WO2006013197A1 - Boitier miniature hyperfrequence pour montage en surface et procede de fabrication du boitier - Google Patents

Boitier miniature hyperfrequence pour montage en surface et procede de fabrication du boitier Download PDF

Info

Publication number
WO2006013197A1
WO2006013197A1 PCT/EP2005/053733 EP2005053733W WO2006013197A1 WO 2006013197 A1 WO2006013197 A1 WO 2006013197A1 EP 2005053733 W EP2005053733 W EP 2005053733W WO 2006013197 A1 WO2006013197 A1 WO 2006013197A1
Authority
WO
WIPO (PCT)
Prior art keywords
active
face
chip
integrated circuits
housing
Prior art date
Application number
PCT/EP2005/053733
Other languages
English (en)
Inventor
Alexandre Bessemoulin
Original Assignee
United Monolithic Semiconductors S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Monolithic Semiconductors S.A.S. filed Critical United Monolithic Semiconductors S.A.S.
Publication of WO2006013197A1 publication Critical patent/WO2006013197A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/047Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05009Bonding area integrally formed with a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/0557Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1423Monolithic Microwave Integrated Circuit [MMIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the invention relates to a miniature package incorporating microwave components operating up to frequencies of 100 GHz and in particular a compatible housing surface mount production lines or SMD "surface mount devices" in English.
  • SMD surface mount production lines
  • the protection of integrated circuits with high integration is achieved by packaging the integrated circuit, either in a machined or molded housing, or by embedding the integrated circuit with a dielectric material.
  • This protection is increasingly sought after because it greatly simplifies the handling of the usually fragile integrated circuits and ensures, moreover, the tightness of the circuit isolating it from an environment that adversely affects its performance such as humidity and gases.
  • Microwave housings of the state of the art use in particular organic technologies (PCB) or ceramic.
  • microwave housings The common principle of these microwave housings is to postpone an electronic chip on a bottom of the housing and to interconnect it to electrical pads of the housing mainly by conducting wires, for circuits comprising microstrip lines, or more rarely by welding balls (or "bumps" in English) for single circuit circuits.
  • the microwave package comprising the integrated circuit (or the chip) is intended to be transferred to an interconnection circuit (housing receiving circuit) or to an interconnection substrate for the electrical connections, for example, with other electronic circuits.
  • the electrical pads of the housing are made by various techniques including metal tabs or networks of electrical conductors integral with the housing or "leadframe" in English.
  • FIG. 1 represents a first exemplary embodiment of a state-of-the-art microwave package commonly used for an MMIC, either in English language "Monolithic Microwave Integrated Circuit" operating in frequency ranges between 1GHz and 100Ghz.
  • the microwave housing of Figure 1 essentially comprises a microwave chip 10 having an active face 12 incorporating active microwave components 14 including transistors, electrical conductors 16, and a rear face 18 opposite to the active face.
  • the chip 10 is carried by its rear face 18 on a metal base 20 of the microwave housing.
  • the housing comprises electrical pads in the form of metal tabs 22 for its transfer to an interconnection circuit (or reception circuit), not shown in the figure.
  • the metal tabs 22 of the casing of FIG. 1, mechanically secured to the casing, provide the electrical connections between the chip 10 and the medium outside the casing by means of electrical wires 24 connecting the electrical conductors 16 of the active face of the chip. metal tabs 22 of the housing.
  • FIG. 1 The casing of FIG. 1 is closed by a cover 26 protecting the chip from the outside environment.
  • the chip is then in an air cavity 28 (or a gas) formed by the housing closed by its lid
  • the power microwave active components 14 of the chip emit heat that must be discharged outside the housing.
  • the calories Q released by the active components of the active face 14 of the chip are dissipated, for the most part, through the thickness of the chip 10 and the bottom 20 of the casing, by the electrical interconnection circuit on which the housing is intended to be carried.
  • FIG. 2 shows a second embodiment of a microwave package of the state of the art.
  • an integrated circuit 40 is bonded to a housing base 42 having a network of electrical connectors 44 or "leadframe" for the transfer of the housing on the host circuit.
  • the electrical wires 46 perform the electrical connections between electrical conductors 48 of the active face of the chip 40 and the electrical connectors 44 of the connector network of the housing.
  • the casing of FIG. 2 is closed by molding a plastic material 49 encapsulating the chip 40 and the casing base 42 while leaving exposed the metal faces of the electrical connectors 44 directed towards the outside of the casing for the transfer by example by welding, on electrical conductors of a reception circuit.
  • FIG. 3 shows a third embodiment of a microwave package of the state of the art.
  • a chip 50 is carried by its rear face 52 on a reception substrate 53 comprising electrical conductors 54 for the transfer of the chip 50 on the substrate 53 and electrical pads 56 for the interconnection of the housing with other electronic circuits.
  • Electrical son 60 provide the electrical connection of the chip with the electrical pads 56 of the housing.
  • the housing is closed, protecting the chip, by a bubble 62 (or drop) of dielectric material covering the entire chip.
  • the electrical wires 24, 46, 60 of the embodiments of Figures 1, 2 and 3 connecting the electrical conductors of the chip and the electrical pads of the housing (legs or output connectors of the housing) are usually son of gold soldered on the conductors electric to connect.
  • the microwave boxes of the state have many disadvantages. Among others:
  • the large size of the housings (of the order of 20 mm 2 ), the length of the interconnection son between the electrical conductors of the chip and the metal legs of the housing limit the frequency performance of the housing, in addition, a housing large size has parasitic elements limiting its electrical performance;
  • the invention proposes a microwave miniature housing for surface mounting on a reception circuit, the housing comprising:
  • an electronic chip having an active face and a rear face opposite to the active face, the active face having active elements, electrical conductors of the active face, the rear face having electrical conductors of the rear face;
  • the electrical transfer pins of the housing are connected to the electrical conductors of the rear face of the chip, the electrical conductors of the active face of the chip and those of the rear face of the chip being connected by metallized holes and in that the housing is closed by a dielectric material encapsulating at least the active face of the chip.
  • the electrical conductors of the rear face of the chip are in direct contact with the electrical transfer pins of the housing, the housing being closed by a thick dielectric layer deposited on the active face of the housing. chip.
  • a plurality of metallized holes connect at least one conductor of the active face to at least one electrical conductor of the rear face of the chip transmitting the heat released by the chip, via the electric transfer pins. at the welcome circuit.
  • a main object of this invention is to obtain a miniature ultra-high frequency housing and very small dimensions with electrical performance of integrated microwave circuits up to frequencies of at least 100 GHz.
  • Another object of this invention is to provide a miniature integrated circuit protected by its very small housing compatible with surface mount technologies or SMD.
  • the invention also relates to a method of collectively manufacturing housings according to the invention comprising at least the following steps:
  • FIG. 1, already described, represents a first exemplary embodiment of a microwave package of the state of the art
  • FIG. 2 already described, shows a second embodiment of a microwave package of the state of the art
  • FIG. 4 shows a first embodiment of the miniature microwave package according to the invention
  • FIG. 5a shows another embodiment of the microwave housing according to the invention.
  • FIG. 5b represents a variant of the microwave package of FIG. 5a according to the invention
  • FIGS. 6a, 6b, 6c, 6d, 6e, 6f, 6g show the main steps of a first collective manufacturing process of the miniature case according to the invention
  • FIGS. 7a, 7b and 7c respectively show a sectional view, a bottom view and a top view of one of the miniature microwave housings according to the invention resulting from the first collective manufacturing method of the housings according to the invention;
  • FIGS. 8a, 8b, 8c, 8d, 8e, 8f and 8g show the main steps of a second collective manufacturing method of the miniature case according to the invention
  • FIG. 9 shows several miniature microwave housings according to the invention obtained according to the second manufacturing method.
  • FIG. 4 shows a first embodiment of the miniature microwave package according to the invention.
  • the housing of Figure 4 comprises: an electronic chip 70 having an active face 72 and a rear face 74 opposite to the active face, the active face comprising transistors 76, electrical conductors 78 of the active face 72, the rear face comprising electrical conductors 80 of the face rear 74 and among these conductors of the rear face of the ground conductors 82.
  • the active face of the chip comprises a protective dielectric layer 84, deposited on said active face;
  • An adaptation frame 86 of the housing comprising electrical pads 90 having two opposite main faces 94, 96 of the transfer, on the one hand, of the chip 70 by its rear face 74, on the faces 94 of the electrical pads on the side of the housing, and secondly, the housing on a receiving circuit by the opposite faces 96 electrical pads 90.
  • the electrical conductors 78 of the active face 72 are connected to the electrical conductors 80 of the rear face 74 by metallized holes 98.
  • the electrical pads 90 are in direct contact with the electrical conductors 78 of the back side of the chip.
  • the electrical studs 90 for transferring the casing to a reception circuit also ensure the electrical connection with the electrical conductors of the chip and in particular those of the active face through the metallized holes 98 of the chip.
  • the housing is hermetically closed by molding with a dielectric material 99 covering the entire chip to the level of the surface 94 of the electrical pads in contact with the rear face of the chip.
  • FIG. 5a shows another embodiment of the microwave housing according to the invention comprising:
  • an electronic chip 100 having an active face 102 and a rear face 104 opposite to the face.
  • the active face comprises transistors 108, electrical conductors 110 of the active face 102, the rear face comprising electrical conductors 112 of the rear face 104 and among these conductors common ground conductors and heat sink 114.
  • the electrical conductors 110 of the active face 102 are connected to the electrical conductors 112 of the rear face 104 by metallized holes 16.
  • the active face of the chip comprises a protective dielectric layer 18 protected on said active face.
  • the casing of FIG. 5a is hermetically sealed by a molding
  • the electrical conductors 1 12 of the rear face of the chip are also electrical studs of the case on a home circuit.
  • the transfer of the housing can, for example, be performed by welding on electrical conductors of a home circuit.
  • FIG. 5b represents a variant of the microwave package of FIG. 5a according to the invention.
  • the microwave housing comprises solder balls 118 welded to the electrical conductors January 12 of the rear face 104 of the chip for the transfer of the housing to a host circuit according to known techniques.
  • the coating or molding of the chip is preferably carried out with materials such as plastic, organic materials, polymers, glass.
  • the dielectric layer for protecting the active face of the chip is, for example, a Benzo-cyclo-butene passivation layer (BCB).
  • the substrate of the electronic chip can be made with different materials depending on the thermal constraints of use, for example materials such as diamond, AlN, BeO.
  • the substrate may, in the case of low cost chips be selected from PCBs, LTCC, HTCC ... with thermal vias or "slugs" in English.
  • the invention also relates to a method of collective manufacture of the housings according to the invention described above.
  • FIGS. 6a, 6b, 6c, 6d, 6e, 6f, 6g show the main steps of a first collective manufacturing method of the integrated circuit according to the invention:
  • the first method of manufacturing the integrated circuit according to the invention comprises at least the following steps:
  • Each of the integrated circuits comprises an active face 130 and a rear face 132 opposite to the active face, the active face comprising active elements 133, electrical conductors 134 of the active face, the rear face 132 having electrical conductors 136 of the face rear and according to a main feature of the invention metallized holes 138 in the chip connecting the electrical conductors 134 of the active face to the electrical conductors 136 of the rear face; depositing a protective layer 140 of dielectric material on the active faces 130 of the integrated circuits of the "wafer";
  • FIG. 6c shows a view of the network of electrical pads 142 made on an integrated circuit of the wafer
  • FIGS. 7a, 7b and 7c respectively show a sectional view, a bottom view and a top view of one of the miniature microwave housings 149 according to the invention resulting from the first collective manufacturing method of the housings according to the invention.
  • FIG. 7b shows the network of electrical pads 142 for carrying the microwave housing onto a reception circuit. and among these pads, electrical pads for input / output signals 152 of the chip and ground pads 154.
  • FIG. 7c shows a uniform plastic surface 156 for closing the housing.
  • FIGS. 8a, 8b, 8c, 8d, 8e, 8f and 8g show the main steps of a second collective manufacturing method of the integrated circuit according to the invention:
  • the second manufacturing method comprises at least the following steps: - as in the case of the first manufacturing method described above, the second method comprises a manufacturing step, according to known techniques, on a monocrystalline silicon wafer or "wafer" of a set of integrated circuits, each of the integrated circuits having the active face 130 and the rear face 132 opposite to the active face, the active face comprising active elements 133, electrical conductors 134 of the active face, the rear face comprising electrical conductors 136 of the rear face and according to a main feature of the invention, metallized holes 138 in the chip connecting the electrical conductors 134 of the active face to the electrical conductors 136 of the rear face; then: deposition of a protective layer 140 of dielectric material on the active faces of the integrated circuits of the "wafer"; the following steps different from the first method of manufacturing the housings in collective describes:
  • each of the integrated circuits on a holding plate 170 report, by the rear faces 132 of the circuits, each of the integrated circuits on a holding plate 170 (see Figure 8a).
  • the transfer of the integrated circuits on the holding plate 170 is carried out by known techniques of sampling and depositing circuits called "pick and place";
  • FIG. 8d shows a view of the array of electrical pads 180 made on an integrated circuit of the molding 174, FIG. 8e the electrical pads made on four contiguous integrated circuits of the same molding;
  • FIG. 9 shows a plurality of identical miniature microwave housings 191 according to the invention obtained according to the second manufacturing method, after the last sawing operation of the molded wafer.
  • the wafers on which the integrated circuits are manufactured are in particular Si, GaAs, InP, GaN, SiC,
  • the miniature microwave packages according to the invention have numerous advantages over those of the state of the art, in particular: an even smaller size for an equally effective protection of the integrated circuit;

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

L'invention concerne un boîtier miniature hyperfréquence pour montage en surface sur un circuit d'accueil. Le boîtier comporte : - une puce électronique (100) ayant une face active (102) et une face arrière opposée à la face active, la face active ayant des éléments actifs (108), des conducteurs électriques de la face active (110), la face arrière ayant des conducteurs électriques de la face arrière (112) ; - des plots électriques (112), de report du boîtier sur le circuit d'accueil ; Les plots électriques de report du boîtier sont reliés aux conducteurs électriques de la face arrière de la puce, les conducteurs électriques de la face active de la puce et ceux de la face arrière de la puce étant reliés par des trous métallisés (116). Le boîtier est t fermé par un matériau diélectrique (118) enrobant au moins la face active de la puce.

Description

BOITIER MINIATURE HYPERFREQUENCE
POUR MONTAGE EN SURFACE ET PROCEDE DE FABRICATION DU BOITIER
L'invention concerne un boîtier miniature intégrant des composants hyperfréquences fonctionnant jusqu'à des fréquences de 100GHz et notamment un boîtier compatible des lignes de production à montage en surface ou SMD « surface mount devices » en langue anglaise. L'évolution des applications en hyperfréquences à des fréquences de plus en plus élevées entraîne une demande croissante de circuits intégrés ayant une haute intégration et une grande compacité.
La protection des circuits intégrés à haute intégration est obtenue par la mise en boîtier du circuit intégré, soit dans un boîtier usiné ou moulé, soit par un enrobage du circuit intégré par un matériau diélectrique. Cette protection est de plus en plus recherchée car elle simplifie grandement la manipulation des circuits intégrés habituellement fragiles et assure, en outre, l'herméticité du circuit l'isolant d'un environnement nuisant à ses performances comme l'humidité et les gaz. Les boîtiers hyperfréquences de l'état de l'art utilisent notamment des technologies organiques (PCB) ou céramique.
Le principe commun de ces boîtiers hyperfréquences consiste à reporter une puce électronique sur un fond du boîtier et de l'interconnecter à des plots électriques du boîtier principalement par des fils conducteurs, pour les circuits comportant des lignes de type microruban, ou plus rarement par des billes de soudure (ou « bumps » en langue anglaise) pour les circuits uniplanaires.
Le boîtier hyperfréquence comportant le circuit intégré (ou la puce) est destiné à être reporté sur un circuit d'interconnexion (circuit d'accueil du boîtier) ou sur un substrat d'interconnexion pour les liaisons électriques, par exemple, avec d'autres circuits électroniques. A cet effet, les plots électriques du boîtier sont réalisés par des techniques diverses notamment par des pattes métalliques ou par des réseaux de conducteurs électriques solidaires du boîtier ou « leadframe » en langue anglaise. La figure 1 représente un premier exemple de réalisation d'un boîtier hyperfréquence de l'état de l'art couramment utilisé pour un MMIC soit en langue anglaise « Monolithic Microwave Integrated Circuit » fonctionnant dans des gammes de fréquences comprises entre 1GHz et 100Ghz.
Le boîtier hyperfréquence de la figure 1 comporte essentiellement une puce hyperfréquence 10 ayant une face active 12 intégrant des composants hyperfréquences actifs 14 notamment des transistors, des conducteurs électriques 16, et une face arrière 18 opposée à la face active.
La puce 10 est reportée par sa face arrière 18 sur un fond métallique 20 du boîtier hyperfréquence. Le boîtier comporte des plots électriques sous forme de pattes métalliques 22 pour son report sur un circuit d'interconnexion (ou circuit d'accueil), non représenté sur la figure.
Les pattes métalliques 22 du boîtier de la figure 1 , solidaires mécaniquement du boîtier, assurent les liaisons électriques entre la puce 10 et le milieu extérieur au boîtier par l'intermédiaire de fils électriques 24 reliant les conducteurs électriques 16 de la face active de la puce aux pattes métalliques 22 du boîtier.
Le boîtier de la figure 1 est fermé par un couvercle 26 protégeant la puce du milieu extérieur. La puce se trouve alors dans une cavité d'air 28 (ou un gaz) formée par le boîtier fermé par son couvercle
Les composants actifs 14 hyperfréquences de puissance de la puce dégagent de la chaleur qui doit être évacuée à l'extérieur du boîtier.
Dans le cas du boîtier de la figure 1 , les calories Q dégagées par les composants actifs de la face active 14 de la puce sont dissipées, en grande partie, à travers l'épaisseur de la puce 10 et le fond 20 du boîtier, par le circuit d'interconnexion électrique sur lequel le boîtier est destiné à être reporté.
La figure 2 montre une deuxième réalisation d'un boîtier hyperfréquence de l'état de l'art. Dans cette réalisation de la figure 2, un circuit intégré 40 est collé sur un fond de boîtier 42 comportant un réseau de connecteurs électriques 44 ou « leadframe » pour le report du boîtier sur le circuit d'accueil.
Comme dans la réalisation de la figure 1 des fils électriques 46 effectuent les liaisons électriques entre des conducteurs électriques 48 de la face active de la puce 40 et les connecteurs électriques 44 du réseau de connecteurs du boîtier. Le boîtier de la figure 2 est fermé par moulage d'un matériau plastique 49 enrobant la puce 40 et le fond de boîtier 42 tout en laissant au découvert les faces métalliques des connecteurs électriques 44 dirigées vers l'extérieur du boîtier pour le report, par exemple par soudure, sur des conducteurs électriques d'un circuit d'accueil.
La figure 3 montre une troisième réalisation d'un boîtier hyperfréquences de l'état de l'art. Dans cette réalisation de la figure 3, une puce 50 est reportée par sa face arrière 52 sur un substrat d'accueil 53 comportant des conducteurs électriques 54 de report de la puce 50 sur le substrat 53 et des plots électriques 56 pour l'interconnexion du boîtier avec d'autres circuits électroniques. Des fils électriques 60 assurent la liaison électrique de la puce avec les plots électriques 56 du boîtier.
Le boîtier est fermé, protégeant la puce, par une bulle 62 (ou goutte) de matériau diélectrique recouvrant la totalité de la puce. Les fils électriques 24, 46, 60 des réalisations des figures 1 , 2 et 3 reliant les conducteurs électriques de la puce et les plots électriques du boîtier (pattes ou connecteurs de sortie du boîtier) sont habituellement des fils d'or soudés sur les conducteurs électriques à relier.
Les boîtiers hyperfréquences de l'état comportent des nombreux inconvénients. Entre autre :
- la taille importante des boîtiers (de l'ordre de 20 mm2), la longueur des fils d'interconnexions entre les conducteurs électriques de la puce et les pattes métalliques du boîtier limitent les performances en fréquence du boîtier, en outre, un boîtier de taille importante présente des éléments parasités limitant ses performances électriques ;
- un coût de fabrication relativement élevé du fait d'un procédé d'assemblage du boîtier individuellement ;
- la difficulté d'obtenir un bon plan de masse hyperfréquence posant une limite pour le gain, la stabilité et la fréquence ; - une limitation de la puissance du boîtier du fait de sa structure présentant une résistance thermique élevée ;
- l'incompatibilité de certaines solutions de boîtiers avec les techniques de montage en surface ;
- la nécessité d'équipements de production pour le test des composants en boîtier. Afin de pallier les inconvénients des boîtiers hyperfréquences de l'état de l'art, l'invention propose un boîtier miniature hyperfréquence pour montage en surface sur un circuit d'accueil, le boîtier comportant :
- une puce électronique ayant une face active et une face arrière opposée à la face active, la face active ayant des éléments actifs, des conducteurs électriques de la face active, la face arrière ayant des conducteurs électriques de la face arrière ;
- des plots électriques de report du boîtier sur le circuit d'accueil ; caractérisé en ce que le plots électriques de report du boîtier sont reliés aux conducteurs électriques de la face arrière de la puce, les conducteurs électriques de la face active de la puce et ceux de la face arrière de la puce étant reliés par des trous métallisés et en ce que le boîtier est fermé par un matériau diélectrique enrobant au moins la face active de la puce. Dans une réalisation préférentielle du boîtier selon l'invention, les conducteurs électriques de la face arrière de la puce sont en contact direct avec les plots électriques de report du boîtier, le boîtier étant fermé par une couche diélectrique épaisse déposée sur la face active de la puce.
Dans une autre réalisation du boîtier selon l'invention, plusieurs trous métallisés relient au moins un conducteur de la face active à au moins un conducteur électrique de la face arrière de la puce transmettant la chaleur dégagée par la puce, via les plots électriques de report, au circuit d'accueil.
Un principal objet de cette invention est de d'obtenir un boîtier miniature hyperfréquences performant et de très petites dimensions avec des performances électriques des circuits intégrés hyperfréquences jusqu'à des fréquences d'au moins 100 GHz.
Un autre objet de cette invention est de disposer d'un circuit intégré miniature protégé par son boîtier de très faibles dimensions compatible avec des technologies de montage en surface ou SMD. L'invention concerne aussi un procédé de fabrication en collectif de boîtiers selon l'invention comportant au moins les étapes suivantes :
- fabrication sur une galette de matériau semi-conducteur (ou « wafer » en langue anglaise ) de plusieurs puces électroniques ayant chacune une face active et une face arrière opposée à la face active, la face active ayant des éléments actifs, des conducteurs électriques de la face active, la face arrière ayant des conducteurs électriques de la face arrière, des trous métallisés dans la puce reliant des conducteurs électriques de la face active à des conducteurs électriques de la face arrière ;
- fermeture des boîtiers ; - séparation des boîtiers.
L'invention sera mieux comprise à l'aide d'exemples de réalisations de boîtiers miniatures hyperfréquence en référence aux figures ci-annexées dans lesquelles :
- la figure 1 , déjà décrite, représente un premier exemple de réalisation d'un boîtier hyperfréquence de l'état de l'art ;
- La figure 2, déjà décrite, montre une deuxième réalisation d'un boîtier hyperfréquence de l'état de l'art ;
- la figure 3, déjà décrite, montre une troisième réalisation d'un boîtier hyperfréquence de l'état de l'art ; - la figure 4 montre une première réalisation du boîtier hyperfréquences miniature selon l'invention
- la figure 5a montre une autre réalisation du boîtier hyperfréquences selon l'invention ;
- la figure 5b représente une variante du boîtier hyperfréquences de la figure 5a selon l'invention
- les figures 6a, 6b, 6c, 6d, 6e, 6f, 6g montrent les principales étapes d'un premier procédé de fabrication en collectif du boîtier miniature selon l'invention ;
- Les figure 7a, 7b et 7c montrent respectivement une vue en coupe, une vue de dessous et une vue de dessus d'un des boîtiers miniature hyperfréquences selon l'invention résultant du premier procédé de fabrication en collectif des boîtiers selon l'invention ;
- les figures 8a, 8b, 8c, 8d, 8e, 8f et 8g montrent les principales étapes d'un deuxième procédé de fabrication en collectif du boîtier miniature selon l'invention ;
- la figure 9 montre plusieurs boîtiers miniature hyperfréquences selon l'invention obtenus selon le deuxième procédé de fabrication.
La figure 4 montre une première réalisation du boîtier hyperfréquences miniature selon l'invention. Le boîtier de la figure 4 comporte : - une puce électronique 70 ayant une face active 72 et une face arrière 74 opposée à la face active, la face active comportant des transistors 76, des conducteurs électriques 78 de la face active 72, la face arrière comportant des conducteurs électriques 80 de la face arrière 74 et parmi ces conducteurs de la face arrière des conducteurs de masse 82. La face active de la puce comporte une couche diélectrique 84 de protection, déposée sur ladite face active ;
- un cadre d'adaptation 86 du boîtier comportant des plots électriques 90 ayant deux faces principales opposées 94, 96 de report, d'une part, de la puce 70 par sa face arrière 74, sur les faces 94 des plots électriques du côté du boîtier, et d'autre part, du boîtier sur un circuit d'accueil par les faces opposées 96 des plots électriques 90.
Selon une principale caractéristique de l'invention, les conducteurs électriques 78 de la face active 72 sont reliés aux conducteurs électriques 80 de la face arrière 74 par des trous métallisés 98. Les plots électriques 90 sont en contact direct avec les conducteurs électriques 78 de la face arrière de la puce.
Dans cette réalisation préférentielle de la figure 4 selon l'invention, les plots électriques 90 de report du boîtier sur un circuit d'accueil assurent en outre la liaison électrique avec les conducteurs électriques de la puce et notamment ceux de la face active à travers les trous métallisés 98 de la puce.
Le boîtier est fermé hermétiquement par moulage avec un matériau diélectrique 99 recouvrant la totalité de la puce jusqu'au niveau de la surface 94 des plots électriques en contact avec la face arrière de la puce.
La figure 5a montre une autre réalisation du boîtier hyperfréquences selon l'invention comportant :
- une puce électronique 100 ayant une face active 102 et une face arrière 104 opposée à la face. La face active comporte des transistors 108, des conducteurs électriques 110 de la face active 102, la face arrière comportant des conducteurs électriques 112 de la face arrière 104 et parmi ces conducteurs des conducteurs de masse commune et drain thermique 114. Les conducteurs électriques 110 de la face active 102 sont reliés aux conducteurs électriques 112 de la face arrière 104 par des trous métallisés 1 16. La face active de la puce comporte une couche diélectrique 1 18 de protection, déposée sur ladite face active.
Le boîtier de la figure 5a est fermé hermétiquement par un moulage
1 18 de la totalité de la puce avec un matériau diélectrique, le matériau diélectrique recouvrant les bords de la puce jusqu'au niveau de sa face arrière 104. Dans cette réalisation de la figure 5a, les conducteurs électriques 1 12 de la face arrière de la puce sont aussi des plots électriques de report du boîtier sur un circuit d'accueil. Le report du boîtier peut, par exemple, être effectué par soudure sur des conducteurs électriques d'un circuit d'accueil.
La figure 5b représente une variante du boîtier hyperfréquences de la figure 5a selon l'invention.
Dans cette variante de la figure 5a, le boîtier hyperfréquence comporte des billes de soudure 118 soudées sur les conducteurs électriques 1 12 de la face arrière 104 de la puce pour le report du boîtier sur un circuit d'accueil selon des techniques connues.
Dans le boîtier miniature selon l'invention, l'enrobage ou le moulage de la puce est effectué de préférence avec des matériaux tels que le plastic, les matériaux organiques, polymères, verre. La couche diélectrique de protection de la face active de la puce est par exemple une couche de passivation en Benzo-cyclo-butène (BCB).
Le substrat de la puce électronique peut être réalisée avec différents matériaux selon les contraintes thermiques d'utilisation, par exemples des matériaux tels que le diamant, AIN, BeO. Le substrat peut, dans le cas de puces à faible coût être choisi parmi les PCB, LTCC, HTCC... avec des vias thermiques ou « slugs » en langue anglaise.
L'invention est aussi relative à un procédé de fabrication en collectif des boîtiers selon l'invention décrits précédemment.
Les figures 6a, 6b, 6c, 6d, 6e, 6f, 6g montrent les principales étapes d'un premier procédé de fabrication en collectif du circuit intégré selon l'invention :
Le premier procédé de fabrication du circuit intégré selon l'invention comporte au moins les étapes suivantes :
- fabrication selon des techniques connues, par exemple, sur une galette, soit d'Arséniure de Gallium, soit de Nitrure de Gallium, ou soit de Phosphore d'Indium, monocristallin, ou « wafer » en langue anglaise, d'un ensemble de circuits intégrés (voir figure 6a). Chacun des circuits intégrés comporte une face active 130 et une face arrière 132 opposée à la face active, la face active comportant des éléments actifs 133, des conducteurs électriques 134 de la face active, la face arrière 132 comportant des conducteurs électriques 136 de la face arrière et selon une principale caractéristique de l'invention des trous métallisés 138 dans la puce reliant les conducteurs électriques 134 de la face active aux conducteurs électriques 136 de la face arrière ; - dépôt d'une couche de protection 140 en matériau diélectrique sur les faces actives 130 des circuits intégrés du « wafer » ;
- report du wafer par les faces actives 130 et leurs couches de protection 140 des circuits intégrés sur une plaque de maintien 142 (voir figure 6b) assurant un support mécanique du wafer, puis, réalisation par croissance électrolytique d'un réseau de plots électriques 142 ou « leadframe » sur les faces arrière 132 des circuits intégrés ; la figure 6c montre une vue du réseau de plots électriques 142 réalisés sur un circuit intégré du wafer, la figure 6d les plots électriques réalisés sur quatre circuits intégrés contigus du wafer ; - retrait du wafer de la plaque de maintien 142 et report du wafer, par les plots électriques 142 des faces arrières 132 des circuits intégrés, sur une autre plaque de maintien 144 du wafer, puis, gravure des chemins de découpe 146 des circuits intégrés du wafer par voie chimique, sélective ou même sciage - moulage plastique 148 de l'ensemble des circuits intégrés du wafer (voir figure 6f) recouvrant les faces actives 130 des circuits intégrés et leurs couches de protection 140 par injection sous vide, par exemple ;
- séparation des boîtiers par sciage du wafer. Voir figure 6g montrant plusieurs boîtiers 149, selon l'invention, après séparation ; Les figure 7a, 7b et 7c montrent respectivement une vue en coupe, une vue de dessous et une vue de dessus d'un des boîtiers miniature 149 hyperfréquences selon l'invention résultant du premier procédé de fabrication en collectif des boîtiers selon l'invention.
La vue de dessous de la figure 7b montre le réseau de plots électriques 142 de report du boîtier hyperfréquences sur un circuit d'accueil et parmi ces plots, des plots électriques pour les signaux d'entré/sortie 152 de la puce et des plots de masse 154.
La vue de dessus de la figure 7c montre une surface de plastique 156 uniforme de fermeture du boîtier. Les figures 8a, 8b, 8c, 8d, 8e, 8f et 8g montrent les principales étapes d'un deuxième procédé de fabrication en collectif du circuit intégré selon l'invention :
Le deuxième procédé de fabrication comporte au moins les étapes suivantes : - comme dans le cas du premier procédé de fabrication décrit précédemment, le deuxième procédé comporte une étape de fabrication, selon des techniques connues, sur une galette de silicium monocristallin ou « wafer » d'un ensemble de circuits intégrés, chacun des circuits intégrés ayant la face active 130 et la face arrière 132 opposée à la face active, la face active comportant des éléments actifs 133, des conducteurs électriques 134 de la face active, la face arrière comportant des conducteurs électriques 136 de la face arrière et selon une principale caractéristique de l'invention, des trous métallisés 138 dans la puce reliant les conducteurs électriques 134 de la face active aux conducteurs électriques 136 de la face arrière ; puis : -dépôt d'une couche de protection 140 en matériau diélectrique sur les faces actives des circuits intégrés du « wafer » ; les étapes suivantes différent du premier procédé de fabrication des boîtiers en collectif décrit :
- séparation des circuits intégrés par découpe du wafer, puis report, par les faces arrières 132 des circuits, de chacun des circuits intégrés sur une plaque de maintien 170 (voir figure 8a). Le report des circuits intégrés sur la plaque de maintien 170 s'effectue par des techniques connues de prélèvement et dépôt des circuits dénommées en langue anglaise « pick and place » ;
- premier moulage plastique 174 de l'ensemble des circuits intégrés déposés sur la plaque de maintien 170 recouvrant les faces actives des circuits intégrés comportant les couches de protection 140, par exemple par injection sous vide (voir figure 8b ;
- retrait du moulage 174 comportant l'ensemble de circuits intégrés de la plaque de maintien 170 et report du moulage 174, par les faces actives 130 et leur couches de protection 140 des circuits intégrés, sur une autre plaque de maintien (non représentée), puis réalisation par croissance électrolytique d'un réseau de plots électriques 180 ou « leadframe » sur les faces arrière 132 des circuits intégrés (voir figure 8c), les plots électriques 180 assurant les connexions électriques avec les conducteurs électriques 132 de la face arrière de la puce ; la figure 8d montre une vue du réseau de plots électriques 180 réalisés sur un circuit intégré du moulage 174, la figure 8e les plots électriques réalisés sur quatre circuits intégrés contigus du même moulage ;
- deuxième moulage plastique 190 de l'ensemble des circuits intégrés enrobant le réseau de plots électriques réalisés du coté des faces arrières 132 des circuits intégrés (voir figure 8f) ;
- amincissement du deuxième moulage plastique 190 (voir figure 8g) jusqu'à l'apparition des plots électriques 180 de report de la puce séparés par le deuxième moulage plastique 190 ; - séparation des boîtiers selon l'invention par sciage SC2 du wafer moulé (voir figure 8g).
La figure 9 montre plusieurs boîtiers hyperfréquences miniature 191 identiques selon l'invention obtenus selon le deuxième procédé de fabrication, après la dernière opération de sciage du wafer moulé. Dans les procédés de fabrication décrits, les wafer sur lesquels sont fabriques les circuits intégrés sont notamment en Si, GaAs, InP, GaN, SiC,
Saphire.
Les boîtiers miniature hyperfréquences selon l'invention comportent des nombreux avantage par rapport à ceux de l'état de l'art notamment : - un encombrement encore plus réduit pour une protection tout aussi efficace du circuit intégré ;
- un coût d'au moins un ordre de grandeur inférieur aux solutions des boîtiers existant ;
- une amélioration significative des performances électriques dans les applications de logique et analogiques rapides, grâce à des interconnexions très courtes ;
- une amélioration significative du problème thermique par une réduction du chemin thermique du boîtier.

Claims

REVENDICATIONS
1. Boîtier miniature hyperfréquence pour montage en surface sur un circuit d'accueil, le boîtier comportant :
- une puce électronique (10, 40, 50, 70, 100) ayant une face active (12, 72, 102, 130) et une face arrière (18, 52, 74, 132) opposée à la face active, la face active ayant des éléments actifs (14, 76, 108), des conducteurs électriques de la face active (16, 48, 78, 110, 134), la face arrière ayant des conducteurs électriques de la face arrière (82, 112, 136) ;
- des plots électriques (44, 90, 112, 114, 142, 152, 154, 180), de report du boîtier sur le circuit d'accueil ; caractérisé en ce que le plots électriques de report du boîtier sont reliés aux conducteurs électriques de la face arrière de la puce, les conducteurs électriques de la face active de la puce et ceux de la face arrière de la puce étant reliés par des trous métallisés (98, 116, 138) et en ce que le boîtier est fermé par un matériau diélectrique (118, 140, 148, 174) enrobant au moins la face active de la puce.
2. Boîtier hyperfréquence selon la revendication 1 , caractérisé en ce que les conducteurs électriques de la face arrière (82, 112, 136) de la puce sont en contact direct avec les plots électriques de report du boîtier, le boîtier étant fermé par une couche diélectrique épaisse (108, 140) déposée sur la face active de la puce.
3. Boîtier hyperfréquence selon l'une des revendications 1 ou 2, caractérisé en ce que plusieurs trous métallisés (98, 116, 138) relient au moins un conducteur de la face active à au moins un conducteur électrique de la face arrière de la puce transmettant la chaleur dégagée par la puce, via les plots électriques de report, au circuit d'accueil.
4. Boîtier hyperfréquence selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte :
- une puce électronique (70) ayant une face active (72) et une face arrière (74) opposée à la face active, la face active comportant des transistors (76), des conducteurs électriques (78) de la face active (72), la face arrière comportant des conducteurs électriques (80) de la face arrière (74) et parmi ces conducteurs de la face arrière des conducteurs de masse (82), la face active de la puce comportant une couche diélectrique (84) de protection, déposée sur ladite face active ;
- un cadre d'adaptation (86) du boîtier comportant des plots électriques (90) ayant deux faces principales opposées (94, 96) de report, d'une part, de la puce (70) par sa face arrière (74), sur les faces (94) des plots électriques du côté du boîtier, et d'autre part, du boîtier sur un circuit d'accueil par les faces opposées (96) des plots électriques 90),
- et en ce que les conducteurs électriques (78) de la face active (72) sont reliés aux conducteurs électriques (80) de la face arrière (74) par des trous métallisés (98).
5. Boîtier hyperfréquence selon la revendication 4, caractérisé en ce qu'il comporte des billes de soudure (118) soudées sur les conducteurs électriques (112) de la face arrière 104 de la puce pour le report du boîtier sur un circuit d'accueil selon des techniques connues.
6. Boîtier hyperfréquence selon l'une des revendications 1 à 4, caractérisé en ce que, l'enrobage ou le moulage (99, 118) de la puce est effectué de préférence avec des matériaux tels que le plastic, les matériaux organiques, polymères, verre.
7. Boîtier hyperfréquence selon l'une des revendications 1 à 6, caractérisé en ce que la couche diélectrique de protection (84) de la face active de la puce est une couche de passivation en Benzo-cyclo-butène (BCB).
8. Boîtier hyperfréquence selon l'une des revendications 1 à 7, caractérisé en ce que le substrat de la puce électronique peut être réalisée avec des matériaux tels que le diamant, AIN, BeO et dans le cas de puces à faible coût, les PCB, LTCC, HTCC... avec des vias thermiques ou « slugs » en langue anglaise.
9. Procédé de fabrication en collectif de boîtiers hyperfréquences comportant au moins les étapes suivantes :
- fabrication sur une galette, soit d'Arséniure de Gallium, soit de Nitrure de Gallium, ou soit de Phosphore d'Indium, monocristallin, ou « wafer » en langue anglaise, d'un ensemble de circuits intégrés, chacun des circuits intégrés comportant une face active (130) et une face arrière (132) opposée à la face active, la face active comportant des éléments actifs, des conducteurs électriques (134) de la face active, la face arrière comportant des conducteurs électriques (136), des trous métallisés (138) dans la puce reliant les conducteurs électriques (134) de la face active aux conducteurs électriques (136) de la face arrière ;
- dépôt d'une couche de protection (140) en matériau diélectrique sur les faces actives (130) des circuits intégrés du « wafer » ;
- report du wafer par les faces actives (130) et leurs couches de protection (140) des circuits intégrés sur une plaque de maintien (142) assurant un support mécanique du wafer puis réalisation par croissance électrolytique d'un réseau de plots électriques (142) ou « leadframe » sur les faces arrière (132) des circuits intégrés ;
- retrait du wafer de la plaque de maintien (142) et report du wafer, par les plots électriques (142) des faces arrières (132) des circuits intégrés, sur une autre plaque de maintien (144) du wafer puis gravure des chemins de découpe (146) des circuits intégrés du wafer soit par voie chimique, sélective ou même sciage
- moulage plastique (148) de l'ensemble des circuits intégrés du wafer recouvrant les faces actives (130) des circuits intégrés et leurs couches de protection (140) par injection sous vide ;
- séparation des boîtiers (149) par sciage du wafer.
10. Procédé de fabrication en collectif de boîtiers hyperfréquences comportant au moins les étapes suivantes :
- une étape de fabrication sur une galette de silicium monocristallin ou « wafer » d'un ensemble de circuits intégrés, chacun des circuits intégrés ayant la face active (130) et la face arrière (132) opposée à la face active, la face active comportant des éléments actifs, des conducteurs électriques (134) de la face active, la face arrière comportant des conducteurs électriques (136) de la face arrière, des trous métallisés (138) dans la puce reliant les conducteurs électriques (134) de la face active aux conducteurs électriques (136) de la face arrière ; puis : -dépôt d'une couche de protection (140) en matériau diélectrique sur les faces actives des circuits intégrés du « wafer » ; - séparation des circuits intégrés par découpe du wafer, puis report, par les faces arrières (132) des circuits, de chacun des circuits intégrés sur une plaque de maintien (170) ;
- premier moulage plastique (174) de l'ensemble des circuits intégrés déposés sur la plaque de maintien 170 recouvrant les faces actives des circuits intégrés comportant les couches de protection (140), par exemple par injection sous vide ;
- retrait du moulage (174) comportant l'ensemble de circuits intégrés de la plaque de maintien (170) et report du moulage (174), par les faces actives (130) et leur couches de protection (140) des circuits intégrés, sur une autre plaque de maintien, puis réalisation par croissance électrolytique d'un réseau de plots électriques (180) ou « leadframe » sur les faces arrière (132) des circuits intégrés ;
- deuxième moulage plastique (190) de l'ensemble des circuits intégrés enrobant le réseau de plots électriques réalisés du coté des faces arrières (132) des circuits intégrés ;
- amincissement du deuxième moulage plastique (190) jusqu'à l'apparition des plots électriques (180) de report de la puce séparés par le deuxième moulage plastique (190) ; - séparation des boîtiers (191 ) selon l'invention par sciage (SC2) du wafer moulé.
1 1. Procédé de fabrication en collectif de boîtiers hyperfréquences selon la revendication 10, caractérisé en ce que le report des circuits intégrés sur la plaque de maintien (170) s'effectue par des techniques de prélèvement et dépôt des circuits dénommées en langue anglaise « pick and place ».
PCT/EP2005/053733 2004-08-03 2005-08-01 Boitier miniature hyperfrequence pour montage en surface et procede de fabrication du boitier WO2006013197A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0408588A FR2874127B1 (fr) 2004-08-03 2004-08-03 Boitier miniature hyperfrequence pour montage en surface et procede de fabrication du boitier
FR0408588 2004-08-03

Publications (1)

Publication Number Publication Date
WO2006013197A1 true WO2006013197A1 (fr) 2006-02-09

Family

ID=34948513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/053733 WO2006013197A1 (fr) 2004-08-03 2005-08-01 Boitier miniature hyperfrequence pour montage en surface et procede de fabrication du boitier

Country Status (2)

Country Link
FR (1) FR2874127B1 (fr)
WO (1) WO2006013197A1 (fr)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158911A (en) * 1990-08-03 1992-10-27 Thomson Composants Microondes Method for interconnection between an integrated circuit and a support circuit, and integrated circuit adapted to this method
EP0611129A2 (fr) * 1993-02-08 1994-08-17 General Electric Company Substrat intégré pour modules à circuits intégrés
US5528080A (en) * 1993-03-05 1996-06-18 Goldstein; Edward F. Electrically conductive interconnection through a body of semiconductor material
US20010018229A1 (en) * 2000-02-28 2001-08-30 Nbc Corporation Semiconductor device and method for fabricating same
US20020011667A1 (en) * 1999-02-18 2002-01-31 Nec Corporation Semiconductor device and method for manufacturing same
US6392290B1 (en) * 2000-04-07 2002-05-21 Siliconix Incorporated Vertical structure for semiconductor wafer-level chip scale packages
US20020173069A1 (en) * 2000-02-07 2002-11-21 Kazutaka Shibata Mounting structure of semiconductor chip, semiconductor device and method of making the semiconductor device
WO2003050850A2 (fr) * 2001-12-12 2003-06-19 Infineon Technologies Ag Ensemble puce
US20030190795A1 (en) * 2002-04-08 2003-10-09 Hitachi, Ltd. Method of manufacturing a semiconductor device
US20040121563A1 (en) * 2002-03-06 2004-06-24 Farnworth Warren M. Method for fabricating encapsulated semiconductor components having conductive vias
WO2004064159A1 (fr) * 2003-01-15 2004-07-29 Fujitsu Limited Dispositif a semi-conducteur, appareil a semi-conducteur a montage tridimensionnel, procede de production du dispositif a semi-conducteur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707741A4 (fr) * 1994-05-05 1997-07-02 Siliconix Inc Montage en surface et technologie de puce a protuberances
US6577013B1 (en) * 2000-09-05 2003-06-10 Amkor Technology, Inc. Chip size semiconductor packages with stacked dies
JP3405456B2 (ja) * 2000-09-11 2003-05-12 沖電気工業株式会社 半導体装置,半導体装置の製造方法,スタック型半導体装置及びスタック型半導体装置の製造方法
TWI227050B (en) * 2002-10-11 2005-01-21 Sanyo Electric Co Semiconductor device and method for manufacturing the same
JP3908146B2 (ja) * 2002-10-28 2007-04-25 シャープ株式会社 半導体装置及び積層型半導体装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158911A (en) * 1990-08-03 1992-10-27 Thomson Composants Microondes Method for interconnection between an integrated circuit and a support circuit, and integrated circuit adapted to this method
EP0611129A2 (fr) * 1993-02-08 1994-08-17 General Electric Company Substrat intégré pour modules à circuits intégrés
US5528080A (en) * 1993-03-05 1996-06-18 Goldstein; Edward F. Electrically conductive interconnection through a body of semiconductor material
US20020011667A1 (en) * 1999-02-18 2002-01-31 Nec Corporation Semiconductor device and method for manufacturing same
US20020173069A1 (en) * 2000-02-07 2002-11-21 Kazutaka Shibata Mounting structure of semiconductor chip, semiconductor device and method of making the semiconductor device
US20010018229A1 (en) * 2000-02-28 2001-08-30 Nbc Corporation Semiconductor device and method for fabricating same
US6392290B1 (en) * 2000-04-07 2002-05-21 Siliconix Incorporated Vertical structure for semiconductor wafer-level chip scale packages
WO2003050850A2 (fr) * 2001-12-12 2003-06-19 Infineon Technologies Ag Ensemble puce
US20040121563A1 (en) * 2002-03-06 2004-06-24 Farnworth Warren M. Method for fabricating encapsulated semiconductor components having conductive vias
US20030190795A1 (en) * 2002-04-08 2003-10-09 Hitachi, Ltd. Method of manufacturing a semiconductor device
WO2004064159A1 (fr) * 2003-01-15 2004-07-29 Fujitsu Limited Dispositif a semi-conducteur, appareil a semi-conducteur a montage tridimensionnel, procede de production du dispositif a semi-conducteur

Also Published As

Publication number Publication date
FR2874127B1 (fr) 2006-12-08
FR2874127A1 (fr) 2006-02-10

Similar Documents

Publication Publication Date Title
EP1829105B1 (fr) Boitier miniature hyperfrequence et procede de fabrication du boitier
EP0583201B1 (fr) Module multi-puces à trois dimensions
EP0638933B1 (fr) Procédé d'interconnexion de pastilles semi-conductrices en trois dimensions, et composant en résultant
JP2006527499A (ja) 高周波電子装置用パッケージ
FR2591801A1 (fr) Boitier d'encapsulation d'un circuit electronique
EP3089211B1 (fr) Procede d'encapsulation d'un circuit electronique
US7696062B2 (en) Method of batch integration of low dielectric substrates with MMICs
FR2767223A1 (fr) Procede d'interconnexion a travers un materiau semi-conducteur, et dispositif obtenu
EP0593330A1 (fr) Procédé d'interconnexion 3D de boîtiers de composants électroniques, et composant 3D en résultant
EP1657749B1 (fr) Boîtier microélectronique multiplans avec blindage interne
US11545448B2 (en) Moisture-resistant electronic component and process for producing such a component
US20060162157A1 (en) Economical high-frequency package
FR2738395A1 (fr) Dispositif autoporte pour la propagation d'ondes hyperfrequences et procedes de realisation d'un tel dispositif
US5473192A (en) Unitary silicon die module
FR2629271A1 (fr) Dispositif d'interconnexion et de protection d'une pastille nue de composant hyperfrequence
FR2943176A1 (fr) Procede de positionnement des puces lors de la fabrication d'une plaque reconstituee
US6933603B2 (en) Multi-substrate layer semiconductor packages and method for making same
WO2006013197A1 (fr) Boitier miniature hyperfrequence pour montage en surface et procede de fabrication du boitier
US5959352A (en) Chip arrangement and method of producing the same
FR2565030A1 (fr) Structure de metallisations de reprise de contacts d'un dispositif semi-conducteur et dispositif dote d'une telle structure
CN116964729A (zh) 包括被配置为用于电磁干扰屏蔽和热量耗散的金属层的封装件
KR100631509B1 (ko) 반도체 소자의 모듈 패키지 및 그 제조방법
WO2004112136A1 (fr) Dispositif electronique
WO2003081669A1 (fr) Module de circuits integres et procede de fabrication correspondant
FR2507017A1 (fr) Microassemblage utilisable en hyperfrequences

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase