WO2006003703A1 - Sintered compact having portions of different sinter relative densities and method for production thereof - Google Patents

Sintered compact having portions of different sinter relative densities and method for production thereof Download PDF

Info

Publication number
WO2006003703A1
WO2006003703A1 PCT/JP2004/009410 JP2004009410W WO2006003703A1 WO 2006003703 A1 WO2006003703 A1 WO 2006003703A1 JP 2004009410 W JP2004009410 W JP 2004009410W WO 2006003703 A1 WO2006003703 A1 WO 2006003703A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sintered
molding
density
sintering
Prior art date
Application number
PCT/JP2004/009410
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimitsu Kankawa
Original Assignee
Mold Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mold Research Co., Ltd. filed Critical Mold Research Co., Ltd.
Priority to PCT/JP2004/009410 priority Critical patent/WO2006003703A1/en
Priority to PCT/JP2005/012116 priority patent/WO2006004011A1/en
Priority to JP2006528823A priority patent/JPWO2006004011A1/en
Publication of WO2006003703A1 publication Critical patent/WO2006003703A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature

Definitions

  • the present invention relates to a sintered product using powder injection molding and a method for manufacturing the same. More specifically, the present invention relates to a sintered product in which portions having different sintered relative densities coexist and a manufacturing method thereof.
  • the powder injection molding method is a technique that can obtain a product with high density by molding and sintering using a powder having an average particle diameter of 20 ⁇ m or less.
  • a porous body can be obtained by performing molding and sintering using a powder having a coarse particle diameter by a powder injection molding method.
  • a sintered product of a porous body having a low sintering density can be obtained by using a powder having a particle size of about 10 ⁇ m and sintering at a low temperature.
  • Patent Document 3 and Patent Document 4 show techniques for obtaining a porous sintered body by adding a thermosetting resin or the like to an organic binder and performing injection molding.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-2130
  • Patent Document 2 JP-A-2-44077
  • Patent Document 3 Japanese Patent Laid-Open No. 5-163082
  • Patent Document 4 Japanese Patent Laid-Open No. 5-117058
  • a product having a porous portion and a high-density portion is made by combining a porous sintered product and a high-density sintered product by machining, welding, bonding, or shrink fitting. Have been made.
  • the strength of the porous portion is low as described above, it is difficult to combine it with the high-density portion by machining. In addition, it is difficult to produce a large number of products with complex shapes by the method using machining. Furthermore, the sintered product thus obtained has a problem of peeling from the bonded portion.
  • the present invention has been made in view of the above-described problems in the prior art, and is a sintered product in which the high-density portion and the porous portion have different sintered relative densities.
  • the present invention provides a sintered product in which the sintered body interface between the parts is integrated by sintering, and a method for producing the sintered product without using machining. Means for solving the problem
  • the present invention is a sintered product in which parts having different sintered relative densities coexist, and the interface between the parts is integrated by sintering.
  • This sintered product can be manufactured by the manufacturing method of the present invention.
  • the sintered product according to the present invention is different from the conventional product in which parts having different densities are combined by machining because the interface between parts having different sintered relative densities is integrated by sintering. The durability is excellent because no peeling occurs at the interface between them. Further, the sintered product according to the present invention includes products having a low sintering relative density and a thickness of 100 ⁇ m 1 mm in the portion and a thin portion.
  • the present invention is a method for producing a sintered metal product in which parts having different sintered relative densities coexist,
  • Molding materials X and Y are each injection molded into the desired shape using a two-color molding machine. Including the steps of degreasing and sintering,
  • the molding material X contains metal powder A having an average particle size of 30 / m or less, and the molding material Y is made of the same material as the powder A, and the average particle size of the powder A is 20 ⁇ m. More than the above, containing metal powder B,
  • a portion having a high sintered relative density (hereinafter referred to as a high-density portion) can be molded.
  • the molding material Y containing the metal powder B having the same material strength as the powder A and having an average particle size of 20 ⁇ m or more larger than the powder A the sintered relative density is higher than that of the high density portion.
  • Five. / 0 or more lower part (hereinafter referred to as low density part) can be molded.
  • the molding material and Y are injection-molded into a desired shape using a two-color molding machine, degreased and sintered, and the interface between the high-density part and the low-density part is integrated by sintering.
  • the ability to produce sintered products is possible.
  • the present invention is a method for producing a sintered ceramic product in which portions having different sintered relative densities coexist.
  • the molding materials X 'and Y' are each injection-molded into a desired shape using a two-color molding machine, degreased, and sintered.
  • the molding material X ′ contains ceramic powder C having a BET specific surface area of 3. lm 2 / g or more;
  • the molding material Y ′ is made of the same material as the powder C and contains a ceramic powder D having a BET specific surface area smaller than the powder C by 3 m 2 / g or more.
  • BET specific surface area 3 By using molding material X 'containing ceramic powder C of lm 2 Zg or more, it is possible to mold parts with high sintered relative density (hereinafter referred to as high density parts). On the other hand, by using a molding material Y ′ made of the same material as that of the powder C and containing a ceramic powder D smaller than the powder C by a BET specific surface area of 3 m 2 / g or more, it is sintered from the high-density portion. It is possible to form a part with a relative density of 5% or more (hereinafter referred to as a low density part). Molding materials X 'and Y' can be formed into desired shapes using a two-color molding machine. A ceramic sintered product in which the boundary surface between the high-density part and the low-density part is integrated by sintering can be manufactured by injection molding into a shape, degreasing, and sintering.
  • the sintered product according to the present invention includes portions where the sintered relative density differs by 5% or more, but the interface between the portions is integrated by sintering. No surface separation occurs. Further, according to the manufacturing method of the present invention, the sintered product can be manufactured without machining, so that the manufacturing process is simple and suitable for mass production of products having complicated shapes. Furthermore, it is possible to stably supply products in which the thickness of all or part of the low density portion is 1 mm or less.
  • FIG. 1 Sintered product consisting of an outer peripheral portion of a high density portion and a central portion of a low density portion.
  • the sintered relative density can be determined by the following equation.
  • Sintered relative density weight of sintered body / (weight of sintered body-weight in water) X 100
  • An interface between parts having different sintered relative densities means a contact surface between the parts.
  • the portions having different sintered relative densities may not be two but may be three or more.
  • the sintered relative density is 95. /.
  • the sintered product of the present invention also includes a sintered product having a three-layer structure comprising 85%, 75%, and 75%.
  • a sintered product having a three-layer structure with two types of density, including 95%, 85%, and 95% is also included in the sintered product of the present invention.
  • Such a sintered product can be produced, for example, by embossing the molded body and sintering it by combining three types of molded bodies having different sintered relative densities. By changing the amount of fine powder applied to coarse powder, it is possible to integrally form products with three levels of density.
  • Integrated by sintering means that the interface between the parts is welded by heating during sintering.
  • the sintered product according to the present invention and the sintered product manufactured by the method according to the present invention are sintered products in which portions having different sintered relative densities coexist.
  • the low-density part is often used as a so-called porous part in a filter or the like, so that the porosity is high so that dust can be removed with high efficiency, that is, the sintered relative density is low. There is a tendency to be demanded.
  • the high density portion of the sintered product according to the present invention preferably has a sintered relative density of 90% or more, more preferably 93% or more, and still more preferably 95% or more.
  • the low density portion of the sintered product according to the present invention preferably has a sintered relative density of less than 90%, more preferably 85% or less, and even more preferably 80% or less.
  • a preferable sintered product according to the present invention is a product having a difference in sintered relative density between parts having different densities of 5% or more, more preferably 7% or more, and further preferably 10% or more. Particularly preferred is a sintered product of 15% or more.
  • the sintered product according to the present invention is obtained by separately injection-molding the molding materials X and Y (or the molding materials X ′ and Y ′). , X compact and In addition, after obtaining a molded body of Y (or a molded body of X ′ and a molded body of Y ′), they can be combined, degreased and sintered.
  • the sintered product according to the present invention can also be produced by adjusting the sintering temperature in addition to the particle diameter of the powder used and the BET specific surface area.
  • the molding materials X ′ ′ and Y ′ ′ are each injection-molded into a desired shape using a two-color molding machine, degreased and sintered, or
  • the sintering temperature By setting the sintering temperature to be equal to or higher than the densification temperature of the molding material X ′ ′ and lower than the densification temperature of the molding material Y ′, parts having different sintered relative densities coexist, and the interface between the parts becomes It is possible to produce a sintered product integrated by sintering.
  • the densification temperature refers to a temperature at which the sintered relative density is 91% or more.
  • the difference in densification temperature between the above X ′ ′ and Y ′ ′ is preferably 30 ° C. or more. More preferably, it is 50 ° C or higher, and more preferably 100 ° C or higher.
  • the sintered metal product according to the present invention is manufactured even when the metal powder contained in each molding material is different. Is possible.
  • the sintered product according to the present invention can be manufactured.
  • products made of different materials made of ceramics and metals are also sintered products in which parts with different relative sintering densities coexist by adjusting the sintering temperature and the sintering atmosphere. It is possible to create a sintered product whose interface is integrated by sintering. For example, it is possible to produce a sintered body having a metal part and a ceramic part by using stainless steel or iron as the metal and alumina or zirconium as the ceramic.
  • a two-color molding machine refers to a machine capable of molding two types of materials into desired shapes. In general, it has two screws and cylinder parts that are molded by fusing the material, and the mold is filled with each material from each cylinder at different timings to the desired position. A molding machine capable of molding a desired shape.
  • powder A is mixed with molding material Y (the blending amount is 90% by weight or less with respect to the total amount of powder B).
  • the powder C is added to the molding material Y ′ (the blending amount is 90% by weight or less with respect to the total amount of the powder D). It is possible to control the porosity of the low density part. The porosity is calculated by the following formula.
  • Porosity Density of sintered body / Density when porosity is 0 x 100
  • the molding material Y or Y ′ contains a resin having a high softening point (such as an epoxy resin, a urethane resin, a polyester resin, or a phenol resin), thereby further increasing the porosity of the low density portion.
  • a resin having a high softening point such as an epoxy resin, a urethane resin, a polyester resin, or a phenol resin
  • Powders A and B may be a kind of metal powder or a mixed powder composed of two or more kinds of metal powders.
  • the metal powder used in the production method of the present invention is a powder having a melting point of 600 ° C. or higher and can be sintered. Examples include carbonyl iron, carbonyl nickel, stainless steel, low alloy steel, titanium, titanium alloy, single or alloy powders of copper, silver, gold, or a mixture thereof.
  • the average particle size of the metal powder A is 30 / im or less, preferably 20 / im or less, and more preferably 10 / im or less.
  • the metal powder B is made of the same material as the powder A, and has an average particle size larger than the powder A by 20 ⁇ m or more.
  • the average particle size of the metal powder B is preferably about 30-100 ⁇ m or less, more preferably about 50 ⁇ m.
  • the particle size of the powder becomes large, the powder is easily clogged between the screw and the cylinder at the time of injection molding, making it difficult to mold, and the low density part is obtained by sintering at high temperature, but the strength is lowered.
  • the BET specific surface area of the powder D used to obtain the low-density part is 0.1 about 6 m 2 Zg, preferably about 1 to about 5 m 2 / g, and is used to obtain the high-density part.
  • the resulting powder C has a specific surface area of 3. lm 2 Zg or more, preferably about 7 to about 30 m 2 / g, more preferably about 7 to about 16 m 2 / g.
  • Powders C and D may be a kind of ceramic powder or a mixed powder made of two or more kinds of ceramic powder.
  • the ceramic used in the present invention include oxide ceramics such as alumina, dinoleconia, ferrite, titanium oxide and barium titanate, non-oxide ceramics such as silicon carbide, silicon nitride, aluminum nitride and boron nitride, or Mention may be made of these mixtures.
  • being made of the same material as the powder A means that when the powder A is a single metal powder, the powder B is also the same metal powder, and when the powder A is a mixed powder, It means that powder B is composed of the same metal powder as each metal powder constituting powder A.
  • the mixing ratio of each metal powder constituting powder A and the mixing ratio of each metal powder constituting powder B may be different, but are more preferably the same.
  • the same material as the powder C means that if the powder C is a single ceramic powder, the powder D is also the same ceramic powder. If the powder C is a mixed powder, the powder D The same ceramic powder force as each ceramic powder composing the powder C is composed.
  • the mixing ratio of the ceramic powders composing the powder C and the mixing ratio of the ceramic powders composing the powder D may be different, but more preferably the same. [0037] In the manufacturing method according to the present invention, metal powder A and gold powder can be used even when metal powder (metal powder P) made of a material different from metal powder A is used instead of metal powder B.
  • the melting point of the metal powder P is close, adjust the particle size of the two in the same way as above (that is, as in the case of the metal powder A and the metal powder B) to obtain the desired density difference.
  • the melting points of both are close means that the difference between the melting points of the metal powders A and P is 400 ° C or less, preferably 200 ° C or less, more preferably 100 ° C or less.
  • the melting point of ceramic powder C and ceramic powder Q is close.
  • the close melting point of both means that the difference between the melting points of ceramic powders C and Q is 800 ° C or lower, preferably 600 ° C or lower, more preferably 500 ° C or lower.
  • the molding material (X and Y) of the sintered metal product preferably contains an organic binder of about 30 to about 60 vol% of the total amount of the molding material. More preferably, it is about 35 to 50 vol%.
  • the sintered ceramic molding material (X 'and Y') should contain about 40 to about 70 vol% of organic binder, preferably about 40 to about 70 vol% of the total amount of molding material. Is more preferable.
  • thermoplastic resin for the organic binder, thermoplastic resin, wax, plasticizer, lubricant, and the like are used.
  • Thermoplastic resins have the effect of enhancing the retention after molding, and examples of thermoplastic resins include polyethylene, polypropylene, polystyrene, acrylic resin, polyacetal, ethylene acetate butyrate, and polybutyral.
  • Wax has the effect of facilitating fluidity during molding and thermal decomposition during degreasing.
  • examples of the wax include paraffin wax, carnauba wax, ester wax and the like.
  • the plasticizer has a function of lowering the temperature during molding and a role of imparting flexibility
  • examples of the plasticizer include phthalic compounds such as dioctyl phthalate and dibutyl phthalate.
  • the lubricant has a function of promoting fluidity during molding. Examples of lubricants include fatty acid ester compounds such as stearic acid, myristic acid and oleic acid.
  • degreasing and sintering steps includes not only the case where the degreasing step 'sintering step is included separately but also the case where degreasing' sintering is performed in one step. Is also included.
  • the central part of the sintered product shown in Fig. 1 is a part consisting of low-density parts.
  • the outer periphery around it is a place consisting of high-density parts.
  • a desired sintered product can be obtained by molding the central part and the outer peripheral part and then combining these to degrease and sinter.
  • Stainless steel powder (SUS316L) was used as the metal powder.
  • Stainless steel powder with an average particle size of 6 ⁇ m is used as the powder A used for the molding material X for molding the high-density portion, and stainless steel powder with an average particle size of 50 ⁇ m is used as the powder B for the molding material Y for molding the low-density portion.
  • organic binder a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
  • the composition of the molding material X and the molding material Y is as follows.
  • Molding material X Powder A60vol% + organic binder 40vol%
  • Molding material Y powder B65vol% + organic binder 35vol%
  • Injection molding was performed using a two-color molding machine.
  • the molding temperature was 180 ° C, and a molded body consisting of a low density part (diameter 3 mm) in the center and a high density part (diameter 10 mm) on the outer periphery was produced.
  • the obtained green body was degreased at a maximum temperature of 400 ° C ′ nitrogen atmosphere, and the degreased green body was sintered at a maximum temperature of 1350 ° C ′ argon atmosphere.
  • the density of each part of the obtained sintered body Degrees were as follows, and the boundary surface between the high density part (outer peripheral part) and the low density part (center part) was welded.
  • Example 1 From Example 1, a metal having a high-density part and a low-density part coexisting in the same product, and the interface between the high-density part and the low-density part is welded by sintering, and there is no problem in practical use. Sintered products could be obtained without post-processing under the same sintering conditions.
  • the sintered product shown in Fig. 1 was manufactured using the difference in densification temperature.
  • composition of each molding material is as follows.
  • Molding material on the outer periphery metal powder (stainless steel SUS304L powder: average particle size 10 a m) 65vol% + organic binder 35vol%
  • Molding material in the center ceramic powder (alumina powder: BET specific surface area 3. lmVg) 55vol% + organic binder 45vol%
  • the temperature at which the outer peripheral part (metal part) becomes dense is 1300 ° C, and the temperature at which the central part (ceramic part) becomes dense is 1550 ° C.
  • Injection molding was performed using a two-color molding machine. Molding temperature is 170 ° C, center part (diameter
  • the obtained molded body was degreased at a maximum temperature of 400 ° C. in a nitrogen atmosphere, and the degreased molded body was sintered at a maximum temperature of 1350 ° C. under an argon atmosphere.
  • the density of each part of the obtained sintered body was as follows, and the boundary surface between the high density part (outer peripheral part) and the low density part (inner peripheral part) was welded.
  • Example 2 According to Example 2, a high-density portion and a low-density portion coexist in the same product, and the interface between the high-density portion and the low-density portion is welded by sintering. Ceramic sintered products could be obtained under the same sintering conditions without post-processing.
  • both the particle size of the metal powder and the BET specific surface area of the ceramic powder can form a high-density portion. If it is o ° c, the ceramic part is not densified and the sintered density can be kept low. On the other hand, the metal part was densified at a temperature of 1300 ° C., so it was densified under the above-mentioned sintering conditions, and as a result, a sintered product in which parts having a sintered relative density different by 5% or more coexisted could be obtained.
  • the sintered product shown in FIG. 1 was manufactured using the following method.
  • Titanium powder was used as the metal powder. Titanium powder with an average particle size of 20 ⁇ m as powder ⁇ used for molding material X for molding high-density parts, and titanium with an average particle size of 50 ⁇ as powder B used for molding material Y for molding low-density parts Use powder. Further, in this example, in addition to powder B, 20% by weight of powder A of powder B was mixed to prepare molding material Y.
  • organic binder a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
  • the composition of the molding material X and the molding material Y is as follows.
  • Molding material X Powder A60vol% + organic binder 40vol%
  • Molding material Y Powder B40vol% + Powder A25vol% + Organic binder 35vol%
  • Molding materials X and Y were each injection-molded, and the outer periphery (molded body X, cylindrical hollow body with a diameter of 10 mm having a cavity with a diameter of 3 mm at the center) and the center portion shown in FIG. (Form Y, 3 mm diameter cylinder) was produced.
  • the molding temperature was 180 ° C.
  • Molded body X is inserted and combined with molded body Y, and the combined molded body is degreased at a maximum temperature of 400 ° C and argon atmosphere, and the degreased molded body is at a maximum temperature of 1220 ° C * under high vacuum Sintered with (10-3AB).
  • the sintered relative density of the obtained sintered body was as follows, and the boundary surface between the high density portion (outer peripheral portion) and the low density portion (center portion) was welded.
  • Example 3 From Example 3, the same product has a high-density part and a low-density part, and the interface between the high-density part and the low-density part is welded by sintering.
  • the product Under the same sintering conditions, it could be obtained without post-processing.
  • the sintered product shown in FIG. 1 was manufactured using the following method.
  • Alumina powder was used as the ceramic powder. Molding material for molding high-density parts
  • powder C used for X ′ alumina powder having a specific surface area of 7 m 2 / g was used, and as powder D used for molding material Y ′ for molding the low density part, alumina powder having a specific surface area of 3 m 2 / g was used. Further, in this example, in addition to powder D, 10% by weight of powder D was mixed with powder D to prepare molding material Y ′.
  • organic binder a mixture in which acrylic resin, polypropylene, paraffin wax, dibutino phthalate, and stearic acid were mixed at a ratio of 25: 25: 40: 5: 5 was used.
  • composition of the molding material X 'and the molding material Y' is as follows.
  • Molding material X ' powder C55vol% + organic binder 45vol%
  • Molding material Y ' Powder D40vol% + Powder C20vol% + Organic binder 40vol%
  • Molding materials X 'and Y' were respectively injection-molded, and the outer peripheral part (molded body X ', a cylindrical hollow body with a diameter of 10mm having a cavity with a diameter of 3mm at the center) and A central part (molded body Y ′, cylinder with a diameter of 3 mm) was produced.
  • the molding temperature was 180 ° C.
  • the formed body X ′ was inserted and combined with the formed body X ′, and an acrylic resin diluted with a solvent was applied to the insertion part.
  • the combined green body was degreased at a maximum temperature of 400 ° C 'atmosphere, and the degreased green body was sintered at a maximum temperature of 1600 ° C' atmosphere.
  • the density of the obtained sintered body was as follows, and the boundary surface between the high density portion and the low density portion was welded.
  • Example 4 From Example 4, a ceramic sintered material having a high density portion and a low density portion coexisting in the same product, and having an interface between the high density portion and the low density portion welded by sintering, and causing no problem in practical use.
  • the product could be obtained under the same sintering conditions without post-processing.
  • metal powder B which is useful in the present invention
  • metal powder having an average particle size of 10 / m metal powder A
  • the average particle size difference was 4 ⁇
  • the sintered product shown in FIG. 1 was produced.
  • Stainless steel powder (SUS316L) was used as the metal powder.
  • Stainless steel powder with an average particle size of 6 / m was used as the powder used for the material forming the outer peripheral portion, and stainless steel powder with an average particle size of 10 ⁇ m was used as the powder used for the material forming the central portion.
  • organic binder a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
  • composition of each molding material is as follows.
  • Molding material on the outer periphery Stainless steel powder (6 ⁇ m) 60vol% + Organic binder 40vol% Molding material on the center: Stainless steel powder (10 ⁇ m) 65vol% + Organic binder 35vol%
  • Injection molding was performed using a two-color molding machine. Molding temperature is 180 ° C, center part (diameter
  • the obtained molded body was degreased at a maximum temperature of 400 ° C. in a nitrogen atmosphere, and the degreased molded body was sintered at a maximum temperature of 1350 ° C. under an argon atmosphere.
  • the density of each part of the obtained sintered body was as follows, and the boundary surface between the central part and the outer peripheral part was welded.
  • Comparative Example 1 Although the interface between the central portion and the outer peripheral portion was welded and a product having no problem in practical use was obtained, the sintered relative density of the central portion that was planned to become a low-density portion was obtained. Was as high as 94%, and there was no difference between the density of the outer peripheral portion and the desired sintered product could not be obtained.
  • the sintered product shown in Fig. 1 was produced. did.
  • Alumina powder was used as the ceramic powder.
  • Alumina powder having a specific surface area of 7 m 2 Zg was used as a powder to be used as a material for molding the outer peripheral portion, and an alumina powder having a specific surface area of 5 m 2 Zg was used as a powder to be used as a material for molding the center portion.
  • a specific surface area of 5 m 2 In addition to alumina powder of / g, alumina powder having a specific surface area of 7 m 2 / g was mixed to prepare a molding material forming the center part.
  • organic binder a mixture in which acrylic resin, polypropylene, paraffin wax, dibutino phthalate, and stearic acid were mixed at a ratio of 25: 25: 40: 5: 5 was used.
  • composition of each molding material is as follows.
  • Molding material of the outer circumferential portion alumina powder (specific surface area 7m 2 / g) 55vol% + organic binder 45 vol% central molding material: alumina powder (specific surface 5m 2 / g) 45vol% + alumina powder (specific surface area 7m 2 / g) 15vol% + organic binder 40vol%
  • Each molding material was injection-molded, and as shown in Fig. 1, a molded body at the outer peripheral portion (a cylindrical hollow body with a diameter of 10 mm having a cavity with a diameter of 3 mm at the center) and a molded body at the center ( A cylinder with a diameter of 3 mm) was produced.
  • the molding temperature was 180 ° C.
  • the molded product at the center part was inserted into the molded product at the outer peripheral part and combined, and an acrylic resin diluted with a solvent was applied to the inserted part.
  • the combined molded body was degreased at a maximum temperature of 400> atmosphere, and the degreased body was sintered at a maximum temperature of 1200> atmosphere.
  • the density of the obtained sintered body was as follows, and the boundary surface between the central portion and the outer peripheral portion was welded. Sintering relative density Peripheral part: 89%, central part: 85%

Abstract

A sintered compact having some portions of different sinter relative densities, wherein the sintered interface of said portions are integrated by sintering; and a method for producing a sintered compact having some portions of different sinter relative densities, characterized in that it comprises the steps of subjecting molding materials X and Y to the injection molding using a two-color molding machine into articles having respective desired shapes, degreasing and then sintering, wherein the above molding material X contains a metal powder A having an average particle diameter of 30 μm or less and the above molding material Y comprises a metal powder B which comprises the same material as that of the above powder A and has an average particle diameter being larger than that of the above powder A by 20 μm or more.

Description

明 細 書  Specification
焼結相対密度の異なる部分が併存する焼結品及びその製造方法 技術分野  Sintered products in which portions having different sintered relative densities coexist and a manufacturing method thereof
[0001] 本発明は、粉末射出成形を利用した焼結品、及びその製造方法に関する。より詳 しくは、本発明は、焼結相対密度の異なる部分が併存する焼結品及びその製造方法 に関する。  The present invention relates to a sintered product using powder injection molding and a method for manufacturing the same. More specifically, the present invention relates to a sintered product in which portions having different sintered relative densities coexist and a manufacturing method thereof.
背景技術  Background art
[0002] 従来から、粉末をプレスして焼結する粉末冶金法により多孔質体 (焼結相対密度の 低い焼結体)を形成する技術は特許文献 1、特許文献 2等にいくつか見受けられる。 これらの製法ではプレス金型に粉末を充填し、圧力をかけて製品を得るため、複雑 形状の製品を得ることが困難であり、またプレス焼結法では金型表面が高圧になるた め製品表面部分の気孔が塞がり、表面から内部まで均一に多孔質焼結体を得ること が困難である。  [0002] Conventionally, several techniques for forming a porous body (sintered body having a low sintered relative density) by powder metallurgy by pressing and sintering powder are found in Patent Document 1, Patent Document 2, and the like. . In these manufacturing methods, powder is filled into a press mold and a product is obtained by applying pressure. Therefore, it is difficult to obtain a product with a complicated shape. The pores in the surface portion are blocked, and it is difficult to obtain a porous sintered body uniformly from the surface to the inside.
[0003] 粉末射出成形法は、金属の場合、平均粒径が 20 μ m以下の粉末を用いて成形焼 結することにより密度の高い製品を得ることができる技術である。粉末射出成形法に より粒径の粗い粉末を用いて成形焼結を行うことで、多孔質体を得ることができる。ま た、金属の場合、粒径が 10 x m程度の粉末を用レ、て低温で焼結することにより焼結 密度の低い多孔質体の焼結品を得ることができる。また、有機バインダに熱硬化性 樹脂等を添加して、射出成形により、多孔質焼結体を得る技術が特許文献 3および 特許文献 4等に見受けられる。  [0003] In the case of metal, the powder injection molding method is a technique that can obtain a product with high density by molding and sintering using a powder having an average particle diameter of 20 μm or less. A porous body can be obtained by performing molding and sintering using a powder having a coarse particle diameter by a powder injection molding method. In the case of metal, a sintered product of a porous body having a low sintering density can be obtained by using a powder having a particle size of about 10 × m and sintering at a low temperature. In addition, Patent Document 3 and Patent Document 4 show techniques for obtaining a porous sintered body by adding a thermosetting resin or the like to an organic binder and performing injection molding.
[0004] 特許文献 1 :特開 2004— 2130号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2004-2130
特許文献 2:特開平 2 - 44077号公報  Patent Document 2: JP-A-2-44077
特許文献 3:特開平 5 - 163082号公報  Patent Document 3: Japanese Patent Laid-Open No. 5-163082
特許文献 4:特開平 5 - 117058号公報  Patent Document 4: Japanese Patent Laid-Open No. 5-117058
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力 ながら、これら多孔質焼結体は強度が低くいため、射出成形等により複雑形 状の製品を製造しょうとした場合、薄肉製品を作製することは困難である。特にセラミ ックスにより多孔質製品を作製した場合にはさらに製品が脆くなるため、製品化が困 難である。このため、多孔質体に強度の高い高密度部分を組み合わせ、多孔質部分 の脆さをカバーする試みがなされている。また、このような目的以外にも、産業界にお いて、多孔質部分と高密度部分とを有する製品の需要がある。 [0005] However, since these porous sintered bodies have low strength, they are complicated by injection molding or the like. It is difficult to produce a thin product when trying to produce a shaped product. In particular, when a porous product is made with ceramics, the product becomes even more brittle, making it difficult to commercialize the product. For this reason, attempts have been made to cover the brittleness of the porous portion by combining the porous body with a high-density portion having high strength. In addition to these purposes, there is a demand in the industry for products having a porous portion and a high-density portion.
[0006] 従来、多孔質部分と高密度部分を有する製品は、多孔質の焼結品と高密度の焼結 品を機械加工により、組み合わせ、溶着、接着、若しくは焼きばめ等することにより作 製されてきた。  [0006] Conventionally, a product having a porous portion and a high-density portion is made by combining a porous sintered product and a high-density sintered product by machining, welding, bonding, or shrink fitting. Have been made.
[0007] し力、しながら、上述したように多孔質部分は強度が低いため、機械加工により高密 度部分と組み合わせるに際しては困難が伴う。また、機械加工を用いる方法では、複 雑形状の製品を大量に作製することが難しい。さらに、このようにして得られた焼結品 には接着部から剥離するという問題があった。  However, since the strength of the porous portion is low as described above, it is difficult to combine it with the high-density portion by machining. In addition, it is difficult to produce a large number of products with complex shapes by the method using machining. Furthermore, the sintered product thus obtained has a problem of peeling from the bonded portion.
[0008] 本発明は以上のような従来技術における課題を考慮してなされたものであり、前記 高密度部分と多孔質部分の如ぐ焼結相対密度が異なる部分が併存する焼結品で あって、該部分間の焼結体界面が、焼結により一体化している焼結品を提供すること 、及び前記焼結品を、機械加工を用いずに製造する方法を提供するものである。 課題を解決するための手段  [0008] The present invention has been made in view of the above-described problems in the prior art, and is a sintered product in which the high-density portion and the porous portion have different sintered relative densities. Thus, the present invention provides a sintered product in which the sintered body interface between the parts is integrated by sintering, and a method for producing the sintered product without using machining. Means for solving the problem
[0009] 本発明は、焼結相対密度が異なる部分が併存する焼結品であって、該部分間の界 面が、焼結により一体化している焼結品である。この焼結品は本発明の製造方法に より製造することができる。 [0009] The present invention is a sintered product in which parts having different sintered relative densities coexist, and the interface between the parts is integrated by sintering. This sintered product can be manufactured by the manufacturing method of the present invention.
[0010] 本発明にかかる焼結品は、焼結相対密度が異なる部分間の界面が焼結により一体 化していることにより、密度が異なる部分同士を機械加工によって組み合わせた従来 品と異なり、部分間の界面で剥離が生じることがなぐ耐久性が非常によい。さらに本 発明にかかる焼結品には、焼結相対密度の低レ、部分に厚みが 100 μ m 1mmとレ、 う薄肉部が存在する製品も含まれる。 [0010] The sintered product according to the present invention is different from the conventional product in which parts having different densities are combined by machining because the interface between parts having different sintered relative densities is integrated by sintering. The durability is excellent because no peeling occurs at the interface between them. Further, the sintered product according to the present invention includes products having a low sintering relative density and a thickness of 100 μm 1 mm in the portion and a thin portion.
[0011] また、本発明は、焼結相対密度が異なる部分が併存する金属焼結品の製造方法 であって、  [0011] Further, the present invention is a method for producing a sintered metal product in which parts having different sintered relative densities coexist,
成形材料 Xおよび Yを、 2色成形機を用いてそれぞれ所望の形状に射出成形し、 脱脂、焼結する工程を含み、 Molding materials X and Y are each injection molded into the desired shape using a two-color molding machine. Including the steps of degreasing and sintering,
前記成形材料 Xが、平均粒径が 30 / m以下の金属粉末 Aを含有すること、及び 前記成形材料 Yが、前記粉末 Aと同じ材質からなり、前記粉末 Aより平均粒径が 20 μ m以上大きレ、金属粉末 Bを含有すること、  The molding material X contains metal powder A having an average particle size of 30 / m or less, and the molding material Y is made of the same material as the powder A, and the average particle size of the powder A is 20 μm. More than the above, containing metal powder B,
を特徴とする方法である。  It is the method characterized by this.
[0012] 平均粒径が 30 x m以下の金属粉末 Aを含有する成形材料 Xを用いることにより、焼 結相対密度が高い部分 (以下、高密度部分という)を成形することができる。一方、前 記粉末 Aと同じ材質力 なり、前記粉末 Aより平均粒径が 20 μ m以上大きい金属粉 末 Bを含有する成形材料 Yを用いることにより、前記高密度部分より焼結相対密度が 5。/0以上低い部分 (以下、低密度部分という)を成形することができる。成形材料 お よび Yを、 2色成形機を用いてそれぞれ所望の形状に射出成形し、脱脂、焼結するこ とにより、高密度部分と低密度部分の境界面が焼結により一体化した金属焼結品を 製造すること力 Sできる。 [0012] By using the molding material X containing the metal powder A having an average particle size of 30 xm or less, a portion having a high sintered relative density (hereinafter referred to as a high-density portion) can be molded. On the other hand, by using the molding material Y containing the metal powder B having the same material strength as the powder A and having an average particle size of 20 μm or more larger than the powder A, the sintered relative density is higher than that of the high density portion. Five. / 0 or more lower part (hereinafter referred to as low density part) can be molded. The molding material and Y are injection-molded into a desired shape using a two-color molding machine, degreased and sintered, and the interface between the high-density part and the low-density part is integrated by sintering. The ability to produce sintered products is possible.
[0013] さらにまた、本発明は、焼結相対密度が異なる部分が併存するセラミックス焼結品 の製造方法であって、  [0013] Furthermore, the present invention is a method for producing a sintered ceramic product in which portions having different sintered relative densities coexist.
成形材料 X'および Y'を、 2色成形機を用いてそれぞれ所望の形状に射出成形し 、脱脂、焼結する工程を含み、  The molding materials X 'and Y' are each injection-molded into a desired shape using a two-color molding machine, degreased, and sintered.
前記成形材料 X'が、 BET比表面積 3. lm2/g以上のセラミックス粉末 Cを含有す ること、及び The molding material X ′ contains ceramic powder C having a BET specific surface area of 3. lm 2 / g or more; and
前記成形材料 Y'が、前記粉末 Cと同じ材質からなり、前記粉末 Cより BET比表面 積が 3m2/g以上小さいセラミックス粉末 Dを含有すること、 The molding material Y ′ is made of the same material as the powder C and contains a ceramic powder D having a BET specific surface area smaller than the powder C by 3 m 2 / g or more.
を特徴とする方法である。  It is the method characterized by this.
[0014] BET比表面積 3. lm2Zg以上のセラミックス粉末 Cを含有する成形材料 X'を用い ることにより、焼結相対密度の高い部分 (以下、高密度部分という)を成形することが 可能であり、一方、前記粉末 Cと同じ材質からなり、前記粉末 Cより BET比表面積が 3 m2/g以上小さいセラミックス粉末 Dを含有する成形材料 Y'を用いることにより、前記 高密度部分より焼結相対密度が 5%以上低い部分 (以下、低密度部分という)を成形 すること力 Sできる。成形材料 X'および Y'を、 2色成形機を用いてそれぞれ所望の形 状に射出成形し、脱脂、焼結することにより、高密度部分と低密度部分の境界面が焼 結により一体化したセラミックス焼結品を製造することができる。 [0014] BET specific surface area 3. By using molding material X 'containing ceramic powder C of lm 2 Zg or more, it is possible to mold parts with high sintered relative density (hereinafter referred to as high density parts). On the other hand, by using a molding material Y ′ made of the same material as that of the powder C and containing a ceramic powder D smaller than the powder C by a BET specific surface area of 3 m 2 / g or more, it is sintered from the high-density portion. It is possible to form a part with a relative density of 5% or more (hereinafter referred to as a low density part). Molding materials X 'and Y' can be formed into desired shapes using a two-color molding machine. A ceramic sintered product in which the boundary surface between the high-density part and the low-density part is integrated by sintering can be manufactured by injection molding into a shape, degreasing, and sintering.
[0015] 2色成形機を使用することにより、密度の異なる部分の成形を連続して容易に行うこ とができる。すなわち、一つの部分が成形された後に、その部分に接するもう一つの 部分が射出成形されるため、両者の接触面の凹凸は完全に一致する。その後、高温 で焼結することにより、両者の接触面は熔着する。従って両者の界面は凹凸の組み 合わせ及び熔着により完全に一体化し、剥離しない。また、当該方法を用いることに より、低密度部分の全部あるいは一部の厚みを 100 z mまで薄くすることが可能であ る。従って、低密度部分に厚み lmm以下の薄肉部が存在する製品であっても安定 して供給することが可能である。  [0015] By using a two-color molding machine, it is possible to easily and continuously form portions having different densities. That is, after one part is molded, another part in contact with that part is injection-molded, so that the concavity and convexity of both contact surfaces are completely coincident. After that, by sintering at high temperature, the contact surfaces of both are welded. Therefore, the interface between the two is completely integrated by the combination of unevenness and welding and does not peel off. In addition, by using this method, it is possible to reduce the thickness of all or part of the low density portion to 100 zm. Therefore, even a product having a thin part with a thickness of 1 mm or less in a low density part can be stably supplied.
発明の効果  The invention's effect
[0016] 上述したように、本発明にかかる焼結品は、焼結相対密度が 5%以上異なる部分が 併存するものであるが、部分間の界面が焼結により一体化しているため、境界面の剥 離が起こらない。また、本発明にかかる製造方法によれば、前記焼結品を、機械加工 なしで製造することができるため、製造工程が簡易であり、複雑形状の製品の大量生 産に適している。さらに、低密度部分の全部あるいは一部の厚みが lmm以下である 製品も安定して供給することができる。  [0016] As described above, the sintered product according to the present invention includes portions where the sintered relative density differs by 5% or more, but the interface between the portions is integrated by sintering. No surface separation occurs. Further, according to the manufacturing method of the present invention, the sintered product can be manufactured without machining, so that the manufacturing process is simple and suitable for mass production of products having complicated shapes. Furthermore, it is possible to stably supply products in which the thickness of all or part of the low density portion is 1 mm or less.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]高密度部分の外周部と低密度部分の中心部からなる焼結品  [0017] [Fig. 1] Sintered product consisting of an outer peripheral portion of a high density portion and a central portion of a low density portion.
[図 2] 3層構造からなる焼結品  [Figure 2] Sintered product with a three-layer structure
符号の説明  Explanation of symbols
[0018] 1 中心部 [0018] 1 Center
2 外周部  2 Outer part
a 焼結相対密度 95%からなる部分  a Sintering density of 95%
b 焼結相対密度 85%からなる部分  b Sintered relative density 85%
c 焼結相対密度 75%からなる部分  c Part consisting of 75% sintered relative density
発明を実施するための最良の形態 [0019] 焼結相対密度は、以下の式で求めることができる。 BEST MODE FOR CARRYING OUT THE INVENTION [0019] The sintered relative density can be determined by the following equation.
焼結相対密度 =焼結体重量/ (焼結体重量 -水中重量) X 100  Sintered relative density = weight of sintered body / (weight of sintered body-weight in water) X 100
[0020] 焼結相対密度が異なる部分間の界面とは、該部分同士の接触面をいう。本発明に おいて焼結相対密度が異なる部分とは、 2つである必要はなぐ 3つ以上であっても よい。例えば図 2Aに示すように、焼結相対密度が 95。/。の部分、 85%の部分、 75% の部分からなる 3層構造の焼結品も本発明の焼結品に含まれる。また、図 2Bのように 、 95%の部分、 85%の部分、 95%の部分からなる、密度が 2種類の 3層構造の焼結 品も、本発明の焼結品に含まれる。  [0020] An interface between parts having different sintered relative densities means a contact surface between the parts. In the present invention, the portions having different sintered relative densities may not be two but may be three or more. For example, as shown in Figure 2A, the sintered relative density is 95. /. The sintered product of the present invention also includes a sintered product having a three-layer structure comprising 85%, 75%, and 75%. In addition, as shown in FIG. 2B, a sintered product having a three-layer structure with two types of density, including 95%, 85%, and 95%, is also included in the sintered product of the present invention.
このような焼結品は、例えば、成形体に凹凸をつけて、焼結相対密度の異なる三種 類の成形体を組み合わせて焼結することにより作製することが可能であり、また、粒 径の粗い粉末に対して、細かい粉末の添力卩量を変えていくことで、密度を三段階に 変化させた製品を一体に形成することも可能である。  Such a sintered product can be produced, for example, by embossing the molded body and sintering it by combining three types of molded bodies having different sintered relative densities. By changing the amount of fine powder applied to coarse powder, it is possible to integrally form products with three levels of density.
[0021] 焼結により一体化しているとは、前記部分間の界面が、焼結の際の加熱により熔着 している状態をいう。  “Integrated by sintering” means that the interface between the parts is welded by heating during sintering.
[0022] 本発明にかかる焼結品、および本発明にかかる方法によって製造される焼結品は 、焼結相対密度が異なる部分が併存する焼結品である。産業界においては、高密度 部分の焼結相対密度はより高く強固であることが望まれる。その一方、低密度部分は 、いわゆる多孔質部分として、フィルタなどに用いられることが多いため、高効率で粉 塵を除去できるよう気孔率が高レ、こと、すなわち焼結相対密度がより低レ、ことが求め られる傾向にある。そのため、本発明にかかる焼結品の高密度部分は、焼結相対密 度が 90%以上あることが好ましぐより好ましくは 93%以上、さらに好ましくは 95%以 上である。また、本発明にかかる焼結品の低密度部分は、焼結相対密度が 90%未 満であることが好ましぐより好ましくは 85%以下、さらに好ましくは 80%以下である。 従って、本発明にかかる焼結品として好ましいものは、密度が異なる部分間の焼結相 対密度の差が 5%以上あるものであり、より好ましくは 7%以上、さらに好ましくは 10% 以上、特に好ましくは 15%以上の焼結品である。  [0022] The sintered product according to the present invention and the sintered product manufactured by the method according to the present invention are sintered products in which portions having different sintered relative densities coexist. In industry, it is desirable that the relative density of sintering in the high-density part is higher and stronger. On the other hand, the low-density part is often used as a so-called porous part in a filter or the like, so that the porosity is high so that dust can be removed with high efficiency, that is, the sintered relative density is low. There is a tendency to be demanded. For this reason, the high density portion of the sintered product according to the present invention preferably has a sintered relative density of 90% or more, more preferably 93% or more, and still more preferably 95% or more. In addition, the low density portion of the sintered product according to the present invention preferably has a sintered relative density of less than 90%, more preferably 85% or less, and even more preferably 80% or less. Accordingly, a preferable sintered product according to the present invention is a product having a difference in sintered relative density between parts having different densities of 5% or more, more preferably 7% or more, and further preferably 10% or more. Particularly preferred is a sintered product of 15% or more.
[0023] 本発明にかかる焼結品は、 2色成形機を用いる方法の他に、前記成形材料 Xおよ び Y (または前記成形材料 X'および Y' )を、別々に射出成形して、 Xの成形体およ び Yの成形体 (または X'の成形体および Y'の成形体)を得た後、それらを組み合わ せて、脱脂、焼結することによつても製造することができる。 [0023] In addition to the method using a two-color molding machine, the sintered product according to the present invention is obtained by separately injection-molding the molding materials X and Y (or the molding materials X ′ and Y ′). , X compact and In addition, after obtaining a molded body of Y (or a molded body of X ′ and a molded body of Y ′), they can be combined, degreased and sintered.
[0024] さらにまた、本発明にかかる焼結品は、使用する粉末の粒子径ゃ BET比表面積以 外に、焼結温度を調節することによつても製造することができる。  [0024] Furthermore, the sintered product according to the present invention can also be produced by adjusting the sintering temperature in addition to the particle diameter of the powder used and the BET specific surface area.
具体的には、成形材料 X' 'および Y' 'を、 2色成形機を用いてそれぞれ所望の形 状に射出成形し、脱脂、焼結する方法、あるいは  Specifically, the molding materials X ′ ′ and Y ′ ′ are each injection-molded into a desired shape using a two-color molding machine, degreased and sintered, or
成形材料 X' 'および Y' 'を、 2色成形機を用いることなぐ別々に射出成形して、 YJ 成形体および Yの成形体を得た後、それらを組み合わせて、脱脂、焼結する方法に おいて、  A method in which molding materials X '' and Y '' are separately injection molded without using a two-color molding machine to obtain YJ molded body and Y molded body, and then combined, degreased and sintered In
焼結温度を、成形材料 X' 'の緻密化温度以上、成形材料 Y',の緻密化温度未満に 設定することによって、焼結相対密度が異なる部分が併存し、該部分間の界面が、 焼結により一体化している焼結品を製造することが可能である。  By setting the sintering temperature to be equal to or higher than the densification temperature of the molding material X ′ ′ and lower than the densification temperature of the molding material Y ′, parts having different sintered relative densities coexist, and the interface between the parts becomes It is possible to produce a sintered product integrated by sintering.
[0025] 本明細書中において、緻密化温度とは、焼結相対密度が 91%以上になる温度を いう。  [0025] In the present specification, the densification temperature refers to a temperature at which the sintered relative density is 91% or more.
[0026] 緻密化温度の差を利用して、本発明にかかる焼結品を製造する場合、上記 X' 'と Y' 'の緻密化温度の差は、 30°C以上あることが好ましぐより好ましくは 50°C以上、さ らに好ましくは 100°C以上である。  [0026] When the sintered product according to the present invention is manufactured using the difference in densification temperature, the difference in densification temperature between the above X ′ ′ and Y ′ ′ is preferably 30 ° C. or more. More preferably, it is 50 ° C or higher, and more preferably 100 ° C or higher.
[0027] 焼結工程にぉレ、て、焼結温度を、成形材料 X' 'の緻密化温度以上、 Y' 'の緻密化 温度未満に調節することにより、成形材料 X' 'からなる部分は緻密化して焼結相対 密度が高くなるが、成形材料 Y' 'からなる部分は、焼結相対密度が低く抑えられる。 従って、当該方法によれば平均粒子径または BET比表面積の差を調節しなくても、 密度が異なる部分が併存する焼結体を形成することができる。また、上記と同様、焼 結過程において、各部分間の界面が一体化するため、境界面の剥離が起こらない焼 結品を製造することができる。  [0027] In the sintering process, by adjusting the sintering temperature to be higher than the densification temperature of the molding material X ′ ′ and lower than the densification temperature of the Y ′ ′, a portion made of the molding material X ′ ′ Densifies and increases the sintered relative density, but the portion made of the molding material Y ′ ′ keeps the sintered relative density low. Therefore, according to the method, it is possible to form a sintered body in which portions having different densities coexist without adjusting the difference in average particle diameter or BET specific surface area. Further, as described above, since the interfaces between the respective parts are integrated in the sintering process, it is possible to manufacture a sintered product in which no separation of the boundary surface occurs.
[0028] このように、平均粒径や BET比表面積の他、緻密化温度の差を利用することによつ ても、焼結相対密度が異なる部分が併存する焼結品であって、該部分間の界面が、 焼結により一体化している焼結品を得ることができる。当該方法によれば、各成形材 料に含まれる金属粉末が異なる場合であっても、本発明にかかる金属焼結品を製造 することが可能である。 [0028] As described above, by utilizing the difference in densification temperature in addition to the average particle diameter and the BET specific surface area, a sintered product in which portions having different sintered relative densities coexist, A sintered product in which the interface between the parts is integrated by sintering can be obtained. According to the method, the sintered metal product according to the present invention is manufactured even when the metal powder contained in each molding material is different. Is possible.
同様に、各成形材料に含まれるセラミックス粉末が異なる場合であっても、本発明 にかかる焼結品を製造することが可能である。  Similarly, even if the ceramic powder contained in each molding material is different, the sintered product according to the present invention can be manufactured.
また、セラミックスと金属からなる異種材料の製品についても、焼結温度と焼結雰囲 気を調整することにより、焼結相対密度が異なる部分が併存する焼結品であって、該 部分間の界面が、焼結により一体化している焼結品を作成することが可能である。例 えば、金属としてステンレス若しくは鉄を用いて、セラミックスとしてアルミナ若しくはジ ルコユアを用いて、金属からなる部分とセラミックスからなる部分を有する焼結体を製 造すること力 sできる。  In addition, products made of different materials made of ceramics and metals are also sintered products in which parts with different relative sintering densities coexist by adjusting the sintering temperature and the sintering atmosphere. It is possible to create a sintered product whose interface is integrated by sintering. For example, it is possible to produce a sintered body having a metal part and a ceramic part by using stainless steel or iron as the metal and alumina or zirconium as the ceramic.
[0029] 2色成形機とは、 2種類の材料をそれぞれ所望の形状に成形することができる機械 をいう。一般には、材料を融力、して成形するスクリュウ、シリンダ部を二つ有し、金型に 各々のシリンダからそれぞれの材料を別々のタイミングで金型内部に充填することに より、所望する位置に所望する形状を成形することができる成形機をいう。  [0029] A two-color molding machine refers to a machine capable of molding two types of materials into desired shapes. In general, it has two screws and cylinder parts that are molded by fusing the material, and the mold is filled with each material from each cylinder at different timings to the desired position. A molding machine capable of molding a desired shape.
[0030] 本発明にかかる金属焼結品の製造方法を行うに際し、成形材料 Yに、粉末 Aを配 合する(配合量は粉末 Bの総量に対し 90重量%以下の量とする)ことにより、あるいは 本発明にかかるセラミックス焼結品の製造方法を行うに際し、成形材料 Y'に、粉末 C を配合する(配合量は粉末 Dの総量に対し 90重量%以下の量とする)ことにより、低 密度部分の気孔率をコントロールすることが可能である。気孔率は、次式により算出 される。  [0030] In carrying out the method for producing a sintered metal product according to the present invention, powder A is mixed with molding material Y (the blending amount is 90% by weight or less with respect to the total amount of powder B). Alternatively, when the method for producing a sintered ceramic product according to the present invention is performed, the powder C is added to the molding material Y ′ (the blending amount is 90% by weight or less with respect to the total amount of the powder D). It is possible to control the porosity of the low density part. The porosity is calculated by the following formula.
気孔率 =焼結体密度/気孔が 0とした場合の密度 X 100  Porosity = Density of sintered body / Density when porosity is 0 x 100
[0031] また、成形材料 Yあるいは Y'に、高軟化点の樹脂(エポキシ樹脂、ウレタン樹脂、ポ リエステル樹脂、フエノール樹脂等)を含有させることにより、低密度部分の気孔率を さらに高めること力 Sできる。  [0031] In addition, the molding material Y or Y ′ contains a resin having a high softening point (such as an epoxy resin, a urethane resin, a polyester resin, or a phenol resin), thereby further increasing the porosity of the low density portion. S can.
[0032] 粉末 A及び Bは、一種の金属粉末であっても、 2種以上の金属粉末からなる混合粉 末であってもよい。本発明の製造方法に使用される金属粉末は、融点 600°C以上の 粉末であり、焼結可能な粉末であればよレ、。例として、カルボニル鉄、カルボ二ルニッ ケル、ステンレス、低合金鋼、チタン、チタン合金、銅、銀、金等の単種若しくは合金 粉末、またはこれらの混合物を挙げることができる。 [0033] 金属粉末 Aの平均粒径は 30 /i m以下、好ましくは 20 /i m以下、より好ましくは 10 /i m以下である。また、金属粉末 Bは、前記粉末 Aと同じ材質からなり、前記粉末 Aよ り平均粒径が 20 μ m以上大きい粉末である。金属粉末 Bと金属粉末 Aの粒径の差を 小さくすると、低密度部分と高密度部分の差が小さくなる。金属粉末 Bの平均粒径は 、約 30— 100 μ m以下であることが好ましぐより好ましくは 50 μ m程度である。粉末 粒径が大きくなると射出成形時のスクリュウとシリンダの間に粉末が詰まりやすく成形 が困難になり、また高温での焼結により低密度部分は得られるものの、強度が低くな る。 [0032] Powders A and B may be a kind of metal powder or a mixed powder composed of two or more kinds of metal powders. The metal powder used in the production method of the present invention is a powder having a melting point of 600 ° C. or higher and can be sintered. Examples include carbonyl iron, carbonyl nickel, stainless steel, low alloy steel, titanium, titanium alloy, single or alloy powders of copper, silver, gold, or a mixture thereof. [0033] The average particle size of the metal powder A is 30 / im or less, preferably 20 / im or less, and more preferably 10 / im or less. The metal powder B is made of the same material as the powder A, and has an average particle size larger than the powder A by 20 μm or more. When the particle size difference between metal powder B and metal powder A is reduced, the difference between the low density portion and the high density portion is reduced. The average particle size of the metal powder B is preferably about 30-100 μm or less, more preferably about 50 μm. When the particle size of the powder becomes large, the powder is easily clogged between the screw and the cylinder at the time of injection molding, making it difficult to mold, and the low density part is obtained by sintering at high temperature, but the strength is lowered.
[0034] 一方セラミックス焼結品を製造する際は、その焼結の特性上、金属粉末よりさらに細 力、い粉末を使用する。セラミックスの場合、低密度部分を得るために使用する粉末 D の BET比表面積は 0. 1 約 6m2Zg、好ましくは約 1一約 5m2/gであり、高密度部 分を得るために用いられる粉末 Cの比表面積は 3. lm2Zg以上であり、好ましくは約 7—約 30m2/g、より好ましくは約 7—約 16m2/gである。 [0034] On the other hand, when a ceramic sintered product is produced, a finer powder than a metal powder is used because of its sintering characteristics. In the case of ceramics, the BET specific surface area of the powder D used to obtain the low-density part is 0.1 about 6 m 2 Zg, preferably about 1 to about 5 m 2 / g, and is used to obtain the high-density part. The resulting powder C has a specific surface area of 3. lm 2 Zg or more, preferably about 7 to about 30 m 2 / g, more preferably about 7 to about 16 m 2 / g.
[0035] 粉末 C及び Dは、一種のセラミックス粉末であっても、 2種以上のセラミックス粉末か らなる混合粉末であってもよい。本発明で使用されるセラミックスとして、例えば、アル ミナ、ジノレコニァ、フェライト、酸化チタン並びにチタン酸バリウム等の酸化物セラミツ タス、炭化珪素、窒化珪素、窒化アルミ並びに窒化硼素等の非酸化物セラミックス、 またはこれらの混合物を挙げることができる。  [0035] Powders C and D may be a kind of ceramic powder or a mixed powder made of two or more kinds of ceramic powder. Examples of the ceramic used in the present invention include oxide ceramics such as alumina, dinoleconia, ferrite, titanium oxide and barium titanate, non-oxide ceramics such as silicon carbide, silicon nitride, aluminum nitride and boron nitride, or Mention may be made of these mixtures.
[0036] 本発明において、粉末 Aと同じ材質からなるとは、粉末 Aが単一の金属粉末である 場合、粉末 Bも同一の金属粉末であることをいい、粉末 Aが混合粉末の場合は、粉末 Bが、粉末 Aを構成する各金属粉末と同じ金属粉末から構成されることをいう。粉末 A を構成する各金属粉末の混合割合と粉末 Bを構成する各金属粉末の混合割合は異 なってもよいが、より好ましくは同一である。 [0036] In the present invention, being made of the same material as the powder A means that when the powder A is a single metal powder, the powder B is also the same metal powder, and when the powder A is a mixed powder, It means that powder B is composed of the same metal powder as each metal powder constituting powder A. The mixing ratio of each metal powder constituting powder A and the mixing ratio of each metal powder constituting powder B may be different, but are more preferably the same.
同様に、粉末 Cと同じ材質からなるとは、粉末 Cが単一のセラミックス粉末である場 合、粉末 Dも同一のセラミックス粉末であることをいい、粉末 Cが混合粉末の場合は、 粉末 Dが、粉末 Cを構成する各セラミックス粉末と同じセラミックス粉末力、ら構成される ことをレ、う。粉末 Cを構成する各セラミックス粉末の混合割合と粉末 Dを構成する各セ ラミックス粉末の混合割合は異なってもよいが、より好ましくは同一である。 [0037] なお、本発明にかかる製造方法において、金属粉末 Bの代わりに、金属粉末 Aと異 なる材質からなる金属粉末 (金属粉末 P)を用いた場合であっても、金属粉末 Aと金 属粉末 Pとの融点が近い場合には、両者の粒径を上記と同様に(すなわち、金属粉 末 Aと金属粉末 Bの場合と同様に)調節することによって、所望する密度差を出すこと が可能である。ここで、両者の融点が近いとは、金属粉末 Aと Pとの融点の差力 400 °C以下、好ましくは 200°C以下、より好ましくは 100°C以下であることをいう。 Similarly, the same material as the powder C means that if the powder C is a single ceramic powder, the powder D is also the same ceramic powder. If the powder C is a mixed powder, the powder D The same ceramic powder force as each ceramic powder composing the powder C is composed. The mixing ratio of the ceramic powders composing the powder C and the mixing ratio of the ceramic powders composing the powder D may be different, but more preferably the same. [0037] In the manufacturing method according to the present invention, metal powder A and gold powder can be used even when metal powder (metal powder P) made of a material different from metal powder A is used instead of metal powder B. If the melting point of the metal powder P is close, adjust the particle size of the two in the same way as above (that is, as in the case of the metal powder A and the metal powder B) to obtain the desired density difference. Is possible. Here, that the melting points of both are close means that the difference between the melting points of the metal powders A and P is 400 ° C or less, preferably 200 ° C or less, more preferably 100 ° C or less.
同様に、セラミックス粉末 Dの代わりに、セラミックス粉末 Cと異なる材質からなるセラ ミックス粉末 (セラミックス粉末 Q)を用いた場合であっても、セラミックス粉末 Cとセラミ ックス粉末 Qとの融点が近い場合には、両者の BET比表面積を上記と同様に(すな わち、セラミックス粉末 Cとセラミックス粉末 Dの場合と同様に)調節することによって、 所望する密度差を出すことが可能である。ここで、両者の融点が近いとは、セラミック ス粉末 Cと Qの融点の差力 800°C以下、好ましくは 600°C以下、より好ましくは 500 °C以下であることをいう。  Similarly, when ceramic powder (ceramic powder Q) made of a material different from ceramic powder C is used instead of ceramic powder D, the melting point of ceramic powder C and ceramic powder Q is close. By adjusting the BET specific surface area of both in the same manner as described above (that is, as in the case of ceramic powder C and ceramic powder D), a desired density difference can be obtained. Here, the close melting point of both means that the difference between the melting points of ceramic powders C and Q is 800 ° C or lower, preferably 600 ° C or lower, more preferably 500 ° C or lower.
[0038] 本発明に力かる成形材料には、金属焼結品の成形材料 (Xおよび Y)にあっては成 形材料の総量の約 30—約 60vol%の有機バインダが含まれることが好ましぐ約 35 一 50vol%含まれることがより好ましい。セラミックス焼結品の成形材料 (X'および Y' )にあっては、成形材料の総量の約 40—約 70vol%の有機バインダが含まれることが 好ましぐ約 40—約 60vol%含まれることがより好ましい。  [0038] For the molding material (X and Y) of the sintered metal product, the molding material useful for the present invention preferably contains an organic binder of about 30 to about 60 vol% of the total amount of the molding material. More preferably, it is about 35 to 50 vol%. The sintered ceramic molding material (X 'and Y') should contain about 40 to about 70 vol% of organic binder, preferably about 40 to about 70 vol% of the total amount of molding material. Is more preferable.
[0039] 有機バインダには熱可塑性樹脂、ワックス、可塑剤、潤滑剤等が用いられる。熱可 塑性樹脂は成形後の保形成を高める効果があり、熱可塑性樹脂の例としては、ポリ エチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリアセタール、エチレン酢酸 ビュル、ポリビュルブチラール等を挙げることができる。  [0039] For the organic binder, thermoplastic resin, wax, plasticizer, lubricant, and the like are used. Thermoplastic resins have the effect of enhancing the retention after molding, and examples of thermoplastic resins include polyethylene, polypropylene, polystyrene, acrylic resin, polyacetal, ethylene acetate butyrate, and polybutyral.
[0040] ワックスには成形時の流動性、脱脂時の熱分解を容易にする効果がある。ワックス の例としては、パラフィンワックス、カルナバワックス、エステルワックス等を挙げること ができる。  [0040] Wax has the effect of facilitating fluidity during molding and thermal decomposition during degreasing. Examples of the wax include paraffin wax, carnauba wax, ester wax and the like.
[0041] 可塑剤には成形時の温度を下げる働きと柔軟性付与の役割があり、可塑剤の例と して、ジォクチルフタレート、ジブチルフタレート等のフタル酸系化合物を挙げること ができる。 [0042] 潤滑剤には成形時の流動性を促進する働きがある。潤滑剤の例として、ステアリン 酸、ミリスチン酸、ォレイン酸等の脂肪酸エステルイ匕合物を挙げることができる。 [0041] The plasticizer has a function of lowering the temperature during molding and a role of imparting flexibility, and examples of the plasticizer include phthalic compounds such as dioctyl phthalate and dibutyl phthalate. [0042] The lubricant has a function of promoting fluidity during molding. Examples of lubricants include fatty acid ester compounds such as stearic acid, myristic acid and oleic acid.
[0043] 本発明の製造方法において、「脱脂、焼結する工程を含むこと」には、脱脂工程'焼 結工程を別々に含む場合のみならず、脱脂'焼結を一つの工程で行う場合も含まれ る。  [0043] In the production method of the present invention, "including degreasing and sintering steps" includes not only the case where the degreasing step 'sintering step is included separately but also the case where degreasing' sintering is performed in one step. Is also included.
[0044] 次に、本発明にかかる焼結品を、図 1を用いて例説する。図 1に示す焼結品の中心 部が低密度部分からなる箇所である。その周りの外周部は高密度部分からなる箇所 である。 2色成形機を用いて、図 1の焼結品を成形する場合は、中心部分の低密度 部分と外周部の高密度部分を連続して成形することができる。  Next, the sintered product according to the present invention will be illustrated with reference to FIG. The central part of the sintered product shown in Fig. 1 is a part consisting of low-density parts. The outer periphery around it is a place consisting of high-density parts. When the sintered product of FIG. 1 is formed using a two-color molding machine, the low-density part in the central part and the high-density part in the outer peripheral part can be continuously formed.
各部分を個別に作製する場合には、中心部分と外周部分を成形した後で、これを 組み合わせて脱脂、焼結することにより所望する焼結品を得ることができる。  When each part is produced individually, a desired sintered product can be obtained by molding the central part and the outer peripheral part and then combining these to degrease and sinter.
[0045] 以下、実施例に基づき、本発明の焼結品を製造する方法を詳細に説明する。  [0045] Hereinafter, a method for producing a sintered product of the present invention will be described in detail based on examples.
実施例 1  Example 1
[0046] 金属焼結品の製造 [0046] Manufacture of sintered metal products
本発明にかかる方法を用いて、図 1に示す焼結品を作製した。  Using the method according to the present invention, a sintered product shown in FIG. 1 was produced.
金属粉末として、ステンレス粉末(SUS316L)を使用した。高密度部分を成形する 成形材料 Xに用いる粉末 Aとして、平均粒径 6 μ mのステンレス粉末を、低密度部分 を成形する成形材料 Yに用いる粉末 Bとして平均粒径 50 μ mのステンレス粉末を用 いた。  Stainless steel powder (SUS316L) was used as the metal powder. Stainless steel powder with an average particle size of 6 μm is used as the powder A used for the molding material X for molding the high-density portion, and stainless steel powder with an average particle size of 50 μm is used as the powder B for the molding material Y for molding the low-density portion. Using.
有機バインダとして、ポリアセタール、ポリプロピレン、パラフィンワックスを、 25 : 25 : 50の割合で混合した混合物を使用した。  As the organic binder, a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
[0047] 成形材料 X、成形材料 Yの組成は、以下の通りである。 [0047] The composition of the molding material X and the molding material Y is as follows.
成形材料 X:粉末 A60vol% +有機バインダ 40vol%  Molding material X: Powder A60vol% + organic binder 40vol%
成形材料 Y:粉末 B65vol%+有機バインダ 35vol%  Molding material Y: powder B65vol% + organic binder 35vol%
[0048] 射出成形は、 2色成形機を用いて行った。成形温度は 180°Cとし、中心部の低密 度部分(直径 3mm)と、その外周の高密度部分(直径 10mm)とからなる成形体を作 製した。得られた成形体を最高温度 400°C '窒素雰囲気下で脱脂し、脱脂後の成形 体を最高温度 1350°C 'アルゴン雰囲気下で焼結した。得られた焼結体の各部の密 度は下記の通りで、高密度部分 (外周部)と低密度部分(中心部)の境界面は熔着し た。 [0048] Injection molding was performed using a two-color molding machine. The molding temperature was 180 ° C, and a molded body consisting of a low density part (diameter 3 mm) in the center and a high density part (diameter 10 mm) on the outer periphery was produced. The obtained green body was degreased at a maximum temperature of 400 ° C ′ nitrogen atmosphere, and the degreased green body was sintered at a maximum temperature of 1350 ° C ′ argon atmosphere. The density of each part of the obtained sintered body Degrees were as follows, and the boundary surface between the high density part (outer peripheral part) and the low density part (center part) was welded.
焼結相対密度 高密度部分: 95%、低密度部分 : 85%  Sintering relative density High density part: 95%, Low density part: 85%
[0049] 実施例 1から、同一製品中に高密度部分と低密度部分とが併存し、且つ高密度部 分と低密度部分の界面が焼結により熔着した、実使用上問題のない金属焼結品を、 同一焼結条件で、後加工無しに得ることができた。 [0049] From Example 1, a metal having a high-density part and a low-density part coexisting in the same product, and the interface between the high-density part and the low-density part is welded by sintering, and there is no problem in practical use. Sintered products could be obtained without post-processing under the same sintering conditions.
実施例 2  Example 2
[0050] セラミックス '金属からなる焼結品の製造  [0050] Ceramics' Manufacture of sintered products made of metal
セラミックス粉末を含有する成形材料と金属粉末を含有する成形材料を用い、緻密 化する温度の差を利用して、図 1に示す焼結品を製造した。  Using a molding material containing ceramic powder and a molding material containing metal powder, the sintered product shown in Fig. 1 was manufactured using the difference in densification temperature.
[0051] 各成形材料の組成は、以下の通りである。 [0051] The composition of each molding material is as follows.
外周部の成形材料:金属粉末(ステンレス SUS304L粉末:平均粒径 10 a m) 65vol% +有機バインダ 35vol%  Molding material on the outer periphery: metal powder (stainless steel SUS304L powder: average particle size 10 a m) 65vol% + organic binder 35vol%
中心部の成形材料:セラミックス粉末(アルミナ粉末: BET比表面積 3. lmVg) 55vol% +有機バインダ 45vol%  Molding material in the center: ceramic powder (alumina powder: BET specific surface area 3. lmVg) 55vol% + organic binder 45vol%
外周部(金属部)が緻密化する温度は 1300°Cであり、中心部(セラミックス部)が緻 密化する温度は、 1550°Cである。  The temperature at which the outer peripheral part (metal part) becomes dense is 1300 ° C, and the temperature at which the central part (ceramic part) becomes dense is 1550 ° C.
[0052] 射出成形は、 2色成形機を用いて行った。成形温度は 170°Cとし、中心部分(直径 [0052] Injection molding was performed using a two-color molding machine. Molding temperature is 170 ° C, center part (diameter
3mm)と、その外周部分(直径 10mm)とからなる成形体を作製した。得られた成形 体を最高温度 400°C '窒素雰囲気下で脱脂し、脱脂後の成形体を最高温度 1350°C •アルゴン雰囲気下で焼結した。得られた焼結体の各部の密度は下記の通りで、高 密度部分 (外周部)と低密度部分 (内周部)の境界面は熔着した。  3 mm) and an outer peripheral part (diameter 10 mm). The obtained molded body was degreased at a maximum temperature of 400 ° C. in a nitrogen atmosphere, and the degreased molded body was sintered at a maximum temperature of 1350 ° C. under an argon atmosphere. The density of each part of the obtained sintered body was as follows, and the boundary surface between the high density part (outer peripheral part) and the low density part (inner peripheral part) was welded.
焼結相対密度 高密度部分 (金属部): 95%、低密度部(セラミックス部): 90%  Sintered relative density High density part (metal part): 95% Low density part (ceramic part): 90%
[0053] 実施例 2により、同一製品中に高密度部分と低密度部分が併存し、且つ高密度部 分と低密度部分の界面が焼結により熔着した、実使用上問題のない金属'セラミック ス焼結品を、同一焼結条件で、後加工無しに得ることができた。 [0053] According to Example 2, a high-density portion and a low-density portion coexist in the same product, and the interface between the high-density portion and the low-density portion is welded by sintering. Ceramic sintered products could be obtained under the same sintering conditions without post-processing.
[0054] なお、上記金属粉末の粒径およびセラミックス粉末の BET比表面積は、どちらも高 密度部分を形成することが可能なものであるが、粉末が細力ベても、焼結温度が 135 o°cであれば、セラミックス部は緻密化せず、焼結密度が低く抑えられる。一方、金属 部は緻密化する温度が 1300°Cであるため、上記焼結条件で緻密化し、結果として 焼結相対密度が 5%以上異なる部分が併存する焼結品を得ることができた。 [0054] Note that both the particle size of the metal powder and the BET specific surface area of the ceramic powder can form a high-density portion. If it is o ° c, the ceramic part is not densified and the sintered density can be kept low. On the other hand, the metal part was densified at a temperature of 1300 ° C., so it was densified under the above-mentioned sintering conditions, and as a result, a sintered product in which parts having a sintered relative density different by 5% or more coexisted could be obtained.
[0055] 以下の実施例 3 ·4において、 2色成形機を用いずに本発明にかかる焼結品を製造 する方法を例示する。  [0055] In Examples 3 and 4 below, a method for producing a sintered product according to the present invention without using a two-color molding machine is illustrated.
実施例 3  Example 3
[0056] 金属焼結品の製造  [0056] Manufacture of sintered metal products
以下の方法を用いて、図 1に示す焼結品を製造した。  The sintered product shown in FIG. 1 was manufactured using the following method.
金属粉末として、チタン粉末を使用した。高密度部分を成形する成形材料 Xに用い る粉末 Αとして、平均粒径 20 μ mのチタン粉末を、低密度部分を成形する成形材料 Yに用いる粉末 Bとして、平均粒径 50 μ ΐηのチタン粉末を用いる。また、本実施例に おいては、低密度部分の気孔率を調節するために、粉末 Bの他に、粉末 Bの 20重量 %量の粉末 Aを混合して成形材料 Yを調製した。  Titanium powder was used as the metal powder. Titanium powder with an average particle size of 20 μm as powder 成形 used for molding material X for molding high-density parts, and titanium with an average particle size of 50 μΐη as powder B used for molding material Y for molding low-density parts Use powder. Further, in this example, in order to adjust the porosity of the low density portion, in addition to powder B, 20% by weight of powder A of powder B was mixed to prepare molding material Y.
有機バインダとしては、ポリアセタール、ポリプロピレン、パラフィンワックスを、 25 : 2 5: 50の割合で混合した混合物を使用した。  As the organic binder, a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
[0057] 成形材料 X、成形材料 Yの組成は、以下の通りである。 [0057] The composition of the molding material X and the molding material Y is as follows.
成形材料 X:粉末 A60vol% +有機バインダ 40vol%  Molding material X: Powder A60vol% + organic binder 40vol%
成形材料 Y:粉末 B40vol% +粉末 A25vol% +有機バインダ 35vol%  Molding material Y: Powder B40vol% + Powder A25vol% + Organic binder 35vol%
[0058] 成形材料 Xおよび Yを、それぞれ射出成形して、図 1に示す、外周部(成形体 X、中 心部に直径 3mmの空洞を有する直径 10mmの円柱状の中空体)および中心部(成 形体 Y、直径 3mmの円柱)を作製した。成形温度は 180°Cとした。作製した成形体 X に成形体 Yを揷入して組み合わせ、組み合わせた成形体を最高温度 400°C ·ァルゴ ン雰囲気下で脱脂し、脱脂後の成形体を最高温度 1220°C *高真空下(10-3AB)で 焼結した。得られた焼結体の焼結相対密度は下記の通りで、高密度部分 (外周部)と 低密度部分(中心部)の境界面は熔着した。 [0058] Molding materials X and Y were each injection-molded, and the outer periphery (molded body X, cylindrical hollow body with a diameter of 10 mm having a cavity with a diameter of 3 mm at the center) and the center portion shown in FIG. (Form Y, 3 mm diameter cylinder) was produced. The molding temperature was 180 ° C. Molded body X is inserted and combined with molded body Y, and the combined molded body is degreased at a maximum temperature of 400 ° C and argon atmosphere, and the degreased molded body is at a maximum temperature of 1220 ° C * under high vacuum Sintered with (10-3AB). The sintered relative density of the obtained sintered body was as follows, and the boundary surface between the high density portion (outer peripheral portion) and the low density portion (center portion) was welded.
焼結相対密度 高密度部分: 95%、低密度部分 : 84%  Sintering relative density High density part: 95%, Low density part: 84%
[0059] 実施例 3から、同一製品中に高密度部分と低密度部分が併存し、且つ高密度部分 と低密度部分との界面が焼結により熔着した、実使用上問題のない金属焼結品を、 同一焼結条件で、後加工無しに得ることができた。 [0059] From Example 3, the same product has a high-density part and a low-density part, and the interface between the high-density part and the low-density part is welded by sintering. The product Under the same sintering conditions, it could be obtained without post-processing.
実施例 4  Example 4
[0060] セラミックス焼結品の製诰 [0060] Steelmaking of sintered ceramics
以下の方法を用いて、図 1に示す焼結品を製造した。  The sintered product shown in FIG. 1 was manufactured using the following method.
セラミックス粉末として、アルミナ粉末を使用した。高密度部分を成形する成形材料 Alumina powder was used as the ceramic powder. Molding material for molding high-density parts
X'に用いる粉末 Cとして、比表面積 7m2/gのアルミナ粉末を、低密度部分を成形す る成形材料 Y'に用いる粉末 Dとして、比表面積 3m2/gのアルミナ粉末を用いた。ま た、本実施例においては、低密度部分の気孔率を調節するために、粉末 Dの他に、 粉末 Dの 10重量%量の粉末 Cを混合して成形材料 Y'を調製した。 As powder C used for X ′, alumina powder having a specific surface area of 7 m 2 / g was used, and as powder D used for molding material Y ′ for molding the low density part, alumina powder having a specific surface area of 3 m 2 / g was used. Further, in this example, in order to adjust the porosity of the low density portion, in addition to powder D, 10% by weight of powder D was mixed with powder D to prepare molding material Y ′.
有機バインダとしては、アクリル樹脂、ポリプロピレン、パラフィンワックス、ジブチノレ フタレート、ステアリン酸を、 25 : 25 : 40 : 5 : 5の割合で混合した混合物を使用した。  As the organic binder, a mixture in which acrylic resin, polypropylene, paraffin wax, dibutino phthalate, and stearic acid were mixed at a ratio of 25: 25: 40: 5: 5 was used.
[0061] 成形材料 X'、成形材料 Y'の組成は、以下の通りである。 [0061] The composition of the molding material X 'and the molding material Y' is as follows.
成形材料 X ';粉末 C55vol% +有機バインダ 45vol%  Molding material X '; powder C55vol% + organic binder 45vol%
成形材料 Y':粉末 D40vol%+粉末 C20vol%+有機バインダ 40vol%  Molding material Y ': Powder D40vol% + Powder C20vol% + Organic binder 40vol%
[0062] 成形材料 X'および Y'を、それぞれ射出成形して、図 1に示す、外周部(成形体 X' 、中心部に直径 3mmの空洞を有する直径 10mmの円柱状の中空体)および中心部 (成形体 Y'、直径 3mmの円柱)を作製した。成形温度は 180°Cとした。作製した成 形体 X'に成形体 Y'を揷入して組み合わせ、挿入部分にアクリル樹脂を溶剤で希釈 したものを塗布した。組み合わせた成形体を、最高温度 400°C '大気雰囲気下で脱 脂し、脱脂後の成形体を最高温度 1600°C '大気雰囲気下で焼結した。得られた焼 結体の密度は下記の通りで、高密度部分と低密度部分の境界面は熔着した。 [0062] Molding materials X 'and Y' were respectively injection-molded, and the outer peripheral part (molded body X ', a cylindrical hollow body with a diameter of 10mm having a cavity with a diameter of 3mm at the center) and A central part (molded body Y ′, cylinder with a diameter of 3 mm) was produced. The molding temperature was 180 ° C. The formed body X ′ was inserted and combined with the formed body X ′, and an acrylic resin diluted with a solvent was applied to the insertion part. The combined green body was degreased at a maximum temperature of 400 ° C 'atmosphere, and the degreased green body was sintered at a maximum temperature of 1600 ° C' atmosphere. The density of the obtained sintered body was as follows, and the boundary surface between the high density portion and the low density portion was welded.
焼結相対密度、高密度部分: 99%、低密度部分: 85%  Sintered relative density, high density part: 99%, low density part: 85%
[0063] 実施例 4から、同一製品中に高密度部分と低密度部分が併存し、且つ高密度部分 と低密度部分の界面が焼結により熔着した、実使用上問題のないセラミックス焼結品 を、同一焼結条件で、後加工無しに得ることができた。 [0063] From Example 4, a ceramic sintered material having a high density portion and a low density portion coexisting in the same product, and having an interface between the high density portion and the low density portion welded by sintering, and causing no problem in practical use. The product could be obtained under the same sintering conditions without post-processing.
[0064] [比較例 1] [0064] [Comparative Example 1]
金属焼結品 (比較品)の製造  Manufacture of sintered metal products (comparative products)
本発明に力かる金属粉末 Bの代わりに、平均粒径 10 / mの金属粉末 (金属粉末 A との平均粒径の差は 4 μ Ιη)を用いて、図 1に示す焼結品を作製した。 Instead of metal powder B, which is useful in the present invention, metal powder having an average particle size of 10 / m (metal powder A The average particle size difference was 4 μΙη ), and the sintered product shown in FIG. 1 was produced.
[0065] 金属粉末として、ステンレス粉末(SUS316L)を使用した。外周部分を成形する材 料に用いる粉末として、平均粒径 6 / mのステンレス粉末を、中心部分を成形する材 料に用いる粉末として、平均粒径 10 μ mのステンレス粉末を用いた。 [0065] Stainless steel powder (SUS316L) was used as the metal powder. Stainless steel powder with an average particle size of 6 / m was used as the powder used for the material forming the outer peripheral portion, and stainless steel powder with an average particle size of 10 μm was used as the powder used for the material forming the central portion.
有機バインダとして、ポリアセタール、ポリプロピレン、パラフィンワックスを、 25 : 25 : 50の割合で混合した混合物を使用した。  As the organic binder, a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
[0066] 各成形材料の組成は、以下の通りである。 [0066] The composition of each molding material is as follows.
外周部の成形材料:ステンレス粉末 (6 μ m)60vol%+有機バインダ 40vol% 中心部の成形材料:ステンレス粉末 (10 μ m)65vol%+有機バインダ 35vol%  Molding material on the outer periphery: Stainless steel powder (6 μm) 60vol% + Organic binder 40vol% Molding material on the center: Stainless steel powder (10μm) 65vol% + Organic binder 35vol%
[0067] 射出成形は、 2色成形機を用いて行った。成形温度は 180°Cとし、中心部分(直径 [0067] Injection molding was performed using a two-color molding machine. Molding temperature is 180 ° C, center part (diameter
3mm)と、その外周部分(直径 10mm)とからなる成形体を作製した。得られた成形 体を最高温度 400°C '窒素雰囲気下で脱脂し、脱脂後の成形体を最高温度 1350°C •アルゴン雰囲気下で焼結した。得られた焼結体の各部の密度は下記の通りで、中 心部分と外周部分の境界面は熔着した。  3 mm) and an outer peripheral part (diameter 10 mm). The obtained molded body was degreased at a maximum temperature of 400 ° C. in a nitrogen atmosphere, and the degreased molded body was sintered at a maximum temperature of 1350 ° C. under an argon atmosphere. The density of each part of the obtained sintered body was as follows, and the boundary surface between the central part and the outer peripheral part was welded.
焼結相対密度 外周部分: 95%、中心部分:94%  Sintering relative density Peripheral part: 95%, central part: 94%
[0068] 比較例 1では、中心部分と外周部分の境界面が熔着し、実使用上問題のない製品 が得られたものの、低密度部分となることを予定した中心部分の焼結相対密度は 94 %と高くなり、外周部分の密度との間に差が生じず、所望の焼結品を得ることができ なかった。 [0068] In Comparative Example 1, although the interface between the central portion and the outer peripheral portion was welded and a product having no problem in practical use was obtained, the sintered relative density of the central portion that was planned to become a low-density portion was obtained. Was as high as 94%, and there was no difference between the density of the outer peripheral portion and the desired sintered product could not be obtained.
[0069] [比較例 2] [0069] [Comparative Example 2]
セラミックス焼結品 (比較品)の製造  Manufacture of ceramic sintered products (comparative products)
本発明に力かるセラミックス粉末 Dの代わりに、 BET比表面積 5m2/gのセラミック ス粉末 (粉末 Cの BET比表面積との差 2m2Zg)を用いて、図 1に示す焼結品を作製 した。 Using the ceramic powder with a BET specific surface area of 5 m 2 / g (difference 2 m 2 Zg from the BET specific surface area of powder C) instead of the ceramic powder D, which is useful for the present invention, the sintered product shown in Fig. 1 was produced. did.
[0070] セラミックス粉末として、アルミナ粉末を使用した。外周部分を成形する材料に用い る粉末として、比表面積 7m2Zgのアルミナ粉末を、中心部分を成形する材料に用い る粉末として、比表面積 5m2Zgのアルミナ粉末を、用いた。 [0070] Alumina powder was used as the ceramic powder. Alumina powder having a specific surface area of 7 m 2 Zg was used as a powder to be used as a material for molding the outer peripheral portion, and an alumina powder having a specific surface area of 5 m 2 Zg was used as a powder to be used as a material for molding the center portion.
また、本実施例においては、中心部分の気孔率を調節するために、比表面積 5m2 /gのアルミナ粉末の他に、比表面積 7m2/gのアルミナ粉末を混合して中心部を成 形する成形材料を調製した。 In this example, in order to adjust the porosity of the central portion, a specific surface area of 5 m 2 In addition to alumina powder of / g, alumina powder having a specific surface area of 7 m 2 / g was mixed to prepare a molding material forming the center part.
有機バインダとしては、アクリル樹脂、ポリプロピレン、パラフィンワックス、ジブチノレ フタレート、ステアリン酸を、 25 : 25 : 40 : 5 : 5の割合で混合した混合物を使用した。  As the organic binder, a mixture in which acrylic resin, polypropylene, paraffin wax, dibutino phthalate, and stearic acid were mixed at a ratio of 25: 25: 40: 5: 5 was used.
[0071] 各成形材料の組成は、以下の通りである。 [0071] The composition of each molding material is as follows.
外周部の成形材料:アルミナ粉末(比表面積 7m2/g) 55vol%+有機バインダ 45vol% 中心部の成形材料:アルミナ粉末 (比表面積 5m2/g)45vol% +アルミナ粉末 (比表 面積 7m2/g)15vol% +有機バインダ 40vol% Molding material of the outer circumferential portion: alumina powder (specific surface area 7m 2 / g) 55vol% + organic binder 45 vol% central molding material: alumina powder (specific surface 5m 2 / g) 45vol% + alumina powder (specific surface area 7m 2 / g) 15vol% + organic binder 40vol%
[0072] 各成形材料を、それぞれ射出成形して、図 1に示す、外周部分の成形体(中心部 に直径 3mmの空洞を有する直径 10mmの円柱状の中空体)および中心部分の成 形体(直径 3mmの円柱)を作製した。成形温度は 180°Cとした。作製した外周部の 成形体に中心部の成形体を揷入して組み合わせ、揷入部分にアクリル樹脂を溶剤 で希釈したものを塗布した。組み合わせた成形体を、最高温度 400 >大気雰囲気 下で脱脂し、脱脂後の成形体を最高温度 1200 >大気雰囲気下で焼結した。得ら れた焼結体の密度は下記の通りで、中心部分と外周部分の境界面は熔着した。 焼結相対密度 外周部分: 89%、中心部分 : 85% [0072] Each molding material was injection-molded, and as shown in Fig. 1, a molded body at the outer peripheral portion (a cylindrical hollow body with a diameter of 10 mm having a cavity with a diameter of 3 mm at the center) and a molded body at the center ( A cylinder with a diameter of 3 mm) was produced. The molding temperature was 180 ° C. The molded product at the center part was inserted into the molded product at the outer peripheral part and combined, and an acrylic resin diluted with a solvent was applied to the inserted part. The combined molded body was degreased at a maximum temperature of 400> atmosphere, and the degreased body was sintered at a maximum temperature of 1200> atmosphere. The density of the obtained sintered body was as follows, and the boundary surface between the central portion and the outer peripheral portion was welded. Sintering relative density Peripheral part: 89%, central part: 85%
[0073] 比較例 2においては、外周部分と中心部分の焼結相対密度の差が 5%未満となり、 所望する焼結品を得ることができな力 た。 [0073] In Comparative Example 2, the difference in the sintered relative density between the outer peripheral portion and the central portion was less than 5%, and it was impossible to obtain a desired sintered product.

Claims

請求の範囲 The scope of the claims
[1] 焼結相対密度が異なる部分が併存する焼結品であって、該部分間の界面が、焼結 により一体化している焼結品。  [1] A sintered product in which parts having different sintered relative densities coexist, and the interface between the parts is integrated by sintering.
[2] 焼結相対密度が異なる部分が併存する金属焼結品の製造方法であって、  [2] A method for producing a sintered metal product in which parts having different sintered relative densities coexist,
成形材料 Xおよび Yを、 2色成形機を用いてそれぞれ所望の形状に射出成形し、 脱脂、焼結する工程を含み、  It includes the steps of injection molding, degreasing and sintering molding materials X and Y into desired shapes using a two-color molding machine,
前記成形材料 Xが、平均粒径が 30 / m以下の金属粉末 Aを含有すること、及び 前記成形材料 Yが、前記粉末 Aと同じ材質からなり、前記粉末 Aより平均粒径が 20 β m以上大きい金属粉末 Βを含有すること、  The molding material X contains metal powder A having an average particle size of 30 / m or less, and the molding material Y is made of the same material as the powder A, and the average particle size is 20 β m from the powder A. Containing a larger metal powder Β,
を特徴とする方法。  A method characterized by.
[3] 焼結相対密度が異なる部分が併存するセラミックス焼結品の製造方法であって、 成形材料 X'および Y'を、 2色成形機を用いてそれぞれ所望の形状に射出成形し [3] A method for producing a sintered ceramic product in which parts having different sintered relative densities coexist, and molding materials X ′ and Y ′ are each injection molded into a desired shape using a two-color molding machine.
、脱脂、焼結する工程を含み、 Including degreasing and sintering processes,
前記成形材料 X'が、 BET比表面積 3. lm2/g以上のセラミックス粉末 Cを含有す ること、及び The molding material X ′ contains ceramic powder C having a BET specific surface area of 3. lm 2 / g or more; and
前記成形材料 Y'が、前記粉末 Cと同じ材質からなり、前記粉末 Cより BET比表面 積が 3m2Zg以上小さいセラミックス粉末 Dを含有すること、 The molding material Y ′ is made of the same material as the powder C, and contains a ceramic powder D having a BET specific surface area smaller than the powder C by 3 m 2 Zg or more.
を特徴とする方法。  A method characterized by.
PCT/JP2004/009410 2004-07-02 2004-07-02 Sintered compact having portions of different sinter relative densities and method for production thereof WO2006003703A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2004/009410 WO2006003703A1 (en) 2004-07-02 2004-07-02 Sintered compact having portions of different sinter relative densities and method for production thereof
PCT/JP2005/012116 WO2006004011A1 (en) 2004-07-02 2005-06-30 Filter and manufacturing method thereof
JP2006528823A JPWO2006004011A1 (en) 2004-07-02 2005-06-30 Filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009410 WO2006003703A1 (en) 2004-07-02 2004-07-02 Sintered compact having portions of different sinter relative densities and method for production thereof

Publications (1)

Publication Number Publication Date
WO2006003703A1 true WO2006003703A1 (en) 2006-01-12

Family

ID=35782520

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/009410 WO2006003703A1 (en) 2004-07-02 2004-07-02 Sintered compact having portions of different sinter relative densities and method for production thereof
PCT/JP2005/012116 WO2006004011A1 (en) 2004-07-02 2005-06-30 Filter and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012116 WO2006004011A1 (en) 2004-07-02 2005-06-30 Filter and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JPWO2006004011A1 (en)
WO (2) WO2006003703A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211099A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Vacuum chuck member and method of manufacturing vacuum chuck
WO2016146120A1 (en) * 2015-03-17 2016-09-22 Schaeffler Technologies AG & Co. KG Method for producing a porous component made from at least one material m and having a foam structure as well as a subsequently fabricated porous component
WO2018097188A1 (en) * 2016-11-22 2018-05-31 大阪冶金興業株式会社 Method for metal powder injection molding

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127185B2 (en) * 2006-08-31 2013-01-23 大阪冶金興業株式会社 Method for producing metal composite
CA2797746C (en) * 2009-04-29 2021-12-07 Maetta Sciences Inc. A method for co-processing components in a metal injection molding process, and components made via the same
CA3006202A1 (en) * 2015-12-04 2017-06-08 Qidni Labs, Inc. An implantable renal replacement therapy system
KR102020331B1 (en) * 2018-08-13 2019-10-28 (주)하나테크 Titanum filter for syringe and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138007A (en) * 1979-04-10 1980-10-28 Katsuragi Sangyo Kk Porous sintered laminar body of metal and its preparation
JPH0286408A (en) * 1988-09-22 1990-03-27 Ngk Insulators Ltd Extrusion-molding method of multilayer structure of ceramic and equipment therefor
JPH10251712A (en) * 1997-03-12 1998-09-22 Kubota Corp Metallic composite porous member, its production, and weld-joined body
JPH10286812A (en) * 1997-04-14 1998-10-27 Ngk Insulators Ltd Extrusion molding device for ceramics
JP2001278672A (en) * 2000-03-31 2001-10-10 Japan Fine Ceramics Center Method for manufacturing ceramic material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710748B2 (en) * 1987-12-28 1995-02-08 日本電装株式会社 Porous ceramic body
JP4458611B2 (en) * 2000-03-28 2010-04-28 イビデン株式会社 Porous silicon carbide filter
JP2003129111A (en) * 2001-10-18 2003-05-08 Sanalloy Industry Co Ltd Porous sintered compact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138007A (en) * 1979-04-10 1980-10-28 Katsuragi Sangyo Kk Porous sintered laminar body of metal and its preparation
JPH0286408A (en) * 1988-09-22 1990-03-27 Ngk Insulators Ltd Extrusion-molding method of multilayer structure of ceramic and equipment therefor
JPH10251712A (en) * 1997-03-12 1998-09-22 Kubota Corp Metallic composite porous member, its production, and weld-joined body
JPH10286812A (en) * 1997-04-14 1998-10-27 Ngk Insulators Ltd Extrusion molding device for ceramics
JP2001278672A (en) * 2000-03-31 2001-10-10 Japan Fine Ceramics Center Method for manufacturing ceramic material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211099A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Vacuum chuck member and method of manufacturing vacuum chuck
WO2016146120A1 (en) * 2015-03-17 2016-09-22 Schaeffler Technologies AG & Co. KG Method for producing a porous component made from at least one material m and having a foam structure as well as a subsequently fabricated porous component
WO2018097188A1 (en) * 2016-11-22 2018-05-31 大阪冶金興業株式会社 Method for metal powder injection molding
JPWO2018097188A1 (en) * 2016-11-22 2020-01-16 大阪冶金興業株式会社 Metal powder injection molding method
US11040396B2 (en) 2016-11-22 2021-06-22 Osaka Yakin Kogyo Co., Ltd. Method for metal powder injection molding

Also Published As

Publication number Publication date
WO2006004011A1 (en) 2006-01-12
JPWO2006004011A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP5750974B2 (en) Polishing media, method for producing polishing media, and polishing method
WO2012045247A1 (en) Manufacturing method of multilayer shell-core composite structural component
JPH0686608B2 (en) Method for producing iron sintered body by metal powder injection molding
KR100725209B1 (en) Powder injection molding method for forming article comprising titanium and titanium coating method
CN104628393A (en) Preparation method of high-performance ceramic
JP2010515829A (en) Ceramic composite molded body and / or powder metallurgy composite molded body and method for producing the same
CN109692967A (en) A kind of 3D printing bulk powder and preparation method thereof and Method of printing
WO2004007401A1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
KR970011257B1 (en) Watch
JPWO2006004011A1 (en) Filter and manufacturing method thereof
CN112789130A (en) Method for producing a countermould and method for manufacturing a part with a complex shape using such a countermould
US9028584B2 (en) System and method for fabrication of 3-D parts
CN110640142B (en) Method for preparing TiAl-based alloy component by using carbon steel sheath
JPS59229403A (en) Production of sintered metallic member and binder for injection molding
JPH0770610A (en) Method for sintering injection-molded product
JP6984144B2 (en) Manufacturing method of molded product
JP4405038B2 (en) Method for producing porous sintered compact
Moritz et al. Hybridization of materials and processes by additive manufacturing
JPH11315304A (en) Manufacture of sintered body
JP3027657B2 (en) Manufacturing method of powdered sintered products
KR101547850B1 (en) Manufacturing method for reaction bonded silicon carbide with multi layer and different composites
WO2021192554A1 (en) Oxidation-resistant alloy, and method for producing oxidation-resistant alloy
JP3370800B2 (en) Manufacturing method of composite material
JP2004308004A (en) Method of producing aluminum sintered material
JPH05171334A (en) Hard sintered part and its manufacture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP