WO2006006606A1 - Process for producing fuel and fuel production apparatus - Google Patents

Process for producing fuel and fuel production apparatus Download PDF

Info

Publication number
WO2006006606A1
WO2006006606A1 PCT/JP2005/012864 JP2005012864W WO2006006606A1 WO 2006006606 A1 WO2006006606 A1 WO 2006006606A1 JP 2005012864 W JP2005012864 W JP 2005012864W WO 2006006606 A1 WO2006006606 A1 WO 2006006606A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
mpa
processing container
temperature
waste
Prior art date
Application number
PCT/JP2005/012864
Other languages
French (fr)
Japanese (ja)
Inventor
Joji Takase
Original Assignee
Nishimuragumi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimuragumi Co., Ltd. filed Critical Nishimuragumi Co., Ltd.
Publication of WO2006006606A1 publication Critical patent/WO2006006606A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/42Solid fuels essentially based on materials of non-mineral origin on animal substances or products obtained therefrom, e.g. manure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates to a technique for changing properties to effectively reuse waste, and particularly suitable for use with waste having high water content such as raw sludge, fish residue, manure and the like as fuel.
  • the present invention relates to a fuel manufacturing method and a fuel manufacturing apparatus that are suitable for the conversion process.
  • Patent Document 1 discloses a raw material processing method for processing raw materials such as food residues, wood, and paper into feed and fertilizer (Patent Document 1).
  • saturated steam is introduced between the treatment kettle and the heat-retaining kettle to keep the inside of the treatment kettle at a predetermined temperature or more, and raw materials such as food residues are introduced into the kettle, and saturated steam is introduced to the predetermined pressure. It is steamed under temperature, then hydrolyzed, pyrolyzed, dried and carbonized with stirring, and finally used as feed and fertilizer.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-47409
  • an object of the present invention is to produce feed and fertilizer without generating harmful substances from raw materials such as food residue wood and paper.
  • the company is only seeking the appropriate processing conditions. Therefore, it is not necessarily the optimum condition for use for purposes other than feed and fertilizer.
  • the appropriate treatment conditions differ depending on the properties of the waste that is the treatment target.In particular, treatment at high temperatures and treatment under high pressure greatly change the properties. It must be specifically processed! / ⁇ .
  • the waste used as fuel is a highly humid material such as raw garbage or sewage sludge
  • the pyrolysis gas is very difficult to pyrolyze because its water content is 80% or more.
  • a method has also been proposed in which highly humid waste is sufficiently dried in advance and then used as fuel for gasification power generation.
  • the conventional processing has a problem that the processing cost becomes high because the processing time is considerably long.
  • the present invention has been made in order to solve such problems, and is capable of removing harmful substances without generating harmful substances such as dioxin, and is also a waste having a high water content. Even in such a case, it is possible to reduce the processing cost by treating it in a short time, while reducing the moisture content while suppressing the loss of calorific value, removing bad odors, and converting it into properties suitable for use as fuel.
  • An object of the present invention is to provide a fuel manufacturing method and a fuel manufacturing apparatus.
  • a feature of the fuel production method and the fuel production apparatus is that the pressure in the processing container is maintained at 1.96 MPa or more by injecting high-pressure steam into the processing container in which waste is charged.
  • the temperature is raised, and the injection of the high-pressure steam is stopped when the material part temperature in the lower part of the processing container matches the gap part temperature in the upper part of the processing container.
  • the material part temperature is the temperature of the processing material (waste) in the lower part of the processing container or the temperature on the inner surface of the processing container in contact with the processing material (waste).
  • the void temperature is the temperature of the void in the upper part of the processing container.
  • the fuel production method and the fuel production apparatus according to the present invention are characterized in that the pressure in the processing container is set to 1.96 MPa or more by injecting high-pressure steam into the processing container in which waste is charged. 3. Hold at 43MPa or less and at least under the treatment container The high-pressure steam is injected until the temperature of the material portion in the direction matches the temperature of the void in the upper part of the processing vessel.
  • the pressure in the processing container is set to 2.
  • the waste when the waste is sewage sludge, it is preferable to maintain the pressure in the treatment container at 3.05 MPa or more and 3.43 or less.
  • the pressure in the processing container is set to 2
  • the pressure in the processing container is set to 2.
  • the pressure in the processing container is set to 2
  • the present invention not only harmful substances such as dioxin are generated, but also the inherent harmful substances are removed, and even waste with a high water content is treated in a short time.
  • the moisture content can be reduced while suppressing the loss of calorific value, malodors can be removed, and conversion into properties suitable for use as fuel can be achieved.
  • FIG. 1 is a schematic diagram showing a fuel production apparatus 1 according to this embodiment.
  • the fuel production apparatus 1 of the present embodiment mainly includes a processing container 2 for storing and processing various types of waste, and a stirring means 3 for stirring the waste charged in the processing container 2.
  • Steam injecting means 4 for injecting high-pressure steam into the waste in the processing container 2, pressure adjusting means 5 for adjusting the pressure in the processing container 2, the stirring means 3, the steam injecting It comprises means 4 and control means 6 for controlling the pressure adjusting means 5.
  • the waste to be treated in this embodiment covers various types of waste, but in particular, raw garbage, sewage sludge, fish residue, peat, livestock dung, squid liver (squid goro), scallop midgut gland High moisture content such as (scallop mouth), which is usually difficult to reuse as fuel, is also a suitable treatment target.
  • the processing container 2 is configured by a first-type pressure container having pressure resistance, and the waste is processed therein. Yes.
  • a waste inlet 21 is provided in the upper part of the processing container 2, and an outlet 22 is provided in the lower part.
  • the input port 21 and the discharge port 22 have a sealed structure in which packing capable of withstanding high temperature and pressure in the processing container 2 is used when processing waste.
  • the input port 21 and the discharge port 22 are provided with a control system in which the opening / closing operation does not react unless the pressure in the processing container 2 is reduced to 0.015 MPa or less.
  • an upper temperature sensor 23a is provided above the processing container 2, and a lower temperature sensor 23b is provided below.
  • the upper temperature sensor 23a is a sensor that measures the temperature above the inside of the processing container 2.
  • the initial temperature sensor 23a may be buried in the waste at the beginning of the introduction of the waste. Thus, the temperature of the void portion is detected.
  • the lower temperature sensor 23b is a sensor that measures the temperature of the waste itself in the processing container 2 or the inner surface of the processing container 2 that is in contact with the lower temperature sensor 23b. The waste temperature will be detected.
  • the upper temperature sensor 23a and the lower temperature sensor 23b are arranged on the inner surface of the processing container 2 whose vertical force of the processing container 2 is also inclined by about 30 °. Further, a pressure sensor 24 for detecting pressure is provided above the processing container 2.
  • the stirring means 3 is for uniformly pressurizing and warming the input waste.
  • the stirring means 3 supports a horizontal rotation shaft 31 in the longitudinal direction in the processing container 2, and a stirring blade 32 inclined forward with respect to the vertical surface of the horizontal rotation shaft 31 is attached. ing.
  • the horizontal rotation shaft 31 is connected to a drive motor 33 that can rotate the forward and reverse directions.
  • the agitating means 3 is configured to gradually transfer the thrown-in waste while stirring, and extends from the inlet 21 to the outlet 22.
  • the drive motor 33 is an inverter system. It is a motor whose rotation speed and rotation direction are freely controllable, and reciprocates in the processing container 2 as necessary until the waste is converted into properties suitable for fuel.
  • the water vapor injection means 4 has a boiler 41 that generates high-pressure water vapor, and an air supply pipe 42 for supplying the water vapor generated from the boiler 41 into the processing vessel 2.
  • the pressure of water vapor generated in the boiler 41 is maintained at a constant value, and the pressure in the processing vessel 2 is adjusted by the amount of high-pressure steam injected. Since the temperature is determined according to the pressure of the high-pressure steam, the inside of the processing container 2 is kept at a high temperature.
  • the maximum pressure of water vapor that can be generated in the boiler 41 is set to 3.43 MPa, and the pressure in the processing vessel 2 is maintained at 1.96 MPa or more by appropriately adjusting the amount of high-pressure steam injected. It is supposed to be.
  • the air supply pipe 42 is connected to the processing container 2 in a substantially horizontal direction at a position above the horizontal rotation shaft 31. This is because it is desired to apply high-pressure steam when the waste in the processing container 2 has accumulated and is not under pressure, i.e., immediately before the waste is agitated and floated in the air and covered with other waste. It is optimal to apply high-pressure steam, which is a force that can achieve high processing efficiency.
  • the pressure adjusting means 5 includes a pressure adjusting valve 51 that is electrically controlled to be freely opened and closed, an exhaust pipe 52 for exhausting water vapor in the processing vessel 2 through the pressure adjusting valve 51, and a cap. You are composed. When the pressure in the processing container 2 exceeds a predetermined value, the pressure adjustment valve 51 is opened, the pressure in the processing container 2 is released, and the predetermined pressure is maintained.
  • a cooling device 8 is connected to the exhaust pipe 52 via a silencer 7 to cool and liquefy the water vapor from the processing vessel 2 and supply it to the wastewater treatment facility 9.
  • the silencer 7 is designed to be installed in urban areas, etc., clearing the regulation value of the Noise Prevention Ordinance! Speak.
  • control means 6 is connected to the upper temperature sensor 23a, the lower temperature sensor 23b and the pressure sensor 24, and based on the detection signals from these sensors and a predetermined control program, the stirring means 3
  • the water vapor injection means 4 and the pressure adjustment means 5 are controlled.
  • the control means 6 controls the direction of rotation and speed of the drive motor 33 to control the time for stirring and transferring the waste in the processing container 2.
  • the control means 6 is set in advance with an optimum processing pressure range for treating various types of waste, and the steam injection means 4 and the pressure adjusting means 5 are feedback-controlled so as to maintain this processing pressure range. And then.
  • control means 6 controls the steam injection means 4 to inject high-pressure steam when the pressure in the processing container 2 is less than the processing pressure range based on the detection result of the pressure sensor 24.
  • the pressure adjusting means 5 is controlled to exhaust high-pressure steam and lower the pressure.
  • control means 6 of the present embodiment controls the water vapor injection means 4 when the material part temperature force detected by the lower temperature sensor 23b matches the gap temperature detected by the upper temperature sensor 23a.
  • Set to stop high pressure steam injection! This control may be operated by the user while checking the temperature status.
  • the stop control of the high-pressure steam introduced as described above is performed because the air supply pipe 42 is disposed at the upper position of the processing container 2 and because highly humid waste tends to accumulate moisture below, it is discarded. This is due to the large temperature difference between the objects. Therefore, when the material part temperature in the lower part in the processing container 2 matches the gap part temperature in the upper part and uniform pressure and temperature are applied to the whole waste, it can be converted into a property suitable for fuel without unevenness.
  • the pressure at the time of processing in the processing container 2 is set in advance for the control means 6 for each type of waste to be input.
  • the set internal pressure is the pressure at which various types of waste are converted to properties with a sufficiently reduced moisture content without significantly impairing the amount of stored heat.
  • the range is 1.96 MPa or more.
  • waste is introduced into the processing container 2 from the inlet 21.
  • the temperature in the processing container 2 is preheated to about 150 ° C.
  • the moisture adjustment material derived from rice husk is mixed in the waste to be treated.
  • This moisture adjusting material is obtained by processing rice husks using the fuel production apparatus of the present embodiment. Specifically, slaked lime or scallop shell pulverized material is mixed into the rice husks from 1. 45 MPa to l. 96 MPa. More preferably, it is processed at 1.65 MPa to l.85 MPa for 5 to 30 minutes.
  • the rice husks treated in this way are as soft as cocoons.
  • high-pressure steam is injected from an air supply pipe 42 attached above the horizontal rotation shaft 31. For this reason, when the waste is scattered apart above the horizontal rotating shaft 31 by the stirring of the stirring means 3, high-pressure steam is effectively blown. Therefore, heating accompanying steam pressure and hydrolysis by steam are effectively promoted.
  • high-pressure steam of 1.96 MPa or more is used, and as described above, the high-pressure steam contains extremely low moisture. Therefore, in the treatment container 2, rather than hydrolysis, molecular destruction by high pressure proceeds, and waste property conversion processing is further accelerated.
  • control means 6 is a pressure sensor.
  • the 24 detection results are constantly monitored, and the water vapor injection means 4 and the pressure adjusting means 5 are controlled so that the pressure in the processing container 2 is maintained within a preset processing pressure range.
  • the control means 6 controls the water vapor injection means 4 to stop the water vapor injection. Thereafter, the temperature 'pressure gradually decreases, but after this stop state is maintained for a predetermined time, the pressure adjustment valve 51 is opened. As a result, the gas is exhausted through the high-pressure steam force S exhaust pipe 52 in the processing container 2 and the pressure and temperature in the processing container 2 are reduced at a stretch. Therefore, the waste is decomposed so as to explode.
  • the waste is separated and decomposed by binding molecules, and changes in properties such as initial carbonization and refinement occur without burning.
  • the amount of heat originally stored in the waste remains without much loss.
  • the moisture contained in the waste is condensed and discharged along with the reduced pressure, so that the moisture content decreases.
  • the ratio of the water to be condensed is small.
  • it is broken down at the molecular level, cell walls and membranes of vegetables and fish meat are destroyed, or bacterial flocs are destroyed. It is in a state where it evaporates just by keeping it. It also removes odors.
  • Such treated waste has a high utility value as a fuel.
  • it since it is changed into a fine powder, it can be mixed with water that has good fluidity even if it is used as it is, or it can be used by spraying it as fuel in the form of fine powder.
  • it since it is a fine powder, it can be easily formed into pellets, and is particularly suitable as a fuel for gasification power generation. Of course, it is possible to obtain a normal solid fuel by molding it into a more massive shape.
  • the properties of waste can be converted in a very short time by high-pressure water steam, the fuel consumption of the boiler 41 can be saved and the treatment capacity per day can be increased.
  • the treated waste is transferred to the discharge port 22 by the stirring means 3 and taken out. At the same time, the discharged water is supplied to the wastewater treatment facility 9 for purification.
  • Example 1 As shown in FIG. 4, raw garbage containing a lot of water such as scraps such as meat “fish” vegetables from homes and stores, and leftovers was used as waste. Of course, it can be processed without any problems even if it is wrapped with garbage and mixed with plastic film.
  • the processing pressure in the processing container 2 ensures the safety of the processing container 2. 1. Set within the range of 96 to 3.43 MPa, 1.96 to 2.30 MPa, 2.30 to 2 respectively. 90 MPa, 2. The treatment was carried out while maintaining within the range of 90 to 3.43 MPa. Further, the treatment temperature is not particularly set, and the temperature is raised according to the pressure control by injecting high-pressure steam, and at least the lower temperature is set.
  • the processing pressure of the comparative example is 1. 96MPa or less 1.
  • the moisture content before the treatment of the garbage was 91.00% and the retained heat amount was 12.29 kJ.
  • Example 1 in the case of Example 1, in the pressure range of 1. 96-2. 30 MPa, the material part temperature can be made to coincide with the cavity temperature in about 21 minutes after the start of the injection of high-pressure steam. At the same time, the high-pressure steam injection is cut off. Then, after a few minutes, steam is exhausted. Therefore, compared with the comparative example, it can be said that the temperature holding time is almost unnecessary.
  • the coincident temperature was measured and found to be 218 ° C.
  • the retained heat amount is 11.89 kJ and the moisture content is 19.90%, and it retains more than 96% of the heat amount before treatment, and the retained heat amount, the moisture content is low, and there is a bad smell. Power to be removed It is suitable not only as a general fuel but also as a fuel for gasification power generation. By observing the reduced water content, it can be seen that the bacterial flocs are destroyed and dispersed, and it is easy to remove moisture.
  • the treatment time is further shortened, and after injecting the high-pressure steam, the temperature of the material part and the temperature of the void part are increased in about 18 minutes. We were able to complete the process. The coincident temperature at this time was 222 ° C.
  • the retained heat after treatment was 11.09 kJ and the moisture content was 18.33%, holding more than 90% of the heat before treatment, and the moisture content was reduced to 1/5. Therefore, it is extremely suitable as a fuel for gasification power generation.
  • the treatment conditions for reducing the moisture content without losing the amount of heat stored in the raw garbage and converting it to properties suitable for fuel for gasification power generation are as follows: It is preferable to keep the pressure in the processing container 2 at 1.96 MPa or more and increase the temperature until the material temperature and the void temperature meet. More preferably, the pressure is 2.30 MPa to 2.90 MPa or less. The temperature is raised and the temperature is raised, and the injection of high-pressure steam is stopped at the moment when the material part temperature and the gap part temperature coincide. Under such treatment conditions, as shown in Fig. 7, the powder is completely pulverized so that no debris such as shells and shells of force are left. Therefore, it can be directly burned in the form of a fine powder, and can easily be formed into pellets or solid fuel.
  • the durability of the processing container is taken into consideration and the safety performance of the packing is taken into consideration.
  • the processing pressure is stopped at a maximum of 3. 43MPa. It is considered that the time until the temperature of the part matches the temperature of the gap is further shortened, and the water content is also reduced. The same applies to the other embodiments described below. However, since the amount of retained heat tends to decrease gradually, more strict control is considered necessary.
  • the processing temperature shown in Example 1 (the temperature at which the material part temperature and the gap part temperature coincide) is 222 ° C., which is considered to be the optimum temperature under the experimental conditions.
  • this processing temperature changes as the processing environment changes, such as the outside air temperature, the processing temperature is not limited to the above numerical values, and the same applies to the other embodiments described below.
  • Example 2 sewage sludge as shown in FIG. 8 was used as waste.
  • the processing pressure in the processing container 2 ensures the safety of this processing container 2. 1. Within the range of 96 to 3.43 MPa The processing was carried out while maintaining the range of 1.96 to 2.35 MPa, 2.35 to 3.05 MPa, 3.05 to 3.43 MPa, respectively. Further, the processing temperature was not particularly set, and the temperature was raised according to pressure control by injecting high-pressure steam, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a. On the other hand, the processing pressure of the comparative example is in the range of 1.96 MPa or less 1.
  • the material part temperature can be made to match the gap part temperature in about 41 minutes after the start of high-pressure steam injection.
  • the high-pressure steam injection may be cut off. After that, the steam is exhausted after a few minutes just in case. Therefore, the temperature holding time is not necessary as compared with the comparative example.
  • the coincident temperature was measured and found to be 215 ° C.
  • the retained heat quantity was 11.38 kJ and the high moisture content was 30.55%, which was a little lack of practicality.
  • sewage sludge has been separated and decomposed by bacterial flocs and binding molecules, so water tends to evaporate, and the moisture content decreases if left overnight. Therefore, it is also suitable as a fuel for gasification power generation.
  • the material part temperature and the cavity part temperature coincide with each other in about 38 minutes after the high-pressure steam is injected. did it.
  • the coincident temperature at this time was 223 ° C.
  • the retained heat after treatment is 11.12kJ and high heat The quantity value was maintained, and the moisture content was reduced to about 1/3, 26.78%. Therefore, it can be fully used as a fuel for gasification power generation.
  • the processing conditions for reducing the moisture content without losing the amount of heat retained in the sewage sludge and converting it into properties suitable for gasification power generation are: While maintaining the pressure in Processing Vessel 2 at 1.96 MPa or more, it is preferable to increase the pressure until the material part temperature and the cavity temperature match, and more preferably the pressure is kept at 3.05 MPa or more and 3. 43 MPa or less. The injection of high-pressure steam is stopped at the moment when the temperature of the material part and the temperature of the cavity part coincide. Under such treatment conditions, as shown in FIG. 9, even sewage sludge can be converted into fine powder dried in a short time, and malodors can be removed.
  • Example 3 fish residue was used as waste.
  • the processing pressure in Processing Vessel 2 ensures the safety of Processing Vessel 2.
  • 1. Set within the range of 96-2.95 MPa, 1.96-2.20 MPa, 2.20 respectively
  • the treatment was carried out while maintaining within the range of ⁇ 2.65 MPa and 2.65-2.95 MPa. Further, the treatment temperature was not particularly set, and the temperature was raised according to pressure control by injecting high-pressure steam, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a.
  • the processing pressure of the comparative example is in the range of 1.96 6MPa or less 1.
  • the moisture content was 85.00% and the retained heat was 12.99 kJ.
  • the material part temperature can be made to coincide with the gap part temperature in about 34 minutes after the start of high-pressure steam injection.
  • the injection of high-pressure steam was cut off. After that, the steam is exhausted after a few minutes with a margin for treatment. Therefore, it can be said that the temperature holding time is not necessary as compared with the comparative example.
  • the coincident temperature was measured and found to be 221 ° C.
  • the retained heat quantity was 12.33 kJ and the high moisture content was 68.20%, which was not practical for practical use.
  • the fish residue after the treatment has separated and decomposed binding molecules, so the water content tends to evaporate, and the moisture content decreases if it is left overnight. Therefore, it can be used as a fuel for gasification power generation.
  • the temperature of the material part and the temperature of the gap part may be matched in about 26 minutes to complete the processing. did it.
  • the coincident temperature at this time was 229 ° C.
  • the retained heat after treatment is 11.19 kJ, and the force moisture content that has maintained a high calorific value of 82% or higher is still high at 48.20%, so to further improve the practicality, the moisture content is further reduced. There is a need.
  • the processing conditions for reducing the moisture content without losing the amount of heat retained in the fish residue and converting it to properties suitable for fuel for gasification power generation are as follows: , The pressure in the processing container 2 is maintained at 1.96 MPa or more, and the condition of increasing until the material part temperature and the gap part temperature coincide with each other is preferable. More preferably, the pressure is maintained at 2.65 MPa or more and 2.95 MPa or less. Then, the temperature is raised and the injection of high-pressure steam is stopped at the moment when the material part temperature and the gap part temperature coincide. Under such treatment conditions, even fish residues can be converted into fine powder that is dried in a short time.
  • Example 4 peat was used as waste.
  • the processing pressure in Processing Vessel 2 ensures the safety of this Processing Vessel 2.
  • the treatment was performed while maintaining the pressure within the range of 55 MPa and 2.5 55 to 2.77 MPa.
  • the processing temperature was not particularly set, and the temperature was raised according to pressure control by injecting high-pressure steam, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a.
  • the processing pressure of the comparative example is 1. 90MPa or lower range 1. 85 ⁇ : L Hold within the pressure range of 90MPa and vigorously hold the temperature at 205 ⁇ 210 ° C for 30-60 minutes Processed.
  • the moisture content of the peat before treatment was 70.00%, and the retained heat was 16.90 kJ.
  • Example 4 In the pressure range of 90-2.20 MPa, the material part temperature can be matched with the gap part temperature in about 30 minutes after injecting high-pressure steam, At the same time, the high-pressure steam injection is cut off. Then, after a few minutes have passed, allow the steam to be exhausted after a certain amount of time has passed. Therefore, it can be said that there is almost no temperature holding time compared to the comparative example.
  • the coincident temperature was measured and found to be 197 ° C.
  • the retained heat amount is 15.58kJ, which is a high heat value of 92% or more before the treatment. The rate has already been reduced to 25.40%. After treatment, the peat after treatment has been separated and decomposed by bacterial flocs and binding molecules, and the water content tends to evaporate. Therefore, it can be sufficiently used as a fuel for gasification power generation.
  • the material temperature and the void temperature are matched in about 29 minutes after the start of high-pressure steam injection, and the processing is completed. I was able to. The coincident temperature at this time was 205 ° C.
  • the calorific value after treatment was 15.05 kJ, which was a high calorific value of 89% or more, and the moisture content was 24.03%, which was almost the same as the previous conditions.
  • the processing conditions for reducing the moisture content without losing the amount of heat stored in the peat and converting it into properties suitable for fuel for gasification power generation are as follows.
  • the pressure in physical container 2 is maintained at 1.90 MPa or more, and it is preferable to increase the pressure until the material part temperature and the cavity temperature match.
  • the pressure is preferably maintained at 2.55 MPa or more and 2. 77 MPa or less.
  • the temperature is raised, and the injection of high-pressure steam is stopped at the moment when the material part temperature and the gap part temperature coincide. Under such processing conditions, even peat is converted into fine powder that is dried in a short time.
  • Example 5 livestock dung was used as waste.
  • the processing pressure in the processing container 2 ensures the safety of the processing container 2.
  • 1. 85-3. Set within the range of 43 MPa, 1. 85 to 2. OOMPa, 2.00
  • the treatment was carried out while maintaining within the range of ⁇ 2.15 MPa and 2.15-3.43 MPa. Further, the treatment temperature was not particularly set, and the temperature was raised according to pressure control by injecting high-pressure steam, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a.
  • the processing pressure of the comparative example is 1.8. It is the range of 5 MPa or less 1. 70-: L
  • the pressure was maintained within a pressure range of 75 MPa, and the temperature was maintained at 205-210 ° C. for 35-45 minutes for processing.
  • the water content of the livestock feces before treatment was 68.00% and the retained heat was 13.40 kJ.
  • Example 5 In the case of Example 5, 1. 85-2. In the pressure range of OOMPa, after injecting the high-pressure steam, the material part temperature can be matched with the gap part temperature in about 29 minutes. At the same time, the injection of high-pressure steam was cut off. Thereafter, the water vapor was exhausted after several minutes. Therefore, it can be said that there is almost no temperature holding time compared with the comparative example. When the matched temperature was measured, it was 223 ° C. In addition, the retained heat quantity was 13.15 kJ, which kept the high calorific value, and the moisture content was 24.0%, which was sufficiently reduced. Moreover, since the treated animal feces have separated and decomposed binding molecules, the moisture tends to evaporate, and the moisture content is further reduced by simply leaving it alone. Therefore, it can be used as a fuel for gasification power generation.
  • the processing conditions for reducing the moisture content without losing the amount of heat retained by livestock dung and converting it to properties suitable for fuel for gasification power generation are as follows: ,
  • the pressure in the processing vessel 2 is maintained at 1.85 MPa or more, and it is preferable to increase the pressure until the material part temperature and the cavity temperature coincide with each other. More preferably, the pressure is maintained at 2.15 MPa or more and 3.43 MPa or less. Then, the temperature is raised and the injection of high-pressure steam is stopped at the moment when the material part temperature and the gap part temperature coincide. Under such treatment conditions, the properties of livestock dung are converted into fine powder that is dried in a short time. Also, malodor is removed.
  • Example 6 squid liver was used as waste.
  • the processing pressure in Processing Vessel 2 ensures the safety of this Processing Vessel 2. 1. Set within the range of 90-3.22 MPa, 1.90 to 2.05 MPa, 2.05 respectively. The treatment was carried out while maintaining within the range of ⁇ 2. 96 MPa, 2.96-3.22 MPa. Further, the treatment temperature was not particularly set, and the temperature was raised according to pressure control by injecting high-pressure steam, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a.
  • the processing pressure of the comparative example is 1. 90 MPa or less 1.
  • the water content of the squid liver before treatment was 89.00%, and the amount of heat retained was 14.66 kJ.
  • Example 6 in the pressure range of 1.90-2.05 MPa, the material temperature can be made to match the void temperature in about 49 minutes after the start of high-pressure steam injection. At the same time, the injection of high-pressure steam was cut off. Thereafter, water vapor was exhausted after several minutes. There is no need for a temperature holding time while injecting water vapor. The coincident temperature was measured and found to be 218 ° C. In addition, the retained heat amount was 8.12 kJ, 1.6 times that of the comparative example, and the moisture content was 59.06%. Therefore, although the water content is high, the squid liver after treatment has separated / decomposed binding molecules, which makes it easy for water to evaporate. Therefore, it can be used as a fuel for gasification power generation.
  • Example 6 the process for reducing the moisture content without losing the amount of heat retained in the squid liver and converting it into a property that can be used as a fuel for gasification power generation.
  • the condition is that the pressure in the processing vessel 2 is maintained at 1.90 MPa or more, and it is preferable to increase the pressure until the material part temperature and the gap part temperature match, more preferably the pressure is 2.96 MPa or more 3.22 MPa
  • the temperature is kept below and the temperature is raised, and the injection of high-pressure steam is stopped at the moment when the material part temperature and the gap part temperature match.
  • Even under such processing conditions For example, even squid liver can be detoxified in a short time, and its properties are converted into a dry fine powder.
  • Example 7 scallop midgut gland was used as waste.
  • the processing pressure in Processing Vessel 2 ensures the safety of Processing Vessel 2.
  • 1. Set within the range of 90-2. 96 MPa, 1. 90 to 1.95 MPa, 1. 95 to 2 respectively. OOMPa, 2.00-2. 96 MPa was maintained in the range.
  • the processing temperature was not particularly set, and the temperature was raised according to the pressure control by injecting high-pressure water vapor, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a.
  • the treatment pressure of the comparative example is 1. 90MPa or less 1. 78 ⁇ : L Hold within the pressure range of 90MPa and keep the temperature at 185 ⁇ 210 ° C for 65 ⁇ 95 minutes. Went.
  • the water content of the scallop midgut gland before treatment was 85.00%, and the retained heat was 11.79 kJ.
  • the material part temperature can be made to coincide with the gap part temperature in about 65 minutes after injecting high-pressure steam.
  • the injection of high-pressure steam was cut off, and the steam was exhausted after several minutes. Therefore, compared to the comparative example, it can be said that there is almost no temperature holding time.
  • the coincident temperature was measured and found to be 212 ° C.
  • the retained heat amount was 10.80 kJ, more than 90% of the retained heat amount before treatment, and the moisture content was 69.78%. Therefore, although the water content is high1, the treated scallop midgut glands are separated and decomposed because the binding molecules are separated, and the water tends to evaporate.
  • the rate drops. Therefore, it can be used as a fuel for gasification power generation.
  • the material part temperature and the gap part temperature are matched in about 49 minutes after the high-pressure steam is injected, and the treatment can be completed. did it.
  • the consistent temperature at this time was 220 ° C.
  • the retained heat after treatment was 7.10 kJ, approximately 60% of the retained heat before treatment, and the moisture content was 50.09%. Therefore, the water content has been reduced by about 20% compared to the previous conditions, and the treatment time has been shortened by more than 15 minutes. This is a practical application considering the properties of the midgut gland of scallops.
  • the moisture content that causes the loss of heat held in the midgut gland of scallops is reduced, and converted into properties that can be used as fuel for gasification power generation.
  • the processing conditions for this are as follows: The pressure in the processing container 2 is maintained at 1.90 MPa or more, and the condition in which the temperature of the material section and the cavity temperature are increased is preferred, and the pressure is preferably 2. OOMPa or more. 2. The temperature is raised to 96 MPa or less, and high-pressure steam injection is stopped at the moment when the temperature of the material part and the temperature of the cavity part coincide. Under such treatment conditions, even the midgut gland of scallops can be detoxified in a short time, and the properties are converted into a dry fine powder.
  • the fuel soot treatment can be completed in an extremely short time of about 20 to 30 minutes and about 49 minutes at the longest. Can be processed.
  • a separate preliminary wastewater treatment facility 10 may be provided.
  • the pH of wastewater discharged from the silencer 7 and the discharge port 22 is adjusted to clear the regulation value of wastewater.
  • FIG. 1 is a schematic diagram showing an embodiment of a fuel production apparatus according to the present invention.
  • FIG. 2 is a graph showing the relationship between the temperature in the processing container and time in the fuel production method of the present embodiment.
  • FIG. 3 is a table showing processing conditions and processing results of Examples 1 to 7 in the present embodiment.
  • FIG. 4 A digital photographic image showing garbage before processing.
  • FIG. 5 A digital photographic image showing a shell (a) and a shell (b) of an eagle before processing.
  • FIG. 6 is a digital photographic image showing garbage after processing under the processing conditions of the comparative example of Example 1.
  • FIG. 7 is a digital photographic image showing garbage after processing under the processing conditions of Example 1
  • FIG. 8 is a digital photographic image showing sewage sludge before processing.
  • FIG. 9 is a digital photographic image showing sewage sludge after treatment under the treatment conditions of Example 2.
  • FIG. 10 is a schematic view showing another embodiment of the fuel production apparatus according to the present invention.

Abstract

A process for producing fuel, in which not only can hazardous substances, such as dioxin, be removed without emission thereof but also even wastes of high water content can be treated within a short period of time to thereby reduce treatment cost, and in which while suppressing any loss of heating value, a lowering of water content and also removal of malodor can be accomplished to thereby realize conversion to a form suitable for use as a fuel; and a relevant fuel production apparatus. Accordingly, high-pressure steam is injected into treating vessel (2) having waste charged therein to thereby attain not only maintaining of the pressure within the treating vessel (2) at ≥ 1.96 MPa but also temperature elevation thereof. The injection of high-pressure steam is discontinued when the temperature of material section in a lower part within the treating vessel (2) agrees with the temperature of vacant zone in an upper part within the treating vessel (2).

Description

明 細 書  Specification
燃料製造方法および燃料製造装置  Fuel production method and fuel production apparatus
技術分野  Technical field
[0001] 本発明は、廃棄物を有効に再利用すべく性状を変化させる技術に係り、特に、生ゴ ミゃ汚泥、魚残渣、糞尿等の含水率の高い廃棄物を燃料として適した性状に変換処 理するのに好適な燃料製造方法および燃料製造装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a technique for changing properties to effectively reuse waste, and particularly suitable for use with waste having high water content such as raw sludge, fish residue, manure and the like as fuel. The present invention relates to a fuel manufacturing method and a fuel manufacturing apparatus that are suitable for the conversion process.
背景技術  Background art
[0002] 従来より、生ゴミゃ下水汚泥等の各種廃棄物を再利用可能に処理するための様々 な技術が提案されている。例えば、特開 2003— 47409号には、食品残渣ゃ木、紙 等の原料を飼料や肥料に加工するための原料加工方法が開示されている(特許文 献 1)。この発明は、処理釜と加熱保温釜の間に飽和水蒸気を導入して処理釜内を 所定温度以上に保ち、そこへ食品残渣等の原料を投入するとともに飽和水蒸気を導 入して所定圧力'温度下で蒸し、その後攪拌しながら加水分解、熱分解、乾燥、炭化 をさせ、最終的に飼料や肥料にカ卩ェするものである。  [0002] Conventionally, various techniques for processing various wastes such as raw garbage and sewage sludge in a reusable manner have been proposed. For example, Japanese Patent Application Laid-Open No. 2003-47409 discloses a raw material processing method for processing raw materials such as food residues, wood, and paper into feed and fertilizer (Patent Document 1). According to the present invention, saturated steam is introduced between the treatment kettle and the heat-retaining kettle to keep the inside of the treatment kettle at a predetermined temperature or more, and raw materials such as food residues are introduced into the kettle, and saturated steam is introduced to the predetermined pressure. It is steamed under temperature, then hydrolyzed, pyrolyzed, dried and carbonized with stirring, and finally used as feed and fertilizer.
[0003] 特許文献 1 :特開 2003— 47409号公報  [0003] Patent Document 1: Japanese Unexamined Patent Publication No. 2003-47409
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、特開 2003— 47409号公報に記載された発明においては、食品残 渣ゃ木、紙等の原料を有害物質を発生させずに飼料や肥料を作成することを目的と しており、その適正な処理条件を求めているに過ぎない。したがって、飼料や肥料以 外の目的に利用するための最適条件とは限らない。そもそも処理対象物である廃棄 物の性状によっても適正な処理条件は異なるし、特に、高温域での処理や高圧力下 での処理は性状を大きく変化させるため、再利用の目的'対象によって個別具体的 に処理が施されなければならな!/ヽ。  [0004] However, in the invention described in Japanese Patent Application Laid-Open No. 2003-47409, an object of the present invention is to produce feed and fertilizer without generating harmful substances from raw materials such as food residue wood and paper. The company is only seeking the appropriate processing conditions. Therefore, it is not necessarily the optimum condition for use for purposes other than feed and fertilizer. In the first place, the appropriate treatment conditions differ depending on the properties of the waste that is the treatment target.In particular, treatment at high temperatures and treatment under high pressure greatly change the properties. It must be specifically processed! / ヽ.
[0005] また、廃棄物を再利用するには単に無害になるだけでは足りず、より高付加価値の ある性状に処理することが好ましい。しかも再利用に要するコストを考慮すれば、でき る限り利用目的に適した性状に処理することが実施化のために要求される。 [0006] 一方、近年、バイオマスなどの廃棄物力 有効にエネルギーを回収するため、燃料 として再利用する技術が提案されている。例えば、廃棄物を熱分解によりガス化し、 得られた熱分解ガスを熱源として発電するガス化発電技術もその一つである。このガ ス化発電技術は、ガス化炉内に投入した廃棄物に、空気等のガス化剤を供給しつつ 加熱してガス化させている。し力しながら、燃料として使用する廃棄物が生ゴミゃ下水 道汚泥等のように高湿潤な資材である場合、含水率が 80%以上もあるために非常に 熱分解させ難ぐ熱分解ガスを十分に発生させられないという問題がある。このため、 高湿潤な廃棄物を予め十分に乾燥させた上で、その後にガス化発電用の燃料として 利用する方法も提案されている。しかし、従来の処理では処理時間が大幅にかかつ てしまうため処理コストが高くなるという問題がある。 [0005] Further, in order to reuse the waste, it is not necessary to simply make it harmless, and it is preferable to treat it to a property with higher added value. Moreover, considering the cost required for reuse, it is necessary for implementation to process it as much as possible for the purpose of use. [0006] On the other hand, in recent years, in order to effectively recover energy from waste power such as biomass, a technique of reusing as fuel has been proposed. For example, gasification power generation technology that gasifies waste by pyrolysis and generates electricity using the obtained pyrolysis gas as a heat source is one of them. This gasification power generation technology heats and gasifies the waste thrown into the gasification furnace while supplying a gasifying agent such as air. However, if the waste used as fuel is a highly humid material such as raw garbage or sewage sludge, the pyrolysis gas is very difficult to pyrolyze because its water content is 80% or more. There is a problem that cannot be generated sufficiently. For this reason, a method has also been proposed in which highly humid waste is sufficiently dried in advance and then used as fuel for gasification power generation. However, the conventional processing has a problem that the processing cost becomes high because the processing time is considerably long.
[0007] 本発明は、このような問題点を解決するためになされたものであって、ダイォキシン 等の有害な物質を発生させず、有害物資を除去できることはもとより、含水率の高い 廃棄物であっても短時間で処理して処理コストを低減させられ、しかも発熱量の損失 を抑えつつ含水率を低下させ、悪臭も除去し、燃料として使用するのに適した性状に 変換処理することができる燃料製造方法および燃料製造装置を提供することを目的 としている。  [0007] The present invention has been made in order to solve such problems, and is capable of removing harmful substances without generating harmful substances such as dioxin, and is also a waste having a high water content. Even in such a case, it is possible to reduce the processing cost by treating it in a short time, while reducing the moisture content while suppressing the loss of calorific value, removing bad odors, and converting it into properties suitable for use as fuel. An object of the present invention is to provide a fuel manufacturing method and a fuel manufacturing apparatus.
課題を解決するための手段  Means for solving the problem
[0008] 本発明に係る燃料製造方法および燃料製造装置の特徴は、廃棄物が投入された 処理容器内に高圧水蒸気を注入することによって、前記処理容器内の圧力を 1. 96 MPa以上に保持するとともに昇温し、前記処理容器内の下方における材料部温度 が前記処理容器内の上方における空隙部温度に一致したときに前記高圧水蒸気の 注入を停止する点にある。ここで材料部温度とは、処理容器内の下方における処理 材料 (廃棄物)の温度あるいはこの処理材料 (廃棄物)に接する処理容器の内面にお ける温度のことである。また、空隙部温度とは処理容器内の上方における空隙部分 の温度のことである。 [0008] A feature of the fuel production method and the fuel production apparatus according to the present invention is that the pressure in the processing container is maintained at 1.96 MPa or more by injecting high-pressure steam into the processing container in which waste is charged. In addition, the temperature is raised, and the injection of the high-pressure steam is stopped when the material part temperature in the lower part of the processing container matches the gap part temperature in the upper part of the processing container. Here, the material part temperature is the temperature of the processing material (waste) in the lower part of the processing container or the temperature on the inner surface of the processing container in contact with the processing material (waste). The void temperature is the temperature of the void in the upper part of the processing container.
[0009] また、本発明に係る燃料製造方法および燃料製造装置の特徴は、廃棄物が投入さ れた処理容器内に高圧水蒸気を注入することによって、前記処理容器内の圧力を 1 . 96MPa以上 3. 43MPa以下に保持するとともに、少なくとも前記処理容器内の下 方における材料部温度と前記処理容器内の上方における空隙部温度とがー致する まで前記高圧水蒸気を注入する点にある。 [0009] Further, the fuel production method and the fuel production apparatus according to the present invention are characterized in that the pressure in the processing container is set to 1.96 MPa or more by injecting high-pressure steam into the processing container in which waste is charged. 3. Hold at 43MPa or less and at least under the treatment container The high-pressure steam is injected until the temperature of the material portion in the direction matches the temperature of the void in the upper part of the processing vessel.
[0010] また、本発明において、前記廃棄物が生ゴミの場合、前記処理容器内の圧力を 2.  [0010] In the present invention, when the waste is raw garbage, the pressure in the processing container is set to 2.
30MPa以上 2. 90MPa以下に保持することが好まし!/、。  30MPa or more 2. It is preferable to keep it at 90MPa or less!
[0011] さらに、本発明において、前記廃棄物が下水道汚泥の場合、前記処理容器内の圧 力を 3. 05MPa以上 3. 43以下に保持することが好ましい。 Furthermore, in the present invention, when the waste is sewage sludge, it is preferable to maintain the pressure in the treatment container at 3.05 MPa or more and 3.43 or less.
[0012] また、本発明において、前記廃棄物が魚残渣の場合、前記処理容器内の圧力を 2[0012] In the present invention, when the waste is a fish residue, the pressure in the processing container is set to 2
. 65MPa以上 2. 95MPa以下に保持することが好ましい。 It is preferable to maintain at 65 MPa or more and 2. 95 MPa or less.
[0013] さらに、本発明において、前記廃棄物が泥炭の場合、前記処理容器内の圧力を 2. [0013] Further, in the present invention, when the waste is peat, the pressure in the processing container is set to 2.
55MPa以上 2. 77MPa以下に保持することが好まし!/、。  55MPa or more 2. It is preferable to keep it at 77MPa or less!
[0014] また、本発明において、前記廃棄物が家畜糞の場合、前記処理容器内の圧力を 2[0014] In the present invention, when the waste is livestock excrement, the pressure in the processing container is set to 2
. 15MPa以上 3. 43MPa以下に保持することが好ましい。 It is preferable to maintain at 15 MPa or more and 3.43 MPa or less.
[0015] さらに、本発明において、前記廃棄物力 Sイカの肝臓 (イカゴロ)の場合、前記処理容 器内の圧力を 2. 96MPa以上 3. 22MPa以下に保持することが好ましい。 [0015] Furthermore, in the present invention, in the case of the waste power S squid liver (squid), it is preferable to maintain the pressure in the processing container at 2.96 MPa or more and 3.22 MPa or less.
発明の効果  The invention's effect
[0016] 本発明によれば、ダイォキシン等の有害な物質を発生させず、内在する有害物質 を除去することはもとより、含水率の高い廃棄物であっても短時間で処理して処理コ ストを低減させられるし、しかも発熱量の損失を抑えつつ含水率を低下させ、悪臭も 除去し、燃料として使用するのに適した性状に変換処理することができる。  [0016] According to the present invention, not only harmful substances such as dioxin are generated, but also the inherent harmful substances are removed, and even waste with a high water content is treated in a short time. In addition, the moisture content can be reduced while suppressing the loss of calorific value, malodors can be removed, and conversion into properties suitable for use as fuel can be achieved.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明に係る燃料製造装置の好適な一実施形態について図面を用いて説 明する。 Hereinafter, a preferred embodiment of a fuel production apparatus according to the present invention will be described with reference to the drawings.
[0018] 図 1は、本実施形態の燃料製造装置 1を示す模式図である。本実施形態の燃料製 造装置 1は、主として、各種の廃棄物を収容して処理するための処理容器 2と、この 処理容器 2に投入された廃棄物を攪拌するための攪拌手段 3と、処理容器 2内の廃 棄物に対して高圧水蒸気を注入するための水蒸気注入手段 4と、処理容器 2内の圧 力を調節するための圧力調節手段 5と、前記攪拌手段 3、前記水蒸気注入手段 4お よび前記圧力調節手段 5を制御するための制御手段 6とから構成されている。なお、 本実施形態で処理する廃棄物は、各種の廃棄物を対象とするが、特に、生ゴミ、下 水汚泥、魚残渣、泥炭、家畜糞、イカの肝臓 (イカゴロ)、ホタテ貝の中腸腺 (ホタテゥ 口)等の含水率が高ぐ通常、燃料として再利用しにくい高湿潤な廃棄物をも好適な 処理対象としている。 FIG. 1 is a schematic diagram showing a fuel production apparatus 1 according to this embodiment. The fuel production apparatus 1 of the present embodiment mainly includes a processing container 2 for storing and processing various types of waste, and a stirring means 3 for stirring the waste charged in the processing container 2. Steam injecting means 4 for injecting high-pressure steam into the waste in the processing container 2, pressure adjusting means 5 for adjusting the pressure in the processing container 2, the stirring means 3, the steam injecting It comprises means 4 and control means 6 for controlling the pressure adjusting means 5. In addition, The waste to be treated in this embodiment covers various types of waste, but in particular, raw garbage, sewage sludge, fish residue, peat, livestock dung, squid liver (squid goro), scallop midgut gland High moisture content such as (scallop mouth), which is usually difficult to reuse as fuel, is also a suitable treatment target.
[0019] 本実施形態の各構成部についてより詳細に説明すると、処理容器 2は、耐圧性を 備えた第一種圧力容器により構成されており、その内部で廃棄物を処理するようにな つている。また、処理容器 2の上部には廃棄物の投入口 21が設けられるとともに、下 部には排出口 22が設けられている。これら投入口 21および排出口 22は、廃棄物を 処理する際に処理容器 2内の高温高圧に耐えられるパッキンが使用された密閉構造 を備えている。投入口 21および排出口 22は、安全性を考慮して、処理容器 2内の圧 力が 0. 015MPa以下にまで減圧されない限り、開閉操作が反応しない制御システ ムを備えている。  [0019] The constituent parts of the present embodiment will be described in more detail. The processing container 2 is configured by a first-type pressure container having pressure resistance, and the waste is processed therein. Yes. In addition, a waste inlet 21 is provided in the upper part of the processing container 2, and an outlet 22 is provided in the lower part. The input port 21 and the discharge port 22 have a sealed structure in which packing capable of withstanding high temperature and pressure in the processing container 2 is used when processing waste. In consideration of safety, the input port 21 and the discharge port 22 are provided with a control system in which the opening / closing operation does not react unless the pressure in the processing container 2 is reduced to 0.015 MPa or less.
[0020] また、処理容器 2内の上方には上部温度センサ 23aが設けられ、下方には下部温 度センサ 23bが設けられている。上部温度センサ 23aは、処理容器 2内の上方にお ける温度を測定するセンサであり、特に、廃棄物投入当初は廃棄物内に埋もれる場 合もあるが、減容した際に処理容器 2内の空隙部分の温度を検出することになる。一 方、下部温度センサ 23bは、処理容器 2内の下方における廃棄物自体あるいはこれ に接する処理容器 2の内面の温度を測定するセンサであり、投入された廃棄物のうち でも下方に溜まる高湿潤の廃棄物温度を検出することになる。本実施形態では、上 部温度センサ 23aおよび下部温度センサ 23bは処理容器 2の鉛直方向力も約 30° 傾斜された処理容器 2の内面に配置されている。また、処理容器 2内の上方には、圧 力を検出する圧力センサ 24が備えられて 、る。  [0020] In addition, an upper temperature sensor 23a is provided above the processing container 2, and a lower temperature sensor 23b is provided below. The upper temperature sensor 23a is a sensor that measures the temperature above the inside of the processing container 2. In particular, the initial temperature sensor 23a may be buried in the waste at the beginning of the introduction of the waste. Thus, the temperature of the void portion is detected. On the other hand, the lower temperature sensor 23b is a sensor that measures the temperature of the waste itself in the processing container 2 or the inner surface of the processing container 2 that is in contact with the lower temperature sensor 23b. The waste temperature will be detected. In the present embodiment, the upper temperature sensor 23a and the lower temperature sensor 23b are arranged on the inner surface of the processing container 2 whose vertical force of the processing container 2 is also inclined by about 30 °. Further, a pressure sensor 24 for detecting pressure is provided above the processing container 2.
[0021] つぎに、攪拌手段 3は、投入された廃棄物を一様に加圧および加温するためのも のである。この撹拌手段 3は、処理容器 2内の長手方向に水平回動軸 31を軸支して おり、この水平回動軸 31の垂直面に対して前方に傾斜された撹拌羽根 32を取り付 けている。水平回動軸 31には、これを正逆回動可能な駆動モータ 33が連結されて いる。撹拌手段 3は、投入された廃棄物を攪拌しつつ徐々に移送するようになってお り、投入口 21から排出口 22まで延在している。一方、駆動モータ 33はインバータ制 御により回転数および回転方向が制御自在なモータであり、廃棄物が燃料に適した 性状に変換処理されるまで必要に応じて処理容器 2内で往復動させる。 [0021] Next, the stirring means 3 is for uniformly pressurizing and warming the input waste. The stirring means 3 supports a horizontal rotation shaft 31 in the longitudinal direction in the processing container 2, and a stirring blade 32 inclined forward with respect to the vertical surface of the horizontal rotation shaft 31 is attached. ing. The horizontal rotation shaft 31 is connected to a drive motor 33 that can rotate the forward and reverse directions. The agitating means 3 is configured to gradually transfer the thrown-in waste while stirring, and extends from the inlet 21 to the outlet 22. On the other hand, the drive motor 33 is an inverter system. It is a motor whose rotation speed and rotation direction are freely controllable, and reciprocates in the processing container 2 as necessary until the waste is converted into properties suitable for fuel.
[0022] つぎに、水蒸気注入手段 4は、高圧の水蒸気を発生させるボイラー 41と、このボイ ラー 41から発生した水蒸気を処理容器 2内に供給するための送気管 42とを有してい る。ボイラー 41で発生する水蒸気の圧力は一定値に保持されており、処理容器 2内 の圧力は、高圧水蒸気の注入量で調節するようになっている。この高圧水蒸気の圧 力に付随して温度が定まるので、処理容器 2内は高温に保持される。本実施形態で は、ボイラー 41で発生させ得る水蒸気の最大圧力が 3. 43MPaに設定されており、 この高圧水蒸気の注入量を適宜調節して処理容器 2内の圧力を 1. 96MPa以上に 保持するようになっている。  Next, the water vapor injection means 4 has a boiler 41 that generates high-pressure water vapor, and an air supply pipe 42 for supplying the water vapor generated from the boiler 41 into the processing vessel 2. The pressure of water vapor generated in the boiler 41 is maintained at a constant value, and the pressure in the processing vessel 2 is adjusted by the amount of high-pressure steam injected. Since the temperature is determined according to the pressure of the high-pressure steam, the inside of the processing container 2 is kept at a high temperature. In this embodiment, the maximum pressure of water vapor that can be generated in the boiler 41 is set to 3.43 MPa, and the pressure in the processing vessel 2 is maintained at 1.96 MPa or more by appropriately adjusting the amount of high-pressure steam injected. It is supposed to be.
[0023] このように圧力を 1. 96MPa以上に保持するのは、水蒸気の特性を考慮したもので ある。すなわち、圧力が約 1. 96MPaの水蒸気には約 8〜11%の水分が含まれてい るのに対し、圧力が約 3. 43MPaの水蒸気は水分含有量が約 1%未満となりガス状 の気体である。このような含水率の少な 、水蒸気の方が高湿潤な廃棄物に対してコ ンデンス水になる割合が少ないというメリットがある。また、後述するように約 1. 96MP a以上の圧力下による処理は、それ以下の圧力下による処理の場合と比べると次元 の異なる処理速度となる。  [0023] Maintaining the pressure at 1.96 MPa or more in this way is due to the characteristics of water vapor. In other words, water vapor with a pressure of about 1.96 MPa contains about 8 to 11% moisture, whereas water vapor with a pressure of about 3.43 MPa has a moisture content of less than about 1% and is a gaseous gas. It is. With such a low moisture content, water vapor has the advantage of being less condensed water than highly moist waste. As will be described later, processing under a pressure of about 1.96 MPa or higher results in a processing speed of a different dimension compared to processing under a pressure of less than that.
[0024] また、送気管 42は、処理容器 2に対して水平回動軸 31よりも上方位置であって略 水平方向に連結されている。これは、処理容器 2内の廃棄物が堆積して圧力を受け ていない状態のときに高圧水蒸気を当てたい、つまり、廃棄物が撹拌されて中空に 浮き、他の廃棄物に覆い被さる直前に高圧水蒸気を当てるのが最適であり、高い処 理効率が得られる力 である。  The air supply pipe 42 is connected to the processing container 2 in a substantially horizontal direction at a position above the horizontal rotation shaft 31. This is because it is desired to apply high-pressure steam when the waste in the processing container 2 has accumulated and is not under pressure, i.e., immediately before the waste is agitated and floated in the air and covered with other waste. It is optimal to apply high-pressure steam, which is a force that can achieve high processing efficiency.
[0025] つぎに、圧力調節手段 5は、開閉自在に電気制御される圧力調整バルブ 51と、こ の圧力調整バルブ 51を介して処理容器 2内の水蒸気を排気するための排気管 52と カゝら構成されている。そして、処理容器 2内の圧力が所定値を越えると圧力調整バル ブ 51を開放し、処理容器 2内の圧力を抜 、て所定の圧力に保持するようになって!/、 る。また、排気管 52にはサイレンサー 7を経由して冷却装置 8が連結されており、処 理容器 2からの水蒸気を冷却して液化し、排水処理設備 9に供給するようになってい る。さらに、サイレンサー 7により、騒音防止条例の規制値をクリアして市街地などに 設置できるよう設計されて!ヽる。 [0025] Next, the pressure adjusting means 5 includes a pressure adjusting valve 51 that is electrically controlled to be freely opened and closed, an exhaust pipe 52 for exhausting water vapor in the processing vessel 2 through the pressure adjusting valve 51, and a cap. You are composed. When the pressure in the processing container 2 exceeds a predetermined value, the pressure adjustment valve 51 is opened, the pressure in the processing container 2 is released, and the predetermined pressure is maintained. In addition, a cooling device 8 is connected to the exhaust pipe 52 via a silencer 7 to cool and liquefy the water vapor from the processing vessel 2 and supply it to the wastewater treatment facility 9. The In addition, the silencer 7 is designed to be installed in urban areas, etc., clearing the regulation value of the Noise Prevention Ordinance! Speak.
[0026] つぎに、制御手段 6は、上部温度センサ 23a、下部温度センサ 23bおよび圧力セン サ 24に接続されており、これらセンサからの検出信号や所定の制御プログラムに基 づいて、攪拌手段 3、水蒸気注入手段 4および圧力調節手段 5を制御するものである 。制御手段 6は、駆動モータ 33の回転方向や回転速度を制御して、処理容器 2内に おける廃棄物の撹拌移送時間を制御する。また、制御手段 6には、予め各種の廃棄 物を処理するのに最適な処理圧力範囲が設定されており、この処理圧力範囲を保持 するように水蒸気注入手段 4および圧力調節手段 5をフィードバック制御して 、る。す なわち、制御手段 6は、圧力センサ 24の検出結果に基づき、処理容器 2内の圧力が 処理圧力範囲に満たない場合には、水蒸気注入手段 4を制御して高圧水蒸気を注 入するし、逆に処理圧力範囲を越えそうな場合には、圧力調節手段 5を制御して高 圧水蒸気を排気し、圧力を低下させるようになつている。  [0026] Next, the control means 6 is connected to the upper temperature sensor 23a, the lower temperature sensor 23b and the pressure sensor 24, and based on the detection signals from these sensors and a predetermined control program, the stirring means 3 The water vapor injection means 4 and the pressure adjustment means 5 are controlled. The control means 6 controls the direction of rotation and speed of the drive motor 33 to control the time for stirring and transferring the waste in the processing container 2. The control means 6 is set in advance with an optimum processing pressure range for treating various types of waste, and the steam injection means 4 and the pressure adjusting means 5 are feedback-controlled so as to maintain this processing pressure range. And then. That is, the control means 6 controls the steam injection means 4 to inject high-pressure steam when the pressure in the processing container 2 is less than the processing pressure range based on the detection result of the pressure sensor 24. On the other hand, if the processing pressure range is likely to be exceeded, the pressure adjusting means 5 is controlled to exhaust high-pressure steam and lower the pressure.
[0027] また、本実施形態の制御手段 6は、下部温度センサ 23bで検出される材料部温度 力 上部温度センサ 23aで検出される空隙部温度に一致したとき、水蒸気注入手段 4を制御して高圧水蒸気の注入を停止するように設定されて!、る。この制御は温度状 況を確認しながらユーザが操作してもよい。前述のように導入する高圧水蒸気の停 止制御を行うのは、送気管 42を処理容器 2の上方位置に配設していることと、高湿潤 の廃棄物は下方に水分が溜まりやすいので廃棄物間でも上下の温度差が大きいこと によるものである。そこで、処理容器 2内の下部における材料部温度が上部における 空隙部温度に一致し、廃棄物全体に均一な圧力と温度が付与された時点でムラなく 燃料に適した性状へと変換できる。もし、材料部温度が空隙部温度に一致する前に 高圧水蒸気の注入を停止すると、廃棄物の性状が完全に変換されな!、未処理部分 が混在してしまうおそれがある。逆に、材料部温度が空隙部温度に一致した後も高 圧水蒸気を注入し続けた場合、保有熱量が減少するおそれがあるし、処理コストや 時間が無駄になる。また、炭化が進むため窒素に対する炭素量が多くなり、肥料にも 転用した!/、場合には好ましくな 、。  In addition, the control means 6 of the present embodiment controls the water vapor injection means 4 when the material part temperature force detected by the lower temperature sensor 23b matches the gap temperature detected by the upper temperature sensor 23a. Set to stop high pressure steam injection! This control may be operated by the user while checking the temperature status. The stop control of the high-pressure steam introduced as described above is performed because the air supply pipe 42 is disposed at the upper position of the processing container 2 and because highly humid waste tends to accumulate moisture below, it is discarded. This is due to the large temperature difference between the objects. Therefore, when the material part temperature in the lower part in the processing container 2 matches the gap part temperature in the upper part and uniform pressure and temperature are applied to the whole waste, it can be converted into a property suitable for fuel without unevenness. If the injection of high-pressure steam is stopped before the material part temperature matches the gap part temperature, the properties of the waste will not be completely converted! There is a possibility that untreated parts will be mixed. On the other hand, if high-pressure steam is continuously injected even after the material part temperature matches the gap part temperature, the retained heat amount may be reduced, and processing costs and time are wasted. In addition, carbonization increases and the amount of carbon with respect to nitrogen increases, so it is also used as a fertilizer!
[0028] つぎに、本実施形態の燃料製造装置 1による燃料製造方法について説明する。 [0029] まず、投入する廃棄物の種類ごとに、処理容器 2内における処理時の圧力を予め 制御手段 6に対して設定しておく。この場合、設定される容器内圧力は、各種の廃棄 物が保有熱量を大きく損なうことなく十分に含水率が低下した性状に変換される圧力 であり、本実施形態では、 1. 96MPa以上の範囲内に設定される。 [0028] Next, a fuel production method by the fuel production apparatus 1 of the present embodiment will be described. [0029] First, the pressure at the time of processing in the processing container 2 is set in advance for the control means 6 for each type of waste to be input. In this case, the set internal pressure is the pressure at which various types of waste are converted to properties with a sufficiently reduced moisture content without significantly impairing the amount of stored heat. In this embodiment, the range is 1.96 MPa or more. Set in.
[0030] つぎに、廃棄物を投入口 21から処理容器 2内に投入する。このとき、本実施形態で は、処理時間を短縮するため、処理容器 2内の温度を約 150°Cになるまで予熱して いる。また、本実施形態では、処理対象の廃棄物に対し籾殻由来の水分調整資材を 混入させている。この水分調整資材は、本実施形態の燃料製造装置を使って籾殻を 処理したものであり、具体的には、籾殻に消石灰あるいはホタテの貝殻粉砕物を混 入して 1. 45MPa〜l. 96MPa、より好ましくは 1. 65MPa〜l. 85MPaで 5〜30分 保持して処理したものである。このように処理した籾殻は棉のように柔らカい。このよう な籾殻の水分調整資材を混入することにより、高価なおが屑等を使用しなくても処理 物の含水率を安価に調整することができる。  Next, waste is introduced into the processing container 2 from the inlet 21. At this time, in this embodiment, in order to shorten the processing time, the temperature in the processing container 2 is preheated to about 150 ° C. Moreover, in this embodiment, the moisture adjustment material derived from rice husk is mixed in the waste to be treated. This moisture adjusting material is obtained by processing rice husks using the fuel production apparatus of the present embodiment. Specifically, slaked lime or scallop shell pulverized material is mixed into the rice husks from 1. 45 MPa to l. 96 MPa. More preferably, it is processed at 1.65 MPa to l.85 MPa for 5 to 30 minutes. The rice husks treated in this way are as soft as cocoons. By mixing such rice husk moisture adjustment material, the moisture content of the treated product can be adjusted at low cost without using expensive sawdust.
[0031] 処理容器 2内に廃棄物が投入されると、ボイラー 41から高圧水蒸気の注入が開始 されるとともに、廃棄物は撹拌羽根 32によって大きく攪拌されながら徐々に排出口 2 2方向側へ移送される。処理量によっては一方向の移送だけでは処理が完了しない 場合があるが、この場合には、駆動モータ 33を逆方向に反転させて投入口 21側へと 移送し、往復移送を行う。これにより小さい処理容器 2であっても充分な処理時間が 得られる。  [0031] When waste is put into the processing container 2, high-pressure steam is started to be injected from the boiler 41, and the waste is gradually transferred to the discharge port 2 in the direction of 2 while being largely stirred by the stirring blade 32. Is done. Depending on the amount of processing, the processing may not be completed by only transferring in one direction, but in this case, the drive motor 33 is reversed in the reverse direction and transferred to the input port 21 side for reciprocal transfer. Even with a smaller processing container 2, sufficient processing time can be obtained.
[0032] この攪拌移動している間、高圧水蒸気は水平回動軸 31よりも上方に取り付けられ た送気管 42から注入される。このため、廃棄物は撹拌手段 3の攪拌によって水平回 動軸 31の上方にばらばらに飛散されたときに、高圧の水蒸気を効果的に吹き付けら れる。したがって、水蒸気圧力に付随する加熱および水蒸気による加水分解が効果 的に進められる。このとき、本実施形態では 1. 96MPa以上の高圧水蒸気を使用し ており、前述したようにこの高圧水蒸気には極めて含有水分が低い。したがって、処 理容器 2内では、加水分解作用よりも、むしろ高圧による分子破壊作用が進行し、廃 棄物の性状変換処理をより一層早めることになる。  During this agitation and movement, high-pressure steam is injected from an air supply pipe 42 attached above the horizontal rotation shaft 31. For this reason, when the waste is scattered apart above the horizontal rotating shaft 31 by the stirring of the stirring means 3, high-pressure steam is effectively blown. Therefore, heating accompanying steam pressure and hydrolysis by steam are effectively promoted. At this time, in this embodiment, high-pressure steam of 1.96 MPa or more is used, and as described above, the high-pressure steam contains extremely low moisture. Therefore, in the treatment container 2, rather than hydrolysis, molecular destruction by high pressure proceeds, and waste property conversion processing is further accelerated.
[0033] また、処理容器 2内に高圧水蒸気が注入されている間、制御手段 6は、圧力センサ 24の検出結果を常に監視し、処理容器 2内の圧力が予め設定した処理圧力範囲内 に保持されるように水蒸気注入手段 4および圧力調整手段 5を制御して 、る。 [0033] While high-pressure steam is being injected into the processing vessel 2, the control means 6 is a pressure sensor. The 24 detection results are constantly monitored, and the water vapor injection means 4 and the pressure adjusting means 5 are controlled so that the pressure in the processing container 2 is maintained within a preset processing pressure range.
[0034] そして、図 2に示すように、処理容器 2内の下方における材料部温度力 上方にお ける空隙部温度に一致したとき、すなわち、下部温度センサ 23bの検出温度が上部 温度センサ 23aの検出温度に一致したとき、制御手段 6は水蒸気注入手段 4を制御 して水蒸気の注入を停止する。その後、徐々に温度 '圧力が低下するが、この停止 状態を所定時間だけ保持した後、圧力調整バルブ 51を開放する。これにより、処理 容器 2内の高圧水蒸気力 S排気管 52を通じて排気され、処理容器 2内の圧力と温度が 一気に低下するため、廃棄物は爆砕するように分解する。これにより分散しにくい細 菌のフロック等であっても崩壊することができ、放出しにく 、水分を除去することがで きる。なお、注入停止後、直ちに水蒸気を排気してもよいが、処理の確実性'安定性 を確保するため数分程度保持してもよ!/ヽ。 Then, as shown in FIG. 2, when the temperature of the material part in the lower part of the processing container 2 coincides with the temperature of the gap in the upper part, that is, the detected temperature of the lower temperature sensor 23b is higher than that of the upper temperature sensor 23a. When it coincides with the detected temperature, the control means 6 controls the water vapor injection means 4 to stop the water vapor injection. Thereafter, the temperature 'pressure gradually decreases, but after this stop state is maintained for a predetermined time, the pressure adjustment valve 51 is opened. As a result, the gas is exhausted through the high-pressure steam force S exhaust pipe 52 in the processing container 2 and the pressure and temperature in the processing container 2 are reduced at a stretch. Therefore, the waste is decomposed so as to explode. As a result, even bacterial flocs that are difficult to disperse can be disintegrated, are difficult to release, and can remove moisture. The steam may be exhausted immediately after the injection is stopped, but it may be kept for several minutes to ensure the reliability and stability of the treatment!
[0035] 以上のような処理によって廃棄物は結合分子の分離と分解が起こり、燃焼させずに 初期炭化と微細化という性状変化が生じる。この初期炭化の状態では、廃棄物が元 来保有する熱量がそれほど消滅することなく残留する。また、廃棄物に含まれていた 水分は、減圧に伴って凝縮して排出されるため、含水率が低下する。このとき、高圧 水蒸気に含まれていた水分は微量であるため、凝縮する水の割合は少ない。さらに 分子レベルで分解されているため、野菜や魚肉等の細胞壁や細胞膜が破壊され、あ るいは細菌フロックが崩壊されていることから、水分を一層排出し易いとともに、残存 している水分も放置しておくだけで蒸発してしまう状態にある。また、悪臭も除去され る。このような処理後の廃棄物は燃料として利用価値が高い。例えば、微粉末状に変 ィ匕されるため、そのまま使用しても流動性が良ぐ水と混合したり、あるいは微粉末の まま燃料として吹き付けて使用することが可能である。さらに、微粉末ゆえ、ペレット状 に形成することも容易であり、特にガス化発電用の燃料に好適である。もちろん、より 塊状に成形することによって通常の固形燃料とすることもできる。一方、高圧の水蒸 気により極めて短時間で廃棄物の性状を変換させられるため、ボイラー 41の消費燃 料を節約できるし、一日あたりの処理能力を増大できる。  [0035] By the above treatment, the waste is separated and decomposed by binding molecules, and changes in properties such as initial carbonization and refinement occur without burning. In this initial carbonization state, the amount of heat originally stored in the waste remains without much loss. In addition, the moisture contained in the waste is condensed and discharged along with the reduced pressure, so that the moisture content decreases. At this time, since the amount of water contained in the high-pressure steam is very small, the ratio of the water to be condensed is small. Furthermore, because it is broken down at the molecular level, cell walls and membranes of vegetables and fish meat are destroyed, or bacterial flocs are destroyed. It is in a state where it evaporates just by keeping it. It also removes odors. Such treated waste has a high utility value as a fuel. For example, since it is changed into a fine powder, it can be mixed with water that has good fluidity even if it is used as it is, or it can be used by spraying it as fuel in the form of fine powder. Furthermore, since it is a fine powder, it can be easily formed into pellets, and is particularly suitable as a fuel for gasification power generation. Of course, it is possible to obtain a normal solid fuel by molding it into a more massive shape. On the other hand, since the properties of waste can be converted in a very short time by high-pressure water steam, the fuel consumption of the boiler 41 can be saved and the treatment capacity per day can be increased.
[0036] なお、処理後の廃棄物は、撹拌手段 3により排出口 22まで移送されて取り出される とともに、排出された水は排水処理設備 9に供給されて浄化処理される。 [0036] The treated waste is transferred to the discharge port 22 by the stirring means 3 and taken out. At the same time, the discharged water is supplied to the wastewater treatment facility 9 for purification.
[0037] つぎに、本実施形態の具体的な実施例について説明する。以下の各実施例では、 実用化を想定し、実用に適する短い時間内でコストを抑制して廃棄物を燃料に適し た性状、特にガス化発電用の燃料に適した性状へと変換するための処理条件を求め る実験を行った。この実験では、処理容器 2内の圧力を変化させて処理した廃棄物 の性状を観察した。これらの実験条件およびその処理結果を図 3に示す。 Next, specific examples of the present embodiment will be described. In each of the following examples, practical use is assumed to reduce waste within a short time suitable for practical use and to convert waste into properties suitable for fuel, particularly suitable for fuel for gasification power generation. An experiment was conducted to determine the treatment conditions. In this experiment, the properties of waste treated by changing the pressure in the treatment container 2 were observed. Figure 3 shows these experimental conditions and the processing results.
[0038] 本実施例の実験では、容積が 3000リットルの処理容器 2を使用し、この処理容器 2 に対して充填率が 65%〜95%となるように廃棄物を投入した。攪拌速度は、廃棄物 を均一に攪拌するため下部温度センサ 23bの値が上部温度センサ 23aの値と一致 するまでは 2〜18rpmとし、一致した時点から 0. 15MPaまで減圧するまでは、 5〜1 5rpmに制御した。また、処理圧力は約 1. 96MPa〜3. 43MPaの範囲内で廃棄物 の種類'性質を考慮して適宜選択して設定した。また、比較のために、処理容器内の 圧力を 1. 96MPa以下に保持して処理を行った結果も示す。但し、この場合には、 所望の性状変化を十分に期待するには、材料部温度と空隙部温度とがー致しても直 ちに停止せず、高圧水蒸気の注入を継続して所定圧力、所定温度下で所定時間保 持する必要がある。なお、処理した廃棄物の含水率の測定には、株式会社島津製作 所の島津電子式水分計「EB— 340MOC」を使用しており、熱量の測定には、株式 会社島津製作所のボンべ型熱量計「CA— 4PJ」 (JISM8814, JISK2279適合装置)を 使用した。 [0038] In the experiment of this example, a processing container 2 having a volume of 3000 liters was used, and waste was introduced into the processing container 2 so that the filling rate was 65% to 95%. The agitation speed is 2 to 18 rpm until the value of the lower temperature sensor 23b matches the value of the upper temperature sensor 23a in order to uniformly stir the waste, and 5 to 5 until the pressure is reduced to 0.15 MPa from the point of coincidence. 1 Controlled to 5 rpm. The treatment pressure was set within the range of about 1.96MPa to 3.43MPa as appropriate considering the type of waste. For comparison, the results of processing with the pressure inside the processing container maintained at 1.96 MPa or less are also shown. However, in this case, in order to sufficiently expect the desired property change, even if the material part temperature and the gap part temperature coincide with each other, it does not stop immediately, and the high-pressure steam is continuously injected to a predetermined pressure, It must be kept for a certain time at a certain temperature. The water content of the treated waste was measured using the Shimadzu Electronic Moisture Meter “EB-340MOC” from Shimadzu Corporation, and the calorific value was measured using the cylinder type of Shimadzu Corporation. The calorimeter “CA-4PJ” (JISM8814, JISK2279 compliant equipment) was used.
実施例 1  Example 1
[0039] 『生ゴミの性状変換処理』 [0039] "Property conversion processing of garbage"
実施例 1では、図 4に示すように、廃棄物として家庭や店舗等から出る肉 '魚'野菜 等のくずや食べ残し等の水分を多く含んでいる生ゴミを使用した。もちろん生ゴミを包 んで 、るプラスチックフィルムが混入されて 、ても問題なく処理可能である。処理容 器 2内の処理圧力は、本処理容器 2の安全性が確保されている 1. 96〜3. 43MPa の範囲内に設定し、それぞれ 1. 96~2. 30MPa、 2. 30〜2. 90MPa、 2. 90〜3. 43MPaの範囲内に保持して処理を行った。また、処理温度に関しては、特に設定せ ず、高圧水蒸気を注入することによる圧力制御に応じて昇温させ、少なくとも下部温 度センサ 23bが上部温度センサ 23aに一致するまで高圧水蒸気を注入した。一方、 比較例の処理圧力は 1. 96MPa以下の範囲である 1. 90〜: L 96MPaの圧力範囲 内に保持し、かつ、温度を 210〜215°Cに 35〜50分間保持して処理を行った。なお 、前記生ゴミの処理前の含水率は 91. 00%であり、保有熱量は 12. 29kJであった。 In Example 1, as shown in FIG. 4, raw garbage containing a lot of water such as scraps such as meat “fish” vegetables from homes and stores, and leftovers was used as waste. Of course, it can be processed without any problems even if it is wrapped with garbage and mixed with plastic film. The processing pressure in the processing container 2 ensures the safety of the processing container 2. 1. Set within the range of 96 to 3.43 MPa, 1.96 to 2.30 MPa, 2.30 to 2 respectively. 90 MPa, 2. The treatment was carried out while maintaining within the range of 90 to 3.43 MPa. Further, the treatment temperature is not particularly set, and the temperature is raised according to the pressure control by injecting high-pressure steam, and at least the lower temperature is set. High pressure steam was injected until the degree sensor 23b coincided with the upper temperature sensor 23a. On the other hand, the processing pressure of the comparative example is 1. 96MPa or less 1. 90 ~: L Hold within the pressure range of 96MPa and keep the temperature at 210 ~ 215 ° C for 35-50 minutes went. The moisture content before the treatment of the garbage was 91.00% and the retained heat amount was 12.29 kJ.
[0040] 上記実験の結果、図 3に示すように、比較例における 1. 96MPa以下の圧力範囲 で処理した場合、処理後の生ゴミの保有熱量は 9. 99kJであって含水率が 20. 80% であった。この場合、ガス化発電用燃料として使用可能であるが、約 15〜25分間昇 温させて処理容器 2内が所定の圧力'温度に到達した後に、約 35〜50分の保持時 間が必要であるため、処理に要するエネルギーに対して熱量損失が大きいといえる。 また、生ゴミのうち、図 5 (a)に示すような蟹の甲羅や、図 5 (b)に示すような貝殻等は 完全に分解できず、図 6に示すように高強度の破片として残存してしまった。  [0040] As a result of the above experiment, as shown in FIG. 3, when treated in the pressure range of 1.96 MPa or less in the comparative example, the amount of retained heat of the treated garbage is 9.99 kJ and the moisture content is 20. It was 80%. In this case, it can be used as a fuel for gasification power generation, but it needs a holding time of about 35 to 50 minutes after it is heated for about 15 to 25 minutes and the inside of the processing container 2 reaches a predetermined pressure 'temperature. Therefore, it can be said that the heat loss is large with respect to the energy required for the treatment. Also, among the raw garbage, shells such as shark shells as shown in Fig. 5 (a) and shells as shown in Fig. 5 (b) cannot be completely disassembled, as high-strength fragments as shown in Fig. 6. It has remained.
[0041] これに対し、本実施例 1の場合、 1. 96-2. 30MPaの圧力範囲では、高圧水蒸気 を注入開始後、約 21分ほどで材料部温度が空隙部温度に一致させることができ、一 致するのと同時に高圧水蒸気の注入を切断する。その後、数分間経過後に水蒸気 を排気する。したがって、比較例に比べると、温度保持時間はほとんど必要ないとい える。このときの一致した温度を測定したところ、 218°Cであった。また、保有熱量は 1 1. 89kJ、含水率は 19. 90%であり、処理前の熱量の 96%以上を保有しており、そ の保有熱量の高さおよび含水率の低さ、悪臭が除去されることなど力 一般の燃料と してはもとより、ガス化発電用燃料としても好適である。上記含水率の低減状態を観 察すると、細菌フロックが破壊されて分散されていることがわかり、水分が抜けやすい ことがわ力ゝる。  [0041] On the other hand, in the case of Example 1, in the pressure range of 1. 96-2. 30 MPa, the material part temperature can be made to coincide with the cavity temperature in about 21 minutes after the start of the injection of high-pressure steam. At the same time, the high-pressure steam injection is cut off. Then, after a few minutes, steam is exhausted. Therefore, compared with the comparative example, it can be said that the temperature holding time is almost unnecessary. The coincident temperature was measured and found to be 218 ° C. In addition, the retained heat amount is 11.89 kJ and the moisture content is 19.90%, and it retains more than 96% of the heat amount before treatment, and the retained heat amount, the moisture content is low, and there is a bad smell. Power to be removed It is suitable not only as a general fuel but also as a fuel for gasification power generation. By observing the reduced water content, it can be seen that the bacterial flocs are destroyed and dispersed, and it is easy to remove moisture.
[0042] また、 2. 30-2. 90MPaの圧力範囲で処理した場合には、更に処理時間が短縮 され、高圧水蒸気を注入した後、約 18分で材料部温度と空隙部温度とがー致して処 理を完了することができた。このときの一致した温度は 222°Cであった。また処理後の 保有熱量は 11. 09kJ、含水率は 18. 33%であり、処理前の熱量の 90%以上を保有 し、含水率は 5分の 1にまで低減させられた。したがって、ガス化発電用燃料として極 めて好適である。  [0042] In addition, in the case of treatment in the pressure range of 2.30-2.90 MPa, the treatment time is further shortened, and after injecting the high-pressure steam, the temperature of the material part and the temperature of the void part are increased in about 18 minutes. We were able to complete the process. The coincident temperature at this time was 222 ° C. The retained heat after treatment was 11.09 kJ and the moisture content was 18.33%, holding more than 90% of the heat before treatment, and the moisture content was reduced to 1/5. Therefore, it is extremely suitable as a fuel for gasification power generation.
[0043] さらに、 2. 90〜3. 43MPaの圧力範囲で処理した場合、高圧水蒸気を注入後、約 18分で下部の材料部温度と上部の空隙部温度とがー致して処理を完了することが できた。このときの一致した温度は 231°Cであった。また保有熱量は 9. 01kJ、含水 率は 18. 01%であった。保有熱量は 10kJを下回ったが処理前の熱量の約 73%を 保持しており、含水率は更に減少した。この処理物も燃料はもとよりガス化発電用燃 料として使用可能である。ただ、先の条件に比べると圧力を高く保持する分だけ熱損 失が大きいといえる。 [0043] In addition, when treated in the pressure range of 2.90-3. In 18 minutes, the material temperature in the lower part and the temperature in the upper part of the gap matched, and the treatment was completed. The coincident temperature at this time was 231 ° C. The retained heat was 9.01 kJ and the moisture content was 18.01%. The amount of heat retained was less than 10 kJ, but retained about 73% of the amount of heat before treatment, and the moisture content further decreased. This treated product can be used as fuel for gasification power generation as well as fuel. However, compared to the previous conditions, it can be said that the heat loss is larger by keeping the pressure higher.
[0044] 以上、実施例 1の実験結果によれば、生ゴミの保有熱量を損失させることなぐ含水 率を低下させ、ガス化発電用の燃料に適した性状に変換するための処理条件は、処 理容器 2内の圧力を 1. 96MPa以上に保持するとともに、材料部温度と空隙部温度 がー致するまで上昇させる条件が好ましぐより好ましくは圧力を 2. 30MPa〜2. 90 MPa以下に保持して昇温させ、材料部温度および空隙部温度が一致した瞬間に高 圧水蒸気の注入を停止することである。このような処理条件下であれば図 7に示すよ うに、貝殻や力二の甲羅等の破片が残存することがなぐ完全に微粉末化される。し たがって、微粉末状のまま直接燃焼させられることはもちろん、ペレット状や固形状の 燃料に形成することも容易である。  [0044] As described above, according to the experimental results of Example 1, the treatment conditions for reducing the moisture content without losing the amount of heat stored in the raw garbage and converting it to properties suitable for fuel for gasification power generation are as follows: It is preferable to keep the pressure in the processing container 2 at 1.96 MPa or more and increase the temperature until the material temperature and the void temperature meet. More preferably, the pressure is 2.30 MPa to 2.90 MPa or less. The temperature is raised and the temperature is raised, and the injection of high-pressure steam is stopped at the moment when the material part temperature and the gap part temperature coincide. Under such treatment conditions, as shown in Fig. 7, the powder is completely pulverized so that no debris such as shells and shells of force are left. Therefore, it can be directly burned in the form of a fine powder, and can easily be formed into pellets or solid fuel.
[0045] 本実施例 1では、処理容器の耐久性ゃパッキンの安全性能を考慮して処理圧力を 最大 3. 43MPaまでに止めている力 仮にこれ以上の圧力下で処理する場合には、 材料部温度が空隙部温度に一致するまでの時間がより短縮化され、含水率も減少す るものと考えられる。このことは以下の他の実施例においても同様である。但し、保有 熱量が徐々に減少する傾向にあるため、より厳密な制御が必要と考えられる。  [0045] In the first embodiment, the durability of the processing container is taken into consideration and the safety performance of the packing is taken into consideration. The processing pressure is stopped at a maximum of 3. 43MPa. It is considered that the time until the temperature of the part matches the temperature of the gap is further shortened, and the water content is also reduced. The same applies to the other embodiments described below. However, since the amount of retained heat tends to decrease gradually, more strict control is considered necessary.
[0046] なお、本実施例 1で示した処理温度 (材料部温度と空隙部温度が一致した温度)は 222°Cであり、本実験条件下では最適温度であると考えられる。但し、この処理温度 は外気温等、処理環境が変われば変動するものであるから、上記した数値に限られ るものではなぐ以下の他の実施例においても同様である。  It should be noted that the processing temperature shown in Example 1 (the temperature at which the material part temperature and the gap part temperature coincide) is 222 ° C., which is considered to be the optimum temperature under the experimental conditions. However, since this processing temperature changes as the processing environment changes, such as the outside air temperature, the processing temperature is not limited to the above numerical values, and the same applies to the other embodiments described below.
実施例 2  Example 2
[0047] 『下水汚泥の性状変換処理』 [0047] "Property conversion treatment of sewage sludge"
実施例 2では、廃棄物として図 8に示すような下水汚泥を使用した。処理容器 2内の 処理圧力は、本処理容器 2の安全性が確保されている 1. 96〜3. 43MPaの範囲内 に設定し、それぞれ 1. 96~2. 35MPa, 2. 35~3. 05MPa, 3. 05~3. 43MPa の範囲内に保持して処理を行った。また、処理温度に関しては、特に設定せず、高 圧水蒸気を注入することによる圧力制御に応じて昇温させ、少なくとも下部温度セン サ 23bが上部温度センサ 23aに一致するまで高圧水蒸気を注入した。一方、比較例 の処理圧力は 1. 96MPa以下の範囲である 1. 85〜: L 90MPaの圧力範囲内に保 持し、かつ、温度を 205〜210°Cに 55〜65分間保持して処理を行った。なお、前記 下水汚泥の処理前の含水率は 80. 00%であり、保有熱量は 15. 51kJであった。 In Example 2, sewage sludge as shown in FIG. 8 was used as waste. The processing pressure in the processing container 2 ensures the safety of this processing container 2. 1. Within the range of 96 to 3.43 MPa The processing was carried out while maintaining the range of 1.96 to 2.35 MPa, 2.35 to 3.05 MPa, 3.05 to 3.43 MPa, respectively. Further, the processing temperature was not particularly set, and the temperature was raised according to pressure control by injecting high-pressure steam, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a. On the other hand, the processing pressure of the comparative example is in the range of 1.96 MPa or less 1. 85 ~: L Hold in the pressure range of 90MPa and keep the temperature at 205 ~ 210 ° C for 55 ~ 65 minutes. Went. The water content before treatment of the sewage sludge was 80.00% and the retained heat was 15.51 kJ.
[0048] 上記実験の結果、図 3に示すように、比較例における 1. 96MPa以下の圧力範囲 で処理した場合、処理後の下水汚泥の保有熱量は 10. 99kJであって含水率が 22. 05%であった。但し、この比較例の場合、ガス化発電用燃料として使用可能であるが 、処理容器 2内が所定の圧力 '温度に到達するまでに約 35〜45分力かり(凍結汚泥 ではそれ以上)、その後、約 55〜65分の保持時間が必要であるため、処理に要する エネルギーに対して熱量損失が大きいといえる。また、 1回の処理に要する燃料消費 量は、予熱工程も含めて約 22リットルであった。したがって、ガス化発電用の燃料とし て使用可能であるものの処理時間が力かるし、処理に要するエネルギーに対して熱 量損失が多いといえる。 [0048] As a result of the above experiment, as shown in Fig. 3, when treated in the pressure range of 1.96 MPa or less in the comparative example, the retained heat of the treated sewage sludge is 10.99 kJ and the moisture content is 22. 05%. However, in the case of this comparative example, it can be used as a fuel for gasification power generation, but it takes about 35 to 45 minutes to reach the predetermined pressure 'temperature in the processing container 2 (more in the case of frozen sludge), After that, since a holding time of about 55 to 65 minutes is required, it can be said that the heat loss is large with respect to the energy required for processing. In addition, the fuel consumption required for one treatment was approximately 22 liters including the preheating process. Therefore, although it can be used as a fuel for gasification power generation, the processing time is long, and it can be said that there is a lot of heat loss with respect to the energy required for processing.
[0049] これに対し、本実施例 2の場合、 1. 96-2. 35MPaの圧力範囲では、高圧水蒸気 の注入開始後、約 41分で材料部温度が空隙部温度に一致させることができ、一致 するのと同時に高圧水蒸気の注入を切断してよい。その後、念のため数分間経過し た後に水蒸気を排気する。したがって、比較例と比べると、温度保持時間は必要がな い。このときの一致した温度を測定したところ、 215°Cであった。また、保有熱量は 11 . 38kJと高い熱量値を保持していた力 含水率は 30. 55%であり、やや実用性に欠 くものであった。ただ、処理後の下水汚泥は細菌フロックや結合分子が分離 ·分解さ れているため、水分が蒸発しやすくなつており、一晩ほど放置すれば含水率は低下 する。したがって、ガス化発電用燃料としても好適である。  [0049] On the other hand, in the case of Example 2, in the pressure range of 1. 96-2. 35 MPa, the material part temperature can be made to match the gap part temperature in about 41 minutes after the start of high-pressure steam injection. At the same time, the high-pressure steam injection may be cut off. After that, the steam is exhausted after a few minutes just in case. Therefore, the temperature holding time is not necessary as compared with the comparative example. The coincident temperature was measured and found to be 215 ° C. In addition, the retained heat quantity was 11.38 kJ and the high moisture content was 30.55%, which was a little lack of practicality. However, after treatment, sewage sludge has been separated and decomposed by bacterial flocs and binding molecules, so water tends to evaporate, and the moisture content decreases if left overnight. Therefore, it is also suitable as a fuel for gasification power generation.
[0050] また、 2. 35〜3. 05MPaの圧力範囲で処理した場合には、高圧水蒸気を注入後 、約 38分で材料部温度と空隙部温度とがー致して処理を完了することができた。この ときの一致した温度は 223°Cであった。また処理後の保有熱量は 11. 12kJと高い熱 量値を保持し、含水率は 26. 78%と約 3分の 1にまで低減することができた。したが つて、ガス化発電用燃料として十分に利用可能である。 [0050] In addition, when the treatment is performed in the pressure range of 2.35 to 3.05 MPa, the material part temperature and the cavity part temperature coincide with each other in about 38 minutes after the high-pressure steam is injected. did it. The coincident temperature at this time was 223 ° C. In addition, the retained heat after treatment is 11.12kJ and high heat The quantity value was maintained, and the moisture content was reduced to about 1/3, 26.78%. Therefore, it can be fully used as a fuel for gasification power generation.
[0051] さらに、 3. 05〜3. 43MPaの圧力範囲で処理した場合、高圧水蒸気を注入開始 後、約 32分で下部の材料部温度と上部の空隙部温度とがー致して処理を完了する ことができた。このときの一致した温度は 232°Cであった。また保有熱量は 11. 09kJ 、含水率は 19. 87%であった。先の条件に比べて保有熱量はほとんど低下しておら ず、含水率は処理前の約 4分の 1にまで減少した。また、このときの処理に要した燃 料消費量は、予熱工程も含めて約 16リットルであり、比較例の 22リットルに比べて約 30%も節約することができた。したがって、ガス化発電用燃料として極めて好適であ る。 [0051] Furthermore, in the case of processing in the pressure range of 3. 05 to 3.43 MPa, after the start of high-pressure steam injection, the material temperature in the lower part and the temperature in the upper part of the space are matched in about 32 minutes to complete the processing. We were able to. The consistent temperature at this time was 232 ° C. The retained heat was 11.09kJ and the moisture content was 19.87%. Compared to the previous conditions, the amount of stored heat has hardly decreased, and the moisture content has decreased to about one-fourth of that before treatment. The fuel consumption required for the treatment at this time was about 16 liters, including the preheating step, and it was possible to save about 30% compared to 22 liters in the comparative example. Therefore, it is extremely suitable as a fuel for gasification power generation.
[0052] 以上、実施例 2の実験結果によれば、下水汚泥の保有熱量を損失させることなぐ 含水率を低下させ、ガス化発電用の燃料に適した性状に変換するための処理条件 は、処理容器 2内の圧力を 1. 96MPa以上に保持するとともに、材料部温度と空隙 部温度が一致するまで上昇させる条件が好ましぐより好ましくは圧力を 3. 05MPa 以上 3. 43MPa以下に保持して昇温させ、材料部温度および空隙部温度が一致し た瞬間に高圧水蒸気の注入を停止することである。このような処理条件下であれば 図 9に示すように、下水汚泥であっても短時間で乾燥した微粉末に性状を変換させる ことができ、悪臭も除去することができる。  [0052] As described above, according to the experimental results of Example 2, the processing conditions for reducing the moisture content without losing the amount of heat retained in the sewage sludge and converting it into properties suitable for gasification power generation are: While maintaining the pressure in Processing Vessel 2 at 1.96 MPa or more, it is preferable to increase the pressure until the material part temperature and the cavity temperature match, and more preferably the pressure is kept at 3.05 MPa or more and 3. 43 MPa or less. The injection of high-pressure steam is stopped at the moment when the temperature of the material part and the temperature of the cavity part coincide. Under such treatment conditions, as shown in FIG. 9, even sewage sludge can be converted into fine powder dried in a short time, and malodors can be removed.
実施例 3  Example 3
[0053] 『魚残渣の性状変換処理』 [0053] “Transformation of fish residue properties”
実施例 3では、廃棄物として魚残渣を使用した。処理容器 2内の処理圧力は、本処 理容器 2の安全性が確保されている 1. 96-2. 95MPaの範囲内に設定し、それぞ れ 1. 96〜2. 20MPa、 2. 20〜2. 65MPa、 2. 65〜2. 95MPaの範囲内に保持し て処理を行った。また、処理温度に関しては、特に設定せず、高圧水蒸気を注入す ることによる圧力制御に応じて昇温させ、少なくとも下部温度センサ 23bが上部温度 センサ 23aに一致するまで高圧水蒸気を注入した。一方、比較例の処理圧力は 1. 9 6MPa以下の範囲である 1. 80〜: L 85MPaの圧力範囲内に保持し、かつ、温度を 205〜210°Cに 60〜90分間保持して処理を行った。なお、前記魚残渣の処理前の 含水率は 85. 00%であり、保有熱量は 12. 99kJであった。 In Example 3, fish residue was used as waste. The processing pressure in Processing Vessel 2 ensures the safety of Processing Vessel 2. 1. Set within the range of 96-2.95 MPa, 1.96-2.20 MPa, 2.20 respectively The treatment was carried out while maintaining within the range of ~ 2.65 MPa and 2.65-2.95 MPa. Further, the treatment temperature was not particularly set, and the temperature was raised according to pressure control by injecting high-pressure steam, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a. On the other hand, the processing pressure of the comparative example is in the range of 1.96 6MPa or less 1. 80 ~: L Hold within the pressure range of 85MPa and keep the temperature at 205-210 ° C for 60-90 minutes Went. In addition, before processing of the fish residue The moisture content was 85.00% and the retained heat was 12.99 kJ.
[0054] 上記実験の結果、図 3に示すように、比較例における 1. 96MPa以下の圧力範囲 で処理した場合、処理後の魚残渣の保有熱量は 9. 44kJであって含水率が 24. 00 %であった。この場合、ガス化発電用燃料として使用可能であるが、処理容器 2内が 約 15〜25分かけて所定の圧力.温度に到達した後に、約 60〜90分の保持時間が 必要であるため、処理に要するエネルギーに対して熱量損失が大きい。  [0054] As a result of the above experiment, as shown in Fig. 3, when treated in the pressure range of 1.96 MPa or less in the comparative example, the retained heat amount of the fish residue after treatment is 9.44 kJ and the moisture content is 24. It was 00%. In this case, it can be used as a fuel for gasification power generation, but it needs a holding time of about 60 to 90 minutes after it reaches the prescribed pressure and temperature in the processing vessel 2 for about 15 to 25 minutes. The heat loss is large with respect to the energy required for processing.
[0055] これに対し、本実施例 3の場合、 1. 96〜2. 20MPaの圧力範囲では、高圧水蒸気 の注入開始後、約 34分で材料部温度が空隙部温度に一致させることができ、一致 するのと同時に高圧水蒸気の注入を切断した。その後、処理の余裕をみて数分間経 過後に水蒸気を排気する。したがって、比較例に比べると温度保持時間は必要ない といえる。このときの一致した温度を測定したところ、 221°Cであった。また、保有熱量 は 12. 33kJと高い熱量値を保持していた力 含水率は 68. 20%であり、実用性に欠 くものであった。ただ、処理後の魚残渣は結合分子が分離'分解されているため、水 分が蒸発しやすくなつており、一晩ほど放置すれば含水率は低下する。したがって、 ガス化発電用燃料としても使用可能である。  [0055] On the other hand, in the case of Example 3, in the pressure range of 1.96 to 2.20 MPa, the material part temperature can be made to coincide with the gap part temperature in about 34 minutes after the start of high-pressure steam injection. At the same time, the injection of high-pressure steam was cut off. After that, the steam is exhausted after a few minutes with a margin for treatment. Therefore, it can be said that the temperature holding time is not necessary as compared with the comparative example. The coincident temperature was measured and found to be 221 ° C. In addition, the retained heat quantity was 12.33 kJ and the high moisture content was 68.20%, which was not practical for practical use. However, the fish residue after the treatment has separated and decomposed binding molecules, so the water content tends to evaporate, and the moisture content decreases if it is left overnight. Therefore, it can be used as a fuel for gasification power generation.
[0056] また、 2. 20-2. 65MPaの圧力範囲で処理した場合には、高圧水蒸気を注入後 、約 26分で材料部温度と空隙部温度とがー致して処理を完了することができた。この ときの一致した温度は 229°Cであった。また処理後の保有熱量は 11. 19kJであり、 8 2%以上の高い熱量値を保持していた力 含水率は 48. 20%とまだ高いので実用 性を高めるにはさらに含水率を低下させる必要がある。  [0056] Also, in the case of processing in the pressure range of 2.20-2.65 MPa, after injecting the high-pressure steam, the temperature of the material part and the temperature of the gap part may be matched in about 26 minutes to complete the processing. did it. The coincident temperature at this time was 229 ° C. In addition, the retained heat after treatment is 11.19 kJ, and the force moisture content that has maintained a high calorific value of 82% or higher is still high at 48.20%, so to further improve the practicality, the moisture content is further reduced. There is a need.
[0057] そして、 2. 65-2. 95MPaの圧力範囲で処理した場合、高圧水蒸気を注入開始 後、約 17分で下部の材料部温度と上部の空隙部温度とがー致して処理を完了する ことができた。このときの一致した温度は 230°Cであった。また保有熱量は 9. 97kJ、 含水率は 22. 00%であった。したがって、保有熱量は約 10kJであって処理前の熱 量の 76%以上を保持しながら、含水率は処理前の約 4分の 1にまで減少され、ガス 化発電用燃料として極めて好適である。  [0057] And, when processing in the pressure range of 2. 65-2. 95 MPa, after the start of high-pressure steam injection, the material temperature in the lower part and the temperature in the upper part of the gap match in about 17 minutes to complete the processing. We were able to. The coincident temperature at this time was 230 ° C. The retained heat was 9.97kJ and the moisture content was 22.00%. Therefore, the retained heat amount is about 10 kJ, maintaining 76% or more of the heat amount before treatment, while the moisture content is reduced to about one-fourth before treatment, making it extremely suitable as a fuel for gasification power generation. .
[0058] 以上、実施例 3の実験結果によれば、魚残渣の保有熱量を損失させることなぐ含 水率を低下させ、ガス化発電用の燃料に適した性状に変換するための処理条件は、 処理容器 2内の圧力を 1. 96MPa以上に保持するとともに、材料部温度と空隙部温 度が一致するまで上昇させる条件が好ましぐより好ましくは圧力を 2. 65MPa以上 2 . 95MPa以下に保持して昇温させ、材料部温度および空隙部温度が一致した瞬間 に高圧水蒸気の注入を停止することである。このような処理条件下であれば、魚残渣 であっても短時間で乾燥した微粉末に性状が変換される。 [0058] As described above, according to the experimental results of Example 3, the processing conditions for reducing the moisture content without losing the amount of heat retained in the fish residue and converting it to properties suitable for fuel for gasification power generation are as follows: , The pressure in the processing container 2 is maintained at 1.96 MPa or more, and the condition of increasing until the material part temperature and the gap part temperature coincide with each other is preferable. More preferably, the pressure is maintained at 2.65 MPa or more and 2.95 MPa or less. Then, the temperature is raised and the injection of high-pressure steam is stopped at the moment when the material part temperature and the gap part temperature coincide. Under such treatment conditions, even fish residues can be converted into fine powder that is dried in a short time.
実施例 4  Example 4
[0059] 『泥炭の性状変換処理』  [0059] "Peat property conversion process"
実施例 4では、廃棄物として泥炭を使用した。処理容器 2内の処理圧力は、本処理 容器 2の安全性が確保されている 1. 90-2. 77MPaの範囲内に設定し、それぞれ 1. 90〜2. 20MPa、 2. 20〜2. 55MPa、 2. 55〜2. 77MPaの範囲内に保持して 処理を行った。また、処理温度に関しては、特に設定せず、高圧水蒸気を注入するこ とによる圧力制御に応じて昇温させ、少なくとも下部温度センサ 23bが上部温度セン サ 23aに一致するまで高圧水蒸気を注入した。一方、比較例の処理圧力は 1. 90M Pa以下の範囲である 1. 85〜: L 90MPaの圧力範囲内に保持し、力つ、温度を 205 〜210°Cに 30〜60分間保持して処理を行った。なお、前記泥炭の処理前の含水率 は 70. 00%であり、保有熱量は 16. 90kJであった。  In Example 4, peat was used as waste. The processing pressure in Processing Vessel 2 ensures the safety of this Processing Vessel 2. 1.Set within the range of 90-2.77 MPa, 1.90-2.20 MPa, 2.20-2. The treatment was performed while maintaining the pressure within the range of 55 MPa and 2.5 55 to 2.77 MPa. Further, the processing temperature was not particularly set, and the temperature was raised according to pressure control by injecting high-pressure steam, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a. On the other hand, the processing pressure of the comparative example is 1. 90MPa or lower range 1. 85 ~: L Hold within the pressure range of 90MPa and vigorously hold the temperature at 205 ~ 210 ° C for 30-60 minutes Processed. The moisture content of the peat before treatment was 70.00%, and the retained heat was 16.90 kJ.
[0060] 上記実験の結果、図 3に示すように、比較例における 1. 90MPa以下の圧力範囲 で処理した場合、処理後の泥炭の保有熱量は 9. 98kJであって含水率が 20. 05% であった。この場合、ガス化発電用燃料として使用可能であるが、処理容器 2内が約 15〜25分かけて所定の圧力.温度に到達した後に、約 30〜60分の保持時間が必 要であるし、保有熱量が処理前の 60%以下に減少しているため、処理に要するエネ ルギ一に対して熱量損失が大き 、。  [0060] As a result of the above experiment, as shown in Fig. 3, when treated in the pressure range of 1.90 MPa or less in the comparative example, the retained heat of the peat after treatment is 9.98 kJ and the moisture content is 20. 05. % Met. In this case, it can be used as a fuel for gasification power generation, but a holding time of about 30 to 60 minutes is required after the inside of the processing container 2 reaches a predetermined pressure and temperature over about 15 to 25 minutes. However, since the amount of heat held has decreased to less than 60% before the treatment, the heat loss is greater than the energy required for the treatment.
[0061] これに対し、本実施例 4の場合、 1. 90-2. 20MPaの圧力範囲では、高圧水蒸気 を注入後、約 30分で材料部温度が空隙部温度に一致させることができ、一致するの と同時に高圧水蒸気の注入を切断する。その後、確実に処理を終える余裕をみて数 分間経過後に水蒸気を排気する。したがって、比較例に比べると、温度保持時間は ほとんどないといえる。このときの一致した温度を測定したところ、 197°Cであった。ま た、保有熱量は 15. 58kJと処理前の 92%以上の高い熱量値を保持しており、含水 率はすでに 25. 40%まで低減できた。し力も処理後の泥炭は細菌フロックや結合分 子が分離 '分解されているため水分が蒸発しやすくなつており、放置しておくだけで 含水率は低下する。したがって、ガス化発電用燃料としても十分に使用可能である。 [0061] On the other hand, in the case of Example 4, 1. In the pressure range of 90-2.20 MPa, the material part temperature can be matched with the gap part temperature in about 30 minutes after injecting high-pressure steam, At the same time, the high-pressure steam injection is cut off. Then, after a few minutes have passed, allow the steam to be exhausted after a certain amount of time has passed. Therefore, it can be said that there is almost no temperature holding time compared to the comparative example. The coincident temperature was measured and found to be 197 ° C. In addition, the retained heat amount is 15.58kJ, which is a high heat value of 92% or more before the treatment. The rate has already been reduced to 25.40%. After treatment, the peat after treatment has been separated and decomposed by bacterial flocs and binding molecules, and the water content tends to evaporate. Therefore, it can be sufficiently used as a fuel for gasification power generation.
[0062] また、 2. 20-2. 55MPaの圧力範囲で処理した場合には、高圧水蒸気の注入開 始後、約 29分で材料部温度と空隙部温度とがー致して処理を完了することができた 。このときの一致した温度は 205°Cであった。また処理後の保有熱量は 15. 05kJと 8 9%以上の高い熱量値を保持し、含水率は 24. 03%であり、先の条件と比べて処理 時間はほぼ変わらな力つた。  [0062] Also, in the case of 2.20-2. 55MPa pressure range, the material temperature and the void temperature are matched in about 29 minutes after the start of high-pressure steam injection, and the processing is completed. I was able to. The coincident temperature at this time was 205 ° C. In addition, the calorific value after treatment was 15.05 kJ, which was a high calorific value of 89% or more, and the moisture content was 24.03%, which was almost the same as the previous conditions.
[0063] さらに、 2. 55-2. 77MPaの圧力範囲で処理した場合、高圧水蒸気の注入開始 後、約 21分で下部の材料部温度と上部の空隙部温度とがー致して処理を完了する ことができた。このときの一致した温度は 219°Cであった。また保有熱量は 14. 80kJ と処理前保有熱量の 87%以上を保有し、含水率は 21. 98%にまで減少した。した 力 て、ガス化発電用の燃料として好適な性状を備えている。  [0063] In addition, when processing in the pressure range of 2.55-2.77 MPa, after the start of high-pressure steam injection, the material temperature in the lower part and the temperature in the upper part of the space match in about 21 minutes to complete the treatment. We were able to. The coincident temperature at this time was 219 ° C. In addition, the retained heat amount was 14.80 kJ, more than 87% of the retained heat amount before treatment, and the moisture content decreased to 21.98%. Therefore, it has suitable properties as a fuel for gasification power generation.
[0064] 以上、実施例 4の実験結果によれば、泥炭の保有熱量を損失させることなぐ含水 率を低下させ、ガス化発電用の燃料に適した性状に変換するための処理条件は、処 理容器 2内の圧力を 1. 90MPa以上に保持するとともに、材料部温度と空隙部温度 がー致するまで上昇させる条件が好ましぐより好ましくは圧力を 2. 55MPa以上 2. 77MPa以下に保持して昇温させ、材料部温度および空隙部温度が一致した瞬間に 高圧水蒸気の注入を停止することである。このような処理条件下であれば、泥炭であ つても短時間で乾燥した微粉末に性状が変換される。  [0064] As described above, according to the experimental results of Example 4, the processing conditions for reducing the moisture content without losing the amount of heat stored in the peat and converting it into properties suitable for fuel for gasification power generation are as follows. The pressure in physical container 2 is maintained at 1.90 MPa or more, and it is preferable to increase the pressure until the material part temperature and the cavity temperature match.The pressure is preferably maintained at 2.55 MPa or more and 2. 77 MPa or less. The temperature is raised, and the injection of high-pressure steam is stopped at the moment when the material part temperature and the gap part temperature coincide. Under such processing conditions, even peat is converted into fine powder that is dried in a short time.
実施例 5  Example 5
[0065] 『家畜糞の性状変換処理』  [0065] "Animal feces property conversion process"
実施例 5では、廃棄物として家畜糞を使用した。処理容器 2内の処理圧力は、本処 理容器 2の安全性が確保されている 1. 85-3. 43MPaの範囲内に設定し、それぞ れ 1. 85〜2. OOMPa、 2. 00〜2. 15MPa、 2. 15〜3. 43MPaの範囲内に保持し て処理を行った。また、処理温度に関しては、特に設定せず、高圧水蒸気を注入す ることによる圧力制御に応じて昇温させ、少なくとも下部温度センサ 23bが上部温度 センサ 23aに一致するまで高圧水蒸気を注入した。一方、比較例の処理圧力は 1. 8 5MPa以下の範囲である 1. 70〜: L 75MPaの圧力範囲内に保持し、かつ、温度を 205〜210°Cに 35〜45分間保持して処理を行った。なお、前記家畜糞の処理前の 含水率は 68. 00%であり、保有熱量は 13. 40kJであった。 In Example 5, livestock dung was used as waste. The processing pressure in the processing container 2 ensures the safety of the processing container 2. 1. 85-3. Set within the range of 43 MPa, 1. 85 to 2. OOMPa, 2.00 The treatment was carried out while maintaining within the range of ~ 2.15 MPa and 2.15-3.43 MPa. Further, the treatment temperature was not particularly set, and the temperature was raised according to pressure control by injecting high-pressure steam, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a. On the other hand, the processing pressure of the comparative example is 1.8. It is the range of 5 MPa or less 1. 70-: L The pressure was maintained within a pressure range of 75 MPa, and the temperature was maintained at 205-210 ° C. for 35-45 minutes for processing. The water content of the livestock feces before treatment was 68.00% and the retained heat was 13.40 kJ.
[0066] 上記実験の結果、図 3に示すように、比較例における 1. 85MPa以下の圧力範囲 で処理した場合、処理後の家畜糞の保有熱量は 11. OOkJであって含水率が 24. 00 %であった。この場合、ガス化発電用燃料として使用可能であるが、処理容器 2内が 約 15〜25分かけて所定の圧力.温度に到達した後に、約 35〜45分の保持時間が 必要であるため、処理に要するエネルギーに対して熱量損失が大きいといえる。  [0066] As a result of the above experiment, as shown in Fig. 3, when treated in the pressure range of 1.85MPa or less in the comparative example, the calorific value of the livestock dung after the treatment is 11.OOkJ and the moisture content is 24. It was 00%. In this case, it can be used as a fuel for gasification power generation, but it takes about 35 to 45 minutes to reach the prescribed pressure and temperature in the processing vessel 2 over about 15 to 25 minutes. It can be said that the heat loss is large with respect to the energy required for processing.
[0067] これに対し、本実施例 5の場合、 1. 85-2. OOMPaの圧力範囲では、高圧水蒸気 を注入後、約 29分で材料部温度が空隙部温度に一致させることができ、一致するの と同時に高圧水蒸気の注入を切断した。その後、数分間経過後に水蒸気を排気した 。したがって、比較例に比べると温度保持時間はほとんどないといえる。このときの一 致した温度を測定したところ、 223°Cであった。また、保有熱量は 13. 15kJと高い熱 量値を保持していた力 含水率は 24. 00%であり、十分低減できていた。しかも処理 後の家畜糞は結合分子が分離'分解されているため、水分が蒸発しやすくなつており 、放置しておくだけでさらに含水率は低下する。したがって、ガス化発電用燃料として も使用可能である。  [0067] On the other hand, in the case of Example 5, 1. 85-2. In the pressure range of OOMPa, after injecting the high-pressure steam, the material part temperature can be matched with the gap part temperature in about 29 minutes. At the same time, the injection of high-pressure steam was cut off. Thereafter, the water vapor was exhausted after several minutes. Therefore, it can be said that there is almost no temperature holding time compared with the comparative example. When the matched temperature was measured, it was 223 ° C. In addition, the retained heat quantity was 13.15 kJ, which kept the high calorific value, and the moisture content was 24.0%, which was sufficiently reduced. Moreover, since the treated animal feces have separated and decomposed binding molecules, the moisture tends to evaporate, and the moisture content is further reduced by simply leaving it alone. Therefore, it can be used as a fuel for gasification power generation.
[0068] また、 2. 00-2. 15MPaの圧力範囲で処理した場合には、高圧水蒸気を注入後 、約 25分で材料部温度と空隙部温度とがー致して処理を完了することができた。この ときの一致した温度は 229°Cであった。また処理後の保有熱量は 11. OlkJと高い熱 量値を保持しており、含水率は 21. 50%であった。  [0068] In addition, in the case of processing in the pressure range of 2.00-2.15 MPa, after the high-pressure steam is injected, the material part temperature and the gap part temperature are matched to complete the processing in about 25 minutes. did it. The coincident temperature at this time was 229 ° C. In addition, the calorific value after the treatment was 11. OlkJ, which was a high calorific value, and the moisture content was 21.50%.
[0069] さらに、 2. 15〜3. 43MPaの圧力範囲で処理した場合、高圧水蒸気の注入開始 後、約 19分程で下部の材料部温度と上部の空隙部温度とがー致して処理を完了す ることができた。このときの一致した温度は 233°Cであった。また保有熱量は 10. 08k Jと 10kJ以上を保持しており、含水率は 18. 00%と処理前含水率の約 4分の 1にまで 減少していた。したがって、ガス化発電用燃料として極めて好適な条件である。  [0069] Furthermore, when the treatment is performed in the pressure range of 2.15 to 3.43 MPa, the lower material temperature and the upper void temperature are matched in about 19 minutes after the start of high-pressure steam injection. I was able to complete. The coincident temperature at this time was 233 ° C. The retained heat amount was 10.08 kJ and above 10 kJ, and the moisture content was 18.00%, decreasing to about one-fourth of the moisture content before treatment. Therefore, it is a very suitable condition as a fuel for gasification power generation.
[0070] 以上、実施例 5の実験結果によれば、家畜糞の保有熱量を損失させることなぐ含 水率を低下させ、ガス化発電用の燃料に適した性状に変換するための処理条件は、 処理容器 2内の圧力を 1. 85MPa以上に保持するとともに、材料部温度と空隙部温 度が一致するまで上昇させる条件が好ましぐより好ましくは圧力を 2. 15MPa以上 3 . 43MPa以下に保持して昇温させ、材料部温度および空隙部温度が一致した瞬間 に高圧水蒸気の注入を停止することである。このような処理条件下であれば、家畜糞 であっても短時間で乾燥した微粉末に性状が変換される。また悪臭も除去される。 [0070] As described above, according to the experimental results of Example 5, the processing conditions for reducing the moisture content without losing the amount of heat retained by livestock dung and converting it to properties suitable for fuel for gasification power generation are as follows: , The pressure in the processing vessel 2 is maintained at 1.85 MPa or more, and it is preferable to increase the pressure until the material part temperature and the cavity temperature coincide with each other. More preferably, the pressure is maintained at 2.15 MPa or more and 3.43 MPa or less. Then, the temperature is raised and the injection of high-pressure steam is stopped at the moment when the material part temperature and the gap part temperature coincide. Under such treatment conditions, the properties of livestock dung are converted into fine powder that is dried in a short time. Also, malodor is removed.
[0071] 以上の実施例 1乃至 5においては、実用性の高い高湿潤廃棄物である生ゴミ、下水 汚泥、魚残渣、泥炭、および家畜糞について変換処理を行った。一方、水産廃棄物 のなかでも腐敗臭が強ぐカドミウム等の重金属が蓄積されていることが問題視されて V、るイカの肝臓 (通称:イカゴロ)やホタテ貝の中腸腺 (通称:ホタテゥ口)は、従来より 、肥料や飼料等への再利用が大変難しいものとされてきた。そこで、これらイカの肝 臓およびホタテ貝の中腸腺につ!ヽて変換処理を行った。 In Examples 1 to 5 described above, conversion treatment was performed on raw garbage, sewage sludge, fish residue, peat, and livestock excrement, which are highly practical and highly humid waste. On the other hand, the accumulation of heavy metals such as cadmium, which has a strong rotting odor among marine wastes, has been regarded as a problem. Mouth) has been considered to be very difficult to reuse for fertilizers and feeds. Therefore, the squid liver and scallop midgut glands were converted and processed.
実施例 6  Example 6
[0072] 『イカの肝臓の性状変換処理』  [0072] “Character conversion process of squid liver”
実施例 6では、廃棄物としてイカの肝臓を使用した。処理容器 2内の処理圧力は、 本処理容器 2の安全性が確保されている 1. 90-3. 22MPaの範囲内に設定し、そ れぞれ 1. 90〜2. 05MPa、 2. 05〜2. 96MPa、 2. 96〜3. 22MPaの範囲内に保 持して処理を行った。また、処理温度に関しては、特に設定せず、高圧水蒸気を注 入することによる圧力制御に応じて昇温させ、少なくとも下部温度センサ 23bが上部 温度センサ 23aに一致するまで高圧水蒸気を注入した。  In Example 6, squid liver was used as waste. The processing pressure in Processing Vessel 2 ensures the safety of this Processing Vessel 2. 1. Set within the range of 90-3.22 MPa, 1.90 to 2.05 MPa, 2.05 respectively. The treatment was carried out while maintaining within the range of ~ 2. 96 MPa, 2.96-3.22 MPa. Further, the treatment temperature was not particularly set, and the temperature was raised according to pressure control by injecting high-pressure steam, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a.
[0073] 一方、比較例の処理圧力は 1. 90MPa以下の範囲である 1. 79〜: L 90MPaの圧 力範囲内に保持し、かつ、温度を 185〜210°Cに 65〜95分間保持して処理を行つ た。なお、前記イカの肝臓の処理前の含水率は 89. 00%であり、保有熱量は 14. 6 6kJであった。  [0073] On the other hand, the processing pressure of the comparative example is 1. 90 MPa or less 1. 79-: L Hold within the pressure range of 90 MPa, and hold the temperature at 185-210 ° C for 65-95 minutes And processed. The water content of the squid liver before treatment was 89.00%, and the amount of heat retained was 14.66 kJ.
[0074] 上記実験の結果、図 3に示すように、比較例における 1. 90MPa以下の圧力範囲 で処理した場合、処理後のイカの肝臓の保有熱量は 4. 99kJであって含水率が 29. 55%であった。この場合、保有熱量が減少し過ぎているため、ガス化発電用燃料とし ては効率が悪い。また、処理容器 2内が約 15〜25分かけて所定の圧力 ·温度に到 達した後に、約 65〜95分の保持時間が必要であるため、処理に要するエネルギー に対して熱量損失が大き 、と 、える。 [0074] As a result of the above experiment, as shown in FIG. 3, when the treatment was performed in the pressure range of 1.90 MPa or less in the comparative example, the caloric liver retained heat was 4.99 kJ and the moisture content was 29. It was 55%. In this case, the amount of stored heat has decreased too much, making it inefficient as a gasification power generation fuel. In addition, since the holding time of about 65 to 95 minutes is required after the inside of the processing container 2 reaches a predetermined pressure and temperature over about 15 to 25 minutes, the energy required for processing In contrast, the heat loss is large.
[0075] これに対し、本実施例 6の場合、 1. 90-2. 05MPaの圧力範囲では、高圧水蒸気 の注入開始後、約 49分で材料部温度が空隙部温度に一致させることができ、一致 するのと同時に高圧水蒸気の注入を切断した。その後、数分間経過後に水蒸気を排 気した。水蒸気を注入しながらの温度保持時間は必要ない。このときの一致した温度 を測定したところ、 218°Cであった。また、保有熱量は 8. 12kJと比較例に比べて 1. 6 倍以上の熱量を保持しており、含水率は 59. 06%であった。したがって、含水率が 多いものの、処理後のイカの肝臓は結合分子が分離 *分解されているため、水分が 蒸発しやすくなつており、放置しておくだけで含水率は低下する。したがって、ガス化 発電用燃料としても使用可能である。  [0075] On the other hand, in the case of Example 6, in the pressure range of 1.90-2.05 MPa, the material temperature can be made to match the void temperature in about 49 minutes after the start of high-pressure steam injection. At the same time, the injection of high-pressure steam was cut off. Thereafter, water vapor was exhausted after several minutes. There is no need for a temperature holding time while injecting water vapor. The coincident temperature was measured and found to be 218 ° C. In addition, the retained heat amount was 8.12 kJ, 1.6 times that of the comparative example, and the moisture content was 59.06%. Therefore, although the water content is high, the squid liver after treatment has separated / decomposed binding molecules, which makes it easy for water to evaporate. Therefore, it can be used as a fuel for gasification power generation.
[0076] また、 2. 05-2. 96MPaの圧力範囲で処理した場合には、高圧水蒸気を注入し た後、約 41分で材料部温度と空隙部温度とがー致して処理を完了することができた 。このときの一致した温度は 224°Cであった。また処理後の保有熱量は 8. OOkJと高 い熱量値を保持しており、含水率は 48. 83%であった。したがって、先の条件と比べ て保有熱量はほとんど減少せずに、含水率が 10%以上も減少した。  [0076] In addition, in the case of treatment in the pressure range of 2.05-2. 96 MPa, after injecting high-pressure steam, the material temperature and the void temperature are matched in about 41 minutes to complete the treatment. I was able to. The coincident temperature at this time was 224 ° C. In addition, the calorific value after treatment was as high as 8.OOkJ, and the moisture content was 48.83%. Therefore, compared to the previous conditions, the amount of retained heat hardly decreased, and the moisture content decreased by more than 10%.
[0077] さらに、 2. 96〜3. 22MPaの圧力範囲で処理した場合、高圧水蒸気の注入開始 後、約 31分で下部の材料部温度と上部の空隙部温度とがー致して処理を完了する ことができた。このときの一致した温度は 231°Cであった。また保有熱量は 6. 94kJを 保持しており、含水率は 22. 22%であった。イカの内臓は液状ィ匕しているため熱損 失が大きいが、上記条件下では処理前保有熱量の約 50%程度の損失に抑えて、含 水率を処理前含水率の約 4分の 1にまで低下させることができた。これであればガス 化発電用の燃料として実用可能な範囲である。  [0077] Furthermore, when processing in the pressure range of 2.96 to 3.22 MPa, after the start of high-pressure steam injection, the material temperature in the lower part and the temperature in the upper part of the space match each other and the processing is completed. We were able to. The coincident temperature at this time was 231 ° C. The retained heat was 6.94 kJ and the moisture content was 22.22%. Although the squid's internal organs are liquid, the heat loss is large.However, under the above conditions, the water content is reduced to about 50% of the heat content before treatment, and the water content is about 4 minutes of the water content before treatment. It could be reduced to 1. If this is the case, it is in a practical range as a fuel for gasification power generation.
[0078] 以上、実施例 6の実験結果によれば、イカの肝臓の保有熱量を損失させることなぐ 含水率を低下させ、ガス化発電用の燃料として使用可能な性状に変換するための処 理条件は、処理容器 2内の圧力を 1. 90MPa以上に保持するとともに、材料部温度 と空隙部温度が一致するまで上昇させる条件が好ましぐより好ましくは圧力を 2. 96 MPa以上 3. 22MPa以下に保持して昇温させ、材料部温度および空隙部温度が一 致した瞬間に高圧水蒸気の注入を停止することである。このような処理条件下であれ ば、イカの肝臓であっても短時間で無害化でき、乾燥した微粉末に性状が変換され る。 As described above, according to the experimental results of Example 6, the process for reducing the moisture content without losing the amount of heat retained in the squid liver and converting it into a property that can be used as a fuel for gasification power generation. The condition is that the pressure in the processing vessel 2 is maintained at 1.90 MPa or more, and it is preferable to increase the pressure until the material part temperature and the gap part temperature match, more preferably the pressure is 2.96 MPa or more 3.22 MPa The temperature is kept below and the temperature is raised, and the injection of high-pressure steam is stopped at the moment when the material part temperature and the gap part temperature match. Even under such processing conditions For example, even squid liver can be detoxified in a short time, and its properties are converted into a dry fine powder.
実施例 7  Example 7
[0079] 『ホタテ貝の中腸腺の性状変換処理』  [0079] "Property conversion of midgut glands of scallops"
実施例 7では、廃棄物としてホタテ貝の中腸腺を使用した。処理容器 2内の処理圧 力は、本処理容器 2の安全性が確保されている 1. 90-2. 96MPaの範囲内に設定 し、それぞれ 1. 90~1. 95MPa, 1. 95~2. OOMPa、 2. 00〜2. 96MPaの範囲 内に保持して処理を行った。また、処理温度に関しては、特に設定せず、高圧水蒸 気を注入することによる圧力制御に応じて昇温させ、少なくとも下部温度センサ 23b が上部温度センサ 23aに一致するまで高圧水蒸気を注入した。一方、比較例の処理 圧力は 1. 90MPa以下の範囲である 1. 78〜: L 90MPaの圧力範囲内に保持し、か つ、温度を 185〜210°Cに 65〜95分間保持して処理を行った。なお、前記ホタテ貝 中腸腺の処理前の含水率は 85. 00%であり、保有熱量は 11. 79kJであった。  In Example 7, scallop midgut gland was used as waste. The processing pressure in Processing Vessel 2 ensures the safety of Processing Vessel 2. 1. Set within the range of 90-2. 96 MPa, 1. 90 to 1.95 MPa, 1. 95 to 2 respectively. OOMPa, 2.00-2. 96 MPa was maintained in the range. Further, the processing temperature was not particularly set, and the temperature was raised according to the pressure control by injecting high-pressure water vapor, and high-pressure steam was injected until at least the lower temperature sensor 23b coincided with the upper temperature sensor 23a. On the other hand, the treatment pressure of the comparative example is 1. 90MPa or less 1. 78 ~: L Hold within the pressure range of 90MPa and keep the temperature at 185 ~ 210 ° C for 65 ~ 95 minutes. Went. The water content of the scallop midgut gland before treatment was 85.00%, and the retained heat was 11.79 kJ.
[0080] 上記実験の結果、図 3に示すように、比較例における 1. 90MPa以下の圧力範囲 で処理した場合、処理後のホタテ貝中腸腺の保有熱量は 2. 73kJであって含水率が 29. 58%であった。この場合、保有熱量が減少し過ぎているため、ガス化発電用燃 料としては効率が悪い。また、処理容器 2内が約 15〜25分かけて所定の圧力'温度 に到達した後に、約 65〜95分の保持時間が必要であるため、処理に要するェネル ギーに対して熱量損失が大き 、と!、える。  [0080] As a result of the above experiment, as shown in Fig. 3, in the case of the treatment in the pressure range of 1.90 MPa or less in the comparative example, the calorific value of the scallop midgut gland after the treatment is 2.73 kJ and the moisture content It was 29. 58%. In this case, the efficiency of the fuel for gasification power generation is poor because the amount of stored heat has decreased too much. In addition, since a holding time of about 65 to 95 minutes is required after the inside of the processing container 2 reaches the predetermined pressure 'temperature over about 15 to 25 minutes, the heat loss is large with respect to the energy required for the processing. And!
[0081] これに対し、本実施例 7の場合、 1. 90-1. 95MPaの圧力範囲では、高圧水蒸気 を注入後、約 65分で材料部温度が空隙部温度に一致させることができ、一致するの と同時に高圧水蒸気の注入を切断し、数分間経過後に水蒸気を排気した。したがつ て、比較例に比べると、温度保持時間はほとんどないといえる。このときの一致した温 度を測定したところ、 212°Cであった。また、保有熱量は 10. 80kJと処理前保有熱量 の 90%以上の熱量を保持しており、含水率は 69. 78%であった。したがって、含水 率が多 1、ものの、処理後のホタテ貝の中腸腺は結合分子が分離 ·分解されて!、るた め、水分が蒸発しやすくなつており、放置しておくだけで含水率は低下する。よって、 ガス化発電用燃料としても使用可能である。 [0082] また、 1. 95〜2. OOMPaの圧力範囲で処理した場合には、高圧水蒸気を注入後 、約 49分で材料部温度と空隙部温度とがー致して処理を完了することができた。この ときの一致した温度は 220°Cであった。また処理後の保有熱量は 7. 10kJと処理前 保有熱量の約 60%を保持しており、含水率は 50. 09%であった。したがって、先の 条件と比べて含水率が約 20%も減少し、処理時間も 15分以上短縮されており、ホタ テ貝の中腸腺の性状を考慮すれば、実用に供するものである。 [0081] On the other hand, in the case of the present Example 7, in the pressure range of 1.90-1.95 MPa, the material part temperature can be made to coincide with the gap part temperature in about 65 minutes after injecting high-pressure steam. At the same time, the injection of high-pressure steam was cut off, and the steam was exhausted after several minutes. Therefore, compared to the comparative example, it can be said that there is almost no temperature holding time. The coincident temperature was measured and found to be 212 ° C. The retained heat amount was 10.80 kJ, more than 90% of the retained heat amount before treatment, and the moisture content was 69.78%. Therefore, although the water content is high1, the treated scallop midgut glands are separated and decomposed because the binding molecules are separated, and the water tends to evaporate. The rate drops. Therefore, it can be used as a fuel for gasification power generation. [0082] In addition, when the treatment is performed in the pressure range of 1.95 to 2. OOMPa, the material part temperature and the gap part temperature are matched in about 49 minutes after the high-pressure steam is injected, and the treatment can be completed. did it. The consistent temperature at this time was 220 ° C. The retained heat after treatment was 7.10 kJ, approximately 60% of the retained heat before treatment, and the moisture content was 50.09%. Therefore, the water content has been reduced by about 20% compared to the previous conditions, and the treatment time has been shortened by more than 15 minutes. This is a practical application considering the properties of the midgut gland of scallops.
[0083] さらに、 2. 00-2. 96MPaの圧力範囲で処理した場合、高圧水蒸気を注入後、約 28分で下部の材料部温度と上部の空隙部温度とがー致して処理を完了することが できた。このときの一致した温度は 229°Cであった。また保有熱量は 5. 07kJを保持 しており、含水率は 20. 08%であった。すなわち、処理後の保有熱量は比較例に比 ベて約 2倍近く残存しており、含水率は処理前含水率の 4分の 1以下にまで低下させ ることができた。ホタテ貝の中腸腺の性状を考慮すれば、ガス化発電用の燃料として 十分実用可能な範囲である。  [0083] Furthermore, in the case of processing in the pressure range of 2.00-2.96 MPa, after the high-pressure steam was injected, the material temperature in the lower part and the temperature in the upper part of the space matched in about 28 minutes to complete the processing. I was able to. The coincident temperature at this time was 229 ° C. The retained heat was 5.07kJ and the moisture content was 20.08%. In other words, the retained heat after treatment remained approximately twice as much as that of the comparative example, and the moisture content could be reduced to less than one-quarter of the moisture content before treatment. Considering the properties of the midgut gland of scallops, it is sufficiently practical as a fuel for gasification power generation.
[0084] 以上、実施例 7の実験結果によれば、ホタテ貝の中腸腺の保有熱量を損失させるこ となぐ含水率を低下させ、ガス化発電用の燃料として使用可能な性状に変換するた めの処理条件は、処理容器 2内の圧力を 1. 90MPa以上に保持するとともに、材料 部温度と空隙部温度が一致するまで上昇させる条件が好ましぐより好ましくは圧力 を 2. OOMPa以上 2. 96MPa以下に保持して昇温させ、材料部温度および空隙部 温度が一致した瞬間に高圧水蒸気の注入を停止することである。このような処理条件 下であれば、ホタテ貝の中腸腺であっても短時間で無害化することができ、乾燥した 微粉末に性状が変換される。  [0084] As described above, according to the experimental results of Example 7, the moisture content that causes the loss of heat held in the midgut gland of scallops is reduced, and converted into properties that can be used as fuel for gasification power generation. The processing conditions for this are as follows: The pressure in the processing container 2 is maintained at 1.90 MPa or more, and the condition in which the temperature of the material section and the cavity temperature are increased is preferred, and the pressure is preferably 2. OOMPa or more. 2. The temperature is raised to 96 MPa or less, and high-pressure steam injection is stopped at the moment when the temperature of the material part and the temperature of the cavity part coincide. Under such treatment conditions, even the midgut gland of scallops can be detoxified in a short time, and the properties are converted into a dry fine powder.
[0085] 以上のような本実施形態によれば、燃焼させ難!、高含水 ·高湿潤廃棄物であっても 保有熱量の損失を抑えつつ含水率を減少させて、燃料に適した性状に変換処理す ることができる。特に、廃棄物中の細菌フロックを爆砕するように分散できるため、著し い含水率の低下を図ることが可能となる。また、各廃棄物が微粉末化されるため、そ の流動性を利用して直接的に燃焼させたり、液体と混合させて燃焼させることも可能 であるし、ペレット状やより大きな固形燃料に成形することも容易である。特に、ペレツ ト状に成形した燃料はムラなく均一にガス化処理することができるのでガス化発電用 の燃料として極めて好適である。 According to the present embodiment as described above, it is difficult to burn! Even in the case of high water content / high humidity waste, the water content is reduced while suppressing the loss of the retained heat amount, so that the property suitable for fuel is obtained. Can be converted. In particular, since the bacterial floc in the waste can be dispersed so as to explode, it is possible to significantly reduce the water content. In addition, since each waste is pulverized, it can be burned directly using its fluidity, or mixed with liquid and burned. It is also easy to mold. In particular, fuel molded into pellets can be uniformly gasified without unevenness, so it can be used for gasification power generation. It is extremely suitable as a fuel for
[0086] また、通常、自然界で微生物を使って廃棄物を分解処理させると、堆肥の状態まで 到達するには 6ヶ月から 36ヶ月以上の時間を要してしまう。これを本実施形態の燃料 製造装置 1によれば、大体約 20〜30分で、長くても 49分程度という極めて短時間で 燃料ィ匕処理を完了することができ、し力も無菌状態で安全に処理することができる。  [0086] In general, when waste is decomposed using microorganisms in nature, it takes 6 to 36 months to reach the state of compost. According to the fuel production apparatus 1 of this embodiment, the fuel soot treatment can be completed in an extremely short time of about 20 to 30 minutes and about 49 minutes at the longest. Can be processed.
[0087] なお、本実施形態の各構成は前述したものに限るものではなぐ適宜変更すること ができる。  It should be noted that the configurations of the present embodiment are not limited to those described above, and can be changed as appropriate.
[0088] 例えば、上述した本実施形態では、排水処理設備 9を 1つしか設けて ヽな 、が、図 10に示すように、別途、予備排水処理設備 10を設けてもよい。この予備排水処理設 備 10によれば、サイレンサー 7や排出口 22から排出された排水の pHを調整して、排 水の規制値をクリアする。  For example, in the present embodiment described above, only one wastewater treatment facility 9 is provided, but as shown in FIG. 10, a separate preliminary wastewater treatment facility 10 may be provided. According to this preliminary wastewater treatment facility 10, the pH of wastewater discharged from the silencer 7 and the discharge port 22 is adjusted to clear the regulation value of wastewater.
図面の簡単な説明  Brief Description of Drawings
[0089] [図 1]本発明に係る燃料製造装置の実施形態を示す模式図である。  FIG. 1 is a schematic diagram showing an embodiment of a fuel production apparatus according to the present invention.
[図 2]本実施形態の燃料製造方法における処理容器内温度と時間との関係を示すグ ラフである。  FIG. 2 is a graph showing the relationship between the temperature in the processing container and time in the fuel production method of the present embodiment.
[図 3]本実施形態における実施例 1から実施例 7の処理条件および処理結果を示す 表である。  FIG. 3 is a table showing processing conditions and processing results of Examples 1 to 7 in the present embodiment.
[図 4]処理する前の生ゴミを示すデジタル写真画像である。  [FIG. 4] A digital photographic image showing garbage before processing.
[図 5]処理する前の蟹の甲羅 (a)および貝殻 (b)示すデジタル写真画像である。  [FIG. 5] A digital photographic image showing a shell (a) and a shell (b) of an eagle before processing.
[図 6]実施例 1の比較例の処理条件により処理した後の生ゴミを示すデジタル写真画 像である。  FIG. 6 is a digital photographic image showing garbage after processing under the processing conditions of the comparative example of Example 1.
[図 7]実施例 1の処理条件により処理した後の生ゴミを示すデジタル写真画像である  FIG. 7 is a digital photographic image showing garbage after processing under the processing conditions of Example 1
[図 8]処理する前の下水汚泥を示すデジタル写真画像である。 FIG. 8 is a digital photographic image showing sewage sludge before processing.
[図 9]実施例 2の処理条件により処理した後の下水汚泥を示すデジタル写真画像で ある。  FIG. 9 is a digital photographic image showing sewage sludge after treatment under the treatment conditions of Example 2.
[図 10]本発明に係る燃料製造装置の他の実施形態を示す模式図である。  FIG. 10 is a schematic view showing another embodiment of the fuel production apparatus according to the present invention.
符号の説明 燃料製造装置 処理容器 攪拌手段 水蒸気注入手段 圧力調節手段 制御手段 サイレンサー 冷却装置 排水処理設備 予備排水処理設備 投入口 排出口Explanation of symbols Fuel production equipment Processing vessel Stirring means Steam injection means Pressure adjustment means Control means Silencer Cooling device Wastewater treatment facility Preliminary wastewater treatment facility Input port Discharge port
a 上部温度センサb 下部温度センサ 圧力センサ 水平回動軸 攪拌羽根 駆動モータ ボイラー 送気管 a Upper temperature sensor b Lower temperature sensor Pressure sensor Horizontal rotation shaft Stirring blade Drive motor Boiler Air supply pipe
圧力調整バルブ 排気管  Pressure adjustment valve Exhaust pipe

Claims

請求の範囲 The scope of the claims
[1] 廃棄物が投入された処理容器内に高圧水蒸気を注入することによって、前記処理 容器内の圧力を 1. 96MPa以上に保持するとともに昇温し、前記処理容器内の下方 における材料部温度が前記処理容器内の上方における空隙部温度に一致したとき に前記高圧水蒸気の注入を停止することを特徴とする燃料製造方法。  [1] By injecting high-pressure steam into the processing container into which the waste is charged, the pressure in the processing container is maintained at 1.96 MPa or more and the temperature is raised, and the temperature of the material section below the processing container is increased. The fuel production method is characterized in that the injection of the high-pressure steam is stopped when the temperature coincides with the gap temperature in the upper part of the processing container.
[2] 廃棄物が投入された処理容器内に高圧水蒸気を注入することによって、前記処理 容器内の圧力を 1. 96MPa以上 3. 43MPa以下に保持するとともに、少なくとも前記 処理容器内の下方における材料部温度と前記処理容器内の上方における空隙部温 度とがー致するまで前記高圧水蒸気を注入することを特徴とする燃料製造方法。  [2] By injecting high-pressure steam into the processing container into which waste is charged, the pressure in the processing container is maintained at 1.96 MPa or more and 3.43 MPa or less, and at least the material in the lower part of the processing container The fuel production method is characterized in that the high-pressure steam is injected until the temperature of the part matches the temperature of the gap in the upper part of the processing container.
[3] 請求項 1または請求項 2にお 、て、前記廃棄物が生ゴミの場合、前記処理容器内 の圧力を 2. 30MPa以上 2. 90MPa以下に保持することを特徴とする燃料製造方法  [3] The fuel production method according to claim 1 or 2, wherein, when the waste is raw garbage, the pressure in the processing container is maintained at 2.30 MPa or more and 2.90 MPa or less.
[4] 請求項 1または請求項 2において、前記廃棄物が下水道汚泥の場合、前記処理容 器内の圧力を 3. 05MPa以上 3. 43以下に保持することを特徴とする燃料製造方法 [4] The fuel production method according to claim 1 or 2, wherein, when the waste is sewage sludge, the pressure in the treatment container is maintained at 3.05 MPa or more and 3.43 or less.
[5] 請求項 1または請求項 2において、前記廃棄物が魚残渣の場合、前記処理容器内 の圧力を 2. 65MPa以上 2. 95MPa以下に保持することを特徴とする燃料製造方法 [5] The fuel production method according to claim 1 or 2, wherein, when the waste is a fish residue, the pressure in the processing container is maintained at 2.65 MPa or more and 2.95 MPa or less.
[6] 請求項 1または請求項 2において、前記廃棄物が泥炭の場合、前記処理容器内の 圧力を 2. 55MPa以上 2. 77MPa以下に保持することを特徴とする燃料製造方法。 [6] The fuel production method according to claim 1 or 2, wherein, when the waste is peat, the pressure in the processing container is maintained at 2.555 MPa or more and 2.77 MPa or less.
[7] 請求項 1または請求項 2において、前記廃棄物が家畜糞の場合、前記処理容器内 の圧力を 2. 15MPa以上 3. 43MPa以下に保持することを特徴とする燃料製造方法  [7] The fuel production method according to claim 1 or 2, wherein, when the waste is livestock dung, the pressure in the processing container is maintained at 2.15 MPa or more and 3.43 MPa or less.
[8] 請求項 1または請求項 2にお 、て、前記廃棄物がイカの肝臓 (イカゴロ)の場合、前 記処理容器内の圧力を 2. 96MPa以上 3. 22MPa以下に保持することを特徴とする 燃料製造方法。 [8] In claim 1 or claim 2, when the waste is squid liver (squid goro), the pressure in the processing container is maintained at 2.96 MPa or more and 3.22 MPa or less. A fuel manufacturing method.
[9] 請求項 1または請求項 2において、前記廃棄物がホタテ貝の中腸腺 (ホタテゥ口)の 場合、前記処理容器内の圧力を 2. OOMPa以上 2. 96MPa以下に保持することを 特徴とする燃料製造方法。 [9] In claim 1 or claim 2, when the waste is the midgut gland (scallop mouth) of scallops, the pressure in the processing container is maintained at 2. OOMPa or more and 2. 96 MPa or less. A fuel production method.
[10] 廃棄物を収容する処理容器と、この処理容器内に高圧水蒸気を注入する水蒸気 注入手段と、この水蒸気注入手段を制御することにより前記処理容器内の圧力を 1. 96MPa以上に保持するとともに、前記処理容器内の下方における材料部温度が上 方における空隙部温度に一致したときに前記高圧水蒸気の注入を停止する制御手 段とを有することを特徴とする燃料製造装置。  [10] A processing container for storing waste, a steam injecting means for injecting high-pressure steam into the processing container, and controlling the steam injecting means to maintain the pressure in the processing container at 1.96 MPa or more. And a control means for stopping the injection of the high-pressure steam when the material part temperature in the lower part of the processing container matches the upper part gap temperature.
[11] 廃棄物を収容する処理容器と、この処理容器内に高圧水蒸気を注入する水蒸気 注入手段と、この水蒸気注入手段を制御することにより前記処理容器内の圧力を 1. 96MPa以上 3. 43MPa以下に保持するとともに、少なくとも前記処理容器内の下方 における材料部温度と前記処理容器内の上方における空隙部温度とがー致するま で前記高圧水蒸気を注入する制御手段とを有することを特徴とする燃料製造装置。  [11] A processing container for storing waste, a steam injecting means for injecting high-pressure steam into the processing container, and controlling the steam injecting means to control the pressure in the processing container to 1.96 MPa or more 3. 43 MPa And a control means for injecting the high-pressure steam until at least the material part temperature in the lower part of the processing container matches the gap part temperature in the upper part of the processing container. Fuel production equipment.
[12] 請求項 10または請求項 11にお 、て、前記廃棄物が生ゴミの場合、前記制御手段 は、前記処理容器内の圧力が 2. 30MPa以上 2. 90MPa以下で保持されるように前 記水蒸気注入手段による高圧水蒸気の注入量を制御することを特徴とする燃料製造 装置。  [12] In claim 10 or claim 11, when the waste is raw garbage, the control means is configured so that the pressure in the processing container is maintained at 2.30 MPa or more and 2.90 MPa or less. A fuel production apparatus characterized by controlling an injection amount of high-pressure steam by the steam injection means.
[13] 請求項 10または請求項 11において、前記廃棄物が下水汚泥の場合、前記制御手 段は、前記処理容器内の圧力が 3. 05MPa以上 3. 43以下で保持されるように前記 水蒸気注入手段による高圧水蒸気の注入量を制御することを特徴とする燃料製造装 置。  [13] In claim 10 or claim 11, when the waste is sewage sludge, the control means is configured to control the water vapor so that the pressure in the processing container is maintained at 3.05 MPa or more and 3.43 or less. A fuel production apparatus characterized by controlling an injection amount of high-pressure steam by an injection means.
[14] 請求項 10または請求項 11にお 、て、前記廃棄物が魚残渣の場合、前記制御手段 は、前記処理容器内の圧力が 2. 65MPa以上 2. 95MPa以下で保持されるように前 記水蒸気注入手段による高圧水蒸気の注入量を制御することを特徴とする燃料製造 装置。  [14] In claim 10 or claim 11, when the waste is a fish residue, the control means is configured so that the pressure in the processing container is maintained at 2.65 MPa or more and 2. 95 MPa or less. A fuel production apparatus characterized by controlling an injection amount of high-pressure steam by the steam injection means.
[15] 請求項 10または請求項 11にお 、て、前記廃棄物が泥炭の場合、前記制御手段は 、前記処理容器内の圧力が 2. 55MPa以上 2. 77MPa以下で保持されるように前記 水蒸気注入手段による高圧水蒸気の注入量を制御することを特徴とする燃料製造装 置。  [15] In claim 10 or claim 11, when the waste is peat, the control means is configured so that the pressure in the processing container is maintained at 2.55 MPa or more and 2.77 MPa or less. A fuel production apparatus characterized by controlling the amount of high-pressure steam injected by the steam injection means.
[16] 請求項 10または請求項 11にお 、て、前記廃棄物が家畜糞の場合、前記制御手段 は、前記処理容器内の圧力が 2. 15MPa以上 3. 43MPa以下で保持されるように前 記水蒸気注入手段による高圧水蒸気の注入量を制御することを特徴とする燃料製造 装置。 [16] The control means according to claim 10 or 11, wherein the waste is livestock dung. Is a fuel production apparatus characterized by controlling the amount of high-pressure steam injected by the steam injection means so that the pressure in the processing vessel is maintained at 2.15 MPa or more and 3.43 MPa or less.
[17] 請求項 10または請求項 11において、前記廃棄物がイカの肝臓 (イカゴロ)の場合、 前記制御手段は、前記処理容器内の圧力が 2. 96MPa以上 3. 22MPa以下で保持 されるように前記水蒸気注入手段による高圧水蒸気の注入量を制御することを特徴 とする燃料製造装置。  [17] In claim 10 or claim 11, when the waste is squid liver (squid goro), the control means is configured to maintain the pressure in the processing container at 2.96 MPa or more and 3.22 MPa or less. The fuel production apparatus is characterized in that the amount of high-pressure steam injected by the steam injection means is controlled.
[18] 請求項 10または請求項 11において、前記廃棄物がホタテ貝の中腸腺 (ホタテゥ口) の場合、前記制御手段は、前記処理容器内の圧力が 2. OOMPa以上 2. 96MPa以 下で保持されるように前記水蒸気注入手段による高圧水蒸気の注入量を制御するこ とを特徴とする燃料製造装置。  [18] In claim 10 or claim 11, when the waste is the midgut gland (scallop mouth) of the scallop shell, the control means has a pressure in the processing container of 2. OOMPa or more and 2. 96 MPa or less. The fuel production apparatus is characterized in that the amount of high-pressure steam injected by the steam injection means is controlled so as to be maintained at
PCT/JP2005/012864 2004-07-13 2005-07-12 Process for producing fuel and fuel production apparatus WO2006006606A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004206549A JP2006028272A (en) 2004-07-13 2004-07-13 Method and apparatus for fuel production
JP2004-206549 2004-07-13

Publications (1)

Publication Number Publication Date
WO2006006606A1 true WO2006006606A1 (en) 2006-01-19

Family

ID=35783945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012864 WO2006006606A1 (en) 2004-07-13 2005-07-12 Process for producing fuel and fuel production apparatus

Country Status (3)

Country Link
JP (1) JP2006028272A (en)
TW (1) TW200601985A (en)
WO (1) WO2006006606A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428073B (en) 2004-03-05 2009-02-25 Waters Investments Ltd Device and methods of measuring pressure in a pump for use in liquid chromatography
JP2007112880A (en) * 2005-10-19 2007-05-10 National Univ Corp Shizuoka Univ Device for conversion into fuel and method for producing fuel
CN101448581A (en) * 2006-09-28 2009-06-03 Eco原料株式会社 Processing system for organic waste
DE102007056170A1 (en) 2006-12-28 2008-11-06 Dominik Peus Substance or fuel for producing energy from biomass, is manufactured from biomass, which has higher carbon portion in comparison to raw material concerning percentaged mass portion of elements
JP2010195994A (en) * 2009-02-27 2010-09-09 Kubota Kankyo Service Kk Method and apparatus for producing dechlorinated fuel
JP5555950B2 (en) * 2009-09-04 2014-07-23 株式会社共生資源研究所 Heavy metal removing apparatus and heavy metal removing method
TW201132612A (en) * 2010-03-26 2011-10-01 Nian-Bi Li Organic treatment equipment and method for animal bones
NL2015658B1 (en) 2015-10-26 2017-05-23 Elsinga Beleidsplanning En Innovatie B V Process for the processing of an organic component-containing starting material.
MA45482A (en) * 2017-06-01 2019-02-20 Takase Tech Co Ltd FUEL PRODUCTION PROCESS AND FUEL PRODUCTION DEVICE
JP2020183494A (en) * 2019-05-09 2020-11-12 株式会社神戸製鋼所 Method for producing biomass solid fuel
JP7400623B2 (en) 2020-05-18 2023-12-19 株式会社Ihi Steam blasting device
JP6893673B1 (en) * 2020-12-02 2021-06-23 サステイナブルエネルギー開発株式会社 Waste treatment system, waste treatment method and pellets
JP7209923B1 (en) 2022-06-20 2023-01-23 時田毛織株式会社 A method to reduce the amount of fiber waste by reducing the molecular weight while suppressing the amount of CO2 emitted

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302679A (en) * 2000-12-07 2002-10-18 Maekawa Seisakusho:Kk Carbonization method for sludge, etc.
JP2003064387A (en) * 2001-08-24 2003-03-05 Komatsu Seiren Co Ltd Method for producing granular fuel using polyester resin as raw material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302679A (en) * 2000-12-07 2002-10-18 Maekawa Seisakusho:Kk Carbonization method for sludge, etc.
JP2003064387A (en) * 2001-08-24 2003-03-05 Komatsu Seiren Co Ltd Method for producing granular fuel using polyester resin as raw material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LAU ET AL.: "Peat Beneficiation by Wet Carbonization", INTERNATIONAL JOURNAL OF COAL GEOLOGY, vol. 8, no. 1-2, 1987, pages 111 - 121, XP003000497 *
MOROHASHI Y. ET AL.: "Chuatsu Suijoki o Mochiita Gesui Odei no Nenryoka", DAI 15 KAI PROCEEDINGS OF THE ANNUAL CONFERENCE OF THE JAPAN SOCIETY OF WASTE MANAGEMENT EXPERTS I, 1 November 2004 (2004-11-01), pages 415 - 417, XP003000498 *
SATO K. ET AL.: "Chuatsu Suijoki o Mochiita Kogan Suiritsu Biomass no Nenryoka ni Kansuru Kenkyu", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS NETSUKOGAKU CONFERENCE 2004 KOEN RONBUNSHU, 10 November 2004 (2004-11-10), pages 259 - 260, XP003000499 *

Also Published As

Publication number Publication date
TW200601985A (en) 2006-01-16
JP2006028272A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
WO2006006606A1 (en) Process for producing fuel and fuel production apparatus
AU2005226345B2 (en) Process for fuel production and fuel production apparatus
US20080185336A1 (en) Process for solid-state methane fermentation of biomass materials and fermentation apparatus system therefor
JP2007203213A (en) Method and apparatus for treating highly wet waste before hydration, and dehydration system equipped with this apparatus
CN101713304B (en) Method for cycle power generation by carrying out wet decomposition pretreatment, dry distillation and gasification on domestic garbage
JP4539329B2 (en) Reduced pressure continuous pyrolysis apparatus and reduced pressure continuous pyrolysis method
WO2001051587A1 (en) Dry-distilling/volume reducing device for wastes
CN104355519A (en) Comprehensive sludge treating method based on hydrothermal carbonization and fast microwave pyrolysis
KR102614257B1 (en) Environmental energy virtuous cycle system using waste
JP2011098330A (en) Method for treating biomass material and method for using heat energy
CN102476907A (en) Equipment and method of high-efficiency high-speed environmentally-friendly energy-saving sludge treatment system
KR101105397B1 (en) Method and apparatus for preparing sewage sludge fuel for the blended combustion at coal fired plant using microwave
KR100903572B1 (en) Apparatus for drying and carbonizing organic waste using wasted heat
KR101159256B1 (en) Disposal system for combustibility or nonbiology waste and disposal method for combustibility or nonbiology waste using it
JP2005238120A (en) Vacuum drying/carbonization device
JP4247892B2 (en) Organic sludge treatment method
KR100991483B1 (en) Biomass drying method using microwave drying device & oil
KR101860041B1 (en) Hybrid Sludge Fuel, Manufacturing Method and System of Fuel Production thereof
KR101398275B1 (en) Multiple stage drying and carbonizing apparatus of waste material
WO2014086278A1 (en) Heat recycling method and system for energy in eutrophicated water biomass
JP2001192668A (en) Apparatus for producing carbide
JP2006224047A (en) Carbonization system of sewage sludge
WO2014053083A1 (en) Process and device for production of compacted fertilizer charcoal
JP3714674B1 (en) Modified material such as rice husk and method for producing modified material such as rice husk
JP2000334419A (en) Treatment of night soil and waste plastic

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP