JP2010195994A - Method and apparatus for producing dechlorinated fuel - Google Patents

Method and apparatus for producing dechlorinated fuel Download PDF

Info

Publication number
JP2010195994A
JP2010195994A JP2009044943A JP2009044943A JP2010195994A JP 2010195994 A JP2010195994 A JP 2010195994A JP 2009044943 A JP2009044943 A JP 2009044943A JP 2009044943 A JP2009044943 A JP 2009044943A JP 2010195994 A JP2010195994 A JP 2010195994A
Authority
JP
Japan
Prior art keywords
reaction vessel
mpa
raw material
temperature
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009044943A
Other languages
Japanese (ja)
Inventor
Mitsuru Iwao
充 岩尾
Shinji Kusaka
伸二 日下
Masanori Shimizu
正教 清水
Mineo Tachibana
峰生 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Environmental Service Co Ltd
Original Assignee
Kubota Environmental Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Environmental Service Co Ltd filed Critical Kubota Environmental Service Co Ltd
Priority to JP2009044943A priority Critical patent/JP2010195994A/en
Publication of JP2010195994A publication Critical patent/JP2010195994A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing a dechlorinated fuel, which suppresses reduction in carbon content ratio while removing chlorine in a waste. <P>SOLUTION: Volatile chlorine-containing organic waste is used as a raw material 11 and the raw material is exposed to steam 13 and hydrothermally decomposed in a reaction vessel 12 under pressure of ≥2.0 MPa and ≤3.0 MPa at ≥200°C and ≤250°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、脱塩素燃料の製造方法および製造装置に関し、有機性塩素を含む可燃ごみ等の廃棄物を原料として燃料を製造する際に、原料中の塩素濃度を低下させる技術に係るものである。   The present invention relates to a method and apparatus for producing dechlorinated fuel, and relates to a technique for reducing the chlorine concentration in a raw material when producing fuel from waste such as combustible waste containing organic chlorine. .

従来、この種の技術としては、例えば特許文献1に記載するものがある。この特許文献1では、塩化ビニルその他の含塩素系樹脂を多量に含む固形廃棄物を前処理手段により廃棄物スラリーにする。また、有機性汚泥を加熱、加圧した後に瞬時に脱圧して汚泥を膨化処理することにより膨化汚泥スラリーを生成する。そして、廃棄物スラリーおよび膨化汚泥スラリーを混合槽に供給して混合廃棄物スラリーとする。次に、混合廃棄物スラリーを反応器にて水熱反応させて反応スラリーを得た後に、フラッシュに引続き脱水してケーキ状の脱塩素化された原燃料と濾液を得るものである。   Conventionally, as this type of technology, for example, there is one described in Patent Document 1. In Patent Document 1, a solid waste containing a large amount of vinyl chloride or other chlorine-containing resin is made into a waste slurry by a pretreatment means. Moreover, after heating and pressurizing organic sludge, it depressurizes instantaneously and the sludge is expanded to produce an expanded sludge slurry. Then, the waste slurry and the expanded sludge slurry are supplied to the mixing tank to obtain a mixed waste slurry. Next, the mixed waste slurry is hydrothermally reacted in a reactor to obtain a reaction slurry, followed by flushing and dewatering to obtain a cake-like dechlorinated raw fuel and filtrate.

特開平11−267698号公報Japanese Patent Laid-Open No. 11-267698

上述した特許文献1では、反応器の操作温度を250〜350℃程度の適当な温度に昇温させ、高圧ポンプにより170気圧程度まで加圧した状態で混合廃棄物スラリーを反応器へ送り込み、その反応温度の飽和水蒸気圧以上の圧力で、かつ数分ないしは数十分間の反応時間で、水熱反応により熱分解している。   In the above-mentioned Patent Document 1, the operating temperature of the reactor is raised to an appropriate temperature of about 250 to 350 ° C., and the mixed waste slurry is sent to the reactor in a state pressurized to about 170 atm by a high-pressure pump. Thermal decomposition is carried out by hydrothermal reaction at a pressure equal to or higher than the saturated water vapor pressure of the reaction temperature and for a reaction time of several minutes to several tens of minutes.

ところで、350℃以上の高温の反応温度で塩素を分離すると、遊離した塩素がガス側へ移行して反応容器を腐食させる要因となる。また、廃棄物中にダイオキシン類の前駆物質が含まれていると、遊離した塩素が前駆物質と結合してダイオキシン類を合成する可能性がある。さらに、300℃以上の高温の反応温度下では廃棄物に含まれた炭素もガス化するので、脱塩素化された原燃料中の炭素含有率が低下し、燃料としての価値が減少する。   By the way, when chlorine is separated at a high reaction temperature of 350 ° C. or more, the liberated chlorine moves to the gas side and causes the reaction vessel to corrode. In addition, if the waste contains a dioxin precursor, the liberated chlorine may be combined with the precursor to synthesize dioxins. Furthermore, since carbon contained in the waste is also gasified under a high reaction temperature of 300 ° C. or higher, the carbon content in the dechlorinated raw fuel is lowered, and the value as a fuel is reduced.

本発明は上記した課題を解決するものであり、廃棄物中の塩素を除去しつつ、炭素含有率の低下を抑制できる脱塩素燃料の製造方法および製造装置を提供することを目的とする。   This invention solves the above-mentioned subject, and it aims at providing the manufacturing method and manufacturing apparatus of a dechlorination fuel which can suppress the fall of a carbon content rate, removing the chlorine in a waste material.

上記課題を解決するために、本発明の脱塩素燃料の製造方法は、有機性塩素を含む有機性廃棄物を原料とし、反応容器内で圧力2.5MPa以上3.0MPa以下、温度230℃以上250℃以下の飽和水蒸気に曝して原料を水熱分解し、水熱分解により生成した反応容器内の生成物を脱水して燃料原料とすることを特徴とする。   In order to solve the above problems, a method for producing a dechlorination fuel according to the present invention uses an organic waste containing organic chlorine as a raw material, a pressure of 2.5 MPa to 3.0 MPa, and a temperature of 230 ° C. or higher in a reaction vessel. The raw material is hydrothermally decomposed by being exposed to saturated steam at 250 ° C. or lower, and the product in the reaction vessel generated by hydrothermal decomposition is dehydrated to obtain a fuel raw material.

また、飽和水蒸気で反応容器内温度を230℃以上250℃以下に、反応容器内圧力を2.5MPa以上3.0MPa以下に上昇させた後に、圧力2.5MPa以上3.0MPa以下、温度300℃以上350℃以下の過熱水蒸気に原料を曝すことを特徴とする。   Moreover, after raising the temperature in the reaction vessel to 230 ° C. or more and 250 ° C. or less with saturated steam, the pressure in the reaction vessel is raised to 2.5 MPa or more and 3.0 MPa or less, and then the pressure is 2.5 MPa or more and 3.0 MPa or less and the temperature is 300 ° C. The raw material is exposed to superheated steam at 350 ° C. or lower.

また、反応容器内の生成物は水洗浄後に脱水することを特徴とする。
また、燃料原料は反応容器に飽和水蒸気を供給する蒸気供給装置の燃料とすることを特徴とする。
The product in the reaction vessel is dehydrated after washing with water.
Further, the fuel raw material is used as a fuel for a steam supply device that supplies saturated steam to the reaction vessel.

本発明の脱塩素燃料の製造装置は、原料として有機性塩素を含む有機性廃棄物を保持する反応容器と、反応容器に圧力2.5MPa以上3.0MPa以下、温度230℃以上250℃以下の飽和水蒸気を供給する蒸気供給装置と、反応容器内の生成物を水洗浄して脱水する洗浄脱水装置を備えることを特徴とする。   The apparatus for producing dechlorinated fuel of the present invention comprises a reaction vessel holding organic waste containing organic chlorine as a raw material, a pressure of 2.5 MPa to 3.0 MPa, a temperature of 230 ° C. to 250 ° C. in the reaction vessel. It is characterized by comprising a steam supply device for supplying saturated steam and a washing and dehydrating device for washing and dewatering the product in the reaction vessel.

また、原料として有機性塩素を含む有機性廃棄物を保持する反応容器と、反応容器内温度を230℃以上250℃以下に、反応容器内圧力を2.5MPa以上3.0MPa以下に上昇させるための飽和水蒸気を反応容器に供給する蒸気供給装置と、反応容器内が前記反応容器内温度および前記反応容器内圧力に上昇した後に圧力圧力2.5MPa以上3.0MPa以下、温度300℃以上350℃以下の過熱水蒸気を反応容器に供給する過熱蒸気供給装置と、反応容器内の生成物を水洗浄して脱水する洗浄脱水装置を備えることを特徴とする。   Moreover, in order to raise the reaction container holding the organic waste containing organic chlorine as a raw material, the reaction container temperature to 230 ° C. to 250 ° C., and the reaction container pressure to 2.5 MPa to 3.0 MPa. A steam supply device for supplying the saturated water vapor to the reaction vessel, and the pressure inside the reaction vessel rises to the temperature inside the reaction vessel and the pressure inside the reaction vessel, and then the pressure pressure is 2.5 MPa to 3.0 MPa, the temperature is 300 ° C. to 350 ° C. A superheated steam supply device that supplies the following superheated steam to the reaction vessel and a washing and dehydration device that dehydrates the product in the reaction vessel by washing with water are provided.

以上のように本発明によれば、圧力2.5MPa以上3.0MPa以下、温度230℃以上250℃以下の飽和水蒸気に原料を曝すことで、原料中の有機性塩素の少なくとも一部が遊離して無機塩素となり、かつ直ちに反応容器内の水分と結合して液相側に移行する。このため、洗浄・脱水することで容易に脱塩素化することができる。   As described above, according to the present invention, at least a part of organic chlorine in the raw material is liberated by exposing the raw material to saturated water vapor at a pressure of 2.5 MPa to 3.0 MPa and a temperature of 230 ° C. to 250 ° C. It becomes inorganic chlorine and immediately combines with the water in the reaction vessel and moves to the liquid phase side. For this reason, it can be easily dechlorinated by washing and dehydrating.

また、水蒸気温度250℃以下では原料中の炭素のガス化を抑制できるので、廃棄物の原料に含まれた炭素が脱塩素化された燃料原料中に残留し、燃料原料中の炭素含有率が高まり、燃料としての価値が増加する。さらに、製造した燃料原料中の塩素濃度は低減されているので、燃料の燃焼に際して塩化水素ガスが発生し難くなり、燃焼装置の炉壁の腐食を抑制でき、燃焼時にダイオキシン類の発生を抑制することができる。   In addition, since the gasification of carbon in the raw material can be suppressed at a water vapor temperature of 250 ° C. or lower, the carbon contained in the waste raw material remains in the dechlorinated fuel raw material, and the carbon content in the fuel raw material is The value as fuel increases. Furthermore, since the chlorine concentration in the manufactured fuel raw material has been reduced, it is difficult for hydrogen chloride gas to be generated during combustion of the fuel, corrosion of the furnace wall of the combustion apparatus can be suppressed, and generation of dioxins during combustion is suppressed. be able to.

本発明の実施の形態における製造装置を示すブロック図The block diagram which shows the manufacturing apparatus in embodiment of this invention 本発明の他の実施の形態における製造装置を示すブロック図The block diagram which shows the manufacturing apparatus in other embodiment of this invention 本発明の他の実施の形態における製造装置を示すブロック図The block diagram which shows the manufacturing apparatus in other embodiment of this invention 実験に使用する装置を示す模式図Schematic diagram showing the equipment used in the experiment

以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1
図1において、原料11は有機性塩素を含む固形状の有機性廃棄物であり、可燃ごみ、生ごみ、プラスチックごみなどであり、反応容器12は飽和水蒸気13による水熱分解反応を行うものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1
In FIG. 1, a raw material 11 is a solid organic waste containing organic chlorine, such as combustible waste, kitchen waste, plastic waste, and the like. A reaction vessel 12 performs a hydrothermal decomposition reaction with saturated steam 13. is there.

反応容器12に供給する飽和水蒸気13は圧力2.5MPa以上3.0MPa以下、温度230℃以上250℃以下の飽和水蒸気である。圧力2.5MPa以上の飽和水蒸気を使用する理由は後述する水熱分解反応による原料11の細粒化を考慮する点にある。すなわち、2MPaの飽和水蒸気では、原料11に含まれたプラスチック類を細粒化できないので、プラスチック類を細粒化するのに必要な設定圧力である圧力2.5MPa以上の飽和水蒸気を使用する。排ガス14は水熱分解反応後に反応容器12を減圧して排気するものである。   The saturated water vapor 13 supplied to the reaction vessel 12 is saturated water vapor having a pressure of 2.5 MPa to 3.0 MPa and a temperature of 230 ° C. to 250 ° C. The reason for using saturated steam having a pressure of 2.5 MPa or more is that consideration is given to the refinement of the raw material 11 by the hydrothermal decomposition reaction described later. That is, since the plastics contained in the raw material 11 cannot be finely granulated with 2 MPa saturated steam, saturated steam with a pressure of 2.5 MPa or more, which is a set pressure necessary to finely plasticize the plastics, is used. The exhaust gas 14 is for exhausting the reaction vessel 12 under reduced pressure after the hydrothermal decomposition reaction.

洗浄・脱水手段15は、水洗浄装置および脱水装置からなり、反応容器12から排出する固液懸濁液16を洗浄して脱水するものである。水洗浄装置は、固液懸濁液に対して3から10倍量の水を加え均一攪拌できる混合槽よりなる。攪拌方法としては機械攪拌または空気攪拌による。   The cleaning / dehydrating means 15 is composed of a water cleaning device and a dehydrating device, and cleans and dehydrates the solid-liquid suspension 16 discharged from the reaction vessel 12. The water washing apparatus comprises a mixing tank capable of adding 3 to 10 times the amount of water to the solid-liquid suspension and stirring uniformly. The stirring method is mechanical stirring or air stirring.

脱水装置としては遠心脱水機、ベルトプレス脱水機、フィルタープレス脱水機、スクリュープレス脱水機などが利用できる。脱水の際に必要に応じて無機凝集剤、有機凝集剤などの脱水助剤を添加する。乾燥装置21は洗浄・脱水手段15から取り出した固形物17を乾燥させて燃料原料18を得るものであり、気流乾燥機、間接乾燥機、および天日乾燥などが利用できる。洗浄・脱水手段15から排出する分離液19は排水処理20を施す。排水処理としては、活性汚泥法、接触曝気法などの生物学的処理方法および凝集沈殿、濾過、活性炭処理などの物理化学的処理方法を利用できる。   As the dehydrator, a centrifugal dehydrator, a belt press dehydrator, a filter press dehydrator, a screw press dehydrator, or the like can be used. A dehydration aid such as an inorganic flocculant or an organic flocculant is added as needed during dehydration. The drying device 21 dries the solid material 17 taken out from the washing / dehydrating means 15 to obtain the fuel raw material 18, and an air dryer, an indirect dryer, a sun dryer or the like can be used. The separation liquid 19 discharged from the cleaning / dehydrating means 15 is subjected to drainage treatment 20. As the wastewater treatment, biological treatment methods such as activated sludge method and contact aeration method and physicochemical treatment methods such as coagulation sedimentation, filtration and activated carbon treatment can be used.

以上の構成において脱塩素燃料の製造は以下の工程により行う。
反応工程
原料11を反応容器12に投入した後に、飽和水蒸気13として圧力2.5MPa以上3.0MPa以下、温度230℃以上250℃以下の飽和水蒸気を反応容器12に吹き込み、反応容器12の内部を2.5MPa以上に昇圧し、230℃以上に昇温する。反応容器12の内部では、原料11が圧力2.5MPa以上3.0MPa以下、温度230℃以上250℃以下の飽和水蒸気に曝され、その水熱分解反応により原料11の有機性廃棄物が細粒化して固液懸濁状態(スラリー)となり、原料11に含まれた有機性塩素の少なくとも一部が遊離して無機塩素となる。この時、遊離した無機塩素は、ガス側へ移行することなく、直ちに反応容器12の内部の水分と結合して液相側に移行し、ガス状では殆ど存在しない。
減圧工程
反応容器12の内部圧力が所定圧力に達した後に反応容器12の内部を大気圧まで減圧して断熱膨張させる。これは反応容器12の内部の生成ガスを排ガス14として排出することで行う。この際に、排ガス14には、原料11に含まれた水分の一部が蒸発して移行し、反応容器12に供給した投入水蒸気(飽和水蒸気)が原料11からガス化した一部の炭素とともに移行する。また、原料11から遊離した無機塩素は反応容器12の内部の水分と結合して液相側に移行し、ガス状では殆ど存在していないので、反応容器12の内部を減圧する際に無機塩素が排ガス側へ移行することが殆どなく、反応容器12の腐食を防止できる。
洗浄・脱水工程
反応容器12から生成物の固液懸濁液16を洗浄・脱水手段15へ取り出す。固液懸濁液16は、固相側に原料11の有機物の大部分の炭素を含み、液相側に無機塩素を含んでいる。この固液懸濁液16を水で希釈・洗浄し、その後に脱水することで、固形物17と分離液19とに分離する。この際に液相側に含まれた無機塩素は分離液19へ移行するので、脱水した後の固形物17は塩素濃度が低く、かつ炭素含有率が大きくて燃料価値の高い優れた燃料原料18となる。
In the above configuration, the dechlorination fuel is manufactured by the following steps.
Reaction Step After charging the raw material 11 into the reaction vessel 12, saturated water vapor having a pressure of 2.5 MPa to 3.0 MPa and a temperature of 230 ° C. to 250 ° C. is blown into the reaction vessel 12 as saturated water vapor 13. The pressure is increased to 2.5 MPa or higher and the temperature is increased to 230 ° C. or higher. Inside the reaction vessel 12, the raw material 11 is exposed to saturated steam at a pressure of 2.5 MPa to 3.0 MPa and a temperature of 230 ° C. to 250 ° C., and the organic waste of the raw material 11 is finely divided by the hydrothermal decomposition reaction. It becomes a solid-liquid suspension state (slurry), and at least a part of the organic chlorine contained in the raw material 11 is liberated to become inorganic chlorine. At this time, the liberated inorganic chlorine does not move to the gas side, but immediately combines with the water inside the reaction vessel 12 and moves to the liquid phase side, and hardly exists in the gaseous state.
Depressurization Step After the internal pressure of the reaction vessel 12 reaches a predetermined pressure, the inside of the reaction vessel 12 is depressurized to atmospheric pressure and adiabatically expanded. This is done by discharging the product gas inside the reaction vessel 12 as exhaust gas 14. At this time, a part of the water contained in the raw material 11 is evaporated and transferred to the exhaust gas 14, and the input steam (saturated steam) supplied to the reaction vessel 12 is gasified from the raw material 11 together with some carbon. Transition. In addition, inorganic chlorine released from the raw material 11 is combined with moisture inside the reaction vessel 12 and moves to the liquid phase side and hardly exists in gaseous form. Therefore, when the inside of the reaction vessel 12 is decompressed, the inorganic chlorine Hardly moves to the exhaust gas side, and corrosion of the reaction vessel 12 can be prevented.
Washing / Dehydration Process The solid / liquid suspension 16 of the product is taken out from the reaction vessel 12 to the washing / dehydrating means 15. The solid-liquid suspension 16 contains most of carbon of the organic substance of the raw material 11 on the solid phase side, and contains inorganic chlorine on the liquid phase side. The solid-liquid suspension 16 is diluted and washed with water, and then dehydrated to separate into a solid 17 and a separation liquid 19. At this time, since the inorganic chlorine contained in the liquid phase moves to the separation liquid 19, the solid material 17 after dehydration has an excellent fuel raw material 18 having a low chlorine concentration, a high carbon content, and a high fuel value. It becomes.

すなわち、圧力2.5MPa以上3.0MPa以下、温度230℃以上250℃以下の飽和水蒸気による水熱分解反応では、炭素のガス化は少なくて大部分の揮発性炭素が燃料原料18に残るので、従来の炭化等のように揮発性炭素の大部分をガス化して燃焼していた方法に比べて発熱量が高い状態に保持された燃料原料18を得ることができる。
乾燥工程
製造した燃料原料18は乾燥装置21により乾燥を施す。この燃料原料18は塩素濃度が低減されているので、燃料の燃焼に際して塩化水素ガスが発生し難くなり、燃焼装置の炉壁の腐食を抑制でき、燃焼時にダイオキシン類の発生を抑制することができる。
排水処理工程
分離液19には、無機塩素以外にも水熱分解反応によって生成した水溶性の有機物も含まれるので、例えば、生物学的硝化脱窒素処理法を含む活性汚泥法で処理する。分離液19に含まれる塩素濃度は通常1%以下であり、従来の活性汚泥処理法で支障なく処理できる範疇である。この排水処理工程では排ガス14に含まれた排蒸気を復水したものも合わせて活性汚泥処理できる。
That is, in the hydrothermal decomposition reaction with saturated steam at a pressure of 2.5 MPa or more and 3.0 MPa or less and a temperature of 230 ° C. or more and 250 ° C. or less, the gasification of carbon is small and most volatile carbon remains in the fuel raw material 18. The fuel material 18 can be obtained in which the calorific value is maintained higher than the conventional method of gasifying and burning most of the volatile carbon such as carbonization.
Drying Process The produced fuel material 18 is dried by a drying device 21. Since the fuel raw material 18 has a reduced chlorine concentration, it is difficult for hydrogen chloride gas to be generated during combustion of the fuel, corrosion of the furnace wall of the combustion apparatus can be suppressed, and generation of dioxins can be suppressed during combustion. .
Wastewater treatment step Since the separation liquid 19 contains water-soluble organic substances generated by hydrothermal decomposition reaction in addition to inorganic chlorine, for example, it is treated by an activated sludge method including a biological nitrification denitrification treatment method. The concentration of chlorine contained in the separation liquid 19 is usually 1% or less, which is a category that can be treated without any problem by the conventional activated sludge treatment method. In this waste water treatment step, the activated sludge can be treated together with the condensate of the exhaust steam contained in the exhaust gas 14.

本発明の他の実施の形態としては、図2に示すように、圧力2.5MPa以上3.0MPa以下、温度230℃以上250℃以下の飽和水蒸気で反応容器12の内部温度を所定温度に、内部圧力を所定圧力にそれぞれ上昇させた後に、圧力2.5MPa以上3.0MPa以下、温度300℃以上350℃以下の過熱水蒸気22を反応容器12に供給して内部温度を300℃以上となし、原料11を過熱水蒸気22に曝すことも可能である。   As another embodiment of the present invention, as shown in FIG. 2, the internal temperature of the reaction vessel 12 is set to a predetermined temperature with saturated steam at a pressure of 2.5 MPa to 3.0 MPa and a temperature of 230 ° C. to 250 ° C. After increasing the internal pressure to a predetermined pressure, superheated steam 22 having a pressure of 2.5 MPa to 3.0 MPa and a temperature of 300 ° C. to 350 ° C. is supplied to the reaction vessel 12 so that the internal temperature is 300 ° C. or higher. It is also possible to expose the raw material 11 to the superheated steam 22.

この場合には、先の実施の形態よりも炭素のガス化率が若干上がり総発熱量が低下するが、有機性塩素のガス化率を高めて燃料原料18に含まれる塩素濃度をさらに下げることができる。   In this case, although the gasification rate of carbon is slightly higher than that of the previous embodiment and the total calorific value is reduced, the concentration of chlorine contained in the fuel material 18 is further reduced by increasing the gasification rate of organic chlorine. Can do.

本発明の他の実施の形態としては、図3に示すように、反応容器12に飽和水蒸気を供給する蒸気供給装置をなすボイラ23の燃料として燃料原料18を使用することも可能である。   As other embodiment of this invention, as shown in FIG. 3, it is also possible to use the fuel raw material 18 as a fuel of the boiler 23 which comprises the steam supply apparatus which supplies saturated water vapor | steam to the reaction container 12. As shown in FIG.

この場合には、燃料原料18が塩素濃度が低減されているので、燃料の燃焼に際して塩化水素ガスの発生を抑制し、ボイラ23の炉壁の腐食を抑制でき、燃焼時にダイオキシン類の発生を抑制することができ、しかも燃料費を削減することができる。
実験例
本発明に係る実験例を説明する。
1.投入原料の調整
3種類の材料をブレンドし標準原料を設定した。
・有機物: ドックフード(粗タンパク質:粗脂肪:粗繊維:粗灰分=26:12:4:9.5)
・無機塩素: 塩化ナトリウム
・有機塩素: 塩化ビニルポリマ
・水分 原料含水率60%になるよう調整し、その後に飽和蒸気(at 230℃)相当の加水をした。
・塩素濃度 無機塩素1%、有機塩素1%になるように調整した。
2.分析方法
・重量測定 電子天秤により計測
・固形物濃度 JIS法
・塩素水抽出率 サンプル5gを200mlフラスコに入れ、80℃の熱水100mlを加え、振とう恒温水槽で80℃、60rpmで1時間振とうする。全量をろ紙で濾過し、イオンクロマト(日本ダイオ二クス社製ICS−1500)によりろ液中の全塩素イオン量(a)を測定した。ろ紙上の残渣は100℃で一晩乾燥させ、TOX計(三菱化学社製TOX−100)で気化させ、同上イオンクロマトにより、残渣中の全塩素イオン(b)を測定した。
塩素水抽出率は次式により求めた。塩素水抽出率(%)=[a/(a+b)]×100
・炭素ガス化率
原料中の全炭素量(c)、排ガス中の全炭素量(d)、凝縮水中の全炭素量(e)をTC計により測定した。
炭素ガス化率は次式により求めた。炭素ガス化率(%)=[(d+e)/c]×100
3.水熱反応生成物の製造方法
図4に示すように、実験機は、反応容器72、攪拌機73、ヒータ69、排気バルブ70、送気バルブ71からなる。後述するテスト1〜4の4バッチを以下の手順に従って行なった。
1)反応容器72に有機物、無機塩素、有機塩素、水を入れて、排気バルブ70および送気バルブ71を閉め、攪拌機73による攪拌およびヒーター69による昇温を開始した。
2)反応容器72の内部温度が80〜110℃にある間に、排気バルブ70を僅かに開いて内部の空気抜きを行った。
3)テスト1〜3については、反応容器72の内部温度が230℃に到達した後に、同条件を5分間保持した。テスト4については、反応容器72の内部温度が295℃に到達した後に同条件を5分間保持した。
4)ヒーター69を停止した後に、排気バルブ70を徐々に開放し、排蒸気・排ガスを放出した。
5)排気終了後、送気バルブ71を開いて送気装置62により送風し、10分間の乾燥を行った。
6)乾燥終了後、排気バルブ70を閉めて反応容器72の内部温度が80℃以下になるまで放置した。
7)内部温度が低下した後に、攪拌機73を停止し、蓋を開けて水熱反応生成物68をサンプリングした。
4.水熱反応温度と水熱反応生成物性状
反応温度230℃、反応圧力2.5〜2.6MPaで行なったテスト1〜3では平均58.8%であった原料の塩素水抽出率が平均81.9%に増加した。これは原料に添加した塩化ビニルポリマが無機の塩素イオンに変換され、容易に水に抽出されたことを示している。この時の炭素ガス化率は平均10.4%であった。一方、反応温度300℃、反応圧力2.9MPaで行なったテスト4では58.6%であった原料の塩素水抽出率が98%に増加し、テスト1〜3に比べてより無機の塩素イオンに変換されている。また、炭素ガス化率は18.7%に増加し、300℃の高温での水熱反応では、塩素はより除去できるものの燃料成分の歩留まりが低下することがわかる。
In this case, since the chlorine concentration of the fuel raw material 18 is reduced, generation of hydrogen chloride gas can be suppressed during fuel combustion, corrosion of the furnace wall of the boiler 23 can be suppressed, and generation of dioxins can be suppressed during combustion. And fuel costs can be reduced.
Experimental Example An experimental example according to the present invention will be described.
1. Adjustment of input raw materials Three types of materials were blended to set standard raw materials.
Organic matter: Dock food (crude protein: crude fat: crude fiber: crude ash content = 26: 12: 4: 9.5)
-Inorganic chlorine: Sodium chloride-Organic chlorine: Vinyl chloride polymer-Moisture The raw material water content was adjusted to 60%, and then water equivalent to saturated steam (at 230 ° C) was added.
-Chlorine concentration Adjusted to 1% inorganic chlorine and 1% organic chlorine.
2. Analytical Method / Weight Measurement Measured with Electronic Balance / Solid Concentration JIS Method / Chlorine Water Extraction Rate Add 5 g of sample into a 200 ml flask, add 100 ml of hot water at 80 ° C., shake at 80 ° C. and 60 rpm in a shaking water bath for 1 hour. I will. The total amount was filtered with a filter paper, and the total chlorine ion amount (a) in the filtrate was measured by ion chromatography (ICS-1500, manufactured by Nippon Dionyx). The residue on the filter paper was dried overnight at 100 ° C., vaporized with a TOX meter (TOX-100 manufactured by Mitsubishi Chemical Corporation), and the total chlorine ions (b) in the residue were measured by ion chromatography as above.
Chlorine water extraction rate was calculated by the following formula. Chlorine water extraction rate (%) = [a / (a + b)] × 100
-Carbon gasification rate The total carbon amount (c) in a raw material, the total carbon amount (d) in exhaust gas, and the total carbon amount (e) in condensed water were measured with the TC meter.
The carbon gasification rate was determined by the following formula. Carbon gasification rate (%) = [(d + e) / c] × 100
3. Method for Producing Hydrothermal Reaction Product As shown in FIG. 4, the experimental machine comprises a reaction vessel 72, a stirrer 73, a heater 69, an exhaust valve 70, and an air supply valve 71. Four batches of tests 1 to 4 described later were performed according to the following procedure.
1) Organic matter, inorganic chlorine, organic chlorine, and water were put into the reaction vessel 72, the exhaust valve 70 and the air supply valve 71 were closed, and the stirring by the stirrer 73 and the temperature increase by the heater 69 were started.
2) While the internal temperature of the reaction vessel 72 was 80 to 110 ° C., the exhaust valve 70 was slightly opened to vent the air inside.
3) For tests 1 to 3, the same condition was maintained for 5 minutes after the internal temperature of the reaction vessel 72 reached 230 ° C. For Test 4, the same conditions were maintained for 5 minutes after the internal temperature of the reaction vessel 72 reached 295 ° C.
4) After stopping the heater 69, the exhaust valve 70 was gradually opened to release exhaust steam / exhaust gas.
5) After exhausting, the air supply valve 71 was opened and air was blown by the air supply device 62, followed by drying for 10 minutes.
6) After drying, the exhaust valve 70 was closed and the reaction vessel 72 was left until the internal temperature became 80 ° C. or lower.
7) After the internal temperature decreased, the agitator 73 was stopped, the lid was opened, and the hydrothermal reaction product 68 was sampled.
4). Hydrothermal reaction temperature and properties of the hydrothermal reaction product In tests 1 to 3 performed at a reaction temperature of 230 ° C. and a reaction pressure of 2.5 to 2.6 MPa, the chlorine water extraction rate of the raw material, which averaged 58.8%, averaged 81 Increased to 9%. This indicates that the vinyl chloride polymer added to the raw material was converted into inorganic chloride ions and easily extracted into water. The carbon gasification rate at this time was 10.4% on average. On the other hand, in test 4 performed at a reaction temperature of 300 ° C. and a reaction pressure of 2.9 MPa, the chlorine water extraction rate of the raw material, which was 58.6%, increased to 98%, and more inorganic chlorine ions than in tests 1 to 3 Has been converted. Moreover, the carbon gasification rate increases to 18.7%, and it can be seen that in the hydrothermal reaction at a high temperature of 300 ° C., the yield of fuel components decreases although chlorine can be removed more.

Figure 2010195994
Figure 2010195994

家庭系可燃ごみ800kgを収集袋のまま3mの反応容器に投入し、3MPaの飽和水蒸気を容器内に導入し、容器内圧力2.8MPa、温度230℃まで昇温、昇圧し、その状態で約10分間保持し水熱分解を行なった。水熱分解中は装置内の攪拌羽根を正回転で攪拌を行い、その後、減圧後、攪拌羽根を逆回転させることにより生成物を排出させた。この結果、反応後の生成物450kg(含水率11.7%)を回収した。 Charge 800 kg of household combustible waste as a collection bag into a 3 m 3 reaction vessel, introduce 3 MPa saturated water vapor into the vessel, raise the temperature to 2.8 MPa and raise the temperature to 230 ° C, and in that state The hydrothermal decomposition was performed for about 10 minutes. During hydrothermal decomposition, the stirring blade in the apparatus was stirred in the forward direction, and then the product was discharged by rotating the stirring blade in the reverse direction after decompression. As a result, 450 kg (water content 11.7%) of the product after the reaction was recovered.

生成物のうち100kgを1000Lのタンクに入れ、900Lの水道水を加え攪拌機による混合を行い3.3%の固液懸濁液とした。この固液懸濁液に0.2%カチオンポリマー溶液200Lを加え15分間緩速攪拌で凝集させた後、固液懸濁液を沈殿させ約9倍に濃縮した濃縮固液懸濁液を得た。この濃縮固液懸濁液をベルトプレス型脱水機に供給し脱水を行い、含水率26.6%の脱水ケーキを得た。この脱水ケーキを気流乾燥機(入口温度90℃、出口温度40℃)で乾燥し、含水率10%の乾燥燃料とした。
水熱分解生成物と洗浄脱水の全塩素濃度は以下の通りであった。
100 kg of the product was placed in a 1000 L tank, 900 L of tap water was added, and the mixture was mixed with a stirrer to obtain a 3.3% solid-liquid suspension. After adding 200 L of 0.2% cationic polymer solution to this solid-liquid suspension and agglomerating with slow stirring for 15 minutes, the solid-liquid suspension was precipitated to obtain a concentrated solid-liquid suspension concentrated about 9 times. It was. This concentrated solid-liquid suspension was supplied to a belt press type dehydrator for dehydration to obtain a dehydrated cake having a water content of 26.6%. The dehydrated cake was dried with a flash dryer (inlet temperature 90 ° C., outlet temperature 40 ° C.) to obtain a dry fuel having a water content of 10%.
The total chlorine concentration of hydrothermal decomposition products and washing dehydration was as follows.

Figure 2010195994
Figure 2010195994

11 原料
12 反応容器
13 飽和水蒸気
14 排ガス
15 洗浄・脱水手段
16 固液懸濁液
17 固形物
18 燃料原料
19 分離液
20 排水処理
21 乾燥装置
22 過熱水蒸気
23 ボイラ
DESCRIPTION OF SYMBOLS 11 Raw material 12 Reaction container 13 Saturated steam 14 Exhaust gas 15 Cleaning | dehydration means 16 Solid-liquid suspension 17 Solid material 18 Fuel raw material 19 Separation liquid 20 Wastewater treatment 21 Drying apparatus 22 Superheated steam 23 Boiler

Claims (6)

有機性塩素を含む有機性廃棄物を原料とし、反応容器内で圧力2.5MPa以上3.0MPa以下、温度230℃以上250℃以下の飽和水蒸気に曝して原料を水熱分解し、水熱分解により生成した反応容器内の生成物を脱水して燃料原料とすることを特徴とする脱塩素燃料の製造方法。   Using organic waste containing organic chlorine as a raw material, hydrothermal decomposition of the raw material by hydrothermal decomposition of the raw material by exposing it to saturated water vapor at a pressure of 2.5 MPa to 3.0 MPa and a temperature of 230 ° C. to 250 ° C. A method for producing a dechlorinated fuel, comprising dehydrating a product in a reaction vessel produced by the step 1 into a fuel raw material. 飽和水蒸気で反応容器内温度を230℃以上250℃以下に、反応容器内圧力を2.5MPa以上3.0MPa以下に上昇させた後に、圧力2.5MPa以上3.0MPa以下、温度300℃以上350℃以下の過熱水蒸気に原料を曝すことを特徴とする請求項1に記載の脱塩素燃料の製造方法。   After increasing the temperature in the reaction vessel to 230 ° C. or more and 250 ° C. or less with saturated steam, the pressure in the reaction vessel is raised to 2.5 MPa or more and 3.0 MPa or less, and then the pressure is 2.5 MPa or more and 3.0 MPa or less, and the temperature is 300 ° C. or more and 350 ° C. The method for producing a dechlorinated fuel according to claim 1, wherein the raw material is exposed to superheated steam at a temperature not higher than ° C. 反応容器内の生成物は水洗浄後に脱水することを特徴とする請求項1または2に記載の脱塩素燃料の製造方法。   The method for producing a dechlorinated fuel according to claim 1 or 2, wherein the product in the reaction vessel is dehydrated after washing with water. 燃料原料は反応容器に飽和水蒸気を供給する蒸気供給装置の燃料とすることを特徴とする請求項1から3の何れか1項に記載の脱塩素燃料の製造方法。   The method for producing a dechlorinated fuel according to any one of claims 1 to 3, wherein the fuel raw material is a fuel of a steam supply device that supplies saturated steam to the reaction vessel. 原料として有機性塩素を含む有機性廃棄物を保持する反応容器と、反応容器に圧力2.5MPa以上3.0MPa以下、温度230℃以上250℃以下の飽和水蒸気を供給する蒸気供給装置と、反応容器内の生成物を水洗浄して脱水する洗浄脱水装置を備えることを特徴とする脱塩素燃料の製造装置。   A reaction vessel that holds organic waste containing organic chlorine as a raw material, a steam supply device that supplies saturated water vapor with a pressure of 2.5 MPa to 3.0 MPa, a temperature of 230 ° C. to 250 ° C., and a reaction An apparatus for producing dechlorinated fuel, comprising a washing and dehydrating device for dehydrating a product in a container by washing with water. 原料として有機性塩素を含む有機性廃棄物を保持する反応容器と、反応容器内温度を230℃以上250℃以下に、反応容器内圧力を2.5MPa以上3.0MPa以下に上昇させるための飽和水蒸気を反応容器に供給する蒸気供給装置と、反応容器内が前記反応容器内温度および前記反応容器内圧力に上昇した後に圧力圧力2.5MPa以上3.0MPa以下、温度300℃以上350℃以下の過熱水蒸気を反応容器に供給する過熱蒸気供給装置と、反応容器内の生成物を水洗浄して脱水する洗浄脱水装置を備えることを特徴とする脱塩素燃料の製造装置。   A reaction vessel holding organic waste containing organic chlorine as a raw material, and saturation for raising the reaction vessel temperature to 230 ° C. to 250 ° C. and the reaction vessel pressure to 2.5 MPa to 3.0 MPa A steam supply device for supplying water vapor to the reaction vessel; and after the inside of the reaction vessel has risen to the reaction vessel temperature and the reaction vessel pressure, the pressure pressure is 2.5 MPa to 3.0 MPa, and the temperature is 300 ° C. to 350 ° C. An apparatus for producing dechlorinated fuel, comprising: a superheated steam supply device that supplies superheated steam to a reaction vessel; and a washing and dehydrating device that dehydrates the product in the reaction vessel by washing with water.
JP2009044943A 2009-02-27 2009-02-27 Method and apparatus for producing dechlorinated fuel Pending JP2010195994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044943A JP2010195994A (en) 2009-02-27 2009-02-27 Method and apparatus for producing dechlorinated fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044943A JP2010195994A (en) 2009-02-27 2009-02-27 Method and apparatus for producing dechlorinated fuel

Publications (1)

Publication Number Publication Date
JP2010195994A true JP2010195994A (en) 2010-09-09

Family

ID=42821035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044943A Pending JP2010195994A (en) 2009-02-27 2009-02-27 Method and apparatus for producing dechlorinated fuel

Country Status (1)

Country Link
JP (1) JP2010195994A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179560A (en) * 2011-03-02 2012-09-20 Taiheiyo Cement Corp Method for processing waste material
JP2013511386A (en) * 2009-11-24 2013-04-04 株式会社北斗興業 Waste to energy conversion by hydrothermal decomposition and resource regeneration methods.
JP2013202497A (en) * 2012-03-28 2013-10-07 Taiheiyo Cement Corp System and method for treating waste
JP2019044118A (en) * 2017-09-06 2019-03-22 株式会社エム・アイ・エス Bamboo-based biofuel production apparatus
WO2019198794A1 (en) * 2018-04-13 2019-10-17 三菱重工業株式会社 Waste treatment system and waste treatment method
JP2020055004A (en) * 2019-12-25 2020-04-09 三菱重工業株式会社 Waste treatment system
JP2020059024A (en) * 2019-12-24 2020-04-16 三菱重工業株式会社 Waste treatment system
JP2020073265A (en) * 2019-12-24 2020-05-14 三菱重工業株式会社 Waste treatment system
JP6827582B1 (en) * 2020-04-27 2021-02-10 東北発電工業株式会社 Solid fuel production system, solid fuel production method, and solid fuel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262741A (en) * 1998-03-19 1999-09-28 Ube Ind Ltd Method and apparatus for treating waste
JPH11267698A (en) * 1998-03-26 1999-10-05 Ube Ind Ltd Treatment of waste and device therefor
JP2006028272A (en) * 2004-07-13 2006-02-02 Nishimuragumi:Kk Method and apparatus for fuel production
JP2007007622A (en) * 2005-07-04 2007-01-18 Eco Material Kk Treating apparatus of organic waste
JP2007112880A (en) * 2005-10-19 2007-05-10 National Univ Corp Shizuoka Univ Device for conversion into fuel and method for producing fuel
JP2008173612A (en) * 2007-01-22 2008-07-31 Mhi Environment Engineering Co Ltd Waste treatment apparatus and method
JP2010037536A (en) * 2008-07-07 2010-02-18 Tokyo Institute Of Technology Method for treating mixed waste material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262741A (en) * 1998-03-19 1999-09-28 Ube Ind Ltd Method and apparatus for treating waste
JPH11267698A (en) * 1998-03-26 1999-10-05 Ube Ind Ltd Treatment of waste and device therefor
JP2006028272A (en) * 2004-07-13 2006-02-02 Nishimuragumi:Kk Method and apparatus for fuel production
JP2007007622A (en) * 2005-07-04 2007-01-18 Eco Material Kk Treating apparatus of organic waste
JP2007112880A (en) * 2005-10-19 2007-05-10 National Univ Corp Shizuoka Univ Device for conversion into fuel and method for producing fuel
JP2008173612A (en) * 2007-01-22 2008-07-31 Mhi Environment Engineering Co Ltd Waste treatment apparatus and method
JP2010037536A (en) * 2008-07-07 2010-02-18 Tokyo Institute Of Technology Method for treating mixed waste material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511386A (en) * 2009-11-24 2013-04-04 株式会社北斗興業 Waste to energy conversion by hydrothermal decomposition and resource regeneration methods.
JP2012179560A (en) * 2011-03-02 2012-09-20 Taiheiyo Cement Corp Method for processing waste material
JP2013202497A (en) * 2012-03-28 2013-10-07 Taiheiyo Cement Corp System and method for treating waste
JP2019044118A (en) * 2017-09-06 2019-03-22 株式会社エム・アイ・エス Bamboo-based biofuel production apparatus
CN111989169A (en) * 2018-04-13 2020-11-24 三菱重工业株式会社 Waste treatment system and waste treatment method
WO2019198794A1 (en) * 2018-04-13 2019-10-17 三菱重工業株式会社 Waste treatment system and waste treatment method
JP2019181397A (en) * 2018-04-13 2019-10-24 三菱重工業株式会社 Waste disposal system and waste disposal method
US11839909B2 (en) 2018-04-13 2023-12-12 Mitsubishi Heavy Industries, Ltd. Waste treatment system and waste treatment method
JP7101159B2 (en) 2019-12-24 2022-07-14 三菱重工業株式会社 Waste treatment system
JP2020073265A (en) * 2019-12-24 2020-05-14 三菱重工業株式会社 Waste treatment system
JP7050043B2 (en) 2019-12-24 2022-04-07 三菱重工業株式会社 Waste treatment system
JP2020059024A (en) * 2019-12-24 2020-04-16 三菱重工業株式会社 Waste treatment system
JP7101160B2 (en) 2019-12-25 2022-07-14 三菱重工業株式会社 Waste treatment system
JP2020055004A (en) * 2019-12-25 2020-04-09 三菱重工業株式会社 Waste treatment system
JP6827582B1 (en) * 2020-04-27 2021-02-10 東北発電工業株式会社 Solid fuel production system, solid fuel production method, and solid fuel
JP2021175788A (en) * 2020-04-27 2021-11-04 東北発電工業株式会社 Solid fuel manufacturing system, solid fuel manufacturing method, and solid fuel
JP2021175781A (en) * 2020-04-27 2021-11-04 東北発電工業株式会社 Solid fuel manufacturing system, solid fuel manufacturing method, and solid fuel
JP6994590B2 (en) 2020-04-27 2022-01-14 東北発電工業株式会社 Solid fuel production system, solid fuel production method, and solid fuel
CN115335494A (en) * 2020-04-27 2022-11-11 东北发电工业株式会社 Solid fuel production system, solid fuel production method, and solid fuel
CN115335494B (en) * 2020-04-27 2024-04-12 东北发电工业株式会社 Solid fuel production system, solid fuel production method, and solid fuel

Similar Documents

Publication Publication Date Title
JP2010195994A (en) Method and apparatus for producing dechlorinated fuel
Zhang et al. Biochar and hydrochar derived from freshwater sludge: Characterization and possible applications
KR101167872B1 (en) Treatment of particulate biodegradable organic waste by thermal hydrolysis using condensate recycle
CN101289267B (en) System and process for anhydration treatment of wet sludge
RU2586332C1 (en) Eco-friendly and highly effective method for preparing solid fuel using organic waste with high water content and combine thermoelectric power system operating with fuel described
CA2920702C (en) Method for extracting lignin from black liquor and products produced thereby
KR102171486B1 (en) Method of Manufacturing Solid Fuel using Food Waste
JP2007203213A (en) Method and apparatus for treating highly wet waste before hydration, and dehydration system equipped with this apparatus
KR100894154B1 (en) Apparatus and methods of a successive treatment of organic sludges for producing solid-liquid slurry containing solids and secessional liquids from organic sludge
JPWO2006117934A1 (en) Organic waste treatment facility and treatment method
CN110451753A (en) A kind of processing method of danger solid waste greasy filth
MX2011003732A (en) System and method for activating carbonaceous material.
Tasca et al. Hydrothermal carbonization of sewage sludge: analysis of process severity and solid content
KR101700707B1 (en) Food waste Recycling System and Method thereof
KR100904064B1 (en) Organic sludge desulfurization method for fuelizing and treatment thereof
KR100974324B1 (en) Apparatus of a successive treatment of organic sludges for producing solid-liquid slurry containing solids and secessional liquids from organic sludge
CN115666805A (en) Waste biomass gasification treatment device and waste biomass gasification treatment method
JP4364684B2 (en) Method for producing gasified fuel
CN110330206A (en) A kind of dewatering of dangerous waste
JPH10316982A (en) Production of solid fuel
JP5872258B2 (en) Integrated treatment system for organic waste and wastewater
JP2007136312A (en) Organic waste treatment system
KR101205962B1 (en) Method and a device to synthesis gas production from high moisturized organic waste over the course of the synthetic coal
Zhang et al. Alkali-catalyzed supercritical water gasification of sewage sludge: effect of liquid residue reuse as homogenous catalyst
JP2006061861A (en) Apparatus and method for treating organic sludge

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105