3 and is converted into divergent light having a different NA. Thereafter, the blue-violet laser light is reflected by the wedge prism 4, then converted into substantially parallel light by the coupling lens 5, and converted from linearly polarized light to circularly polarized light by the quarter wavelength plate 6. Subsequently, after passing through the first mirror 7D and being reflected by the second mirror 7B, the second objective lens 8B converges as a light spot on the information recording surface over the protective substrate of the BD 60.
 BD60の情報記録面で反射した青紫レーザ光は、再び第2の対物レンズ8Bを透過し、第2のミラー7Bで反射され、第1のミラー7Dを透過し、1/4波長板6で往路とは異なる直線偏光に変換された後、カップリングレンズ5で収束光に変換され、ウェッジプリズム4で反射されて、リレーレンズ3でNAの異なる収束光に変換される。
さらに青紫レーザ光は、平板ビームスプリッタ2にP偏光で入射し透過して、検出ホログラム9を透過する際に、0次光と±1次回折光が生成され、それら回折光は検出レンズ10で非点収差が与えられて、受光素子20に導かれる。
The blue-violet laser beam reflected by the information recording surface of the BD 60 is transmitted again through the second objective lens 8B, reflected by the second mirror 7B, transmitted through the first mirror 7D, and forwarded by the quarter wavelength plate 6. Is converted into convergent light by the coupling lens 5, reflected by the wedge prism 4, and converted into convergent light having a different NA by the relay lens 3.
Further, the blue-violet laser light is incident on and transmitted through the flat beam splitter 2 as P-polarized light, and when it passes through the detection hologram 9, zero-order light and ± first-order diffracted light are generated. Astigmatism is given and guided to the light receiving element 20.
 次に、図17を用いて保護基板厚0.6mmの光ディスクであるDVD70の記録または再生を行う場合について述べる。 Next, with reference to FIG. 17, a description will be given of a case where recording or reproduction is performed on a DVD 70 which is an optical disk having a protective substrate thickness of 0.6 mm.
 図17において、2波長光源11から出射された波長660nmの赤色レーザ光は、回折格子12で0次回折光であるメインビームと±1次回折光であるサブビームに分離された後、ウェッジプリズム4にP偏光で入射する。ウェッジプリズム4を透過した赤色レーザ光は、カップリングレンズ5で若干の収束光に変換され、1/4波長板6によって直線偏光から円偏光に変換され、第1のミラー7Dで反射された後、第1の対物レンズ8Dによって、DVD70の保護基板越しに情報記録面に光スポットとして収束される。 In FIG. 17, red laser light having a wavelength of 660 nm emitted from the two-wavelength light source 11 is separated into a main beam that is 0th-order diffracted light and a sub-beam that is ± 1st-order diffracted light by the diffraction grating 12, and Incident with polarized light. The red laser light that has passed through the wedge prism 4 is converted into a slightly convergent light by the coupling lens 5, converted from linearly polarized light to circularly polarized light by the quarter wavelength plate 6, and reflected by the first mirror 7D. The first objective lens 8D converges as a light spot on the information recording surface over the protective substrate of the DVD 70.
 DVD70の情報記録面で反射した赤色レーザ光は、再び第1の対物レンズ8Dを透過し、第1のミラー7Dで反射され、1/4波長板6で往路とは異なる直線偏光に変換された後、カップリングレンズ5で収束光に変換される。赤色レーザ光はウェッジプリズム4にS偏光で入射して反射され、リレーレンズ3でNAの異なる収束光に変換されて、平板ビームスプリッタ2と検出ホログラム9を透過し、検出レンズ10で非点収差が与えられた後、受光素子20に導かれる。 The red laser beam reflected by the information recording surface of the DVD 70 is transmitted again through the first objective lens 8D, reflected by the first mirror 7D, and converted by the quarter wavelength plate 6 into linearly polarized light different from the forward path. Thereafter, the light is converted into convergent light by the coupling lens 5. The red laser light is incident on the wedge prism 4 as S-polarized light, reflected, converted into convergent light having a different NA by the relay lens 3, transmitted through the flat beam splitter 2 and the detection hologram 9, and astigmatism by the detection lens 10. Is given to the light receiving element 20.
 他方、2波長光源11から出射された波長785nm、P偏光の赤外レーザ光は、同様に第1の対物レンズ8Dによって、CD80の保護基板越しに情報記録面に光スポットとして収束され、さらにCD80の情報記録面で反射した赤色レーザ光は、同様に受光素子20に導かれる。 On the other hand, the P-polarized infrared laser light having a wavelength of 785 nm emitted from the two-wavelength light source 11 is similarly converged as a light spot on the information recording surface through the protective substrate of the CD 80 by the first objective lens 8D. The red laser beam reflected by the information recording surface is similarly guided to the light receiving element 20.
 第1の対物レンズ8Dは、DVD70を記録または再生するための赤色レーザ光、CD80を記録または再生するための赤外レーザ光を、波長の差を利用してそれぞれ微小な光スポットとして収束することができ、第2の対物レンズ8Bは、BD60を記録または再生するための青紫レーザ光を、微小な光スポットとして収束することができる。第1の対物レンズ8Dと第2の対物レンズ8Bは、同一の対物レンズアクチュエータ(図示せず)に搭載され、フォーカス誤差信号とトラッキング誤差信号を用いて、それぞれ、回転する光ディスクの情報トラックに光スポットが追従するよう駆動される。 The first objective lens 8D converges the red laser beam for recording or reproducing the DVD 70 and the infrared laser beam for recording or reproducing the CD 80 as a minute light spot using the wavelength difference. The second objective lens 8B can converge the blue-violet laser beam for recording or reproducing the BD 60 as a minute light spot. The first objective lens 8D and the second objective lens 8B are mounted on the same objective lens actuator (not shown), and light is applied to the information track of the rotating optical disc using the focus error signal and the tracking error signal, respectively. The spot is driven to follow.
 本実施の形態2の光ピックアップ41も、実施の形態1で述べた光ピックアップ40と同様に、それぞれ異なる種類の光ディスク、例えばBD60、DVD70およびCD80に対して、それぞれ異なる波長のレーザ光を収束させて情報の記録または再生を行うことができる。 Similarly to the optical pickup 40 described in the first embodiment, the optical pickup 41 according to the second embodiment also focuses laser beams having different wavelengths on different types of optical disks, for example, BD60, DVD70, and CD80. Information can be recorded or reproduced.
 また、カップリングレンズアクチュエータ31によるカップリングレンズ5の移動についても、例えばDVD70使用時は第1の対物レンズ8Dに赤色の収束光が入射する構成であり、CD80使用時は第1の対物レンズ8Dに赤外の発散光が入射する構成であり、BD60使用時は第2の対物レンズ8Bに青紫の略平行光が入射する構成である等、単一のカップリングレンズで異なる保護基板厚みのディスクに対応する場合においては、カップリングレンズアクチュエータ31は実施の形態1と同様の構成が可能で、効果も同様に得られる。 The movement of the coupling lens 5 by the coupling lens actuator 31 is also configured such that red convergent light is incident on the first objective lens 8D when the DVD 70 is used, and the first objective lens 8D when the CD 80 is used. A disk with a different protective substrate thickness with a single coupling lens, such as a configuration in which infrared divergent light is incident on, and a configuration in which substantially blue-violet parallel light is incident on the second objective lens 8B when the BD60 is used. In the case of corresponding to the above, the coupling lens actuator 31 can have the same configuration as that of the first embodiment, and the same effect can be obtained.
 以上説明したように、本実施の形態2では、BD専用対物レンズと、DVD/CD対応対物レンズの2つの対物レンズを使用する構成において、コリメートレンズをBD/DVD/CDで共通使用する場合、各々の対物レンズへ入射させる光ビームの発散度を、赤色光ビーム<青色光ビーム<赤外光ビームの順番とした。例えばBD記録再生時にはBD専用対物レンズに青色光ビームを平行光で入射させるような場合、DVD記録再生時にはDVD/CD対応対物レンズに赤色光ビームを収束状態で入射し、CD記録再生時にはDVD/CD対応対物レンズに赤外光ビームを発散状態で入射する。 As described above, in the second embodiment, in the configuration in which two objective lenses of the BD dedicated objective lens and the DVD / CD compatible objective lens are used, when the collimating lens is commonly used in BD / DVD / CD, The divergence of the light beam incident on each objective lens was set in the order of red light beam <blue light beam <infrared light beam. For example, when a blue light beam is incident as a parallel light on a BD objective lens during BD recording / reproduction, a red light beam is incident on a convergent DVD / CD objective lens during DVD recording / reproduction, and DVD / CD is reproduced during CD recording / reproduction. An infrared light beam is incident on a CD-compatible objective lens in a divergent state.
 このような構成とすると、まずDVD/CD対応対物レンズにおいては、DVD記録再生時とCD記録再生時のワーキングディスタンス差を小さくすることが出来る、対物レンズアクチュエータの移動必要範囲を小さくすることが出来るため、対物レンズアクチュエータの駆動電流を小さくすることが出来、光ピックアップの消費電力を小さくできる効果がある。 With such a configuration, first, in the DVD / CD compatible objective lens, the working distance difference between the DVD recording / reproducing and the CD recording / reproducing can be reduced, and the movement range of the objective lens actuator can be reduced. Therefore, it is possible to reduce the drive current of the objective lens actuator and to reduce the power consumption of the optical pickup.
 また、BDの記録再生時は2層以上の多層ディスクに対応させるため、さらに青色光ビームの発散度を変化させる必要があるが、上記の構成とすると、光ビームの発散度を変化させるために、例えばコリメートレンズを光軸方向に動かす構成の場合、互換対物レンズへ入射させる光ビームの発散度を青色光ビーム<赤色光ビーム<赤外光ビームの順番とするよりも、コリメートレンズの移動必要範囲を小さくできるため、光ピックアップを小型化でき、またコリメートレンズの移動時間短縮による光ピックアップの動作時間短縮を図れるといった効果もある。 Also, when recording / reproducing BD, it is necessary to change the divergence of the blue light beam in order to correspond to a multi-layer disc having two or more layers. With the above configuration, the divergence of the light beam is changed. For example, when the collimating lens is moved in the optical axis direction, the collimating lens needs to move rather than the divergence of the light beam incident on the compatible objective lens in the order of blue light beam <red light beam <infrared light beam. Since the range can be reduced, the optical pickup can be downsized, and the operation time of the optical pickup can be shortened by shortening the moving time of the collimating lens.
 (実施の形態3)
 図26は本発明の別の実施の形態3における光ピックアップの概略構成図である。本実施の形態3は、青紫レーザ光と、赤外レーザ光の2波長に対応する光ピックアップである。実施の形態1と共通の構成要素については同一の符号を付して以下、その説明を省略する。
(Embodiment 3)
FIG. 26 is a schematic configuration diagram of an optical pickup according to another embodiment 3 of the present invention. The third embodiment is an optical pickup corresponding to two wavelengths of blue-violet laser light and infrared laser light. Constituent elements common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted below.
 図26において、光源11‘からは、波長785nmの赤外レーザ光のみが出射される。ただし、カップリングレンズ5の位置は、青紫レーザ光の場合は、位置P3の位置であり、赤外レーザ光の場合は、位置P3より対物レンズ8寄りの位置P4に位置する。 26, only an infrared laser beam having a wavelength of 785 nm is emitted from the light source 11 ′. However, the position of the coupling lens 5 is the position P3 in the case of blue-violet laser light, and is located at the position P4 closer to the objective lens 8 than the position P3 in the case of infrared laser light.
 これによって、対物レンズ8への入射については、波長のより長い赤外レーザ光の発散度の方が、波長のより短い青紫レーザ光の発散度より小さくなる。 Thereby, with respect to the incidence on the objective lens 8, the divergence of the infrared laser beam having a longer wavelength is smaller than the divergence of the blue-violet laser beam having a shorter wavelength.
 以上のように、本実施の形態3においては、対物レンズ8への入射については、波長のより長いレーザ光の発散度の方が、波長のより短いレーザ光の発散度より小さくなるので、対物レンズに近い光学部品の有効径が小さいという効果が発揮される。 As described above, in the third embodiment, for the incidence on the objective lens 8, the divergence of the laser light having a longer wavelength is smaller than the divergence of the laser light having a shorter wavelength. The effect that the effective diameter of the optical component close to the lens is small is exhibited.
 (実施の形態4)
 図27は本発明の別の実施の形態4における光ピックアップの概略構成図である。本実施の形態4は、赤色レーザ光と、赤外レーザ光の2波長に対応する光ピックアップである。実施の形態1と共通の構成要素については同一の符号を付して以下、その説明を省略する。
(Embodiment 4)
FIG. 27 is a schematic configuration diagram of an optical pickup according to another embodiment 4 of the present invention. The fourth embodiment is an optical pickup corresponding to two wavelengths of red laser light and infrared laser light. Constituent elements common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted below.
 図27において、光源11‘’からは、波長660nmの赤色レーザ光と、波長785nmの赤外レーザ光が出射される。ただし、カップリングレンズ5の位置は、赤色レーザ光の場合は、位置P5の位置であり、赤外レーザ光の場合は、位置P5より対物レンズ8寄りの位置P6に位置する。 27, a red laser beam having a wavelength of 660 nm and an infrared laser beam having a wavelength of 785 nm are emitted from the light source 11 ″. However, the position of the coupling lens 5 is the position of the position P5 in the case of red laser light, and is located at the position P6 closer to the objective lens 8 than the position P5 in the case of infrared laser light.
 これによって、対物レンズ8への入射については、波長のより長い赤外レーザ光の発散度の方が、波長のより短い赤色レーザ光の発散度より小さくなる。 Thus, with respect to the incidence on the objective lens 8, the divergence of the infrared laser beam having a longer wavelength is smaller than the divergence of the red laser beam having a shorter wavelength.
 以上のように、本実施の形態4においては、対物レンズ8への入射については、波長のより長いレーザ光の発散度の方が、波長のより短いレーザ光の発散度より小さくなるので、対物レンズに近い光学部品の有効径が小さいという効果が発揮される。
上述した実施の形態3と実施の形態4における効果についてまとめると以下のとおりである。
As described above, in the fourth embodiment, for the incidence on the objective lens 8, the divergence of the laser light having a longer wavelength is smaller than the divergence of the laser light having a shorter wavelength. The effect that the effective diameter of the optical component close to the lens is small is exhibited.
It is as follows when the effect in Embodiment 3 and Embodiment 4 mentioned above is put together.
 一般的に、NAの大きい波長の短い方よりも、NAの小さい波長の長い方が、光ディスクの基材厚の関係によってワーキングディスタンスが小さくなってしまうが、これを補うためにNAの小さい波長の長い方の対物レンズのfを、NAの大きい波長の短い方の対物レンズのfよりも長くし、相対的に波長の長い方に対する対物レンズの有効径を、波長の短い方に対する有効径よりも実寸法で大きくすると良い。 In general, the longer the smaller NA wavelength than the shorter NA larger wavelength, the smaller the working distance due to the substrate thickness of the optical disk. The longer objective lens f is made longer than the shorter objective lens f having a large NA, and the effective diameter of the objective lens for the longer wavelength is set to be larger than the effective diameter for the shorter wavelength. The actual size should be increased.
 これに加えて、上記実施の形態3と実施の形態4ではNAの小さい(実質有効径の大きい)波長の長い方を発散度小、NAの大きい(実質有効径の小さい)波長の短い方を発散度大の構成としている。このような構成とすることにより、対物レンズ有効径の小さい光ビームが発散状態であり、対物レンズ有効径の大きい光ビームが集光状態であることから、対物レンズに近い位置の光学部品において、有効径を小さくすることが出来る。 In addition, in Embodiments 3 and 4 above, the longer NA wavelength (large effective effective diameter) has the longer wavelength and the shorter NA wavelength (small effective effective diameter) has the shorter wavelength. It has a high divergence configuration. With such a configuration, a light beam with a small effective diameter of the objective lens is in a divergent state, and a light beam with a large effective diameter of the objective lens is in a condensed state. The effective diameter can be reduced.
 特にコリメートレンズを共用する構成の場合、コリメートレンズと対物レンズの間の光学部品の有効径を従来の構成より小さくすることが出来る。 Especially in the case of a configuration sharing a collimating lens, the effective diameter of the optical component between the collimating lens and the objective lens can be made smaller than that of the conventional configuration.
 (実施の形態5)
 図18(a)は本発明の一実施の形態5における光ディスク装置の概略構成図である。
(Embodiment 5)
FIG. 18A is a schematic configuration diagram of an optical disc apparatus according to Embodiment 5 of the present invention.
 図18(a)において、50は光ディスク装置を表しており、光ディスク装置50の内部に光ディスク駆動部51、制御部52、光ピックアップ53を備える。また60はBDであるが、DVD70あるいはCD80に交換可能である。 18A, reference numeral 50 denotes an optical disk device, which includes an optical disk drive unit 51, a control unit 52, and an optical pickup 53 inside the optical disk device 50. Reference numeral 60 denotes a BD, which can be replaced with a DVD 70 or a CD 80.
 光ディスク駆動部51はBD60(またはDVD70、CD80)を回転駆動する機能を有し、光ピックアップ53は実施の形態1または実施の形態2で述べたいずれかの光ピックアップである。制御部52は光ディスク駆動部51と光ピックアップ53の駆動および制御を行う機能を有すると共に、光ピックアップ53で受光された制御信号、情報信号の信号処理を行う機能と、情報信号を光ディスク装置50の外部と内部でインタフェースさせる機能を有する。 The optical disk drive unit 51 has a function of rotationally driving the BD 60 (or DVD 70, CD 80), and the optical pickup 53 is any one of the optical pickups described in the first embodiment or the second embodiment. The control unit 52 has a function of driving and controlling the optical disc driving unit 51 and the optical pickup 53, a function of performing signal processing of a control signal and an information signal received by the optical pickup 53, and an information signal of the optical disc device 50. Has the function of interfacing externally and internally.
 本実施の形態5の光ディスク装置50は、実施の形態1または実施の形態2で述べたいずれかの光ピックアップを搭載しているので、本実施の形態5における光ディスク装置50は、複数の光源に対応した複数種類の光ディスクを、それぞれ良好に記録または再生を行なうことができる。 Since the optical disk device 50 according to the fifth embodiment is equipped with any one of the optical pickups described in the first or second embodiment, the optical disk device 50 according to the fifth embodiment is provided with a plurality of light sources. A plurality of types of corresponding optical discs can be recorded or reproduced satisfactorily.
 (実施の形態6)
 図18(b)は本発明の一実施の形態6におけるコンピュータの概略構成図である。
(Embodiment 6)
FIG. 18B is a schematic configuration diagram of a computer according to the sixth embodiment of the present invention.
 図18(b)において、コンピュータ500は、実施の形態5の光ディスク装置50と、情報の入力を行うためのキーボードあるいはマウス、タッチパネルなどの入力装置501と、入力装置501から入力された情報や、光ディスク装置50から読み出した情報などに基づいて演算を行う中央演算装置(CPU)などの演算装置502と、演算装置502によって演算された結果などの情報を表示するブラウン管や液晶表示装置、プリンタなどの出力装置503を備える。 In FIG. 18B, a computer 500 includes an optical disc device 50 according to the fifth embodiment, an input device 501 such as a keyboard or a mouse or a touch panel for inputting information, information input from the input device 501, An arithmetic device 502 such as a central processing unit (CPU) that performs an operation based on information read from the optical disk device 50, a cathode ray tube, a liquid crystal display device, a printer, or the like that displays information such as a result calculated by the arithmetic device 502 An output device 503 is provided.
 本実施の形態6のコンピュータ500は、実施の形態5の光ディスク装置50を備えるので、異なる種類の光ディスクを、それぞれ良好に記録または再生を行なうことができるため、広い用途に適用できる効果を有する。 Since the computer 500 according to the sixth embodiment includes the optical disk device 50 according to the fifth embodiment, different types of optical disks can be satisfactorily recorded or reproduced, and thus has an effect that can be applied to a wide range of applications.
 (実施の形態7)
 図19(a)は本発明の一実施の形態7における光ディスクプレーヤの概略構成図である。
(Embodiment 7)
FIG. 19A is a schematic configuration diagram of an optical disc player according to Embodiment 7 of the present invention.
 図19(a)において、光ディスクプレーヤ600は、実施の形態5の光ディスク装置50と、光ディスク装置50から得られる情報信号を画像信号に変換する情報から画像への変換装置(例えばデコーダ601)を備える。 19A, an optical disc player 600 includes the optical disc device 50 according to the fifth embodiment and an information-to-image conversion device (for example, a decoder 601) that converts an information signal obtained from the optical disc device 50 into an image signal. .
 なお、本光ディスクプレーヤ600は、GPS等の位置センサーや中央演算装置(CPU)を加えることによりカーナビゲーションシステムとしても利用可能である。また、液晶モニタなどの表示装置602を加えた形態も可能である。 The optical disc player 600 can also be used as a car navigation system by adding a position sensor such as GPS and a central processing unit (CPU). Further, a mode in which a display device 602 such as a liquid crystal monitor is added is also possible.
 本実施の形態7の光ディスクプレーヤ600は、実施の形態5の光ディスク装置50を備えるので、異なる種類の光ディスクを、それぞれ良好に再生できるため、広い用途に適用できる効果を有する。 Since the optical disc player 600 according to the seventh embodiment includes the optical disc device 50 according to the fifth embodiment, since different types of optical discs can be reproduced satisfactorily, it has the effect of being applicable to a wide range of applications.
 (実施の形態8)
 図19(b)は本発明の一実施の形態8における光ディスクレコーダの概略構成図である。
(Embodiment 8)
FIG. 19B is a schematic configuration diagram of the optical disc recorder according to the eighth embodiment of the present invention.
 図19(b)において、光ディスクレコーダ700は、実施の形態5の光ディスク装置50と、画像情報を光ディスク装置50によって光ディスクへ記録する情報信号に変換する画像から情報への変換装置(例えばエンコーダ701)を備える。望ましくは、光ディスク装置50から得られる情報信号を画像情報に変換する情報から画像への変換装置(デコーダ702)も備えることにより、記録した画像を再生することも可能となる。なお情報を表示するブラウン管や液晶表示装置、プリンタなどの出力装置703を備えてもよい。 In FIG. 19B, an optical disc recorder 700 includes an optical disc device 50 according to the fifth embodiment and an image-to-information conversion device (for example, an encoder 701) that converts image information into an information signal recorded on the optical disc by the optical disc device 50. Is provided. Desirably, an information-to-image conversion device (decoder 702) that converts an information signal obtained from the optical disk device 50 into image information is also provided, so that the recorded image can be reproduced. Note that an output device 703 such as a cathode ray tube, a liquid crystal display device, or a printer that displays information may be provided.
 本実施の形態8の光ディスクレコーダ700は、実施の形態5の光ディスク装置50を備えるので、異なる種類の光ディスクを、それぞれ良好に記録または再生を行なうことができるため、広い用途に適用できる効果を有する。 Since the optical disk recorder 700 according to the eighth embodiment includes the optical disk device 50 according to the fifth embodiment, since different types of optical disks can be recorded or reproduced satisfactorily, there is an effect that can be applied to a wide range of applications. .
 本発明の光ピックアップは、複数種類の光ディスクに対して、それぞれ良好に記録または再生が可能である。また、光ピックアップの構成が簡単化されるため、生産性の向上が達成されるとともに、安価に光ディスク装置を提供できる。 The optical pickup of the present invention is capable of recording or reproducing each of a plurality of types of optical disks satisfactorily. Further, since the configuration of the optical pickup is simplified, the productivity can be improved and the optical disc apparatus can be provided at a low cost.
 さらに、本発明の光ディスク装置を備えたコンピュータ、光ディスクプレーヤ、光ディスクレコーダは、異なる種類の光ディスクを、それぞれ良好に記録または再生を行なうことができるため、広い用途に適用できる効果を有する。 Furthermore, the computer, the optical disc player, and the optical disc recorder provided with the optical disc apparatus of the present invention can record and reproduce different types of optical discs, respectively, and thus have an effect that can be applied to a wide range of applications.
 1  光源
 2  平板ビームスプリッタ
 3  リレーレンズ
 4  ウェッジプリズム
 5  カップリングレンズ
 6  1/4波長板
 7,7D,7B  ミラー
 8,8D,8B  対物レンズ
 9  検出ホログラム
 10  検出レンズ
 11  2波長光源
 11‘ 赤外レーザ光の光源
 11‘’ 赤色レーザ光と赤外レーザ光の光源
 12  回折格子
 13  リレーレンズ
 20  受光素子
 30  対物レンズアクチュエータ
 31  カップリングレンズアクチュエータ
 32  ステッピングモータ
 33  スクリューシャフト
 34  主軸
 35  副軸
 36  レンズホルダ
 40,41  光ピックアップ
 50  光ディスク装置
 51  光ディスク駆動部
 52  制御部
 53  光ピックアップ
 60  BD
 70  DVD
 80  CD
 101  第1の光源
 102  第1の平板ビームスプリッタ
 103  第1の補助レンズ
 104  第2の平板ビームスプリッタ
 105  カップリングレンズ
 107  ミラー
 108  対物レンズ
 110  検出レンズ
 111  第2の光源
 112  第2の補助レンズ
 120  受光素子
 140  光ピックアップ
 500  コンピュータ
 501  入力装置
 502  演算装置
 503  出力装置
 600  光ディスクプレーヤ
 601  デコーダ
 602  表示装置
 700  光ディスクレコーダ
 701  エンコーダ
 702  デコーダ
 703  出力装置
 P0,P1,P2,P3,P4,P5,P6  カップリングレンズ5の位置
DESCRIPTION OF SYMBOLS 1 Light source 2 Flat beam splitter 3 Relay lens 4 Wedge prism 5 Coupling lens 6 1/4 wavelength plate 7, 7D, 7B Mirror 8, 8D, 8B Objective lens 9 Detection hologram 10 Detection lens 11 2 wavelength light source 11 'Infrared laser Light source of light 11 '' Light source of red laser light and infrared laser light 12 Diffraction grating 13 Relay lens 20 Light receiving element 30 Objective lens actuator 31 Coupling lens actuator 32 Stepping motor 33 Screw shaft 34 Main shaft 35 Sub shaft 36 Lens holder 40, 41 Optical Pickup 50 Optical Disc Device 51 Optical Disc Drive Unit 52 Control Unit 53 Optical Pickup 60 BD
70 DVD
80 CD
DESCRIPTION OF SYMBOLS 101 1st light source 102 1st flat plate beam splitter 103 1st auxiliary | assistant lens 104 2nd flat plate beam splitter 105 Coupling lens 107 Mirror 108 Objective lens 110 Detection lens 111 2nd light source 112 2nd auxiliary lens 120 Light reception Element 140 Optical pickup 500 Computer 501 Input device 502 Arithmetic device 503 Output device 600 Optical disc player 601 Decoder 602 Display device 700 Optical disc recorder 701 Encoder 702 Decoder 703 Output device P0, P1, P2, P3, P4, P5, P6 Coupling lens 5 Position of

Claims (17)

  1.  波長λ1の発散光束を出射する第1の光源と、
     前記波長λ1とは異なる波長λ2(λ2>λ1)の発散光束を出射する第2の光源と、
     前記波長λ1の光束を保護基板厚みt1である第1の光ディスクの情報記録面に集光させ、前記波長λ2の光束を前記t1とは異なる保護基板厚みt2である第2の光ディスクの情報記録面に集光させる対物レンズとを備え、
     前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時の、前記対物レンズに入射される光ビームの発散度の方が、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時の、前記対物レンズに入射される光ビームの発散度よりも大きい、光ピックアップ。
    A first light source that emits a divergent light beam of wavelength λ1,
    A second light source that emits a divergent light beam having a wavelength λ2 (λ2> λ1) different from the wavelength λ1;
    The light beam having the wavelength λ1 is condensed on the information recording surface of the first optical disk having the protective substrate thickness t1, and the light beam having the wavelength λ2 is condensed on the information recording surface of the second optical disk having the protective substrate thickness t2 different from the t1. And an objective lens for focusing
    When converging the light beam having the wavelength λ1 on the information recording surface of the first optical disk, the divergence of the light beam incident on the objective lens is greater than that of the second optical disk. An optical pickup having a larger divergence than the light beam incident on the objective lens when the light is focused on the information recording surface.
  2.  前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光させる前記対物レンズのNAをNA1、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光させる前記対物レンズのNAをNA2とすると、NA1>NA2である、請求の範囲第1項記載の光ピックアップ。 The NA of the objective lens for condensing the light beam with the wavelength λ1 on the information recording surface of the first optical disc, and NA1 of the objective lens for condensing the light beam with the wavelength λ2 on the information recording surface of the second optical disc. The optical pickup according to claim 1, wherein NA1> NA2 where NA is NA2.
  3.  前記波長λ1及び前記波長λ2の組合せは、青紫光(波長350nm~450nm)及び赤色光(波長600nm~700nm)、又は、青紫光及び赤外光(750nm~850nm)、又は赤色光及び赤外光の組合せである、請求の範囲第1項又は第2項記載の光ピックアップ。 The combination of the wavelength λ1 and the wavelength λ2 is blue violet light (wavelength 350 nm to 450 nm) and red light (wavelength 600 nm to 700 nm), blue violet light and infrared light (750 nm to 850 nm), or red light and infrared light. The optical pickup according to claim 1 or 2, which is a combination of the following.
  4.  前記第1、第2のそれぞれの光源から出射された光束を同一光軸化する手段と、
     前記第1、第2のそれぞれの光源から出射された光束の発散度を変換するカップリングレンズと、
     前記カップリングレンズを、前記同一光軸化のエリアにおいて、前記対物レンズの光軸方向に沿って移動させるレンズアクチュエータとを備え、
     前記レンズアクチュエータは、前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時と、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時で、前記カップリングレンズを異なる位置に移動させ、
     前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時の前記カップリングレンズの前記レンズ光軸方向の位置の方が、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時の前記カップリングレンズの前記レンズ光軸方向の位置よりも前記光源側に近い、請求の範囲第1項~第3項のいずれかに記載の光ピックアップ。
    Means for making the light beams emitted from the first and second light sources the same optical axis;
    A coupling lens that converts the divergence of light beams emitted from the first and second light sources;
    A lens actuator that moves the coupling lens along the optical axis direction of the objective lens in the same optical axis area;
    The lens actuator is configured to condense the light beam having the wavelength λ1 on the information recording surface of the first optical disk and to collect the light beam having the wavelength λ2 on the information recording surface of the second optical disk. Move the coupling lens to a different position,
    The position of the coupling lens in the optical axis direction of the lens when the light beam having the wavelength λ1 is condensed on the information recording surface of the first optical disk is changed to the information on the second optical disk. The optical pickup according to any one of claims 1 to 3, wherein the optical pickup is closer to the light source side than a position in the lens optical axis direction of the coupling lens when the light is condensed on a recording surface.
  5.  前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時に、前記カップリングレンズの前記レンズ光軸方向の位置は、前記対物レンズに入射する光ビームが平行光となる位置であり、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時に、前記カップリングレンズの前記レンズ光軸方向の位置は、前記対物レンズに入射する光ビームが収束光となる位置である、請求の範囲第4項記載の光ピックアップ。 When the light beam having the wavelength λ1 is condensed on the information recording surface of the first optical disc, the position of the coupling lens in the lens optical axis direction is a position where the light beam incident on the objective lens becomes parallel light. Yes, when the light beam having the wavelength λ2 is condensed on the information recording surface of the second optical disc, the position of the coupling lens in the lens optical axis direction is that the light beam incident on the objective lens becomes convergent light. The optical pickup according to claim 4, which is a position.
  6.  前記対物レンズは、前記波長λ1の光束と前記波長λ2の光束とに共用されるレンズである、請求の範囲第1項~第5項のいずれかに記載の光ピックアップ。 The optical pickup according to any one of claims 1 to 5, wherein the objective lens is a lens shared by the light beam having the wavelength λ1 and the light beam having the wavelength λ2.
  7.  前記対物レンズは、前記波長λ1の光束用のレンズと、前記波長λ2の光束用のレンズとで構成されている、請求の範囲第1項~第5項のいずれかに記載の光ピックアップ。 The optical pickup according to any one of claims 1 to 5, wherein the objective lens includes a lens for the light beam having the wavelength λ1 and a lens for the light beam having the wavelength λ2.
  8.  波長λ1の発散光束を出射する第1の光源と、
     前記波長λ1とは異なる波長λ2(λ2>λ1)の発散光束を出射する第2の光源と、
     前記波長λ1及びλ2とは異なる波長λ3(λ3>λ2>λ1)の発散光束を出射する第3の光源と、
     前記波長λ1の光束を保護基板厚みt1である第1の光ディスクの情報記録面に集光させ、前記波長λ2の光束を前記t1とは異なる保護基板厚みt2である第2の光ディスクの情報記録面に集光させ、前記波長λ3の光束を前記t1及び前記t2とは異なる保護基板厚みt3である第3の光ディスクの情報記録面に集光させる、対物レンズと、
     前記第1、第2、第3のそれぞれの光源から出射された光束を同一光軸化する手段と、
     前記第1、第2、第3のそれぞれの光源から出射された光束の発散度を変換するカップリングレンズと、
     前記カップリングレンズを、前記同一光軸化のエリアにおいて、前記対物レンズの光軸方向に沿って移動させるレンズアクチュエータとを備え、
     前記レンズアクチュエータは、前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時と、前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時と、前記波長λ1の光束を前記第1の光ディスクの情報記録面に集光する時で、前記カップリングレンズを異なる位置に移動させ、
     前記カップリングレンズの位置は、前記光源から近い順に、前記波長λ3の光束の集光時、前記波長λ1の光束の集光時、前記波長λ2の光束の集光時である、光ピックアップ。
    A first light source that emits a divergent light beam of wavelength λ1,
    A second light source that emits a divergent light beam having a wavelength λ2 (λ2> λ1) different from the wavelength λ1;
    A third light source that emits a divergent light beam having a wavelength λ3 (λ3>λ2> λ1) different from the wavelengths λ1 and λ2.
    The light beam having the wavelength λ1 is condensed on the information recording surface of the first optical disk having the protective substrate thickness t1, and the light beam having the wavelength λ2 is condensed on the information recording surface of the second optical disk having the protective substrate thickness t2 different from the t1. An objective lens for condensing the light beam having the wavelength λ3 on the information recording surface of a third optical disc having a protective substrate thickness t3 different from the t1 and the t2.
    Means for converting the light beams emitted from the first, second, and third light sources into the same optical axis;
    A coupling lens that converts the divergence of the light beams emitted from the first, second, and third light sources;
    A lens actuator that moves the coupling lens along the optical axis direction of the objective lens in the same optical axis area;
    The lens actuator condensing the light beam having the wavelength λ1 on the information recording surface of the first optical disc, condensing the light beam having the wavelength λ2 on the information recording surface of the second optical disc, When condensing the light beam of wavelength λ1 on the information recording surface of the first optical disc, the coupling lens is moved to a different position,
    The position of the coupling lens is an optical pickup in which the light beam having the wavelength λ3, the light beam having the wavelength λ1, and the light beam having the wavelength λ2 are condensed in order from the light source.
  9.  前記波長λ1の光束は、青紫光(波長350nm~450nm)であり、
     前記波長λ2の光束は、赤色光(波長600nm~700nm)であり、
     前記波長λ3の光束は、赤外光(750nm~850nm)である、請求の範囲第8項記載の光ピックアップ。
    The luminous flux of wavelength λ1 is blue-violet light (wavelength 350 nm to 450 nm),
    The luminous flux of wavelength λ2 is red light (wavelength 600 nm to 700 nm),
    The optical pickup according to claim 8, wherein the light flux having the wavelength λ3 is infrared light (750 nm to 850 nm).
  10.  前記波長λ2の光束を前記第2の光ディスクの情報記録面に集光する時に、前記カップリングレンズの前記レンズ光軸方向の位置は、前記対物レンズに入射する光ビームが収束光となる位置であり、
     前記波長λ3の光束を前記第3の光ディスクの情報記録面に集光する時に、前記カップリングレンズの前記レンズ光軸方向の位置は、前記対物レンズに入射する光ビームが発散光となる位置である、請求の範囲第8項又は第9項記載の光ピックアップ。
    When condensing the light beam having the wavelength λ2 on the information recording surface of the second optical disk, the position of the coupling lens in the lens optical axis direction is a position where the light beam incident on the objective lens becomes convergent light. Yes,
    When the light beam having the wavelength λ3 is condensed on the information recording surface of the third optical disk, the position of the coupling lens in the lens optical axis direction is a position where the light beam incident on the objective lens becomes divergent light. The optical pickup according to claim 8 or 9, wherein there is an optical pickup.
  11.  前記対物レンズは、前記波長λ1の光束と前記波長λ2の光束と前記波長λ3の光束に共用されるレンズである、請求の範囲第8項~第10項のいずれかに記載の光ピックアップ。 The optical pickup according to any one of claims 8 to 10, wherein the objective lens is a lens shared by the light beam having the wavelength λ1, the light beam having the wavelength λ2, and the light beam having the wavelength λ3.
  12.  前記対物レンズは、前記波長λ1の光束用のレンズと、前記波長λ2及び前記波長λ3の光束に共用されるレンズとで構成されている、請求の範囲第8項~第10項のいずれかに記載の光ピックアップ。 11. The objective lens according to claim 8, wherein the objective lens includes a lens for a light beam having the wavelength λ1, and a lens shared by the light beams having the wavelength λ2 and the wavelength λ3. The optical pickup described.
  13.  前記第1の光ディスクは複数層の情報記録面を有し、表面から前記それぞれの情報記録層面までの前記透明基材の実質厚みの差によって発生する球面収差を、前記カップリングレンズの移動により補正する、請求の範囲第4項又は第8項記載の光ピックアップ。 The first optical disc has a plurality of information recording surfaces, and spherical aberration caused by a difference in the substantial thickness of the transparent base material from the surface to each information recording layer surface is corrected by moving the coupling lens. The optical pickup according to claim 4 or claim 8.
  14.  請求の範囲第1項~第13項のいずれかに記載の光ピックアップと、
     前記情報記録媒体を回転駆動するためのモータと、
     前記光ピックアップと前記モータを制御する制御部とを備えた、光ディスク装置。
    An optical pickup according to any one of claims 1 to 13,
    A motor for rotationally driving the information recording medium;
    An optical disc apparatus comprising the optical pickup and a control unit that controls the motor.
  15.  請求の範囲第14項に記載される光ディスク装置と、
     情報を入力するための入力手段と、
     前記光ディスク装置から再生された情報および/または前記入力手段から入力された情報に基づいて演算を行う演算手段と、
     前記光ディスク装置から再生された情報および/または前記入力手段から入力された情報および/または前記演算手段によって演算された結果を出力するための出力手段とを備えた、コンピュータ。
    An optical disk device according to claim 14;
    An input means for inputting information;
    A calculation means for performing calculation based on information reproduced from the optical disk device and / or information input from the input means;
    A computer comprising: output means for outputting information reproduced from the optical disk device and / or information inputted from the input means and / or a result computed by the computing means.
  16.  請求の範囲第14項に記載される光ディスク装置と、
     前記光ディスク装置から得られる情報信号を画像情報に変換するデコーダとを備えた、光ディスクプレーヤ。
    An optical disk device according to claim 14;
    An optical disc player comprising: a decoder that converts an information signal obtained from the optical disc device into image information.
  17.  請求の範囲第14項に記載される光ディスク装置と、
     画像情報を前記光ディスク装置によって記録するための情報信号に変換するエンコーダとを備えた、光ディスクレコーダ。
    An optical disk device according to claim 14;
    An optical disk recorder comprising: an encoder for converting image information into an information signal for recording by the optical disk device.
PCT/JP2009/002444 2008-06-02 2009-06-01 Optical pickup and optical disc disk device, computer, optical disc disk player, optical disc disk recorder WO2009147827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-144487 2008-06-02
JP2008144487A JP2011165224A (en) 2008-06-02 2008-06-02 Optical pickup and optical disk device, computer, optical disk player, optical disk recorder

Publications (1)

Publication Number Publication Date
WO2009147827A1 true WO2009147827A1 (en) 2009-12-10

Family

ID=41397910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002444 WO2009147827A1 (en) 2008-06-02 2009-06-01 Optical pickup and optical disc disk device, computer, optical disc disk player, optical disc disk recorder

Country Status (2)

Country Link
JP (1) JP2011165224A (en)
WO (1) WO2009147827A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063850A1 (en) * 2010-11-10 2012-05-18 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2012063847A1 (en) * 2010-11-10 2012-05-18 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2012063848A1 (en) * 2010-11-10 2012-05-18 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111552A1 (en) * 2011-02-14 2012-08-23 コニカミノルタオプト株式会社 Optical pickup device and optical information recording/reproduction device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074870A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Objective lens, optical head and optical disc device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074870A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Objective lens, optical head and optical disc device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063850A1 (en) * 2010-11-10 2012-05-18 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2012063847A1 (en) * 2010-11-10 2012-05-18 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2012063848A1 (en) * 2010-11-10 2012-05-18 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
JP5229657B2 (en) * 2010-11-10 2013-07-03 コニカミノルタアドバンストレイヤー株式会社 Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JPWO2012063850A1 (en) * 2010-11-10 2014-05-12 コニカミノルタ株式会社 Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
US8760990B2 (en) 2010-11-10 2014-06-24 Konica Minolta, Inc. Objective lens for optical pickup apparatus, optical pickup apparatus, and optical information recording reproducing apparatus
JP5713280B2 (en) * 2010-11-10 2015-05-07 コニカミノルタ株式会社 Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device

Also Published As

Publication number Publication date
JP2011165224A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JPWO2005101393A1 (en) Objective optical system for optical pickup device, optical pickup device, drive device for optical information recording medium, condensing lens, and optical path synthesis element
US8472301B2 (en) Objective optical element and optical pickup device
JPWO2008081859A1 (en) Optical pickup, optical disk device, composite coupling lens, composite prism, and optical information device
US20100157777A1 (en) Optical head and optical disc device
JPWO2005074388A1 (en) Optical pickup device and optical information recording and / or reproducing device
JP4787060B2 (en) Optical pickup and optical information processing apparatus
WO2009147827A1 (en) Optical pickup and optical disc disk device, computer, optical disc disk player, optical disc disk recorder
WO2006115081A1 (en) Objective optical element for optical pickup device, optical element for optical pickup device, objective optical element unit for optical pickup device and optical pickup device
WO2005088624A1 (en) Objective optical element and optical pickup device
WO2007123112A1 (en) Optical pickup device, optical element, optical information recording and reproducing device and design, method of optical element
JP3868932B2 (en) Lens, optical system using the same, optical head, and optical disc apparatus
JPWO2005048250A1 (en) Optical pickup device and optical element used therefor
WO2011033786A1 (en) Light pickup optical system
JP4400326B2 (en) Optical pickup optical system, optical pickup device, and optical disk drive device
US8064296B2 (en) Optical head, optical disc device and information recording and/or reproducing device
JP2000268392A (en) Optical pickup apparatus for recording/reproducing optical information recording medium, objective lens, and recording/reproducing apparatus
WO2011033789A1 (en) Objective lens element
JP5007328B2 (en) Objective lens
JP2007317348A (en) Optical pickup and optical information processing device
JP4385038B2 (en) Objective lens
JP2005044461A (en) Lens, optical system using same, optical head, and optical disk device
JP4563468B2 (en) Optical pickup
JP4394137B2 (en) Pickup lens with phase compensation plate and optical pickup device using the same
US8406110B2 (en) Objective lens element
JP3854590B2 (en) Objective lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP