JP5127185B2 - Method for producing metal composite - Google Patents

Method for producing metal composite Download PDF

Info

Publication number
JP5127185B2
JP5127185B2 JP2006235020A JP2006235020A JP5127185B2 JP 5127185 B2 JP5127185 B2 JP 5127185B2 JP 2006235020 A JP2006235020 A JP 2006235020A JP 2006235020 A JP2006235020 A JP 2006235020A JP 5127185 B2 JP5127185 B2 JP 5127185B2
Authority
JP
Japan
Prior art keywords
molded body
molding
molded
mixture
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006235020A
Other languages
Japanese (ja)
Other versions
JP2008056989A (en
Inventor
悛太郎 寺内
常雄 寺岡
寿 北垣
研兜 土井
富春 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Yakin Kogyo Co Ltd
Original Assignee
Osaka Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Yakin Kogyo Co Ltd filed Critical Osaka Yakin Kogyo Co Ltd
Priority to JP2006235020A priority Critical patent/JP5127185B2/en
Publication of JP2008056989A publication Critical patent/JP2008056989A/en
Application granted granted Critical
Publication of JP5127185B2 publication Critical patent/JP5127185B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、金属緻密部と金属多孔部とが一体化された金属複合体を製造する方法に関する。   The present invention relates to a method for producing a metal composite in which a metal dense portion and a metal porous portion are integrated.

多孔体は、人工骨、フィルターなどの種々の分野で利用されている。そして、金属製の多孔体は、セラミックス製や樹脂製のものに比べて機械的強度及び弾性率が高いため、大きな荷重のかかる部位に好ましく用いられる。   Porous materials are used in various fields such as artificial bones and filters. And since a metal porous body has high mechanical strength and elastic modulus compared with the thing made from ceramics or resin, it is preferably used for the site | part which requires a big load.

しかし、金属といえども多孔体を単独で用いると、角や稜線に欠け、損傷が生じやすく、信頼性に劣る。
それ故、この発明の課題は、多孔体の性質と緻密体の性質を兼ね備えた金属複合体を提供することにある。
However, even if it is a metal, if a porous body is used alone, corners and ridge lines are missing, damage is likely to occur, and reliability is poor.
Therefore, an object of the present invention is to provide a metal composite having both the properties of a porous body and the properties of a dense body.

その課題を解決するために、この発明の金属複合体の製造方法は、
粒径調整した炭酸水素アンモニウムからなる気孔形成剤を含まないか又は少量含む金属粉末の成形体aと、前記金属粉末と同種もしくは異種の金属粉末及び粒径調整した炭酸水素アンモニウムからなる気孔形成剤を多量含む混合物の成形体bを組み合わせた後、焼成するにあたり、金型内に成形体aを充填し、その残部空間に前記混合物を充填し、20〜100MPaの圧力で加圧成形することにより、成形と同時に成形体aと成形体bを組み合わせ、金属複合体の角や稜線が成形体aにより形成されることを特徴とする。
この方法により、成形体aに由来する部分は、気孔形成剤を含まないか又は含んでも相対的に少量であるので、焼成後は相対的に緻密部となる。成形体bに由来する部分は、気孔形成剤を相対的に多量含むので、焼成後は多孔部となる。そして、成形体aと成形体bとが組み合わせられて一緒に焼成されるので、各成形体内部の粒子同士が焼結すると同時に、成形体a内の粒子と成形体b内の粒子とが界面において焼結する。従って、緻密部と多孔部とが、それらの遷移層を除いて他物を介することなく接合される。
In order to solve the problem, the method for producing the metal composite of the present invention comprises:
A metal powder compact a containing no or a small amount of a pore-forming agent composed of ammonium bicarbonate adjusted in particle size, a pore-forming agent consisting of a metal powder of the same or different kind from the metal powder and ammonium carbonate adjusted in particle size In combination with a molded body b of a mixture containing a large amount, the molded body a is filled in a mold, the mixture is filled in the remaining space, and pressure molding is performed at a pressure of 20 to 100 MPa. , combined molding and simultaneously molded article a molded body b, corners or ridges of the metal complex is characterized Rukoto formed by moldings a.
By this method, the portion derived from the molded body a does not contain a pore-forming agent or a relatively small amount even if it contains it, so that it becomes a relatively dense portion after firing. Since the part derived from the molded body b contains a relatively large amount of pore-forming agent, it becomes a porous part after firing. And since the molded object a and the molded object b are combined and fired together, the particles in each molded object are sintered together, and at the same time, the particles in the molded object a and the particles in the molded object b are interfaced. Sintering. Therefore, the dense portion and the porous portion are joined without any other objects except for the transition layer.

成形体aの個別の成形手段は、射出成形、加圧成形、押し出し成形、流し込み成形、シート成形などの公知の適宜の手段であってよい。成形体bは、金型内に成形体aを装填し、その残部空間に前記粉末混合物を充填し、加圧成形することにより、成形と同時に成形体aと組み合わせられる。成形体aが複雑形状であっても成形体bと組み合わせ可能だからである。 The individual molding means for the molded body a may be known appropriate means such as injection molding, pressure molding, extrusion molding, casting molding, sheet molding, and the like. Moldings b is a shaped body a is loaded into the mold, filling the powder mixture into the remainder space, by pressure molding, is combined with simultaneously molded body a and the molding. This is because even if the molded body a has a complicated shape, it can be combined with the molded body b .

成形体a及び成形体bは、一方又は双方が有機バインダーを含んでいてもよく、双方ともに含む場合の有機バインダーは、互いに同じであっても又は異なっていてもよい。双方がバインダーを含む場合、前記加圧成形をそのバインダーが軟化する温度で行うとよい。成形段階で界面の粒子同士がより強く密着し、焼結が進みやすくなるからである。   One or both of the molded body a and the molded body b may contain an organic binder, and the organic binders in the case of containing both may be the same as or different from each other. When both include a binder, the pressure molding may be performed at a temperature at which the binder softens. This is because the particles at the interface are more closely adhered to each other in the molding stage, and the sintering is likely to proceed.

この発明の方法によれば、多孔体のように気液の流出入が可能であると同時に、緻密体のように高強度及び高弾性率を有する複合体が得られる。   According to the method of the present invention, it is possible to flow in and out of gas and liquid like a porous body, and at the same time, a composite having high strength and high elastic modulus like a dense body can be obtained.

有機バインダーとしては、ポリアセタール0〜50vo1%、ポリプロピレン0〜50vol%及びワックス類50〜70vol%から成る。金型内に成形体aを装填し、その残部空間に成形体bとなる粉末混合物を充填し、加圧成形する場合の圧力は、20〜100MPaである。20MPaに満たないと多孔部と緻密部との結合が不十分となるし、100MPaを超えると、成形体aにかかる負荷が成形体aの強度を上回り、変形や破損を生じるからである。有機バインダーを含有させて成形した場合は、組み合わせ体を焼成する前に大気中で加熱することにより有機バインダーを脱脂するのが望ましい。金属がチタンである成形体を仮焼結する場合は、非酸化雰囲気中800〜1000℃の温度で加熱する。そして、本焼結は、非酸化雰囲気中1200〜1400℃の温度で行う。 As an organic binder, it consists of polyacetal 0-50 vol%, polypropylene 0-50 vol%, and waxes 50-70 vol%. Pressure when the molded product a was charged into a mold, filled with a powder mixture comprising a molded body b on the remainder space, pressure molding is 20~100MPa. This is because if the pressure is less than 20 MPa, the bonding between the porous portion and the dense portion is insufficient, and if it exceeds 100 MPa, the load applied to the molded body a exceeds the strength of the molded body a, causing deformation and breakage. When an organic binder is contained and molded, it is desirable to degrease the organic binder by heating in the air before firing the combination. When pre-sintering the molded body whose metal is titanium, it is heated at a temperature of 800 to 1000 ° C. in a non-oxidizing atmosphere. And this sintering is performed at the temperature of 1200-1400 degreeC in non-oxidizing atmosphere.

[実施例1]
最大粒径45μmのJIS2種(米国規格ASTMG1に相当する。)純チタン粉末と篩にて500〜1500μmの粒径に調整した炭酸水素アンモニウム粉末とを体積比で64対36になるように混合し、緻密部用混合物とした。体積比は各々の真密度と重量から算出した。緻密部用混合物を図1(a)に示すように中央に円柱状の中子が立てられた金型に充填し、95MPaの圧力を加えることにより、外径25mm×内径15mm×高さ25mmの円筒状の成形体a1を得た。
[Example 1]
JIS type 2 (corresponding to US standard ASTM G1) having a maximum particle size of 45 μm. Pure titanium powder and ammonium hydrogen carbonate powder adjusted to a particle size of 500-1500 μm with a sieve are mixed so that the volume ratio is 64:36. A mixture for the dense part was obtained. The volume ratio was calculated from each true density and weight. As shown in FIG. 1 (a), the mixture for the dense portion is filled in a mold having a cylindrical core in the center, and by applying a pressure of 95 MPa, the outer diameter is 25 mm × the inner diameter is 15 mm × the height is 25 mm. A cylindrical shaped product a1 was obtained.

別途、前記純チタン粉末と篩にて250〜500μmの粒径に調整した炭酸水素アンモニウムとを体積比で35対65になるように混合し、多孔部用混合物とした。この混合物を図1(b)に示すように成形体a1の内側空間に充填し、図1(c)に示すように85MPaの圧力を加えることにより、成形体a1の内側に円柱状の成形体b1が成形された組み合わせ体を得た。   Separately, the pure titanium powder and ammonium hydrogen carbonate adjusted to a particle size of 250 to 500 μm with a sieve were mixed at a volume ratio of 35 to 65 to obtain a porous part mixture. As shown in FIG. 1 (b), the mixture is filled in the inner space of the molded body a1, and a pressure of 85 MPa is applied as shown in FIG. 1 (c), whereby a cylindrical molded body is formed inside the molded body a1. A combined body in which b1 was molded was obtained.

この組み合わせ体をアルゴンガス雰囲気中1250℃で2時間保持することにより、焼成した。得られた焼結体を円柱の軸線に対して斜めから撮影したCT画像を図2(a)に、横断面のCT画像を図2(b)に、縦断面のCT画像を図2(c)に示す。図2に見られるように、円柱部(多孔部分)と円筒部(緻密部分)はそれぞれの粒子が焼結するとともに、互いの界面における粒子同士も焼結しており、緻密部と多孔部が一体化された複合体が得られた。この複合体のCT断面画像を複数枚数撮影し、得られた画像上で気孔の定方向最大径(一定方向の線による空隙部の最大長さ)を測定したところ、多孔部の気孔径は100〜350μmの範囲であった。この複合体を圧縮速度1mm/分で軸方向に圧縮したところ、圧縮強度は、118MPaであった。成形体a1、b1を組み合わせることなく、個別に成形し、前記と同一条件で焼成し、得られた焼結体の気孔率を重量とチタンの真密度とから算出したところ、緻密部相当の焼結体の気孔率は29.9%、多孔部相当の焼結体の気孔率は60%であった。   This combination was fired by holding at 1250 ° C. for 2 hours in an argon gas atmosphere. Fig. 2 (a) shows a CT image obtained by obliquely photographing the obtained sintered body with respect to the axis of the cylinder, Fig. 2 (b) shows a CT image of a transverse section, and Fig. 2 (c) shows a CT image of a longitudinal section. ). As seen in FIG. 2, the cylindrical portion (porous portion) and the cylindrical portion (dense portion) are sintered with each other, and the particles at the interface with each other are also sintered. An integrated composite was obtained. A plurality of CT cross-sectional images of this composite were taken, and the maximum diameter in the fixed direction (maximum length of the void portion by a line in a fixed direction) was measured on the obtained image. It was in the range of ˜350 μm. When this composite was compressed in the axial direction at a compression rate of 1 mm / min, the compressive strength was 118 MPa. Molded bodies a1 and b1 were not combined and molded separately, fired under the same conditions as described above, and the porosity of the obtained sintered body was calculated from the weight and the true density of titanium. The porosity of the sintered body was 29.9%, and the porosity of the sintered body corresponding to the porous portion was 60%.

[実施例2]
実施例1のものと同質の純チタン粉末と、ポリアセタール20vol%、ポリプロピレン20vol%及びワックス類60vol%からなる有機バインダーとを体積比で65対35になるように混合し、緻密部用混合物とした。そして、緻密部用混合物を165℃で射出成形することにより、図3に示すように幅1.71mmの正四角柱からなる四角枠部の四隅に同幅の正四角柱の脚が立てられた外寸法22.8mm×22.8mm×22.8mmの成形体a2を得た。
[Example 2]
Pure titanium powder of the same quality as that of Example 1 and an organic binder composed of 20% by volume of polyacetal, 20% by volume of polypropylene and 60% by volume of waxes were mixed at a volume ratio of 65 to 35 to obtain a mixture for a dense part. . Then, by molding the mixture for the dense part at 165 ° C., the outer dimensions in which the legs of the regular square column with the same width are set up at the four corners of the square frame part made of a regular square column with a width of 1.71 mm as shown in FIG. A molded product a2 having a size of 22.8 mm × 22.8 mm × 22.8 mm was obtained.

別途、前記純チタン粉末と篩にて250〜500μmの粒径に調整した炭酸水素アンモニウムとを体積比で35対65になるように混合し、多孔部用混合物とした。図4に示すように、成形体a2を、内寸が成形体a2の外寸より僅かに大きい金型に装填し、多孔部用混合物を残部空間に充填し、85MPaの圧力を加えることにより、成形体a2の内側に略直方体状の成形体b2が成形された組み合わせ体を得た。   Separately, the pure titanium powder and ammonium hydrogen carbonate adjusted to a particle size of 250 to 500 μm with a sieve were mixed at a volume ratio of 35 to 65 to obtain a porous part mixture. As shown in FIG. 4, by loading the molded body a2 into a mold whose inner dimension is slightly larger than the outer dimension of the molded body a2, filling the remaining space with the mixture for the porous portion, and applying a pressure of 85 MPa, A combination body was obtained in which a substantially rectangular parallelepiped shaped body b2 was molded inside the molded body a2.

この組み合わせ体をアルゴンガス雰囲気中1250℃で2時間保持することにより、焼成した。得られた焼結体の多孔部と緻密部との界面付近の断面を図5に示す。円柱部(多孔部分)と円筒部(緻密部分)はそれぞれの粒子が焼結するとともに、互いの界面における粒子同士も焼結しており、緻密部と多孔部が一体化された複合体が得られた。複合体の外寸法は、20mm×20mm×20mmであった。多孔部の気孔径は100〜350μmの範囲であった。圧縮強度は67MPaであった。成形体a2、b2を組み合わせることなく、個別に成形し、前記と同一条件で焼成し、得られた焼結体の密度又は気孔率を算出したところ、緻密部相当の焼結体の密度は96%、多孔部相当の焼結体の気孔率は60%であった。   This combination was fired by holding at 1250 ° C. for 2 hours in an argon gas atmosphere. FIG. 5 shows a cross section near the interface between the porous portion and the dense portion of the obtained sintered body. In the cylindrical part (porous part) and cylindrical part (dense part), each particle is sintered, and the particles at the interface with each other are also sintered, resulting in a composite in which the dense part and the porous part are integrated. It was. The outer dimension of the composite was 20 mm × 20 mm × 20 mm. The pore diameter of the porous part was in the range of 100 to 350 μm. The compressive strength was 67 MPa. The compacts a2 and b2 were molded separately without being combined, fired under the same conditions as described above, and the density or porosity of the obtained sintered body was calculated. The density of the sintered body corresponding to the dense part was 96. %, The porosity of the sintered body corresponding to the porous portion was 60%.

参考例
実施例2で調合した緻密部用混合物を165℃で射出成形することにより、幅1.71mmの正四角柱からなる四角枠部の四隅に同幅の正四角柱の脚が立てられた外寸法10.6mm×12.4mm×17.5mmの成形体a3を2個得た。
別途、前記純チタン粉末と篩にて500〜1500μmの粒径に調整した炭酸水素アンモニウムとを体積比で34対66になるように混合し、多孔部用混合物とした。多孔部用混合物を金型に充填して加圧成形することにより、外寸法10.4mm×12.2mm×34.2mmの成形体b3を得た。
次に、成形体a3と成形体b3をアルゴンガス雰囲気中800℃で1.5時間保持することにより、仮焼結した。その後、図6に示すように、成形体b3の長寸方向の両端から、成形体a3を嵌合し、組み合わせ体を得た。この組み合わせ体をアルゴンガス雰囲気中1250℃で2時間保持することにより焼成し、9.3mm×10.9mm×30.4mmの複合体を製造した。この複合体の圧縮強度は81MPa、多孔部の気孔径は100〜350μmの範囲であった。成形体a3、b3を組み合わせることなく、個別に成形し、前記と同一条件で焼成し、得られた焼結体の密度又は気孔率を算出したところ緻密部相当の焼結体の密度は97%、多孔部相当の焼結体の気孔率は59%であった。
[ Reference example ]
10. The outer dimension in which the leg of the regular square column having the same width is erected at the four corners of the square frame portion made of the regular square column having a width of 1.71 mm by injection molding the mixture for the dense part prepared in Example 2 at 165 ° C. Two compacts a3 of 6 mm × 12.4 mm × 17.5 mm were obtained.
Separately, the pure titanium powder and ammonium hydrogen carbonate adjusted to a particle size of 500 to 1500 μm with a sieve were mixed at a volume ratio of 34 to 66 to obtain a porous part mixture. A molded body b3 having an outer dimension of 10.4 mm × 12.2 mm × 34.2 mm was obtained by filling the mixture for a porous portion into a mold and performing pressure molding.
Next, the compact a3 and the compact b3 were pre-sintered by holding at 800 ° C. for 1.5 hours in an argon gas atmosphere. Then, as shown in FIG. 6, the molded body a3 was fitted from both ends in the longitudinal direction of the molded body b3 to obtain a combined body. This combination was fired by holding at 1250 ° C. for 2 hours in an argon gas atmosphere to produce a composite of 9.3 mm × 10.9 mm × 30.4 mm. The composite had a compressive strength of 81 MPa, and the pore diameter of the porous portion was in the range of 100 to 350 μm. Without combining the compacts a3 and b3, they were individually molded, fired under the same conditions as described above, and the density or porosity of the obtained sintered compact was calculated. The density of the sintered compact corresponding to the dense part was 97%. The porosity of the sintered body corresponding to the porous portion was 59%.

実施例1の製造方法を説明する図である。6 is a diagram for explaining a manufacturing method of Example 1. FIG. 実施例1で得られた焼結体断面のCT画像を示す。The CT image of the sintered compact cross section obtained in Example 1 is shown. 実施例2の製造方法の初期工程を説明する図である。It is a figure explaining the initial process of the manufacturing method of Example 2. FIG. 実施例2の製造方法の中期工程を説明する図である。It is a figure explaining the intermediate process of the manufacturing method of Example 2. FIG. 実施例2で得られた焼結体の緻密部と多孔部との界面付近の断面写真である。4 is a cross-sectional photograph of the vicinity of an interface between a dense portion and a porous portion of a sintered body obtained in Example 2. 参考例の製造方法の一工程を説明する図である。It is a figure explaining 1 process of the manufacturing method of a reference example .

Claims (2)

粒径調整した炭酸水素アンモニウムからなる気孔形成剤を含まないか又は少量含む金属粉末の成形体aと、前記金属粉末と同種もしくは異種の金属粉末及び粒径調整した炭酸水素アンモニウムからなる気孔形成剤を多量含む混合物の成形体bを組み合わせた後、焼成するにあたり、金型内に成形体aを充填し、その残部空間に前記混合物を充填し、20〜100MPaの圧力で加圧成形することにより、成形と同時に成形体aと成形体bを組み合わせ、金属複合体の角や稜線が成形体aにより形成されることを特徴とする金属複合体の製造方法。 A metal powder compact a containing no or a small amount of a pore-forming agent composed of ammonium bicarbonate adjusted in particle size, a pore-forming agent consisting of a metal powder of the same or different kind from the metal powder and ammonium carbonate adjusted in particle size In combination with a molded body b of a mixture containing a large amount, the molded body a is filled in a mold, the mixture is filled in the remaining space, and pressure molding is performed at a pressure of 20 to 100 MPa. combines moldings b simultaneously with molding body (a) and the molding method for producing a metal composite corners and ridges of the metal complex, wherein Rukoto formed by moldings a. 成形体a及び成形体bがともに有機バインダーを含み、前記加圧成形をその有機バインダーが軟化する温度で行う請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein both the molded body a and the molded body b include an organic binder, and the pressure molding is performed at a temperature at which the organic binder is softened.
JP2006235020A 2006-08-31 2006-08-31 Method for producing metal composite Expired - Fee Related JP5127185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235020A JP5127185B2 (en) 2006-08-31 2006-08-31 Method for producing metal composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235020A JP5127185B2 (en) 2006-08-31 2006-08-31 Method for producing metal composite

Publications (2)

Publication Number Publication Date
JP2008056989A JP2008056989A (en) 2008-03-13
JP5127185B2 true JP5127185B2 (en) 2013-01-23

Family

ID=39240085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235020A Expired - Fee Related JP5127185B2 (en) 2006-08-31 2006-08-31 Method for producing metal composite

Country Status (1)

Country Link
JP (1) JP5127185B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6881830B2 (en) * 2017-07-06 2021-06-02 エルジー・ケム・リミテッド How to make metal foam

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354807A (en) * 1991-05-31 1992-12-09 Fujitsu Ltd Production of sintered body
JPH05195022A (en) * 1991-10-18 1993-08-03 Fujitsu Ltd Production of sintered compact and magnet base
JP3508604B2 (en) * 1998-04-08 2004-03-22 三菱マテリアル株式会社 Method for producing high-strength sponge-like fired metal composite plate
JP2005089777A (en) * 2003-09-12 2005-04-07 Aisin Seiki Co Ltd Method of producing composite sintered member
JP2005163145A (en) * 2003-12-04 2005-06-23 Toyota Industries Corp Composite casting, iron based porous body for casting, and their production method
WO2006003703A1 (en) * 2004-07-02 2006-01-12 Mold Research Co., Ltd. Sintered compact having portions of different sinter relative densities and method for production thereof

Also Published As

Publication number Publication date
JP2008056989A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4929286B2 (en) Composite bone
Maleksaeedi et al. Property enhancement of 3D-printed alumina ceramics using vacuum infiltration
JP5648432B2 (en) Porous implant material
JP5613902B2 (en) Porous implant material
KR101757177B1 (en) Method for producing porous metal implant and porous metal implant manufactured thereby
KR20170106158A (en) Porous scaffold and method for producing porous scaffold
WO2019210285A2 (en) Selective sintering-based fabrication of fully dense complex shaped parts
KR20150032843A (en) Alumina porous body and method for manufacturing same
JP5127185B2 (en) Method for producing metal composite
JP6933894B2 (en) Method for manufacturing a porous molded product
Maeng et al. Recent additive manufacturing methods categorized by characteristics of ceramic slurries for producing dual-scale porous ceramics
JP2009120426A (en) Long fiber reinforced ceramic composite material and its manufacturing method
KR101494071B1 (en) Method for producing porous scaffolds with unidirectionally macro-channel and porous scaffolds with unidirectionally macro-channel manufactured thereby
JP2004509784A (en) Cold isostatic pressing
Chen et al. Extrusion of metal–ceramic composite pipes
WO2012063905A1 (en) Porous implant material
US20220226894A1 (en) Method for sintering objects formed with aluminum powder
Ahn et al. Calcium phosphate ceramics with continuously gradient macrochannels using three-dimensional extrusion of bilayered ceramic-camphene mixture/pure camphene feedrod
JP6901720B2 (en) Particles for laminated molding, molded body, and manufacturing method of molded body
DE102015208632A1 (en) Shaped bodies, process for their preparation and use
US11712844B2 (en) Lightweight structures having increased structural integrity and an ultra-low coefficient of thermal expansion
KR102381313B1 (en) Method preparation of porous structure using 3D plotting
JPH10194845A (en) Ceramic member and its production
KR101767756B1 (en) Human bone mimetic porous titanium for biomedical application and manufacturing method thereof
KR101113157B1 (en) A method for zirconium oxide powder compaction using magnetic pulsed compaction apparatus, and zirconium oxide sintered body prepared by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Ref document number: 5127185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees