WO2006001060A1 - ネットワークシステム、送信側スイッチ装置、受信側スイッチ装置、両用スイッチ装置およびフレームデータの送信方法 - Google Patents

ネットワークシステム、送信側スイッチ装置、受信側スイッチ装置、両用スイッチ装置およびフレームデータの送信方法 Download PDF

Info

Publication number
WO2006001060A1
WO2006001060A1 PCT/JP2004/009028 JP2004009028W WO2006001060A1 WO 2006001060 A1 WO2006001060 A1 WO 2006001060A1 JP 2004009028 W JP2004009028 W JP 2004009028W WO 2006001060 A1 WO2006001060 A1 WO 2006001060A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
frame data
terminal device
transmission
reception
Prior art date
Application number
PCT/JP2004/009028
Other languages
English (en)
French (fr)
Inventor
Hironori Terauchi
Kazuumi Koguchi
Shinji Furuya
Kazunori Kotaka
Tetsuya Yokotani
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2004/009028 priority Critical patent/WO2006001060A1/ja
Priority to JP2006527596A priority patent/JP4633723B2/ja
Publication of WO2006001060A1 publication Critical patent/WO2006001060A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • H04L49/3009Header conversion, routing tables or routing tags
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/351Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/354Switches specially adapted for specific applications for supporting virtual local area networks [VLAN]

Definitions

  • the present invention relates to a layer 2 network that connects a transmission terminal device and a reception terminal device, and particularly includes a layer 2 switch device represented by an Ethernet (registered trademark) switch device (hereinafter referred to as an L2SW device). It relates to the layer 2 network, and further to the improvement to prevent the occurrence of communication interruption in the layer 2 network.
  • a layer 2 switch device represented by an Ethernet (registered trademark) switch device (hereinafter referred to as an L2SW device). It relates to the layer 2 network, and further to the improvement to prevent the occurrence of communication interruption in the layer 2 network.
  • serial numbers are assigned to transmission data on the transmission side, and data is normally transmitted using the transmission path on the other side, while on the receiving side.
  • Proposed a method to check the continuity of the serial number, notify the sender when it is discontinuous, and shorten the failure recovery time by switching from the current transmission path to the backup transmission path (For example, see Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-16247 (Page 2, page 1, page 3, Figure 1)
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-169105 (Page 2, page 4, Figure 1)
  • Non-Patent Document 1 IEEE 802. ID
  • the failure recovery of the network system described in Non-Patent Document 1 described above is failure recovery using STP, which is a standard layer 2 protocol, but it is not yet possible that it takes time to recover from the failure. It has a problem to solve.
  • STP which is a standard layer 2 protocol
  • Patent Document 1 and Patent Document 2 described above since the working / spare path is selected on the transmitting side, communication is performed in a short time from the failure detection to the completion of switching processing on the transmitting device side. When a break occurs, it has an unsolved problem.
  • the present invention has been made in view of the above, and can be used for applications that require high reliability without causing communication interruption even when a failure occurs in any part of the network. It is an object of the present invention to provide a network system that can perform communication, a switch device used in the network system, and a frame data transmission method using the network system.
  • a network system is a network system provided between a transmission terminal device that transmits frame data and a reception terminal device that receives frame data, and includes a plurality of networks and a transmission terminal device.
  • a transmission-side switch device that accommodates and is connected to a plurality of networks; and a reception-side switch device that accommodates a reception terminal device and is connected to the plurality of networks.
  • a frame identifier generating unit that generates a frame identifier composed of a unique identification number and a serial number, and a frame identifier adding unit that sequentially assigns a frame identifier to frame data that is sequentially transmitted from the transmitting terminal device while advancing the serial number And copy and send the frame data to multiple networks.
  • the receiving side switch device receives the frame data, recognizes the frame identifier attached to the frame data, and captures this frame data if it has not been received.
  • Received frame processing unit that discards the received frame processing unit, and received frame processing unit
  • a frame identifier deletion unit that deletes the frame identifier of the frame data captured by and transfers the frame identifier to the receiving terminal device.
  • the frame data is basically blocked data such as "packet", "frame” and "cell”. Specifically, for example, an Ethernet (registered trademark) frame or the like.
  • the transmission side switch device connects at least one transmission terminal device to a port on the opposite side of the network, and the frame data output from this transmission terminal device is connected to a plurality of networks set while switching the route. To send to.
  • the receiving-side switch device connects at least one receiving terminal device to a port on the opposite side of the network, and among the frame data received from a plurality of networks, receives the frame data addressed to the receiving terminal device. It is transferred to the terminal device.
  • the frame identifier generation unit of the transmission side switch device provided on the transmission terminal device side generates a frame identifier composed of a recognition number and a serial number unique to the system. .
  • the identifier assigning unit sequentially assigns frame identifiers to frame data continuously transmitted from the transmitting terminal device while advancing the serial number of the frame identifier.
  • the transmission frame copy unit copies the frame data to a plurality of networks and transmits them.
  • the reception frame processing unit of the reception side switch device provided on the reception terminal device side receives the frame data, recognizes the frame identifier attached to the frame data, and has not received the frame data. If it is already received, it is discarded.
  • the frame identifier deletion unit deletes the frame identifier of the frame data captured by the reception frame processing unit and transfers it to the reception terminal device. Therefore, the frame identifier is confirmed at the receiving side switch device, the frame data that comes first is taken in regardless of which network it came from, and the frame data that came later is discarded. As a result, the frame data that arrives the earliest is always used. For example, even if one of the networks has a large delay due to congestion, the frame that has the minimum delay received from the other network. Can be used. In addition, even if one network is disconnected due to a failure, communication will not be interrupted if the other network is healthy. As a result, a highly reliable network system can be obtained.
  • FIG. 4 is a system diagram of a part of the network system according to the second embodiment.
  • FIG. 5 is a functional block diagram of a portion related to the transmission operation in the redundancy processing unit of the first L2SW device of FIG.
  • FIG. 6 is a functional block diagram of a portion related to the reception operation in the redundancy processing unit of the first L2SW device of FIG.
  • FIG. 7 is a diagram showing a VLAN-ID of a VLAN termination point possessed by the first L2SW device of the network system of Embodiment 2, the number of VLANs that form a group, and a VLAN-ID correspondence table.
  • FIG. 9 is a diagram showing a standard Ethernet (registered trademark) frame format.
  • FIG. 10 is an area allocation diagram showing a state in which a frame identifier assignment area is provided in an area behind a VLAN ID (VLAN tag) in a Mac frame header.
  • VLAN ID VLAN tag
  • FIG. 11 is an area allocation diagram showing a state in which a frame identifier assignment area is provided in an area behind a core network VLAN ID (core network VLAN tag) in a Mac frame header.
  • a core network VLAN ID core network VLAN tag
  • Frame identifier assigning area power This is an area allocation diagram showing a state in which an S Ethernet (registered trademark) frame is provided in an area behind the FCS.
  • FIG. 13 is a system diagram of a part of the network system according to the sixth embodiment.
  • FIG. 14 is a sequence chart showing how the device ID of each L2SW device according to the seventh embodiment is set by a negotiation sequence between the L2SW devices when power is turned on.
  • FIG. 1 is a system diagram of a part of the network system according to the first embodiment.
  • the network system of the present embodiment is formed between the terminal device 20 and the terminal device 21.
  • the terminal device 20 transmits data and the terminal device 21 receives data.
  • the terminal device 20 transmits data framed via the network system, specifically, Ethernet (registered trademark) frame data (hereinafter simply referred to as frame data), and the receiving terminal device 21 receives the data.
  • Ethernet registered trademark
  • the network system includes three layer 2 switch devices (hereinafter referred to as L2SW devices) 1 and 3, and a plurality of layer 2 networks provided to connect these three L2SW devices 1 and 3 (Hereinafter referred to as L2 network)
  • the first L2SW device 1 includes a layer 2 switch unit (hereinafter referred to as an L2SW unit) 10 that selects a route of frame data to be transmitted, a redundancy processing unit 11 that performs frame data redundancy processing, I have.
  • the L2SW unit 10 and the redundancy processing unit 11 are connected via a port 12 formed in the L2SW unit 10.
  • the first L2SW device 1 has eight physical ports 13a to 13h extending 10 L2SW units for accommodating a plurality of terminal devices.
  • the first L2SW device 1 has three physical ports 14a 14c extending from the redundancy processing unit 11 for connecting to the L2 network on the network side. Three L2SW devices 1-3 have the same structure. In FIG.
  • the second L2SW device 2 and the third L2SW device 3 partially omit the number of physical ports, and the second L2SW device 2 has physical ports as ports on the L2 network side. Only 15a and 15b are used, and only physical ports 16a-16c are used as terminals on the terminal device side. In the third L2SW device 3, only physical ports 17a and 17b are used as ports on the L2 network side, and only on the terminal device side. Only physical ports 18a-18c are listed as ports.
  • the first L2SW device 1 is capable of accommodating a large number of terminal devices. Here, only the terminal device 20 is used. Show. The terminal device 20 transmits and receives data, but when transmitting data, only the transmission function is used. Therefore, for convenience, the transmission terminal device 20 is used, and when receiving data, only the reception function is operated. For convenience, the receiving terminal device 20 is used. As a result, when the terminal device 20 performs a data transmission operation, the first L2SW device 1 also uses only the transmission function, so that the transmission side L2SW device 1 is used, and the terminal device 20 receives the data. When performing communication, only the reception function is used, so the receiving side L2SW device 1 is used.
  • the second L2SW device 2 similarly accommodates a large number of terminal devices, but only the terminal device 21 is shown here.
  • the terminal device 21 transmits and receives data in the same manner as the terminal device 20, but for convenience, it is referred to as a transmitting terminal device 21 when transmitting data and a receiving terminal device 21 when receiving data.
  • the second L2SW device 2 is also used as the transmission-side L2SW device 2 when the terminal device 21 transmits data, and when the terminal device 21 receives data, the second L2SW device 2 is also connected to the reception-side L2SW device 2. To do.
  • the first L2SW device 1 is connected to the second L2SW device 2 via the first L2 network 4 and the second L2 network 5.
  • the first L2SW device 1 is further connected to the third L2SW device 3 via the second L2 network 5 and the third L2 network 6.
  • Other L2SW devices and L2 networks are omitted.
  • FIG. 2 is a functional block diagram of a portion related to the transmission operation in the redundancy processing unit 11 of the first L2SW device 1 of FIG.
  • the redundancy processing unit 11 receives the frame data for each frame data continuously transmitted from the transmission terminal device 20 so that the reception side switch device 2 can understand that the frame data is the same when the reception side switch device 2 receives the frame data. Give an identifier. Then, after assigning the frame identifier, it is copied by the number of networks and sent to each L2 network.
  • the redundancy processing unit 11 copies a frame identifier generation unit 30 that generates a frame identifier, a frame identifier addition unit 31 that adds the frame identifier to frame data, and frame data to which the frame identifier is added. And a transmission frame copy unit 32.
  • the redundancy processing unit 11 also has FDB (Filtering Database) 33a-33c provided corresponding to each physical port 14a-14c. This FDB33a-33c stores the Mac address of the data transmission source when the data is received.
  • the frame identifier generation unit 30 generates a frame identifier including a recognition number and a serial number unique to the system as a frame identifier.
  • the frame identifier assigning unit 31 sequentially assigns frame identifiers to the frame data continuously transmitted from the transmitting terminal device 20 while advancing this serial number, that is, incrementing by one, for example.
  • the transmission frame copy unit 32 copies the frame data to a plurality of networks and transmits them.
  • FIG. 3 is a functional block diagram of a portion related to the reception operation in the redundancy processing unit 11 of the first L2SW device 1 of FIG.
  • the redundancy processing unit 11 receives the frame data, processes the frame data attached to the frame data based on the frame identifier, deletes the frame identifier of the frame data, and transfers the frame data to the receiving terminal device 21. And a frame identifier deletion unit 37.
  • the reception frame processing unit 34 includes a reception frame recognition unit 35 that recognizes a frame identifier attached to the frame data, and a reception frame identifier storage table 36 that stores the recognized frame identifier.
  • the reception frame recognition unit 35 of the reception frame processing unit 34 receives the frame data, recognizes the frame identifier attached to the frame data, and refers to the reception frame identifier storage table 36, thereby Determine whether the data has already been received, has not been received, or has been received for the first time. If it has not been received yet, it is registered in the received frame identifier storage table 36 and is taken in. On the other hand, if it has already been received, it is discarded.
  • the frame identifier deletion unit 37 deletes the frame identifier of the frame data captured by the reception frame processing unit 36 and transfers it to the reception terminal device 21.
  • FIG. 1 a case where frame data is transmitted from the terminal device 20 to the terminal device 21 will be described.
  • frame data from the transmission terminal device 20 is input from the physical port 13a.
  • This frame data is checked in the L2SW unit 10 with the FDB of each port in the L2SW unit 10 to select a route.
  • the destination receiving terminal device 21 is connected to the physical port 16 a of the second L2SW device 2
  • the corresponding frame data is output from the port 12 and input to the redundancy processing unit 11.
  • frame data input from the port 12 to the redundancy processing unit 11 is added with a frame identifier adding region at a predetermined place of the frame by the frame identifier adding unit 31. Then, the frame identifier generated by the frame identifier generation unit 30 is assigned to this assignment area.
  • the transmission frame copy unit 32 determines which port of the plurality of physical ports 14a and 14c and which port to output this frame data with reference to the FDB 33a 33c, and the number of corresponding physical ports And copy to each L2 network via each physical port.
  • This learning function refers to FDB33a 3 3c and outputs to the corresponding physical port if the Mac address hits, and outputs to all physical ports if it does not hit any port.
  • the source Mac address is registered in the FDB, and in the next transmission operation, only the registered FDB is hit, so the frame data is transmitted only to the hit physical port. .
  • the function of selecting a physical port by the transmission frame copy unit 32 of the present embodiment has a function of simultaneous group transmission in addition to the general function described above.
  • This simultaneous transmission function is a network power that can connect the same transmission side switch device 1 and the same reception side switch device 2. Two or more network powers can be combined into a gnole according to a predetermined setting. Therefore, the transmission frame copy unit 32 of the transmission side switch device 1 copies the frame data to all the networks in the same group and transmits them.
  • the transmission frame copy unit 32 stores them.
  • the transmission frame copy unit 32 has three physical ports. 14a—Sends frame data to all 14c. Thereafter, it is assumed that frame data is transmitted from the terminal device 21 to the terminal device 20 through the second L2 network 5 by another operation.
  • the Mac address of the terminal device 21 is registered in the FDB 33 a of the physical port 14 a that connects the second L2 network 5. Therefore, from then on, the frame data to be transmitted to the terminal device 21 will be hit by the FDB 33a and transmitted from the physical port 14a.
  • the frame data is transmitted to the physical port 14a and the physical port 14b. It is not sent to physical port 14c.
  • the transmission-side switch device 1 has the FDB 33a 33c as storage means for associating the reception terminal device 21 having the response signal with the network, and after receiving this response signal, Since the frame data transmitted to the terminal device 21 is sent to the network associated with the receiving terminal device 21 and the network of the same group as the network, the number of networks to be transmitted is reduced and the burden on the transmission side switch device 1 is reduced. Is done. In addition, the burden on the receiving side switch device 2 is reduced.
  • FIG. 1 a case where frame data is transmitted from the terminal device 21 to the terminal device 20 will be described. That is, contrary to the above description, the transmitting terminal device and the receiving terminal device are switched, and the frame data is transmitted from the transmitting terminal device 21 to the receiving terminal device 20.
  • the frame data input to the physical port 16a from the transmitting terminal device 21 is transmitted to the receiving side switch through the first L2 network 4 and the second L2 network 5 by the operation at the time of transmission described above in the second L2SW device 2.
  • the frame data input to the physical port 14a and the physical port 14b are respectively input to the redundancy processing unit 11.
  • the frame data input from the physical port 14a and the physical port 14b are registered with the source Mac addresses in the FDB 33a and FDB 33b, respectively, and then sent to the received frame processing unit 34.
  • the reception frame processing unit 34 refers to the reception frame identifier storage table 35 for each received frame data, and if not registered, registers the frame identifier of the corresponding frame data in the reception frame identifier storage table 35 and Send to identifier deletion unit 37.
  • the received frame identifier storage table 35 If already registered, the corresponding frame data is discarded.
  • the frame identifier deletion unit 37 deletes the frame identifier from the frame data and transfers it to the receiving terminal device 20 via the port 12.
  • the frame data input from the port 12 is selected in the route in the L2 SW unit 20, output from the physical port 13 a that hits the FDB in the L2SW unit 10, and transferred to the receiving terminal device 20.
  • the transmission-side switch device adds a unique frame identifier that can be identified by the reception-side switch device to the frame data transmitted by the transmission terminal device,
  • the frame data is copied for each network and transmitted to each network, and the receiving side switch device transmits the frame data transmitted through a plurality of networks via which network. Regardless, it takes in the frame data that arrived early and discards the frame data that came later. Therefore, it is possible to always use the frame data that arrives earliest, and to use the frame with the minimum delay received by another network even if the delay of one network increases due to congestion. Furthermore, even if a certain network is disconnected due to a failure, communication is not interrupted if the other network is healthy.
  • the L2 networks 4, 5, and 6 are individually using other Layer 2 failure recovery methods such as STP, the recovery from the failure occurs at a certain time after the failure occurs. By combining with, you can make a more reliable network system.
  • the terminal devices 20 and 21 each have a transmission / reception function
  • the switch devices 1 and 2 are dual-purpose switch devices each having a transmission / reception function. If there is no ability to transmit data in only one direction from the transmission terminal device 20 to the reception terminal device 21 as in the present embodiment, the predetermined effect can be obtained even if each has only the transmission and reception functions. Needless to say, it can be obtained and can be realized as a system.
  • the frame data is based on the Ethernet (registered trademark) frame, but the present invention is not limited to this.
  • the L2SW unit 10 and the redundancy processing unit 11 are different functional units. However, the two may be integrated.
  • the transmission side switch device and the reception side switch device are connected by two L2 networks, but further effects can be expected if there are three or more L2 networks.
  • a plurality of L2 network forces S are networks that are not physically connected to each other.
  • the plurality of L2 networks of the present embodiment include, for example, a plurality of VLANs (virtual runs, virtual networks) formed in the same network medium such as optical fino, wire, or radio.
  • FIG. 4 is a system diagram of a part of the network system according to the second embodiment.
  • a virtual L2 network network 7 having a plurality of VLANs (virtual L2 networks) is formed so as to connect three L2SW devices 1 to 3.
  • FIG. 5 is a functional block diagram of a portion related to the transmission operation in the redundancy processing unit 11 of FIG.
  • a VLAN termination point 40-44 and a distribution function unit 46 are provided between the transmission frame copy unit 32 and the physical boats 14a-14c.
  • the VLAN termination points 40-44 are formed by setting from the upper level operation or setting from the directly connected console.
  • a virtual L2 network 7 consisting of multiple VLANs (virtual L2 networks) is constructed with these VLAN termination points 40-44.
  • FDBs 45a-45e are provided to correspond to the VLAN termination points 40-44, respectively.
  • the distribution function unit 46 maps the frame data output from the VLAN termination points 40-44 to the physical ports 14a-14c.
  • FIG. 4 a case where frame data is transmitted from the transmission terminal device 20 to the reception terminal device 21 will be described.
  • the process is the same as in the first embodiment until the frame is input to the redundancy processing unit 11.
  • the frame data input from the port 12 to the redundancy processing unit 11 is Then, the frame identifier adding unit 31 adds a frame identifier adding region to the frame. Then, the frame identifier generated by the frame identifier generation unit 30 is assigned to this assignment area.
  • the transmission frame copy unit 32 searches the FDB 45a 45e corresponding to the VLAN termination point 40-44 generated in advance based on the destination Mac address of the frame data, and if there is a hit, the transmission VLAN copy unit 32 A copy of the frame data to which the frame identifier is assigned is transmitted to the paired VLAN termination point. If there is no hit, a copy is transmitted to all VLAN termination points.
  • the responding VLAN termination point learns the source Mac address in its FDB, so frame data is transmitted to all VLAN termination points from the initial state. Only when a transmission operation is performed.
  • frame data is transmitted through the VLAN termination point 40 and the paired VLAN termination point 41 will be described.
  • the VLAN ID is assigned to the frame data and transferred to the distribution function unit 46.
  • the distribution function unit 46 maps the corresponding frame data to the physical ports 14a and 14b, respectively. Then, the frame data is transmitted via the virtual L2 network of different paths toward the terminal 21 connected to the second L2SW device 2 with the physical ports 14a and 14b.
  • a frame transmitted from the transmission terminal device 21 to the reception terminal device 20 in FIG. 4 will be described.
  • the frame data input to the physical port 16a is input to the physical ports 14a and 14b of the switch device 1 through the two virtual L2 networks by the transmission operation described above in the second L2SW device 2.
  • the frames input to the physical ports 14 a and 14 b are respectively input to the distribution function unit 46.
  • the distribution function unit 46 performs mapping between the physical port and the VLAN termination point, and sends the received frame data to the VLAN termination points 40 and 41, respectively.
  • the transmission Mac addresses are registered in the FDBs 45a and 45b, respectively, and sent to the reception frame processing unit 34.
  • the received frame identifier storage table 35 is referenced for each received frame to identify the received frame. If not in the child storage table 35, the frame identifier of the corresponding frame is registered in the received frame identifier storage table 35 and transferred to the frame identifier deletion unit 37.
  • the frame identifier deletion unit 37 deletes the frame identifier and transmits it to port 12. Subsequent operations are the same as those in the first embodiment.
  • VLAN termination points are defined, and each VLAN termination point has an FDB to construct a virtual network.
  • VLA N termination points are not defined, A virtual network is constructed using the FDB of the physical port and the VLAN table held internally by the transmission frame copy unit.
  • the network power is basically the same as in the second embodiment at a plurality of virtual network points formed in the same network medium, but the physical ports 14a, 14b, 14c
  • the configuration of the portion having the corresponding FDB 33a, 33b, 33c is the same as that of the first embodiment.
  • the transmission frame copy unit 32 according to the present embodiment can refer to the contents of the FDBs 33a, 33b, and 33c of the physical ports 14a, 14b, and 14c (FIG. 2).
  • Figure 8 shows an example of the data contents of FDBs 33a, 33b, and 33c held by physical ports 14a, 14b, and 14c.
  • the transmission frame copy unit 32 of the present embodiment also includes a VLAN number (hereinafter referred to as VLAN-ID) of a preset VLAN termination point shown in FIG. 7 and a VLAN that forms a group in the redundant system. A correspondence table of number and VLAN—ID is maintained.
  • VLAN-ID VLAN number of a preset VLAN termination point shown in FIG. 7
  • VLAN-ID VLAN that forms a group in the redundant system.
  • the transmission frame copy unit 32 refers to the VLAN redundancy configuration table shown in FIG. 7, and sets all the combinations of the preset VLAN ID of the VLAN termination point and the destination Mac address of the input frame.
  • the transmission frame copy unit 32 copies the corresponding frame data for the VLAN-ID and the number of VLANs constituting the redundant system, assigns the VLAN ID to each, and transmits the physical data to be transmitted. In the case of this embodiment, it is transmitted to the physical ports 14a and 14b. As a result, the frame data is transmitted from the physical ports 14a and 14b to the receiving terminal device 21 connected to the second L2SW device 2 using different VLANs.
  • a case will be described as an example where frame data is transmitted from the transmission terminal device 21 to the reception terminal device 20.
  • the frame data input to the port 16a is input to the physical ports 14a and 14b of the first L2SW device 1 through the two virtual L2 networks by the transmission operation described above in the second L2SW device 2. .
  • Physical port 14a, 14b force The input frame data is registered in the FDB 33a, 33b as a pair of VLAN ID and transmission MAC address, respectively, and sent to the reception frame processing unit 34.
  • the received frame processing 34 refers to the received frame identifier storage table 35 for each received frame, and if it is not in the received frame identifier storage table 35, the frame identifier of the corresponding frame is stored in the received frame identifier storage table 35.
  • Register and forward to frame identifier deletion unit 37 On the other hand, if it is already registered in the received frame identifier storage table 35, the corresponding frame data is discarded.
  • the frame identifier deletion unit 37 deletes the frame identifier and transmits it to port 12. Subsequent operations are the same as those in the first embodiment.
  • Fig. 9 shows the format of the Ethernet (registered trademark) frame.
  • the Ethernet (registered trademark) frame area is allocated from the top in the order of Mac frame header, IP header, TCP / UDP header, and user data.
  • an FCS (Frame Check Sequence) area is provided. It has been.
  • FIG. 10 is an area allocation diagram showing a state in which a frame identifier assignment area is provided in the area behind the VLAN ID (VLAN tag) of the Mac frame header.
  • the area of the VLAN ID (VLAN tag) input from the physical port 13a, which is the user side interface, is not changed as it is, and the frame identifier is displayed behind it as shown by the arrow A1 in FIG.
  • An application area is provided.
  • the frame ID assignment area is provided behind the VLAN ID assignment area without changing the VLAN ID assignment area.
  • FIG. 11 is an area allocation diagram showing a state in which the frame identifier assignment area is provided in the area behind the core network VLAN ID (core network VLAN tag) in the Mac frame header.
  • core network VLAN ID core network VLAN tag
  • a frame identifier assignment area may be provided behind the core network VLAN ID as indicated by an arrow A2 in FIG. Also, an area for assigning a frame identifier may be provided in front of the VLAN ID in front of the core network VLAN ID. Also, the VLAN area is 4 bytes. If necessary, multiple VLANs can be added in units of 4 bytes.
  • Figure 12 shows the frame identifier assignment area after the FCS of the Ethernet frame. It is an area allocation figure which shows a mode that it was provided in the area
  • This embodiment is an example in which an area is secured behind the standard frame FCS as indicated by arrow A3 in FIG. 12, and an FCS including additional portions is further provided behind (arrow A3).
  • the frame identifier can be inserted while maintaining the configuration of the Ethernet (registered trademark) frame. Therefore, a commercially available L2SW device can be used for the L2SW device as the equipment that constitutes the L2 network, and the cost can be reduced.
  • the method of inserting the frame identifier into the IP address that can be recognized by the router device without storing the Mac frame area, such as the fragment ID part and the option field of the IP header. But you can.
  • FIG. 13 is a system diagram of a part of the network system according to the sixth embodiment.
  • three L2SW devices are connected to one to three as a higher-level system management unit.
  • OSS8 sets the device ID of each L2SW device 1 to 3 at system startup.
  • the set device ID is held in the frame identifier generation unit 30 and used when generating the frame identifier.
  • OSS 8 sets the device ID of each L2SW device 1-3 when the system is started up. For this reason, device IDs for all L2SW devices and physical ports are set from one location, so device IDs will not be duplicated, reliability will be improved, and control will be gentle. Costs that do not need to be prepared can be reduced.
  • the OSS8 which is the upper system management unit at the time of system start-up, has the ability to set the device ID of each L2SW device 1-3.
  • the console connected to each L2SW device 1-3 The device ID may be set by remote control (including telnet control).
  • the device ID of the L2SW device is set using the SS or console.
  • An example is shown.
  • a plurality of L2SW devices negotiate each other and automatically generate a unique device ID.
  • each L2SW device broadcasts its own device ID automatically when the power is turned on. Then, when there are L2SW devices that have generated device IDs that overlap each other, a negotiation sequence is performed to adjust the device IDs.
  • FIG. 14 is a sequence chart showing a state in which the device ID of each L2SW device is set by the negotiation sequence between the L2SW devices when the power is turned on.
  • the operation of the present embodiment will be described with reference to FIG.
  • each of the three L2SW devices 1 and 3 is powered on (step S100, step S102), it recognizes that it is connected to the upper network, and then generates its own device ID (step S103 step). S106). Then, for example, the device IDs of its own devices are broadcast to all physical ports in the order of the first L2SW device 1, the second L2SW device 2, and the third L2SW device 3 (step S107 to step S109).
  • step S110 to S112 If there is an ID duplication check, that is, whether or not there are all physical ports that have generated device IDs that overlap each other, a negotiation sequence is performed (steps S110 to S112). Then, for example, if there is a switch device that has generated a duplicate device ID, adjustment is made according to an agreement such as using a device ID that does not use one of them. When the adjustment is completed, the device ID is saved and operation as an L2SW device is started.
  • a negotiation sequence is performed by a plurality of L2SW devices including a transmission side switch device and a reception side switch device.
  • the device ID of each L2SW device is set by this negotiation sequence. In this way, each L2SW device autonomously generates a unique device ID, which reduces the need for operators to add.
  • the FDB inside the L2SW unit of the receiving L2SW device has registered the Mac address. If it is not learned, that is, the frame data received earlier is distributed to all physical ports on the terminal device side, and the frame data received later is discarded. When the terminal device with the destination Mac address responds, the Mac address is learned in the FDB, and the received frame is output only to the physical port from the next frame reception. At this time, normal L2SW devices included in the first, first, and third L2 networks also learn from the above response, so unnecessary frame delivery is eliminated.
  • This operation is logically separated on the physically same network as shown in the second embodiment even in the physically separated L2 network as shown in the first embodiment.
  • Reception frame identifier storage table Reception frame 'El ⁇ ⁇

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

 送信端末装置(20)側に設けられた送信側スイッチ装置(1)のフレーム識別子生成部(30)は、システムに固有な認識番号とシリアル番号からなるフレーム識別子を生成する。フレーム識別子付与部(31)は、シリアル番号を進めながら送信端末装置から連続して送出されるフレームデータにフレーム識別子を順次付与する。送信フレームコピー部(32)は、フレームデータを複数のネットワークに対して夫々コピーして送信する。 受信端末装置(21)側に設けられた受信側スイッチ装置2の受信フレーム処理部(36)は、フレームデータを受信し、このフレームデータに付帯するフレーム識別子を認識し当該フレームデータが未受信のものであればこれを取り込み、既受信のものであればこれを廃棄する。フレーム識別子削除部(37)は、受信フレーム処理部(36)が取り込んだフレームデータのフレーム識別子を削除して受信端末装置(21)に転送する。

Description

明 細 書
ネットワークシステム、送信側スィッチ装置、受信側スィッチ装置、両用ス イッチ装置およびフレームデータの送信方法
技術分野
[0001] 本発明は、送信端末装置および受信端末装置間を接続するレイヤ 2ネットワークに 関し、特にイーサネット(登録商標)スィッチ装置で代表されるレイヤ 2スィッチ装置( 以下、 L2SW装置と称す)を含むレイヤ 2ネットワークに関し、さらにはこのレイヤ 2ネ ットワークに発生する通信断の発生を防止する改善に関するものである。
背景技術
[0002] レイヤ 2ネットワークにおいては、ネットワーク上にループができることが許可されて なレ、。そのため、ループができてしまう場合には、レイヤ 2のプロトコルである STP ( Spanning
Tree Protocol)を使って、ループができているネットワークの一部のスィッチポートを 閉塞し、ループができないようにする(例えば、非特許文献 1参照)。
[0003] この STPを使った障害回復に関しては、通話路断の検出をしてから、ループを検 出し、所定のポートを閉塞して障害を無くし、実際に通信が回復するまでに数十秒か ら数分の時間を要するという問題がある。この問題を解消するために、例えば次のよ うな技術が提案されている。すなわち、 ACT系と SBY系の 2つのレイヤ 2スィッチ(以 下、 L2SWと称す)を設け、 ACT系 L2SWに障害が発生したとき、スィッチの端末側 および上位リンク側から受信するパケットを SBY系 L2SW側に切り換えて受信し交換 処理を行うことによって、障害回復時間を短縮する(例えば、特許文献 1参照)。
[0004] また、現用/予備用の 2つの伝送径路設け、送信側にて送信データにシリアル番 号を付与し、通常は現用の伝送径路を用いてデータを伝送し、一方、受信側にてシ リアル番号の連続性をチェックし、非連続となった場合にそれを送信元に通知し、現 用の伝送径路から予備用の伝送径路へ切り替えることにより障害回復時間を短縮す る方法も提案されている (例えば、特許文献 2参照)。
特許文献 1 :特開 2001—16247号公報 (第 2頁一 3頁、第 1図) 特許文献 2 :特開 2003-169105号公報 (第 2頁一 4頁、第 1図)
非特許文献 1 : IEEE 802. ID
発明の開示
発明が解決しょうとする課題
[0005] このように、上述非特許文献 1に記載のネットワークシステムの障害回復においては 、標準的なレイヤ 2プロトコルである STPを用いる障害回復であるが、障害回復まで に時間力 Sかかるという未解決の課題を有している。また、上述特許文献 1および特許 文献 2に示す方法においては、送信側において現用/予備用の径路の選択をする ので障害検出から送信機器側の切替処理完了までの間に短い時間ではあるが通信 断が発生するとレ、うとレ、う未解決の課題を有してレ、る。
[0006] 本発明は、上記に鑑みてなされたものであって、ネットワークのいずれかの箇所に 障害が発生した場合でも通信断が発生することがなく高信頼性を要求される用途に 用いることができるネットワークシステムと、ネットワークシステムに用いられるスィッチ 装置と、ネットワークシステムを用いたフレームデータの送信方法とを提供することを 目的としている。
課題を解決するための手段
[0007] この発明に係るネットワークシステムは、フレームデータを送信する送信端末装置、 フレームデータを受信する受信端末装置との間に設けられたネットワークシステムで あって、複数のネットワークと、送信端末装置を収容するとともに複数のネットワークに 接続された送信側スィッチ装置と、受信端末装置を収容するとともに複数のネットヮ ークに接続された受信側スィッチ装置とを有し、送信側スィッチ装置は、システム内 で固有の認識番号とシリアル番号とからなるフレーム識別子を生成するフレーム識別 子生成部と、シリアル番号を進めながら送信端末装置から順に送出されるフレームデ ータにフレーム識別子を順次付与するフレーム識別子付与部と、フレームデータを 複数のネットワークに対して夫々コピーして送信する送信フレームコピー部とを有し、 受信側スィッチ装置は、フレームデータを受信し、このフレームデータに付帯するフ レーム識別子を認識しこのフレームデータが未受信のものであればこれを取り込み、 既受信のものであればこれを廃棄する受信フレーム処理部と、受信フレーム処理部 が取り込んだフレームデータのフレーム識別子を削除して受信端末装置に転送する フレーム識別子削除部とを備えたことを特徴とする。
[0008] ここでフレームデータとは、要するに「パケット」、 「フレーム」および「セル」といったブ ロックィ匕されたデータのことである。具体的には、例えば、イーサネット(登録商標)フ レーム等である。
また、送信側スィッチ装置は、ネットワーク網と反対側のポートに少なくとも 1台の送 信端末装置を接続し、この送信端末装置から出力されたフレームデータを、経路を 切り替えながら設定された複数のネットワークに送出するものである。
さらにまた、受信側スィッチ装置は、ネットワーク網と反対側のポートに少なくとも 1 台の受信端末装置を接続し、複数のネットワークから受信したフレームデータのうち、 当該受信端末装置あてのフレームデータを当該受信端末装置に転送するものであ る。
発明の効果
[0009] この発明に係るネットワークシステムにあっては、送信端末装置側に設けられた送 信側スィッチ装置のフレーム識別子生成部は、システムに固有の認識番号とシリアル 番号からなるフレーム識別子を生成する。また、識別子付与部は、このフレーム識別 子のシリアル番号を進めながら送信端末装置から連続して送出されるフレームデー タにフレーム識別子を順次付与する。送信フレームコピー部は、フレームデータを複 数のネットワークに対して夫々コピーして送信する。一方、受信端末装置側に設けら れた受信側スィッチ装置の受信フレーム処理部は、フレームデータを受信し、このフ レームデータに付帯するフレーム識別子を認識し当該フレームデータが未受信のも のであればこれを取り込み、既受信のものであればこれを廃棄する。フレーム識別子 削除部は、受信フレーム処理部が取り込んだフレームデータのフレーム識別子を削 除して受信端末装置に転送する。そのため、受信側スィッチ装置にてフレーム識別 子が確認され、どのネットワークから来たかに関わらず先に来たフレームデータが取り 込まれ、後から来たフレームデータが破棄される。これにより、常に最も早く到着する フレームデータが使用されることとなり、例えば、いずれかのネットワークが輻輳により 遅延が大きくなつた場合でも他のネットワークから受信する最小の遅延となるフレーム を使用することができる。また、あるネットワークが障害により通信断となった場合であ つても、他のネットワークが健全であれば通信断は発生しなレ、。これにより、高い信頼 性を有するネットワークシステムとすることができる。
図面の簡単な説明
園 1]実施の形態 1のネットワークシステムの一部分の系統図である。
園 2]図 1の第 1の L2SW装置の冗長化処理部のうち送信の動作に関係する部分の 機能ブロック図である。
園 3]図 1の第 1の L2SW装置の冗長化処理部のうち受信の動作に関係する部分の 機能ブロック図である。
[図 4]実施の形態 2のネットワークシステムの一部分の系統図である。
園 5]図 4の第 1の L2SW装置の冗長化処理部のうち送信の動作に関係する部分の 機能ブロック図である。
園 6]図 4の第 1の L2SW装置の冗長化処理部のうち受信の動作に関係する部分の 機能ブロック図である。
[図 7]実施の形態 2のネットワークシステムの第 1の L2SW装置の有する VLAN終端 点の VLAN—IDと、ともにグループをつくる VLANの個数および VLAN—IDの対応 テーブルを示す図である。
園 8]物理ポートの保持する FDBに登録された内容の一例を示す図である。
[図 9]標準のイーサネット(登録商標)フレームのフォーマットを示す図である。
[図 10]フレーム識別子の付与領域が Macフレームヘッダの VLANID (VLANタグ) の後方の領域に設けられた様子を示す領域割当図である。
[図 11]フレーム識別子の付与領域が Macフレームヘッダのコア網用 VLANID (コア 網用 VLANタグ)の後方の領域に設けられた様子を示す領域割当図である。
園 12]フレーム識別子の付与領域力 Sイーサネット(登録商標)フレームの FCSの後方 の領域に設けられた様子を示す領域割当図である。
[図 13]実施の形態 6のネットワークシステムの一部分の系統図である。
[図 14]実施の形態 7の各 L2SW装置の装置 IDが電源投入時に各 L2SW装置間の ネゴシーケンスによって設定される様子を示すシーケンスチャートである。 発明を実施するための最良の形態
[0011] 以下、本発明にかかるネットワークシステム、送信側スィッチ装置、受信側スィッチ 装置および両用スィッチ装置の実施の形態を図面に基づいて詳細に説明する。なお 、この実施の形態によりこの発明が限定されるものではない。
[0012] 実施の形態 1.
図 1は実施の形態 1のネットワークシステムの一部分の系統図である。図 1におレ、て 、端末装置 20と端末装置 21との間に、本実施の形態のネットワークシステムが形成 されている。例えば、端末装置 20がデータを送信し、端末装置 21がデータ受信する とする。端末装置 20は、ネットワークシステムを介してフレーム化されたデータ、具体 的にはイーサネット(登録商標)フレームデータ(以下、単にフレームデータと称す)を 送信し、受信端末装置 21はこれを受信する。
[0013] ネットワークシステムは、 3台のレイヤ 2スィッチ装置(以下、 L2SW装置と称す) 1一 3と、これら 3台の L2SW装置 1一 3を接続するように設けられた複数のレイヤ 2ネット ワーク(以下、 L2ネットワークと称す) 4一 6とを含んでレヽる。
[0014] 第 1の L2SW装置 1は、送信するフレームデータの方路を選択するレイヤ 2スィッチ 部(以下、 L2SW部と称す) 10と、フレームデータの冗長化処理を行う冗長化処理部 11とを有してレ、る。 L2SW部 10と冗長化処理部 11とは、 L2SW部 10に形成された ポート 12を介して接続されている。第 1の L2SW装置 1は、複数の端末装置を収容す るための、 L2SW部 10カも延出する 8つの物理ポート 13a— 13hを有している。第 1 の L2SW装置 1は、ネットワーク網側に、 L2ネットワークと接続するための、冗長化処 理部 11から延びる 3つの物理ポート 14a 14cを有している。 3台の L2SW装置 1一 3は同じ構造をなしている。図 1において、第 2の L2SW装置 2および第 3の L2SW装 置 3は、物理ポートの数を一部省略して、第 2の L2SW装置 2においては、 L2ネットヮ ーク側のポートとして物理ポート 15aおよび 15bのみを、また端末装置側のポートとし て物理ポート 16a— 16cのみを、第 3の L2SW装置 3においては、 L2ネットワーク側 のポートとして物理ポート 17aおよび 17bのみを、また端末装置側のポートとして物理 ポート 18a— 18cのみを、記載している。
[0015] 第 1の L2SW装置 1は多数の端末装置を収容する力 ここでは端末装置 20のみを 示している。端末装置 20は、データの送受信を行うが、データを送信する場合には 送信の機能のみを働かせるので、便宜上、送信端末装置 20とし、データを受信する 場合には受信の機能のみを働かせるので、便宜上、受信端末装置 20とする。これに ともなレ、、端末装置 20がデータの送信動作を行う場合には、第 1の L2SW装置 1も送 信の機能のみを働かせるので送信側 L2SW装置 1とし、端末装置 20がデータの受 信を行う場合には受信の機能のみを働かせるので受信側 L2SW装置 1とする。第 2 の L2SW装置 2も同様に多数の端末装置を収容するが、ここでは端末装置 21のみを 示している。端末装置 21も端末装置 20と同様にデータの送信も受信も行うが、便宜 上、データを送信する場合には送信端末装置 21、データを受信する場合には受信 端末装置 21とする。これにともない、第 2の L2SW装置 2も、端末装置 21がデータの 送信を行う場合には送信側 L2SW装置 2とし、端末装置 21がデータの受信を行う場 合には受信側 L2SW装置 2とする。
[0016] 第 1の L2SW装置 1は、第 1の L2ネットワーク 4および第 2の L2ネットワーク 5を介し て第 2の L2SW装置 2と接続されている。第 1の L2SW装置 1は、さらに第 2の L2ネッ トワーク 5および第 3の L2ネットワーク 6を介して第 3の L2SW装置 3と接続されている 。その他の L2SW装置および L2ネットワークは省略する。
[0017] 図 2は図 1の第 1の L2SW装置 1の冗長化処理部 11のうち送信の動作に関係する 部分の機能ブロック図である。冗長化処理部 11は、送信端末装置 20から連続して送 出される各フレームデータに対して、受信側スィッチ装置 2がこれを受信したときに同 一のフレームデータであることが解るようにフレーム識別子を付与する。そして、フレ ーム識別子を付与したうえで、これをネットワーク数分コピーして各 L2ネットワークに 送信する。
[0018] 冗長化処理部 11は、フレーム識別子を生成するフレーム識別子生成部 30と、これ をフレームデータに付与するフレーム識別子付与部 31と、このフレーム認識子が付 与されたフレームデータをコピーする送信フレームコピー部 32とを有している。冗長 化処理部 11は、また各物理ポート 14a— 14cに対応して設けられた FDB (Filtering Database) 33a— 33cを有している。この FDB33a— 33cには、データを受信した際 にそのデータの送信元の Macアドレスが記憶される。 [0019] フレーム識別子生成部 30は、フレーム識別子として、システムに固有の認識番号と シリアル番号からなるフレーム識別子を生成する。フレーム識別子付与部 31は、この シリアル番号を進めながら、すなわち、例えば 1ずつインクリメントしながら、送信端末 装置 20から連続して送出されるフレームデータにフレーム識別子を順次付与する。 送信フレームコピー部 32は、フレームデータを複数のネットワークに対して夫々コピ 一して送信する。
[0020] 図 3は図 1の第 1の L2SW装置 1の冗長化処理部 11のうち受信の動作に関係する 部分の機能ブロック図である。冗長化処理部 11は、フレームデータを受信し、フレー ムデータに付帯するフレーム識別子に基づいてこれを処理する受信フレーム処理部 34と、フレームデータのフレーム識別子を削除して受信端末装置 21に転送するフレ ーム識別子削除部 37とを有している。受信フレーム処理部 34は、フレームデータに 付帯したフレーム識別子を認識する受信フレーム認識部 35と、認識したフレーム認 識子を記憶する受信フレーム識別子保存用テーブル 36から構成されている。
[0021] 受信フレーム処理部 34の受信フレーム認識部 35は、フレームデータを受信し、こ のフレームデータに付帯するフレーム識別子を認識し、受信フレーム識別子保存用 テーブル 36を参照することにより、当該フレームデータがすでに受信したもの力、ま だ受信していなレ、(初めて受信した)ものかを判断する。そして、まだ受信していない ものであれば受信フレーム識別子保存用テーブル 36に登録したうえでこれを取り込 み、一方、すでに受信したのものであればこれを廃棄する。フレーム識別子削除部 3 7は、受信フレーム処理部 36が取り込んだフレームデータのフレーム識別子を削除し て受信端末装置 21に転送する。
[0022] 次に動作について説明する。最初に送信時の動作について説明する。図 1におい て、端末装置 20から端末装置 21にフレームデータが送信される場合で説明する。ま ず、送信端末装置 20からのフレームデータが物理ポート 13aから入力される。このフ レームデータは L2SW部 10において、 L2SW部 10内部の各ポートの FDBとチェック され方路が選択される。この時、宛先となる受信端末装置 21が第 2の L2SW装置 2の 物理ポート 16aに接続されている場合、該当フレームデータはポート 12から出力され 、冗長化処理部 11に入力される。 [0023] 図 2において、ポート 12から冗長化処理部 11に入力されたフレームデータは、フレ ーム識別子付与部 31においてフレーム識別子の付与領域をフレームの所定の場所 に追加される。そして、この付与領域に、フレーム識別子生成部 30で生成されたフレ ーム識別子を付与される。
[0024] その後、送信フレームコピー部 32は、このフレームデータを複数の物理ポート 14a 一 14cのどのポートとどのポートに出力すべきかを FDB33a 33cを参照して決定し 、そして、該当する物理ポート数分コピーし、各物理ポートを介して各 L2ネットワーク に出力する。
[0025] ここで、送信フレームコピー部 32が行う物理ポート選択の機能に関しては、まず、 一般的な機能として FDBを用いた学習機能が有る。この学習機能は、 FDB33a 3 3cを参照して Macアドレスがヒットすれば、その該当物理ポートに出力し、いずれの ポートにもヒットしなければ全物理ポートに出力するとともに、応答が合った物理ポー トに関しては、その送信元 Macアドレスを FDBに登録し、これにより、次回の送信動 作においては、登録した FDBにのみヒットするので、ヒットした物理ポートのみにフレ ームデータを送信するというものである。
[0026] ここでさらに、本実施の形態の送信フレームコピー部 32による物理ポート選択の機 能は、上述の一般的な機能に加えて、グループ同時送信の機能を有している。この グノレープ同時送信の機能は、同一の送信側スィッチ装置 1と同一の受信側スィッチ 装置 2とを結びつけることができる複数のネットワーク力 予め決められた設定により それぞれ 2本以上まとめられてグノレープに組分けされており、送信側スィッチ装置 1 の送信フレームコピー部 32は、同じグループ内の全てのネットワークに対してフレー ムデータを夫々コピーして送信するとレ、うものである。
[0027] 例えば以下の通りである。この例の場合、送信端末装置 20から受信端末装置 21へ のデータの転送においては、送信側スィッチ装置 1と受信側スィッチ装置 2とを結ぶ、 第 1の L2ネットワーク 4と第 2の L2ネットワーク 5が同じグループとされており、送信フ レームコピー部 32はこれを記憶している。初期状態において、送信端末装置 20から 受信端末装置 21へのデータの転送が行われるときには、 FDB33a— 33cにいずれ の Macアドレスも登録されてないので、送信フレームコピー部 32は、 3つの物理ポー ト 14a— 14cすべてに対してフレームデータを送信する。その後、別の動作にて端末 装置 21から端末装置 20に第 2の L2ネットワーク 5を通じてフレームデータが送信さ れてきたとする。すると、第 2の L2ネットワーク 5を接続する物理ポート 14aの FDB33 aには、端末装置 21の Macアドレスが登録される。そのため、これ以降、端末装置 21 に送信しょうとするフレームデータは、 FDB33aにてヒットして物理ポート 14aから送 出されることになる。ここで、第 2の L2ネットワーク 5と第 1の L2ネットワーク 4とが同じ グループとされているので、フレームデータは物理ポート 14aと物理ポート 14bに送 出される。物理ポート 14cには送出されない。
[0028] このように、送信側スィッチ装置 1は、応答信号の有った受信端末装置 21とネットヮ 一クとを関連付ける記憶手段として FDB33a 33cを有し、この応答信号の受信の 後には、受信端末装置 21に送信するフレームデータは、受信端末装置 21と関連付 けられたネットワークおよびネットワークと同じグループのネットワークに送出するので 、送信するネットワークの数が減り、送信側スィッチ装置 1の負担が軽減される。また、 受信側スィッチ装置 2の負担も軽減される。
[0029] 次に受信時の動作について説明する。図 1において、端末装置 21から端末装置 2 0にフレームデータが送信される場合で説明する。つまり、上述の説明とは逆に、送 信端末装置と受信端末装置とが入れ替わり、送信端末装置 21から受信端末装置 20 にフレームデータが送信される。送信端末装置 21から物理ポート 16aに入力された フレームデータは、第 2の L2SW装置 2において上述に説明した送信時の動作により 第 1の L2ネットワーク 4および第 2の L2ネットワーク 5を通じて、受信側スィッチ装置 1 の物理ポート 14aおよび物理ポート 14bに入力する。物理ポート 14aおよび物理ポー ト 14bに入力されたフレームデータはそれぞれが冗長化処理部 11に入力される。
[0030] 図 3において、物理ポート 14aおよび物理ポート 14bから入力されたフレームデータ は、送信元 Macアドレスをそれぞれ FDB33a、 FDB33bに登録され、その後、受信 フレーム処理部 34に送られる。受信フレーム処理部 34は、受信したフレームデータ 毎に受信フレーム識別子保存用テーブル 35を参照し、登録されてなければ、該当フ レームデータのフレーム識別子を受信フレーム識別子保存用テーブル 35に登録し、 フレーム識別子削除部 37に送る。一方、受信フレーム識別子保存用テーブル 35に 既に登録されていれば該当フレームデータを破棄する。そして、フレーム識別子削 除部 37はフレームデータから、フレーム識別子を削除しポート 12を介して受信端末 装置 20に転送される。図 1において、ポート 12から入力されたフレームデータは、 L2 SW部 20において方路が選択され、 L2SW部 10内部の FDBにヒットした物理ポート 13aから出力され受信端末装置 20に転送される。
[0031] 以上のように、本実施の形態のネットワークシステムにおいては、送信側スィッチ装 置が、受信側スィッチ装置が識別可能なユニークなフレーム識別子を送信端末装置 の送出するフレームデータに付与し、且つそのフレームデータをネットワーク分コピー して各ネットワークに送信するとともに、受信側スィッチ装置が複数のネットワークを通 じて送信されてきたフレームデータに対して、いずれのネットワークを介して送信され てきたかによらず、早く到着したフレームデータを取り込み、後から来たフレームデー タを破棄する。そのため、常に最も早く到着するフレームデータを使用することができ るとともに、あるネットワークが輻輳により遅延が大きくなつた場合でも他のネットワーク 力 受信する最小の遅延となるフレームを使用することができる。さらに、あるネットヮ ークが障害により通信断となった場合であっても、他のネットワークが健全であれば通 信断は発生しない。また、 L2ネットワーク 4、 5、 6がそれぞれ個別に STP等他のレイ ャ 2障害回復手法を用いている場合、障害発生後ある一定の時間で障害から回復す るため、この実施の形態の効果と合わさることにより、より信頼性の高いネットワークシ ステムとすることができる。
[0032] なお、上述のように端末装置 20, 21は、それぞれ送受信の機能を有しており、また 、スィッチ装置 1 , 2は、それぞれ送受信の機能を有している両用スィッチ装置である 力 本実施の形態のように送信端末装置 20から受信端末装置 21への一方向のみの データの送信し力 ないのであれば、それぞれ送信および受信の機能のみ有するも のであっても、所定の効果を得ることができ、またシステムとして成り立つことは言うま でもない。
[0033] また、本実施の形態においては、フレームデータがイーサネット(登録商標)フレー ムによるものであるが、これに限定されるものではない。
また、本実施の形態においては、 L2SW部 10と冗長化処理部 11が別の機能部とさ れているが、両者は一体に構成されてもよい。
本実施の形態では、送信側スィッチ装置と受信側スィッチ装置との間は 2つの L2ネ ットワークで接続されてレ、るが、 3つ以上の L2ネットワークであれば更なる効果が期待 できる。
[0034] 実施の形態 2.
上述の実施の形態 1では、複数の L2ネットワーク力 S、相互に物理的に接続されてな いネットワークであった。これに対して、本実施の形態の複数の L2ネットワークは、例 えば、光ファイノ 、ワイヤ或いは無線といった同一のネットワーク媒体中に形成された 複数の VLAN (バーチャルラン、 Virtual
LAN)である。そして、この複数の VLANは、同一のネットワーク媒体内で所定の 2台 のスィッチ装置間に形成される複数の経路が、同一物理区間の障害で同時に断とな らなレ、ように異なる物理経路にて形成されてレ、る。
[0035] 図 4は実施の形態 2のネットワークシステムの一部分の系統図である。図 4において 、ネットワークシステムは、 3台の L2SW装置 1一 3を接続するように複数の VLAN (仮 想 L2ネットワーク)力 なる仮想 L2ネットワーク網 7が形成されてレ、る。
[0036] 図 5は図 4の冗長化処理部 11のうち送信の動作に関係する部分の機能ブロック図 である。図 5において、送信フレームコピー部 32と物理ボート 14a— 14cとの間には、 VLAN終端点 40— 44と振分機能部 46とが設けられてレヽる。 VLAN終端点 40— 44 は、上位オペレーションからの設定、或いは直接接続されたコンソールからの設定に より形成されている。複数の VLAN (仮想 L2ネットワーク)でなる仮想 L2ネットワーク 網 7は、この VLAN終端点 40— 44により構築されている。 VLAN終端点 40— 44の 夫々に対応するように FDB45a— 45eが設けられている。振分機能部 46は、 VLAN 終端点 40— 44から出力されるフレームデータを各物理ポート 14a— 14cにマツピン グする。
[0037] 次に動作について説明する。最初に送信時の動作について説明する。図 4におい て、送信端末装置 20から受信端末装置 21にフレームデータが送信される場合につ いて説明する。冗長化処理部 11にフレームが入力されるまでは実施の形態 1と同様 である。図 5において、ポート 12から冗長化処理部 11に入力されたフレームデータは 、フレーム識別子付与部 31においてフレーム識別子の付与領域をフレームに追加さ れる。そしてこの付与領域に、フレーム識別子生成部 30で生成されたフレーム識別 子を付与される。
[0038] その後、送信フレームコピー部 32は、フレームデータの宛先 Macアドレスに基づい て、予め生成されている VLAN終端点 40— 44に対応する FDB45a 45eを検索し 、ヒットすれば該当 VLAN終端点とそのペアとなる VLAN終端点にフレーム識別子 を付与されたフレームデータのコピーを送信し、ヒットしなければ全 VLAN終端点 40 一 44にコピーを送信する。
[0039] ここで、実施の形態 1と同様に、応答のあった VLAN終端点はその FDBに送信元 Macアドレスが学習されるため全 VLAN終端点にフレームデータが送信されるのは 初期状態から送信動作が行われた場合のみである。ここでは、 VLAN終端点 40とそ のペアである VLAN終端点 41を通じてフレームデータが送信される場合にて説明 する。 VLAN終端点 40, 41にて、フレームデータに VLAN— IDが付与され、振分機 能部 46に転送される。振分機能部 46では該当フレームデータをそれぞれ物理ポー ト 14a, 14bにマッピングする。そして、フレームデータは、物理ポート 14a, 14b力 第 2の L2SW装置 2に接続する端末 21に向かって異なる経路の仮想 L2ネットワーク を経由して送信される。
[0040] 次に受信時の動作について説明する。図 4において、送信端末装置 21から受信端 末装置 20に送信されたフレームについて説明する。物理ポート 16aに入力されたフ レームデータは第 2の L2SW装置 2において上述に説明した送信時の動作により 2 つの仮想 L2ネットワークを通ってスィッチ装置 1の物理ポート 14a,14bに入力される
[0041] 図 6において、物理ポート 14a, 14bに入力されたフレームはそれぞれが振分機能 部 46に入力される。振分機能部 46は物理ポートと VLAN終端点間のマッピングを行 レ、、受信したフレームデータを、それぞれ VLAN終端点 40, 41に送出する。物理ポ ート 14a, 14bから入力されたフレームは、送信 Macアドレスをそれぞれ FDB45a, 4 5bに登録され、受信フレーム処理部 34に送られる。受信フレーム処理 34では受信し たフレーム毎に受信フレーム識別子保存用テーブル 35を参照し、受信フレーム識別 子保存用テーブル 35になければ、該当フレームのフレーム識別子を受信フレーム識 別子保存用テーブル 35に登録し、フレーム識別子削除部 37に転送する。一方、受 信フレーム識別子保存用テーブル 35に既に登録されていれば該当フレームデータ を破棄する。フレーム識別子削除部 37はフレーム識別子を削除し、ポート 12に送信 する。その後の動作は、実施の形態 1と同様である。
[0042] 以上のように、 L2ネットワーク内で固有の VLANを設定し、それぞれの L2SW装置 に VLAN終端点を生成することにより、 VLANを L2SW装置間のリンクのように扱うこ とが可能となる。これにより、実施の形態 1の物理的に接続されている L2ネットワーク を用いたのと同じように高信頼なネットワークの構築が可能となる。また、本実施の形 態では 2台のスィッチ装置間で VLANリンクを使用する例を示したが、複数(3台以上 )のし23 装置が主属する VLANを定義することも可能である。
[0043] 実施の形態 3.
上述の実施の形態 2では、 VLAN終端点を定義し、各 VLAN終端点がそれぞれ F DBを持つことにより仮想ネットワークを構築した力 本実施の形態においては、 VLA N終端点を定義せず、各物理ポートの持つ FDBと送信フレームコピー部が内部に保 持する VLANテーブルを用いて仮想ネットワークを構築する。
[0044] 本実施の形態においては、ネットワーク力 同一のネットワーク媒体中に形成された 複数の仮想ネットワーク点で、実施の形態 2と基本的に同様であるが、物理ポート 14 a, 14b, 14c力 対応する FDB33a, 33b, 33cを有している部分の構成は、実施の 形態 1と同様である。そして、本実施の形態の送信フレームコピー部 32は、物理ポー ト 14a, 14b, 14cのそれぞれの FDB33a, 33b, 33cの内容を参照可能とされている (図 2)。図 8は物理ポート 14a, 14b, 14cの保持する FDB33a, 33b, 33cのデータ 内容の例である。そしてさらに、本実施の形態の送信フレームコピー部 32は、図 7に 示す予め設定された VLAN終端点の VLAN番号(以下、 VLAN— IDと称す)とその 冗長系にてともにグループをつくる VLANの個数と VLAN— IDの対応テーブルを保 持している。
[0045] 次に動作について説明する。最初に送信時の動作について説明する。送信端末 装置 20から受信端末装置 21にフレームデータが送信される場合を例として説明す る。冗長化処理部 11にフレームが入力されるまでは実施の形態 2と同様である。ポー ト 12から冗長化処理部 11に入力されたフレームデータは、フレーム識別子付与部 3 1におレ、てフレーム識別子の付与領域をフレームに追加される。そしてこの付与領域 に、フレーム識別子生成部 30で生成されたフレーム識別子を付与される(図 2)。そ の後、送信フレームコピー部 32は、図 7に示す VLAN冗長構成テーブルを参照し、 予め設定された VLAN終端点の VLAN— IDと入力されたフレームの宛先 Macァドレ スの組をすベて生成し、 FDB33a, 33b, 33cを参照して VLAN—IDと Macアドレス のペアで一致するものがあるかどうかをチェックする。そして、一致するものが見つか ると、送信フレームコピー部 32は、該当 VLAN— IDと冗長系を構成する VLAN数分 該当フレームデータをコピーし、それぞれに VLAN— IDを付与し、送信すべき物理 ポート、本実施の形態の場合には物理ポート 14aと 14bに送信する。これにより、物 理ポート 14a, 14bから第 2の L2SW装置 2に接続する受信端末装置 21に向かって 異なる VLANにより、フレームデータが送信される。
[0046] 次に受信時の動作について説明する。送信端末装置 21から受信端末装置 20フレ ームデータが送信される場合を例として説明する。ポート 16aに入力されたフレーム データは第 2の L2SW装置 2において上述に説明した送信時の動作により 2つの仮 想 L2ネットワークを通って第 1の L2SW装置 1の物理ポート 14a,14bに入力される。
[0047] 物理ポート 14a, 14b力 入力されたフレームデータは、 VLAN— IDと送信 Macァ ドレスのペアをそれぞれ FDB33a, 33bに登録され、受信フレーム処理部 34に送ら れる。受信フレーム処理 34では受信したフレーム毎に受信フレーム識別子保存用テ 一ブル 35を参照し、受信フレーム識別子保存用テーブル 35になければ、該当フレ ームのフレーム識別子を受信フレーム識別子保存用テーブル 35に登録し、フレーム 識別子削除部 37に転送する。一方、受信フレーム識別子保存用テーブル 35に既に 登録されていれば該当フレームデータを破棄する。フレーム識別子削除部 37はフレ ーム識別子を削除し、ポート 12に送信する。その後の動作は、実施の形態 1と同様 である。
[0048] 以上のように、実施の形態 2に示すような VLAN終端点を定義しなくても同様な動 作をすることが可能となる。 [0049] 実施の形態 4.
本実施の形態は、フレーム識別子の付与領域の場所に関して説明する。図 9はィ ーサネット(登録商標)フレームのフォーマットを示す図である。図 9において、イーサ ネット(登録商標)フレームの領域割当は、先頭から Macフレームヘッダ、 IPヘッダ、 TCP/UDPヘッダ、ユーザデータの順で割り当てられ、最後に FCS (Frame Check Sequence)の領域が設けられている。
[0050] 図 10はフレーム識別子の付与領域が Macフレームヘッダの VLANID (VLANタ グ)の後方の領域に設けられてレ、る様子を示す領域割当図である。図 10におレ、て、 ユーザ側のインターフェースである物理ポート 13aから入力される VLANID (VLAN タグ)の領域はそのまま変更せず、その後方に図 10中矢印 A1で示すようにフレーム 識別子が揷入される付与領域が設けられている。
[0051] 動作を説明する。ポート 12から冗長化処理部 11に入力されたフレームデータは、 フレーム識別子付与部 31においてフレーム識別子の付与領域を図 10に示す VLA NIDの後方に追加され、フレーム識別子生成部 30で生成されたフレーム識別子をこ の付与領域に付与される。その他の動作は実施の形態 1と同様である。
[0052] 以上のように、本実施の形態においては、 VLANIDの割り当て領域を変更すること なぐその後方にフレーム識別子の付与領域を設けたため、 L2ネットワークを構成す る機材として、特に領域割当の特殊仕様のものでなくてよぐ市販のものを使用できる という利点がある。
[0053] 図 11はフレーム識別子の付与領域が Macフレームヘッダのコア網用 VLANID (コ ァ網用 VLANタグ)の後方の領域に設けられている様子を示す領域割当図である。
L2ネットワークとしてコア網用 VLANが定義される場合には、図 11中矢印 A2で示す ようにコア網用 VLANIDの後方にフレーム識別子の付与領域を設けてもよい。また、 コア網用 VLANIDの前方の VLANIDのさらに前方にフレーム識別子を付与する領 域を設けられてもよレ、。また、 VLAN領域は 4バイトである力 必要であれば 4バイト 単位で多重付与する方法としてもよレ、。
[0054] 実施の形態 5.
図 12はフレーム識別子の付与領域がイーサネット(登録商標)フレームの FCSの後 方の領域に設けられている様子を示す領域割当図である。本実施の形態は、標準フ レームの FCSの後方に図 12中矢印 A3で示すように領域を確保し、追加部分を含め た FCSをさらに後方(矢印 A3)に設けた例である。
[0055] このように、フレーム識別子の付与領域をイーサネット(登録商標)フレームの FCS の後方の領域に設けることにより、イーサネット(登録商標)フレームの構成を維持し たままフレーム識別子を揷入することができるので、 L2ネットワークを構成する機材と しての L2SW装置に市販の L2SW装置を使用することができ、コストダウンを図ること ができる。また、 Macフレーム領域を操作せず、 IPフレームを保持し、ルータ装置が 認識可能な IPフォーマットを保存した形態、例えばフラグメント ID部分、 IPヘッダの オプションフィールド等の部分にフレーム識別子を揷入する方法でもよい。
[0056] 実施の形態 6.
図 13は実施の形態 6のネットワークシステムの一部分の系統図である。図 13にお いて、 3台の L2SW装置 1一 3に接続されて上位のシステム管理部として 1台の監視 制御装置(Operation
Support System,以下 OSSと称す) 8が設けられている。 OSS8は、システム立ち上げ 時に、各 L2SW装置 1一 3の装置 IDを設定する。設定された装置 IDはフレーム識別 子生成部 30に保持されフレーム識別子生成の際に用レ、られる。
[0057] 本実施の形態においては、システム立ち上げ時に OSS8が各 L2SW装置 1一 3の 装置 IDを設定する。そのため、 1つの場所から全ての L2SW装置および物理ポート の装置 IDを設定するので、装置 IDが重複してしまうことがなくなり、信頼性が向上す るとともに制御が優しぐまた、別なソフトウェア等を用意する必要がなぐコストダウン を図ることができる。
[0058] なお、本実施の形態においては、システム立ち上げ時に上位のシステム管理部で ある OSS8が各 L2SW装置 1一 3の装置 IDを設定する力 各 L2SW装置 1一 3に接 続するコンソール (遠隔からの telnetによる制御等も含む)によって、装置 IDが設定さ れてもよい。
[0059] 実施の形態 7
上述の実施の形態 6では、〇SSまたはコンソールにより L2SW装置の装置 IDを設 定する例を示した。本実施の形態においては、複数の L2SW装置が相互にネゴシ一 ケンスを行い、 自動的にユニークな装置 IDを生成する。本実施の形態では、夫々の L2SW装置が電源投入時に自動的に自生成した装置 IDをブロードキャストする。そ して、互いに重複する装置 IDを生成した L2SW装置があった場合にネゴシーケンス を実施して相互の装置 IDの調整をする。
[0060] 図 14は各 L2SW装置の装置 IDが電源投入時に各 L2SW装置間のネゴシーケン スによって設定される様子を示すシーケンスチャートである。図 14に沿って本実施の 形態の動作を説明する。 3台の L2SW装置 1一 3はそれぞれ電源を投入されると (ス テツプ S100 ステップ S102)、上位ネットワークと接続されていることを認識した後、 夫々自装置の装置 IDを生成する(ステップ S103 ステップ S106)。そして、例えば 、第 1の L2SW装置 1、第 2の L2SW装置 2,第 3の L2SW装置 3の順で自装置の装 置 IDを全物理ポートに向けてブロードキャストする(ステップ S107—ステップ S109) 。ここで、 ID重複チェック、つまり互いに重複する装置 IDを生成した全物理ポートが 有るか否かのチェックを行い有った場合には、ネゴシーケンスを行う(ステップ S110— ステップ S 112)。そして、例えば、重複する装置 IDを生成したスィッチ装置があった 場合には、いずれか一方が使われてない装置 IDを使う等の取り決めに従って調整 する。調整が完了すると自装置 IDを保存し L2SW装置としての動作を開始する。
[0061] 以上のように本実施の形態のネットワークシステムにおいては、システムの電源投 入時に、送信側スィッチ装置と受信側スィッチ装置を含む複数の L2SW装置により ネゴシーケンスが行われる。そして、このネゴシーケンスにより各 L2SW装置の装置 I Dが設定される。このように、各 L2SW装置が自立的にユニークな装置 IDを生成する ため、オペレータが付与する必要がなぐオペレータの付加が軽減される。
[0062] 上述の実施の形態では、図 1および図 4に示すように説明の簡易化のために第 1の L2SW装置 1と第 2の L2SW装置 2の 2台が接続されている形態について説明した。 しかし、上述の実施の形態の L2SW装置は、 3台以上のものが接続された場合でも 同様に動作可能である。以下に、この場合の動作について説明する。
[0063] 送信側 L2SW装置の動作は同様であるため、受信側 L2SW装置の動作に関して 説明する。受信側 L2SW装置の L2SW部内部の FDBが Macアドレスを登録してい なレ、、すなわち未学習の場合には、先に受信したフレームデータを端末装置側の全 物理ポートに配信し、後に受信したフレームデータは廃棄する。そして、宛先 Macァ ドレスの端末装置が応答すると FDBにその Macアドレスが学習されるため次のフレ ーム受信からはその物理ポートにのみ受信フレームが出力される。なお、このとき第 1 一第 3の L2ネットワークに含まれる通常の L2SW装置も、上記の応答によって学習 するので、不要なフレームの配信はなくなる。
[0064] そして、この動作は、実施の形態 1に示すような物理的に分離された L2ネットワーク においても、実施の形態 2に示すような物理的に同一のネットワーク上に論理的に分 離された L2ネットワークにおいても同様である。このようにして、 2台に限らず 3台以上 の L2SW装置が接続された場合でも同様に動作可能である。
産業上の利用可能性
[0065] ネットワークのいずれかの部分に障害が発生した場合でも通信断となることがなレ、、 高信頼性のネットワークシステムをレイヤ 2の階層で実現することを要求されるネットヮ ークシステムに適用して有用なものである。
符号の説明
[0066] 1-3 第 1一第 3のレイヤ 2スィッチ装置
4—6 第 1一第 3のレイヤ 2ネットワーク
8 OSS
10 レイヤ 2スィッチ部
11 冗長化処理部
12 ポート
13a— 13h 物理ポート
14a— 14c 物理ポート
15a, 15b 物理ポート
16a— 16c 物理ポート
17a, 17b 物理ポート
18a— 18c 物理ポート
20, 21 端末装置 端末装置
フレーム識別子生成部
フレーム識別子付与部
送信フレームコピー音
a— 33c FDB
フレーム識別子削除部 34
受信フレー -ム処理
受信フレー -ム処理部
受信フレー -ム識別子保存用テ -ブル 受信フレー 'El ϊ ρ|
受信フレー -ム識別子保存用テ -ブル 受信フレー -ム処理部
フレーム識別子削除部
、 44 終端点
a— 45e FDB
振分機能部

Claims

請求の範囲
[1] フレームデータを送信する送信端末装置、前記フレームデータを受信する受信端 末装置との間に設けられたネットワークシステムであって、
複数のネットワークと、前記送信端末装置を収容するとともに複数のネットワークに 接続された送信側スィッチ装置と、前記受信端末装置を収容するとともに前記複数 のネットワークに接続された受信側スィッチ装置とを備え、
前記送信側スィッチ装置は、
システム内で固有の認識番号とシリアル番号とからなるフレーム識別子を生成する フレーム識別子生成部と、
前記シリアル番号を進めながら前記送信端末装置から順に送出される前記フレー ムデータに前記フレーム識別子を順次付与するフレーム識別子付与部と、
前記フレームデータを前記複数のネットワークに対して夫々コピーして送信する送 信フレームコピー部とを有し、
前記受信側スィッチ装置は、
前記フレームデータを受信し、該フレームデータに付帯するフレーム識別子を認識 し該フレームデータが未受信のものであればこれを取り込み、既受信のものであれば これを廃棄する受信フレーム処理部と、
前記受信フレーム処理部が取り込んだ前記フレームデータの前記フレーム識別子 を削除して前記受信端末装置に転送するフレーム識別子削除部とを有する ことを特徴とするネットワークシステム。
[2] 前記複数のネットワークは、同一の前記送信側スィッチ装置と同一の前記受信側ス イッチ装置とを接続する 2以上のネットワークが 1つのグループとなるように組分けされ ており、前記送信側スィッチ装置の前記送信フレームコピー部は、同じグループ内の 全てのネットワークに対して前記フレームデータを夫々コピーして送信する
ことを特徴とする請求項 1に記載のネットワークシステム。
[3] 前記送信側スィッチ装置は、応答信号の有った受信端末装置とネットワークとを関 連付ける記憶手段をさらに有し、前記応答信号の受信の後には、前記受信端末装置 に送信するフレームデータは、前記受信端末装置と関連付けられたネットワークおよ び該ネットワークと同じグループのネットワークに送出する
ことを特徴とする請求項 2に記載のネットワークシステム。
[4] 前記複数のネットワーク力 相互に物理的に接続されてないネットワークである ことを特徴とする請求項 1に記載のネットワークシステム。
[5] 前記複数のネットワーク力 同一のネットワーク媒体中に形成された複数の VLAN である
ことを特徴とする請求項 1に記載のネットワークシステム。
[6] 前記送信側スィッチ装置および前記受信側スィッチ装置は、内部に前記 VLANを 構築するための終端点が生成されている
ことを特徴とする請求項 5に記載のネットワークシステム。
[7] 前記送信側スィッチ装置および前記受信側スィッチ装置は、各物理ポートの持つ F DBと送信フレームコピー部が保持する VLANテーブルとを有し、前記 VLANは前 記 FDBと前記 VLANテーブルとを用いて構築されている
ことを特徴とする請求項 5に記載のネットワークシステム。
[8] 前記システム内で固有の認識番号は、前記送信側スィッチ装置の装置 IDである ことを特徴とする請求項 1に記載のネットワークシステム。
[9] 前記装置 IDは、上位のシステム管理部からの設定により決定される
ことを特徴とする請求項 8に記載のネットワークシステム。
[10] 前記装置 IDは、システムの電源投入時に、前記送信側スィッチ装置と受信側スイツ チ装置を含む複数のスィッチ装置間で行われるネゴシーケンスにより決定される ことを特徴とする請求項 8に記載のネットワークシステム。
[11] 前記システム内で固有の認識番号は、送信元 Macアドレスである
ことを特徴とする請求項 1に記載のネットワークシステム。
[12] 前記システム内で固有の認識番号は、コア用 VLANタグである
ことを特徴とする請求項 1に記載のネットワークシステム。
[13] 前記フレーム識別子の付与領域は、 Macフレームヘッダの VLANIDの後方の領 域である
ことを特徴とする請求項 1に記載のネットワークシステム。
[14] 前記フレーム識別子の付与領域は、 Macフレームヘッダのコア網用 VLANIDの後 方の領域である
ことを特徴とする請求項 1に記載のネットワークシステム。
[15] 前記フレーム識別子の付与領域は、 Macフレーム FCSの後方の領域である
ことを特徴とする請求項 1に記載のネットワークシステム。
[16] フレームデータを送信する送信端末装置、前記フレームデータを受信する受信端 末装置との間に設けられたネットワークシステムに用レ、られる送信側スィッチ装置で あって、
前記送信端末装置を収容するとともに複数のネットヮ一外こ接続され、 システム内で固有の認識番号とシリアル番号とからなるフレーム識別子を生成する フレーム識別子生成部と、
前記シリアル番号を進めながら前記送信端末装置から順に送出されるフレームデ ータに前記フレーム識別子を順次付与するフレーム識別子付与部と、
前記フレームデータを前記複数の前記ネットワークに対して夫々コピーして送信す る送信フレームコピー部とを有する
ことを特徴とする送信側スィッチ装置。
[17] フレームデータを送信する送信端末装置、前記フレームデータを受信する受信端 末装置との間に設けられたネットワークシステムに用いられる受信側スィッチ装置で あってヽ
前記受信端末装置を収容するとともに前記複数のネットワークに接続され、 前記フレームデータを受信し、該フレームデータに付帯するフレーム識別子を認識 し該フレームデータが未受信のものであればこれを取り込み、既受信のものであれば これを廃棄する受信フレーム処理部と、
前記受信フレーム処理部が取り込んだ前記フレームデータの前記フレーム識別子 を削除して前記受信端末装置に転送するフレーム識別子削除部とを有する
ことを特徴とする受信側スィッチ装置。
[18] フレームデータを送信する送信端末装置、前記フレームデータを受信する受信端 末装置との間に設けられたネットワークシステムに用いられる両用スィッチ装置であつ て、
1以上の前記送信端末装置と 1以上の前記受信端末装置とを収容し、前記複数の ネットワークに接続され、
システム内で固有の認識番号とシリアル番号とからなるフレーム識別子を生成する フレーム識別子生成部と、
前記シリアル番号を進めながら前記送信端末装置から順に送出されるフレームデ ータに前記フレーム識別子を順次付与するフレーム識別子付与部と、
前記フレームデータを前記複数の前記ネットワークに対して夫々コピーして送信す る送信フレームコピー部と、
前記フレームデータを受信し、該フレームデータに付帯するフレーム識別子を認識 し該フレームデータが未受信のものであればこれを取り込み、既受信のものであれば これを廃棄する受信フレーム処理部と、
前記受信フレーム処理部が取り込んだ前記フレームデータの前記フレーム識別子 を削除して前記受信端末装置に転送するフレーム識別子削除部とを有する
ことを特徴とする両用スィッチ装置。
フレームデータを送信する送信端末装置と前記フレームデータを受信する受信端 末装置との間に設けたネットワークシステムを用いて前記フレームデータを送信する 方法であって、
前記ネットワークシステムとして、複数のネットワークと、前記送信端末装置を収容す るとともに複数のネットワークに接続された送信側スィッチ装置と、前記受信端末装置 を収容するとともに前記複数のネットワークに接続された受信側スィッチ装置とを設け 前記送信側スィッチ装置により、
システム内で固有の認識番号とシリアル番号とからなるフレーム識別子を生成し、 前記シリアル番号を進めながら前記送信端末装置から順に送出される前記フレー ムデータに前記フレーム識別子を順次付与し、
前記フレームデータを前記複数のネットワークに対して夫々コピーして送信し、 前記受信側スィッチ装置により、 前記フレームデータを受信し、該フレームデータに付帯するフレーム識別子を認識 し該フレームデータが未受信のものであればこれを取り込み、既受信のものであれば これを廃棄し、
前記受信フレーム処理部が取り込んだ前記フレームデータの前記フレーム識別子 を削除して前記受信端末装置に転送する
ことを特徴とするフレームデータの送信方法。
PCT/JP2004/009028 2004-06-25 2004-06-25 ネットワークシステム、送信側スイッチ装置、受信側スイッチ装置、両用スイッチ装置およびフレームデータの送信方法 WO2006001060A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/009028 WO2006001060A1 (ja) 2004-06-25 2004-06-25 ネットワークシステム、送信側スイッチ装置、受信側スイッチ装置、両用スイッチ装置およびフレームデータの送信方法
JP2006527596A JP4633723B2 (ja) 2004-06-25 2004-06-25 ネットワークシステム、送信側スイッチ装置、受信側スイッチ装置および両用スイッチ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009028 WO2006001060A1 (ja) 2004-06-25 2004-06-25 ネットワークシステム、送信側スイッチ装置、受信側スイッチ装置、両用スイッチ装置およびフレームデータの送信方法

Publications (1)

Publication Number Publication Date
WO2006001060A1 true WO2006001060A1 (ja) 2006-01-05

Family

ID=35781612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009028 WO2006001060A1 (ja) 2004-06-25 2004-06-25 ネットワークシステム、送信側スイッチ装置、受信側スイッチ装置、両用スイッチ装置およびフレームデータの送信方法

Country Status (2)

Country Link
JP (1) JP4633723B2 (ja)
WO (1) WO2006001060A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9690677B2 (en) 2015-01-14 2017-06-27 Fujitsu Limited Transmission device, transmission system, and transmission method
JP2018174473A (ja) * 2017-03-31 2018-11-08 三菱電機株式会社 ネットワーク制御装置及びネットワークシステム
US10148583B2 (en) 2015-02-23 2018-12-04 Mitsubishi Electric Corporation Transfer device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306744A (ja) * 1989-05-22 1990-12-20 Nippon Telegr & Teleph Corp <Ntt> 通信ノード
JPH08181697A (ja) * 1994-12-22 1996-07-12 Nippon Telegr & Teleph Corp <Ntt> 無中断伝送装置
JPH09107371A (ja) * 1995-10-12 1997-04-22 Hitachi Ltd 多重化伝送路を有する通信システム
JP2000022752A (ja) * 1998-06-05 2000-01-21 Internatl Business Mach Corp <Ibm> コンピュ―タ、通信方法及びシステム
JP2001326654A (ja) * 2000-05-17 2001-11-22 Nec Corp Ponのプロテクション切替方法および切替装置
JP2002026956A (ja) * 2000-07-11 2002-01-25 Nec Kofu Ltd 自動経路選択方式および方法
JP2004032257A (ja) * 2002-06-25 2004-01-29 Nec Corp スイッチ及びvlanトポロジー決定方法並びにプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714238B2 (ja) * 2001-11-21 2005-11-09 日本電気株式会社 ネットワーク転送システム及び転送方法
JP3784731B2 (ja) * 2002-02-27 2006-06-14 日本電信電話株式会社 Ethernet制御方法、網、装置、およびその制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306744A (ja) * 1989-05-22 1990-12-20 Nippon Telegr & Teleph Corp <Ntt> 通信ノード
JPH08181697A (ja) * 1994-12-22 1996-07-12 Nippon Telegr & Teleph Corp <Ntt> 無中断伝送装置
JPH09107371A (ja) * 1995-10-12 1997-04-22 Hitachi Ltd 多重化伝送路を有する通信システム
JP2000022752A (ja) * 1998-06-05 2000-01-21 Internatl Business Mach Corp <Ibm> コンピュ―タ、通信方法及びシステム
JP2001326654A (ja) * 2000-05-17 2001-11-22 Nec Corp Ponのプロテクション切替方法および切替装置
JP2002026956A (ja) * 2000-07-11 2002-01-25 Nec Kofu Ltd 自動経路選択方式および方法
JP2004032257A (ja) * 2002-06-25 2004-01-29 Nec Corp スイッチ及びvlanトポロジー決定方法並びにプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9690677B2 (en) 2015-01-14 2017-06-27 Fujitsu Limited Transmission device, transmission system, and transmission method
US10148583B2 (en) 2015-02-23 2018-12-04 Mitsubishi Electric Corporation Transfer device
JP2018174473A (ja) * 2017-03-31 2018-11-08 三菱電機株式会社 ネットワーク制御装置及びネットワークシステム

Also Published As

Publication number Publication date
JPWO2006001060A1 (ja) 2008-04-17
JP4633723B2 (ja) 2011-02-16

Similar Documents

Publication Publication Date Title
US9385941B2 (en) Data communication system and method for preventing packet proliferation in a multi-device link aggregation network
EP2412129B1 (en) Redundant host connection in a routed network
US7283465B2 (en) Hierarchical virtual private LAN service protection scheme
US7079544B2 (en) Apparatus and method for interworking between MPLS network and non-MPLS network
US7406037B2 (en) Packet forwarding apparatus with redundant routing module
US20050105538A1 (en) Switching system with distributed switching fabric
JP4790591B2 (ja) リングノード装置
JPH07202908A (ja) Atmブリッジ装置
WO2008119300A1 (fr) Procédé et dispositif de protection pour service d&#39;arborescence ethernet
WO2013185715A1 (zh) 一种实现虚拟网络的方法和虚拟网络
JP2003218901A (ja) フレーム中継システム、フレーム中継装置、中継装置およびネットワーク
EP2098021A1 (en) Method of providing data
CN112671642A (zh) 一种报文转发方法及设备
US20070147231A1 (en) Path protection method and layer-2 switch
CN112822097B (zh) 报文转发的方法、第一网络设备以及第一设备组
WO2013070782A1 (en) Integrated fibre channel support in an ethernet fabric switch
JP4299658B2 (ja) ネットワーク制御システム及び制御方法
WO2006001060A1 (ja) ネットワークシステム、送信側スイッチ装置、受信側スイッチ装置、両用スイッチ装置およびフレームデータの送信方法
CN114520762B (zh) BIERv6报文的发送方法以及第一网络设备
JP2003258829A (ja) Ethernet制御方法、網、装置、およびその制御方法
Cisco Troubleshooting the Catalyst 8540 CSR and Catalyst 8510 CSR
Cisco Configuring the Catalyst 8500 Software
Cisco Configuring the Catalyst 8500 Software
JP2004096460A (ja) イーサネットスイッチ
WO2024093306A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527596

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase