JP2003129111A - Porous sintered compact - Google Patents

Porous sintered compact

Info

Publication number
JP2003129111A
JP2003129111A JP2001320504A JP2001320504A JP2003129111A JP 2003129111 A JP2003129111 A JP 2003129111A JP 2001320504 A JP2001320504 A JP 2001320504A JP 2001320504 A JP2001320504 A JP 2001320504A JP 2003129111 A JP2003129111 A JP 2003129111A
Authority
JP
Japan
Prior art keywords
layer
sintered body
coarse
fine
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001320504A
Other languages
Japanese (ja)
Inventor
Masaaki Ikebe
政昭 池邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANALLOY INDUSTRY CO Ltd
Original Assignee
SANALLOY INDUSTRY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANALLOY INDUSTRY CO Ltd filed Critical SANALLOY INDUSTRY CO Ltd
Priority to JP2001320504A priority Critical patent/JP2003129111A/en
Publication of JP2003129111A publication Critical patent/JP2003129111A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a porous sintered compact to be easily cleaned, which is a sintered compact of a porous metal or ceramic, comprising a porous body provided with many micropores, and has a ground surface from which the ground chips are easily removed. SOLUTION: The porous sintered compact comprises a finely porous layer having mutually communicating holes of small diameters, which open to the surface, and a coarsely porous layer having mutually communicating holes of large diameters, which is joined to the finely porous layer, and comprises a cobalt-based or nickel-based hard metal. The method for manufacturing the sintered compact comprises filling a forming die with a fine grain powder and a coarse grain powder, compacting them so that the fine grain powder layer and the course grain powder layer come into contact with each other, then firing the above compact to make the porous sintered compact in which the finely porous layer of the fine grain powder layer and a coarsely porous layer of the coarse grain powder layer are joined in the sintered compact, forming the surface by grinding the finly porous layer, and cleaning the sintered compact layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、焼結体の気孔寸法
の異なる2つ以上の多孔性領域を備えた多孔質焼結体と
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous sintered body having two or more porous regions having different pore sizes of the sintered body and a method for producing the same.

【0002】[0002]

【従来の技術】金属または合金から成る多孔質焼結体
は、例えば、潤滑油を含浸した含油軸受や、気体若しく
は液体を濾過するフィルタ等として利用されている。多
孔質焼結体は、焼結されたままで使用される場合もある
が、多くは、研削、研摩、その他仕上げ加工等により、
表面を研削ないし研摩して(以下には、研摩と表面仕上
げも含めて単に、研削という)、所望形状の成形される
ことが多い。
2. Description of the Related Art Porous sintered bodies made of metals or alloys are used, for example, as oil-impregnated bearings impregnated with lubricating oil and filters for filtering gas or liquid. The porous sintered body may be used as it is sintered, but in many cases, it is subjected to grinding, polishing, and other finishing processes.
The surface is often ground or polished (hereinafter, simply referred to as grinding including polishing and surface finishing) to form a desired shape.

【0003】多孔質焼結体は、微粒の焼結原料の粉末
(例えば、合金微紛)から焼結されて、連通した多数の
微細孔を有するが、この焼結体の表面を研削すると、削
り屑となった合金の微粒子が焼結体の空隙ないし気孔中
に入込んで閉塞することが多く、用途によっては、気孔
の閉塞は、製品特性を著しく低下させることがあった。
それ故、研削後には、焼結体を洗浄して気孔の詰まりを
取り除くことがなされている。さらに、使用中において
も、例えば、フィルタは、目詰まりを起こし易く、目詰
まりは、フィルタを通過する流体の流通抵抗ないし圧損
を高めるので、好ましくない。
A porous sintered body is sintered from a fine powder of a sintering raw material (for example, alloy fine powder) and has a large number of communicating fine pores. When the surface of this sintered body is ground, The fine particles of the alloy that have become shavings often enter the pores or pores of the sintered body and are clogged, and depending on the application, the clogging of pores may significantly deteriorate the product characteristics.
Therefore, after grinding, the sintered body is cleaned to remove the clogging of pores. Furthermore, even during use, for example, the filter is likely to be clogged, and the clogging increases the flow resistance or pressure loss of the fluid passing through the filter, which is not preferable.

【0004】[0004]

【発明が解決しようとする課題】研削屑の除去方法とし
ては、従来は、超音波洗浄をしたり、研削加工面の反対
側の面から高圧の水や空気を流して屑粒子を押し流すこ
とが実施されている。研削屑粒子が、焼結体の開口寸法
50μm以下の微細な気孔に入り込むと、取り除くのは
容易でなかった。
Conventionally, as a method for removing grinding debris, ultrasonic cleaning is performed, or high-pressure water or air is made to flow from the surface opposite to the grinding surface to push away the debris particles. It has been implemented. It was not easy to remove the grinding dust particles when they entered the fine pores of the sintered body having an opening size of 50 μm or less.

【0005】本発明は、上記の問題に鑑み、微細な気孔
を備えた焼結体の表面を研削した際の研削面から入り込
んだ研削屑粒子を洗浄により容易に除去することができ
る多孔質焼結体を提供しようとするものである。本発明
は、さらに、このような研削面からの研削屑除去のため
に洗浄容易な多孔質焼結体の製造方法を提供しようとす
るものである。
In view of the above problems, the present invention is a porous calcination that can easily remove by grinding the grinding dust particles that have entered from the ground surface when the surface of a sintered body having fine pores is ground. It is an attempt to provide a union. The present invention further seeks to provide a method for producing a porous sintered body which is easy to wash for removing grinding debris from such a ground surface.

【0006】[0006]

【課題を解決するための手段】本発明の多孔質焼結体
は、気孔寸法の異なる2つ以上の多孔性領域を連通して
備えて成るものである。多孔質焼結体は、好ましくは、
2つ以上の多孔性領域が、連通孔の寸法が小さい細孔層
と連通孔の寸法が大きい粗孔層とから成るものである。
そして、細孔層の研削された表面を有し、その研削面が
所要の機能を果たすように利用される。
The porous sintered body of the present invention comprises two or more porous regions having different pore sizes in communication with each other. The porous sintered body is preferably
The two or more porous regions are composed of a fine pore layer having a small communication hole size and a coarse pore layer having a large communication hole size.
Then, it has a ground surface of the pore layer, and the ground surface is utilized so as to perform a required function.

【0007】即ち、本発明の多孔質焼結体は、多孔質焼
結層から成る焼結体であって、焼結層が、焼結体表面に
開口し連通する小径の連通孔を有する細孔層と、該細孔
層に接合して互いに連通する大径の連通孔を有する粗孔
層と、から成ることを特徴としている。
That is, the porous sintered body of the present invention is a sintered body composed of a porous sintered layer, and the sintered layer has a small-diameter communicating hole that opens and communicates with the surface of the sintered body. It is characterized in that it comprises a pore layer and a coarse pore layer having a large-diameter communicating hole that is connected to the pore layer and communicates with each other.

【0008】細孔層は、通常はその機能面での細孔の機
能が果たせれば、細孔層の厚みは比較的薄くすることが
できるので、細孔層の背面側に、粗い気孔を有する粗孔
層を形成することによって、細孔層を補強することがで
きて焼結体の用途に応じて必要な焼結体寸法と強度保持
とを図ることができる。
In the pore layer, the thickness of the pore layer can usually be made relatively thin if the function of the pores in its functional aspect can be fulfilled. Therefore, coarse pores are formed on the back surface side of the pore layer. By forming the coarse pore layer having the pores, the pore layer can be reinforced, and the required size and strength of the sintered body can be maintained depending on the intended use of the sintered body.

【0009】このような多層構造の多孔質焼結体は、研
削中に研削面から研削屑粒子が気孔中深く入り込んで
も、洗浄時には、研削屑粒子は、粗孔を通じて粗孔層側
に容易に押出して洗浄でき、また、研削面から浅く入り
込んだ屑粒子は、研削面の反対側の面から粗孔層を通じ
て圧力媒体を細孔層に供給して、屑粒子をその薄い細孔
層から容易に押出すことができる。このようにして、洗
浄容易な多孔質焼結体を提供することができる。
In such a porous sintered body having a multi-layered structure, even if grinding dust particles enter deep into the pores from the grinding surface during grinding, the grinding dust particles can easily pass through the coarse pores to the coarse pore layer side during cleaning. It can be extruded and washed, and scrap particles that have entered shallowly from the grinding surface can be easily supplied from the thin pore layer by supplying pressure medium to the pore layer from the surface opposite to the grinding surface through the coarse pore layer. Can be extruded. In this way, a porous sintered body that can be easily washed can be provided.

【0010】本発明の多孔質焼結体の製造方法は、細粒
粉末と粗粒粉末とを成形型内に充填して、成形型内に細
粒粉末層と粗粒粉末層とを互いに接触するように成形
し、次いで、該成形体を焼成して、焼結体中に細粒粉末
層から焼結した細孔層と粗粒粉末層から焼結した粗孔層
とが接合した多孔質焼結体を形成するものである。好ま
しくは、成形体を、成形型内から離型することなく、成
形型ごと、焼結温度で焼成して、多孔質焼結体に焼結す
る。
In the method for producing a porous sintered body of the present invention, a fine grain powder and a coarse grain powder are filled in a molding die, and the fine grain powder layer and the coarse grain powder layer are brought into contact with each other in the molding die. To form a porous body in which a fine-pore layer sintered from a fine-grain powder layer and a coarse-pore layer sintered from a coarse-grain powder layer are bonded in the sintered body. It forms a sintered body. Preferably, the molded body is sintered together with the molding die at a sintering temperature without being released from the molding die to sinter into a porous sintered body.

【0011】さらに、別の態様の製造方法は、細粒粉末
から成る細粒粉末層を加圧成形し、さらに、粗粒粉末か
ら成る粗粒粉末層を加圧成形し、該細粒粉末層と粗粒粉
末層とを接合して焼成し、一体に焼結させて、多孔質焼
結体を製造する方法を含む。
Further, in another production method, a fine-grained powder layer made of fine-grained powder is pressure-molded, and a coarse-grained powder layer made of coarse-grained powder is pressure-molded to obtain the fine-grained powder layer. And a coarse particle powder layer are joined, fired, and integrally sintered to produce a porous sintered body.

【0012】本発明には、加圧成形の際には、成形型内
で、細粒粉末層と粗粒粉末層とを重積して加圧形成し
て、次いで、離型した後に、加圧成形体を焼成して、焼
結する製造方法も含まれる。
According to the present invention, at the time of pressure molding, a fine-grained powder layer and a coarse-grained powder layer are stacked in a molding die so as to be pressure-molded, and then the mold is released. A manufacturing method in which the pressure-formed body is fired and sintered is also included.

【0013】[0013]

【発明の実施の形態】本発明の多孔質焼結体において
は、焼結体自体の形状と寸法はその用途に従うが、表面
層が用途所要の細孔層から構成され、細孔層の背後に粗
孔層が一体に形成される。
BEST MODE FOR CARRYING OUT THE INVENTION In the porous sintered body of the present invention, the shape and the size of the sintered body itself depend on the application, but the surface layer is composed of a pore layer required for the application, and A coarse hole layer is integrally formed on the.

【0014】細孔層の気孔径は、通常は多孔質焼結体の
用途によって大よそ決まるが、焼結体の細孔層の気孔径
は、例示すれば、平均で10〜40μmの範囲とし、こ
れに対して、粗孔層の平均気孔径は、40〜200μm
の範囲が利用される。上記細孔層の気孔径範囲は、通常
は、研削屑の詰まりを洗浄により除去するのが相対的に
困難であるのに対して、本発明の焼結体は、上記平均粒
径範囲の粗孔層を設けることにより、細孔層を薄く形成
して、細孔層の研削屑の除去を容易にすることができ
る。
The pore diameter of the fine pore layer is usually largely determined by the use of the porous sintered body, but the pore diameter of the fine pore layer of the sintered body is, for example, in the range of 10 to 40 μm on average. On the other hand, the average pore diameter of the coarse pore layer is 40 to 200 μm.
Range is used. The pore diameter range of the pore layer is usually relatively difficult to remove the clogging of grinding dust by washing, whereas the sintered body of the present invention has a coarse particle size range of the above average particle size range. By providing the pore layer, it is possible to form the pore layer thinly and facilitate removal of grinding dust in the pore layer.

【0015】そこで、細孔層の厚みは、多孔質焼結体の
用途で機能を達成するのに必要で、且つできるだけ薄い
のが好ましいが、その厚みは、例えば、0.5〜5mm
の範囲、好ましくは、1.0〜2.0mmの範囲が採用
される。そして、焼結体の全体の強度は背後の粗孔層の
強度により決定するようにできる。
Therefore, the thickness of the pore layer is necessary for achieving the function in the application of the porous sintered body and is preferably as thin as possible, but the thickness thereof is, for example, 0.5 to 5 mm.
The range of 1.0 to 2.0 mm is preferably adopted. The overall strength of the sintered body can be determined by the strength of the rough hole layer behind it.

【0016】本発明の多孔質焼結体は、金属、特に、合
金から形成でき、また、本発明の多孔質焼結体は、耐食
性や硬さの点からセラミックまたはガラスを利用するこ
ともできる。
The porous sintered body of the present invention can be formed of a metal, particularly an alloy, and the porous sintered body of the present invention can utilize ceramic or glass in view of corrosion resistance and hardness. .

【0017】本発明の多孔質焼結体は、細孔層の背面側
の粗孔層は、さらに、2つ以上の多孔層を含むんでもよ
い。このような三層以上の多層構造は、所要の機能を発
揮する細孔層に対して、所要の強度や設計上の厚みを確
保するのに適宜利用することができる。
In the porous sintered body of the present invention, the coarse pore layer on the back side of the fine pore layer may further include two or more porous layers. Such a multi-layer structure of three or more layers can be appropriately used to secure a required strength and a designed thickness for the pore layer that exhibits a required function.

【0018】本発明の多孔質焼結体は、細孔層表面を吸
着面とする減圧吸着部材として利用することができる。
特に電子部品を吸着して持ち上げて移送して降ろす昇降
搬送装置に利用することができ、このためには、耐摩耗
性の硬質の多孔質焼結体が利用される。
The porous sintered body of the present invention can be used as a reduced pressure adsorption member having the adsorption surface on the surface of the pore layer.
In particular, it can be used for an elevating / conveying device for adsorbing, picking up, transferring, and lowering an electronic component, and for this purpose, a wear-resistant hard porous sintered body is used.

【0019】また、この多孔質焼結体は、流体濾過用の
フィルター部材として利用することができる。この場合
には、流体に対して耐食性を有する材料から構成され、
また、流体抵抗の小さい粗孔層のバックアップにより、
細孔層の厚みを低減することができ、フィルターとし
て、流動抵抗を低くすることができる利点がある。この
場合には、焼結体の細孔層側を濾過面にして、濾過に使
用されが、フィルタ使用中の目詰まりに対しても、粗孔
層を通じて、洗浄用の流体を逆流して、細孔層の洗浄を
容易にすることができる。
The porous sintered body can be used as a filter member for fluid filtration. In this case, it is composed of a material having corrosion resistance to the fluid,
Also, by backing up the coarse pore layer with low fluid resistance,
There is an advantage that the thickness of the pore layer can be reduced and the flow resistance as a filter can be lowered. In this case, the porous layer side of the sintered body is used as a filtering surface, and it is used for filtration, but even for clogging during use of the filter, the cleaning fluid is allowed to flow backward through the coarse pore layer, Cleaning of the pore layer can be facilitated.

【0020】さらに、この多孔質焼結体は、細孔層の表
面を摺動面に利用し且つ連通孔を潤滑油含浸に使用する
摺動部材として利用することができる。このような摺動
部材には、滑り軸受、特に、含油軸受に利用され、回転
軸に対する耐摩耗性と共に、耐食性を有し、且つ、細孔
層の孔径分布を調整して潤滑油などの流体の供給量を制
御するように細孔層が調節される。
Further, the porous sintered body can be used as a sliding member which uses the surface of the fine pore layer as a sliding surface and uses the communication hole for impregnating lubricating oil. Such sliding members are used for sliding bearings, particularly oil-impregnated bearings, and have corrosion resistance as well as wear resistance for rotating shafts, and a fluid such as lubricating oil by adjusting the pore size distribution of the pore layer. The pore layer is adjusted to control the feed rate of

【0021】本発明の多孔質焼結体の製造は、基本的に
は、粒度の異なる粉末から、細粒粉末層と粗粒粉末層と
を加圧成形して、その成形体を焼成することに、細孔層
と粗孔層とから一体になる多孔質焼結体を形成する。
Basically, the porous sintered body of the present invention is manufactured by press-molding a fine-grained powder layer and a coarse-grained powder layer from powders having different particle sizes, and firing the compact. Then, a porous sintered body is formed integrally with the fine pore layer and the coarse pore layer.

【0022】実施形態の1つとして、所要材料粉体の小
さい粒度を有する細粒粉末と、大きい粒度を有する粗粒
粉末とを準備して、圧粉体成形の金型内には、細粒粉末
からの細粒粉末層と、粗粒粉末からの粗粒粉末層とを上
下に重なるように充填する。これら二層が接触するよう
に配置される。このように二層重ねた粉末層は、プレス
等を用いて金型内で加圧圧縮され、圧粉体に加圧成形
し、次いで、加圧成形体を所要の温度で焼成して、多孔
質の焼結体とする。焼結体には、細粒粉末層から焼結さ
れた細孔層と、粗粒粉末層から形成された粗孔層とが互
いに接合して、形成されている。
As one of the embodiments, a fine-grained powder having a small grain size and a coarse-grained powder having a large grain size of a required material powder are prepared, and the fine grained powder is placed in a die for compacting. A fine-grained powder layer made of powder and a coarse-grained powder layer made of coarse-grained powder are filled so as to be vertically stacked. The two layers are arranged in contact. The two powder layers thus stacked are compressed in a mold by using a press or the like to be pressed into a green compact, and then the pressure molded body is fired at a required temperature to form a porous body. Use a high quality sintered body. The sintered body is formed by bonding a fine pore layer sintered from a fine grain powder layer and a coarse pore layer formed from a coarse grain powder layer to each other.

【0023】別の実施形態は、成形型内に二層の細粒粉
末層と粗粒粉末層とを形成し、成形型と共に細粒粉末層
と粗粒粉末層を焼成して焼結する方法を利用するもので
ある。所望形状の耐熱性の成形型、通常は、炭素型又は
黒鉛型を使用して、型の底面に細粒粉末を敷いて薄い厚
みに細粒粉末層にし、その上に粗粒粉末を所望厚みで敷
き詰めて粗粒粉末層とし、そのまま、焼成炉に入れて焼
成し焼結させるものである。焼成後には、細粉末層の焼
結した細孔層の表面を研削加工して、研削面として利用
される。金型を平型とすれば、相対的に平たい成形体に
して、焼成すればプレート状の焼結体製品とすることが
できる。
Another embodiment is a method in which two layers of a fine-grained powder layer and a coarse-grained powder layer are formed in a molding die, and the fine-grained powder layer and the coarse-grained powder layer are fired and sintered together with the molding die. Is used. Use a heat-resistant mold of desired shape, usually a carbon mold or a graphite mold, spread fine powder on the bottom of the mold to form a fine powder layer with a thin thickness, and then add coarse powder to the desired thickness. Is laid out to form a coarse-grained powder layer, which is then placed in a firing furnace and fired and sintered. After firing, the surface of the sintered fine pore layer of the fine powder layer is ground and used as a ground surface. If the mold is a flat mold, it can be made into a relatively flat molded body, and can be baked into a plate-shaped sintered product.

【0024】別の製造方法は、金型内で小さい粒度を有
する細粒粉末を充填して細粒粉末層にして、プレスによ
り圧縮して、所要厚みの細粒粉末層の圧粉体を形成す
る。これとは別に、金型内で大きい粒度を有する粗粒粉
末を充填して粗粒粉末層の圧粉体を形成する。次いで、
これら細粒粉末層の圧粉体と粗粒粉末層の圧粉体とを重
ね合わせて後に焼成して一体化し、細孔層と粗孔層とが
接合して一体化した多孔質焼結体を得る。
In another manufacturing method, a fine powder having a small particle size is filled in a mold to form a fine powder layer, which is compressed by a press to form a green compact having a required thickness. To do. Separately from this, a coarse powder having a large particle size is filled in a mold to form a green compact of a coarse powder layer. Then
A porous sintered body in which the green compact of the fine-grain powder layer and the green compact of the coarse-grain powder layer are superposed and then fired to be integrated, and the fine-pore layer and the coarse-pore layer are joined and integrated. To get

【0025】この製造方法においては、細粒粉末層の圧
粉体と粗粒粉末層の圧粉体とを重ね合わせの際に、細粒
粉末層と粗粒粉末層とをプレスなどにより適当に加圧し
て、適度に圧縮成形しておくことも採用できる。
In this manufacturing method, when the green compact powder layer and the coarse powder layer are pressed against each other, the fine powder layer and the coarse powder layer are appropriately pressed by a press or the like. It is also possible to adopt a method of pressurizing and appropriately compression-molding.

【0026】さらに別の実施形態として、焼結された細
孔層を有する焼結体と、これとは別体に、粗孔層を有す
る焼結体とを、別個に作り、細孔層の焼結体と粗孔層を
有する焼結体とを重ね合わせて、再度焼結することによ
り、細孔層と粗孔層とが積層一体化した多孔質焼結体を
得ることもできる。
As still another embodiment, a sintered body having a sintered fine pore layer and a sintered body having a coarse pore layer are separately prepared, and the fine pore layer It is also possible to obtain a porous sintered body in which the fine pore layer and the coarse pore layer are laminated and integrated by superposing the sintered body and the sintered body having the coarse pore layer and sintering again.

【0027】多孔質焼結体の製造に使用する焼結原料
は、上述のように、金属、特に、合金から形成できる。
また、本発明の多孔質焼結体は、耐食性や硬さの点から
セラミックまたはガラスを利用することもできる。特
に、上記の製造方法の中で、成形型内で成形した二層の
細粒粉末層と粗粒粉末層とを、成形型と共に、焼成して
焼結する方法においては、各粉末層は、特に加圧成形せ
ずに型内で焼結するの優れた材料を使用するのが好まし
く、このような焼結材料には、銅とその合金、鉄ないし
鋼、特に、ステンレス鋼、鉄基耐熱合金、その他ニッケ
ル又はコバルト基の耐熱合金、又は、コバルトまたはニ
ッケル基焼結合金、特に、コバルトマトリックスWCサ
ーメットが利用可能である。また、セラミック材料で
は、窒化ケイ素やサイアロン(Si−Al−O−N系セ
ラミック)が好ましく利用される。こけらの材料から、
粒度調製した細粒粉末と、粗粒粉末とを調製し、上記粉
末層にされる。
The sintering raw material used for producing the porous sintered body can be formed of a metal, particularly an alloy, as described above.
In addition, the porous sintered body of the present invention may use ceramic or glass from the viewpoint of corrosion resistance and hardness. In particular, in the above manufacturing method, in the method of firing and sintering the two layers of the fine-grained powder layer and the coarse-grained powder layer molded in the molding die, in the method of firing and sintering, each powder layer, In particular, it is preferable to use a material that can be sintered in the mold without pressure molding. Copper and its alloys, iron or steel, especially stainless steel, iron-based heat-resistant Alloys or other nickel or cobalt based refractory alloys or cobalt or nickel based sintered alloys, especially cobalt matrix WC cermets are available. Further, as the ceramic material, silicon nitride or sialon (Si-Al-O-N ceramic) is preferably used. From the material of these
A fine-grained powder having a controlled grain size and a coarse-grained powder are prepared and formed into the powder layer.

【0028】上記焼結材料においては、各細粒粉末と粗
粒粉末とは、粒子が予め高温度で焼結されているものが
好ましい。各粒子は、予め高温焼成されることにより概
ね球状の焼結粒子に成形されているので、上記のように
成形型内で二層の細粒粉末層と粗粒粉末層とを重積して
焼結する際の層内の焼結収縮が少なく、焼結体には、割
れ亀裂の発生を防止することができ、細孔層と粗孔層と
を均一で安定した焼結多孔体組織にすることができる利
点がある。
In the above-mentioned sintered material, it is preferable that the fine-grained powder and the coarse-grained powder are those whose particles have been previously sintered at a high temperature. Since each particle is preliminarily fired at a high temperature to be molded into a substantially spherical sintered particle, the two fine-grain powder layers and the coarse-grain powder layers are stacked in the molding die as described above. There is little sintering shrinkage in the layer during sintering, it is possible to prevent the occurrence of cracks and cracks in the sintered body, and the pore layer and the coarse pore layer have a uniform and stable sintered porous structure. There is an advantage that can be done.

【0029】製造方法の上記の実施形態においては、細
粒粉末の平均粒径が50〜200μmの範囲にあり、且
つ、粗粒粉末の平均粒径が200〜1000μmの範囲
にあるものが採用できる。粗粒粉末と粗粒粉末とのこの
粒径分布は、細孔層と粗孔層との下記の寸法範囲を決め
るものであるが、粗粒粉末の粒度を200〜1000μ
mとすることにより、細孔層の連通孔の平均孔径が40
μmの以下の範囲に調整することができる。また、粗粒
粉末の平均粒径が200〜1000μmとすることによ
り、粗孔層の平均孔径を40〜200μmに調整するこ
とができる。細粒粉末の粒度の下限を50μmとするの
が好ましいが、これより微細紛になると、焼結体成形時
の寸法変化が大きくなるために細孔層の連通孔の寸法の
制御が難しくなる。他方、粗粒粉末の粒径が1000μ
mを越えると粗孔層の平均孔径が200μmを越えて大
きくなりやすく、好ましくない。本発明の製造方法は、
このような粒度分布の粉末を用いて、成形体にし、これ
を焼成して焼結体を成形する。
In the above-described embodiment of the manufacturing method, it is possible to employ one in which the average particle size of the fine-grained powder is in the range of 50 to 200 μm and the average particle size of the coarse-grained powder is in the range of 200 to 1000 μm. . This particle size distribution of the coarse-grained powder and the coarse-grained powder determines the following dimensional range of the fine pore layer and the coarse-pore layer.
By setting m, the average pore diameter of the communicating pores of the pore layer is 40
It can be adjusted to the following range of μm. Further, by setting the average particle diameter of the coarse particle powder to 200 to 1000 μm, the average pore diameter of the coarse pore layer can be adjusted to 40 to 200 μm. It is preferable to set the lower limit of the particle size of the fine powder to 50 μm, but if the fine powder is smaller than this, the dimensional change at the time of compacting the sintered body becomes large, and it becomes difficult to control the size of the communicating holes of the fine pore layer. On the other hand, the grain size of coarse powder is 1000μ
When it exceeds m, the average pore size of the coarse pore layer tends to exceed 200 μm and becomes large, which is not preferable. The manufacturing method of the present invention is
A powder having such a particle size distribution is used to form a compact, which is fired to form a sintered body.

【0030】焼結体は、好ましくは、細孔層の連通孔の
平均孔径が10〜40μmの範囲であり、粗孔層の連通
孔の平均孔径が40〜200μmの範囲とする。細孔層
の連通孔の平均孔径は、焼結体の用途により、微小なも
のが利用されるが、好ましくは上記10〜40μmの範
囲から、適宜選ばれる。細孔層の平均孔径が10μm未
満では、用途によっては流体の通過抵抗が大きくなり好
ましくないが、焼結体を流体により洗浄する点からも、
好ましくない。他方の粗孔層の平均孔径の下限を40μ
mとするのは、平均孔径がこれより小さくなると、焼結
体の洗浄に際して、粗孔層を通して細孔層内の異物紛を
洗浄除去する効果が不充分であるからである。好ましく
は、粗孔層の平均孔径下限は、50μm以上、特に、6
0μm以上として、微紛の通過除去を容易にする。上限
は、200μmを越えると、気孔率が高い焼結体では、
細孔層を支持するための強度が不足する惧れが生じる。
このようにして、粗孔層の平均孔径の好ましい範囲は、
50〜200μmである。
In the sintered body, the average pore diameter of the communication holes of the fine pore layer is preferably in the range of 10 to 40 μm, and the average pore diameter of the communication holes of the coarse pore layer is preferably in the range of 40 to 200 μm. The average pore diameter of the communicating pores of the fine pore layer may be minute depending on the intended use of the sintered body, but is preferably appropriately selected from the above range of 10 to 40 μm. If the average pore diameter of the pore layer is less than 10 μm, the passage resistance of the fluid becomes large depending on the application, which is not preferable, but from the viewpoint of washing the sintered body with the fluid,
Not preferable. The lower limit of the average pore diameter of the other coarse pore layer is 40μ
The reason for setting m is that if the average pore size is smaller than this, the effect of washing and removing foreign matter powder in the fine pore layer through the coarse pore layer is insufficient when the sintered body is washed. Preferably, the lower limit of the average pore diameter of the coarse pore layer is 50 μm or more, and particularly 6
Setting it to 0 μm or more facilitates the passage and removal of fine powder. If the upper limit exceeds 200 μm, in a sintered body with high porosity,
There is a fear that the strength for supporting the porous layer will be insufficient.
In this way, the preferable range of the average pore diameter of the coarse pore layer is
It is 50 to 200 μm.

【0031】このような多孔質焼結体は、細孔層の表面
を含め、所望の表面形状と表面粗さに研削する。次い
で、研削紛等による細孔層内の気孔の詰まりを除くため
に洗浄する。洗浄は、圧空または加圧水を粗孔層表面か
ら、細孔層側に向けて供給して、細孔層の気孔内の研削
屑の微紛を押し出す。あるいは、水、洗浄液その他の液
中に浸漬して超音波洗浄を行ってもよい。
Such a porous sintered body is ground to a desired surface shape and surface roughness including the surface of the pore layer. Then, cleaning is performed to remove clogging of pores in the fine pore layer due to grinding powder or the like. For cleaning, compressed air or pressurized water is supplied from the surface of the coarse pore layer toward the fine pore layer side, and fine powder of grinding dust in the pores of the fine pore layer is pushed out. Alternatively, ultrasonic cleaning may be performed by immersing in water, a cleaning liquid, or another liquid.

【0032】洗浄の1つの形態は、圧空を使用するもの
があり、例えば、粗孔層側から圧空を供給するために、
粗孔層の表面に空気ノズル先端を適宜押圧して、圧空を
供給して、細孔層表面から、放出して、細孔層の気孔内
を洗浄する。細孔層は薄く成形できるので、容易に研削
屑微紛を細孔層内から除去することができる。加圧空気
に代えて、加圧水を使用してもよい。
One form of cleaning is to use compressed air, for example, to supply compressed air from the side of the coarse pore layer,
The tip of the air nozzle is appropriately pressed against the surface of the coarse pore layer to supply compressed air, which is discharged from the surface of the fine pore layer to wash the inside of the fine pores of the fine pore layer. Since the fine pore layer can be thinly formed, fine particles of grinding dust can be easily removed from the fine pore layer. Pressurized water may be used instead of the pressurized air.

【0033】このようにして細孔層と粗孔層とに積層し
て細孔層の研削表面を調製した多孔質焼結体は、例え
ば、含油軸受や、液体または気体のフィルタ装置のフィ
ルタに利用される。さらに、このような多孔質焼結体
は、電子部品その他の部品を吸着板により減圧吸着して
移送するような吸着装置の吸着板に利用することがでる
きる。
The porous sintered body in which the ground surface of the fine pore layer is prepared by laminating the fine pore layer and the coarse pore layer in this way can be used, for example, in an oil-impregnated bearing or a filter of a liquid or gas filter device. Used. Further, such a porous sintered body can be used as an adsorption plate of an adsorption device in which electronic components and other components are adsorbed under reduced pressure by an adsorption plate and transferred.

【0034】[0034]

【実施例】[実施例1]焼結材料には、Co基焼結合金
として、この例では、WC−15%Co系の焼結合金粉
末を使用した。焼結合金粉末は、予め焼結可能な温度領
域で焼成されて、合金化されたもので、細粒粉末とし
て、粒度100〜180μmの範囲に入る粉末と、粗粒
粉末として粒度300〜350μmの範囲に入る粉末を
準備した。
[Example 1] In this example, a WC-15% Co-based sintered alloy powder was used as a Co-based sintered alloy for the sintering material. Sintered alloy powder is obtained by firing in a temperature range in which sintering is possible in advance and alloyed. Fine powder having a particle size of 100 to 180 μm and coarse powder having a particle size of 300 to 350 μm. A powder that falls within the range was prepared.

【0035】図1に示すような型内形80mm×80m
m深さ10mmの炭素質型枠5の底面50上に、細粒粉
末を厚み約2mmで、敷き詰めて、細粒粉末層20にし
(図1(A))、その上に、粗粒粉末を充填して、型枠
上面52にすりきりまで充填て粗粒粉末層30にした
(図1(B))。その後、型枠5ごとに焼結炉に装入し
て、焼結温度1350℃に昇温し保持して焼成し(図1
(C))、80mm×80mm深さ10mmの焼結体1
を得た。焼結体1を型枠5から外して、ダイヤモンド砥
石を用いて、細孔層2の表面21と反対側の粗孔層3の
表面31とをそれぞれ0.5mmづつ研削した(図1
(D))。
In-mold shape as shown in FIG. 1 80 mm × 80 m
On the bottom surface 50 of the carbonaceous mold 5 having a depth of 10 mm, the fine-grained powder having a thickness of about 2 mm is spread to form the fine-grained powder layer 20 (FIG. 1 (A)), and the coarse-grained powder is placed thereon. After filling, the upper surface 52 of the mold was filled up to the scraping to form the coarse-grained powder layer 30 (FIG. 1 (B)). Then, each mold 5 is charged into a sintering furnace, heated to a sintering temperature of 1350 ° C., held and fired (see FIG.
(C)), a sintered body 1 having a depth of 80 mm × 80 mm and a depth of 10 mm
Got The sintered body 1 was removed from the mold 5, and a diamond grindstone was used to grind the surface 21 of the pore layer 2 and the surface 31 of the coarse pore layer 3 on the opposite side by 0.5 mm (FIG. 1).
(D)).

【0036】比較例は、実施例1と同様に上記WC−1
5%Co系の焼結合金粉末の細粒粉末だけを用いて、同
様の型枠内の上面すりきりまで充填して、細粒粉末層2
0だけを形成し、同様にして型枠ごと焼成して焼結し、
次いで、表裏を同様に0.5mmづつ研削して、比較例
とした。
The comparative example is the same as the example 1 except that the WC-1
A fine-grained powder layer 2 was prepared by using only fine-grained powder of a 5% Co-based sintered alloy powder to fill up to the upper surface scraping in a similar mold.
Only 0 is formed, and the mold is fired and sintered in the same manner.
Next, the front and back surfaces were similarly ground by 0.5 mm to give a comparative example.

【0037】実施例1と比較例の試料焼結体は、洗浄液
中で表面と裏面とをそれぞれ下側に向けて2回づつ、超
音波洗浄した。
The sample sintered bodies of Example 1 and Comparative Example were ultrasonically cleaned in the cleaning liquid twice, with the front surface and the back surface facing downward, respectively.

【0038】さらに、洗浄の程度を検査するため、さら
に、表面と裏面を下方に向けて、それぞれ1回づつ20
分間の超音波洗浄をして、残留物の有無を確認した。試
験結果は、二層構造の多孔質焼結体は、検査洗浄によっ
ても残留物を認められなかったが、細孔層単層にした比
較例は、なお、細孔層内からの残留物を確認した。
Further, in order to inspect the degree of cleaning, the front surface and the back surface are further turned downward, and once each, 20 times.
After ultrasonic cleaning for 1 minute, the presence or absence of residue was confirmed. The test results showed that no residue was found in the porous sintered body having a two-layer structure even after inspection and cleaning, but in the comparative example in which the pore layer was a single layer, the residue from inside the pore layer was still observed. confirmed.

【0039】[実施例2]実施例1に使用したWC−1
5%Co系焼結合金粉末の細粒粉末(粒度100〜18
0μmの範囲)から、それぞれ別個に、金型5aから外
形80mm×80mmで厚み10mmの粗粒粉末層20
の多孔性圧粉体をプレスにより成形した。同様にして、
粗粒粉末(粒度300〜350μmの範囲)から金型5
bから外形80mm×80mmで厚み10mmの粗粒粉
末層30の多孔性圧粉体をプレスにより成形した。細粒
粉末層20の成形体は、ワイヤー加工により、80mm
×80mmで厚み2.5mmに切り出した(図2
(B))。薄くした細粒粉末層20の圧粉体を、粗粒粉
末層30の成形体に面接して、焼結させ(図2
(D))、細孔層と粗孔層とが重積一体にした2層焼結
体(図2(E))とした。
[Example 2] WC-1 used in Example 1
Fine-grained powder of 5% Co-based sintered alloy powder (particle size 100 to 18
0 μm range), each separately from the mold 5a, the coarse particle powder layer 20 having an outer diameter of 80 mm × 80 mm and a thickness of 10 mm.
The porous green compact of was molded by pressing. Similarly,
Coarse-grained powder (grain size 300-350 μm range) to mold 5
From b, a porous green compact of the coarse-grained powder layer 30 having an outer shape of 80 mm × 80 mm and a thickness of 10 mm was formed by pressing. The compact of the fine grain powder layer 20 is 80 mm by wire processing.
It was cut out to a thickness of 2.5 mm with x80 mm (Fig. 2
(B)). The green compact of the fine-grained powder layer 20 that has been thinned is brought into contact with the compact of the coarse-grained powder layer 30 and sintered (see FIG. 2).
(D)), a two-layer sintered body (FIG. 2 (E)) in which the fine pore layer and the coarse pore layer are laminated and integrated.

【0040】2層焼結体1は、細孔層2側の表面21
と、粗孔層3側の表面31とをそれぞれ0.5mmづつ
ダイヤモンド砥石で研削し(図2(F))、上記実施例
1と同様に、超音波洗浄をした。さらに、実施例1と同
様にして、洗浄試験を超音波洗浄法により行ったが、細
孔層の残留物は確認されなかった。
The two-layer sintered body 1 has a surface 21 on the pore layer 2 side.
And the surface 31 on the side of the rough hole layer 3 were each ground by 0.5 mm with a diamond grindstone (FIG. 2 (F)), and ultrasonically cleaned in the same manner as in Example 1 above. Further, a cleaning test was conducted by an ultrasonic cleaning method in the same manner as in Example 1, but no residue of the pore layer was confirmed.

【0041】[0041]

【発明の効果】本発明の多孔質焼結体は、多孔質焼結層
から成る焼結体であって、焼結層が、焼結体表面に開口
し連通する小径の連通孔を有する細孔層と、該細孔層の
連通孔に接合して互いに連通する大径の連通孔を有する
粗孔層と、から成るものであるから、多孔質焼結体の用
途に所要の細孔の孔径を有する薄い細孔層と、背後を強
化する粗孔層の組合せを選ぶことができ、細孔層表面の
研削による詰りや使用中の閉塞が生じても、洗浄により
容易に除去して、細孔層を再生できる利点がある。
The porous sintered body of the present invention is a sintered body composed of a porous sintered layer, and the sintered layer has a small-diameter communicating hole that opens and communicates with the surface of the sintered body. Since it is composed of a pore layer and a coarse pore layer having a large-diameter communicating hole which is connected to the communicating hole of the pore layer and communicates with each other, the pores required for the application of the porous sintered body are It is possible to select a combination of a thin pore layer having a pore size and a coarse pore layer that strengthens the back, and even if clogging due to grinding of the pore layer surface or clogging during use occurs, it can be easily removed by washing, There is an advantage that the porous layer can be regenerated.

【0042】多孔質焼結体にコバルトまたはニッケル基
焼結合金を使用すれば、焼結体は、耐熱性、耐食性、高
温強度、特に、耐摩耗性を付与することができる。ま
た、細孔層の連通孔の平均孔径が10〜40μmの範囲
であり、粗孔層の連通孔の平均孔径が40〜20μmの
範囲とすれば、研削中ないしは使用中の閉塞しがちな細
孔層を、適宜洗浄することにより、上記気孔径の範囲で
好適に使用することができる。
If a cobalt- or nickel-based sintered alloy is used for the porous sintered body, the sintered body can be endowed with heat resistance, corrosion resistance, high temperature strength, and especially wear resistance. Further, when the average pore diameter of the communication holes of the fine pore layer is in the range of 10 to 40 μm and the average pore diameter of the communication holes of the coarse pore layer is in the range of 40 to 20 μm, fine particles that tend to be blocked during grinding or during use. By appropriately washing the pore layer, the pore layer can be suitably used within the above pore size range.

【0043】本発明の多孔質焼結体を、上記多孔質焼結
体の細孔層表面を吸着面とする減圧吸着部材に使用すれ
ば、細孔層の孔径を微小にするので、吸着面を平滑にし
得て、吸着すべ相手部材に、突起の形成その他の表面損
傷を与えることがなく平滑面を保持することができる、
さらに、使用中の吸引による細孔層の目詰まりに対し
て、粗孔層を通じて洗浄が容易であるから、吸着面の再
生が容易になし得る利点がある。
When the porous sintered body of the present invention is used as a reduced pressure adsorption member having the surface of the fine pore layer of the porous sintered body as the adsorption surface, the pore diameter of the fine pore layer becomes small, so that the adsorption surface Can be made smooth, and a smooth surface can be held without giving protrusions or other surface damage to the mating member to be attracted.
Further, there is an advantage that the adsorption surface can be easily regenerated because the pore layer is clogged due to suction during use and can be easily washed through the coarse pore layer.

【0044】本発明の多孔質焼結体を、流体濾過用のフ
ィルター部材に利用すれば、焼結体の細孔層側を濾過面
にして、濾過に使用されが、フィルタ使用中の目詰まり
に対しても、粗孔層を通じて、洗浄用の流体を逆流する
などして、細孔層の洗浄を容易にすることができる。
When the porous sintered body of the present invention is used as a filter member for fluid filtration, it is used for filtration with the pore layer side of the sintered body as the filtration surface, but clogging occurs during use of the filter. However, the cleaning of the fine pore layer can be facilitated by backflowing the cleaning fluid through the coarse pore layer.

【0045】多孔質焼結体を、細孔層の表面を摺動面に
利用して該連通孔を潤滑油含浸に使用する摺動部材とす
れば、背後の粗孔層内を利用して潤滑油を摺動面に供給
でき、細孔層は薄くでき、且つ、細孔層内は互いに隣接
して連通する連通孔間の間隔が狭くなるので、毛細管現
象により、潤滑油を、油切れを生じることなく、安定し
て摺動面に供給できる利点がある。
If the porous sintered body is used as a sliding member in which the surface of the fine pore layer is used as the sliding surface and the communication hole is used for impregnating the lubricating oil, the inside of the coarse pore layer is used. Lubricating oil can be supplied to the sliding surface, the pore layer can be made thin, and the distance between the communicating holes that are adjacent to each other in the pore layer can be narrowed. There is an advantage that it can be stably supplied to the sliding surface without causing

【0046】本発明の多孔質焼結体の製造方法であっ
て、成形型内に細粒粉末から成る細粒粉末層と、粗粒粉
末から成る粗粒粉末層とを互いに接触するように充填成
形し、次いで、該成形体を焼成して、焼結体中に細粒粉
末層から焼結した細孔層と粗粒粉末層から焼結した粗孔
層とが接合した多孔質焼結体を形成し、細孔層を研削し
て表面を形成するように特に、成形体を、成形型内から
離型することなく、成形型ごと、焼結温度で焼成して、
多孔質焼結体に焼結するので、焼結手順が簡単で、細孔
層及び粗孔層は、焼結体の気孔度を高くしても十分に強
度のある焼結体が得られる、細粒粉末と粗粒粉末とをコ
バルト基またはニッケル基焼結合金の焼結紛とすれば、
既に粒子間の焼結速度が高く、相対的に焼結収縮が少な
く、且つ、気孔率の高い多孔質焼結体が得られる。
In the method for producing a porous sintered body of the present invention, a fine grain powder layer made of fine grain powder and a coarse grain powder layer made of coarse grain powder are filled in a mold so as to be in contact with each other. A porous sintered body obtained by molding, and then firing the molded body to bond a fine pore layer sintered from a fine grain powder layer and a coarse pore layer sintered from a coarse grain powder layer in the sintered body. To form a surface by grinding the pore layer, in particular, the molded body, without releasing from the mold, is fired at the sintering temperature for each mold.
Since it is sintered into a porous sintered body, the sintering procedure is simple, and the fine pore layer and the coarse pore layer have a sufficiently strong sintered body even if the porosity of the sintered body is increased, If fine-grained powder and coarse-grained powder are sintered powder of a cobalt-based or nickel-based sintered alloy,
A porous sintered body having a high sintering rate between particles, a relatively small sintering shrinkage, and a high porosity can be obtained.

【0047】特に、細粒粉末の平均粒径が50〜200
μmの範囲にあり、且つ、粗粒粉末の平均粒径が200
〜1000μmの範囲にすることにより、焼結過程を通
じて、細孔層と粗孔層の平均孔径の制御が容易になり、
粗孔層による細孔層の支持が適切に行え、細孔層を薄く
設定することが容易となる利点がある。
Particularly, the average particle diameter of the fine powder is 50 to 200.
The average particle size of the coarse powder is 200
By setting it in the range of up to 1000 μm, it becomes easy to control the average pore diameter of the fine pore layer and the coarse pore layer through the sintering process,
There is an advantage that the fine pore layer can be properly supported by the coarse pore layer, and the fine pore layer can be easily set.

【0048】さらに、細孔層の連通孔の平均孔径が10
〜40μmの範囲であり、粗孔層の連通孔の平均孔径が
40〜200μmの範囲とすれば、研削中ないしは使用
中の閉塞しがちな細孔層を、適宜容易に洗浄することが
でき、上記気孔径の範囲で好適に使用できる多孔質焼結
体にすることができる。
Further, the average pore diameter of the communicating pores in the fine pore layer is 10
If the average pore diameter of the communication holes of the coarse pore layer is in the range of 40 to 200 μm, the pore layer that tends to be clogged during grinding or use can be appropriately and easily washed, A porous sintered body that can be suitably used in the above pore size range can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係る多孔質焼結体の製造工
程を示す模式的断面図である(A〜D)。
FIG. 1 is a schematic cross-sectional view showing a manufacturing process of a porous sintered body according to an example of the present invention (A to D).

【図2】 本発明の別の実施形態に係る多孔質焼結体の
製造工程を示す模式的断面図である(A〜F)。
FIG. 2 is a schematic cross-sectional view showing a manufacturing process of a porous sintered body according to another embodiment of the present invention (A to F).

【符号の説明】[Explanation of symbols]

1 多孔質焼結体 2 細孔層 20 細粒粉末層 3 粗孔層 30 粗粒粉末層 5 成形型 1 Porous sintered body 2 Pore layer 20 Fine-grained powder layer 3 Coarse pore layer 30 coarse-grained powder layer 5 Mold

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 多孔質焼結層から成る焼結体であって、 焼結層が、焼結体表面に開口し連通する小径の連通孔を
有する細孔層と、該細孔層の連通孔に接合して互いに連
通する大径の連通孔を有する粗孔層と、から成ることを
特徴とする多孔質焼結体。
1. A sintered body comprising a porous sintered layer, wherein the sintered layer has a pore layer having a small-diameter communicating hole that is open and communicates with the surface of the sintered body, and the pore layer communicates with the pore layer. A porous sintered body comprising: a coarse pore layer having a large diameter communicating hole that is connected to the hole and communicates with each other.
【請求項2】 焼結体が、コバルト基又はニッケル基焼
結合金である請求項1に記載の多孔質焼結体。
2. The porous sintered body according to claim 1, wherein the sintered body is a cobalt-based or nickel-based sintered alloy.
【請求項3】 細孔層の連通孔の平均孔径が10〜40
μmの範囲であり、粗孔層の連通孔の平均孔径が40〜
200μmの範囲である請求項1又は2に記載の多孔質
焼結体。
3. The average pore diameter of the communicating pores of the fine pore layer is 10 to 40.
It is in the range of μm, and the average pore diameter of the communication pores of the coarse pore layer is 40 to
The porous sintered body according to claim 1 or 2, which has a range of 200 μm.
【請求項4】 細孔層の表面が研削面である請求項1な
いし3に記載の多孔質焼結体。
4. The porous sintered body according to claim 1, wherein the surface of the pore layer is a ground surface.
【請求項5】 請求項1ないし4に記載の多孔質焼結体
の上記多孔質焼結体の細孔層表面を吸着面とする減圧吸
着部材。
5. A reduced pressure adsorption member having an adsorption surface on the surface of a pore layer of the porous sintered body of the porous sintered body according to claim 1.
【請求項6】 請求項1ないし4に記載の多孔質焼結体
を含む流体濾過用のフィルター部材。
6. A filter member for fluid filtration, comprising the porous sintered body according to claim 1.
【請求項7】 請求項1ないし4に記載の多孔質焼結体
を含み、細孔層の表面を摺動面とし、且つ、該連通孔を
潤滑油含浸に使用する摺動部材。
7. A sliding member comprising the porous sintered body according to claim 1, wherein the surface of the pore layer is a sliding surface, and the communicating hole is used for lubricating oil impregnation.
【請求項8】 多孔質焼結層から成る焼結体の製造方法
であって、 成形型内に細粒粉末から成る細粒粉末層と、粗粒粉末か
ら成る粗粒粉末層とを互いに接触するように充填成形
し、次いで、該成形体を焼成して、焼結体中に細粒粉末
層から焼結した細孔層と粗粒粉末層から焼結した粗孔層
とが接合した多孔質焼結体を形成し、細孔層を研削して
表面を形成するようにした多孔質焼結体の製造方法。
8. A method for producing a sintered body comprising a porous sintered layer, wherein a fine-grained powder layer made of fine-grained powder and a coarse-grained powder layer made of coarse-grained powder are contacted with each other in a mold. To form a porous body in which a fine pore layer sintered from a fine-grain powder layer and a coarse pore layer sintered from a coarse-grain powder layer are bonded in the sintered body. A method for producing a porous sintered body, which comprises forming a porous sintered body and grinding a fine pore layer to form a surface.
【請求項9】 成形体を、成形型内から離型することな
く、成形型ごと、焼結温度で焼成して、多孔質焼結体に
焼結する請求項8に記載の製造方法。
9. The manufacturing method according to claim 8, wherein the molded body is sintered together with the molding die at a sintering temperature without being released from the molding die to sinter into a porous sintered body.
【請求項10】 細粒粉末から成る細粒粉末層を加圧成
形し、粗粒粉末から成る粗粒粉末層を加圧成形し、該細
粒粉末層と粗粒粉末層とを接合して焼成し、一体に焼結
させるようにした多孔質焼結体の製造方法。
10. A fine-grained powder layer made of fine-grained powder is pressure-formed, a coarse-grained powder layer made of coarse-grained powder is pressure-formed, and the fine-grained powder layer and the coarse-grained powder layer are joined together. A method for manufacturing a porous sintered body, which is fired and integrally sintered.
【請求項11】 細粒粉末と粗粒粉末とが、コバルト基
またはニッケル基焼結合金の焼結紛である請求項8ない
し10いずれかに記載の製造方法。
11. The manufacturing method according to claim 8, wherein the fine-grained powder and the coarse-grained powder are sintered powders of a cobalt-based or nickel-based sintered alloy.
【請求項12】 細粒粉末の平均粒径が50〜200μ
mの範囲にあり、且つ、粗粒粉末の平均粒径が200〜
1000μmの範囲にある請求項8ないし10いずれか
に記載の製造方法。
12. The average particle size of fine powder is 50 to 200 μm.
m, and the average particle diameter of the coarse powder is 200 to
The manufacturing method according to any one of claims 8 to 10, which is in a range of 1000 µm.
【請求項13】 細孔層の連通孔の平均孔径が10〜4
0μmの範囲であり、粗孔層の連通孔の平均孔径が40
〜200μmの範囲である請求項8ないし12いずれか
に記載の製造方法。
13. The average pore diameter of the communicating pores of the pore layer is 10 to 4
It is in the range of 0 μm, and the average pore diameter of the communicating pores of the coarse pore layer is 40
It is the range of -200 micrometers, The manufacturing method in any one of Claim 8 thru | or 12.
【請求項14】 さらに、多孔質焼結体の細孔層の連通
孔を洗浄するようにした請求項8ないし13いずれかに
記載の製造方法。
14. The manufacturing method according to claim 8, wherein the communicating holes of the pore layer of the porous sintered body are washed.
JP2001320504A 2001-10-18 2001-10-18 Porous sintered compact Pending JP2003129111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320504A JP2003129111A (en) 2001-10-18 2001-10-18 Porous sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320504A JP2003129111A (en) 2001-10-18 2001-10-18 Porous sintered compact

Publications (1)

Publication Number Publication Date
JP2003129111A true JP2003129111A (en) 2003-05-08

Family

ID=19137886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320504A Pending JP2003129111A (en) 2001-10-18 2001-10-18 Porous sintered compact

Country Status (1)

Country Link
JP (1) JP2003129111A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105544A (en) * 2003-09-29 2005-04-21 Toto Ltd Private part washing device
WO2006004011A1 (en) * 2004-07-02 2006-01-12 Mold Research Co., Ltd. Filter and manufacturing method thereof
JP2007005333A (en) * 2005-06-21 2007-01-11 Ckd Corp Porous plate and manufacturing method thereof
CN107790723A (en) * 2017-10-31 2018-03-13 攀钢集团攀枝花钢铁研究院有限公司 A kind of preparation method of gradient titanium porous material
JP2018518206A (en) * 2015-05-14 2018-07-12 シンハン セラミック カンパニー,リミテッド Ceramic filter for syringe and manufacturing method thereof
US20220184703A1 (en) * 2020-12-14 2022-06-16 Entegris, Inc. Multi-layer composites with varied layer thicknesses and related methods
CN115138836A (en) * 2022-07-06 2022-10-04 西部宝德科技股份有限公司 High performance liquid chromatography column sieve plate and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105544A (en) * 2003-09-29 2005-04-21 Toto Ltd Private part washing device
WO2006004011A1 (en) * 2004-07-02 2006-01-12 Mold Research Co., Ltd. Filter and manufacturing method thereof
JP2007005333A (en) * 2005-06-21 2007-01-11 Ckd Corp Porous plate and manufacturing method thereof
JP4740656B2 (en) * 2005-06-21 2011-08-03 シーケーディ株式会社 Porous plate and method for producing the same
JP2018518206A (en) * 2015-05-14 2018-07-12 シンハン セラミック カンパニー,リミテッド Ceramic filter for syringe and manufacturing method thereof
CN107790723A (en) * 2017-10-31 2018-03-13 攀钢集团攀枝花钢铁研究院有限公司 A kind of preparation method of gradient titanium porous material
US20220184703A1 (en) * 2020-12-14 2022-06-16 Entegris, Inc. Multi-layer composites with varied layer thicknesses and related methods
WO2022132461A1 (en) * 2020-12-14 2022-06-23 Entegris, Inc. Multi-layer composites with varied layer thicknesses, and related methods
US11911822B2 (en) * 2020-12-14 2024-02-27 Entegris, Inc. Multi-layer composites with varied layer thicknesses and related methods
CN115138836A (en) * 2022-07-06 2022-10-04 西部宝德科技股份有限公司 High performance liquid chromatography column sieve plate and preparation method thereof
CN115138836B (en) * 2022-07-06 2024-04-02 西部宝德科技股份有限公司 High performance liquid chromatographic column sieve plate and preparation method thereof

Similar Documents

Publication Publication Date Title
US9403137B2 (en) Polycrystalline diamond material with extremely fine microstructures
US7976596B2 (en) High density abrasive compacts
KR20110015655A (en) Method for producing a pcd compact
US6551551B1 (en) Sinter bonding using a bonding agent
TWI244953B (en) Method for forming powder metal scrolls
EP0478310A2 (en) Composite diamond abrasive compact
CN106573298A (en) A method of making cermet or cemented carbide powder
JPS6229387B2 (en)
JP2005531689A (en) Method for producing a highly porous metal compact close to the final contour
CN102781607A (en) Coated metallic powder and method of making the same
CN102781609A (en) Engineered powder compact composite material
EP1569806A2 (en) Metal engraving method, article, and apparatus
WO2012128708A1 (en) Method of preparation of a metal/cemented carbide functionally graded material
AU760519B2 (en) Method for making a sintered article and products produced thereby
TWI513548B (en) A grindstone and a grinding and polishing device using the grindstone
JPH09194909A (en) Composite material and its production
JPH09103965A (en) Porous superbrasive grinding wheel and its manufacture
JP2003129111A (en) Porous sintered compact
KR100787016B1 (en) Tungsten carbide-based ultra-hard material, producing method thereof, molding mold for molding surfaces using said material, and producing method of said mold
JP2003181765A (en) Porous supergrain grinding stone and method for manufacturing the same
JPS62205203A (en) Production of ultrafine short metallic fiber
JPH06316470A (en) Preparation of polycrystalline diamond molded article
KR101201259B1 (en) Method for manufacturing cmp pad conditioner using bulk metallic glass
JPS61231104A (en) Production of hard constitutional element
JPH071339A (en) Porous metal-bonded grinding wheel and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060927

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070302