WO2006005253A1 - Ferrite magnetique poreuse et son elaboration - Google Patents

Ferrite magnetique poreuse et son elaboration Download PDF

Info

Publication number
WO2006005253A1
WO2006005253A1 PCT/CN2005/001004 CN2005001004W WO2006005253A1 WO 2006005253 A1 WO2006005253 A1 WO 2006005253A1 CN 2005001004 W CN2005001004 W CN 2005001004W WO 2006005253 A1 WO2006005253 A1 WO 2006005253A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
ferrite
mixed
porous magnetic
magnetic ferrite
Prior art date
Application number
PCT/CN2005/001004
Other languages
English (en)
French (fr)
Inventor
Xue Duan
Feng Li
Qiaozhen Yang
Original Assignee
Beijing University Of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University Of Chemical Technology filed Critical Beijing University Of Chemical Technology
Publication of WO2006005253A1 publication Critical patent/WO2006005253A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites

Definitions

  • the invention relates to a porous magnetic ferrite and a preparation method thereof. Background technique
  • Porous materials due to their porosity and pore size uniformity, large specific surface area and high temperature resistance, weather resistance and corrosion resistance, in high selectivity catalysts and catalyst carriers, high efficiency adsorbents, high performance gas chromatography column materials High-strength lightweight structural materials, special battery materials, new composite materials and other fields have potential application prospects. It has been suggested that this material can be used for the study of material diffusion and adsorption in a limited space, even as an embedding material for drug release, as a carrier for enzymes or proteins, and for the treatment of radioactive waste.
  • Ferrite is a new type of non-metallic magnetic material widely used in high-frequency or low-frequency fields such as communication broadcasting, radar navigation, space navigation, medical biology, etc. Since the systematic research and production began in the 1940s, Extremely rapid development and wide range of applications. Ferrite is a composite oxide composed of iron and one or more other metals. For example, the chemical formula of spinel ferrite is MFe 2 0 4 , where M is a ionic radius similar to that of divalent iron ions. Valence metal ions (Mn 2+ , Zn 2 ⁇ Cu 2 ⁇ Ni 2 ⁇ Mg 2+ , Co 2+ , etc.), so different types of two-component ferrite can be formed depending on the type and amount of alternative metals. Body or multicomponent ferrite.
  • the layered precursor method is obtained by first preparing a single compound having a uniform uniformity, a chemical composition and a structure which is microscopically variable and highly active, as a calcination precursor, and then calcined at a high temperature to obtain iron having good magnetic properties and small particle size distribution. Oxygen.
  • TEOS tetraethyl orthosilicate
  • An object of the present invention is to provide a porous magnetic ferrite, and another object of the present invention is to provide a method for producing the porous ferrite.
  • the chemical formula of the ferrite provided by the present invention is:
  • the divalent metal ion having an ionic radius similar to that of the divalent iron ion may be one or more of Mn 2+ , Zn 2 ⁇ Cu 2 ⁇ Ni 2+ , Mg 2+ or Co 2+ ; ⁇ ⁇ 2+ Zn 2+ ; ⁇ ⁇ 3+ is a trivalent metal ion having an ionic radius close to that of Fe 3+ , preferably one or more of Al 3+ , Cr 3+ or Mn 3+ ;
  • the mesopores of the ferrite have a maximum pore diameter of 2. 0-40 nm, and the most porous pores of the micropores are
  • the specific preparation method is:
  • M 2+ is any one or more of Mn 2+ , Mg 2+ , Fe 2 ⁇ Co 2+ , Ni 2+ , Cu 2+ or Zn 2+ ;
  • the acid ions in the salt mixed solution are CO, N0 3 _, C l-, OH -, SO/-, P0 4 3 -, C 6 H 6 (C00-) 2 Any one or more of the following;
  • the soluble inorganic sodium salt is any one of sodium carbonate, sodium sulphate, sodium nitrate or sodium chloride;
  • Washing is first treated with deionized by N 2 ; water washing until the washing liquid is neutral, and then washed with 0-10 ° C ethanol for 2-4 times;
  • step D The mixture obtained in step C with a concentration of the alkaline solution treatment 5- 15M 24-168h at room temperature and then washed with deionized water to neutrality to remove the templating agent ⁇ ⁇ 0 or M T2 0 3, to obtain a porous M 2+ x M T 2 V x Fe 2 0 4 or M 2 3+ x Fe 3 »0 4 spinel ferrite.
  • the alkali solution used is NaOH or KOH.
  • the specific surface area, the pore size and the pore distribution of the Quantachrome (Conta) fully automatic surface area and porosity analyzer AUT0S0RB-1 were measured.
  • the most suitable pore size of the mesopores was 2. 0- Onm, ⁇ The most suitable pore size is 0. 30nm-l. 9 Onm, the average diameter is 3-8 Onm, the total pore volume is 0. 005-0. 90cmVg, the specific surface area is 5-350m 2 /g, and the particle size is 5-150nm. ;
  • the specific saturation magnetization of the sample was measured by a JDM-13 vibrating sample magnetometer, and the Ni powder was scaled.
  • the maximum magnetic field was 15000 0e, and the specific saturation magnetization was measured to be 1-90 emu/g.
  • the invention has the following remarkable effects: 1.
  • the porous ferrite prepared by the layered ferrite precursor method has the characteristics of porosity, small particle size, uniformity, large specific surface area and excellent magnetic properties; 2.
  • the preparation method There is no need to carry out the mixing process on the raw materials, which simplifies the production process, shortens the production cycle, saves equipment investment, and greatly saves production energy consumption. detailed description
  • Ni (N0 3 ) 2 , Zn (N0 3 ) ⁇ p Fe (N0 3 ) 3 is added to the mixed salt solution through N 2 deionized water to make the concentration of metal ions in the solution Ni 2+ : 0. 05M, Zn 2+: 0. 55M, Fe 3+: 0. 2M; the mixed solution was poured into a container; NaC0 ⁇ formulated NaOH and mixed alkali solution, the alkali solution so that the NaOH concentration of 1. 5M, NaC0 3 concentration 0. 8M ⁇
  • the average pore diameter of the mesopores is 2.96 nm, 4.72 nm, and 31.58 nm, and the most pore diameter of the t-hole is 0.58 nm, and the average pore diameter is 0.95 nm.
  • the pore size was 24.42 nm, the total pore volume was 0.14 cm 3 /g, the specific surface area was 23.42 m 2 /g, and the particle size was 36 nm.
  • NiS0 4 , ZnS0 4 and Fe 2 SOJ 3 is added to the mixed salt solution in N 2 deionized water, so that the concentration of metal ions in the solution is Ni 2+ : 0.06 M, Zn 2+ : 0. 8M, Fe 3+: 0. 2M; the mixed solution was poured into a container; prepared NaOH solution, the alkali solution is NaOH at a concentration of 2. 0M.
  • the LDHs were placed in a muffle furnace, heated to 900 ° C at a rate of 10 ° C / min, calcined for 7 h, and naturally cooled to room temperature to obtain a mixture of Ni x Zn (1 _ x) FeA ferrite and ZnO.
  • the average pore diameter of the micropores is 0. 80 nm, 1. 18 nm, 1 .
  • the average pore diameter of the micropores is 0.30 nm, 1. 18 nm, 1 . 55nm, average pore diameter of 14. 72nm, a total pore volume of 0. 0326cm 3 / g, a specific surface area of 9. 01 ⁇ 2Vg, particle size of 56nm Q
  • the film has a total pore volume of 0. 287 cm 3 /g, a specific surface area of 43.61 m 2 /g, and a particle size of 17 nm.
  • the measured pore size of the mesoporous is 1. 31 nm, 32. 29 nm, and the most porous pore size is 0. 60 nm, 1. 04 nm, and the average pore diameter is 41. 07 ⁇ , total pore volume is 0. 499cm7g, specific surface area is 48. 63m7g, particle size is 18nm 0
  • the Zn 2+ -Fe 3+ -SO type layered bishydroxyhydroxide hydrotalcites (LDHs) were obtained by crystallization in a 45 Torr water bath for 20 h.
  • the total pore diameter is 7. 53 nm, the average pore diameter is 7.53 nm, the total pore volume is determined to be a paramagnetic ferrite. 0. 235cm 3 /g, specific surface area of 180. 23m7g, particle size of 6nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

一种多孔性磁性铁氧体及其制备方法 技术领域
本发明涉及一种多孔性磁性铁氧体及其制备方法。 背景技术
多孔性材料由于其多孔性与孔径的均一性、 较大的比表面积和耐高温、 耐候性及抗腐蚀等性能, 在高选择性催化剂和催化剂载体、 高效吸附剂、 高效气液相色谱柱材料、 高强度轻质结构材料、 特种电池材料、 新型复合 材料等领域有着潜在应用前景。 有人曾提出可以用这种材料进行有限空间 中物质扩散和吸附的研究, 甚至用作药物释放的包埋材料、 酶或蛋白质的 载体及用于放射性废弃物的处理等方面。
铁氧体是一种新型的非金属磁性材料, 广泛应用于通讯广播、 雷达导 航、 宇宙航行、 医学生物等高频或低频领域, 从二十世纪四十年代开始进 行系统研究和生产以来, 得到了极其迅速的发展和广泛的应用。 铁氧体是 由铁和其他一种或多种金属组成的复合氧化物, 如尖晶石型铁氧体的化学 分子式为 MFe204,其中 M为离子半径与二价铁离子相近的二价金属离子(Mn2+、 Zn2\ Cu2\ Ni2\ Mg2+、 Co2+等), 因此随着替代金属种类和数量的不同, 可以 组成各种不同类型的双组份铁氧体或多组份铁氧体。
在文献 Junj ie Liu, Feng Li, David G. Evans and Xue Duan, Chem. Comm.
1, 542 (2003)中, 介绍了用层状前体法制备铁氧体 MgFe204。 层状前体法是通 过先制备整体均一、 化学组成和结构在微观上可调变、 活性高的单一化合 物作为焙烧前体, 再经高温焙烧, 可得到磁学性能好且粒度分布小的铁氧 体。
关于多孔性的铁氧体研究也有文献报到, 在文献 J. B. da Si lva and
N. D. S. Moha l lem, Journa l of Magnet i sm and Magnet ic Mater ia l s 226-230, 1393 (2001)中,通过溶胶凝胶法使用正硅酸乙酯(TEOS)作 S i02基质的前体, 用 Ni和 Fe的硝酸盐作铁氧体的前体, 将 Ni铁氧体 ^^在 S i02基质中形成 尖晶石铁氧体 NiFe204与多孔性 Si02的复合物, 其磁性优于共沉淀法制备的 NiFe^O 在文献 Janez Hole, Danjela Kuscer , Marko Hrovat , Slavko Bernik and Drago Kolar , Sol id State Ionics 95 , 259 (1997)中, 用 Al部分取代 钙钛型铁氧体 La。.8Sr。.2Fe03 中的 Fe, 生成的 La。.8Sr。.2Feu-x)Al,03具有增加的 孔性及减小的颗粒尺寸。 但是用层状前体法制备比表面积大、 介孔与微孔 并存、 平均孔径大、 总孔体积大的多孔性尖晶石铁氧体还未见报道。 发明内容
本发明的目的是提供一种多孔性磁性铁氧体, 本发明的另一目的是提 供该多孔性铁氧体的制备方法。
本发明提供的铁氧体的化学通式是:
M2+xMT 2+ (1-x)Fe3+ 204 (1)
或 M2 MT 3+ YFe3V"04 (2)
其中 X的取值范围为 0-1, Y的取值范围 0-1. 5;
为离子半径与二价铁离子相近的二价金属离子, 可以是 Mn2+、 Zn2\ Cu2\ Ni2+、 Mg2+或 Co2+中的一种或多种; Μτ 2+为 Zn2+; Μτ 3+为离子半径与 Fe3+相 近的三价金属离子, 优选 Al 3+、 Cr3+或 Mn3+中的一种或多种;
该铁氧体的介孔最可几孔径为 2. 0- 40nm , 微孔的最可几孔径为
0. 30nm-l. 90nm, 平均孔径为 3- 80nm, 总孔体积为 0. 01- 0. 80cm3/g, 比表面 积为 5- 350m7g, 粒度为 5-150nm, 室温下的比饱和磁化强度为 2- 80emu/g。
由于 LDHs的化学组成和结构在微观上具有可调控性和整体均勾性, 本 身又是二维纳米材料, 这种特殊结构和组成的材料是合成良好孔性及磁性 铁氧体的前体材料, 因此通过设计可以向其层板引入潜在的磁性物种及模 板剂 Μτ, 制备得到 M2+- MT k+-Fe3+LDHs (k=2, 3)化合物, 通过高温焙烧得到磁性 相尖晶石铁氧体和非磁性相两性氧化物 Μτ0或 MT203, 用碱溶解并除去 Μτ0或 MT203, Μτ0或 M„03被除去的同时在磁性铁氧体上形成大量介孔和微孔, 从而 得到整体微观结构单一的多孔性磁性铁氧体。
具体制备方法是:
A. 配制含有二价金属离子 M2+、 MT k+离子和 Fe3+的混合盐溶液, 其中各种 金属离子的摩尔浓度分别为 M2+: 0-0. 25M, MT k+ : 0. 25-1. OM, Fe3+: 0. 15-0. 5M; 再用氢氧化钠和可溶性无机钠盐配制混合碱溶液, 其中氢氧化钠浓度为 1. 0-3. 0M, 钠盐浓度为 0- 1. 8M; 配制上述两种混合溶液所用的溶剂均为通 过^的去离子水;
其中 M2+是 Mn2+、 Mg2+、 Fe2\ Co2+、 Ni2+、 Cu2+或 Zn2+中的任意一种或多种;
MT k+为模板剂离子, k=2或 3; MT 2+ (k=2时)是 Zn2+; MT 3+ (k=3时)是 Al 3+、 Cr3+、 Mn3+中的任意一种或多种; 盐混合溶液中的酸根离子是 CO 、 N03_、 C l—、 OH -、 SO/—、 P04 3-、 C6H6 (C00—) 2中的任意一种或多种; 可溶性无机钠盐是碳酸钠、 石克酸钠、 硝酸钠或氯化钠中的任意一种;
B. 在 N2保护的条件下, 将混合碱性溶液緩慢滴加到混合盐溶液中或同 时滴加碱溶液和盐溶液于盛有少量去离子水的容器中, 当体系中的 pH值达 到 6-12时, 停止滴加, 在 N2保护的条件下, 20- 60 °C水浴中, 晶化 5- 25h, 经过滤、 洗涤、 干燥, 得到 M2+-MT k+- Fe3+LDHs层状水滑石前体;
洗涤时先用通过 N2的去离子;水水洗涤至洗涤液显中性, 再用 0-10°C的 乙醇洗涤 2-4次;
C. 将上述 LDHs置于高温炉中, 以 2- 15 °C/min的速率升温至 300-1000°C 焙烧 2- 10h, 得到 M2+ XMT 2+ (1x)Fe204/MT0混合物或 M2+MT 3+ xFe3+(2x)04/MT203混合物;
D. 将步骤 C 得到的混合物用浓度为 5- 15M 的碱溶液在室温下处理 24-168h, 然后用去离子水洗涤到中性以除去模板剂 Μτ0或 MT203, 得到多孔 性 M2+ xMT 2VxFe204或 M2 3+ xFe3 »04尖晶石铁氧体。 所用碱溶液是 NaOH或 K0H。
得到的铁氧体样品进行下列表征: 用日本岛津 XRD-6000型 X射线衍射仪, 在 Cu, ^射线, λ =1. 54Α, 管 电压 40kV, 管电流 30mA, 扫描速度 5。 /min, 扫描范围 3- 90° 下表征样品 的晶体结构并计算晶粒尺寸, 结果其平均粒度为 5- 150nm;
用美国 Quantachrome (康塔)公司全自动比表面及孔隙度分析仪 AUT0S0RB-1 进行比表面和孔径及孔分布分析, 测得其介孔最可几孔径为 2. 0- Onm, ^啟孔的最可几孔径为 0. 30nm-l. 9 Onm, 平均^径为 3-8 Onm, 总孔 体积为 0. 005-0. 90cmVg, 比表面积为 5-350m2/g , 粒度为 5-150nm;
用 JDM- 13型振动样品磁强计测定样品的比饱和磁化强度, 以 Ni粉定 标, 最大磁场为 15000 0e , 测得其比饱和磁化强度为 1- 90emu/g。
本发明具有如下显著效果: 1.以层状铁氧体前体法制备的多孔性铁氧 体具有多孔性、 粒度小、 均匀、 比表面积较大和磁学性能优良的特点; 2.本制备方法不需要对原料进行混磨工艺, 从而可简化生产工艺, 缩短生 产周期, 节省设备投资, 大幅度节约生产能耗。 具体实施方式
实施例 1
A. 将 Ni (N03) 2、 Zn (N03) ^p Fe (N03) 3加入通过 N2的去离子水中配制混合 盐溶液,使溶液中金属离子的浓度分别 Ni2+: 0. 05M, Zn2+: 0. 55M, Fe3+: 0. 2M; 将此混合溶液倒入容器中; 配制 NaOH和 NaC0 々混合碱溶液, 使碱溶液中 NaOH浓度为 1. 5M, NaC03浓度为 0. 8M。
B. 将混合减溶液緩慢滴加到盛有混合盐溶液的容器中,当体系中的 pH 值达到 8时, 停止滴加碱液。 在 40 °C水浴中, 晶化 10h, 然后抽滤, 用通 过氮气的水水洗涤,再用 0 °C的乙醇洗涤 2次,干燥,得到 Ni2+- Zn2+-Fe3+- C03 2- 型层状双羟基氢氧化物水滑石(LDHs)。
C. 将 LDHs放于马弗炉中, 以 2 °C /min的速率升温至 700°C, 保温 4h, 自然冷却至室温得到 NixZn(1-x)Fe20 氧体与 ZnO的混合物。 D. 将得到的混合物用浓 NaOH溶液处理 96h,除去过量 ZnO得到多孔磁 性铁氧体。 "
室温下测得其比饱和磁化强度为 28emu/g,测得其介孔最可几孔径分别 为 2. 96nm、 4. 72nm、 31. 58nm, t孔的最可几孔径为 0. 58nm, 平均孔径为 24. 42nm, 总孔体积为 0. 14cm3/g, 比表面积为 23. 42m2/g , 粒度为 36nm。 实施例 2
A. 将 NiS04, ZnS04和Fe2 (SOJ 3加入通过N2的去离子水中配制混合盐溶 液, 使溶液中金属离子的浓度分别为 Ni2+: 0. 06M, Zn2+: 0. 8M, Fe3+: 0. 2M; 将此混合溶液倒入容器中; 配制 NaOH溶液, 使碱溶液中 NaOH浓度为 2. 0M。
B. 将碱溶液緩慢滴加到盛有混合盐溶液的容器中, 当体系中的 pH值 达到 7. 5时, 停止滴加碱液。 在 40°C水浴中, 晶化 10h, 然后抽滤, 用通 过氮气的水水洗涤,再用(TC的乙醇洗涤 2次,干燥,得到 Ni2+- Zn2+-Fe3+- SO — 型层状双羟基氢氧化物水滑石(LDHs)。
C. 将 LDHs放于马弗炉中, 以 10°C /min的速率升温至 900°C ,焙烧 7h, 自然冷却至室温得到 NixZn(1_x)FeA铁氧体与 ZnO的混合物。
D. 将得到的混合物用浓 NaOH溶液处理 48h,除去过量 ZnO得到多孔磁 性铁氧体。
室温下测得其比饱和磁化强度 65emu/g,测得其介孔最可几孔径分别为 3. 30nm、 9. 30nm, 」微孔的最可几孔径为 0. 80nm、 1. 18nm、 1. 55nm, 平均孔 径为 14. 72nm,总孔体积为 0. 0326cm3/g,比表面积为 9. 0½Vg,粒度为 56nmQ 实施例 3
A. 将 CoS04、 21^04和?62 (304) 3加入通过^的去离子水中配制混合盐溶 液, 使溶液中金属离子的浓度分别为 Co2+: 0. 10M, Zn2+: 0. 7M, Fe3+: 0.權; 将此混合溶液倒入容器中; 配制 NaOH溶液, 使碱溶液中 NaOH浓度为 2. 4 0 B. 将碱溶液緩慢滴加到盛有混合盐溶液的容器中, 当体系中的 pH值 达到 7. 0时, 停止滴加碱液。 在 50°C水浴中, 晶化 8h, 同实施例 1步骤 B 得到 Ni2+- Zn2+- Fe3+- SO 型层状双羟基氢氧化物水滑石(LDHs)。
C. 将 LDHs放于马弗炉中,以 15。C /min的速率升温至 700°C ,保温 6h。 自然冷却至室温得到 CoxZn„-x)Fe204铁氧体与 ZnO的混合物。
D. 同实施例 1步骤 D得到多孔磁性铁氧体。
测得其为顺磁性铁氧体, 测得其介孔最可几孔径分别为 2. 41nm、 17. 52nm , 孔的最可几孔径为 0. 72nm、 1. 07nm > 1. 64nm , 平均孔径为 65. 12nm, 总孔体积为 0. 287cm3/g , 比表面积为 43. 61m2/g , 粒度为 17nm。 实施例 4
A. 将 MgS04、 ZnS04和 Fe2 (S04) 3加入通过 N2的去离子水中配制混合盐溶 液, 使溶液中金属离子的浓度分别为 Mg2+: 0. 05M, Zn2+: 0. 5M, Fe3+: 0. 20 ; 将此混合溶液倒入容器中; 配制 NaOH溶液, 使减溶液中 NaOH浓度为 1. 6M。
B. 将碱溶液緩慢滴加到盛有混合盐溶液的容器中, 当体系中的 pH值 达到 10. 5时, 停止滴加碱液。 在 40 °C水浴中, 晶化 20h, 同实施例 1步骤 B得到 Ni2+- Zn2+- Fe3+- S04 2—型层状双羟基氢氧化物水滑石(LDHs)。
C. 将 LDHs放于马弗炉中, 以 5 °C /min的速率升温至 650°C , 保温 6h。 自然冷却至室温得到 MgxZn(1x)Fe204铁氧体与 ZnO的混合物。
D. 同实施例 1步骤 D得到多孔磁性铁氧体。
测得其为顺磁性铁氧体, 测得其介孔最可几孔径分别为 2. 1 3nm、 32. 29nm, 孔的最可几孔径为 0. 60nm、 1. 04nm, 平均孔径为 41. 07nm, 总 孔体积为 0. 499cm7g , 比表面积为 48. 63m7g , 粒度为 18nm0 实施例 5
A. 将 ZnS04 , 7H20和 FeS04 · 7H20加入通过 N2的去离子水中配制混合盐 溶液, 使溶液中金属离子的浓度分别为 Zn2+: 0. 60M, Fe3+: 0. 25M; 将此混 合溶液倒入容器中; 配制 NaOH溶液, 使碱溶液中 NaOH浓度为 1. 6M。 B. 将碱溶液緩慢滴加到盛有混合盐溶液的容器中, 当体系中的 pH值 达到 7. 0时, 停止滴加碱液。 在 45 Ό水浴中, 晶化 20h, 同实施例 1步骤 B 得到 Zn2+- Fe3+- SO 型层状双羟基氢氧化物水滑石(LDHs)。
C. 将 LDHs放于马弗炉中, 以 10°C /min的速率升温至 500°C ,保温 5h。 自然冷却至室温得到 ZnFeA铁氧体与 ZnO的混合物。
D. 将得到的混合物用浓 NaOH溶液处理 24h ,除去过量 ZnO得到多孔磁 性铁氧体。
测得其为顺磁性铁氧体, 测得其介孔最可几孔径为 5. 50nm, 微孔的最 可几孔径为 0. 84nm、 1. 31nm, 平均孔径为 7. 53nm, 总孔体积为 0. 235cm3/g , 比表面积为 180. 23m7g , 粒度为 6nm。

Claims

权利要求书
1. 一种多孔性磁性铁氧体, 其化学通式是:
M2+ x T 2+ (1-x)Fe3+ 204 (1)
或 M2+MT 3+ YFe3+(2-Y)04 (2)
其中 X的取值范围为 0-1 , Y的取值范围 0-1. 5 ;
M2+为离子半径与二价铁离子相近的二价金属离子; Μτ 2+为 Zn2+; Μτ 3+为离 子半径与 Fe3+相近的三价金属离子;
该铁氧体的介孔最可几孔径为 2. 0-40nm , 微孔的最可几孔径为
0. 30nm-l. 90nm, 平均孔径为 3-8 Onm, 总孔体积为 0. 01-0. 80cm3/g , 比表面 积为 5-350m2/g , 粒度为 5-150nm, 比饱和磁化强度为 2-80emu/go
2. 如权利要求 1所述多孔性磁性铁氧体, 其特征是 M2+是 Mn2+、 Zn2 Cu2 Ni 2\ Mg2+或 Co2+中的一种或多种; M 是 Al 3+、 Cr3+、 Mn3+中的一种、 两 种或三种。
3. 一种多孔性磁性铁氧体的制备方法, 具体步骤如下:
A. 配制含有二价金属离子 M2+、 MT k+离子和 Fe3+的混合盐溶液, 其中各种 金属离子的摩尔浓度分别为 M2+: 0-0. 25M, MT k+: 0. 25-1. 0M, Fe3+: 0. 15-0. 5M; 再用氢氧化钠和可溶性无机钠盐配制混合碱溶液, 其中氢氧化钠浓度为
1. 0-3. 0M, 钠盐浓度为 0-1. 8M; 配制上述两种混合溶液所用的溶剂均为通 过 N2的去离子水;
其中 M2+是 Mn2+、 Mg2\ Fe2\ Co2\ N i2+、 Cu2+或 Zn2+中的任意一种或多种;
MT k+为模板剂离子, k=2或 3 , Μτ 2+是 Zn2+; Μτ 3+是 Al 3+、 Cr3+、 Mn3+中的一种、 两 种或三种; 盐混合溶液中的酸根离子是 C03 2—、 NO CI—、 OH -、 so4 2-、 ΡΟΛ C6H6 (C00_) 2†的任意一种或多种; 可溶性无机钠盐是碳酸钠、 硫酸钠、 硝酸 钠或氯化钠中的任意一种; B. 在 i 呆护的条件下, 将混合碱性溶液緩慢滴加到混合盐溶液中或同 时滴加碱溶液和盐溶液于盛有少量去离子水的容器中, 当体系中的 pH值达 到 6-12时, 停止滴加, 在 ^保护的条件下, 20- 60。C水浴中, 晶化 5- 25h, 经过滤、 洗涤、 干燥, 得到 M2+- MT k+- Fe3+LDHs层状水滑石前体;
C. 将步骤 B制备的层状水滑石前体置于高温炉中, 以 2- 15 °C /min的 速率升温至 300-1000 °C焙烧 2-10h , 得到 M2+ xMT 2+ u-x)Fe204/MT0 混合物或 M2+MT 3+xFe3+ (2-x, 04/MT203混合物;
D. 将步骤 C 得到的混合物用浓度为 5- 15M 的碱溶液在室温下处理 24 - 168h, 然后用去离子水洗涤到中性以除去模板剂 Μτ0或 MT203, 得到多孔 性 M2+ xMT 2+„-„Fe204或 M2+MT 3+ xFe3Vx)04尖晶石铁氧体。
4. 权利要求 3所述的多孔性磁性铁氧体的制备方法, 其特征是步骤 B 的洗涤过程是先用通过 N2的去离子水水洗涤至洗涤液显中性, 再用 0-10 °C 的乙醇洗涤 2-4次; 步骤 D所用的碱溶液是 NaOH或 K0H。
PCT/CN2005/001004 2004-07-09 2005-07-08 Ferrite magnetique poreuse et son elaboration WO2006005253A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2004100627508A CN1297511C (zh) 2004-07-09 2004-07-09 一种多孔性磁性铁氧体及其制备方法
CN200410062750.8 2004-07-09

Publications (1)

Publication Number Publication Date
WO2006005253A1 true WO2006005253A1 (fr) 2006-01-19

Family

ID=35783515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001004 WO2006005253A1 (fr) 2004-07-09 2005-07-08 Ferrite magnetique poreuse et son elaboration

Country Status (2)

Country Link
CN (1) CN1297511C (zh)
WO (1) WO2006005253A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550547B (zh) * 2009-04-14 2010-11-03 北京化工大学 一种纳米铁薄膜制备方法
CN102260071B (zh) * 2011-05-23 2012-12-05 哈尔滨工业大学 高分散准球状的m型钡铁氧体的制备方法
CN102430411B (zh) * 2011-09-13 2013-03-27 浙江省地质矿产研究所 一种类水滑石-尖晶石型铁氧体复合材料及其制备方法
CN102603278B (zh) * 2012-03-07 2013-11-27 天通控股股份有限公司 一种起始磁导率为120的抗应力镍锌铁氧体及其制备方法
CN102786071B (zh) * 2012-07-25 2015-03-04 北京化工大学 一种复合金属氧化物气敏材料及其制备方法
CN103641179B (zh) * 2013-11-29 2015-07-08 重庆市中工新材料有限公司 一种铁复合氧化物功能粉体材料的制备方法
CN103928996B (zh) * 2014-04-22 2016-08-17 南通万宝磁石制造有限公司 一种吸收噪音的汽油发电机组
CN107098691B (zh) * 2017-05-16 2020-07-10 天长市中德电子有限公司 一种滤波器用软磁铁氧体材料及其制备方法
CN108585932B (zh) * 2018-06-04 2021-07-16 安徽农业大学 一种椴木模板多孔铁氧体陶瓷的制备方法
CN110394185A (zh) * 2018-10-26 2019-11-01 榆林学院 一种三维多孔磁性的可控制备方法及其光催化应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555780A (ja) * 1991-08-28 1993-03-05 Fuji Elelctrochem Co Ltd 広帯域フエライト電波吸収体
JPH07130528A (ja) * 1993-10-29 1995-05-19 Tokin Corp 多孔質軟磁性フェライト焼結体の製造方法
JPH09188576A (ja) * 1996-01-08 1997-07-22 Asahi Tec Corp 多孔質フェライト材の製造方法
CN1472165A (zh) * 2002-07-29 2004-02-04 北京化工大学 一种由层状前体制备磁性铁氧体的方法
CN1486958A (zh) * 2003-04-01 2004-04-07 上海大学 掺杂铁氧体磁性材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555780A (ja) * 1991-08-28 1993-03-05 Fuji Elelctrochem Co Ltd 広帯域フエライト電波吸収体
JPH07130528A (ja) * 1993-10-29 1995-05-19 Tokin Corp 多孔質軟磁性フェライト焼結体の製造方法
JPH09188576A (ja) * 1996-01-08 1997-07-22 Asahi Tec Corp 多孔質フェライト材の製造方法
CN1472165A (zh) * 2002-07-29 2004-02-04 北京化工大学 一种由层状前体制备磁性铁氧体的方法
CN1486958A (zh) * 2003-04-01 2004-04-07 上海大学 掺杂铁氧体磁性材料的制备方法

Also Published As

Publication number Publication date
CN1297511C (zh) 2007-01-31
CN1718558A (zh) 2006-01-11

Similar Documents

Publication Publication Date Title
WO2006005253A1 (fr) Ferrite magnetique poreuse et son elaboration
Liu et al. Selective synthesis of Fe 3 O 4, γ-Fe 2 O 3, and α-Fe 2 O 3 using cellulose-based composites as precursors
Gao et al. A high surface area superparamagnetic mesoporous spinel ferrite synthesized by a template-free approach and its adsorptive property
Sahoo et al. Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants
Zhang et al. Preparation of rugby-shaped CoFe 2 O 4 particles and their microwave absorbing properties
Wu et al. Titania coated magnetic mesoporous hollow silica microspheres: fabrication and application to selective enrichment of phosphopeptides
Masunga et al. Synthesis of single-phase superparamagnetic copper ferrite nanoparticles using an optimized coprecipitation method
CN104150540A (zh) 一种重金属离子吸附剂铁氧体空心球MFe2O4
CN102527319B (zh) 一种高效超顺磁性铁酸盐纳米砷吸附剂及其制备工艺
US20050129609A1 (en) Method for preparation of magnetic spinel ferrites from layered double hydroxide precursors
Pui et al. Characterization and magnetic properties of capped CoFe2O4 nanoparticles ferrite prepared in carboxymethylcelullose solution
Suchomski et al. Room temperature magnetic rare-earth iron garnet thin films with ordered mesoporous structure
CN103755336B (zh) 一种纳米铁氧体颗粒的制备方法
CN102989398A (zh) 磁性无机纳米粒子/大孔径有序介孔氧化物核壳微球及其制备方法
CN109502603B (zh) 一种磁性分子筛的制备方法及得到的磁性分子筛
Li et al. Synthesis and application of core–shell magnetic metal–organic framework composites Fe 3 O 4/IRMOF-3
CN106430327A (zh) 一种多孔海胆状Fe3O4@C复合材料及其制备方法
Chen et al. NiFe 2 O 4@ nitrogen-doped carbon hollow spheres with highly efficient and recyclable adsorption of tetracycline
CN103272553A (zh) 一种用于除去水体中砷的磁性纳米氧化铁吸附剂的制备方法
CN107512738B (zh) 一种多孔MnFe2O4纳米材料及其制备方法
Wu et al. A green-chemical synthetic route to fabricate a lamellar-structured Co/Co (OH) 2 nanocomposite exhibiting a high removal ability for organic dye
CN108889266A (zh) 一种磁性镁铝复合氧化物及其制备方法和应用
Liu et al. Self-assembly of positively charged SiO2/Y2O3 composite nanofiber membranes with plum-flower-like structures for the removal of water contaminants
CN113145061A (zh) 双壳层核壳结构磁性复合金属氧化物吸附剂及制备方法
Zhang et al. Synthesis and magnetic properties of iron nanoparticles confined in highly ordered mesoporous carbons

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase