WO2006001081A1 - 生分解性ポリエステル溶液 - Google Patents

生分解性ポリエステル溶液 Download PDF

Info

Publication number
WO2006001081A1
WO2006001081A1 PCT/JP2004/009485 JP2004009485W WO2006001081A1 WO 2006001081 A1 WO2006001081 A1 WO 2006001081A1 JP 2004009485 W JP2004009485 W JP 2004009485W WO 2006001081 A1 WO2006001081 A1 WO 2006001081A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable polyester
biodegradable
general
solution
solvent
Prior art date
Application number
PCT/JP2004/009485
Other languages
English (en)
French (fr)
Inventor
Yukio Doi
Akira Ishii
Haruki Nishiike
Hisashi Nogami
Ryouji Ishioka
Original Assignee
Showa Highpolymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co., Ltd. filed Critical Showa Highpolymer Co., Ltd.
Priority to PCT/JP2004/009485 priority Critical patent/WO2006001081A1/ja
Priority to JP2006527630A priority patent/JP4653098B2/ja
Publication of WO2006001081A1 publication Critical patent/WO2006001081A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers

Definitions

  • the present invention relates to a biodegradable polyester solution that can be used for adhesion, adhesion, printing and coating.
  • biodegradable polyesters As global environmental cleanup and sustainable development of the earth have become global concerns. They can be used as films and as moldings.
  • the adhesives, pressure-sensitive adhesives, inks and coating agents used in these processes should also be derived from biodegradable resins, but in practice conventional resins, ie non-biodegradable resins, are used.
  • the main ingredients are used.
  • solutions and colloids of natural polymer materials such as starch, casein, shellac and rubber latex are biodegradable and have long been used as adhesives, adhesives or coating agents.
  • biodegradable resins such as polylactic acid and polypropylene succinate have begun to appear on the market. However, they are often insufficient in terms of adhesive strength, adhesive strength, and water resistance often required for practical use.
  • the main causes are considered to be the presence of emulsifiers used in water dispersion, and to keep the molecular weight of the biodegradable resin small to facilitate water dispersion.
  • food processing adhesives, adhesives, and coating agents which are expected to be used for biodegradable resin, are not suitable because of their presence of emulsifiers.
  • biodegradable resin is hardly soluble in organic solvents except for poly-prolacton, and is only slightly soluble in chlorine-containing hydrocarbon organic solvents (such as chloroform, dichloroethane, and hexafluoroloy propanol).
  • organic solvents containing halogen such as chlorine-containing hydrocarbon organic solvents (referred to as halogen solvents) accumulate in the global environment without being metabolized by organisms such as microorganisms and have an adverse effect on the global environment.
  • non-halogen solvents organic solvents that do not contain halogens
  • general-purpose non-halogen solvents industrial general-purpose non-halogen solvents
  • the prior art for this is: (A) The number average molecular weight of the biodegradable resin is suppressed to 1,500 or less, and the performance degradation caused by that is to be compensated with the use of a crosslinking agent (Japanese Patent Laid-Open No. 8-31 (No. 3 6 8), (B) Polylactic acid L-form ZD-form ratio: To 9 and further to keep the number average molecular weight of this polylactic acid to 150,000 or less (Japanese Patent Laid-Open No. 203-13-1286), (C) Lactic acid one-prolacton copolymer and To see a few examples such as those using Japanese Patent Application Laid-Open No. 8-9 2 3 59, and those using (D) dioxolans (Japanese Patent Application Laid-Open No. 20 03-26 1 7 5 2) Not too much. Disclosure of the invention
  • biodegradable polyester solutions of various compositions with non-halogen solvents especially general-purpose non-halogen solvents as solvents, and sufficient performance as adhesives, adhesives, inks or coating agents. It is.
  • the biodegradable resin dissolves when heated together with a non-halogen solvent, but precipitates are formed with the subsequent cooling, and when cooled to room temperature, the whole loses fluidity or flows but precipitates. In many cases, it forms a phase separation system in which an object is a lower layer and a transparent liquid phase is an upper layer, that is, gelation occurs.
  • the maximum temperature at which gelation occurs is correctly called the upper critical eutectic temperature (UCST), but in this specification it is customarily called the gelation temperature.
  • UST upper critical eutectic temperature
  • the present inventors have intensively studied and succeeded in obtaining a general-purpose non-halogen solvent solution of a biodegradable polyester having a gelation temperature of 20 ° C. or lower.
  • the solution was found to have excellent adhesion, adhesion and coating performance.
  • the gelation temperature is of course obtained by actual measurement, but it has been found that a value close to the actual measurement value can also be obtained by calculation, and the present invention has been completed.
  • the biodegradable polyester solution of the present invention is obtained from a biodegradable polyester and a general-purpose non-halogen solvent, and has a gelation temperature T m calculated by the following formula (1) of 20 ° C. or less. To do.
  • d s , c and M s are specific gravity, volume fraction and molecular weight of the general-purpose non-halogen solvent at 20 ° C., respectively, ⁇ 1 ⁇ , d p and T m .
  • d s , c and M s are specific gravity, volume fraction and molecular weight of the general-purpose non-halogen solvent at 20 ° C., respectively, ⁇ 1 ⁇ , d p and T m .
  • the biodegradable polyester is a condensate obtained from an aliphatic dicarboxylic acid and an aliphatic diol, an alicyclic diol, or a mixture thereof, or the condensate is a polyfunctional compound. It is preferable that the condensate is further chain-extended by bonding.
  • the general-purpose non-halogen solvents include hydrocarbons, esters, ethers, and acetals. It is preferably a ketone or a mixture thereof.
  • the general-purpose non-halogen solvent is preferably an acetate ester, an aromatic hydrocarbon, a ketone, or a mixture thereof.
  • the general-purpose non-halogen solvent is more preferably ethyl acetate, butyl acetate, toluene, xylene, methyl ethyl ketone, or a mixture thereof.
  • the weight average molecular weight of the biodegradable polyester is preferably 5 0, 0 0 0 to 8 0 0, 0 0 0, and 7 0, 0 0 0 to 6 0 0, 0 0 0 Is more preferable.
  • the weight average molecular weight is less than 50,000, physical properties such as good adhesiveness cannot be obtained, and when it exceeds 80,000, it is difficult to dissolve in a general-purpose non-halogen solvent.
  • the biodegradable polyester solution of the present invention does not gel at a temperature higher than 20 ° C., and can be used at normal room temperature and working temperature. For example, it can be applied uniformly on paper, etc., allowing room temperature operation.
  • biodegradable polyester solution of the present invention is obtained from a biodegradable polyester and a general non-halogen solvent, it is possible to avoid problems with the global environment and safety.
  • biodegradable solution type adhesives compared to the non-biodegradable type emulsion type, biodegradable solution type adhesives, pressure-sensitive adhesives, coating agents, etc., which are markedly superior in adhesion, adhesion, water resistance, etc.
  • biodegradable solution type adhesives compared to the non-biodegradable type emulsion type, biodegradable solution type adhesives, pressure-sensitive adhesives, coating agents, etc., which are markedly superior in adhesion, adhesion, water resistance, etc.
  • biodegradable polyester and general-purpose non-halogen solvents BEST MODE FOR CARRYING OUT THE INVENTION
  • d s , c and M s are specific gravity, volume fraction and molecular weight of the general-purpose non-halogen solvent at 20 ° C., respectively, ⁇ 1 ⁇ , d p and T m .
  • mj Zmg heat of fusion
  • specific gravity melting point
  • t m is the melting point of the crystalline biodegradable polyester
  • t m is the melting point of the crystalline biodegradable polyester lowered by the addition of solvent or plasticizer (both are in absolute temperature K)
  • R is the gas constant
  • V p is the crystalline
  • V s is the molecular volume of the solvent
  • ⁇ H is the heat of fusion (m J / mg) per mole of the repeating unit of the crystalline biodegradable polyester
  • c is the volume of the solvent
  • the fractions and ⁇ represent the interaction parameters between the crystalline biodegradable polyester and the solvent.
  • the crystalline biodegradable polyester-related factors are the melting point t m °, the heat of fusion ⁇ H and the molecular volume V p , the molecular volume 5 as the solvent-related factor, and the solution-related factor
  • the solvent volume fraction c and the crystalline biodegradable polyester / solvent interaction parameter ⁇ are used, and the melting point drop of the crystalline biodegradable polyester due to the addition of solvent or plasticizer It is shown that it is determined by the combined equation (2).
  • equation (2) we can extend this equation (2) to a system like the present invention that has more solvents than if it is normally used, that is, a system in which the object is not a solid but a liquid (solution). I examined whether it was possible. Actually, we studied using equation (3), which is a modification of equation (2).
  • T m (° C) t m (K) — 2 7 3
  • T m ° (° C) t m ° (K) — 2 7 3
  • gas constant R l. 9 8 6 (ca 1 / deg / mo 1)
  • X 4. 1 8 6 (j Z cal) 8.
  • This ⁇ h can be obtained by measuring the heat of fusion.
  • the equation (2) that is, the equation (3) can be applied to the system of the present invention, and the melting point of the system calculated by the equation (3) can be considered as an index of the gelation temperature of the system. And found.
  • d s, c Oyopi] ⁇ 1 3 the ratio of 20 ° C in general-purpose non-halogenated solvents are heavy, is the volume fraction and molecular weight, A h, (1 13 Oyopihinoto "1 ° Are the heat of fusion (mj / mg), specific gravity and melting point (° C) at 20 ° C, respectively.
  • the gelation temperature T m of the solution according to the formula (1) is 4 2. It may be a little impossible to call 7 ° C and room temperature (comparison) 3 reference), etc., it does not bring the above prior art gutter Edomo room temperature solution of unconditionally was suggested. In fact, the actual gelation temperature values for these prior arts were close to the calculated value T m .
  • Another benefit is that a method for achieving room temperature solution has been shown on the desk, and it has become possible to predict whether a biodegradable polyester solution that does not gel at room temperature can be obtained.
  • a new biodegradable polyester that achieves room temperature solution was actually synthesized (see Examples 1-3).
  • biodegradable polyester referred to in the present invention examples include polybutylene succinate, polyethylene succinate, and poly [(tetrahydro) xylyl] succinate, which are aliphatic dicarboxylic acids and aliphatic diols.
  • a halogen solvent that dissolves various biodegradable polyesters but adversely affects the global environment and safety
  • a non-generic solvent that is not a general-purpose solvent, but not a general-purpose non-halogen solvent. It is significant that a biodegradable polyester solution was obtained using a solvent.
  • Examples of the general-purpose non-halogen solvent referred to in the present invention include a halogen-free solvent having a molecular weight and specific gravity satisfying the formula (1).
  • general-purpose non-halating solvents such as esters, hydrocarbons, ethers, acetals, and ketones, more preferably acetates, aromatic hydrocarbons, ethers, ketones, and the like, and even more preferably, ethyl acetate (Ac) OE t), butyl acetate (A c OB u), toluene, xylene, mesitylene, Jie isopropyl ether (i P r 2 ⁇ ), Te Jewishi Dorofuran (THF), Jiokisan, Aniso one Honoré (P h OM e)
  • General-purpose non-halogen solvents such as aceton and methylethylketone (ME K), which are readily available and have widely known safety handling standards, are preferred.
  • both may be mixed, heated to the boiling point of the general-purpose non-halogen solvent, and stirred. If this time is too short, it may gel during the subsequent cooling to room temperature, so care must be taken in this regard.
  • the concentration (weight percentage) of the biodegradable polyester solution of the present invention is in the range of 1% to 60%, preferably 5% to 50%, more preferably 10% to 40%.
  • the general-purpose non-halogen solvent solution of the biodegradable polyester of the present invention can be used as an adhesive, a pressure-sensitive adhesive, a coating agent, an ink or the like.
  • the target (base material) such as adhesive, adhesive, coating, and printing
  • the final processed product can be obtained without impairing biodegradability.
  • Adhesive the same adhesive, the same Excellent performance compared to a coating agent and the same ink.
  • final processed products can be obtained while maintaining biodegradable properties.
  • the biodegradable polyester of the present invention in order to facilitate the separation and recovery of the final processed product upon recycling after use, there is also an application utilizing the readily hydrolyzable property of the biodegradable polyester of the present invention.
  • the water-resistant paper or oil-resistant paper obtained by applying the biodegradable polyester solution of the present invention is hydrolyzed in an alkaline bath and recovered as a raw material pulp.
  • the above is a feature of the biodegradable polyester solution of the present invention in comparison with a non-biodegradable resin solution.
  • emulsions containing biodegradable polyester particles are also commercially available. Therefore, the features of the biodegradable polyester solution of the present invention against this will be briefly described.
  • the fundamental difference is that the water resistance of the film obtained by transpiration of the liquid phase part of the biodegradable polyester solution of the present invention is remarkably high.
  • the denseness of the resulting film is remarkably excellent, does not contain foreign substances, and can be formed at room temperature. All of these do not require the emulsion stabilizer contained in the commercially available emulsion as an essential component, the biodegradable polyester solution of the present invention, and the biodegradable polyester until the solution is filmed. It comes from being solvated.
  • Water-resistant paper that requires strict water resistance, fertilizer that needs to diffuse through the pores of the molecular level and dislikes the pores of the mouth, sustained-release coating to pesticides, etc.
  • Solution type such as biodegradable polyester solution of the present invention for required processed paper for food packaging, printing that requires room temperature coating, ship bottom coating, and other adhesives that cannot use emulsion type It is expected that the superiority of The solution type contains a solvent not found in the emulsion type, but the collection and reuse of the transpiration of the solvent, prevention of environmental pollution by the centralized ventilation system, and Appropriate use of protective equipment or thorough safety education may be conducted.
  • the biodegradable polyester solution of the present invention can be used as it is or mixed with other components as necessary. Other components include colorants, plasticizers, fillers, tackle ears, extenders, and resins. These are used by being mixed within a range that does not inhibit the original characteristic of biodegradability of the biodegradable polyester solution of the present invention.
  • the biodegradability test was conducted by the soil embedding method described below.
  • the test soil is set to a water content ratio of 50% of the maximum water capacity, a 10 cm square test sample is embedded in this, and the time course of the test sample at 25 ° C is visually observed. The time when no more was recognized was taken as a scale.
  • the soil which is volcanic ash ash
  • the test soil was used 400 times the test sample.
  • the biodegradable polyester solution was subjected to differential thermal analysis (DSC), and the gelation temperature of the solution was measured and determined. Specifically, about 20 mg of the solution is collected in a DSC container, once cooled to _70 ° C, and then at the minimum point of the endothermic peak that appears when the temperature is raised at a rate of 10 ° C / min. The corresponding temperature was defined as the gelation temperature. It was clearly distinguishable from the endothermic peak due to the solvent.
  • DSC differential thermal analysis
  • the weight average molecular weight and number average molecular weight were determined by the GPC method using a mouth-opening form as an eluent.
  • the conditions were as follows.
  • the melting point and heat of fusion of the biodegradable polyester were also measured by the DSC method under the same temperature conditions as described above [Measurement of gelation temperature].
  • the amount of the test sample was about 10 mg, the temperature corresponding to the minimum point of the endothermic peak was the melting point, and the endothermic amount per unit weight calculated from the endothermic peak area was the heat of fusion.
  • the specific gravity d p was determined from the ratio of the weight in water to the weight in water using a solid specific gravity measuring device (KK Shimadzu Libror SGM-200).
  • the specific gravity d s is based on literature values (Solvent Pocket Pocket, Ohmsha, published in 1947). However, in the case of mixed solvents, the volume fraction calculated by assuming that there was no volume change due to mixing was calculated by assuming that there was no volume change due to mixing.
  • 300 1 Pionole 3001 ⁇ (described in Reference Example 1), PLA: Polylactic acid (H-400, Mitsui Chemicals, KK :), Ecof: Polybutylene adipate 'co' terephthalate (BAS F AG), 1001: Pionore # 1 001 (Polybutylene succinate, Showa Polymer KK;), EtOAc: Ethyl acetate, BuOAc: n-butyl acetate, MEK: Methylethylketone, Tol: Toluene, Xyl: Xylene
  • ⁇ of the biodegradable polyester solution consisting of a combination of 4 commercially available biodegradable polyesters and 5 general-purpose non-halogen solvents was all measured from the same experiment as in Reference Example 1. Calculated as 0.9.
  • a slightly turbid solution having a solid content of 21.0% was obtained in the same manner as in Example 1 except that the biodegradable polyester was used and 300 g of ethyl acetate was used as a general-purpose non-halogen solvent.
  • the measured value of the gelation temperature T m was ⁇ 9.9 ° C, which was close to the calculated value. This proved that the accuracy of equation (1) is high.
  • Example 2 The same apparatus as in Example 1 was charged with 63.0 g of succinic acid, 77.9 g of adipic acid, 149.2 g of hexyl dimethanol, and 99.6 mg of germanium oxide as a catalyst. And dehydration condensation at 180 ° C. for 40 minutes. The distilling tube was then replaced with a DC tube and reacted at 180 ° C under a reduced pressure of 20 t 0 rr for 1.8 hours, and finally at 220 ° C, 0.1 t 0 r 1- The mixture was reacted under reduced pressure until 13.6 hours. The product was a clear, colorless and viscous melt. The product is analyzed after cooling and the weight average molecule A biodegradable polyester having an amount of 8 6, 2 5 3, a melting point of 63.8 ° (a heat of fusion of 23.2 mJ / mg was obtained.
  • Example 2 In the same manner as in Example 1 except that 30 g of the biodegradable polyester and 70 g of an equal weight mixture of toluene Z methyl ethyl ketone (MEK) were used as a general-purpose non-halogen solvent, a solid content of 14.0% A colorless transparent solution of was obtained.
  • MEK methyl ethyl ketone
  • the gelation temperature T m of this colorless and transparent solution according to equation (1) was calculated to be 15.0 ° C.
  • This colorless and transparent solution was put into a cylindrical glass bottle having an internal volume of 140 m 1 and put into a forced circulation type thermostat at 10 ° C.
  • a biodegradable rayon nonwoven fabric (4 per unit weight 26.7 g / m 10 cm square) is immersed in 200 g of the biodegradable polyester solution obtained in Example 3 and taken out after 2 minutes. It was squeezed and air-dried with a rubber roller. Two sheets of the resulting biodegradable polyester solution-impregnated nonwoven fabric were stacked and heat sealed using an iron under the conditions of 100 ° C / 0.3 Mpa / 10 s and subjected to a strength test. 1 80 ° peel test (sample size: 2.5 cm width, chuck interval 8 cm, peel speed 300 mm / min) The strength is normal (20 ° C, 65% RH).
  • the gelation temperature T m of a toluene solution with a solids concentration of 10% was calculated using equation (1). However, it was slightly higher than 71.2 ° C to achieve room temperature solubilization.
  • the gelation temperature T m in the case of dissolution was calculated by Equation (1), the temperature was 60.0 ° C, which was a little higher for room temperature solubilization.
  • EM-300 a biodegradable polyester emulsion (polybutylene succinate, co-adipate, solid content 51%, minimum film formation temperature 95 ° C, Showa High Molecular Chemicals KK) diluted to 10% Except for using the prepared resin solution, it is the same as Application Example 3. And experimented.
  • the 180 ° peel strength of the obtained heat-sealed product is 0.25 kg / cm at normal conditions and 0.0 kg / cm at wet conditions (0% when the water immersion time of the tanned sample is 10 minutes) 20 k gZ cm), which was insufficient for draining bags.
  • the gelation temperature can be predicted with high accuracy by the equation (1) of the present invention.
  • the gelation temperature T m of the biodegradable polyester solution of the present invention is calculated and predicted to be 20 ° C. or less by this equation (1), and a value close to the calculated value is obtained even in actual measurement. And below 20 ° C.
  • These biodegradable polyester solutions of the present invention also showed excellent performance when applied to several applications. Also in the biodegradation test, the biodegradable polyester solution of the present invention showed good biodegradability.
  • the gelation temperature T m is predicted to be higher than 20 ° C by Equation (1). it was high. Application of the comparative example did not give excellent performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

明 細 書
生分解性ポリエステル溶液
技術分野
本発明は、 接着、 粘着、 印刷およびコーティングなどに利用出来る生分解性ポ リエステル溶液に関する。
背景技術
地球環境浄化および地球の持続的発展が世界的関心事となった昨今、 生分解性 ポリエステルには注目が集まっている。 それらはフィルムと して、 成形物として
、 高価であるにも拘わらず使用され始めているが、 実用化に当たっては、 接着、 粘着、 印刷、 コーティングといった加工を受ける場合がある。 本来ならば、 これ らの加工に使用される接着剤、 粘着剤、 インクおよびコーティング剤も生分解性 樹脂由来であるべきであるが、 実際には従来型の樹脂、 即ち非生分解性樹脂を主 原料とするものが使われている。
なるほど澱粉、 カゼイン、 シェラック、 ゴムラテックスといった天然高分子物 質の溶液およびコロイ ドなどは生分解性であり、 古くから接着剤、 粘着剤または コーティング剤と して使われてはいる。 更に最近では、 ポリ乳酸およびポリプチ レンサクシネートなどの生分解性樹脂の水分散系製品が、 市場に現れ始めている 。 ところがそれらでは接着力、 密着力など、 さらには実用上しばしば必要とされ る耐水性などにおいて不十分な場合が多い。 水分散に際して使われる乳化剤の存 在、 および水分散を容易にするために生分解性樹脂の分子量を小さく抑えている ことなどが、 その主たる原因と考えられている。 また生分解性榭脂の大きな用途 と期待されている食品加工用接着剤、 同粘着剤および同コーティ 'ング剤には、 そ れら乳化剤の存在故に不適当とされる。
従って、 生分解性であり、 かつ実用的に接着力、 密着力、 耐水性などの性能に 優れた接着剤、 粘着剤、 インク、 コーティング剤などは、 得られていない。
生分解性樹脂の有機溶剤溶液を用いることが出来れば、 乳化剤の使用を避ける ことが出来るなど、 上述の問題点は相当程度克服されると考えられる。 但し、 該 生分解性榭脂は、 ポリ力プロラク トンを除き有機溶剤には溶け難く、 僅かに塩素 含有炭化水素系有機溶剤 (クロ口フオルム、 ジクロロェタン、 へキサフルォロイ ソプロパノールなど) に溶けるに過ぎない。 これらの塩素含有炭化水素系有機溶 剤などのハロゲンを含む有機溶剤 (ハロゲン溶剤という) は、 微生物などの生物 による代謝を受けずに地球環境中に蓄積して地球環境に悪影響を与え、 ヒ トなど の生物の安全性にも悪影響を与える。 従って、 地球環境や安全性上のこのような 問題の少ないハロゲンを含まない有機溶剤 (非ハロゲン溶剤という) 、 なかんず く工業的汎用非ハロゲン溶剤 (以下汎用非ハロゲン溶剤) を用いた生分解性ポリ エステル溶液の作製が課題となる。
これに対する先行技術は、 (A) 生分解性樹脂の数平均分子量を 1 5, 00 0 以下に抑え、 そのために起こる性能低下を架橋剤併用で補おう というもの (特開 平 8— 3 1 1 3 6 8号公報) 、 (B) ポリ乳酸の L体 ZD体比率を:!〜 9とし、 さらにこのポリ乳酸の数平均分子量を 1 5 0 , 000以下に抑えるというもの ( 特開 20 0 3— 1 1 28 6号公報) 、 (C) 乳酸一力プロラク トン共重合体とす るもの (特開平 8 - 9 2 3 5 9号公報) 、 および (D) ジォキソラン類を使用す るもの (特開 20 0 3— 26 1 7 5 2号公報) など僅かの例を見るに過ぎない。 発明の開示
従って非ハロゲン溶剤、 なかんずく汎用非ハロゲン溶剤を溶媒と し、 接着剤、 粘着剤、 インクまたはコーティング剤などと して充分な性能を有する、 様々な組 成の生分解性ポリエステル溶液を得ることが課題である。
そもそも該生分解性樹脂は、 非ハロゲン溶剤と共に加熱されると溶解するが、 その後の冷却に伴って析出物を生じ、 室温まで冷却されると全体が流動性を失う 、 あるいは流動はするが析出物を下層および透明な液相を上層とする相分離系を 形成したりする、 すなわちゲル化を起こす場合が多く見られる。 ゲル化を起こす 最高温度は、 正しくは上限臨界共溶温度 (UC S T) と呼ばれるが、 本明細書中 では慣用的にゲル化温度と言うことにする。
従って、 このゲル化温度を室温または作業温度以下に下げればよいと思われる 。 現今の作業環境を勘案して、 本明細書中ではゲル化温度が 20°C以下であれば 室温作業可能とし、 2 0°C以下のゲル化温度を持つ生分解性ポリエステル溶液を 、 生分解性ポリエステルおよび汎用非ハロゲン溶剤から得ることを本発明の課題 とした。
上記課題を解決するために、 本発明者らは鋭意検討し、 20°C以下のゲル化温 度を有する生分解性ポリエステルの汎用非ハロゲン溶剤溶液を得ることに成功し 、 該生分解性ポリエステル溶液が、 優れた接着、 粘着、 コーティング性能などを 併せ持つことを見出した。
また、 ゲル化温度は実測によっても勿論求められるが、 計算によっても実測値 に近い値を求められることを見出し、 本発明を完成させた。
すなわち本発明の生分解性ポリエステル溶液は、 生分解性ポリエステルおよび 汎用非ハロゲン溶剤から得られ、 以下の ( 1 ) 式で算出されるゲル化温度 Tmが 20 °C以下であることを特徴とする。
Figure imgf000005_0001
式中、 d s、 cおよび Msは、 それぞれ該汎用非ハロゲン溶剤の 20°Cにおける 比重、 容積分率および分子量であり、 Δ 1ι、 d pおよび Tm。は、 それぞれ該生分 解性ポリエステルの融解熱 (m j /mg) 、 20°Cにおける比重おょぴ融点 (°C ) である。
また、 該生分解性ポリ エステルは、 脂肪族ジカルボン酸と、 脂肪族ジオール、 脂環式ジオールまたはこれらの混合物とを原料として得られる縮合物であるか、 あるいは該縮合物を多官能基性化合物により結合させて更に鎖延長させた縮合物 であることが好ましい。
また、 該汎用非ハロゲン溶剤は、 炭化水素、 エステル、 エーテル、 ァセタール 、 ケトンまたはこれらの混合物であることが好ましい。
特に、 該汎用非ハロゲン溶剤は、 酢酸エステル、 芳香族炭化水素、 ケトンまた はこれらの混合物であることが好ましい。
更に、 該汎用非ハロゲン溶剤は、 酢酸ェチル、 酢酸プチル、 トルエン、 キシレ ン、 メチルェチルケトンまたはこれらの混合物であることがより好ましい。
また、 該生分解性ポリエステルの重量平均分子量は、 5 0 , 0 0 0〜8 0 0, 0 0 0であることが好ましく、 7 0 , 0 0 0〜 6 0 0, 0 0 0であることが更に 好ましい。 重量平均分子量が 5 0 , 0 0 0未満では、 良好な接着性等の物性が得 られず、 8 0 0 , 0 0 0を超えると、 汎用非ハロゲン溶剤に溶け難くなり、 好ま しくない。
本発明は以上のように構成したので、 本発明の生分解性ポリエステル溶液は、 2 0 °Cより高温ではゲル化せず、 通常の室温や作業温度にて、 接着剤、 粘着剤、 コーティング剤などと して紙などの上に均一に塗布出来るなど、 室温作業が可能 となる。
また、 本発明の生分解性ポリエステル溶液は、 生分解性ポリエステルおよび汎 用非ハロゲン溶剤から得られるので、 地球環境や安全性上の問題を避けることが 出来る。
本発明によれば、 非生分解型おょぴェマルジヨ ン型に比べ、 接着力、 密着力、 耐水性などにおいて格段に優れた生分解性溶液型の接着剤、 粘着剤、 コーティ ン グ剤などを、 生分解性ポリエステルおよび汎用非ハロゲン溶剤を用いて提供でき る。 発明を実施するための最良の形態
く ( 1 ) 式について >
われわれは上述課題を、 以下に述べるように、 溶質である樹脂および溶媒であ る溶剤間の相互作用パラメーターを用いて検討し、 以下の ( 1 ) 式で計算される ゲル化温度 T mが 2 0 °C以下であるような、 生分解性ポリエステルおよび汎用非 ハロゲン溶剤から得られる溶液が、 該課題を満足するものであることを見出した -273 (1)
8.31 -ds (c - 0.9c2)
+
U+273
式中、 d s、 cおよび Msは、 それぞれ該汎用非ハロゲン溶剤の 20°Cにおける 比重、 容積分率および分子量であり、 Δ 1ι、 d pおよび Tm。は、 それぞれ該生分 解性ポリエステルの融解熱 (m j Zm g ) 、 20 °Cにおける比重および融点 (°C ) である。
まず、 生分解性ポリエステルの多くは結晶性であり、 これらの融点が溶剤や可 塑剤の添加によって降下することは、 融点 (凝固点) 降下の式である以下の (2 ) 式で示される。
Figure imgf000007_0001
式中、 t m。は結晶性生分解性ポリエステルの融点、 t mは溶剤や可塑剤の添加 で降下した結晶性生分解性ポリエステルの融点 (いずれも単位は絶対温度 K) 、 Rは気体定数、 Vpは結晶性生分解性ポリエステルの操り返し単位の分子容、 Vs は溶剤の分子容、 Δ Hは結晶性生分解性ポリエステルの繰り返し単位 1モル当り の融解熱 (m J /m g ) 、 cは溶剤の体積分率、 ならびに μは結晶性生分解性ポ リエステルおよび溶剤間の相互作用パラメーターを表す。
これは、 フローリーの式として公知である (例えば "高分子の力学的性質" L . E. N i e 1 s e η著、 小野木重治訳、 Κ. Κ. 化学同人、 1 9 6 5刊、 ρ . 3 1参照) 。 (2) 式には、 結晶性生分解性ポリエステル関連因子と して融点 t m°、 融解熱 Δ H及ぴ分子容 Vpが、 溶剤関連因子として分子容 5が、 ならびに溶 液関連因子と して溶剤の体積分率 c及び結晶性生分解性ポリエステル/溶剤間の 相互作用パラメーター μが使用されており、 溶剤や可塑剤の添加による結晶性生 分解性ポリエステルの融点降下が、 これら因子を組み合わせた ( 2) 式によって 決定されることが示されている。
我々はこの (2) 式を、 それが通常使用される場合より溶剤の多い本発明のよ うな系、 すなわち対象が固体ではなく液体 (溶液) である系にも拡張して使用す ることが出来ないかを検討した。 実際には、 (2) 式を変形した ( 3) 式を用い て検討した。
1 1 8.31ds (c-_/ic2)
(3)
L+273 L° + 273 ~~ ΔΙΊ - dn-!l
式中、 Tm (°C) = t m (K) — 2 7 3、 Tm° (°C) = t m° (K) — 2 7 3、 気体定数 R= l . 9 8 6 ( c a 1 / d e g /m o 1 ) X 4. 1 8 6 ( j Z c a l ) = 8. 3 1 ( J / d e g /m o 1 ) 、 厶 1ι = ΔΗ/Μρ (m J /m g) 、 Vp = Mp/d p、 Vs=Ms/d s、 d sは溶剤の 2 0°Cにおける比重、 d pは生分解性ポ リエステルの繰り返し単位の 20 °Cにおける比重、 Msは溶剤の分子量、 Mpは生 分解性ポリエステルの繰り返し単位の分子量である。 伹し、 t m。は生分解性ポリ エステル試料そのものの融点 (K) と した。
この Δ hは、 融解熱を測定すれば求めることが出来る。
その結果、 本発明の系に (2) 式、 すなわち ( 3) 式は適用出来、 (3 ) 式に より計算される系の融点を、 その系のゲル化温度の指標と考えて差し支えないこ とを見出した。
先ず ( 2) 式中、 t m。、 R、 Vp、 c、 ΔΗおよび Vsは、 文献値を利用した り、 実測することが出来る。 したがって、 を Tmのみの関数と考えることが出 来る。 そこで、 (3) 式の使用に当たって必要な、 生分解性ポリエステルおよび 溶剤間の相互作用パラメーター μについて述べる。 この値は、 われわれの調査範 囲では文献未載なので、 実験から求めることとした。 生分解性ポリエステルを溶 剤に加熱溶解し、 この溶液を続いて冷却してゲル化せしめ、 その後再び加熱して このゲルの溶融する温度、 即ちゲル化温度を測定し、 この値を Tmとして ( 3) 式へ代入し μを求めた。 得られた μは予想通り生分解性ポリエステルの溶解状態 と相関し、 良溶媒系つまりゲル化温度 Tmの低い系ほど小さく、 貧溶媒系すなわ ちゲル化温度 Tmの高い系ほど大きいという結果となった (参考例 1〜3参照) 以上により、 ( 3) 式すなわち (2) 式を本発明の系に適用することは可能と 考え、 次に生分解性ポリエステル/汎用非ハロゲン溶剤系につき同様にして/ iを 求めたところ、 生分解性ポリエステルの組成や汎用非ハロゲン溶剤の種類に拘わ らず約 0. 9という値を得た 参考例 4〜 9、 表 1参照) 。 これらの検討の結.果 、 この μ = 0. 9を代入した (3) 式、 すなわち ( 1 ) 式を得、 この ( 1 ) 式の ゲル化温度 Tmが 2:0 °C以下であることを満足する生分解性ポリエステル溶液が 、 室温作業可能な生分解性ポリエステル溶液であることを見出した。
Figure imgf000009_0001
式中、 d s、 cおよぴ]\13は、 それぞれ汎用非ハロゲン溶剤の 20°Cにおける比 重、 容積分率および分子量であり、 A h、 (113ぉょぴ丁„1°は、 それぞれ生分解性 ポリエステルの融解熱 (m j /m g) 、 20 °Cにおける比重および融点 (°C) で ある。
ここで、 本発明において導き出された ( 1 ) 式を用いる更なる効用について述 ベる。 一つは公知技術の限界について予測が出来ることである。 上述先行技術に ついて吟味する。 先ず数平均分子量を 1 5, 0 0 0以下に限定するこ とで生分解 性ポリエステルの溶解性を維持するという先行技術 (A ) に合致する生分解性ポ リエステルの中にも、 ( 1 ) 式で計算される生分解性ポリエステル溶液のゲル化 温度 T mが 7 1 . 2 °Cと室温よりはかなり高いものがあること (比較例 1参照) 、 また先行技術 (C ) すなわち力プロラク トン共重合による生分解性ポリエステ ルの溶液化技術で得られるものの中にも、 ( 1 ) 式で算出される該溶液のゲル化 温度 T mが 6 0 . 0 °Cと室温より相当に高い場合があること (比較例 2参照) 、 さらにまた先行技術 (D ) に当たるジォキソラン溶剤使用の生分解性ポリエステ ル溶液の場合にも、 ( 1 ) 式による該溶液のゲル化温度 T mが 4 2 . 7 °Cと室温 と呼ぶには些か無理な場合のあること (比較例 3参照) など、 上述先行技術とい えども室温溶液化を無条件に齎すものではないことが示唆された。 事実これらの 先行技術に関してのゲル化温度実測値は、 ほぼその計算値 T mに近かった。
もう一つの効用は、 室温溶液化を達成する方法が机上で示され、 室温にてゲル 化しない生分解性ポリエステル溶液を得ることが出来るか否かの予測が可能とな つたことであり、 それにより室温溶液化を達成する新しい生分解性ポリエステル が、 実際にも合成された (実施例 1〜 3参照) 。
<生分解性ポリエステル >
本発明に言う生分解性ポリエステルと しては、 例えばポリブチレンサクシネー ト、 ポリエチレンサクシネー ト、 ポリ [ (テ トラ ヒ ドロ) キシリル] サクシネー トなどの、 脂肪族ジカルボン酸と脂肪族ジオールとの縮合によって得られる生分 解性脂肪族ポリエステル、 ポリダリ コール酸、 ポリ乳酸、. ポリ力プロラク トンな どの脂肪族ヒ ドロキシカルボン酸の自己縮合によって得られる生分解性脂肪族ポ リエステル、 これらの組み合わせを複数選んで得られるいわゆる共縮合生分解性 脂肪族ポリエステル、 生分解性を損なわない範囲でテレフタル酸、 イソフタル酸 などの芳香族ジカルボン酸を縮合させた生分解性ポリエステル、 あるいは上述の 生分解性ポリエステルの末端基間を、 例えばィソシァネート基やシラノール基な どを複数個有する多官能基性化合物または炭酸ジエステルなどで結合させて得ら れる鎖延長型生分解性ポリエステル、 さらにまた直鎖状構造ではなく分岐状構造 の上述生分解性ポリステルなどの内、 ( 1 ) 式の Tm≤ 2 0 °Cを満足する融点、 融解熱および比重を持つものが挙げられる。
く汎用非ハロゲン溶剤〉
本発明では、 種々の生分解性ポリエステルを溶解するが地球環境や安全性上悪 影響を及ぼすハロゲン溶剤、 および非ハロゲン溶剤ではあるものの汎用とは言え ない溶剤を溶媒として用いずに、 汎用非ハロゲン溶剤を用いて生分解性ポリエス テル溶液を得たことに意義がある。
本発明に言う汎用非ハロゲン溶剤と しては、 ハロゲンを含有しない溶剤で ( 1 ) 式を満足する分子量、 比重を持つものが挙げられる。 好ましくはエステル、 炭 化水素、 エーテル、 ァセタール、 ケトンなどの汎用非ハ口ゲン溶剤、 より好まし くは酢酸エステル、 芳香族炭化水素、 エーテル、 ケトンなど、 更により好ましく は、 酢酸ェチル (A c O E t ) 、 酢酸ブチル (A c O B u ) 、 トルエン、 キシレ ン、 メシチレン、 ジィソプロピルエーテル (i P r 2〇) 、 テ トラヒ ドロフラン ( T H F ) 、 ジォキサン、 ァニソ一ノレ ( P h OM e ) 、 アセ トン、 メチルェチルケ トン (ME K) などの、 容易に入手出来、 しかも安全性上の取り扱い基準が広く 知悉された汎用非ハロゲン溶剤が好ましい。
く溶解方法 >
上述生分解性ポリエステルを該汎用非ハロゲン溶剤に溶解するには、 両者を混 合して該汎用非ハロゲン溶剤の沸点まで加熱して撹拌すればよい。 この所要時間 が短いと、 その後室温まで冷却する過程でゲル化する場合があるので、 この点に は注意が必要である。
ぐ溶液濃度〉
本発明の生分解性ポリエステル溶液の濃度 (重量百分率) は、 1 %〜6 0 %の 範囲であり、 好ましくは 5 %〜 5 0 %、 更に好ましく は 1 0 %〜 4 0 %である。
く応用 >
本発明の生分解性ポリエステルの汎用非ハロゲン溶剤溶液は、 接着剤、 粘着剤 、 コーティング剤、 インクなどと して使用しうる。 ことに接着、 粘着、 コーティ ング、 印刷などの対象物 (基材) が生分解性の場合、 最終加工品が生分解性を損 なうことなく得られる点で、 従来の汎用非生分解性の接着剤、 同粘着剤、 同コー ティング剤、 同インクなどに比し優れた性能を発揮することになる。 すなわち紙、 天然繊維から得られる糸 ·織物 ·編物 · 不織布、 木材系材料、 さ らには脂肪族ポリエステルから得られるフィルム · シー ト · 成形物等を基材とす る接着、 粘着、 コーティング、 印刷などの際には、 生分解性の特性を維持したま ま最終加工品を得ることが出来る。
それとは別に、 最終加工品が広く地球環境中に拡散し収集処分が出来ない場合
、 例えば船舶、 海洋構造物、 土壌などへの適用、 具体的には船底塗料,漁礁用塗 料用のバインダー、 法面補強用加工剤、 農薬や肥料用の徐放性加工剤などとして の用途がある。
なお、 さらに使用後のリサイクルに当たっての最終加工物の分離回収を容易に するために、 本発明の生分解性ポリエステルの易加水分解性を利用する用途もあ る。 本発明の生分解性ポリエステル溶液を塗布して得られた耐水紙または耐油紙 を、 アル力リ浴で加水分解し原料パルプとして回収するなどはその例である。 以上は、 本発明の生分解性ポリエステル溶液の、 非生分解性樹脂溶液との対比 での特長であるが、 接着剤またはコーティング剤としては生分解性ポリエステル を粒子とするェマルジョンも市販されているので、 これに対する本発明の生分解 性ポリエステル溶液の特長についても一言する。 基本的な相違点は、 本発明の生 分解性ポリエステル溶液の液相部を蒸散して得られる皮膜の耐水性が格段に高い 点である。 またこの得られる皮膜の緻密さが格段に優れており、 異物質を含有せ ず、 その上常温造膜の可能な点である。 これらは全て、 市販のェマルジヨンに必 須成分と して含まれる乳化安定剤を、 本発明の生分解性ポリエステル溶液は必要 と しないこと、 および該溶液が皮膜化されるまで、 生分解性ポリエステルが溶媒 和されていることに由来している。 厳しい耐水性を要求される耐水紙、 分子レべ ルの細孔からの拡散が必要でマク口な孔が嫌われる肥料、 農薬などへの徐放性コ 一ティング、 溶出分の極端な減少を要求される食品包装用加工紙、 さらには常温 塗装の必要な印刷や船底塗装など、 さらにはェマルジョン型は用いることが出来 ない粘着剤などに、 本発明の生分解性ポリエステル溶液のような溶液型の持つ優 位性が発揮されると期待される。 溶液型は、 ェマルジヨ ン型にはない溶剤を含有 するが溶剤の蒸散分の捕集再利用、 集中換気装置による環境汚染の防止、 さらに は保護具の適切な使用または徹底した安全教育などが行われてもよい。 上述した期待される用途において、 本発明の生分解性ポリエステル溶液は、 そ のまままたは必要に応じて他の成分と混合して用いることが出来る。 その他の成 分と しては、 着色剤、 可塑剤、 フィラー、 タツキフアイヤー、 増量剤、 さらには 樹脂類などなどが挙げられる。 これらは、 本発明の生分解性ポリエステル溶液の 持つ生分解性という本来の特徴を阻害しない範囲で混合されて使用される。 実施例
以下実施例により本発明を更に詳細に説明する。 但し本発明は、 それらにより 拘束されるものではない。
<生分解性試験〉
生分解性試験は次の要領の土壌埋設法によ り行った。
試験土壌を最大容水量の 5 0 %含水比とし、 これに 1 0 c m角の試験試料を埋 設し、 2 5 °Cにおける該試験試料の経時変化を目視により観察し、 該試験試料の 原形が認められなくなる時間を尺度とした。 該試験土壌には茨城県東茨城郡羽取 美野里町由木の S D Sみのり農場の土壌 (火山灰灰土である) を用いた。 該試験 土壌は、 試験試料の 4 0 0重量倍用いた。
くゲル化温度の実測 >
特に断らない限り、 生分解性ポリエステル溶液を示差熱分析 (D S C ) に付し 、 該溶液のゲル化温度を測定して決定した。 具体的には、 該溶液の約 2 0 m gを D S C容器に採取し、 一旦 _ 7 0 °Cまで冷却し、 次いで 1 0 °C/ m i nの割合で 昇温した時に現れる吸熱ピークの極小点に対応する温度をゲル化温度と した。 溶 剤による吸熱ピークとは明らかに識別出来た。
ぐ重量平均分子量および数平均分子量の実測〉
重量平均分子量および数平均分子量は、 溶離液にク口口ホルムを用いた G P C 法により求めた。 条件は次の通りであった。
< G P C法測定条件 >
測定機種 : Shodex System - 1 1
カ ラ ム : Shodex GPC K-806M, K- 802 (各 2本) 溶 離 液 : クロ口ホルム ( C H C 1 3 )
試料濃度 : 0. 2重量。/。
流 速 : 1 . 0 m 1 /分
注 入 量 : 1 0 0 μ 1
温 度 : 4 0°C
検 出 器': Shodex RI - 71
標準物質 : Shodex STANDARD M- 75 (PMMA)
く融点およぴ融解熱の実測〉
生分解性ポリエステルの融点および融解熱も、 上述 [ゲル化温度の実測] と同 じ温度条件の D S C法により測定した。 試験試料量を約 1 0 m gとし、 吸熱ピー クの極小点に対応する温度を融点、 吸熱ピークの面積から算出される単位重量当 りの吸熱量を融解熱とした。
比重 d pは、 固体比重測定装置 (K.K.島津製作所 Libror SGM-200) を用い、 水 中重量に対する乾燥時重量の比率より求めた。
比重 d sは、 文献値 (溶剤ポケッ トプック、 オーム社、 昭和 4 2年刊) によつ た。 但し混合溶剤の場合は、 混合による体積変化はなしとして計算により求めた 容積分率は、 混合による体積変化はなしと して計算により求めた。
く参考例 1 >
冷却用コンデンサ一、 温度計おょぴ撹拌装置を備えた内容積 3 0 0 m l のセパ ラプル四つ口フラスコに、 生分解性ポリエステルであるピオノーレ 3 0 0 1 M ( ポリブチレンサクシネート · コ · アジぺート、 融点 9 1 . 5°C、 昭和高分子 K. K. ) 約 2 0 gおよびク口口フォルム 1. 8 ◦ gを仕込み、 マントルヒ一ターで加 熱しクロロフオルム還流下に撹拌溶解させた。 3時間後、 室温に冷却してから取 り出し、 透明溶液を得た。 固形分濃度は 1 1 . 0 %、 ゲル化温度 Tmの実測値は — 4 0°Cであった。 ( 3 ) 式に Tm =— 4 0 °C、 Tm。= 9 1. 5 °C, Δ h = 3 7 . 6 m J / g N d p= 1 . 2 3、 d s = 1 . 1 5、 MS = 1 1 9、 および c = 0 . 8 7 0を代入し; u =— 0 · 0 3 0を得た。 クロロフオルムは生分解性ポリエス テルの良溶媒と して知られており、 この μ =— 0. 0 3 0なる値は予想に合致す るものであった。
ぐ参考例 2 >
溶剤を トルエン、 生分解性ポリエステルをポリ力プロラク トン (セルグリーン PH4、 融点 6 3. 7°C、 ダイセル化学工業 K. K. ) とした以外は参考例 1 と 同様にして実験し、 固形分濃度 = 1 0. 1 %、 ゲル化温度 Tmの実測値 = 6. 7 °Cなる溶液を得た。 d s= 0. 8 6 7、 MS= 9 2. 1、 c = 0. 9 2 1、 Tra = 6. 7。C、 Tm° = 6 3. 7。C、 d p= 1. 1 4および A h = 7 3. 1 m J /m g を (3) 式へ代入し μ = 0. 3 25なる値を得た。
<参考例 3 >
溶剤をトルエンと した以外は参考例 1 と同様にして実験し、 固形分濃度 = 1 1 . 9 %、 ゲル化温度の実測値 Tm= 6 5. 9°Cなる溶液を得た。 d s= 0. 8 6 7 、 MS = 9 2. 1、 c = 0. 9 1 2および Tm= 6 5. 9 °C以外は参考例 1 と同じ 値を (3) 式へ代入して μ = 0. 948を得た。
以上参考例 1〜 3から得られた μの値は、 参考例 1〜 3の生分解性ポリエステ ル溶液の実際のゲル化温度の順に大きく、 すなわち貧溶媒化するに従い大きくな るという予想と一致した大小関係となっていた。
ぐ参考例 4〜9 >
生分解性ポリエステルと汎用非ハロゲン溶剤との組み合わせを表 1に示すよう に変える以外は、 参考例 1 と同様にして実験し、 (3) 式より ; uを求めた。 これ らを一括して表 1に示す。
いろいろなポリエステル (溶質) '汎用非ハロゲン溶剤 (溶媒) 系での 参
溶質 溶媒 T m 丄 m Ah dp Ms c β 例
4 3001 EtOAc 66.0 91.5 37.6 1.23 88.1 0.902 0.903 0.967
5 3001 BuOAc 68.4 91.5 37.6 1.23 116 0.882 0.905 0.940
6 3001 EK 51.1 91.5 37.6 1.23 72.1 0.805 0.943 0.866
7 PLA Tol 107.5 169.4 32.8 1.26 92.1 0.867 0.919 0.858
8 Ecof Tol 45.3 120.9 19.8 1.25 92.1 0.867 0.915 0.863
9 1001 Xyl 82.1 113.4 64.0 1.26 106 0.880 0.597 0.926
300 1 : ピオノーレ 3001Μ (参考例 1に記載)、 PLA:ポリ乳酸 (H—400、 三 井化学工業 KK:)、 E c o f :ポリブチレンアジペート 'コ 'テレフタレート (BAS F AG), 1001 :ピオノーレ# 1 001 (ポリブチレンサクシネート、 昭和高分子 K.K.;)、 E t O A c :酢酸ェチル、 B u O A c :酢酸 n—プチル、 ME K: メチルェチルケトン、 To l : トルエン、 Xy l :キシレン
この表 1に示したように、 生分解性ポリエステルの市販品 4例と汎用非ハロゲ ン溶剤 5種との組み合わせからなる生分解性ポリエステル溶液の μは、 参考例 1 と同様の実験から全て約 0. 9と算出された。
<実施例 1 >
撹拌装置、 温度計、 分溜管およびガス流入管を備えた 50 0 m 1のセバラブル 丸底四つ口フラスコに、 ドデカン二酸 23 0. 3 g、 および 3—メチルー 1, 5 一ペンタンジオール 1 2 3. 9 gを仕込み、 マントルヒーターで 200〜 2 1 0 °Cに加温し、 脱水縮合せしめた。 1 4. 5時間後の生成物の酸値は 9. 9 (m g KOH/g試料) であった。 窒素流通下に 1 0 0 °Cまで冷却し、 これにチタユウ ムテ トライ ソプロポキサイ ド 0. 1 7 7 gを加え、 分溜管を直流管に替え、 真空 ポンプで減圧にしながら 200〜 2 1 0°Cに加温して、 脱グリ コール反応を行つ た。 減圧度は、 最終的には 0. 5 t o r rに至らしめた。 微黄色の極めて高粘度 の熔融体が得られた。 次にこれを 1 8 0°Cまで冷却し、 窒素ガス流通下に常圧に もどし、 0. 0 8 gの亜リン酸を加えて撹拌し、 さらに 3 gのへキサメチレンジ イソシァネートを加え、 同温度にて鎖延長反応を行った。 得られた生成物は微黄 色、 粘稠で軟らかな生分解性ポリエステルであり、 重量平均分子量 2 1 3 , 4 5 1、 融点— 3 °C、 融解熱 3 7. 8 m J /m gであった。
次に 8 0 gの該生成物を、 撹拌装置、 冷却器および温度計を備えた 5 0 0 m l のセパラブルフラスコに量り取り、 汎用非ハロゲン溶剤である酢酸 n—ブチル 1 8 0 gを加え、 還流下に 3時間加熱溶解せしめた後冷却した。 固形分濃度 3 0. 1 %の微黄色液体が得られた。 この溶液の ( 1 ) 式によるゲル化温度 Tmは、 一 24. 9 °Cと計算された。 但し Tm° =— 3°C、 Δ h = 3 7. 8 m j /m g、 d p = 1. 2 2、 d s = 0. 8 8 2、 MS= 1 1 6および c = 0. 7 6 3と した。 ゲル 化温度 Tmの実測値は _ 3 0 · 5°Cであり、 計算値に近い値であった。 このこと により、 ( 1 ) 式の精度が高いことが分かった。
く実施例 2 > 5
コノヽク酸 1 1 5 g、 アジピン酸 94. 9 g、 1, 4—ブタンジオール 1 20 g およびエチレングリ コール 2 2. 2 gを用い、 脱グリ コール反応での最終減圧度 を 0. 0 5 t o r r とし、 最終の鎖延長反応温度を 1 6 0 °Cとした以外は実施例 1 と同様にして、 重量平均分子量 1 20 , 5 8 5、 融点 4 7. 5 °C、 融解熱 1 9 . Sm j Zm gの、 僅かに濁った生分解性ポリエステルを得た。
該生分解性ポリエステルを用い、 汎用非ハロゲン溶剤と して酢酸ェチル 3 0 0 gを用いる以外は実施例 1 と同様にして、 固形分 2 1. 0 %の微濁溶液を得た。 この微濁溶液の ( 1 ) 式によるゲル化温度 Tmは、 一 1 3. 4°Cと計算された。 但し Tm。 = 4 7. 5°C、 Δ h = 1 9. 5 m J /m g、 d p = 1. 2 3、 d s = 0 . 90 2、 MS = 8 8. 1および c = 0. 8 3 7と した。 ゲル化温度 T mの実測値 は— 9. 9°Cであり、 計算値に近い値であった。 このことにより、 ( 1) 式の精 度が高いことが分かった。
く実施例 3 >
実施例 1 と同様の装置に、 コハク酸 6 3. 0 g、 アジピン酸 7 7. 9 g、 シク 口へキシルジメタノール 1 4 9. 2 g、 および触媒として酸化ゲルマニウム 9 9 . 6m gを仕込み、 1 8 0°Cにて 40分間脱水縮合した。 次いで分溜管を直流管 に替え、 1 8 0°Cにて 2 0 t 0 r rの減圧下に 1. 8時間反応させ、 最終的には 2 20°C、 0. 1 t 0 r 1-にまで加熱減圧して 1 3. 6時間反応させた。 生成物 は、 無色透明で粘稠な溶融物であった。 該生成物を冷却後分析し、 重量平均分子 量 8 6 , 2 5 3、 融点 6 3. 8°( 、 融解熱2 3. 2 m J /m gの生分解性ポリエ ステルを得た。
該生分解性ポリエステル 3 0 g、 汎用非ハロゲン溶剤と して トルエン Zメチル ェチルケ トン (MEK) の等重量混合物 2 70 gを用いる以外は実施例 1 と同様 にして、 固形分 1 4. 0 %の無色透明溶液を得た。
この無色透明溶液の (1 ) 式によるゲル化温度 Tmは、 1 5. 0°Cと計算され た。 但し Tm。= 6 3. 8。C、 Δ h = 2 3. 3 m J / m g , d p = 1. 2 3、 d s = 0. 8 3 5、 MS = 8 2. 1および c = 0. 9 00と した。 この無色透明溶液 を、 内容積 1 40 m 1の円筒形ガラス瓶に入れ、 これを 1 0°Cの強制循環式恒温 機に入れた。 1週間後、 この無色透明溶液を目視した結果に変化はなく、 回転粘 度計によるこの無色透明溶液の粘度の測定結果も 20 ± 1 mP a . s と変化せず 、 ゲル化温度 Tmの実測値は 1 0°C未満となった。
<応用例 1 : 粘着剤への応用 >
実施例 1の生分解性ポリエステル溶液を、 生分解性ポリエステルであるビオノ ーレ # 1 0 0 1 (ポリブチレンサクシネート、 昭和高分子 K. K. ) から得られ たフィルム ( 3 0 厚) へ、 2ミルのアプリケーターで塗布、 風乾後、 1 00°C の熱風循環式乾燥機で 1分間更に熱処理し、 粘着フィルムを作製した。 ボールタ ック 3、 接着力 1. 5 N/ 2 5 mm (対ガラス) 、 2. 0 N/ 2 5 mm (対ステ ンレス板) 、 保持時間 4. 5時間、 剥離後の糊残りなしという結果で、 実施例 1 の生分解性ポリエステル溶液が再剥離型粘着剤として使用可能であることが示さ れた。 ボールタック以下の測定は J I S Z 023 7によった。 該粘着フィル ムの土壌埋設による生分解試験では、 該粘着フィルムは 6ヶ月後原形を留めなか つた。
<応用例 2 : 印刷インキへの応用 >
実施例 2で得た生分解性ポリエステル溶液 1 00 g、 カーボンブラック 6 g、 界面活性剤 (トリオレイン酸デ力グリセリル) 0. 6 gおよぴガラスビーズ 1 5 O gを 5 00 m l フラスコに取り、 ディスパー (TKォートホモミキサ一、 特殊 機化工 K. K. ) を挿入して、 1時間 200 0 r pmで撹拌し、 最後に脂肪族ィ ソシァネート (コロネート L、 日本ポリ ウレタン K. K. ) l gを加えて黒色ィ ンキを得た。 これを使用して、 生分解性ポリエステルであるピオノーレ # 3 0 0 1 (ポリブチレンサクシネ一ト · コ · アジぺート、 昭和高分子 K. K. ) のフィ ルム ( 5 0 μ厚) 上にカラー画像 (網点模様) をスク リーン印刷法により印刷し 、 画像を定着させた。 一週間後にこの印刷面にセロテープを密着させた後剥離し たところ、 この画像は損傷を受けなかった。 この印刷片を 2 0 °Cの水中に 1 0分 間浸漬したテス トでもこの画像は損傷を受けず、 この印刷面は充分な耐水性を持 つことが示された。 土壌埋設法によるこの印刷物の生分解性試験では、 6ヶ月後 に原形が認められなかった。
<応用例 3 :水切り袋への応用 >
生分解性であるレーヨン不織布 (目付け 2 6. 7 g /m 1 0 c m角 4枚) を、 実施例 3で得られた生分解性ポリエステル溶液 2 0 0 gへ浸漬し、 2分後に 取り出してゴムローラーで絞り風乾した。 得られた生分解性ポリエステル溶液含 浸不織布を二枚重ね、 アイロンを用いて 1 0 0 °C/0. 3 Mp a / 1 0 sなる条 件でヒートシールを行い、 強度試験に供した。 1 8 0° 剥離試験 (試料サイズ: 2. 5 c m幅、 チヤック間隔 8 c m、 剥離速度 3 0 0 mm/m i n ) での強度は 、 常態時 (2 0°C、 6 5 % R H ) 0. 5 5 k g / c m, 湿潤時 (2 0 °Cの水中に 1時間浸漬後、 表面水を濾紙で拭い、 2 0 °C、 6 5 %RH中で測定したのもの) 0. 5 3 k g / c mであり、 水切り袋用には充分なものであった。 また、 該ヒー トシール物一枚をリサイクル試験に供した。 この試料を約 2 c m角に切り、 5規 定の苛性ソーダ水溶液 7 0 gに室温で一昼夜浸漬した後、 家庭用ジュースミキサ 一^ ^く 5 0 0 m 1 と共に投入して撹拌したところ、 5分で単繊維状にまで離解さ れ、 リサイクル適性を具備していることが示された。 なおまた該ヒートシール物 は、 土壌埋設による生分解性試験で 7ヶ月後原形を留めなかった。
く比較例 1 >
生分解性ポリエステルであるビォノーレ 3 0 5 0 M (ポリブチレンサクシネー ト . コ . ァジぺート、 融点 9 4. 9 °C、 融解熱 Δ h = 5 2. 2 m J /m g、 昭和 高分子 . K. ) を、 6 0°C、 9 0 %RHなる条件に 2 0 日間置いて加水分解し 、 重量平均分子量を 1 7 , 7 0 0 (数平均分子量を 9 , 6 0 0 ) とした。 これを 用いた固形分濃度 1 0 %のトルエン溶液のゲル化温度 Tmを ( 1 ) 式で計算した ところ、 7 1. 2°Cと室温可溶化とするには些か高い温度となった。 参考例 3に 準じて実測したゲル化温度 Tmは、 6 4. 6°Cと計算値に近い値であった。 この ことにより、 ( 1 ) 式の精度が高いことが分かった。 但し計算には、 Tm°= 94 . 9°C、 Δ h = 5 2. 2m J /m g、 d p = 1. 2 3、 d s = 0. 8 6 7、 Ms = 9 2. 1および c = 0. 9 27を用いた。
く比較例 2 >
ε —力プロラク トンと乳酸との共重合体は汎用溶剤に室温で溶けるとの上述先 行技術 (C) の範囲に入る、 ε—力プロラク トンと乳酸とから得られた共重合体 (融点 = 1 74. 3 °C、 融解熱 = 1 0. 9 m J Zm g、 重量平均分子量 5 3 8 , 0 0 0、 K. K. ビーェムジ一) を、 固形分濃度 5. 0%になるようにトルエン に溶解した場合のゲル化温度 Tmを ( 1 ) 式で計算したところ、 6 0. 0°Cと室 温可溶化とするには少々高い温度となった。 参考例 2に準じて実測したゲル化温 度は、 5 3. 1 °Cと計算値に近い値であった。 このことにより、 ( 1 ) 式の精度 が高いことが分かった。 但し計算には、 TM°= 1 7 4. 3 °C、 Δ 1Ί = 1 0. 9 m j /mg、 d p = 1. 2 0、 d s = 0. 8 6 7、 M s = 9 2. 1および c = 0. 9 6 3を用いた。
<比較例 3 >
生分解性ポリエステルは特定の 1 , 3—ジォキソラン化合物に室温にて溶解す るとの上述先行技術 (D) に従い、 生分解性ポリエステルであるピオノーレ 30 0 1 Mを 1 0 %固形分濃度の溶液とした場合のゲル化温度 Tmを、 ( 1 ) 式で計 算した。 4 2. 7°Cと室温より高めの値となった。 参考例 3に準じた実測値は、 4 0. 6 °Cと計算結果に近い値であった。 このことにより、 ( 1 ) 式の精度が高 いことが分かった。 但し計算には、 Tm。= 9 1. 5°C、 Δ h = 3 7. 6 ra J /m g、 d p = 1. 2 3、 d s = 1. 0 7、 Ms = 74. 1および c = 0. 9 1 2を用 いた。
く比較例 4 >
生分解性ポリエステルのェマルジヨンである EM— 3 0 1 (ポリブチレンサク シネート . コ . アジペート系、 固形分 5 1 %、 最低皮膜形成温度 9 5 °C、 昭和高 分子 K. K. ) を 1 0 %に希釈した樹脂液を用いる以外は、 応用例 3と同様にし て実験した。 得られたヒー トシール物の 1 8 0° 剥離強度は、 常態時 0. 2 5 k g / c m、 湿潤時 0. 0 k g / c m (伹し試料の水浸漬時間を 1 0分とした場合 は 0. 2 0 k gZ c m) であり、 水切り袋には不十分な結果であった。
以上から分かるように、 本発明の ( 1 ) 式により、 高い精度でゲル化温度を予 測出来ることが分かった。 実施例においては、 本発明の生分解性ポリエステル溶 液のゲル化温度 Tmは、 この ( 1 ) 式により 2 0°C以下と計算 ·予測され、 実際 の測定でも計算値に近い値が得られ、 2 0°C以下であった。 本発明のこれらの生 分解性ポリエステル溶液は、 幾つかの用途に応用した場合にも、 優れた性能を示 した。 また、 生分解試験においても、 本発明の生分解性ポリエステル溶液は、 良 好な生分解性を示した。
これに対して比較例においては、 ゲル化温度 Tmが ( 1 ) 式により 2 0°Cより 高いと計算 .予測され、 実際の測定でも計算値に近い値が得られ、 2 0°Cより高 かった。 比較例を応用しても、 優れた性能を与えなかった。

Claims

請求の範囲
1. 生分解性ポリエステルおよび汎用非ハロゲン溶剤から得られ、 以下の ( 1 ) 式で算出されるゲル化温度 T mが 20 °C以下である生分解性ポリエステル溶液
Figure imgf000022_0001
(但し d s、 cおよび Msは、 それぞれ該汎用非ハロゲン溶剤の 20 °Cにおける比 重、 容積分率および分子量であり、 A h、 d pおよび Tm。は、 それぞれ該生分解 性ポリエステルの融解熱 (m J /m g ) 、 2 0°Cにおける比重および融点 (°C) である)
2. 前記生分解性ポリエステルが、 脂肪族ジカルボン酸と、 脂肪族ジオール、 脂環式ジオールまたはこれらの混合物とを原料として得られる縮合物であるか、 あるいは該縮合物を多官能基性化合物により結合させて更に鎖延長させた縮合物 である、 請求項 1に記載の生分解性ポリエステル溶液。
3. 前記汎用非ハロゲン溶剤が、 炭化水素、 エステル、 エーテル、 ァセタール 、 ケトンまたはこれらの混合物である、 請求項 1に記載の生分解性ポリエステル 溶液。
4. 前記汎用非ハロゲン溶剤が、 酢酸エステル、 芳香族炭化水素、 ケ トンまた はこれらの混合物である、 請求項 1に記載の生分解性ポリエステル溶液。
5. 前記汎用非ハロゲン溶剤が、 酢酸ェチル、 酢酸プチル、 トルエン、 キシレ ン、 メチルェチルケトンまたはこれらの混合物である、 請求項 1に記載の生分解 性ポリエステル溶液。
6. 前記生分解性ポリエステルの重量平均分子量が 5 0 , 0 0 0〜 8 0 0 , 0 0 0である、 請求項 1に記載の生分解性ポリエステル溶液。
7. 前記生分解性ポリエステルの重量平均分子量が 7 0 , 0 0 0〜 6 0 0, 0 0 0である、 請求項 1に記載の生分解性ポリエステル溶液。
PCT/JP2004/009485 2004-06-29 2004-06-29 生分解性ポリエステル溶液 WO2006001081A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/009485 WO2006001081A1 (ja) 2004-06-29 2004-06-29 生分解性ポリエステル溶液
JP2006527630A JP4653098B2 (ja) 2004-06-29 2004-06-29 生分解性ポリエステル溶液

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009485 WO2006001081A1 (ja) 2004-06-29 2004-06-29 生分解性ポリエステル溶液

Publications (1)

Publication Number Publication Date
WO2006001081A1 true WO2006001081A1 (ja) 2006-01-05

Family

ID=35781634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009485 WO2006001081A1 (ja) 2004-06-29 2004-06-29 生分解性ポリエステル溶液

Country Status (2)

Country Link
JP (1) JP4653098B2 (ja)
WO (1) WO2006001081A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010685A1 (ja) * 2008-07-24 2010-01-28 東洋紡績株式会社 脂肪族ポリエステル樹脂及びその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204378A (ja) * 1997-01-24 1998-08-04 Toyobo Co Ltd 生分解性コーティング

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135693A (ja) * 1997-07-16 1999-02-09 Mitsui Chem Inc 生分解性を有する粉状ポリエステルの製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204378A (ja) * 1997-01-24 1998-08-04 Toyobo Co Ltd 生分解性コーティング

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010685A1 (ja) * 2008-07-24 2010-01-28 東洋紡績株式会社 脂肪族ポリエステル樹脂及びその製造方法
JPWO2010010685A1 (ja) * 2008-07-24 2012-01-05 東洋紡績株式会社 脂肪族ポリエステル樹脂及びその製造方法
US8642717B2 (en) 2008-07-24 2014-02-04 Toyo Boseki Kabushiki Kaisha Aliphatic polyester resin and a process for producing it
CN102105509B (zh) * 2008-07-24 2014-04-23 东洋纺织株式会社 脂肪族聚酯树脂及其制备方法
JP5645122B2 (ja) * 2008-07-24 2014-12-24 東洋紡株式会社 脂肪族ポリエステル樹脂及びその製造方法

Also Published As

Publication number Publication date
JP4653098B2 (ja) 2011-03-16
JPWO2006001081A1 (ja) 2008-04-17

Similar Documents

Publication Publication Date Title
Wang et al. Hybrid polymer latexes: acrylics–polyurethane from miniemulsion polymerization: properties of hybrid latexes versus blends
BRPI0617034A2 (pt) uso de um polìmero termoplástico de poliéster/amida numa formulação de adesivo hot melt, método para aplicar um adesivo hot melt, método para ligar um primeiro substrato a um segundo substrato, artigo tecido ou não tecido, caixa, caixa de papelão ou bandeja, livro, e melhoramento em artigo
US20060069231A1 (en) Aqueous polyester resin dispersion and method for production thereof
JP2010516847A (ja) 非ハロゲン化溶剤中での良好な溶解性を有する結晶性のコポリエステル及びその使用
JP4897671B2 (ja) ポリウレタン水性分散液及び該水性分散液の接着剤としての使用
EP2580297A1 (en) Linerless label
EA000075B1 (ru) Способ получения водных дисперсий полиуретанов с повышенной теплостойкостью и стойкостью к действию растворителей, осуществляемый с уменьшенным количеством растворителя
JP2010116422A (ja) ポリエステル樹脂組成物
KR980009415A (ko) 실리콘 감압성 접착제 조성물의 제조방법
CN101124280A (zh) 聚乳酸的制备方法
CN104045808A (zh) 环氧树脂组合物、其制备方法及其制品
JP5998937B2 (ja) ポリ(ヒドロキシカルボン酸)セグメントとペンダントカルボキシル基を有する共重合ポリウレタン樹脂、これを含有するエマルションおよび接着剤組成物
TW201739781A (zh) 製備水性聚胺酯分散液之方法
JP2007070422A (ja) 生分解性ポリエステルポリウレタン
WO2006001081A1 (ja) 生分解性ポリエステル溶液
JP4345335B2 (ja) 水性ポリウレタン樹脂および該樹脂を用いた印刷インキ
CA1165043A (en) Heat activatable adhesive with improved temperature resistance
CN111163938B (zh) 低放气清洁胶黏剂
JP3700645B2 (ja) 相溶化剤およびそれを含むポリエステルポリオール混合物ならびにこの混合物を使用した溶融接着剤
WO2007086266A1 (ja) ポリエステル樹脂水性分散体およびその製造方法
JP6754119B2 (ja) 樹脂組成物、それを用いた塗膜および積層体
JP2010159331A (ja) 接着剤材料用ポリエステル樹脂、およびそれを用いた接着剤の製造方法
Lewandowski et al. Dry‐peelable temporary protective coatings from waterborne self‐crosslinkable sulfourethane–silanol dispersions
JP2013181080A (ja) 樹脂組成物
JP5896802B2 (ja) 樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527630

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase