WO2006004011A1 - Filter and manufacturing method thereof - Google Patents

Filter and manufacturing method thereof Download PDF

Info

Publication number
WO2006004011A1
WO2006004011A1 PCT/JP2005/012116 JP2005012116W WO2006004011A1 WO 2006004011 A1 WO2006004011 A1 WO 2006004011A1 JP 2005012116 W JP2005012116 W JP 2005012116W WO 2006004011 A1 WO2006004011 A1 WO 2006004011A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
powder
molding material
filter
molding
Prior art date
Application number
PCT/JP2005/012116
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimitsu Kankawa
Hiroshi Setowaki
Hiroshi Satomi
Hiroshi Kitou
Motoi Fukuda
Original Assignee
Mold Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mold Research Co., Ltd. filed Critical Mold Research Co., Ltd.
Priority to JP2006528823A priority Critical patent/JPWO2006004011A1/en
Publication of WO2006004011A1 publication Critical patent/WO2006004011A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature

Definitions

  • the present invention relates to a sintered filter in which an outer layer portion has a dense ceramic or metal force and an inner layer portion also has a porous ceramic or metal force, and a manufacturing method thereof.
  • a ceramic or metal porous body has been used as a filter for performing filtration.
  • a porous body is manufactured by using a ceramic or metal powder having a coarse particle size and sintering the pressed compact by a powder pressing method.
  • the manufactured sintered product is porous and fragile, it may be damaged when incorporated into a product such as a column, and it is necessary to prevent liquid leakage from the porous material. It is common to cover the outer periphery with another member. Therefore, ceramics and metal filters that use a porous sintered body are mainly those having an inner layer portion and an outer layer portion, and the inner layer portion is a ceramic, or is a filtration portion that is a metal porous body force.
  • the outer layer portion is provided in close contact with the outer periphery of the filtration portion, and plays a role of preventing damage to the filtration portion and liquid leakage.
  • a plastic material is used for the material of the outer layer, it may be damaged during use or may deteriorate with time, which increases the number of problems in use.
  • the liquid component that passes through the filtration part is a strong acid, strong alkali, or an organic solvent, the plastic material in the outer peripheral part is likely to deteriorate and liquid leakage is likely to occur.
  • the outer layer portion is made of a metal material and a porous body (inner layer portion) obtained by press molding is press-fitted.
  • the filter itself becomes thinner and its dimensions are reduced, It is difficult to manufacture products by press-fitting.
  • the porous property of the inner layer portion may be impaired by pressure, and since it is not integral molding, there is a risk of liquid leakage or separation between the inner layer portion and the outer layer portion being not completely adhered. .
  • Patent Documents 1 to 3 disclose a method and an apparatus for manufacturing a sintered product in which metals or ceramic layers having different densities are adhered.
  • Patent Document 1 cannot produce a plate-like laminated body and produce a force, the side wall of the porous sintered body is covered with a high-density sintered body to produce a filter. I can't.
  • Cited Document 2 since layers having different densities are laminated by pouring of slurry, it is impossible to form and force-manufacture layers by sequentially stacking layers. Therefore, it is difficult to manufacture a filter having a complex shape like a porous filter having a porous inner core, a high density outer peripheral force, and a filter having a branched shape. In addition, it is difficult to manufacture a product whose thickness varies in a desired shape in each layer.
  • the apparatus of cited document 3 is an apparatus for extrusion molding, and can only produce products having the same cross-sectional shape. Therefore, it is impossible to produce a product having a complicated shape with different cross-sectional shapes, and it is also impossible to change the thickness of each layer at an arbitrary place.
  • Patent Document 1 Japanese Patent Laid-Open No. 55-138007
  • Patent Document 2 JP 2001-278672 A
  • Patent Document 3 Japanese Patent Laid-Open No. 10-286812
  • the present invention has been made in consideration of the above-described problems in the prior art, and provides an integrated sintered filter in which the outer layer portion is a dense layer and the inner layer portion is porous. And a method for manufacturing the filter with high dimensional accuracy.
  • the present invention is a filter for filtering a sample by circulating the sample through a filtering part having a porous sintered body force, and the filtering part covers a high-density sintered body except for the inflow and outflow part of the sample.
  • the porous sintered body has a sintered relative density of 50 to 90%, and the high-density sintered body has The sintered relative density is 95% or more, and the interface between the porous sintered body and the high-density sintered body is integrated by sintering.
  • the filter according to the present invention has a filtration part that also has a porous sintered body strength, and the filtration part is covered with a high-density sintered body except for the sample inflow and outflow part.
  • the porous sintered body of the inner layer part and the high-density sintered body of the outer layer part are integrated by sintering, so the parts with different densities are combined with each other by machining, The durability is very good because no peeling occurs at the interface between the inner layer and the outer layer. Since the sintered relative density of the porous sintered body is 50 to 90% and minute pores communicate with each other, the sample can be circulated for filtration.
  • the high-density sintered compact is densified to a sintered relative density of 95% or higher, it does not have continuous pores and does not allow liquids to pass. Since the outer layer portion made of this high-density sintered body is in close contact with the filtration portion by sintering, liquid leakage due to the strength of the filtration portion is prevented.
  • the sintered relative density can be determined by the following equation.
  • the present invention is a method for producing the above-described filter, wherein a molding material X for forming a high-density sintered body and a molding material Y for forming a porous sintered body are used with a two-color molding machine. Including the steps of injection molding, degreasing, and sintering to a desired shape, respectively, and the molding material X is 30 to 60 based on the total amount of the metal powder A and the material X having an average particle size of 20 / zm or less.
  • the molding material Y contains an organic binder in a volume% amount
  • the molding material Y contains an organic binder in an amount of 30 to 60% by volume based on the total amount of metal powder B having an average particle size of 30 to LOO m and material Y. It is the method characterized by this.
  • molding powder X containing metal powder ⁇ having an average particle size of 20 ⁇ m or less and an organic binder in an amount of 30 to 60% by volume with respect to the total amount of material X a high-density sintered body in the outer layer portion can be formed.
  • molding material Y containing 30 to 60% by volume of organic binder with respect to the total amount of metal powder ⁇ and material ⁇ having an average particle size of 30 to L 00 m the inner layer is made porous.
  • a sintered body can be formed. Molding materials X and Y are injection molded into a desired shape using a two-color molding machine, degreased, and sintered, so that the boundary surface between the inner layer and outer layer is integrated with the metal.
  • the present invention is a method for producing the above-described filter, wherein a molding material X 'forming a high-density sintered body and a molding material Y' forming a porous sintered body are divided into two colors. It includes the steps of injection molding, degreasing, and sintering each into a desired shape using a molding machine, and the molding material X ′ contains ceramic powder C and material X having an average particle size of 0.5 / zm or less. 40% to 70% by volume of the organic binder, and the molding material Y ′ has an average particle diameter of 0.6 to: LO / zm of ceramic powder D and 40% of the total amount of the material Y. a method which is characterized by containing the organic binder 70 vol 0/0 amount.
  • the outer layer portion A high-density sintered body can be formed.
  • the inner layer is made porous.
  • a sintered body can be formed.
  • a filter having a complicated shape and having an arbitrary thickness and an arbitrary shape in each layer as compared with the products obtained in the cited documents 1 to 3. According to this method, even a small sintered product of about 0.1 to Lmm can be manufactured with high dimensional accuracy, and the thickness of all or part of the porous sintered body can be reduced to 100. It can be as thin as m. Accordingly, even a filter having a thin portion having a thickness of 1 mm or less in the filtration portion can be stably supplied.
  • the sintered product according to the present invention is not limited to the method using a two-color molding machine.
  • or the molding materials X ′ and ⁇ ′) were separately injection molded to obtain a molded product of X and a molded product of ⁇ (or a molded product of X ′ and a molded product of Y ′). They can also be manufactured by combining them and then degreasing and sintering.
  • the powder A is mixed with the molding material Y (the blending amount is 90% by weight or less with respect to the total amount of the powder B), or
  • the powder C is added to the molding material Y ′ (the blending amount is 90% by weight or less with respect to the total amount of the powder D). It is possible to control the porosity.
  • the porosity is calculated by the following formula.
  • Porosity ⁇ 1 (apparent density Z true density) ⁇ X 100
  • the true density is the density when the pores are assumed to be 0, and the apparent density is the density including the pores.
  • the filter according to the present invention has a filter part made of a porous sintered body and an outer peripheral part made of a high-density sintered body. Since it is integrated by ligation, liquid leakage from the filtration part and separation of the boundary surface do not occur.
  • the filter can be manufactured without machining, so that the manufacturing process is simple and suitable for mass production of products having complex shapes.
  • even a small filter can be manufactured with high dimensional accuracy, and a product in which the thickness of all or part of the filtration part is lmm or less is stable. Can be supplied.
  • FIG. 1 is a view showing an example of a cylindrical filter according to the present invention.
  • FIG. 2 is a view showing an embodiment of a T-shaped filter according to the present invention.
  • the interface between the porous sintered body and the high-density sintered body refers to a contact surface between the sintered bodies.
  • integrated by sintering means that the interface between the sintered bodies is welded by heating during sintering.
  • the filter part of the filter according to the present invention is a porous sintered body having a sintered relative density of 50 to 90%, and has continuous pores.
  • the pore size depends on several factors such as the particle size of the powder to be used, the amount of organic binder added, and the sintering temperature. For example, using an alumina ceramic powder having an average particle size of 1 to 5 / ⁇ ⁇ .
  • an organic binder is added in an amount of 40 to 60% by volume, heat degreasing is performed in the atmosphere, and sintering is performed at 1500 ° C, the average pore diameter of the continuous air holes is about 0.3 to 3 / ⁇ ⁇ .
  • the sintered relative density is 60-85%.
  • an organic binder was added in an amount of 40-60 vol%, heat degreasing was performed with nitrogen, and sintering was performed at 1350 ° C in an argon atmosphere.
  • the average pore diameter of the continuous vents is about 20-40 / zm, and the sintered relative density is 70-85%.
  • the sintered relative density of the porous sintered body (filter part) of the filter according to the present invention is more preferably 55 to 88%, and still more preferably 60 to 85%.
  • the filter according to the present invention can be manufactured by adjusting the sintering temperature in addition to the particle size of the powder used.
  • molding materials X '' and Y '' are injection molded, degreased, and sintered into desired shapes using a two-color molding machine, respectively, or molding materials X '' and Y '' In the method of separately injection molding without using a two-color molding machine to obtain a molded body of X ′ ′ and a molded body of Y ′ ′, and then combining them for degreasing and sintering,
  • the sintering temperature By setting the sintering temperature to a temperature at which the molding material X ′ ′ is densified to a sintering relative density of 95% or more and the sintering relative density of the molding material Y ′ ′ remains at 50 to 90%.
  • a high-density sintered body and a porous sintered body coexist, and the interface between the parts can be integrated by sintering to produce a sintered product V.
  • the difference in densification temperature between the above X ′ ′ and Y ′ ′ is 30 ° C. or more.
  • the densification temperature refers to a temperature at which the sintered relative density becomes 95% or more.
  • the sintering temperature is adjusted to a temperature that is equal to or higher than the densification temperature of the molding material X ′ ′, and the sintered relative density of Y ′ ′ remains at 50 to 90%.
  • the portion made of molding material X ′ ′ has a higher sintering relative density, while the portion made of molding material Y ′ ′ has a lower sintering relative density. Therefore, according to the method, it is possible to form a sintered body in which portions having different densities coexist without adjusting the difference in average particle diameter. Further, in the same manner as described above, the interface between the respective parts is integrated in the sintering process, so that a sintered product in which separation of the boundary surface does not occur can be manufactured.
  • the metal filter according to the present invention can be manufactured even when the metal powder contained in each molding material is different.
  • the filter according to the present invention can be manufactured even when the ceramic powder contained in each molding material is different.
  • the filter has parts with different sintered relative densities. It is possible to create an integrated filter by sintering. For example, by using stainless steel or iron as the metal and alumina or zirconia as the ceramic, a filter having a portion having a metal force and a portion having a ceramic force can be manufactured.
  • a two-color molding machine refers to a machine capable of molding two types of materials into desired shapes. Generally, it has two screws and cylinder parts that are formed by fusing the material, and each mold force is filled in the mold at different timings at the desired position. A molding machine that can mold a desired shape.
  • the molding material Y (or ⁇ ') has a high soft point resin (epoxy resin, urethane resin, polyester, etc.) as the third component.
  • the porosity of the porous sintered body can be further increased by adding a terbium resin or a phenol resin.
  • Powders A and B may be a kind of metal powder or a mixed powder composed of two or more kinds of metal powders.
  • the metal powder used in the production method of the present invention is a powder having a melting point of 600 ° C. or higher and can be sintered. Examples include carbonyl iron, carbonyl nickel, stainless steel, low alloy steel, titanium, titanium alloy, single or alloy powders of copper, silver, gold and the like, or a mixture thereof.
  • the average particle size of the metal powder A is more preferably 10 m or less.
  • the average particle size of the metal powder B is more preferably about 50 m.
  • the average particle diameter of powder C used to obtain a high-density sintered body is 0.5 m or less
  • the average particle diameter of powder D used to obtain a porous sintered body Is preferably 4 ⁇ m or more.
  • Powders C and D may be a kind of ceramic powder or a mixed powder composed of two or more kinds of ceramic powder.
  • ceramics used in the present invention include non-acidic ceramics such as alumina, zirconium oxide, ferrite, acidic titanium and barium titanate, non-acidic materials such as silicon carbide, silicon nitride, aluminum nitride and boron nitride. And ceramics, or a mixture thereof.
  • the same material strength as powder A means that when powder A is a single metal powder, powder B is also the same metal powder, and powder A is a mixed powder.
  • the powder B is composed of the same metal powder as each metal powder constituting the powder A.
  • the mixing ratio of each metal powder constituting powder A and the mixing ratio of each metal powder constituting powder B may be different, but are more preferably the same.
  • the same material strength as powder C means that when powder C is a single ceramic powder, powder D is also the same ceramic powder, and when powder C is a mixed powder, powder D is , Composed of the same ceramic powder as each ceramic powder that constitutes powder C Let's do it!
  • the mixing ratio of the ceramic powders composing the powder C and the mixing ratio of the ceramic powders composing the powder D may be different, but more preferably the same.
  • the molding material according to the present invention includes an organic binder of about 30 to about 60% by volume of the total amount of the molding material in the molding material (X and Y) of the sintered metal product. More preferred, that is contained preferably instrument about 3 5 to 50 volume 0/0.
  • the molding material (X, Y) of sintered ceramics contains about 40 to about 60% by volume of organic binder, preferably about 40 to about 70% by volume of the total amount of molding material. More preferably.
  • thermoplastic resin, wax, plasticizer, lubricant and the like are used for the organic binder.
  • thermoplastic resin has an effect of enhancing the retention after molding, and examples of the thermoplastic resin include polyethylene, polypropylene, polystyrene, acrylic resin, polyacetal, ethylene acetate butyl, polyvinyl butyral and the like. Can do.
  • Wax has the effect of facilitating fluidity during molding and thermal decomposition during degreasing.
  • examples of the wax include paraffin wax, carnauba wax, ester wax and the like.
  • the plasticizer has a function of lowering the temperature at the time of molding and a role of imparting flexibility
  • examples of the plasticizer include phthalic compounds such as dioctyl phthalate and dibutyl phthalate.
  • the lubricant has a function of promoting fluidity during molding.
  • examples of lubricants include fatty acid ester compounds such as stearic acid, myristic acid and oleic acid.
  • degreasing and sintering steps includes not only the case where the degreasing step 'sintering step is included separately but also the case where degreasing' sintering is performed in one step. Is also included.
  • the filter of the present invention can be used, for example, in a column for liquid chromatography, a filter for artificial dialysis, and the like. Further, if the production method of the present invention is used, not only a filter but also an oil-impregnated bearing, a degassing member, etc. can be produced as a porous product having a two-layer structure.
  • the filter shown in Fig. 1 has a cylindrical shape with a diameter of 6 mm and a length of 20 mm. From the porous sintered body 1 with a diameter of 3 mm, It has the filtration part which becomes. The inflow part force is filtered by injecting the sample, allowing the sample to flow in the direction of the column axis, and collecting the filtrate coming out of the outflow part.
  • the filter part is covered with the high-density sintered body 2 except for the sample inflow / outflow part, and the overall shape of the filter is along the columnar filter part (porous sintered body 1) and the peripheral wall of the filter part. It becomes a cylindrical shape consisting of two layers of the outer peripheral part (high-density sintered body 2) with a thickness of 1.5 mm.
  • the filter shown in Fig. 2 has a T-shaped branch shape with two cylinders vertically intersecting, and there are two outflow parts.
  • the filter shown in Fig. 2 is capable of collecting a sample sample without interrupting filtration. Normally, the sample is circulated from the inflow part to the outflow part 1 with the outflow part 2 covered. When collecting the sample by filtration, remove the lid of the outflow part 2 to obtain the sample.
  • the filtration part and the outer peripheral part can be molded at the same time. Therefore, even if the filter has a complicated shape as shown in FIG. It can be integrally formed by a simple process.
  • the filter shown in FIG. 1 was produced by using a method that makes good use of the present invention.
  • Stainless steel powder (SUS316L) was used as the metal powder.
  • Stainless steel powder with an average particle size of 6 / zm is used as the powder A used for the molding material X that forms the high-density sintered body.
  • Stainless powder with a particle size of 50 ⁇ m was used.
  • organic binder a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
  • the composition of the molding material X and the molding material Y is as follows.
  • Molding material X Powder A60 vol% + organic binder 40 vol 0/0
  • Molding material Y Powder B65 volume% + organic binder 35 volume%
  • Injection molding was performed using a two-color molding machine.
  • the molding temperature was set to 180 ° C, and a molded body consisting of a porous sintered body (filter part) in the center and a high-density sintered body in close contact with the outer periphery was produced. It was.
  • the obtained green body was degreased at a maximum temperature of 400 ° C under a nitrogen atmosphere, and the degreased green body was sintered under an argon atmosphere at a maximum temperature of 1350 ° C '.
  • the density of each part of the obtained sintered body was as follows, and the boundary surface between the high-density sintered body (outer peripheral part) and the porous sintered body (center part) was welded.
  • the high-density sintered body at the outer peripheral portion has fine independent pores of 5 ⁇ m or less, and the porous sintered body at the filtration portion has a pore diameter of about 20 to 30 m. It had continuous pores.
  • Example 2 From Example 1, a high-density sintered body (peripheral part) and a porous sintered body (filter part) coexist in the same product, and the interface between the high-density sintered body and the porous sintered body. A metal filter that was welded by sintering and had no problem in practical use could be obtained under the same sintering conditions without post-processing.
  • Example 2 A metal filter that was welded by sintering and had no problem in practical use could be obtained under the same sintering conditions without post-processing.
  • the filter shown in Fig. 1 was manufactured using a molding material containing ceramic powder and a molding material containing metal powder.
  • composition of each molding material is as follows.
  • Molding material of the outer peripheral portion metal powder (stainless steel SUS304L powder: average particle diameter 10 mu m) 65 vol% + organic binder 35 vol 0/0
  • Molding material of the central portion (filtration unit) ceramic powder (alumina powder average particle size: 1.0 mu m) 55 volume 0/0 + organic binder 45 vol 0/0
  • the temperature at which the outer peripheral part (metal part) becomes dense is 1300 ° C, and the temperature at which the central part (ceramic part) becomes dense is 1550 ° C.
  • Injection molding was performed using a two-color molding machine.
  • the molding temperature was set to 170 ° C, and a molded body comprising a filtration part and an outer peripheral part thereof was produced.
  • the obtained molded body was degreased at a maximum temperature of 400 ° C. ⁇ nitrogen atmosphere, and the degreased molded body was sintered at a maximum temperature of 1350 ° C. under an argon atmosphere.
  • the density of each part of the obtained sintered body was as follows, and the boundary surface between the high-density sintered body (outer peripheral part) and the porous sintered body (center part) was welded.
  • the high-density sintered body has fine independent pores, and the filtration part (porous sintered body) has continuous pores having a pore diameter of about 0.3 to 0.7 m.
  • a powder having a particle size of 1.0 / zm or more that was free from defects such as liquid leakage could be captured.
  • Example 2 a high-density sintered body (peripheral part) and a porous sintered body (filter part) coexist in the same product, and the interface between the high-density sintered body and the porous sintered body is sintered.
  • a high-density sintered body peripheral part
  • a porous sintered body filter part
  • the sintering relative density was adjusted by adjusting the sintering temperature in addition to the powder particle size.
  • the sintering temperature is 1350 ° C
  • the ceramic part is not densified, and the sintered density can be kept lower.
  • the metal part is densified at a temperature of 1300 ° C. Therefore, the metal part is densified under the above-mentioned sintering conditions.
  • a sintered compact having a sintered relative density of 95% or more and a sintered relative density of 90% It was possible to obtain a filter coexisting with a porous sintered body.
  • the filter shown in FIG. 1 was manufactured using the following method.
  • Titanium powder was used as the metal powder. Titanium powder with an average particle size of 20 m is used as the powder for the molding material X that forms the high-density sintered body, and the average particle size is 50 / as the powder B that is used for the molding material Y that forms the porous sintered body. zm titanium powder was used. Further, in this example, in order to adjust the porosity of the porous sintered body, a molding material Y was prepared by mixing 20% by weight of powder A in addition to powder B.
  • Organic binders include polyacetal, polypropylene, and ⁇ Raffin wax, 25: 2 A mixture mixed at a ratio of 5:50 was used.
  • the composition of the molding material X and the molding material Y is as follows.
  • Molding material X Powder A60 vol% + organic binder 40 vol 0/0
  • Molding material Y 65% by volume of powder (B + A) + 35% by volume of organic binder
  • Molding materials X and Y were respectively injection molded to produce an outer peripheral portion (high density sintered body) and a central portion (porous sintered body) shown in FIG.
  • the molding temperature was 180 ° C. Insert the molded body Y (center) into the molded body X (outer peripheral part) and combine it.
  • the combined molded body is degreased at the maximum temperature of 400 ° C 'argon atmosphere. 0 ° C ⁇ Sintered under high vacuum (10-3AB).
  • the sintered relative density of the obtained sintered body was as follows, and the boundary surface between the high-density sintered body (outer peripheral portion) and the porous sintered body (filtered portion) was welded.
  • the high-density sintered body had fine independent pores, and the filtration part (porous sintered body) had continuous pores having a pore diameter of about 15 to 30 ⁇ m.
  • the filtration part porous sintered body
  • continuous pores having a pore diameter of about 15 to 30 ⁇ m.
  • Example 3 From Example 3, a high-density sintered body (peripheral part) and a porous sintered body (filtering part) coexist in the same product, and the interface between the high-density sintered body and the porous sintered body is sintered. As a result, a metal filter with no problems in practical use was obtained under the same sintering conditions without post-processing.
  • Example 4
  • the sintered product shown in FIG. 2 was manufactured using the following method.
  • Alumina powder was used as the ceramic powder.
  • powder C used for molding material X which forms a high-density sintered body
  • powder D used as molding material Y ′ that forms a porous sintered body average grain is used.
  • Alumina powder with a diameter of 7 m was used.
  • 10% by weight of powder C of powder D was mixed to prepare molding material Y ′.
  • the composition of the molding material X 'and the molding material Y' is as follows.
  • Molding material X ; powder C55 vol% + organic binder 45 vol 0/0
  • Molding Y powder (D + C) 60 vol% + organic binder 40 vol 0/0
  • Molding materials X 'and Y' were each injection-molded to produce the product shown in FIG.
  • injection molding is performed using a mold that matches the shape of the filtration part (porous sintered body). Inserted into the mold to create the shape of the body. After that, injection molding is performed so that the molding material X ′ is filled outside the filtration part, and the obtained molded body is degreased and sintered, so that the inner part is porous and the outer part is sintered at high density. A filter with a binding power was manufactured.
  • the molding temperature was 180 ° C, and degreasing was performed at a maximum temperature of 400 ° ⁇ ⁇ atmosphere. Sintering was performed at a maximum temperature of 1600 ° C in an air atmosphere.
  • the density of the obtained sintered body was as follows, and the boundary surface between the high-density sintered body (outer peripheral part) and the porous sintered body (filtered part) was welded.
  • the high-density sintered body had fine independent pores, and the filtration part (porous sintered body) had continuous pores having a pore diameter of about 1 to 5 ⁇ m.
  • the filtration part porous sintered body
  • continuous pores having a pore diameter of about 1 to 5 ⁇ m.
  • Example 4 From Example 4, a high-density sintered body (peripheral part) and a porous sintered body (filtering part) coexist in the same product, and the interface between the high-density sintered body and the porous sintered body is sintered.
  • a filter shown in FIG. 1 was prepared using metal powder having an average particle size of 10 m instead of metal powder B according to the present invention.
  • Stainless steel powder (SUS316L) was used as the metal powder.
  • Stainless steel powder with an average particle diameter of 6 ⁇ m is used as the powder for the material forming the outer periphery, and the central part (filter part) is formed.
  • Stainless steel powder with an average particle size of 10 m was used as the powder for the forming material.
  • organic binder a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
  • composition of each molding material is as follows.
  • Molding material of the outer peripheral portion Stainless powder (6 ⁇ m) 60 vol% + organic binder 40 vol 0/0 heart of molding material: stainless steel powder (10 m) 65 volume 0/0 + organic binder 35 vol 0/0 [ [0066]
  • Injection molding was performed using a two-color molding machine. The molding temperature was 180 ° C, and the molded body shown in Fig. 1 was produced. The obtained compact was degreased at a maximum temperature of 400 ° C under a nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1350 ° C * argon atmosphere. The density of each part of the obtained sintered body was as follows, and the boundary surface between the central part and the outer peripheral part was welded.
  • Comparative Example 1 Although the boundary surface between the central portion and the outer peripheral portion was welded, the sintered relative density of the central portion, which was intended to be a porous sintered body, was as high as 94%, and the continuous pores The sample could not be circulated without having a filter, so it did not function as a filter.
  • a filter shown in FIG. 1 was prepared using ceramic powder having an average particle size of 5 ⁇ m instead of ceramic powder C which is useful in the present invention.
  • Alumina powder was used as the ceramic powder.
  • Alumina powder with an average particle size of 5 m was used as the powder for the material forming the outer peripheral portion, and alumina powder with an average particle size of 7 m was used as the powder for the material for forming the central portion (filter part).
  • a molding material for forming the central portion by mixing alumina powder having an average particle size of 5 m in addition to alumina powder having an average particle size of 7 m. was prepared.
  • organic noda a mixture in which acrylic resin, polypropylene, paraffin wax, dibutynophthalate and stearic acid were mixed at a ratio of 25: 25: 40: 5: 5 was used.
  • composition of each molding material is as follows.
  • Molding material on the outer periphery Alumina powder (average particle size 5 ⁇ m) 55% by volume + 45 organic binders Product 0 / o
  • Molding material of the central portion alumina powder (average particle diameter 7 mu m + an average particle diameter of 5 mu m) 60 volume 0/0 + organic binder 40 vol 0/0
  • Each molding material was injection-molded to produce a molded body shown in FIG.
  • the molding temperature was 180 ° C.
  • the molded body at the center part was inserted into the molded body at the outer peripheral part and combined, and an acrylic resin was diluted with a solvent at the insertion part.
  • the combined molded body was degreased at a maximum temperature of 400 ° C in an air atmosphere, and the degreased molded body was sintered at a maximum temperature of 1200 ° O ⁇ atmosphere.
  • the density of the obtained sintered body was as follows, and the boundary surface between the central portion and the outer peripheral portion was welded.

Abstract

An integrated type sintered filter provided with a dense layer for an outer layer part and a porous inner layer part, and a method for manufacturing such filter at a high dimensional accuracy. The filter is provided for filtering a sample by permitting the sample to flow through a filtering part composed of a porous sintered body. In the filtering part, the parts other than inflow and outflow parts are covered with a high density sintered body. The sinter relative density of the porous sintered body is 50-90% and that of the high density sintered body is 95% or more. An interface between the porous sintered body and the high density sintered body is integrated by sintering.

Description

明 細 書  Specification
フィルター及びその製造方法  Filter and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、外層部が緻密なセラミックス若しくは金属力 なり、内層部が多孔質のセ ラミックス若しくは金属力もなる焼結フィルター及びその製造方法に関する。  [0001] The present invention relates to a sintered filter in which an outer layer portion has a dense ceramic or metal force and an inner layer portion also has a porous ceramic or metal force, and a manufacturing method thereof.
背景技術  Background art
[0002] 従来、濾過を行うためのフィルタ一として、セラミックスあるいは金属の多孔質体が 用いられている。一般的にこのような多孔質体は、粒度の粗いセラミックスあるいは金 属粉末を使用し、粉末プレス方法により、プレスした成形体を焼結して製造される。し かし製造された焼結品は多孔質体であり脆いため、カラム等の製品に組み込む際に 破損するおそれがあること、また、多孔質体からの液漏れを防ぐ必要があることから、 別の部材で外周部を覆うことが一般的である。従って、多孔質焼結体を利用するセラ ミックス及び金属製フィルタ一は、内層部と外層部を有するものが主であり、内層部は セラミックスある 、は金属製の多孔質体力 なる濾過部であり、外層部は該濾過部の 外周に密着して設けられ、濾過部の破損及び液漏れを防ぐ役割を果たす。  Conventionally, a ceramic or metal porous body has been used as a filter for performing filtration. In general, such a porous body is manufactured by using a ceramic or metal powder having a coarse particle size and sintering the pressed compact by a powder pressing method. However, since the manufactured sintered product is porous and fragile, it may be damaged when incorporated into a product such as a column, and it is necessary to prevent liquid leakage from the porous material. It is common to cover the outer periphery with another member. Therefore, ceramics and metal filters that use a porous sintered body are mainly those having an inner layer portion and an outer layer portion, and the inner layer portion is a ceramic, or is a filtration portion that is a metal porous body force. The outer layer portion is provided in close contact with the outer periphery of the filtration portion, and plays a role of preventing damage to the filtration portion and liquid leakage.
この外層部の材質にプラスチック材料を用いた場合、使用する過程で破損するお それや、経時劣化が発生するおそれがあり、使用上の不具合を増加させる要因とな つている。また、濾過部に通す液体の成分が、強酸、強アルカリ性である場合や、有 機溶剤である場合には外周部のプラスチック材料が劣化し、液漏れが生じる可能性 が高い。  If a plastic material is used for the material of the outer layer, it may be damaged during use or may deteriorate with time, which increases the number of problems in use. In addition, when the liquid component that passes through the filtration part is a strong acid, strong alkali, or an organic solvent, the plastic material in the outer peripheral part is likely to deteriorate and liquid leakage is likely to occur.
[0003] そのため、外層部を金属材料とし、プレス成形により得られた多孔質体(内層部)を 圧入する手法が用 、られるが、フィルターそのものが薄肉になり寸法が小型化するに つれて、圧入により製品を製造することが困難になっている。  [0003] For this reason, a technique is used in which the outer layer portion is made of a metal material and a porous body (inner layer portion) obtained by press molding is press-fitted. However, as the filter itself becomes thinner and its dimensions are reduced, It is difficult to manufacture products by press-fitting.
さらに、上記方法では、圧力で内層部の多孔質性が損なわれるおそれがあり、また 、一体成形でないため内層部と外層部の密着が完全ではなぐ液漏れを生じたり、分 離するおそれがある。  Further, in the above method, the porous property of the inner layer portion may be impaired by pressure, and since it is not integral molding, there is a risk of liquid leakage or separation between the inner layer portion and the outer layer portion being not completely adhered. .
[0004] これに対し、セラミックス材料力 なる多孔質体の場合、コーティング等の手法でそ の外周部を緻密化させる方法があるが、製品が小さくなつた場合は内部までそのコ 一ティング層が浸透してしまうため、濾過部が侵される可能性があり、また、均一な外 層部を形成することが困難である。 [0004] On the other hand, in the case of a porous material having a ceramic material force, such a method as coating is used. Although there is a method of densifying the outer periphery of the product, if the product becomes smaller, the coating layer will penetrate into the interior, which may damage the filtration part, and a uniform outer layer part. Is difficult to form.
[0005] 一方、特許文献 1ないし 3に、密度の異なる金属あるいはセラミックス層を密着させ た焼結品を製造する方法及び装置が開示されている。  [0005] On the other hand, Patent Documents 1 to 3 disclose a method and an apparatus for manufacturing a sintered product in which metals or ceramic layers having different densities are adhered.
[0006] しかし、引用文献 1の製造方法では板状の積層体し力製造することができないため 、多孔質焼結体の側壁全てが高密度焼結体で覆われて 、るフィルターを製造するこ とができない。引用文献 2の製造方法でも、スラリーの流し込みにより密度の異なる層 を積層する工法ため、層を順次積み上げてなる形状し力製造することができない。従 つて、多孔質の内心部と高密度の外周部力もなる円柱状のフィルター、さらには分岐 した形状を有するフィルターのごとぐ複雑形状のフィルターを製造することは困難で ある。また、各層において所望する形状で厚みの変わる製品を製造することも困難で ある。  [0006] However, since the manufacturing method of Patent Document 1 cannot produce a plate-like laminated body and produce a force, the side wall of the porous sintered body is covered with a high-density sintered body to produce a filter. I can't. Even in the manufacturing method of Cited Document 2, since layers having different densities are laminated by pouring of slurry, it is impossible to form and force-manufacture layers by sequentially stacking layers. Therefore, it is difficult to manufacture a filter having a complex shape like a porous filter having a porous inner core, a high density outer peripheral force, and a filter having a branched shape. In addition, it is difficult to manufacture a product whose thickness varies in a desired shape in each layer.
引用文献 3の装置は、押出成形用の装置であり、断面形状が同じ製品しか製造す ることができない。従って、断面形状が異なる複雑形状の製品を作ることは不可能で あり、また、任意の場所で各層の厚みを変えることも不可能である。  The apparatus of cited document 3 is an apparatus for extrusion molding, and can only produce products having the same cross-sectional shape. Therefore, it is impossible to produce a product having a complicated shape with different cross-sectional shapes, and it is also impossible to change the thickness of each layer at an arbitrary place.
特許文献 1:特開昭 55 - 138007号公報  Patent Document 1: Japanese Patent Laid-Open No. 55-138007
特許文献 2:特開 2001— 278672号公報  Patent Document 2: JP 2001-278672 A
特許文献 3 :特開平 10— 286812号公報  Patent Document 3: Japanese Patent Laid-Open No. 10-286812
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、以上のような従来技術における課題を考慮してなされたものであり、外 層部が緻密層で内層部が多孔質である一体型の焼結フィルターを提供すること、及 び前記フィルターを寸法精度高く製造する方法を提供するものである。 [0007] The present invention has been made in consideration of the above-described problems in the prior art, and provides an integrated sintered filter in which the outer layer portion is a dense layer and the inner layer portion is porous. And a method for manufacturing the filter with high dimensional accuracy.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、多孔質焼結体力 なる濾過部に試料を流通させて試料の濾過を行うフ ィルターであって、前記濾過部は試料の流入出部以外が高密度焼結体に覆われて おり、前記多孔質焼結体の焼結相対密度は 50〜90%であり、前記高密度焼結体の 焼結相対密度は 95%以上であり、前記多孔質焼結体と前記高密度焼結体の界面が 焼結により一体化して 、る事を特徴とするフィルターである。 [0008] The present invention is a filter for filtering a sample by circulating the sample through a filtering part having a porous sintered body force, and the filtering part covers a high-density sintered body except for the inflow and outflow part of the sample. The porous sintered body has a sintered relative density of 50 to 90%, and the high-density sintered body has The sintered relative density is 95% or more, and the interface between the porous sintered body and the high-density sintered body is integrated by sintering.
[0009] 本発明に係るフィルタ一は、多孔質焼結体力もなる濾過部を有し、該濾過部は試 料の流入出部以外は高密度焼結体に覆われて!/、る。内層部の多孔質焼結体と外層 部の高密度焼結体は、その界面が焼結により一体ィヒしているため、密度が異なる部 分同士を機械加工によって組み合わせた従来品と異なり、内層部と外層部の界面で 剥離が生じることがなぐ耐久性が非常によい。多孔質焼結体の焼結相対密度は 50 〜90%であり、微小な気孔が連通しているため、試料を流通させて濾過を行うことが できる。高密度焼結体は焼結相対密度 95%以上に緻密化しているため、連続した 気孔を有さず、液体を通さない。この高密度焼結体からなる外層部が濾過部に焼結 により密着しているため、濾過部力もの液漏れが防止される。  [0009] The filter according to the present invention has a filtration part that also has a porous sintered body strength, and the filtration part is covered with a high-density sintered body except for the sample inflow and outflow part. The porous sintered body of the inner layer part and the high-density sintered body of the outer layer part are integrated by sintering, so the parts with different densities are combined with each other by machining, The durability is very good because no peeling occurs at the interface between the inner layer and the outer layer. Since the sintered relative density of the porous sintered body is 50 to 90% and minute pores communicate with each other, the sample can be circulated for filtration. Since the high-density sintered compact is densified to a sintered relative density of 95% or higher, it does not have continuous pores and does not allow liquids to pass. Since the outer layer portion made of this high-density sintered body is in close contact with the filtration portion by sintering, liquid leakage due to the strength of the filtration portion is prevented.
焼結相対密度は、以下の式で求めることができる。  The sintered relative density can be determined by the following equation.
焼結相対密度 = (見かけ密度 Z真密度) X 100  Sintered relative density = (apparent density Z true density) X 100
[0010] また本発明は、上述したフィルターを製造する方法であって、高密度焼結体を形成 する成形材料 Xおよび多孔質焼結体を形成する成形材料 Yを、 2色成形機を用いて 、それぞれ所望の形状に射出成形し、脱脂、焼結する工程を含むこと、並びに前記 成形材料 Xが、平均粒径 20 /z m以下の金属粉末 A、及び材料 Xの総量に対し 30〜 60体積%量の有機バインダを含有し、前記成形材料 Yが、平均粒径 30〜: LOO m の金属粉末 B、及び材料 Yの総量に対し 30〜60体積%量の有機バインダを含有す ることを特徴とする方法である。  [0010] Further, the present invention is a method for producing the above-described filter, wherein a molding material X for forming a high-density sintered body and a molding material Y for forming a porous sintered body are used with a two-color molding machine. Including the steps of injection molding, degreasing, and sintering to a desired shape, respectively, and the molding material X is 30 to 60 based on the total amount of the metal powder A and the material X having an average particle size of 20 / zm or less. It contains an organic binder in a volume% amount, and the molding material Y contains an organic binder in an amount of 30 to 60% by volume based on the total amount of metal powder B having an average particle size of 30 to LOO m and material Y. It is the method characterized by this.
[0011] 平均粒径 20 μ m以下の金属粉末 Α、及び材料 Xの総量に対し 30〜60体積%量 の有機バインダを含有する成形材料 Xを用いることにより、外層部の高密度焼結体を 形成することができる。一方、平均粒径が 30〜: L 00 mの金属粉末 Β及び材料 Υの 総量に対し 30〜60体積%量の有機バインダを含有する成形材料 Yを用いることによ り、内層部の多孔質焼結体を形成することができる。成形材料 Xおよび Yを、 2色成形 機を用いてそれぞれ所望の形状に射出成形し、脱脂、焼結することにより、内層部と 外層部の境界面が焼結により一体ィ匕した金属製のフィルターを製造することができる [0012] また、本発明は、上述したフィルターを製造する方法であって、高密度焼結体を形 成する成形材料 X'および多孔質焼結体を形成する成形材料 Y'を、 2色成形機を用 いてそれぞれ所望の形状に射出成形し、脱脂、焼結する工程を含むこと、並びに前 記成形材料 X'が、平均粒径 0. 5 /z m以下のセラミックス粉末 C、及び材料 X,の総量 に対し 40〜70体積%量の有機バインダを含有し、前記成形材料 Y'が、平均粒径 0 . 6〜: LO /z mのセラミックス粉末 D、及び材料 Y,の総量に対し 40〜70体積0 /0量の有 機バインダを含有することを特徴とする方法である。 [0011] By using molding powder X containing metal powder 層 having an average particle size of 20 μm or less and an organic binder in an amount of 30 to 60% by volume with respect to the total amount of material X, a high-density sintered body in the outer layer portion Can be formed. On the other hand, by using molding material Y containing 30 to 60% by volume of organic binder with respect to the total amount of metal powder の and material の having an average particle size of 30 to L 00 m, the inner layer is made porous. A sintered body can be formed. Molding materials X and Y are injection molded into a desired shape using a two-color molding machine, degreased, and sintered, so that the boundary surface between the inner layer and outer layer is integrated with the metal. Filter can be manufactured [0012] Further, the present invention is a method for producing the above-described filter, wherein a molding material X 'forming a high-density sintered body and a molding material Y' forming a porous sintered body are divided into two colors. It includes the steps of injection molding, degreasing, and sintering each into a desired shape using a molding machine, and the molding material X ′ contains ceramic powder C and material X having an average particle size of 0.5 / zm or less. 40% to 70% by volume of the organic binder, and the molding material Y ′ has an average particle diameter of 0.6 to: LO / zm of ceramic powder D and 40% of the total amount of the material Y. a method which is characterized by containing the organic binder 70 vol 0/0 amount.
[0013] 平均粒径 0. 5 μ m以下のセラミックス粉末 C、及び材料 X'の総量に対し 40〜70体 積%量の有機バインダを含有する成形材料 X'を用いることにより、外層部の高密度 焼結体を形成することができる。一方、平均粒径 0. 6〜10 mのセラミックス粉末 D、 及び材料 Y,の総量に対し 40〜70体積%量の有機バインダを含有する成形材料 Y, を用いることにより、内層部の多孔質焼結体を形成することができる。成形材料 X'お よび Y'を、 2色成形機を用いてそれぞれ所望の形状に射出成形し、脱脂、焼結する ことにより、内層部と外層部の境界面が焼結により一体ィ匕したセラミックス製のフィル ターを製造することができる。  [0013] By using the molding powder X 'containing 40 to 70 volume% of the organic binder with respect to the total amount of the ceramic powder C having an average particle size of 0.5 µm or less and the material X', the outer layer portion A high-density sintered body can be formed. On the other hand, by using molding material Y containing 40 to 70% by volume of organic binder with respect to the total amount of ceramic powder D and material Y having an average particle size of 0.6 to 10 m, the inner layer is made porous. A sintered body can be formed. By molding the molding materials X 'and Y' into a desired shape using a two-color molding machine, degreasing and sintering, the interface between the inner layer and outer layer is integrated by sintering. Ceramic filters can be manufactured.
[0014] 2色成形機を使用することにより、密度の異なる部分の成形を連続して容易に行うこ とができる。すなわち、一つの部分が成形された後に、その部分に接するもう一つの 部分が射出成形されるため、両者の接触面の凹凸は完全に一致する。その後、高温 で焼結するより、両者の接触面は熔着する。従って両者の界面は凹凸の組み合わせ および熔着により完全に一体化し、剥離しない。また、各層の型構造を調節すること により、各層が所望する形状を有する複雑形状のフィルターを得ることが可能である 。従って、引用文献 1ないし 3において得られる製品と比較して、複雑形状を有し、且 つ、各層にお 、て任意の厚みと任意の形状を有するフィルターの製造が可能である 。この方法によれば、 0. 1〜: Lmm程度の小型の焼結品であっても寸法精度良く製造 することが可能であり、さらに、多孔質焼結体の全部あるいは一部の厚みを 100 m まで薄くすることが可能である。従って、濾過部に厚み lmm以下の薄肉部が存在す るフィルターであっても安定して供給することが可能である。  [0014] By using a two-color molding machine, it is possible to easily and continuously form portions having different densities. That is, after one part is molded, another part in contact with that part is injection-molded, so that the concavity and convexity of both contact surfaces are completely coincident. Then, rather than sintering at a high temperature, the contact surfaces of both are welded. Therefore, the interface between them is completely integrated by the combination of unevenness and welding, and does not peel off. Further, by adjusting the mold structure of each layer, it is possible to obtain a filter having a complicated shape in which each layer has a desired shape. Accordingly, it is possible to manufacture a filter having a complicated shape and having an arbitrary thickness and an arbitrary shape in each layer as compared with the products obtained in the cited documents 1 to 3. According to this method, even a small sintered product of about 0.1 to Lmm can be manufactured with high dimensional accuracy, and the thickness of all or part of the porous sintered body can be reduced to 100. It can be as thin as m. Accordingly, even a filter having a thin portion having a thickness of 1 mm or less in the filtration portion can be stably supplied.
[0015] 本発明にかかる焼結品は、 2色成形機を用いる方法の他に、前記成形材料 Xおよ ひ Ύ (または前記成形材料 X 'および Υ' )を、別々に射出成形して、 Xの成形体およ ひ Ύの成形体 (または X'の成形体および Y'の成形体)を得た後、それらを組み合わ せて、脱脂、焼結すること〖こよっても製造することができる。 [0015] The sintered product according to the present invention is not limited to the method using a two-color molding machine. ひ (or the molding materials X ′ and Υ ′) were separately injection molded to obtain a molded product of X and a molded product of Ύ (or a molded product of X ′ and a molded product of Y ′). They can also be manufactured by combining them and then degreasing and sintering.
[0016] また、前記粉末 Α·Β (あるいは粉末 C'D)を同じ材質とすれば、焼結条件の調節が より容易である。 [0016] If the powders Α · Α (or powder C'D) are made of the same material, the sintering conditions can be adjusted more easily.
[0017] 前記金属製フィルターの製造方法を実施するに際し、成形材料 Yに、粉末 Aを配 合する(配合量は粉末 Bの総量に対し 90重量%以下の量とする)ことにより、あるいは 前記セラミックス製フィルターの製造方法を実施するに際し、成形材料 Y'に、粉末 C を配合する(配合量は粉末 Dの総量に対し 90重量%以下の量とする)ことにより、多 孔質焼結体の気孔率をコントロールすることが可能である。気孔率は、次式により算 出される。  [0017] When the method for producing the metal filter is carried out, the powder A is mixed with the molding material Y (the blending amount is 90% by weight or less with respect to the total amount of the powder B), or When carrying out the method for manufacturing a ceramic filter, the powder C is added to the molding material Y ′ (the blending amount is 90% by weight or less with respect to the total amount of the powder D). It is possible to control the porosity. The porosity is calculated by the following formula.
気孔率 = { 1 (見かけ密度 Z真密度) } X 100  Porosity = {1 (apparent density Z true density)} X 100
真密度とは気孔を 0と想定した場合の密度、見かけ密度とは気孔を含めた密度であ る。  The true density is the density when the pores are assumed to be 0, and the apparent density is the density including the pores.
発明の効果  The invention's effect
[0018] 上述したように、本発明に力かるフィルタ一は、多孔質焼結体からなる濾過部と高 密度焼結体からなる外周部が併存するものであるが、両部の界面が焼結により一体 化しているため、濾過部からの液漏れや、境界面の剥離が起こらない。また、本発明 にかかる製造方法によれば、前記フィルターを、機械加工なしで製造することができ るため、製造工程が簡易であり、複雑形状の製品の大量生産に適している。また、本 発明に力かる製造方法によれば、小型のフィルターであっても寸法精度良く製造す ることができ、さらに、濾過部の全部あるいは一部の厚みが lmm以下である製品も安 定して供給することができる。  [0018] As described above, the filter according to the present invention has a filter part made of a porous sintered body and an outer peripheral part made of a high-density sintered body. Since it is integrated by ligation, liquid leakage from the filtration part and separation of the boundary surface do not occur. In addition, according to the manufacturing method of the present invention, the filter can be manufactured without machining, so that the manufacturing process is simple and suitable for mass production of products having complex shapes. In addition, according to the manufacturing method according to the present invention, even a small filter can be manufactured with high dimensional accuracy, and a product in which the thickness of all or part of the filtration part is lmm or less is stable. Can be supplied.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明にかかる円柱形状のフィルターの一実施例を示す図である。 FIG. 1 is a view showing an example of a cylindrical filter according to the present invention.
[図 2]本発明にかかる T字形状のフィルターの一実施例を示す図である。  FIG. 2 is a view showing an embodiment of a T-shaped filter according to the present invention.
符号の説明  Explanation of symbols
[0020] 1 多孔質焼結体 (濾過部) 2 高密度焼結体 [0020] 1 Porous sintered body (filter part) 2 High density sintered body
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本明細書において、多孔質焼結体と高密度焼結体の界面とは、該焼結体同士の 接触面を指す。また、焼結により一体化しているとは、前記焼結体間の界面が、焼結 の際の加熱により熔着している状態をいう。  In the present specification, the interface between the porous sintered body and the high-density sintered body refers to a contact surface between the sintered bodies. Further, “integrated by sintering” means that the interface between the sintered bodies is welded by heating during sintering.
[0022] 本発明に係るフィルターの濾過部は、焼結相対密度が 50〜90%の多孔質焼結体 であり、連続気孔を有する。気孔径は、使用する粉末の粒径、有機バインダの添加量 、焼結温度など複数の要因に左右されるが、例えば、平均粒径が 1〜5 /ζ πιのアルミ ナセラミックス粉末を用いて、有機バインダを 40〜60体積%添加し、大気中で加熱脱 脂を行い、 1500°Cで焼結を行った場合に、連通気孔の平均気孔径は約 0.3〜3 /ζ πιと なり、焼結相対密度は 60〜85%となる。また、平均粒径が 40〜80 /ζ πιのステンレス粉 末を用いて、有機バインダを 40〜60体積 %添加し、窒素で加熱脱脂を行い、アルゴン 雰囲気下 1350°Cで焼結を行った場合に、連通気孔の平均気孔径は約 20〜40 /z mと なり、焼結相対密度は 70〜85%となる。  [0022] The filter part of the filter according to the present invention is a porous sintered body having a sintered relative density of 50 to 90%, and has continuous pores. The pore size depends on several factors such as the particle size of the powder to be used, the amount of organic binder added, and the sintering temperature. For example, using an alumina ceramic powder having an average particle size of 1 to 5 / ζ πι. When an organic binder is added in an amount of 40 to 60% by volume, heat degreasing is performed in the atmosphere, and sintering is performed at 1500 ° C, the average pore diameter of the continuous air holes is about 0.3 to 3 / ζ πι. The sintered relative density is 60-85%. Also, using stainless powder with an average particle size of 40-80 / ζ πι, an organic binder was added in an amount of 40-60 vol%, heat degreasing was performed with nitrogen, and sintering was performed at 1350 ° C in an argon atmosphere. In this case, the average pore diameter of the continuous vents is about 20-40 / zm, and the sintered relative density is 70-85%.
[0023] 本発明に係るフィルターの多孔質焼結体 (濾過部)の焼結相対密度は、より好ましく は 55〜88%であり、さらに好ましくは 60〜85%である。  [0023] The sintered relative density of the porous sintered body (filter part) of the filter according to the present invention is more preferably 55 to 88%, and still more preferably 60 to 85%.
[0024] 本発明にかかるフィルタ一は、使用する粉末の粒子径以外に、焼結温度を調節す ること〖こよっても製造することができる。  [0024] The filter according to the present invention can be manufactured by adjusting the sintering temperature in addition to the particle size of the powder used.
具体的には、成形材料 X' 'および Y' 'を、 2色成形機を用いてそれぞれ所望の形 状に射出成形し、脱脂、焼結する方法、あるいは成形材料 X' 'および Y' 'を、 2色成 形機を用いることなぐ別々に射出成形して、 X' 'の成形体および Y' 'の成形体を得 た後、それらを組み合わせて、脱脂、焼結する方法において、  Specifically, molding materials X '' and Y '' are injection molded, degreased, and sintered into desired shapes using a two-color molding machine, respectively, or molding materials X '' and Y '' In the method of separately injection molding without using a two-color molding machine to obtain a molded body of X ′ ′ and a molded body of Y ′ ′, and then combining them for degreasing and sintering,
焼結温度を、成形材料 X' 'が焼結相対密度 95%以上に緻密化する温度であって、 成形材料 Y' 'の焼結相対密度が 50〜90%に留まる温度に設定することによって、 高密度焼結体と多孔質焼結体が併存し、該部分間の界面が、焼結により一体化して V、る焼結品を製造することが可能である。  By setting the sintering temperature to a temperature at which the molding material X ′ ′ is densified to a sintering relative density of 95% or more and the sintering relative density of the molding material Y ′ ′ remains at 50 to 90%. A high-density sintered body and a porous sintered body coexist, and the interface between the parts can be integrated by sintering to produce a sintered product V.
[0025] 各成形材料の緻密化温度の差を利用して、本発明にかかる焼結品を製造する場 合、上記 X' 'と Y' 'の緻密化温度の差は、 30°C以上必要であり、より好ましくは 50°C 以上、さらに好ましくは 100°C以上である。本明細書中において、緻密化温度とは、 焼結相対密度が 95%以上になる温度をいう。 [0025] When the sintered product according to the present invention is manufactured using the difference in densification temperature of each molding material, the difference in densification temperature between the above X ′ ′ and Y ′ ′ is 30 ° C. or more. Required, more preferably 50 ° C Above, more preferably 100 ° C or higher. In this specification, the densification temperature refers to a temperature at which the sintered relative density becomes 95% or more.
[0026] 焼結工程にぉ 、て、焼結温度を、成形材料 X' 'の緻密化温度以上、 Y' 'の焼結相 対密度が 50〜90%に留まる温度に調節することにより、成形材料 X' 'からなる部分 は焼結相対密度が高くなるが、成形材料 Y' 'からなる部分は、焼結相対密度が低く 抑えられる。従って、当該方法によれば平均粒子径の差を調節しなくても、密度が異 なる部分が併存する焼結体を形成することができる。また、上記と同様、焼結過程に おいて、各部分間の界面が一体ィ匕するため、境界面の剥離が起こらない焼結品を製 造することができる。 [0026] During the sintering step, the sintering temperature is adjusted to a temperature that is equal to or higher than the densification temperature of the molding material X ′ ′, and the sintered relative density of Y ′ ′ remains at 50 to 90%. The portion made of molding material X ′ ′ has a higher sintering relative density, while the portion made of molding material Y ′ ′ has a lower sintering relative density. Therefore, according to the method, it is possible to form a sintered body in which portions having different densities coexist without adjusting the difference in average particle diameter. Further, in the same manner as described above, the interface between the respective parts is integrated in the sintering process, so that a sintered product in which separation of the boundary surface does not occur can be manufactured.
[0027] このように、平均粒径の他、緻密化温度の差を利用することによつても、焼結相対密 度が異なる部分が併存する金属製フィルターであって、該部分間の界面が、焼結に より一体ィ匕しているフィルターを得ることができる。当該方法によれば、各成形材料に 含まれる金属粉末が異なる場合であっても、本発明にかかる金属製フィルターを製 造することが可能である。  [0027] As described above, by using the difference in the densification temperature in addition to the average particle diameter, a metal filter in which parts having different sintered relative densities coexist, and the interface between the parts is provided. However, an integrated filter can be obtained by sintering. According to this method, the metal filter according to the present invention can be manufactured even when the metal powder contained in each molding material is different.
同様に、各成形材料に含まれるセラミックス粉末が異なる場合であっても、本発明 にかかるフィルターを製造することが可能である。  Similarly, the filter according to the present invention can be manufactured even when the ceramic powder contained in each molding material is different.
また、セラミックスと金属力 なる異種材料の製品についても、焼結温度と焼結雰囲 気を調整することにより、焼結相対密度が異なる部分が併存するフィルターであって 、該部分間の界面が、焼結により一体ィ匕しているフィルターを作成することが可能で ある。例えば、金属としてステンレス若しくは鉄を用いて、セラミックスとしてアルミナ若 しくはジルコユアを用いて、金属力もなる部分とセラミックス力もなる部分を有するフィ ルターを製造することができる。  Also, for products made of different materials with ceramics and metal power, by adjusting the sintering temperature and the sintering atmosphere, the filter has parts with different sintered relative densities. It is possible to create an integrated filter by sintering. For example, by using stainless steel or iron as the metal and alumina or zirconia as the ceramic, a filter having a portion having a metal force and a portion having a ceramic force can be manufactured.
[0028] 2色成形機とは、 2種類の材料をそれぞれ所望の形状に成形することができる機械 をいう。一般には、材料を融力して成形するスクリュウ、シリンダ部を二つ有し、金型に 各々のシリンダ力 それぞれの材料を別々のタイミングで金型内部に充填することに より、所望する位置に所望する形状を成形することができる成形機をいう。  [0028] A two-color molding machine refers to a machine capable of molding two types of materials into desired shapes. Generally, it has two screws and cylinder parts that are formed by fusing the material, and each mold force is filled in the mold at different timings at the desired position. A molding machine that can mold a desired shape.
[0029] また、成形材料 Y (あるいは Υ' )に、金属粉末 (あるいはセラミックス粉末)と有機バ インダ以外に第三成分として高軟ィ匕点の榭脂 (エポキシ榭脂、ウレタン榭脂、ポリエス テル榭脂、フ ノール榭脂等)を含有させることにより、多孔質焼結体の気孔率をさら に高めることができる。 [0029] In addition to the metal powder (or ceramic powder) and the organic binder, the molding material Y (or Υ ') has a high soft point resin (epoxy resin, urethane resin, polyester, etc.) as the third component. The porosity of the porous sintered body can be further increased by adding a terbium resin or a phenol resin.
[0030] 粉末 A及び Bは、一種の金属粉末であっても、 2種以上の金属粉末からなる混合粉 末であってもよい。本発明の製造方法に使用される金属粉末は、融点 600°C以上の 粉末であり、焼結可能な粉末であればよい。例として、カルボニル鉄、カルボ二ル-ッ ケル、ステンレス、低合金鋼、チタン、チタン合金、銅、銀、金等の単種若しくは合金 粉末、またはこれらの混合物を挙げることができる。  [0030] Powders A and B may be a kind of metal powder or a mixed powder composed of two or more kinds of metal powders. The metal powder used in the production method of the present invention is a powder having a melting point of 600 ° C. or higher and can be sintered. Examples include carbonyl iron, carbonyl nickel, stainless steel, low alloy steel, titanium, titanium alloy, single or alloy powders of copper, silver, gold and the like, or a mixture thereof.
[0031] 金属粉末 Aの平均粒径は、より好ましくは 10 m以下である。金属粉末 Bの平均粒 径は、より好ましくは 50 m程度である。粉末粒径が大きくなると射出成形時のスクリ ユウとシリンダの間に粉末が詰まりやすく成形が困難になり、また高温での焼結により 多孔質焼結体は得られるものの、強度が低くなる。  [0031] The average particle size of the metal powder A is more preferably 10 m or less. The average particle size of the metal powder B is more preferably about 50 m. When the powder particle size is increased, the powder is easily clogged between the screw and the cylinder at the time of injection molding, and molding becomes difficult, and a porous sintered body can be obtained by sintering at high temperature, but the strength decreases.
[0032] 一方セラミックス製フィルターを製造する際は、その焼結の特性上、金属粉末よりさ らに細かい粉末を使用する。セラミックスの場合、高密度焼結体を得るために用いら れる粉末 Cの平均粒径は、 0. 5 m以下であり、多孔質焼結体を得るために使用す る粉末 Dの平均粒径は、好ましくは 4 μ m以上である。  On the other hand, when manufacturing a ceramic filter, a finer powder than a metal powder is used because of its sintering characteristics. In the case of ceramics, the average particle diameter of powder C used to obtain a high-density sintered body is 0.5 m or less, and the average particle diameter of powder D used to obtain a porous sintered body Is preferably 4 μm or more.
[0033] 粉末 C及び Dは、一種のセラミックス粉末であっても、 2種以上のセラミックス粉末か らなる混合粉末であってもよい。本発明で使用されるセラミックスとして、例えば、アル ミナ、ジルコユア、フェライト、酸ィ匕チタン並びにチタン酸バリウム等の酸ィ匕物セラミツ タス、炭化珪素、窒化珪素、窒化アルミ並びに窒化硼素等の非酸ィ匕物セラミックス、 またはこれらの混合物を挙げることができる。  [0033] Powders C and D may be a kind of ceramic powder or a mixed powder composed of two or more kinds of ceramic powder. Examples of ceramics used in the present invention include non-acidic ceramics such as alumina, zirconium oxide, ferrite, acidic titanium and barium titanate, non-acidic materials such as silicon carbide, silicon nitride, aluminum nitride and boron nitride. And ceramics, or a mixture thereof.
[0034] 本発明にお 、て、粉末 Aと同じ材質力もなるとは、粉末 Aが単一の金属粉末である 場合、粉末 Bも同一の金属粉末であることをいい、粉末 Aが混合粉末の場合は、粉末 Bが、粉末 Aを構成する各金属粉末と同じ金属粉末から構成されることをいう。粉末 A を構成する各金属粉末の混合割合と粉末 Bを構成する各金属粉末の混合割合は異 なってもよいが、より好ましくは同一である。 [0034] In the present invention, the same material strength as powder A means that when powder A is a single metal powder, powder B is also the same metal powder, and powder A is a mixed powder. In this case, the powder B is composed of the same metal powder as each metal powder constituting the powder A. The mixing ratio of each metal powder constituting powder A and the mixing ratio of each metal powder constituting powder B may be different, but are more preferably the same.
同様に、粉末 Cと同じ材質力 なるとは、粉末 Cが単一のセラミックス粉末である場 合、粉末 Dも同一のセラミックス粉末であることをいい、粉末 Cが混合粉末の場合は、 粉末 Dが、粉末 Cを構成する各セラミックス粉末と同じセラミックス粉末から構成される ことを!、う。粉末 Cを構成する各セラミックス粉末の混合割合と粉末 Dを構成する各セ ラミックス粉末の混合割合は異なってもよいが、より好ましくは同一である。 Similarly, the same material strength as powder C means that when powder C is a single ceramic powder, powder D is also the same ceramic powder, and when powder C is a mixed powder, powder D is , Composed of the same ceramic powder as each ceramic powder that constitutes powder C Let's do it! The mixing ratio of the ceramic powders composing the powder C and the mixing ratio of the ceramic powders composing the powder D may be different, but more preferably the same.
[0035] 本発明にカゝかる成形材料には、金属焼結品の成形材料 (Xおよび Y)にあっては成 形材料の総量の約 30〜約 60体積%の有機バインダが含まれることが好ましぐ約 3 5〜50体積0 /0含まれることがより好ま 、。セラミックス焼結品の成形材料 (X,および Y,)にあっては、成形材料の総量の約 40〜約 70体積%の有機バインダが含まれる ことが好ましぐ約 40〜約 60体積%含まれることがより好ましい。有機バインダには熱 可塑性榭脂、ワックス、可塑剤、潤滑剤等が用いられる。 [0035] The molding material according to the present invention includes an organic binder of about 30 to about 60% by volume of the total amount of the molding material in the molding material (X and Y) of the sintered metal product. more preferred, that is contained preferably instrument about 3 5 to 50 volume 0/0. The molding material (X, Y) of sintered ceramics contains about 40 to about 60% by volume of organic binder, preferably about 40 to about 70% by volume of the total amount of molding material. More preferably. For the organic binder, thermoplastic resin, wax, plasticizer, lubricant and the like are used.
[0036] 熱可塑性榭脂は成形後の保形成を高める効果があり、熱可塑性榭脂の例としては 、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル榭脂、ポリアセタール、エチレン 酢酸ビュル、ポリビニルブチラール等を挙げることができる。  [0036] The thermoplastic resin has an effect of enhancing the retention after molding, and examples of the thermoplastic resin include polyethylene, polypropylene, polystyrene, acrylic resin, polyacetal, ethylene acetate butyl, polyvinyl butyral and the like. Can do.
[0037] ワックスには成形時の流動性、脱脂時の熱分解を容易にする効果がある。ワックス の例としては、パラフィンワックス、カルナバワックス、エステルワックス等を挙げること ができる。  [0037] Wax has the effect of facilitating fluidity during molding and thermal decomposition during degreasing. Examples of the wax include paraffin wax, carnauba wax, ester wax and the like.
[0038] 可塑剤には成形時の温度を下げる働きと柔軟性付与の役割があり、可塑剤の例と して、ジォクチルフタレート、ジブチルフタレート等のフタル酸系化合物を挙げること ができる。  [0038] The plasticizer has a function of lowering the temperature at the time of molding and a role of imparting flexibility, and examples of the plasticizer include phthalic compounds such as dioctyl phthalate and dibutyl phthalate.
[0039] 潤滑剤には成形時の流動性を促進する働きがある。潤滑剤の例として、ステアリン 酸、ミリスチン酸、ォレイン酸等の脂肪酸エステルイ匕合物を挙げることができる。  [0039] The lubricant has a function of promoting fluidity during molding. Examples of lubricants include fatty acid ester compounds such as stearic acid, myristic acid and oleic acid.
[0040] 本発明の製造方法において、「脱脂、焼結する工程を含むこと」には、脱脂工程'焼 結工程を別々に含む場合のみならず、脱脂'焼結を一つの工程で行う場合も含まれ る。  [0040] In the production method of the present invention, "including degreasing and sintering steps" includes not only the case where the degreasing step 'sintering step is included separately but also the case where degreasing' sintering is performed in one step. Is also included.
[0041] 本発明のフィルタ一は、例えば液体クロマトグラフィー用のカラム、人工透析用のフ ィルター等に用いることができる。また、本発明の製造方法を用いれば、フィルターだ けではなく、 2層構造を有する多孔質体製品として含油軸受け、ガス抜き部材等も製 造できる。  [0041] The filter of the present invention can be used, for example, in a column for liquid chromatography, a filter for artificial dialysis, and the like. Further, if the production method of the present invention is used, not only a filter but also an oil-impregnated bearing, a degassing member, etc. can be produced as a porous product having a two-layer structure.
[0042] 次に、本発明に力かるフィルターの実施例を、図を用いて説明する。図 1に示すフィ ルターは直径 6mm、長さ 20mmの円柱形状であり、直径 3mmの多孔質焼結体 1から なる濾過部を中心部に有している。流入部力も試料を注入し、柱軸方向に試料を流 通させて流出部から出てくる濾液を採取することによって、濾過を行う。前記濾過部 は試料の流入出部以外が高密度焼結体 2に覆われており、フィルターの全体形状は 、円柱状の濾過部 (多孔質焼結体 1)と該濾過部の周壁に沿って設けられた厚さ 1. 5 mmの外周部(高密度焼結体 2)の 2層からなる円柱状となって!/、る。 [0042] Next, an embodiment of a filter that is useful in the present invention will be described with reference to the drawings. The filter shown in Fig. 1 has a cylindrical shape with a diameter of 6 mm and a length of 20 mm. From the porous sintered body 1 with a diameter of 3 mm, It has the filtration part which becomes. The inflow part force is filtered by injecting the sample, allowing the sample to flow in the direction of the column axis, and collecting the filtrate coming out of the outflow part. The filter part is covered with the high-density sintered body 2 except for the sample inflow / outflow part, and the overall shape of the filter is along the columnar filter part (porous sintered body 1) and the peripheral wall of the filter part. It becomes a cylindrical shape consisting of two layers of the outer peripheral part (high-density sintered body 2) with a thickness of 1.5 mm.
図 2に示すフィルタ一は、 2つの円柱が垂直に交わった T字型の分岐形状をしてお り、流出部が 2箇所存在する。図 2のフィルタ一は、濾過を中断することなく試料サン プルを採取することができるものであり、通常は流出部 2に蓋をした状態で流入部か ら流出部 1に試料を流通させて濾過を行い、サンプルを採取する際は、流出部 2の蓋 を外してサンプルを得る。  The filter shown in Fig. 2 has a T-shaped branch shape with two cylinders vertically intersecting, and there are two outflow parts. The filter shown in Fig. 2 is capable of collecting a sample sample without interrupting filtration. Normally, the sample is circulated from the inflow part to the outflow part 1 with the outflow part 2 covered. When collecting the sample by filtration, remove the lid of the outflow part 2 to obtain the sample.
2色成形機を用いる本発明の製造方法によれば、濾過部と外周部を同時に成形す ることができるため、図 2のような複雑形状のフィルターであっても、濾過部と外周部を 簡易な工程で一体形成することができる。  According to the manufacturing method of the present invention using a two-color molding machine, the filtration part and the outer peripheral part can be molded at the same time. Therefore, even if the filter has a complicated shape as shown in FIG. It can be integrally formed by a simple process.
[0043] 以下、実施例に基づき、本発明のフィルターを製造する方法を説明する。 [0043] Hereinafter, a method for producing the filter of the present invention will be described based on Examples.
実施例 1  Example 1
[0044] 金属製フィルターの製造 [0044] Manufacture of metal filters
本発明に力かる方法を用いて、図 1に示すフィルターを作製した。  The filter shown in FIG. 1 was produced by using a method that makes good use of the present invention.
金属粉末として、ステンレス粉末 (SUS316L)を使用した。高密度焼結体を形成す る成形材料 Xに用いる粉末 Aとして、平均粒径 6 /z mのステンレス粉末を、多孔質焼 結体 (濾過部)を形成する成形材料 Yに用いる粉末 Bとして平均粒径 50 μ mのステン レス粉末を用いた。  Stainless steel powder (SUS316L) was used as the metal powder. Stainless steel powder with an average particle size of 6 / zm is used as the powder A used for the molding material X that forms the high-density sintered body. Stainless powder with a particle size of 50 μm was used.
有機バインダとして、ポリアセタール、ポリプロピレン、パラフィンワックスを、 25 : 25 : 50の割合で混合した混合物を使用した。  As the organic binder, a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
[0045] 成形材料 X、成形材料 Yの組成は、以下の通りである。 [0045] The composition of the molding material X and the molding material Y is as follows.
成形材料 X:粉末 A60体積% +有機バインダ 40体積0 /0 Molding material X: Powder A60 vol% + organic binder 40 vol 0/0
成形材料 Y:粉末 B65体積% +有機バインダ 35体積%  Molding material Y: Powder B65 volume% + organic binder 35 volume%
[0046] 射出成形は、 2色成形機を用いて行った。成形温度は 180°Cとし、中心部の多孔 質焼結体 (濾過部)と、その外周に密接した高密度焼結体とからなる成形体を作製し た。得られた成形体を最高温度 400°C,窒素雰囲気下で脱脂し、脱脂後の成形体を 最高温度 1350°C 'アルゴン雰囲気下で焼結した。得られた焼結体の各部の密度は 下記の通りで、高密度焼結体 (外周部)と多孔質焼結体(中心部)の境界面は熔着し た。 [0046] Injection molding was performed using a two-color molding machine. The molding temperature was set to 180 ° C, and a molded body consisting of a porous sintered body (filter part) in the center and a high-density sintered body in close contact with the outer periphery was produced. It was. The obtained green body was degreased at a maximum temperature of 400 ° C under a nitrogen atmosphere, and the degreased green body was sintered under an argon atmosphere at a maximum temperature of 1350 ° C '. The density of each part of the obtained sintered body was as follows, and the boundary surface between the high-density sintered body (outer peripheral part) and the porous sintered body (center part) was welded.
焼結相対密度 高密度焼結体: 95%、多孔質焼結体: 85%  Sintered relative density High-density sintered body: 95%, porous sintered body: 85%
[0047] 製造されたフィルターのうち、外周部の高密度焼結体は 5 μ m以下の微細な独立 気孔を有し、濾過部の多孔質焼結体は気孔径約 20〜30 m程度の連続気孔を有 していた。 [0047] Among the manufactured filters, the high-density sintered body at the outer peripheral portion has fine independent pores of 5 μm or less, and the porous sintered body at the filtration portion has a pore diameter of about 20 to 30 m. It had continuous pores.
実際に 100 m以下のセラミックス粉末を 5%含む水溶液をこのフィルターに通した 場合に、液漏れ等の不具合なぐ 40 m以上の粒径を有する粉末を捕捉することが できた。  When an aqueous solution containing 5% ceramic powder of 100 m or less was actually passed through this filter, it was possible to capture powder having a particle size of 40 m or more without any problems such as liquid leakage.
[0048] 実施例 1から、同一製品中に高密度焼結体 (外周部)と多孔質焼結体 (濾過部)と が併存し、且つ高密度焼結体と多孔質焼結体の界面が焼結により熔着した、実使用 上問題のない金属フィルターを、同一焼結条件で、後加工無しに得ることができた。 実施例 2  [0048] From Example 1, a high-density sintered body (peripheral part) and a porous sintered body (filter part) coexist in the same product, and the interface between the high-density sintered body and the porous sintered body. A metal filter that was welded by sintering and had no problem in practical use could be obtained under the same sintering conditions without post-processing. Example 2
[0049] セラミックス,金属力らなるフィルターの製造  [0049] Manufacture of ceramics and metal power filters
セラミックス粉末を含有する成形材料と金属粉末を含有する成形材料を用い、図 1 に示すフィルターを製造した。  The filter shown in Fig. 1 was manufactured using a molding material containing ceramic powder and a molding material containing metal powder.
[0050] 各成形材料の組成は、以下の通りである。 [0050] The composition of each molding material is as follows.
外周部の成形材料:金属粉末 (ステンレス SUS304L粉末:平均粒径 10 μ m) 65体積 % +有機バインダ 35体積0 /0 Molding material of the outer peripheral portion: metal powder (stainless steel SUS304L powder: average particle diameter 10 mu m) 65 vol% + organic binder 35 vol 0/0
中心部 (濾過部)の成形材料:セラミックス粉末 (アルミナ粉末:平均粒径 1.0 μ m) 55 体積0 /0 +有機バインダ 45体積0 /0 Molding material of the central portion (filtration unit): ceramic powder (alumina powder average particle size: 1.0 mu m) 55 volume 0/0 + organic binder 45 vol 0/0
外周部 (金属部)が緻密化する温度は 1300°Cであり、中心部(セラミックス部)が緻 密化する温度は、 1550°Cである。  The temperature at which the outer peripheral part (metal part) becomes dense is 1300 ° C, and the temperature at which the central part (ceramic part) becomes dense is 1550 ° C.
[0051] 射出成形は、 2色成形機を用いて行った。成形温度は 170°Cとし、濾過部と、その外 周部分とからなる成形体を作製した。得られた成形体を最高温度 400°C ·窒素雰囲気 下で脱脂し、脱脂後の成形体を最高温度 1350°C 'アルゴン雰囲気下で焼結した。 得られた焼結体の各部の密度は下記の通りで、高密度焼結体 (外周部)と多孔質焼 結体(中心部)の境界面は熔着した。 [0051] Injection molding was performed using a two-color molding machine. The molding temperature was set to 170 ° C, and a molded body comprising a filtration part and an outer peripheral part thereof was produced. The obtained molded body was degreased at a maximum temperature of 400 ° C. · nitrogen atmosphere, and the degreased molded body was sintered at a maximum temperature of 1350 ° C. under an argon atmosphere. The density of each part of the obtained sintered body was as follows, and the boundary surface between the high-density sintered body (outer peripheral part) and the porous sintered body (center part) was welded.
焼結相対密度 高密度焼結体: 95%、多孔質焼結体: 90%  Sintered relative density High-density sintered body: 95%, porous sintered body: 90%
[0052] 高密度焼結体は微細な独立気孔を有し、濾過部(多孔質焼結体)は、気孔径が約 0 .3〜0.7 m程度の連続気孔を有し、実際に 100 m以下のセラミックス粉末を 5%含 む水溶液をこのフィルターに通した場合に、液漏れ等の不具合なぐ 1.0 /z m以上の 粒径を有する粉末を捕捉することができた。 [0052] The high-density sintered body has fine independent pores, and the filtration part (porous sintered body) has continuous pores having a pore diameter of about 0.3 to 0.7 m. When an aqueous solution containing 5% of the following ceramic powder was passed through this filter, a powder having a particle size of 1.0 / zm or more that was free from defects such as liquid leakage could be captured.
実施例 2により、同一製品中に高密度焼結体 (外周部)と多孔質焼結体 (濾過部)が 併存し、且つ高密度焼結体と多孔質焼結体の界面が焼結により熔着した、実使用上 問題のない金属 ·セラミックス 2層フィルターを、同一焼結条件で、後加工無しに得る ことができた。  According to Example 2, a high-density sintered body (peripheral part) and a porous sintered body (filter part) coexist in the same product, and the interface between the high-density sintered body and the porous sintered body is sintered. We succeeded in obtaining a welded metal / ceramic two-layer filter with no problems in actual use under the same sintering conditions without post-processing.
[0053] なお、本実施例では、粉末粒径の他に焼結温度を調節することによって、焼結相対 密度を調節した。すなわち、焼結温度が 1350°Cであれば、セラミックス部は緻密化し ないため、焼結密度がより低く抑えられる。一方、金属部は緻密化する温度が 1300 °Cであるため、上記焼結条件で緻密化し、結果として焼結相対密度が 95%以上の 高密度焼結体と焼結相対密度が 90%の多孔質焼結体とが併存するフィルターを得 ることがでさた。  [0053] In this example, the sintering relative density was adjusted by adjusting the sintering temperature in addition to the powder particle size. In other words, if the sintering temperature is 1350 ° C, the ceramic part is not densified, and the sintered density can be kept lower. On the other hand, the metal part is densified at a temperature of 1300 ° C. Therefore, the metal part is densified under the above-mentioned sintering conditions. As a result, a sintered compact having a sintered relative density of 95% or more and a sintered relative density of 90% It was possible to obtain a filter coexisting with a porous sintered body.
[0054] 以下の実施例 3 ·4において、 2色成形機を用いずに本発明に力かるフィルターを 製造する方法を説明する。  [0054] In Examples 3 and 4 below, a method for producing a filter according to the present invention without using a two-color molding machine will be described.
実施例 3  Example 3
[0055] 金属製フィルターの製造 [0055] Manufacture of metal filters
以下の方法を用いて、図 1に示すフィルターを製造した。  The filter shown in FIG. 1 was manufactured using the following method.
金属粉末として、チタン粉末を使用した。高密度焼結体を形成する成形材料 Xに用 いる粉末 Αとして、平均粒径 20 mのチタン粉末を、多孔質焼結体を形成する成形 材料 Yに用いる粉末 Bとして、平均粒径 50 /z mのチタン粉末を用いた。また、本実施 例においては、多孔質焼結体の気孔率を調節するために、粉末 Bの他に、粉末 Bの 20重量%量の粉末 Aを混合して成形材料 Yを調製した。  Titanium powder was used as the metal powder. Titanium powder with an average particle size of 20 m is used as the powder for the molding material X that forms the high-density sintered body, and the average particle size is 50 / as the powder B that is used for the molding material Y that forms the porous sintered body. zm titanium powder was used. Further, in this example, in order to adjust the porosity of the porous sintered body, a molding material Y was prepared by mixing 20% by weight of powder A in addition to powder B.
有機バインダとしては、ポリアセタール、ポリプロピレン、ノ《ラフィンワックスを、 25 : 2 5: 50の割合で混合した混合物を使用した。 Organic binders include polyacetal, polypropylene, and 《Raffin wax, 25: 2 A mixture mixed at a ratio of 5:50 was used.
[0056] 成形材料 X、成形材料 Yの組成は、以下の通りである。 [0056] The composition of the molding material X and the molding material Y is as follows.
成形材料 X:粉末 A60体積% +有機バインダ 40体積0 /0 Molding material X: Powder A60 vol% + organic binder 40 vol 0/0
成形材料 Y:粉末 (B+ A) 65体積% +有機バインダ 35体積%  Molding material Y: 65% by volume of powder (B + A) + 35% by volume of organic binder
[0057] 成形材料 Xおよび Yを、それぞれ射出成形して、図 1に示す、外周部(高密度焼結 体)および中心部(多孔質焼結体)を作製した。成形温度は 180°Cとした。作製した 成形体 X(外周部)に成形体 Y (中心部)を挿入して組み合わせ、組み合わせた成形 体を最高温度 400°C 'アルゴン雰囲気下で脱脂し、脱脂後の成形体を最高温度 122 0°C ·高真空下(10-3AB)で焼結した。得られた焼結体の焼結相対密度は下記の通 りで、高密度焼結体 (外周部)と多孔質焼結体 (濾過部)の境界面は熔着した。 [0057] Molding materials X and Y were respectively injection molded to produce an outer peripheral portion (high density sintered body) and a central portion (porous sintered body) shown in FIG. The molding temperature was 180 ° C. Insert the molded body Y (center) into the molded body X (outer peripheral part) and combine it. The combined molded body is degreased at the maximum temperature of 400 ° C 'argon atmosphere. 0 ° C · Sintered under high vacuum (10-3AB). The sintered relative density of the obtained sintered body was as follows, and the boundary surface between the high-density sintered body (outer peripheral portion) and the porous sintered body (filtered portion) was welded.
焼結相対密度 高密度焼結体: 95%、多孔質焼結体: 84%  Sintered relative density High-density sintered body: 95%, porous sintered body: 84%
[0058] 高密度焼結体は微細な独立気孔を有し、濾過部(多孔質焼結体)は、気孔径が約 1 5〜30 μ m程度の連続気孔を有して 、た。実際に 100 μ m以下のセラミックス粉末を 5%含む水溶液をこのフィルターに通した場合に、液漏れ等の不具合なぐ 50 m以 上の粒径を有する粉末を捕捉することができた。 [0058] The high-density sintered body had fine independent pores, and the filtration part (porous sintered body) had continuous pores having a pore diameter of about 15 to 30 µm. When an aqueous solution containing 5% ceramic powder of 100 μm or less was actually passed through this filter, it was possible to capture powder having a particle size of 50 m or more with no problems such as liquid leakage.
実施例 3から、同一製品中に高密度焼結体 (外周部)と多孔質焼結体 (濾過部)が 併存し、且つ高密度焼結体と多孔質焼結体との界面が焼結により熔着した、実使用 上問題のない金属フィルターを、同一焼結条件で、後加工無しに得ることができた。 実施例 4  From Example 3, a high-density sintered body (peripheral part) and a porous sintered body (filtering part) coexist in the same product, and the interface between the high-density sintered body and the porous sintered body is sintered. As a result, a metal filter with no problems in practical use was obtained under the same sintering conditions without post-processing. Example 4
[0059] セラミックス焼結品の製造 [0059] Manufacture of sintered ceramics
以下の方法を用いて、図 2に示す焼結品を製造した。  The sintered product shown in FIG. 2 was manufactured using the following method.
セラミックス粉末として、アルミナ粉末を使用した。高密度焼結体を形成する成形材 料 X,に用いる粉末 Cとして、平均粒径 0.3 mのアルミナ粉末を、多孔質焼結体を形 成する成形材料 Y'に用いる粉末 Dとして、平均粒径 7 mのアルミナ粉末を用いた。 また、本実施例においては、多孔質焼結体の気孔率を調節するために、粉末 Dの他 に、粉末 Dの 10重量%量の粉末 Cを混合して成形材料 Y'を調製した。  Alumina powder was used as the ceramic powder. As powder C used for molding material X, which forms a high-density sintered body, alumina powder having an average particle size of 0.3 m is used as powder C, and as powder D used as molding material Y ′ that forms a porous sintered body, average grain is used. Alumina powder with a diameter of 7 m was used. Further, in this example, in order to adjust the porosity of the porous sintered body, in addition to powder D, 10% by weight of powder C of powder D was mixed to prepare molding material Y ′.
有機ノインダとしては、アクリル榭脂、ポリプロピレン、パラフィンワックス、ジブチノレ フタレート、ステアリン酸を、 25 : 25 :40 : 5 : 5の割合で混合した混合物を使用した。 [0060] 成形材料 X'、成形材料 Y'の組成は、以下の通りである。 As the organic noda, a mixture in which acrylic resin, polypropylene, paraffin wax, dibutynophthalate and stearic acid were mixed at a ratio of 25: 25: 40: 5: 5 was used. [0060] The composition of the molding material X 'and the molding material Y' is as follows.
成形材料 X,;粉末 C55体積% +有機バインダ 45体積0 /0 Molding material X ,; powder C55 vol% + organic binder 45 vol 0/0
成形材料 Y,:粉末 (D+C) 60体積% +有機バインダ 40体積0 /0 Molding Y ,: powder (D + C) 60 vol% + organic binder 40 vol 0/0
[0061] 成形材料 X'および Y'を、それぞれ射出成形して、図 2に示す製品を作製した。ま ず、成形材料 Y'を用いて、濾過部 (多孔質焼結体)の形状に合わせた金型を用いて 射出成形を行!ヽ、得られた成形体を外周部 (高密度焼結体)の形状を作成する金型 にインサートした。その後、濾過部の外側に成形材料 X'が充填されるように射出成 形し、得られた成形体を脱脂、焼結することにより、内心部が多孔質で、外周部が高 密度の焼結体力 なるフィルターを製造した。 [0061] Molding materials X 'and Y' were each injection-molded to produce the product shown in FIG. First, using molding material Y ', injection molding is performed using a mold that matches the shape of the filtration part (porous sintered body). Inserted into the mold to create the shape of the body. After that, injection molding is performed so that the molding material X ′ is filled outside the filtration part, and the obtained molded body is degreased and sintered, so that the inner part is porous and the outer part is sintered at high density. A filter with a binding power was manufactured.
成形温度は 180°Cとし、脱脂は最高温度 400°〇·大気雰囲気下で行った。また、焼 結は最高温度 1600°C ·大気雰囲気下で行った。  The molding temperature was 180 ° C, and degreasing was performed at a maximum temperature of 400 ° 〇 · atmosphere. Sintering was performed at a maximum temperature of 1600 ° C in an air atmosphere.
得られた焼結体の密度は下記の通りで、高密度焼結体 (外周部)と多孔質焼結体( 濾過部)の境界面は熔着した。  The density of the obtained sintered body was as follows, and the boundary surface between the high-density sintered body (outer peripheral part) and the porous sintered body (filtered part) was welded.
焼結相対密度、高密度焼結体: 99%、多孔質焼結体: 85%  Sintered relative density, high-density sintered body: 99%, porous sintered body: 85%
[0062] 高密度焼結体は微細な独立気孔を有し、濾過部(多孔質焼結体)は気孔径が約 1 〜5 μ m程度の連続気孔を有して 、た。実際に 100 μ m以下のセラミックス粉末を 5 %含む水溶液をこのフィルターに通した場合に、 8 m以上の粒径を有する粉末を 捕捉することができた。 [0062] The high-density sintered body had fine independent pores, and the filtration part (porous sintered body) had continuous pores having a pore diameter of about 1 to 5 µm. When an aqueous solution containing 5% ceramic powder of 100 μm or less was actually passed through this filter, powder having a particle size of 8 m or more could be captured.
実施例 4から、同一製品中に高密度焼結体 (外周部)と多孔質焼結体 (濾過部)が 併存し、且つ高密度焼結体と多孔質焼結体の界面が焼結により熔着した、実使用上 問題のない T字型セラミックスフィルターを、同一焼結条件で、後加工無しに得ること ができた。  From Example 4, a high-density sintered body (peripheral part) and a porous sintered body (filtering part) coexist in the same product, and the interface between the high-density sintered body and the porous sintered body is sintered. We succeeded in obtaining a T-shaped ceramic filter that was welded and had no problem in actual use under the same sintering conditions and without post-processing.
[0063] [比較例 1] [0063] [Comparative Example 1]
金属製フィルター(比較品)の製造  Manufacture of metal filters (comparative products)
本発明にかかる金属粉末 Bの代わりに、平均粒径 10 mの金属粉末を用いて、図 1に示すフィルターを作製した。  A filter shown in FIG. 1 was prepared using metal powder having an average particle size of 10 m instead of metal powder B according to the present invention.
[0064] 金属粉末として、ステンレス粉末 (SUS316L)を使用した。外周部分を成形する材 料に用いる粉末として、平均粒径 6 μ mのステンレス粉末を、中心部分 (濾過部)を成 形する材料に用いる粉末として、平均粒径 10 mのステンレス粉末を用いた。 [0064] Stainless steel powder (SUS316L) was used as the metal powder. Stainless steel powder with an average particle diameter of 6 μm is used as the powder for the material forming the outer periphery, and the central part (filter part) is formed. Stainless steel powder with an average particle size of 10 m was used as the powder for the forming material.
有機バインダとして、ポリアセタール、ポリプロピレン、パラフィンワックスを、 25 : 25 : 50の割合で混合した混合物を使用した。  As the organic binder, a mixture in which polyacetal, polypropylene, and paraffin wax were mixed at a ratio of 25:25:50 was used.
[0065] 各成形材料の組成は、以下の通りである。 [0065] The composition of each molding material is as follows.
外周部の成形材料:ステンレス粉末 (6 μ m)60体積% +有機バインダ 40体積0 /0 中心部の成形材料:ステンレス粉末 (10 m)65体積0 /0 +有機バインダ 35体積0 /0 [0066] 射出成形は、 2色成形機を用いて行った。成形温度は 180°Cとし、図 1に示す成形 体を作製した。得られた成形体を最高温度 400°C,窒素雰囲気下で脱脂し、脱脂後 の成形体を最高温度 1350°C *アルゴン雰囲気下で焼結した。得られた焼結体の各 部の密度は下記の通りで、中心部と外周部の境界面は熔着した。 Molding material of the outer peripheral portion: Stainless powder (6 μ m) 60 vol% + organic binder 40 vol 0/0 heart of molding material: stainless steel powder (10 m) 65 volume 0/0 + organic binder 35 vol 0/0 [ [0066] Injection molding was performed using a two-color molding machine. The molding temperature was 180 ° C, and the molded body shown in Fig. 1 was produced. The obtained compact was degreased at a maximum temperature of 400 ° C under a nitrogen atmosphere, and the degreased compact was sintered at a maximum temperature of 1350 ° C * argon atmosphere. The density of each part of the obtained sintered body was as follows, and the boundary surface between the central part and the outer peripheral part was welded.
焼結相対密度 外周部: 95%、中心部: 94%  Sintering relative density Outer part: 95%, Center part: 94%
[0067] 比較例 1では、中心部と外周部の境界面が熔着したものの、多孔質焼結体となるこ とを予定した中心部の焼結相対密度は 94%と高くなり、連続気孔を有さず、試料を 流通させることができないため、フィルタ一として機能しな力 た。 [0067] In Comparative Example 1, although the boundary surface between the central portion and the outer peripheral portion was welded, the sintered relative density of the central portion, which was intended to be a porous sintered body, was as high as 94%, and the continuous pores The sample could not be circulated without having a filter, so it did not function as a filter.
[0068] [比較例 2] [0068] [Comparative Example 2]
セラミックス' J:ぎ 品 (t &)の観告  Ceramics' J: Watching for products (t &)
本発明に力かるセラミックス粉末 Cの代わりに、平均粒径 5 μ mのセラミックス粉末を 用いて、図 1に示すフィルターを作製した。  A filter shown in FIG. 1 was prepared using ceramic powder having an average particle size of 5 μm instead of ceramic powder C which is useful in the present invention.
[0069] セラミックス粉末として、アルミナ粉末を使用した。外周部分を成形する材料に用い る粉末として、平均粒径 5 mのアルミナ粉末を、中心部分 (濾過部)を成形する材料 に用いる粉末として、平均粒径 7 mのアルミナ粉末を用いた。 [0069] Alumina powder was used as the ceramic powder. Alumina powder with an average particle size of 5 m was used as the powder for the material forming the outer peripheral portion, and alumina powder with an average particle size of 7 m was used as the powder for the material for forming the central portion (filter part).
また、本実施例においては、中心部分の気孔率を調節するために、平均粒径 7 mのアルミナ粉末の他に、平均粒径 5 mのアルミナ粉末を混合して中心部を成形 する成形材料を調製した。  Further, in this example, in order to adjust the porosity of the central portion, a molding material for forming the central portion by mixing alumina powder having an average particle size of 5 m in addition to alumina powder having an average particle size of 7 m. Was prepared.
有機ノインダとしては、アクリル榭脂、ポリプロピレン、パラフィンワックス、ジブチノレ フタレート、ステアリン酸を、 25 : 25 :40 : 5 : 5の割合で混合した混合物を使用した。  As the organic noda, a mixture in which acrylic resin, polypropylene, paraffin wax, dibutynophthalate and stearic acid were mixed at a ratio of 25: 25: 40: 5: 5 was used.
[0070] 各成形材料の組成は、以下の通りである。 [0070] The composition of each molding material is as follows.
外周部の成形材料:アルミナ粉末 (平均粒径 5 μ m) 55体積% +有機バインダ 45体 積0 /o Molding material on the outer periphery: Alumina powder (average particle size 5 μm) 55% by volume + 45 organic binders Product 0 / o
中心部の成形材料:アルミナ粉末 (平均粒径 7 μ m+平均粒径 5 μ m) 60体積0 /0 + 有機バインダ 40体積0 /0 Molding material of the central portion: alumina powder (average particle diameter 7 mu m + an average particle diameter of 5 mu m) 60 volume 0/0 + organic binder 40 vol 0/0
[0071] 各成形材料を、それぞれ射出成形して、図 1に示す成形体を作製した。成形温度 は 180°Cとした。作製した外周部の成形体に中心部の成形体を挿入して組み合わせ 、挿入部分にアクリル榭脂を溶剤で希釈したものを塗布した。組み合わせた成形体を 、最高温度 400°C,大気雰囲気下で脱脂し、脱脂後の成形体を最高温度 1200°〇· 大気雰囲気下で焼結した。得られた焼結体の密度は下記の通りで、中心部と外周部 の境界面は熔着した。  [0071] Each molding material was injection-molded to produce a molded body shown in FIG. The molding temperature was 180 ° C. The molded body at the center part was inserted into the molded body at the outer peripheral part and combined, and an acrylic resin was diluted with a solvent at the insertion part. The combined molded body was degreased at a maximum temperature of 400 ° C in an air atmosphere, and the degreased molded body was sintered at a maximum temperature of 1200 ° O · atmosphere. The density of the obtained sintered body was as follows, and the boundary surface between the central portion and the outer peripheral portion was welded.
焼結相対密度 外周部: 89%、中心部: 85%  Sintering relative density Outer part: 89%, Center part: 85%
[0072] 比較例 2においては、中心部と外周部の境界面が熔着したものの、外周部分にも 連続気孔が生じ、中心部に流した試料が液漏れし、所望するフィルターを得ることが できなかった。  [0072] In Comparative Example 2, although the boundary surface between the central portion and the outer peripheral portion was welded, continuous pores were also generated in the outer peripheral portion, and the sample that flowed to the central portion leaked, and a desired filter could be obtained. could not.

Claims

請求の範囲 The scope of the claims
[1] 多孔質焼結体力 なる濾過部に試料を流通させて試料の濾過を行うフィルターで あって、  [1] Porous sintered body strength is a filter for filtering a sample by circulating the sample through a filtration section.
前記濾過部は試料の流入出部以外が高密度焼結体に覆われており、  The filtration part is covered with a high-density sintered body other than the inflow / outflow part of the sample,
前記多孔質焼結体の焼結相対密度は 50〜90%であり、  The sintered relative density of the porous sintered body is 50 to 90%,
前記高密度焼結体の焼結相対密度は 95%以上であり、  The high-density sintered body has a sintered relative density of 95% or more,
前記多孔質焼結体と前記高密度焼結体の界面が焼結により一体化している事を特 徴とするフィルター。  A filter characterized in that an interface between the porous sintered body and the high-density sintered body is integrated by sintering.
[2] 請求項 1記載のフィルターを製造する方法であって、 [2] A method of manufacturing a filter according to claim 1,
高密度焼結体を形成する成形材料 Xおよび多孔質焼結体を形成する成形材料 Yを 、 2色成形機を用いて、それぞれ所望の形状に射出成形し、脱脂、焼結する工程を 含むこと、並びに  A molding material X for forming a high-density sintered body and a molding material Y for forming a porous sintered body are each formed by injection molding into a desired shape, degreasing, and sintering using a two-color molding machine. And
前記成形材料 Xが、平均粒径 20 m以下の金属粉末 A、及び材料 Xの総量に対し 3 0〜60体積%量の有機バインダを含有し、  The molding material X contains metal powder A having an average particle size of 20 m or less, and an organic binder in an amount of 30 to 60% by volume based on the total amount of the material X,
前記成形材料 Yが、平均粒径 30〜: LOO /z mの金属粉末 B、及び材料 Yの総量に対 し 30〜60体積%量の有機バインダを含有することを特徴とする方法。  The molding material Y contains a metal powder B having an average particle size of 30 to: LOO / zm, and an organic binder in an amount of 30 to 60% by volume based on the total amount of the material Y.
[3] 請求項 1記載のフィルターを製造する方法であって、 [3] A method of manufacturing a filter according to claim 1,
高密度焼結体を形成する成形材料 Xおよび多孔質焼結体を形成する成形材料 Yを 、それぞれ射出成形して得た成形体 Xおよび Yを組み合わせて、脱脂、焼結するェ 程を含むこと、並びに  Includes the process of degreasing and sintering the molding material X forming the high-density sintered body and the molding material Y forming the porous sintered body by combining the moldings X and Y obtained by injection molding, respectively. And
前記成形材料 Xが、平均粒径 20 m以下の金属粉末 A、及び材料 Xの総量に対し 3 0〜60体積%量の有機バインダを含有し、  The molding material X contains metal powder A having an average particle size of 20 m or less, and an organic binder in an amount of 30 to 60% by volume based on the total amount of the material X,
前記成形材料 Yが、平均粒径 30〜: LOO /z mの金属粉末 B、及び材料 Yの総量に対 し 30〜60体積%量の有機バインダを含有することを特徴とする方法。  The molding material Y contains a metal powder B having an average particle size of 30 to: LOO / zm, and an organic binder in an amount of 30 to 60% by volume based on the total amount of the material Y.
[4] 前記粉末 Aと粉末 Bが同じ材質力もなる、請求項 2または 3に記載の方法。 [4] The method according to claim 2 or 3, wherein the powder A and the powder B have the same material force.
[5] 前記成形材料 Yがさらに、前記粉末 Aを、前記粉末 Bの総量に対し 90重量%以下 の量で含有する、請求項 2〜4のいずれか 1項に記載の方法。 [5] The method according to any one of claims 2 to 4, wherein the molding material Y further contains the powder A in an amount of 90% by weight or less based on the total amount of the powder B.
[6] 請求項 1記載のフィルターを製造する方法であって、 高密度焼結体を形成する成形材料 X'および多孔質焼結体を形成する成形材料 Y' を、 2色成形機を用いてそれぞれ所望の形状に射出成形し、脱脂、焼結する工程を 含むこと、並びに [6] A method for producing a filter according to claim 1, The process of injection molding, degreasing, and sintering the molding material X 'forming a high-density sintered body and the molding material Y' forming a porous sintered body into a desired shape using a two-color molding machine. Including, and
前記成形材料 X'が、平均粒径 0. 5 /z m以下のセラミックス粉末 C、及び材料 X,の総 量に対し 40〜70体積%量の有機バインダを含有し、  The molding material X ′ contains 40% to 70% by volume of an organic binder with respect to the total amount of the ceramic powder C having an average particle size of 0.5 / z m or less and the material X.
前記成形材料 Y,が、平均粒径 0. 6〜10 mのセラミックス粉末 D、及び材料 Y,の 総量に対し 40〜70体積%量の有機バインダを含有することを特徴とする方法。  The molding material Y contains a ceramic powder D having an average particle size of 0.6 to 10 m and an organic binder in an amount of 40 to 70% by volume based on the total amount of the material Y.
[7] 請求項 1記載のフィルターを製造する方法であって、 [7] A method of manufacturing a filter according to claim 1,
高密度焼結体を形成する成形材料 X'および多孔質焼結体を形成する成形材料 Y' を、それぞれ射出成形して得た成形体 X 'および Y'を組み合わせて、脱脂、焼結す る工程を含むこと、並びに  The molding material X ′ forming the high-density sintered body and the molding material Y ′ forming the porous sintered body are combined with the moldings X ′ and Y ′ obtained by injection molding, and then degreased and sintered. Including the steps of:
前記成形材料 X'が、平均粒径 0. 5 /z m以下のセラミックス粉末 C、及び材料 X,の総 量に対し 40〜70体積%量の有機バインダを含有し、  The molding material X ′ contains 40% to 70% by volume of an organic binder with respect to the total amount of the ceramic powder C having an average particle size of 0.5 / z m or less and the material X.
前記成形材料 Y,が、平均粒径 0. 6〜10 mのセラミックス粉末 D、及び材料 Y,の 総量に対し 40〜70体積%量の有機バインダを含有することを特徴とする方法。  The molding material Y contains a ceramic powder D having an average particle size of 0.6 to 10 m and an organic binder in an amount of 40 to 70% by volume based on the total amount of the material Y.
[8] 前記粉末 Cと粉末 Dが同じ材質からなる、請求項 6または 7に記載の方法。 [8] The method according to claim 6 or 7, wherein the powder C and the powder D are made of the same material.
[9] 前記成形材料 Y'がさらに、前記粉末 Cを、前記粉末 Dの総量に対し 90重量%以 下の量で含有する、請求項 6〜8のいずれか 1項に記載の方法。 [9] The method according to any one of claims 6 to 8, wherein the molding material Y ′ further contains the powder C in an amount of 90% by weight or less based on the total amount of the powder D.
PCT/JP2005/012116 2004-07-02 2005-06-30 Filter and manufacturing method thereof WO2006004011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528823A JPWO2006004011A1 (en) 2004-07-02 2005-06-30 Filter and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2004/009410 2004-07-02
PCT/JP2004/009410 WO2006003703A1 (en) 2004-07-02 2004-07-02 Sintered compact having portions of different sinter relative densities and method for production thereof

Publications (1)

Publication Number Publication Date
WO2006004011A1 true WO2006004011A1 (en) 2006-01-12

Family

ID=35782520

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/009410 WO2006003703A1 (en) 2004-07-02 2004-07-02 Sintered compact having portions of different sinter relative densities and method for production thereof
PCT/JP2005/012116 WO2006004011A1 (en) 2004-07-02 2005-06-30 Filter and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009410 WO2006003703A1 (en) 2004-07-02 2004-07-02 Sintered compact having portions of different sinter relative densities and method for production thereof

Country Status (2)

Country Link
JP (1) JPWO2006004011A1 (en)
WO (2) WO2006003703A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056989A (en) * 2006-08-31 2008-03-13 Osaka Yakin Kogyo Kk Method for manufacturing metal composite
JP2018536526A (en) * 2015-12-04 2018-12-13 キドニ ラボズ, インク.Qidni Labs, Inc. Implantable renal replacement therapy system
US20190091029A1 (en) * 2009-04-29 2019-03-28 Flextronics Global Services Canada Inc. Services G lobaux Flextronics Canada Inc. Method for co-processing components in a metal injection molding process, and components made via the same
JP2020025881A (en) * 2018-08-13 2020-02-20 ハナテク カンパニー リミテッド Titanium filter for syringes and for ringer syringes, and its manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211099A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Vacuum chuck member and method of manufacturing vacuum chuck
DE102015204752A1 (en) * 2015-03-17 2016-09-22 Schaeffler Technologies AG & Co. KG Method for producing a porous component from at least one material M and having a foam structure and a porous component produced thereafter
JP6832367B2 (en) * 2016-11-22 2021-02-24 大阪冶金興業株式会社 Metal powder injection molding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176285A (en) * 1987-12-28 1989-07-12 Nippon Denso Co Ltd Cellular ceramic body
JP2001276533A (en) * 2000-03-28 2001-10-09 Ibiden Co Ltd Porous silicon carbide filter
JP2003129111A (en) * 2001-10-18 2003-05-08 Sanalloy Industry Co Ltd Porous sintered compact

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852528B2 (en) * 1979-04-10 1983-11-24 葛城産業株式会社 Porous sintered metal plate and its manufacturing method
JPH066283B2 (en) * 1988-09-22 1994-01-26 日本碍子株式会社 Extrusion molding method for ceramic multilayer structure
JPH10251712A (en) * 1997-03-12 1998-09-22 Kubota Corp Metallic composite porous member, its production, and weld-joined body
JP4057095B2 (en) * 1997-04-14 2008-03-05 日本碍子株式会社 Ceramic extrusion equipment
JP2001278672A (en) * 2000-03-31 2001-10-10 Japan Fine Ceramics Center Method for manufacturing ceramic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176285A (en) * 1987-12-28 1989-07-12 Nippon Denso Co Ltd Cellular ceramic body
JP2001276533A (en) * 2000-03-28 2001-10-09 Ibiden Co Ltd Porous silicon carbide filter
JP2003129111A (en) * 2001-10-18 2003-05-08 Sanalloy Industry Co Ltd Porous sintered compact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056989A (en) * 2006-08-31 2008-03-13 Osaka Yakin Kogyo Kk Method for manufacturing metal composite
US20190091029A1 (en) * 2009-04-29 2019-03-28 Flextronics Global Services Canada Inc. Services G lobaux Flextronics Canada Inc. Method for co-processing components in a metal injection molding process, and components made via the same
JP2018536526A (en) * 2015-12-04 2018-12-13 キドニ ラボズ, インク.Qidni Labs, Inc. Implantable renal replacement therapy system
JP2020025881A (en) * 2018-08-13 2020-02-20 ハナテク カンパニー リミテッド Titanium filter for syringes and for ringer syringes, and its manufacturing method

Also Published As

Publication number Publication date
JPWO2006004011A1 (en) 2008-04-24
WO2006003703A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
WO2006004011A1 (en) Filter and manufacturing method thereof
JP6633677B2 (en) Powder material used for powder additive manufacturing and powder additive manufacturing method using the same
EP2900404B1 (en) Methods of forming a metallic or ceramic article having a novel composition of functionally graded material
KR100686427B1 (en) Firing setters and process for producing these setters
JP5970795B2 (en) Method for producing composition for injection molding
JP5970794B2 (en) Composition for injection molding and method for producing sintered body
JP2004143580A (en) Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing obtained by using the same
JP2001505825A (en) Method for controlling the penetration of complex shaped ceramic-metal composite products and products made thereby
JP2010515829A (en) Ceramic composite molded body and / or powder metallurgy composite molded body and method for producing the same
EP2607396B1 (en) Composition for injection molding, sintered compact, and method for producing sintered compact
WO2006041118A1 (en) Process for producing porous sinter, porous-sinter molding material, and porous sinter
US20070071962A1 (en) Multi-layer ceramic compound
CN100337728C (en) Multilayer ceramic composite
JP2009254581A (en) Implant for living body and its production method
JP4514560B2 (en) Cylindrical ceramic porous body, manufacturing method thereof, and ceramic filter using the same
JP4122431B2 (en) Aluminum oxide wear-resistant member having a layered structure and method for producing the same
JP3569682B2 (en) High corrosion resistance metal sintered filter
US20050019199A1 (en) Double-layer metal sheet and method of fabricating the same
Scheithauer et al. Functionally graded materials made by water-based multilayer technology
JP6984144B2 (en) Manufacturing method of molded product
KR101001253B1 (en) Method for coating oxygen permeable membrane on inner well of porous support and oxygen permeable tube fabricated by the same
EP4197728A1 (en) Laminate molding fired body and method for manufacturing said laminate molding fired body
JPH0889731A (en) Filter made of metal powder and its production
Rath et al. Isolated Metal and Ceramic Micro Parts in the Sub‐Millimeter Range Made by PIM
WO2022268845A1 (en) Method for manufacturing an article comprising cemented carbide and an inserted object

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528823

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase