WO2006006208A1 - 無線基地局 - Google Patents

無線基地局 Download PDF

Info

Publication number
WO2006006208A1
WO2006006208A1 PCT/JP2004/009734 JP2004009734W WO2006006208A1 WO 2006006208 A1 WO2006006208 A1 WO 2006006208A1 JP 2004009734 W JP2004009734 W JP 2004009734W WO 2006006208 A1 WO2006006208 A1 WO 2006006208A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
reception rate
data reception
rate
base station
Prior art date
Application number
PCT/JP2004/009734
Other languages
English (en)
French (fr)
Inventor
Masaaki Kusano
Akira Otsuka
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2004/009734 priority Critical patent/WO2006006208A1/ja
Priority to JP2006527649A priority patent/JPWO2006006208A1/ja
Publication of WO2006006208A1 publication Critical patent/WO2006006208A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/385Contact thermal transfer or sublimation processes characterised by the transferable dyes or pigments
    • B41M5/3854Dyes containing one or more acyclic carbon-to-carbon double bonds, e.g., di- or tri-cyanovinyl, methine

Definitions

  • the present invention relates to a radio base station constituting a mobile communication system, and more particularly to a radio base station capable of realizing high throughput by performing flow control on data received from a host device. It is.
  • a target transmission capacity of a wired line is obtained based on the effective transmission rate of the radio line, and a transmission capacity request signal for requesting the relay station to increase or decrease the allowable transmission capacity is obtained using that target.
  • the target transmission capacity is calculated by calculating the difference between the effective transmission speed of the wireless line and the effective transmission speed of the wired line. For example, if the difference exceeds a predetermined threshold # 1, the transmission capacity is calculated as RQ. It is increased by # 1, and is decreased by RQ # 2 when the difference falls below a predetermined threshold value # 2 (see Patent Document 1 below).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-358763 FIG. 2, FIG.
  • the effective transmission rate of a wireless line is the effective transmission rate of a wired line (ie In this case, the call data does not remain at all in the base station.
  • HSDPA High Speed Downlink Packet Access
  • the wireless base station has a data transmission scheduling function such as (Speed Downlink Packet Access)
  • the number of data that can be transmitted to each terminal at one time is for each terminal that is staying in the wireless base station. Since the number of data is limited to the upper limit and scheduling is performed with the upper limit limited, efficient scheduling cannot be performed, and There was a problem that the throughput of the whole stem was lowered.
  • transmission data stays in a host device of a radio base station, but data for a terminal with a good radio channel state does not exist in the radio base station, and is intended for a terminal with a bad radio channel state.
  • a situation occurs in which only data exists in the radio base station. For this reason, radio resources must be allocated to terminals with poor radio link conditions, and the overall system throughput decreases.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a radio base station capable of realizing the maximum throughput by effectively performing flow control. Means for solving the problem
  • the radio base station provides scheduling for controlling the data transmission rate to the radio channel according to the radio channel status of the terminal.
  • a wireless base station having a function, for example, data holding means for holding received data from a host device in a buffer, output amount monitoring means for monitoring the amount of data transmitted from the buffer,
  • a retention amount management means for performing processing (flow control) for determining a reception rate (data reception rate) of data sent from a host device so that the data retention amount is maintained within a certain range;
  • Reception rate notifying means for notifying the host device of the reception rate.
  • the staying amount management means compares the data transmission rate obtained by monitoring the output amount monitoring means with the data reception rate that has been notified to the host device, and We decided to perform flow control based on the results.
  • the staying amount management means is configured to monitor the data transmission rate obtained by the output amount monitoring means. Compare the data reception rate notified to the higher-level device and based on the result Since the flow control is performed, the maximum throughput can be realized.
  • FIG. 1 is a diagram showing a configuration example of a radio base station according to the present invention.
  • FIG. 2 is a diagram showing the operation of the staying amount management unit 5.
  • FIG. 3 is a diagram showing a data reception rate determination method using data reception rate increase control and data reception rate decrease control.
  • FIG. 4 is a diagram showing a data retention number target value table.
  • FIG. 5 is a diagram showing an example of data reception rate increase control.
  • FIG. 6 is a diagram showing an example of data reception rate reduction control.
  • FIG. 7 is a diagram illustrating an operation of a reception rate notification unit.
  • FIG. 1 is a diagram illustrating a configuration example of a radio base station according to the present invention.
  • the radio base station 1 according to the present embodiment has a data holding unit 2 that holds received data, and this data holding unit 2 includes a plurality of queues 3 (3-1, 3-2,..., 3-m. ).
  • the wireless base station 1 (1) Output amount monitoring unit 4 that counts the number of data to be output from 3 for each queue, and the data reception rate by periodically referring to the data retention count for each queue 3 and the output data number counted by the output amount monitoring unit 4 Stagnation amount management unit 5 for calculating the reception rate, the reception rate notification unit 6 for notifying the host device 11 of the data reception rate calculated by the stagnation amount management unit 5 via the data transmission / reception unit 10, and the stagnation amount management unit 5 and a call control unit 8 for notifying the start and completion of the handover of the terminal. Furthermore, the scheduler unit 7 schedules data transmission according to the state of the radio channel of the terminal, extracts data from the queue 3 and outputs it to the radio channel.
  • the data transmitted from the host device 11 is received by the data transmitting / receiving unit 10 of the radio base station 1 and is classified and held in each queue 3 in the data holding unit 2 for each communication unit.
  • the scheduler unit 7 performs scheduling in consideration of the radio channel state, data priority, fairness, etc. for each terminal, and transmits the data to the radio channel.
  • the output amount monitoring unit 4 increments a counter corresponding to each queue 3.
  • the output of the output amount monitoring unit 4 and the scheduler unit 7 is described as independent.
  • the increment of the counter may be performed by the scheduler unit 7.
  • FIG. 2 is a diagram illustrating the operation of the staying amount management unit 5.
  • the staying amount management unit 5 operates, for example, in a certain cycle by the timer 9 or a cycle according to the data reception capability of the terminal, and performs a data reception rate calculation process.
  • the data reception capability of the terminal is equivalent to the maximum reception rate that the terminal can receive.
  • the operation using one queue, for example, queue 3-1 will be described as an example.
  • the retention amount management unit 5 refers to the counter of the output amount monitoring unit 4, and determines the number of data output from the queue 3-1 per unit time as the nth time.
  • Data transmission rate Ro (n) is calculated (step SI).
  • the data transmission rate Ro (n) may be calculated as an average value including past calculation results.
  • the retention amount management unit 5 compares the data reception rate Ri (n—1) calculated previously with the data transmission rate Ro (n) (step S2), and Ro (n) is more If it is larger (Step S2, Yes), the data reception rate increase control (Step S3) described later is performed, and if Ro (n) is smaller (Step S2, No), the data reception rate decrease control ( Perform step S4).
  • the data reception rate Ri (n ⁇ 1) is a value notified to the host device 11 at the time of the previous data reception rate calculation. The host device 11 performs data transmission at a rate lower than the notified data reception rate.
  • the data reception rate is limited so as not to exceed the reception line bandwidth from the host device 11 (step S5). This makes it possible to avoid problems such as data loss and congestion that occur in lower layers than flow control.
  • FIG. 3 is a diagram showing a data reception rate determination method using data reception rate increase control (step S3) and data reception rate decrease control (step S4).
  • the horizontal axis shows whether data reception rate increase control or data reception rate decrease control is performed.
  • the vertical axis indicates the number of data retention in queue 3-1.
  • the retention amount management unit 5 refers to the data retention number in the queue 3-1 and sets the data retention number target. The data reception rate is determined so as to approach the value T.
  • the data retention target value T is determined by, for example, the number of queues 3 (3-1-3m) allocated to the communication unit, and the number of calls connected to the radio base station 1. As the amount of data increases, the target number of data retention should be reduced dynamically. For example, if the total number of buffers held by the data holding unit 2 is A and the target is to hold data for that percentage K%, and if m queues are set, the data will be held per queue.
  • the target number T is determined by the following equation (1).
  • the total number of buffers A and the ratio K% are predetermined constants.
  • the value of the force setting queue number m indicating the case where the data retention target number T is dynamically changed according to the value of the setting queue number m is set as a predetermined maximum value. It is also possible to leave. In this case, the data retention target number T is a predetermined constant.
  • the retention amount management unit 5 prepares the data retention number target value table shown in FIG. 4 in advance ( (The lower the data reception target value, the lower the data reception target). Then, the data retention target value T is obtained using the maximum reception rate W as an index. Similarly, when using the latest data transmission rate Ro (n), prepare a data retention count target value table using Ro (n) as an index (decrease the data retention target value for terminals with lower data transmission rates). )
  • the first threshold value B1 shown in FIG. 3 is a threshold value for determining whether the data reception rate is “increase” or “maintain current” in the data reception rate increase control (step S3).
  • the value is smaller by the first control width HI with reference to the value T.
  • the first control width HI may be a value that changes according to the value of the data retention number target value T, which may be a predetermined value.
  • the data reception rate increase control the data reception rate is increased when the data retention count in the queue to be controlled falls below the first threshold value B1, and the data retention rate exceeds the first threshold value B1. If there is, control is performed to maintain the current data reception rate.
  • FIG. 5 is a diagram illustrating an example of data reception rate increase control.
  • L (n) is the number of data retention in the queue at the time when it is decided to perform data reception rate increase control (step S3)
  • L (n) ⁇ BO ( In step SI1, Yes)
  • the data reception rate Ri (n) is increased by the rate increase amount VI with respect to the previous data reception rate Ri (n-1) (step S12).
  • BO is a value less than or equal to the first threshold value B1, and may be a value that changes dynamically as a value indicating the amount of instantaneous change in L (n) as a predetermined value.
  • Rate increase amount VI may be a value that changes according to the value of data reception rate Ri, which may be a predetermined value.
  • step S11 the number of data stays in the queue L (n) is compared with B0.
  • a value obtained by averaging the data retention number in the data reception rate calculation cycle or the minimum value of the data retention rate within the data reception rate calculation cycle may be used.
  • the retention amount management unit 5 compares the data retention amount L (n) with the first threshold value B1 (step S13). If L (n) ⁇ B1 (step SI 3, Yes), the data reception rate Ri (n) is maintained as it was last time (step S14). If L (n) ⁇ B1 (No at step S13), the data reception rate Ri (n) is increased by the rate increase amount V2 with respect to the data transmission rate Ro (n) (step S15).
  • the rate increase V2 may be a value that changes according to the difference between the data reception rate Ri (n-1) and the data transmission rate Ro (n), which is also a predetermined value.
  • step S3 when the data reception rate increase control is performed (step S3), the data smaller than the data retention number target value, the first threshold, and the value B1 are used. Implement data reception rate increase control. Thereby, the data retention amount in the queue can be brought close to the data retention number target value T efficiently.
  • the second and third threshold values are used to determine whether the data reception rate is “0”, “decrease” or “maintain” in the data reception rate reduction control (step S4).
  • Threshold The second threshold B2 is a value that is larger by the second control width H2 with respect to the data retention number target value T as a reference.
  • the second control width H2 may be a value that changes according to the value of the data retention number target value T, which may be a predetermined value.
  • the third threshold value B3 is the maximum value of the data retention amount assumed for one queue, and is a value determined based on a predetermined value or a terminal data reception capability.
  • the maximum value is a value used to stop data transmission from the host device 11 and does not discard data received exceeding the third threshold B3. That is, as long as the buffer held by the data holding unit 2 does not run out, data reception is permitted even if the third threshold value B3 is exceeded.
  • the current data reception rate is maintained when the number of data retention in the queue to be controlled falls below the second threshold B2, and the number of data retention is the first. If the second threshold B2 or more and less than the third threshold B3, the data reception rate If the data retention amount is greater than or equal to the third threshold value B3, the data reception rate is controlled to be “0”.
  • the data reception rate 0 means that data transmission is stopped in the host device 11.
  • FIG. 6 is a diagram illustrating an example of data reception rate reduction control.
  • the retention amount management unit 5 next compares L (n) with the second threshold value B2 (step S23). ). If L (n) is B2 (step S23, Yes), the data reception rate Ri (n) is maintained as it was last time (step S24). If L (n) ⁇ B2 (step S23, No), the data reception rate Ri (n) is decreased by the rate decrease amount V3 with respect to the data transmission rate Ro (n) (step S25).
  • the rate decrease amount V3 may be a value that changes according to the difference between the data reception rate Ri (n ⁇ 1) and the data transmission rate Ro (n), which may be a predetermined value. Further, the calculation result in step S25 is limited to a predetermined minimum value so as not to become smaller than the minimum value.
  • step S3 when the data reception rate reduction control is performed (step S3), the data larger than the data retention number target value, the second threshold, the value B2 and the third threshold, Implement data reception rate reduction control based on value B3. As a result, data retention in the queue Can be effectively brought close to the target value T of data retention.
  • the data reception rate Ri (n) determined by the retention amount management unit 5 is converted into a parameter that can be interpreted by the higher-level device 11 by the reception rate notification unit 6 (step S31).
  • This parameter conversion is converted into two flow control parameters, Interval and Credits, when applied to HSDPA with different forces depending on the system to which the present invention is applied. These parameters mean that the upper device 11 is allowed to transmit data equal to or less than the number of credits during the interval.
  • This parameter conversion may be performed by a calculation method using a table or by a calculation method.
  • the reception rate notifying unit 6 determines whether or not it is necessary to notify the host device 11 of the data reception rate Ri (n), and performs suppression control of the data reception rate notification (step S3 2). .
  • the reception rate notifying unit 6 determines whether or not it is necessary to notify the host device 11 of the data reception rate Ri (n), and performs suppression control of the data reception rate notification (step S3 2). .
  • the determined data reception rate Ri (n) is equal to the previously determined data reception rate Ri (n-1).
  • the call control unit 8 shown in FIG. 1 manages states such as call setup, call release, and handover of the terminal by transmitting and receiving call control information to and from the host device 11.
  • Call controller 8 performs terminal handover
  • the retention amount management unit 5 is notified of the status.
  • the retention amount management unit 5 changes the data retention number target value T shown in FIG. 3 to a predetermined small value, and accordingly, the first threshold value, After resetting the second threshold value, the data reception rate Ri is recalculated according to the operation in Fig.2.
  • the recalculated data reception rate is notified to the host device 11 by the reception rate notification unit 6.
  • the data reception rate can be reduced during handover, and the amount of data transmitted by the host device 11 can be reduced.
  • the stay amount management unit 5 resets the value of the data stay number target value T shown in FIG. 3 by the normal method described above, Accordingly, after resetting the first and second threshold values, the data reception rate Ri is recalculated according to the operation in Fig.2. The recalculated data reception rate is notified to the host device 11 by the reception rate notification unit 6. As a result, the data reception rate can be returned to the normal state after the handover is completed, and the amount of data transmitted by the host device 11 can be returned to the normal state.
  • the value of the third threshold value B3 shown in FIG. 3 is set to “0”.
  • the data reception rate Ri is set to “0” by immediately executing the data reception rate reduction control shown in FIG.
  • the data reception rate is notified by the reception rate notification unit 6 to the higher-level device 11, and data transmission from the higher-level device 11 is stopped during the handover.
  • the value of the third threshold value B3 shown in FIG. 3 is reset by a normal method, and the operation shown in FIG. 2 is executed. Recalculate the data reception rate Ri.
  • the data reception rate is notified by the reception rate notifying unit 6 to the upper apparatus 11, and after the handover is completed, the data transmission from the upper apparatus 11 is resumed.
  • the flow control is effectively performed to achieve the maximum. Limited throughput can be achieved.
  • the radio base station according to the present invention is useful as a radio base station constituting a mobile communication system, and in particular, a radio base station that performs flow control on data received from a host device. Suitable for

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 本発明にかかる無線基地局は、端末の無線回線状況に応じて無線回線へのデータ送信レートを制御するスケジューリング機能を持つ無線基地局であって、たとえば、データ保持部(2)が上位装置(11)からの受信データをバッファに保持し、出力量監視部(4)がバッファから送信されたデータ量を監視し、滞留量管理部(5)が、バッファ内のデータ滞留量が一定の範囲内で維持するようにデータ受信レートを決定する処理(フロー制御)を行い、受信レート通知部(6)がデータ受信レートを上位装置(11)へ通知する。

Description

明 細 書
無線基地局
技術分野
[0001] 本発明は、移動体通信システムを構成する無線基地局に関するものであり、詳細に は、上位装置から受信するデータについてフロー制御を行うことにより高スループット を実現可能な無線基地局に関するものである。
背景技術
[0002] 以下、従来の無線基地局について説明する。従来の無線基地局では、無線回線 の実効伝送速度に基づいて有線回線の目標伝送容量を求め、それを目標として、 中継局に対して許容伝送容量の増加または減少を要求する伝送容量要求信号を送 信している。 目標伝送容量の求め方としては、無線回線の実効伝送速度と有線回線 の実効伝送速度との差分を算出し、たとえば、差分が所定のしきい値 # 1を超えた場 合に伝送容量を RQ # 1だけ増加させ、差分が所定のしきい値 # 2を下回った場合に RQ # 2だけ減少させている(下記特許文献 1参照)。
[0003] 特許文献 1 :特開 2001— 358763号公報 図 2,図 3
発明の開示
発明が解決しょうとする課題
[0004] し力 ながら、上記、従来の無線基地局においては、以下に示すような問題点があ つに。
[0005] 従来技術にぉレ、ては、伝送容量のみに着目した制御を行うため、無線回線の実効 伝送速度(すなわち無線基地局からの出力速度)が有線回線の実効伝送速度 (すな わち無線基地局への入力速度)を上回る場合には、呼のデータが基地局内に全く滞 留していない状態が発生する。特に、 HSDPA (High
Speed Downlink Packet Access)のように無線基地局がデータ送信のスケジユーリン グ機能を持つシステムでは、各端末に対して一度に送信可能なデータ数が、無線基 地局内に滞留している各端末向けのデータ数を上限として制限され、上限が制限さ れた状態でスケジューリングが行われるため、効率的なスケジューリングができず、シ ステム全体のスループットが低下する、という問題があった。
[0006] たとえば、無線基地局の上位装置には送信データが滞留しているが、無線回線状 態の良い端末向けのデータが無線基地局内に存在せず、無線回線状態の悪い端 末向けのデータのみが無線基地局内に存在する、という状況が発生する。そのため 、無線回線状態の悪い端末に無線資源を割り当てざるを得なくなり、システム全体の スループットが低下する。
[0007] さらには、上記上限が制限された状態でスケジューリングを行った場合には、無線 回線の実効伝送速度を測定しても、本来の効率的なスケジューリングを行ったときの 伝送速度とは異なっているため、 目標伝送容量も正確に算出できなレ、、という悪循環 が生じる問題があった。
[0008] 本発明は、上記に鑑みてなされたものであって、フロー制御を効果的に行うことによ り、最大限のスループットを実現可能な無線基地局を提供することを目的としている。 課題を解決するための手段
[0009] 上述した課題を解決し、 目的を達成するために、本発明に力かる無線基地局にあ つては、端末の無線回線状況に応じて無線回線へのデータ送信レートを制御するス ケジユーリング機能を持つ無線基地局であって、たとえば、上位装置からの受信デー タをバッファに保持するデータ保持手段と、前記バッファから送信されたデータ量を 監視する出力量監視手段と、前記バッファ内のデータ滞留量が一定の範囲内で維 持するように、上位装置から送られてくるデータの受信レート(データ受信レート)を決 定する処理 (フロー制御)を行う滞留量管理手段と、前記データ受信レートを上位装 置へ通知する受信レート通知手段と、を備えることを特徴とする。
[0010] この発明によれば、滞留量管理手段が、たとえば、出力量監視手段が監視すること により得られるデータ送信レートと、上位装置へ通知済みのデータ受信レートと、を比 較し、その結果に基づいてフロー制御を行うこととした。
発明の効果
[0011] 本発明にかかる無線基地局は、フロー制御を効果的に行うこととしたため、すなわ ち、滞留量管理手段が、出力量監視手段が監視することにより得られるデータ送信レ ートと、上位装置へ通知済みのデータ受信レートと、を比較し、その結果に基づいて フロー制御を行うこととしたため、最大限のスループットを実現することができる。 図面の簡単な説明
[0012] [図 1]図 1は、本発明にかかる無線基地局の一構成例を示す図である。
[図 2]図 2は、滞留量管理部 5の動作を示す図である。
[図 3]図 3は、データ受信レート増加制御とデータ受信レート減少制御を用いたデー タ受信レートの決定方法を示す図である。
[図 4]図 4は、データ滞留数目標値テーブルを示す図である。
[図 5]図 5は、データ受信レート増加制御の一例を示す図である。
[図 6]図 6は、データ受信レート減少制御の一例を示す図である。
[図 7]図 7は、受信レート通知部の動作を示す図である。
符号の説明
[0013] 1 無線基地局
2 データ保持部
3-1, 3-2, 3-m キュー
4 出力量監視部
5 滞留量管理部
6 受信レート通知部
7 スケジューラ部
8 呼制御部
9 タイマ
10 データ送受信部
11 上位装置
発明を実施するための最良の形態
[0014] 以下に、本発明にかかる無線基地局の実施例を図面に基づいて詳細に説明する。
なお、この実施例によりこの発明が限定されるものではない。
[0015] 図 1は、本発明にかかる無線基地局の一構成例を示す図である。本実施の形態の 無線基地局 1は、受信データを保持するデータ保持部 2を持ち、このデータ保持部 2 は、複数のキュー 3 (3—1, 3-2,■· - , 3— m)を保有する。また、無線基地局 1は、キュ 一 3から出力するデータ数をキュー毎にカウントする出力量監視部 4と、キュー 3毎の データ滞留数および出力量監視部 4でカウントされた出力データ数を周期的に参照 し、データ受信レートを算出する滞留量管理部 5と、滞留量管理部 5で算出されたデ ータ受信レートをデータ送受信部 10を介して上位装置 11へ通知する受信レート通 知部 6と、滞留量管理部 5に対して端末のハンドオーバ開始および完了を通知する 呼制御部 8と、を備えている。さらに、スケジューラ部 7は、端末の無線回線状態に応 じてデータ送信のスケジューリングを行レ、、キュー 3からデータを取り出して無線回線 へ出力する。
[0016] ここで、上記の構成を HSDPA (High Speed Downlink Packet Access)方式の無泉 基地局に適用した場合の動作を一例として説明する。
[0017] 上位装置 11から送信されたデータは、無線基地局 1のデータ送受信部 10で受信 され、データ保持部 2内の各キュー 3に通信単位毎に分類して保持される。ここに保 持されたデータについては、スケジューラ部 7が、端末毎の無線回線状態、データの 優先度、公平性などを考慮してスケジューリングを行い、無線回線へと送信する。
[0018] 上記のようにスケジューラ部 7がデータ送信のスケジューリングを行うためには、キュ 一 3にデータが保持されていなければならないため、フロー制御により上位装置 11か らデータを逐次受信する必要がある。以下、このフロー制御動作について説明する。
[0019] スケジューラ部 7がキュー 3に保持されたデータを出力すると、出力量監視部 4では 、各キュー 3に対応したカウンタをインクリメントする。なお、ここでは、便宜上、出力量 監視部 4とスケジューラ部 7を独立なものとして説明している力 上記カウンタのインク リメントは、スケジューラ部 7が実施してもよい。
[0020] 図 2は、滞留量管理部 5の動作を示す図である。滞留量管理部 5は、たとえば、タイ マ 9によるある一定の周期、または端末のデータ受信能力に応じた周期、で動作し、 データ受信レートの算出処理を行う。端末のデータ受信能力とは、端末が受信可能 な最大受信レートに相当するものである。ここでは、簡単のため、 1つのキュー、たと えば、キュー 3— 1を用いた動作を一例として説明する。
[0021] まず、タイマ 9がタイムアウトすると、滞留量管理部 5では、出力量監視部 4のカウン タを参照し、単位時間あたりにキュー 3— 1から出力されたデータ数として、第 n回目の データ送信レート Ro (n)を算出する (ステップ SI)。データ送信レート Ro (n)は、過去 の算出結果を含めて平均化した値として算出してもよい。
[0022] つぎに、滞留量管理部 5では、前回算出したデータ受信レート Ri (n— 1)とデータ送 信レート Ro (n)とを比較し (ステップ S2)、 Ro (n)の方が大きければ (ステップ S2, Ye s)、後述するデータ受信レート増加制御 (ステップ S3)を行レ、、 Ro (n)の方が小さけ れば (ステップ S2, No)、データ受信レート減少制御 (ステップ S4)を行う。ここで、デ ータ受信レート Ri (n— 1)は、前回のデータ受信レート算出時に上位装置 11へ通知し た値である。上位装置 11では、通知されたデータ受信レート以下のレートでデータ送 信を行う。
[0023] さらに、データ受信レート増加制御の実施後は、データ受信レートが上位装置 11か らの受信回線帯域を越えないように制限を行う(ステップ S5)。これにより、フロー制御 よりも下位のレイヤにおいて発生するデータ消失や輻輳などの問題を回避できるよう になる。
[0024] また、図 3は、データ受信レート増加制御 (ステップ S3)とデータ受信レート減少制 御 (ステップ S4)を用いたデータ受信レートの決定方法を示す図である。図 3におい て、横軸はデータ受信レート増加制御またはデータ受信レート減少制御のどちらを実 施するかを示している。縦軸は、キュー 3-1のデータ滞留数を示している。上記のよう にデータ受信レート増加制御を行うか、データ受信レート減少制御を行うか、を決定 した後、滞留量管理部 5では、キュー 3— 1のデータ滞留数を参照し、データ滞留数目 標値 Tに近付くようにデータ受信レートを決定する。
[0025] データ滞留数目標値 Tの決定方法としては、たとえば、通信単位に割り当てたキュ 一 3 (3—1 3— m)の数により決定し、無線基地局 1に接続される呼の数が多くなるほ どデータ滞留数目標値は動的に小さくなつてレ、くようにする。たとえば、データ保持 部 2が保有するバッファ総数を Aとし、その割合 K%についてデータ滞留することを目 標とした場合において、 m個のキューが設定されたとすると、 1つのキュー当りのデー タ滞留目標数 Tは、次式(1)により決定される。バッファ総数 Aと、その割合 K%は、 予め定められる定数である。
T=AK/I00m ■·■(!) [0026] なお、上記では、設定キュー数 mの値により、データ滞留目標数 Tを動的に変化さ せる場合を示している力 設定キュー数 mの値を予め定めた最大値として設定してお くことも可能である。この場合、データ滞留目標数 Tは、予め定められた定数となる。
[0027] また、データ滞留数目標値 Tのその他の決定方法としては、たとえば、端末のデー タ受信能力あるいは最新のデータ送信レート Ro (n)を用いる方法がある。たとえば、 端末が受信可能な最大受信レート Wに応じてデータ滞留数目標値 Tを決定する場 合、滞留量管理部 5では、図 4に示すデータ滞留数目標値テーブルを予め用意して おく(受信能力が低い端末ほどデータ滞留目標値を小さくする)。そして、最大受信レ ート Wをインデックスとして、データ滞留目標値 Tを求める。最新のデータ送信レート Ro (n)を用いる場合も同様に、 Ro (n)をインデックスとしたデータ滞留数目標値テ一 ブルを用意する(データ送信レートが低い端末ほどデータ滞留目標値を小さくする)
[0028] つづいて、図 3に示した第一しきい値 B1について説明する。第一しきい値 B1は、 データ受信レート増加制御 (ステップ S3)において、データ受信レートを「増加」また は「現状維持」のどちらかに決定するためのしきい値であり、データ滞留数目標値 Tを 基準として、第一制御幅 HIだけ小さい値である。なお、第一制御幅 HIは、予め定め た値としてもよぐデータ滞留数目標値 Tの値に応じて変化する値でもよい。データ受 信レート増加制御では、制御対象となるキューでのデータ滞留数が第一しきい値 B1 を下回った場合にデータ受信レートを増加させ、データ滞留数が第一しきい値 B1以 上であった場合には、現状のデータ受信レートを維持するように制御する。
[0029] 図 5は、データ受信レート増加制御の一例を示す図である。滞留量管理部 5では、 データ受信レート増加制御を行うことを決定した時点(ステップ S3)のキュー内のデー タ滞留数を L (n)とした場合、 L (n)≤ BOであれば (ステップ SI 1, Yes)、データ受信 レート Ri (n)を前回のデータ受信レート Ri (n— 1)に対してレート増加量 VIだけ増加 させる(ステップ S12)。 BOは第一しきい値 B1以下の値であり、予め定めた値としても よぐ L (n)の瞬時変化量を示す値として動的に変化する値としてもよい。レート増加 量 VIは、予め定めた値としてもよぐデータ受信レート Riの値に応じて変化する値で もよレ、。また、ステップ S 11では、キュー内のデータ滞留数 L (n)と B0の比較を行って いる力 データ滞留数 L (n)の代わりにデータ滞留数をデータ受信レート算出の周期 で平均化した値、あるいはデータ受信レート算出の周期内でのデータ滞留数の最小 値を用いてもよい。
[0030] 一方、 L (n) >B0の場合 (ステップ Sl l, No)、滞留量管理部 5では、データ滞留量 L (n)と第一しきい値 B1とを比較し (ステップ S13)、 L (n)≥B1であれば (ステップ SI 3, Yes)、データ受信レート Ri (n)を前回のまま維持する(ステップ S 14)。また、 L (n ) < B1であれば(ステップ S13, No)、データ受信レート Ri (n)をデータ送信レート Ro (n)に対してレート増加量 V2だけ増加させる(ステップ S15)。レート増加量 V2は、予 め定めた値としてもよぐデータ受信レート Ri (n— 1)とデータ送信レート Ro (n)の差分 に応じて変化する値でもよレ、。
[0031] 以上のように、本実施の形態では、データ受信レート増加制御を行う場合 (ステップ S3)、データ滞留数目標値よりも小さレ、第一しきレ、値 B1に基づレ、たデータ受信レー ト増加制御を実施する。これにより、キュー内のデータ滞留量をデータ滞留数目標値 Tに効率的に近付けることができる。
[0032] つづいて、図 3に示した第二しきい値 B2および第三しきい値について説明する。第 二しきい値および第三しきい値は、データ受信レート減少制御 (ステップ S4)におい て、データ受信レートを「0」または「減少」または「現状維持」のレ、ずれかに決定する ためのしきい値である。第二しきい値 B2は、データ滞留数目標値 Tを基準として、第 二制御幅 H2だけ大きい値である。第二制御幅 H2は、予め定めた値としてもよぐデ ータ滞留数目標値 Tの値に応じて変化する値でもよい。また、第三しきい値 B3は、 1 つのキューで想定されるデータ滞留量の最大値であり、予め定められた値、または端 末のデータ受信能力に基づいて決定する値である。ただし、最大値とは、上位装置 1 1からのデータ送信を停止するために用いる値であり、第三しきい値 B3を超えて受信 されたデータを破棄するものではなレ、。すなわち、データ保持部 2が保有するバッフ ァが枯渴しない限りは、第三しきい値 B3を超えていてもデータ受信は許容される。
[0033] データ受信レート減少制御 (ステップ S4)では、制御対象となるキューのデータ滞 留数が第二しきい値 B2を下回った場合に現状のデータ受信レートを維持し、データ 滞留数が第二しきい値 B2以上かつ第三しきい値 B3未満であれば、データ受信レー トを減少させ、データ滞留量が第三しきい値 B3以上であった場合には、データ受信 レートを「0」とするように制御する。ここで、データ受信レート =0は、上位装置 11にお いてデータ送信停止を意味する。
[0034] 図 6は、データ受信レート減少制御の一例を示す図である。滞留量管理部 5では、 データ受信レート減少制御を行うことを決定した時点(ステップ S4)のキュー内のデー タ滞留数を L (n)とした場合、まず、 L (n)と第三しきい値 B3との比較を行う(ステップ S21)。たとえば、 L (n)≥B3であれば(ステップ S21 , Yes)、滞留量管理部 5では、 上位装置 11からのデータ送信を直ちに停止するため、データ受信レート Ri (n) =0と する(ステップ S 22)。
[0035] 一方、 L (n) < B3であれば(ステップ S21 , No)、滞留量管理部 5では、つぎに、 L ( n)と第二しきい値 B2との比較を行う(ステップ S23)。そして、 L (n)く B2であれば (ス テツプ S23, Yes)、データ受信レート Ri (n)を前回のまま維持する(ステップ S24)。 また、 L (n)≥B2であれば(ステップ S23, No)、データ受信レート Ri (n)をデータ送 信レート Ro (n)に対してレート減少量 V3だけ減少させる(ステップ S25)。レート減少 量 V3は、予め定めた値としてもよぐデータ受信レート Ri (n— 1)とデータ送信レート R o (n)の差分に応じて変化する値でもよい。また、ステップ S25における算出結果は、 予め定めた最小値で制限を行い、その最小値よりも小さくなることがないようにする。
[0036] また、上記で示したデータ受信レート減少制御では、データ受信レート Ri (n) =0を 決定する際においても、滞留量管理部 5が周期的に動作することで実施していたが、 これに限らず、上位装置 11からのデータ受信毎に滞留量管理部 5がキュー内のデー タ滞留量と第三しきい値とを比較することで実施することとしてもよい。すなわち、デ ータ滞留量が第三しきい値に達した場合には、直ちにデータ受信レート Ri (n) =0を 上位装置 11へ通知できるようにする。この場合には、図 6に示したステップ S21およ びステップ S22は、データ受信毎に行われることとなり、周期動作するデータ減少制 御においては省略可能となる。
[0037] 以上のように、本実施の形態では、データ受信レート減少制御を行う場合 (ステップ S3)、データ滞留数目標値よりも大きレ、第二しきレ、値 B2および第三しきレ、値 B3に基 づいたデータ受信レート減少制御を実施する。これにより、キュー内のデータ滞留量 をデータ滞留数目標値 Tに効率的に近付けることができる。
[0038] つづいて、図 7を用いて受信レート通知部 6の動作を説明する。まず、滞留量管理 部 5において決定されたデータ受信レート Ri (n)は、受信レート通知部 6が、上位装 置 11が解釈できるパラメータに変換する(ステップ S31)。このパラメータ変換は、本 発明を適用するシステムにより異なる力 HSDPAに適用する場合には、 Intervalと Creditsの 2つのフロー制御パラメータに変換することになる。これらのパラメータは、 Intervalの期間中に Credits数以下のデータ送信を上位装置 11に対して許容する ことを意味する。このパラメータ変換は、テーブルにより変換する方法を適用してもよ ぐ計算により求める方法を適用してもよい。
[0039] さらに、受信レート通知部 6では、データ受信レート Ri (n)を上位装置 11へ通知す る必要があるかどうかを判定し、データ受信レート通知の抑制制御を行う(ステップ S3 2)。すなわち、上位装置 11へ既に通知済みの値は、再度通知する必要がないため 、決定されたデータ受信レート Ri (n)が前回決定したデータ受信レート Ri (n— 1)に等 しい場合には、通知を行わないようにする。ただし、 Ri (n-l)力 S「0」であった場合に は、 自律的に再度同じデータ受信レート Ri (n) =0を上位装置 11へ通知することを 許容するようにする。
[0040] なお、データ受信レート通知の抑制制御における判定では、データ受信レートを用 いて判定するものとして説明した力 データ受信レートを上記のようにパラメータ変換 することで誤差が生じる場合には、ノ メータ変換した後の値を用いて判定を行って あよい。
[0041] 以上のように、本実施の形態では、データ受信レート抑制制御を行うことにより、無 駄なデータ受信レート通知を行わずに済み、フロー制御の処理負荷軽減およびデー タ受信レート通知を行う通信回線の帯域有効利用を実現できる。さらに、データ受信 レート Ri (n— 1) =0となるデータ受信レート通知が消失した場合であっても、上位装 置からのデータ送信を確実に停止することができるようになる。
[0042] つづいて、端末がハンドオーバを行う場合の動作について説明する。図 1に示す呼 制御部 8は、上位装置 11と呼制御情報の送受信を行うことで端末の呼設定、呼解放 、およびハンドオーバなどの状態を管理している。呼制御部 8が端末のハンドオーバ 開始および完了の情報を上位装置 11から受信すると、滞留量管理部 5に対してその 状態を通知する。滞留量管理部 5では、ハンドオーバが開始されたことを通知される と、図 3に示したデータ滞留数目標値 Tの値を予め定めた小さな値に変更し、それに 伴い第一しきい値、第二しきい値を再設定した後、データ受信レート Riを図 2の動作 に従い再計算する。再計算されたデータ受信レートは、受信レート通知部 6が上位装 置 11へ通知する。これにより、ハンドオーバ中においてデータ受信レートを小さくし、 上位装置 11が送信するデータ量を少なくすることができる。
[0043] さらに、滞留量管理部 5では、ハンドオーバの完了を呼制御部 8より通知されると、 図 3に示したデータ滞留数目標値 Tの値を前述した通常の方法により再設定し、それ に伴い第一しきい値、第二しきい値も再設定した後、データ受信レート Riを図 2の動 作に従い再計算する。再計算されたデータ受信レートは、受信レート通知部 6が上位 装置 11へ通知する。これにより、ハンドオーバ完了後においてはデータ受信レートを 通常の状態に戻し、上位装置 11が送信するデータ量を通常の状態に戻すことがで きる。
[0044] または、滞留量管理部 5では、呼制御部 8よりハンドオーバが開始されたことを通知 されると、図 3に示した第三しきい値 B3の値を「0」に設定し、図 6に示したデータ受信 レート減少制御を直ちに実行することで、データ受信レート Riを「0」とする。データ受 信レートは、受信レート通知部 6が上位装置 11へ通知し、ハンドオーバ中において は上位装置 11からのデータ送信を停止する。呼制御部 8よりハンドオーバが完了し たことを通知されると、図 3に示した第三しきい値 B3の値を通常の方法により再設定 し、図 2に示した動作を実行することで、データ受信レート Riを再計算する。データ受 信レートは、受信レート通知部 6が上位装置 11へ通知し、ハンドオーバ完了後にお レ、ては上位装置 11からのデータ送信が再開される。
[0045] 以上のように、端末のハンドオーバ中においては、上位装置 11からのデータ送信 量を少なぐまたは停止することにより、ハンドオーバ中の無線基地局 1におけるデー タ消失を最小限に抑えることができる。これにより、上位レイヤにおけるデータ再送が 少なくなり、ハンドオーバ時のスループットを向上させることができる。
[0046] このように、本実施の形態においては、フロー制御を効果的に行うことにより、最大 限のスループットを実現することができる。
[0047] なお、本実施の形態では、スケジューリング機能を持つ無線基地局において、効果 的なフロー制御を行う実施の形態について説明したが、本実施の形態の特徴的な動 作にっレ、ては、データ受信レートを決定することでフロー制御を行う通信装置全般に 適用することが可能である。たとえば、データフローが無線基地局から上位装置に対 して行われる場合には、データを受信する上位装置側にてフロー制御が実行される ことになるため、上位装置に対して本発明のフロー制御を適用する。
産業上の利用可能性
[0048] 以上のように、本発明に力かる無線基地局は、移動体通信システムを構成する無 線基地局として有用であり、特に、上位装置から受信するデータについてフロー制御 を行う無線基地局に適している。

Claims

請求の範囲
[1] 端末の無線回線状況に応じて無線回線へのデータ送信レートを制御するスケジュ 一リング機能を持つ無線基地局において、
上位装置からの受信データをバッファに保持するデータ保持手段と、
前記バッファから送信されたデータ量を監視する出力量監視手段と、
前記バッファ内のデータ滞留量が一定の範囲内で維持するように、上位装置から 送られてくるデータの受信レート(データ受信レート)を決定する処理 (フロー制御)を 行う滞留量管理手段と、
前記データ受信レートを上位装置へ通知する受信レート通知手段と、
を備えることを特徴とする無線基地局。
[2] 前記滞留量管理手段は、
前記出力量監視手段が監視することにより得られるデータ送信レートと、前記上位 装置へ通知済みのデータ受信レートと、を比較し、
データ送信レートがデータ受信レートよりも大きい場合にデータ受信レート増加制 御を行い、データ送信レートがデータ受信レートよりも小さい場合にデータ受信レート 減少制御を行うことを特徴とする請求項 1に記載の無線基地局。
[3] 前記滞留量管理手段は、
前記バッファ内のデータ滞留数に一定の目標値を設定し、
前記データ受信レート増加制御および前記データ受信レート減少制御では、前記 目標値に近付くようにデータ受信レートを決定することを特徴とする請求項 2に記載 の無線基地局。
[4] 前記滞留量管理手段は、
前記目標値よりも小さい第一のしきい値を設け、
前記データ受信レート増加制御を行う場合、前記バッファ内のデータ滞留量と前記 第一のしきい値とを比較し、
データ滞留量が第一のしきい値に満たない場合にはデータ受信レートを増加させ る制御を行レ、、また、データ滞留量が第一のしきい値に達している場合にはデータ受 信レートを維持させるための制御を行うことを特徴とする請求項 3に記載の無線基地 局。
[5] 前記滞留量管理手段は、
前記目標値よりも大きい第二のしきい値、および当該第二のしきい値よりもさらに大 きい第三のしきい値、をそれぞれ設け、
前記データ受信レート減少制御を行う場合、前記バッファ内のデータ滞留量と前記 第二のしきい値および前記第三のしきい値とを比較し、
データ滞留量が第三のしきレ、値に達してレ、る場合には上位装置からのデータ送信 を停止させる制御を行い、データ滞留量が第二のしきい値に達しかつ第三のしきレヽ 値に満たない場合にはデータ受信レートを減少させる制御を行レ、、また、データ滞留 量が第二のしきい値に満たない場合にはデータ受信レートを維持させるための制御 を行うことを特徴とする請求項 3に記載の無線基地局。
[6] 前記滞留量管理手段は、
通信単位に割り当てたキューの総数に基づいて前記目標値を決定することとし、呼 の数が多くなるほど前記目標値を小さくすることを特徴とする請求項 3に記載の無線 基地局。
[7] 前記滞留量管理手段は、
端末のデータ受信能力に応じて前記目標値を決定することとし、受信能力が低い 端末ほど前記目標値を小さくすることを特徴とする請求項 3に記載の無線基地局。
[8] 前記滞留量管理手段は、
端末のデータ送信レートに応じて前記目標値を決定することとし、データ送信レート が低い端末ほど前記目標値を小さくすることを特徴とする請求項 3に記載の無線基 地局。
[9] 前記滞留量管理手段は、
前記データ受信レート増加制御を行う場合、その最大値を受信回線帯域とすること を特徴とする請求項 2に記載の無線基地局。
[10] 前記受信レート通知手段は、
前記滞留量管理部にて決定された新たなデータ受信レートが、上位装置に対して 通知済みの前回のデータ受信レートと等しい場合、新たに決定したデータ受信レート を上位装置に対して通信しないことを特徴する請求項 1に記載の無線基地局。 前記滞留量管理手段は、
特定の端末がハンドオーバの開始した場合に、前記データ受信レートを現在よりも 少なくするように、または、前記上位装置によるデータ送信を停止するように、制御し 前記ハンドオーバが完了した場合に、データ受信レートを元に戻す制御を行うこと を特徴とする請求項 1に記載の無線基地局。
PCT/JP2004/009734 2004-07-08 2004-07-08 無線基地局 WO2006006208A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/009734 WO2006006208A1 (ja) 2004-07-08 2004-07-08 無線基地局
JP2006527649A JPWO2006006208A1 (ja) 2004-07-08 2004-07-08 無線基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009734 WO2006006208A1 (ja) 2004-07-08 2004-07-08 無線基地局

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/430,968 Continuation US7329632B2 (en) 2004-07-08 2006-05-10 Thermal transfer ink, thermal transfer sheet, and thermal transfer recording method using the same

Publications (1)

Publication Number Publication Date
WO2006006208A1 true WO2006006208A1 (ja) 2006-01-19

Family

ID=35783574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009734 WO2006006208A1 (ja) 2004-07-08 2004-07-08 無線基地局

Country Status (2)

Country Link
JP (1) JPWO2006006208A1 (ja)
WO (1) WO2006006208A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053851A (ja) * 2006-08-22 2008-03-06 Ntt Docomo Inc データ流入量制御装置及びデータ流入量制御方法
JP2008099055A (ja) * 2006-10-13 2008-04-24 Advanced Telecommunication Research Institute International 負荷を制御可能な通信装置およびそれを備えた通信ネットワーク
KR20100101471A (ko) * 2009-03-09 2010-09-17 엘지이노텍 주식회사 데이터 송수신장치 및 그 제어방법
JP2011523528A (ja) * 2008-05-09 2011-08-11 クゥアルコム・インコーポレイテッド 強化されたバックホール・フロー制御用技術
WO2011142328A1 (ja) * 2010-05-13 2011-11-17 日本電気株式会社 ネットワーク中継装置、QoS制御方法及びQoS制御プログラムを記録する記録媒体
JP2014241469A (ja) * 2013-06-11 2014-12-25 株式会社Nttドコモ 無線基地局装置およびバッファ制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106569A (ja) * 1998-09-29 2000-04-11 Nec Shizuoka Ltd Lan間接続装置
JP2001024706A (ja) * 1999-07-09 2001-01-26 Nec Corp パケット転送方法及びシステム
JP2001358763A (ja) * 2000-06-13 2001-12-26 Nec Corp 伝送容量制御方法および移動通信システム
JP2002077987A (ja) * 2000-08-31 2002-03-15 Ntt Docomo Inc 移動体通信システムおよびその無線基地局への信号量流入制御方法
JP2002171572A (ja) * 2000-12-01 2002-06-14 Hitachi Ltd 無線基地局、パケット中継装置並びに無線通信システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542481B2 (en) * 1998-06-01 2003-04-01 Tantivy Communications, Inc. Dynamic bandwidth allocation for multiple access communication using session queues
US6754189B1 (en) * 1999-04-08 2004-06-22 Lucent Technologies Inc. Method of queue length based burst management in wireless communication systems
US7237007B2 (en) * 2001-12-05 2007-06-26 Qualcomm Incorporated Method and system for flow control between a base station controller and a base transceiver station
TW587884U (en) * 2002-05-10 2004-05-11 Interdigital Tech Corp Node B which facilitates selective purging of its buffers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106569A (ja) * 1998-09-29 2000-04-11 Nec Shizuoka Ltd Lan間接続装置
JP2001024706A (ja) * 1999-07-09 2001-01-26 Nec Corp パケット転送方法及びシステム
JP2001358763A (ja) * 2000-06-13 2001-12-26 Nec Corp 伝送容量制御方法および移動通信システム
JP2002077987A (ja) * 2000-08-31 2002-03-15 Ntt Docomo Inc 移動体通信システムおよびその無線基地局への信号量流入制御方法
JP2002171572A (ja) * 2000-12-01 2002-06-14 Hitachi Ltd 無線基地局、パケット中継装置並びに無線通信システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053851A (ja) * 2006-08-22 2008-03-06 Ntt Docomo Inc データ流入量制御装置及びデータ流入量制御方法
JP2008099055A (ja) * 2006-10-13 2008-04-24 Advanced Telecommunication Research Institute International 負荷を制御可能な通信装置およびそれを備えた通信ネットワーク
JP2011523528A (ja) * 2008-05-09 2011-08-11 クゥアルコム・インコーポレイテッド 強化されたバックホール・フロー制御用技術
US8325687B2 (en) 2008-05-09 2012-12-04 Qualcomm Incorporated Techniques for enhanced backhaul flow control
KR20100101471A (ko) * 2009-03-09 2010-09-17 엘지이노텍 주식회사 데이터 송수신장치 및 그 제어방법
KR101628358B1 (ko) 2009-03-09 2016-06-08 엘지이노텍 주식회사 데이터 송수신장치 및 그 제어방법
WO2011142328A1 (ja) * 2010-05-13 2011-11-17 日本電気株式会社 ネットワーク中継装置、QoS制御方法及びQoS制御プログラムを記録する記録媒体
US9019831B2 (en) 2010-05-13 2015-04-28 Nec Corporation Network repeater, QoS control method and storage medium storing QoS control program
JP2014241469A (ja) * 2013-06-11 2014-12-25 株式会社Nttドコモ 無線基地局装置およびバッファ制御方法

Also Published As

Publication number Publication date
JPWO2006006208A1 (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
EP1869940B1 (en) Method for reverse link congestion overload control in wireless high speed data applications
JP5166420B2 (ja) 無線機器におけるリソース管理のための方法及び装置
EP1836866B1 (en) Uplink congestion detection and control between nodes in a radio access network
RU2474968C2 (ru) Планирование с учетом приоритетов и управление доступом в сети связи
US9414255B2 (en) Packet flow control in a wireless communications network based on an indication contained in a packet
USRE43593E1 (en) Base station, radio resource control equipment, mobile station, communication system, and communication method
RU2486699C2 (ru) Мобильная станция, базовая станция радиосвязи, способ управления связью и система мобильной связи
EP2124499B1 (en) Method and apparatus for performing buffer status reporting (BSR)
US20110222406A1 (en) Method And Device For Enabling Indication Of Congestion In A Telecommunications Network
EP2080326B1 (en) System and method of load dependent rate control
JP4643650B2 (ja) 無線アクセスネットワーク内での輻輳制御
KR101740929B1 (ko) 분산 부하제어를 수행하는 이동통신 시스템 및 이동통신 시스템의 분산 부하제어 방법
US9066366B2 (en) Method and a system for down link control in a cellular telephony system
US20080248807A1 (en) Method and apparatus for controlling a call in a communication system
WO2008022588A1 (fr) Procédé permettant de réguler le flux pour une interface iub, appareil et station de base
EP1326463A1 (en) Method and apparatus for packet transmission scheduling by performing load control functionality
WO2006006208A1 (ja) 無線基地局
WO2009157826A1 (en) Congestion control in a wireless communication network
US8873393B2 (en) Method for operating a wireless network and a wireless network
JP2009514261A (ja) 通信システム、通信ユニット、およびその内部における能力温存方法
JP2007096776A (ja) 通信装置
JP4094626B2 (ja) 無線制御装置および無線制御方法
US8045516B2 (en) Base station, mobile communication system, and mobile communication control method
JPH08111886A (ja) 発呼及び位置登録規制方法
EP4176575A1 (en) Latency control for a communication network

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11430968

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11430968

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006527649

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase