WO2005123904A1 - 霊長類動物胚性幹細胞からの血管内皮細胞の製造方法 - Google Patents

霊長類動物胚性幹細胞からの血管内皮細胞の製造方法 Download PDF

Info

Publication number
WO2005123904A1
WO2005123904A1 PCT/JP2005/010962 JP2005010962W WO2005123904A1 WO 2005123904 A1 WO2005123904 A1 WO 2005123904A1 JP 2005010962 W JP2005010962 W JP 2005010962W WO 2005123904 A1 WO2005123904 A1 WO 2005123904A1
Authority
WO
WIPO (PCT)
Prior art keywords
vascular endothelial
cells
cell
embryonic stem
early
Prior art date
Application number
PCT/JP2005/010962
Other languages
English (en)
French (fr)
Inventor
Kazuwa Nakao
Hiroshi Itoh
Jun Yamashita
Masakatsu Sone
Kenichi Yamahara
Yasushi Kondo
Yutaka Suzuki
Original Assignee
Tanabe Seiyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co., Ltd. filed Critical Tanabe Seiyaku Co., Ltd.
Priority to EP05751180A priority Critical patent/EP1783207A4/en
Priority to JP2006514767A priority patent/JPWO2005123904A1/ja
Priority to US11/630,208 priority patent/US20080025955A1/en
Publication of WO2005123904A1 publication Critical patent/WO2005123904A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0691Vascular smooth muscle cells; 3D culture thereof, e.g. models of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Definitions

  • the present invention relates to a method for differentiating primate embryonic stem cells into vascular endothelial cells and a technique using the same. More specifically, the present invention provides a method for differentiating primate embryonic stem cells into vascular endothelial cells (for example, early-stage vascular endothelial cells, etc.) Method for producing, method for amplifying early-stage vascular endothelial cells, method for treating early-stage vascular endothelial cells obtained by the method, agent for treating vascular injury, method for regenerating blood vessels, use of the early-stage vascular endothelial cells, improvement of local blood flow
  • the present invention relates to a condition in which a therapeutic effect can be expected by doing so, a method for treating Z or a disease, a method for constructing a vascular structure, and the like. Background art
  • Non-Patent Document 1 Non-Patent Document 1
  • VEGF vascular endothelial growth factor
  • bFGF basic fibroblast growth factor
  • HGF liver growth factor
  • Non-Patent Document 1 Pera et al., Journal of Cell Science, 113, 5-10 (2000) Disclosure of Invention
  • the present invention relates to providing means for dividing primate embryonic stem cells into vascular endothelial cells or early-stage vascular endothelial cells or a technique using the same.
  • the present invention relates to performing long-term culture, subculturing, growing in vitro, engrafting with high efficiency, obtaining high suitability for an individual, and obtaining To provide vascular endothelial cells in the early stage of development that at least achieve at least one of generating vascular endothelial cells, improving the local blood flow, and achieving a therapeutic effect and treating Z or disease, etc.
  • vascular endothelial cells Supplying a large amount of the vascular endothelial cells in the early stage of development; providing a material that can be expected to have a therapeutic effect by improving local blood flow, and providing a material for treating Z or a disease; a primate animal Early development from primate embryonic stem cells can achieve at least one of factors such as evaluating factors that exert a function in the process of dividing embryonic stem cells into embryonic endothelial cells. Relates to providing the minute I ⁇ method to the vascular endothelial cells.
  • the present invention relates to performing long-term culture, subculturing, growing in vitro, engrafting with high efficiency, obtaining high suitability to an individual, obtaining Therefore, it has the excellent property of generating vascular endothelial cells, improving the local blood flow, and at least enabling the treatment effect to be expected and the treatment of Z or disease.
  • Providing a method for producing early-stage vascular endothelial cells which can at least achieve any of providing a material and the like.
  • the present invention at least achieves at least one of supplying a large amount of early-stage vascular endothelial cells, obtaining substantially uniform quality early-stage vascular endothelial cells, and the like. , An early stage of development of vascular endothelial cells.
  • a method for efficiently treating vascular damage treating a condition where a therapeutic effect can be expected by improving local blood flow, and treating Z or a disease. It is intended to provide a therapeutic agent for treating vascular injury, which can at least achieve any of them.
  • the present invention provides a method of performing long-term culture, subculturing, growing in vitro, engrafting with high efficiency, obtaining high suitability for an individual, Vascular endothelial cells that at least achieve at least one of generating vascular endothelial cells, improving the local blood flow, and achieving a therapeutic effect and treating Z or disease, etc.
  • the present invention provides a method for treating a damaged portion of a blood vessel, treating a condition in which a therapeutic effect can be expected by improving local blood flow, and treating Z or a disease.
  • the present invention relates to providing a blood vessel regenerating method that at least achieves displacement, such as regenerating a blood vessel in a place where a pipe needs to be regenerated.
  • the present invention provides a method for obtaining high engraftment efficiency, obtaining high suitability for an individual, and having the transplanted initial vascular endothelial cell force in an individual transport the individual with the blood vessel of the individual.
  • An object of the present invention is to provide a transplantation method that at least achieves any of the steps of generating a functional blood vessel.
  • a blood vessel which is capable of treating a condition and a Z or a disease, for example, an ulcer, an ischemic disease, etc., in which a therapeutic effect can be expected by improving local blood flow.
  • the present invention relates to providing a method for treating injury.
  • the present invention relates to a condition for which a therapeutic effect can be expected by improving local blood flow, and a method for producing a medicament capable of treating Z or a disease.
  • the present invention relates to the use of an early-stage vascular endothelial cell obtained by the production method.
  • the present invention provides a method for constructing a vascular structure, obtaining a vascular structure exhibiting high compatibility with an individual, obtaining a vascular structure that can be engrafted with high efficiency, and the like. At least one of the following can be achieved: a state in which a therapeutic effect can be expected by improving local blood flow; and provision of a material for treating Z or a disease. And a method of constructing a vascular structure. [0017] Further objects of the present invention are apparent from the description in this specification.
  • the gist of the present invention is as follows.
  • a method for differentiating primate embryonic stem cells into vascular endothelial cells at an early stage of development comprising differentiating primate embryonic stem cells into a vascular endothelial cell marker-positive cell group
  • step (II) a step of substantially separating vascular endothelial cell marker-positive cells from the cell group A obtained in the step (I);
  • a therapeutic agent for vascular damage comprising as an active ingredient an early-stage vascular endothelial cell obtained by differentiating a primate embryonic stem cell,
  • a method for regenerating a blood vessel comprising supplying an early-stage vascular endothelial cell obtained by the production method according to the above (3) or (4) to a site requiring revascularization,
  • a method for constructing a vascular structure comprising culturing an early-stage vascular endothelial cell obtained by differentiating a primate embryonic stem cell in an environment suitable for angiogenesis.
  • step (II) a step of substantially separating vascular endothelial cell marker-positive cells from the cell group A obtained in the step (I);
  • the invention's effect [0019] According to the method for differentiating primate embryonic stem cells into vascular endothelial cells in the early stage of development according to the present invention, long-term culture, subculture, and growth in the in vivo mouth are possible, and high engraftment efficiency and individual Highly compatible, can generate vascular endothelial cells in individuals, and has the excellent property of being able to treat conditions or Z or diseases that can be expected to have therapeutic effects by improving local blood flow.
  • an excellent effect of being able to supply a large amount of early-stage vascular endothelial cells having Further, according to the differentiation method of the present invention, there is an excellent effect that a state where a therapeutic effect can be expected by improving local blood flow and a material for treating Z or a disease can be provided. . Further, according to the differentiation method of the present invention, an excellent effect that a factor exerting a function in a differentiation process from a primate embryonic stem cell to a vascular endothelial cell at an early stage of development can be evaluated is provided.
  • the method for producing early-stage vascular endothelial cells of the present invention an excellent effect of being able to supply a large amount of early-stage vascular endothelial cells having the above properties can be obtained. Further, according to the production method of the present invention, it is possible to stably provide a large amount of a material that can be expected to have a therapeutic effect by improving local blood flow, and a material for treating Z or a disease. And, it has an excellent effect.
  • the early-stage vascular endothelial cells of the present invention have an excellent effect that they can be cultured and passaged for a long period of time and can be proliferated in vitro. Further, according to the early stage vascular endothelial cells of the present invention, there is an excellent effect that they can be engrafted in a living body with high efficiency. According to the early stage vascular endothelial cells of the present invention, they can be used in individuals with high compatibility, can generate vascular endothelial cells in individuals, and can be expected to have therapeutic effects by improving local blood flow. It has an excellent effect of enabling treatment of Z or a disease.
  • the therapeutic agent for vascular damage of the present invention has an excellent effect that vascular damage can be efficiently treated. Furthermore, according to the therapeutic agent for vascular damage of the present invention, it is possible to improve the local blood flow to treat a condition that can be expected to have a therapeutic effect, Z or a disease, etc.! According to the revascularization method of the present invention, it is possible to treat a damaged site of a blood vessel and improve a local blood flow to treat a condition or a Z or a disease that can be expected to have a therapeutic effect. If a blood vessel can be regenerated at a site requiring regeneration, an excellent effect can be obtained.
  • a functional method having a high engraftment efficiency and a high suitability for an individual having a communication from the transplanted early-stage vascular endothelial cells to the individual's own blood vessels in the individual.
  • An excellent effect is obtained in which a blood vessel can be generated and a local therapeutic effect can be expected by improving local blood flow, and treatment of Z or disease can be achieved.
  • a drug that can be expected to have a therapeutic effect by improving local blood flow, and that is capable of treating Z or a disease is produced. It has an excellent effect that it can be performed.
  • vascular injury of the present invention a condition and a Z or a disease that can be expected to have a therapeutic effect by improving local blood flow, for example, ulcer, ischemic disease, obstructive arterial sclerosis, etc. It has an excellent effect that it can be treated.
  • a vascular structure of the present invention According to the method of constructing a vascular structure of the present invention, it is possible to construct a vascular structure exhibiting high and efficient engraftment and exhibiting high and suitability for an individual, and thereby achieve an excellent effect. Play. ADVANTAGE OF THE INVENTION According to the method of constructing a vascular structure of the present invention, an excellent effect that a therapeutic effect can be expected by improving local blood flow and a material for treating Z or a disease can be provided. Play.
  • FIG. 1 is a diagram showing changes in the appearance of a skin ulcer site in a skin ulcer model mouse.
  • Panel (A) shows the appearance change on day 3 after transplantation of VE cadherin positive cells (early human vascular endothelial cells), and panel (B) shows the macroscopic findings on day 6.
  • the skin ulcer site on the left is the site where VE-cadherin-positive cells (early-stage vascular endothelial cells) were transplanted, and the skin ulcer site on the right was where the VE-cadherin-positive cells were not transplanted and phosphate buffered. This is the site where no saline was injected (untreated).
  • FIG. 2 is a view showing the area of skin ulcer after transplantation of VE-cadherin-positive cells (human early-stage vascular endothelial cells) in a skin ulcer model mouse.
  • Panel (A) shows transplant 3 A comparison of the skin ulcer area on day 6 is shown, and panel (B) shows a comparison of the skin ulcer area on day 6 after transplantation.
  • VPC indicates the skin ulcer area on the side where VE-cadherin-positive cells are transplanted
  • PBS indicates the skin ulcer area on the side where phosphate buffered saline was injected (untreated).
  • p is 0.05.
  • the results shown by the powerful figures are the results of investigations on 11 cases.
  • FIG. 3 shows a tissue section of skin at a cell transplant site in a skin ulcer model mouse transplanted with VE-cadherin-positive cells (early human vascular endothelial cells).
  • red indicates Dil-labeled transplanted cells (VE cadherin-positive cells)
  • green indicates vascular endothelial cells present in the blood vessels of KSN nude mice labeled (stained) with ISOLECTIN B4 (trade name). Vesicles.
  • the yellow area indicates that the transplanted VE cadherin-positive cells (red) are judged to have blood vessels and traffic in KSN nude mice (green).
  • Scale bar is 100 ⁇ m.
  • FIG. 4 is a diagram showing an outline of the transplantation of VE cadherin-positive cells into the femoral artery of a KSN nude mouse.
  • Panel (A) shows the location where the right thigh of the KSN nude mouse was vertically incised to expose the femoral artery and vein, and panels (B) and (C) are shown in panel (A) above. At the point, the process of exposing the femoral artery is shown, and panel (D) shows the process of injecting cells into the femoral artery.
  • FIG. 5 is a view showing the results of measuring the effect of improving blood flow by transplantation of VE-cadherin-positive cells (early human vascular endothelial cells) using a laser Doppler blood flow meter.
  • 1) is p ⁇ 0.05, 2) 05, ⁇ ⁇ 0.01, 3) ⁇ ⁇ 0.001.
  • FIG. 6 is a diagram showing the results of examining the engraftment of transplanted cells in the ischemic lower leg muscle on day 7 after transplantation of VE-cadherin-positive cells (early human endothelial endothelial cells). It is.
  • the red color indicates Dil-labeled transplanted cells (VE cadherin-positive cells)
  • the green color indicates the blood vessels in the blood vessels of KSN nude mice labeled (stained) with ISOLECT IN B4 (trade name). 1 shows skin cells.
  • the yellow area indicates that the transplanted VE cadherin-positive cells (red) are determined to have been taken into the blood vessels (green) of the KSN nude mouse.
  • FIG. 7 is a diagram showing the results of immunohistological analysis of the ischemic leg muscles 42 days after transplantation of VE-cadherin-positive cells (human early-stage vascular endothelial cells).
  • Panel (A) shows the tissue (control group) of KSN nude mice injected with phosphate-buffered saline without transplanting VE-cadherin-positive cells (control group), and panel) shows VE-cadherin-positive cells.
  • the tissue of the transplanted KSN nude mouse is shown.
  • green indicates mouse PECAM1 and red indicates human PECAM1.
  • the scale bar is 100 m.
  • FIG. 8 shows the uptake of VE-cadherin-positive cells into the blood vessels of the ischemic lower leg muscle on day 7 after transplantation of VE-cadherin-positive cells (early human vascular endothelial cells).
  • the present invention is based on the finding that cells obtained by differentiating VE-cadherin-positive cells from primate embryonic stem cells as a vascular endothelial cell at an early stage of development develop well when transplanted into a living body, and are functionally functional. Based on our findings that blood vessels are constructed.
  • One aspect of the present invention is to differentiate primate embryonic stem cells into vascular endothelial cell marker-positive cells, wherein the primate embryonic stem cells are capable of developing primary endothelial endothelial cells. It relates to the differentiation method.
  • Early-stage vascular endothelial cells obtained by the differentiation method of the present invention have excellent properties that they can be cultured and passaged for a long period of time and can be grown in vitro.
  • the early-stage vascular endothelial cells obtained by the differentiation method of the present invention are obtained by sorting from a desired animal species, for example, embryonic stem cells such as humans and monkeys, they can be used in living organisms. It has excellent properties such as high engraftment efficiency and high compatibility with individuals.
  • the early stage vascular endothelial cells obtained by the method of the present invention have an excellent property that vascular endothelial cells can be generated in an individual. Therefore, according to the cells obtained by the differentiation method of the present invention, it is possible to treat a condition, a Z, or a disease in which a therapeutic effect can be expected by improving local blood flow.
  • primate embryonic stem cells that can be expanded indefinitely by self-replication particularly human embryonic stem cells
  • early-stage vascular endothelial cells of substantially uniform quality can be obtained in large quantities. Therefore, according to the differentiation method of the present invention, a vascular structuring material suitable for use in the field of regenerative medicine, a condition in which a therapeutic effect can be expected by improving local blood flow, and a method for treating Z or disease. Material and the like can be efficiently and stably supplied in large quantities.
  • primate embryonic stem cells since primate embryonic stem cells are used, primate animals, for example, humans and monkeys, preferably human organisms, can be efficiently treated. Early-stage vascular endothelial cells that can be engrafted and have high compatibility can be obtained.
  • condition and Z or disease in which a therapeutic effect can be expected by improving local blood flow include, for example, ulcer, obstructive arteriosclerosis, ischemic heart disease, cerebrovascular disease, and the like. Disorders, Barge's disease, skin ulcers and the like.
  • vascular endothelial cell means a concept including early-stage vascular endothelial cells and mature vascular endothelial cells, unless otherwise specified.
  • the term “early developmental endothelial cells” refers to VE-cadherin (Vascular Endothelial-cadherin) positive and CD34-positive and VEGF (Vascular Endothelial Growth Factor) differentiated from primate embryonic stem cells.
  • R2 positive and PECA M Platinum and Endothelial Cell Adhesion Molecule 1 positive cells.
  • the “early-stage vascular endothelial cells” are different from completely mature vascular endothelial cells in adults, and have properties such as constructing a functional blood vessel and improving blood flow when transplanted into a living body.
  • mature vascular endothelial cells refers to cells that exhibit properties equivalent to those of fully mature adult vascular endothelial cells.
  • primaryate refers to humans, monkeys, and the like.
  • examples of the monkey include, but are not particularly limited to, monkeys such as cynomolgus monkeys, macaques, Japanese macaques, and marmosets.
  • the term "primate embryonic stem cell” refers to an undifferentiated cell having pluripotency and self-renewal ability. More specifically, the primate embryonic stem cells include alkaline phosphatase (ALP) activity positive, SSEA (Stage Specific Embrvonic Anion). (tigen) -3 cells, SSEA-4 cells, TRA (Tumor Rejection Antigen) 1-60 cells, TRA1-81 cells.
  • ALP alkaline phosphatase
  • SSEA Serial Exponase
  • tigen Strejection Antigen
  • TRA1-81 cells TRA1-81 cells.
  • the above-mentioned properties are based on immunostaining using a conventional antibody, for example, an anti-SSEA-1 antibody, an anti-SSEA-3 antibody, an anti-SSEA-4 antibody, an anti-TRA1-60 antibody, an anti-TRA1-81 antibody, or the like.
  • Alkaline phosphatase activity can be confirmed by a method such as a method for detecting alkaline phosphatase using a means for measuring alkaline phosphatase activity ⁇ eg, a commercially available ALP assay kit (manufactured by Sigma) or the like ⁇ .
  • the immunostaining can be carried out by a conventional procedure (for example, see Hirashima et al., Blood, 93, 1253-1263 (1999)).
  • undifferentiated primate embryonic stem cell markers include, for example, ALP, SSEA-3, SSEA-4, TRA1-60, TRA1-81 and the like. Can be
  • vascular endothelial marker used in the present invention examples include those usually used in the art.
  • examples of the vascular endothelial marker include VE cadherin, CD34, and PECAM1. Among them, VE cadherin is preferred.
  • Primate embryonic stem cells used in the present invention include, for example, CMK
  • the primate embryonic stem cells can be maintained in an undifferentiated state according to, for example, the literature by Hirofumi Suemori et al., The literature by Benjaminy.
  • the primate embryonic stem cells can be maintained, proliferated, or supplied by culturing them in an embryonic stem cell culture medium using an appropriate feeder cell.
  • the feeder cell used for maintaining and expanding the undifferentiated state of the embryonic stem cell may be any cell that is commonly used for culturing embryonic stem cells.
  • As the feeder cells for example, primary cultured cells of mouse fetal fibroblasts on days 12 to 16 of gestation, STO cells as a mouse fetal fibroblast cell line, etc. are treated with mitomycin C or X-ray. And the like.
  • a feeder used for maintaining and expanding the undifferentiated state of the embryonic stem cell One cell has different power depending on the cell type. For example, when fibroblasts derived from mouse fetus are used as feeder cells, 0.1% by weight aqueous gelatin solution ⁇ derived from skin, eg, gelatin manufactured by SIGMA, etc. The fibroblasts derived from the mouse embryos are treated with mitomycin C or irradiated with X-rays on a 10 cm dish coated with ⁇ , and cultured until they become confluent.
  • Culture conditions for the feeder cell may vary depending on the type of the cell.
  • the medium used for maintaining and growing the undifferentiated state of the embryonic stem cells is not particularly limited.
  • conventional culture media depending on the animal species serving as the source of the embryonic stem cells to be used are used. May be used.
  • the media components vary depending on the type of embryonic stem cells.
  • ⁇ -mercaptoethanol, non-essential amino acids, serum or serum replacement eg, 20% by weight KNOCKOUT- TM Serum Replacement
  • serum or serum replacement eg, 20% by weight KNOCKOUT- TM Serum Replacement
  • j8 - mercaptoethanol and non essential amino acids and serum or serum replacement ⁇ e.g., in Bitorojen (Invitrogen) Co., 20 weight 0/0 KNOCKOUT- TM Serum Replacement ⁇ .
  • Culture conditions for maintaining and expanding the undifferentiated state of the primate embryonic stem cells may vary depending on the type of embryonic stem cells.
  • embryonic stem cells preferably 5% by volume In the gas phase of CO, at 36-38 ° C, more preferably at 37 ° C,
  • the culture conditions can be set by appropriately changing the range within which the cells can survive and proliferate.
  • the primate embryonic stem cells are monkey embryonic stem cells
  • appropriate means for example, a reagent suitable for dissociation between cells ⁇ for example, manufactured by Gibco, trade name: Deisoshation Buffer , Collagenase, dispase, trypsin, etc. It is desirable that the cells be treated and dissociated from each other.
  • appropriate means such as dissociation between cells can be used.
  • a small lump obtained by treatment with a reagent ⁇ e.g., collagenase, dispase, etc.
  • the feeder cell has an ability to induce differentiation into vascular endothelial cells, and from the viewpoint of securing the engraftment of cells, promotes the differentiation of embryonic stem cells into blood vessels and blood cells, Any cell that expresses various physiologically active substances and adhesion factors!
  • the feeder cells include stromal cells such as calvarial fibroblasts. Specific examples include the OP9 cell line.
  • primate embryonic stem cells are co-cultured with a feeder cell under conditions suitable for inducing differentiation, whereby primate embryonic stem cells are It can be differentiated into a vascular endothelial cell marker positive cell group.
  • the co-culture of the primate embryonic stem cells and the feeder cells is performed, for example, by seeding the primate embryonic stem cells on one of the feeders to induce differentiation. It can be performed by culturing under suitable conditions.
  • the amount of primate embryonic stem cells to be seeded is, for example, in the case of sal embryonic stem cells, preferably 2 ⁇ Desirably, 10 4 cells to 5 ⁇ 10 5 cells.
  • the number of cells cannot be counted and it may be difficult to accurately determine the number of cells.However, this is equivalent to the passage of normal embryonic stem cells. It is desirable to seed at a cell density of
  • the culture conditions at the time of inducing induction vary depending on the type of embryonic stem cells.
  • embryonic stem cells preferably in the gas phase of 5% by volume CO. , 36
  • the medium used for the co-culture may be selected as appropriate depending on the type of embryonic stem cells, as long as medium suitable for differentiation of said embryonic stem cells Yogu example, 5 X 10- 5 M 2-mercapto An aliquot culture solution such as a MEM containing ethanol and 10% by weight serum can be used.
  • the culture vessel used in the co-culture may be any culture vessel suitable for cell culture. Examples thereof include a 6cm diameter tissue culture dish and a 10cm diameter tissue culture dish.
  • the concentration of serum in the medium can be appropriately set, but is preferably about 10% by weight.
  • a functionally equivalent substance for example, a serum substitute or the like may be used instead of the serum.
  • the vascular endothelial cell marker-positive cell group A is obtained, for example, by means of an antibody against the vascular endothelial marker, for example, immunostaining, flow cytometry, or the like. It can be confirmed by including a cell marker positive cell as an index.
  • the antibody may be a commercially available antibody, an antibody produced by a conventional technique, or a fragment of an antibody fragment thereof.
  • the vascular endothelial cell marker-positive cells are substantially separated from the cell group A obtained in the step (I) ⁇ step ( ⁇ ) ⁇ .
  • the separation of the vascular endothelial cell marker-positive cells is carried out by a suitable cell sorting means, for example, cell sorting by conventional flow cytometry ⁇ FACS (Fluorescent Cell Activated Cell Sorter) ⁇ .
  • Cell sorting by MACS (Magnetic Activated Cell Sorter) and the like In the FACS, cells of interest may be sorted using a label of a labeled antibody suitable for sorting as an index.
  • the target cells can be sorted by binding the magnetic beads holding antibodies suitable for sorting to the target cells, and collecting the magnetic beads.
  • Examples of the antibody used in the cell sorting include at least one antibody against a vascular endothelial cell marker.
  • a cell group is suspended in an appropriate solution to obtain a cell suspension having an appropriate cell concentration, and the obtained cell suspension is supplied to a flow cytometer. Then, by performing cell sorting, target cells can be sorted.
  • the "suitable solution” used for suspending the cells may be any solution suitable for performing flow cytometry and cell sorting, for example, phosphate buffered saline (PBS), Hank's buffer (HBSS) and the like.
  • PBS phosphate buffered saline
  • HBSS Hank's buffer
  • the cell concentration in the cell suspension is appropriately set according to the cell sorting equipment used in flow cytometry and cell sorting as long as the cell concentration is sufficient to electrically identify a plurality of cells. be able to.
  • the cell concentration in the cell suspension is desirably, for example, preferably 1 ⁇ 10 6 cells / ml to 1 ⁇ 10 7 cells / ml.
  • the conditions of flow cytometry and cell sorting can be appropriately set according to the sorting method (eg, water drop charging method, cell capture method) in the flow cytometer to be used.
  • the sorting method eg, water drop charging method, cell capture method
  • the conditions may be, for example, the number of sort drops, the number of sort cells, and the flow rate suitable for obtaining target cells with high purity.
  • examples of the labeling substance used for the labeled antibody include a fluorescent dye, which can be appropriately selected depending on the type of the laser light and the filter of the flow cytometer used.
  • the fluorescent dye include fluorescein isothiocyanate (FITC), phycoerythrin (PE), arophycocynin (APC), texa red (TR), Cy3, Cy5, PerCO (registered trademark) (BD Bioscience Seeds), Red613 (registered trademark) (manufactured by Gibco), Red670 (registered trademark) (manufactured by Gibco), Alexa647 (manufactured by Molecular Sieves), Alexa488 (manufactured by Molecular Sieves), and the like.
  • each of the antibodies may be labeled with a different labeling substance.
  • the differentiation method of the present invention it is also possible to evaluate a factor that exerts a function in the process of dividing primate embryonic stem cells into vascular endothelial cells at an early stage of development. Therefore, according to the differentiation method of the present invention, the progress of the process of dividing the primate embryonic stem cell force into vascular endothelial cells in the early stage of development based on the dividing method is promoted or inhibited by the substance to be evaluated.
  • the present invention can be applied to a screening method of screening for an inducer or inhibitor of differentiation into vascular endothelial cells at an early stage of development using the harm as an indicator. In addition, such a screening method can be applied to drug evaluation.
  • step (I) may be performed by adding a substance to be evaluated to the medium used in step (I) of the screening method.
  • the promotion or inhibition of the progress of the differentiation process can be determined by using, for example, the number of differentiated cells over a certain period of time, the morphology of the differentiated cells, the properties of the sorted cells (e.g., expression of a marker), etc., as indicators.
  • the inducer is useful for, for example, developing a therapeutic condition for Z or a disease in which a therapeutic effect can be expected by improving the local blood flow.
  • the inhibitor is useful for, for example, developing therapeutic means based on inhibiting angiogenesis in tumor growth, metastasis, and the like.
  • primate embryonic stem cells can be differentiated into vascular endothelial cells in the early stage of development. Can be applied to the production of
  • another aspect of the present invention relates to (I) a step of co-culturing primate embryonic stem cells with feeder cells and dividing them into vascular endothelial cell marker-positive cell group A; II) a step of substantially separating vascular endothelial cell marker-positive cells from the cell group A obtained in the above step (I)
  • primate embryonic stem cells for example, human embryonic stem cells, which can be expanded indefinitely by self-renewal. Used. Therefore, according to the production method of the present invention, substantially uniformity is obtained. A large quantity of the early-stage vascular endothelial cells of a certain quality can be supplied. Further, according to the production method of the present invention, since primate embryonic stem cells, particularly human embryonic stem cells, are used, a therapeutic effect can be expected by improving the local blood flow, and Z and Can provide materials for the treatment of diseases and the like, and can efficiently produce a large amount of vascular building materials for clinical application in the field of regenerative medicine.
  • steps (I) and ( ⁇ ) are the same as in the above-described differentiation method.
  • ⁇ Step ( ⁇ ) ⁇ for amplifying the cells obtained in the above step ( ⁇ ) may be further performed.
  • the step (III) by performing the step (III), the vascular endothelial cells in the early stage of development can be obtained in a larger amount.
  • the cells obtained in the step ( ⁇ ) may be expanded, for example, by culturing the cells obtained in the step ( ⁇ ) in a culture vessel coated with an extracellular matrix.
  • it can be carried out by culturing the cells on a medium containing an appropriate growth factor, serum or serum substitute, etc. under con- ditions suitable for inducing differentiation until confluent.
  • Examples of the extracellular matrix include collagen IV and fibronectin.
  • the coating of the culture vessel with the extracellular matrix or the like can be performed by a conventional method.
  • growth factor examples include VEGF (vascular endothelial growth factor).
  • a medium that can be used in said step ( ⁇ ) if the medium suitable for the amplification of a cell Yogu example, of 5 X 10- 5 M 2- mercaptoethanol and 10 wt% serum and growth factors And a medium containing ⁇ MEM or the like. Specifically, for example, (X MEM or the like containing 2-mercaptoethanol for 5 X 10- 5 M and a 10 wt% serum.
  • the content of the growth factor in the medium can be appropriately set, and from the viewpoint of sufficiently exhibiting the cell growth effect, for example, in the case of VEGF, the content of VEGF in the medium is From the viewpoint of obtaining a sufficient proliferation effect of vascular endothelial cells in the early stage of development, the amount is preferably 10 ngZml or more, preferably 50 ngZml or more, and 100 ngZml or less.
  • the concentration can be appropriately set within a vigorous range.
  • the concentration of serum or serum substitute in the medium can be appropriately set, Preferably, it is 2% by weight or more, 20% by weight or less, preferably 10% by weight or less.
  • the concentration can be appropriately set within a vigorous range.
  • step (II) when the vascular endothelial cell marker-positive cells became confluent,
  • a solution suitable for dissociating cells for example, a 0.25% by weight trypsin solution or the like is added.
  • vascular endothelial cell marker-positive cells are seeded on a plate containing the same medium components as described above so as to be 1 ⁇ 10 4 cells / cm 2 to 1.5 ⁇ 10 4 cells Zcm 2 , Similarly, culture
  • vascular endothelial cell marker-positive cells can be expanded. Such passage can be performed repeatedly as appropriate. Since the primate embryonic stem cells are used in the production method of the present invention, unlike the mouse embryonic stem cells, etc., unexpectedly, the desired vascular endothelial cell marker-positive cells are obtained by the above-described passage. Can be further amplified.
  • Another aspect of the present invention includes:
  • step (II) a step of substantially separating vascular endothelial cell marker-positive cells from the cell group A obtained in the step (I);
  • vascular endothelial cells at an early stage of development can be expanded by the same steps as those of the above-described method of producing and producing.
  • the expansion method of the present invention relates to a primate embryonic stem cell that can be amplified indefinitely by self-replication, for example, a human embryonic stem cell. Since the vesicles are used, a large amount of the embryonic vascular endothelial cells having substantially uniform quality can be supplied.
  • Early-stage vascular endothelial cells obtained by the differentiation method, the production method, and the amplification method of the present invention have substantially uniform quality and can be supplied in large quantities. According to the method, the production method, and the amplification method, it is possible to stably supply a material for revascularization (for example, treatment of a damaged portion of a blood vessel).
  • the early-stage vascular endothelial cells obtained by the present invention can regenerate blood vessels and the like and can be engrafted with high efficiency, and can be used in primates, specifically, humans and monkeys, particularly, If it shows particularly high compatibility with human organisms, it exhibits excellent properties.
  • another aspect of the present invention relates to early-stage vascular endothelial cells obtained by differentiating primate embryonic stem cells into a vascular endothelial cell marker one positive cell group.
  • the early-stage vascular endothelial cells of the present invention are produced from primate embryonic stem cells, they can be engrafted to living organisms with high efficiency and can be used for individuals with high compatibility.
  • the early-stage vascular endothelial cells of the present invention have the ability to differentiate into vascular endothelial cells of primates, and exhibit high engraftment efficiency and high suitability to individuals. Therefore, according to the early-stage vascular endothelial cells of the present invention, vascular endothelial cells can be generated in an individual, and a condition in which a therapeutic effect can be expected by improving local blood flow, Z or a disease is treated. It becomes possible.
  • the engraftment efficiency and suitability can be determined, for example, by injecting cells of a test subject into a skin ulcer site of a nude mouse and detecting the presence of a marker specific to the cells of the test subject at the skin ulcer site. Furthermore, by specifically staining the vascular endothelium via the blood flow of the individual, it can be evaluated by confirming that a functional blood vessel having the blood flow and traffic of the individual is constructed.
  • the therapeutic effect by revascularization can be measured, for example, by injecting test subject cells into the skin ulcer site of a nude mouse, observing the skin ulcer site over time, and injecting the cells to increase the size of the skin ulcer site. It can be evaluated by observing the change in height.
  • the early-stage vascular endothelial cells of the present invention are different from the antigen of the antibody used for sorting. Targeting early vascular endothelial cells based on immunological staining using an antibody against a vascular endothelial cell marker, etc., indicating that cadherin, CD34, PECAM1 and VEGF-R2 are all positive. Can be evaluated.
  • the early-stage vascular endothelial cells of the present invention can be stably stored by, for example, cryopreservation in liquid nitrogen in the presence of 10% by weight of dimethyl sulfoxide and 90% by weight of serum.
  • a therapeutic agent for vascular damage can be provided.
  • Still another aspect of the present invention relates to a blood vessel containing an early stage vascular endothelial cell obtained by differentiating a primate embryonic stem cell into a vascular endothelial cell marker positive cell group as an active ingredient.
  • the present invention relates to a therapeutic agent for injury.
  • the therapeutic agent for vascular damage of the present invention is useful for treating ischemic diseases such as obstructive arteriosclerosis, ischemic heart disease (myocardial infarction, angina pectoris, heart failure, etc.), cerebrovascular disorder, skin ulcer, ischemic enteritis It can also be used for treatment of diseases such as renal sclerosis, regeneration of blood vessels at wound sites, and the like.
  • ischemic diseases such as obstructive arteriosclerosis, ischemic heart disease (myocardial infarction, angina pectoris, heart failure, etc.), cerebrovascular disorder, skin ulcer, ischemic enteritis It can also be used for treatment of diseases such as renal sclerosis, regeneration of blood vessels at wound sites, and the like.
  • examples of the "site requiring blood vessel regeneration” include a damaged blood vessel site. More specifically, the “site requiring regeneration of blood vessels” includes, for example, ischemic sites such as lower limb ischemia, myocardial ischemia, and cerebral ischemia, skin ulcer sites, and blood vessels in wound sites. Examples include cut or broken locations.
  • the therapeutic agent for vascular damage of the present invention is a solution (for example, a pharmaceutically acceptable buffer or the like) suitable for maintaining early-stage vascular endothelial cells obtained by the present invention, or a pharmaceutically acceptable auxiliary.
  • a substance capable of promoting angiogenesis or a sustained-release carrier containing the substance examples include bFGF, VEGF, HGF, and a substance exhibiting a function equivalent thereto.
  • examples of the sustained-release carrier include gelatin particles, carriers exhibiting the same function as the gelatin particles, and the like.
  • the content of vascular endothelial cells in the early stage of development in the therapeutic agent for vascular damage of the present invention depends on the maintenance of the survival and function of the early stage vascular endothelial cells and the transfer of the vascular endothelial cells from the early stage of development to other vascular endothelial cells. Any range may be used as long as it is in a range suitable for maintaining the dangling ability.
  • the therapeutic agent for vascular damage of the present invention requires regeneration of blood vessels according to the disease to be applied, the severity of the disease, the age of the individual to be administered, the physical strength of the individual, the site of the disease, and the like. Department It can be administered directly or indirectly to the location.
  • Specific examples of the method for administering the therapeutic agent for vascular damage of the present invention include local injection, intravascular administration, delivery via a catheter, and the like.
  • a surgical operation or the like may be performed as necessary.
  • the dose of the therapeutic agent for vascular damage of the present invention depends on the disease to be applied, the severity of the disease, the age of the individual to be administered, the physical strength of the individual, the site of the disease, and the like. "Effective amount”, that is, an amount suitable for engraftment at the target site and an amount that can sufficiently exert a blood vessel regeneration effect (for example, a therapeutic effect on blood vessel damage). Just fine.
  • the effect of the therapeutic agent for vascular damage of the present invention can be determined by, for example, observing a site where blood vessel regeneration is required by angiography, immunostaining of vascular tissue of a tissue section, or the like, by the laser Doppler method.
  • vascular regeneration can be performed.
  • another aspect of the present invention relates to a method for regenerating vascular endothelial cells obtained by differentiating primate embryonic stem cells into a vascular endothelial cell marker one positive cell group, which requires vascular regeneration.
  • the present invention relates to a method for regenerating a blood vessel, which is supplied to a site, for example, a site where a blood vessel is damaged.
  • the method of regenerating blood vessels of the present invention can treat a damaged site of a blood vessel and reduce local blood flow. By improving the condition, it is possible to treat a condition, a Z, a disease, or the like where a therapeutic effect can be expected. Further, in the blood vessel regeneration method of the present invention, since the above-mentioned early-stage vascular endothelial cells are used, according to the blood vessel regeneration method of the present invention, a region requiring regeneration of a blood vessel is used. In addition, the blood vessels can be regenerated.
  • the method of regenerating blood vessels of the present invention is carried out by being able to directly or indirectly administer the early-stage vascular endothelial cells to a target site, similarly to the method of administering the therapeutic agent for vascular damage of the present invention.
  • Specific examples of the method of administering the early-stage vascular endothelial cells to a target site include local injection, intravascular administration, and delivery via a catheter.
  • a surgical operation or the like may be performed as necessary.
  • the dose of the early-stage vascular endothelial cells of the present invention can be set in the same manner as in the case of the above-mentioned therapeutic agent for vascular damage, and is an amount suitable for engraftment to a site to be applied. If it is an amount that can fully demonstrate the regenerating effect.
  • the regenerative effect of the revascularization method of the present invention can be evaluated by the same method and index as in the evaluation of the effect of the therapeutic agent for vascular damage. Specifically, the regenerative effect is obtained by observing a target site by angiography, immunostaining of vascular tissue of a tissue section, or measuring blood flow by a laser Doppler method.
  • vascular endothelial cells By the administration of vascular endothelial cells at the early stage of development, compared to before administration, regeneration of blood vessel structure, improvement of blood flow, improvement of function of target site, improvement of local blood pressure, normalization of skin temperature, An increase in the number of capillaries can be evaluated as an indicator that the blood vessels have been regenerated.
  • a substance capable of promoting angiogenesis, a sustained-release carrier containing the substance, or the like may be further administered after administration of the vascular endothelial cells in the early stage of development.
  • the early-stage vascular endothelial cells may be used in coexistence with mural cells or cells that are precursors to the generative lineage thereof.
  • the present invention relates to a transplantation method, which comprises transplanting an early-stage vascular endothelial cell obtained by the production method of the present invention into a living body.
  • the transplantation method of the present invention can be performed in the same manner as the revascularization method of the present invention.
  • the transplantation method of the present invention since the early-stage vascular endothelial cells obtained by the production method of the present invention are used, according to the transplantation method of the present invention, a high engraftment efficiency to a living body and a high transplantation rate to an individual are achieved. Suitability can be obtained.
  • the production method of the present invention Since the obtained early-stage vascular endothelial cells are used, according to the transplantation method of the present invention, blood vessels can be regenerated at the transplantation target site in an individual. Therefore, according to the transplantation method of the present invention, it is possible to treat diseases that can be expected to have a therapeutic effect by regenerating blood vessels, for example, the above-mentioned ischemic diseases and the like, and to recover blood vessels in wounds.
  • step 2) performing a process suitable for transplanting the embryonic vascular endothelial cells obtained by the production method of the present invention to the site specified in the step 1) (transplant target site), and
  • a drug or the like capable of promoting angiogenesis may be appropriately administered to the transplanted individual! / !.
  • the identification of the "transplantation target site” in the step 1) includes, for example, angiography, X-ray irradiation [computed tomography, CT (computed tomography nos and yang), MRI (magnetic resonance imaging), and various diagnostic markers. Expression, vascular echo examination, scintigraphy, ABI measurement, percutaneous enzyme localization measurement, etc., can be used to identify the etiology and identify the disease site.
  • transplant target site examples include the same site as the "site requiring blood vessel regeneration”.
  • the “treatment suitable for transplanting early-stage vascular endothelial cells” in the step 2) includes the transplantation by a surgical operation for facilitating delivery of the early-stage vascular endothelial cells to the transplantation target site. Exposure of the target site, insertion of a catheter to facilitate delivery of the initial vascular endothelial cells to the transplant target site, and generation of a stable initial vascular endothelial cell to the transplant target site Initial vascular endothelial cell treatment and the like. [0129] In the above step 3), transplantation of vascular endothelial cells at an early stage of development can be performed by local injection, intravascular administration, delivery via a catheter, or the like.
  • the amount of the initial vascular endothelial cells used at the time of transplantation in the step 3) can be set in the same manner as in the case of the above-mentioned therapeutic agent for vascular damage, and is an amount suitable for engraftment to the transplantation target site. Any amount can be used as long as it can sufficiently exert a blood vessel regeneration effect and the like.
  • transplantation method of the present invention can be applied to primates, for example, humans and monkeys.
  • the transplantation method of the present invention provides a method for treating ischemic diseases such as obstructive arteriosclerosis, ischemic heart disease (myocardial infarction, angina pectoris, heart failure, etc.), cerebrovascular disorder, skin ulcer, etc. It can be applied to treatment, regeneration of blood vessels at the wound site, and the like.
  • ischemic diseases such as obstructive arteriosclerosis, ischemic heart disease (myocardial infarction, angina pectoris, heart failure, etc.), cerebrovascular disorder, skin ulcer, etc. It can be applied to treatment, regeneration of blood vessels at the wound site, and the like.
  • Still another aspect of the present invention relates to a condition in which a therapeutic effect can be expected by improving local blood flow, and a method for producing a subject obtained by the production method of the present invention in a mammalian subject having Z or a disease.
  • the present invention relates to a method for treating a condition or a Z or disease in which a therapeutic effect can be expected by improving local blood flow in a mammalian subject, which comprises administering a therapeutically effective amount of initial vascular endothelial cells.
  • the treatment method of the present invention is effective for a condition and a Z or disease in which a therapeutic effect can be expected by improving local blood flow, for example, ulcer, ischemic disease and the like.
  • the treatment method of the present invention can be implemented by using the therapeutic agent for vascular damage of the present invention, performing the transplantation method of the present invention, and the like.
  • the early-stage vascular endothelial cells of the present invention can be used as a site in which a therapeutic effect can be expected by improving local blood flow, and a site requiring the regeneration of blood vessels in a mammalian subject having Z or disease.
  • it can be used for the manufacture of a medicament for treating a mammalian subject by regenerating a blood vessel by supplying it to a site of vascular injury or the like.
  • Another aspect of the present invention relates to a condition in which a therapeutic effect can be expected by improving local blood flow, and supply to a site requiring regeneration of a blood vessel of a mammalian subject having Z or disease.
  • the early-stage vascular endothelial cells of the present invention have a higher supply property than progenitor cells of vascular endothelial cells. Excellent and shows higher engraftment.
  • vascular structure containing mature vascular endothelial cells can be generated.
  • Still another aspect of the present invention is characterized in that embryonic vascular endothelial cells obtained by differentiating primate embryonic stem cells are cultured in an environment suitable for angiogenesis, This is a method for constructing a blood vessel structure.
  • step ( ⁇ ) As a method for constructing a vascular structure of the present invention, in addition to steps (I) and ( ⁇ ) in the method for producing an early-stage vascular endothelial cell and, if desired, step ( ⁇ ),
  • the method of constructing a vascular structure of the present invention it is possible to stably provide a state in which a therapeutic effect can be expected by improving local blood flow and a material for treating Z or a disease. Becomes possible. Further, in the method for constructing a vascular structure of the present invention, the early-stage vascular endothelial cells obtained by differentiating primate embryonic stem cells (vascular endothelial cell marker-positive cells) are used. According to the method for constructing a structure, the above-mentioned condition and material for treating Z or a disease, which can engraft with high efficiency, construct a vascular structure, and obtain high suitability to an individual, can be obtained. Can be provided.
  • collagen gel e.g., collagen IA gels, etc.
  • the concentration of VEGF in the medium is the same as described above. Further, the concentration of phorbol 12-myristate 13-acetate in the medium is desirably 10 M to: LOO / zM, more preferably 100 M, from the viewpoint of obtaining an appropriate lumen structure.
  • the “environment suitable for angiogenesis or vascular environment” may be defined as an environment in a living body, in which the embryonic vascular endothelial cells are maintained in or around blood vessels. And the like.
  • a blood vessel structure can be constructed.
  • step (ii) other vascular cells such as mural cells may coexist in addition to vascular endothelial cells at an early stage of development. .
  • CMK-6 cell line ⁇ Hirofumi Suemori et al., Developmental Dynamics, 222, 273—279 (2001) ⁇ , which is a force-quiz monkey embryonic stem cell, was used.
  • the monkey embryonic stem cells maintained on the containing dish were supplemented with a cell differentiation buffer ⁇ GIBCO (manufactured by GIBCO) ⁇ and incubated at 37 ° C for 10 minutes. Thereafter, the dish was tapped, and the embryonic stem cells were detached by pipetting in a single cell state by pipetting and collected.
  • a cell differentiation buffer ⁇ GIBCO (manufactured by GIBCO) ⁇
  • the OP9 cell line was cultured on a 10cm dish coated with a 0.1% by weight aqueous gelatin solution ⁇ derived from ⁇ shi skin, manufactured by SIGMA ⁇ until confluent, and the OP9 feeder layer was cultivated. Obtained.
  • the collected embryonic stem cells 5 x 10 4 cells were seeded on the OP9 cell line. Later, differentiation culture ⁇ composition: 5 X 10- 5 M 2- mercaptoethanol and a MEM culture solution containing a 10 weight 0/0 serum (Gibco (GIBCO) Ltd.) ⁇ The 20ml was ⁇ Ka ⁇ Embryonic stem cells were co-cultured with OP9 cells for 8-10 days at 37 ° C., 5% by volume CO.
  • the culture supernatant was removed from the obtained culture, and the dish was washed with phosphate buffered saline. Then, add 2 ml of Cell Dissociation Buffer to the washed dishes. And incubated at 37 ° C for 10 minutes. As a result, the OP9 cells remained in the structure on the sheet, and the embryonic stem cell-derived cells detached in a single cell state. Then, the solution on the dish obtained after the incubation is passed through a cell strainer (a filter having a diameter of 70 ⁇ m) ⁇ manufactured by BD Biosciences ⁇ , whereby the cells derived from embryonic stem cells are obtained. Only groups were collected.
  • a cell strainer a filter having a diameter of 70 ⁇ m
  • BSA serum albumin
  • an anti-VE cadherin antibody ⁇ manufactured by BD Biosciences ⁇ was added, and incubated at room temperature for 20 minutes. Thereafter, the obtained product was washed twice with an HBSS solution containing 1% by weight of BSA. The washed product was subjected to flow cytometry analysis.
  • flow cytometry analysis a trade name: FACS Vantage ⁇ manufactured by BD Biosciences ⁇ was used.
  • VE-cadherin-positive cells were CD34-positive, PECAM1-positive, and VEGF-R2-positive, indicating that they were vascular endothelial cells.
  • VE-cadherin-positive cells were separated from the embryonic stem cell-derived cell group by cell sorting using the anti-VE cadherin antibody and FACSVantage ⁇ manufactured by BD Biosciences ⁇ .
  • HES-3 cell line established at Monash University, Australia ⁇ Benjamin E. Reubinof et al., Nature Biotechnology, 18, 399—404 (2000) ⁇ was used. .
  • Human embryonic stem cells were treated with 0.1% by weight collagenase (manufactured by Wako Pure Chemical Industries, Ltd.) at 37 ° C for 10 minutes, and the undifferentiated human embryonic stem cells were subjected to tapping and pipetting. Collected as a small lump. Next, the obtained human embryonic stem cells were seeded on one layer of an OP9 feeder of a gelatin-coated dish in the same manner as in the case of the monkey embryonic stem cells of Example 1. Hi The embryonic stem cells were co-cultured with OP9 cells as small clumps.
  • collagenase manufactured by Wako Pure Chemical Industries, Ltd.
  • VE cadherin-positive cells appeared 8 to 10 days after the start of the co-culture.
  • the VE-cadherin-positive cells were CD34-positive, VEGF-R2-positive and
  • PECAM1 was positive. Therefore, it was suggested that the obtained cells were vascular endothelial cells.
  • the VE-cadherin-positive cell group (5 ⁇ 10 4 cells) obtained in (2) of Example 1 was used for 6-Eldish ⁇ BD Biosciences ⁇ coated with collagen IV or fibronectin. They were seeded in each Ueru, trade name: the presence of human Recombinant VEGF ⁇ PeproTech (Peprotech) Co. ⁇ 50NgZml, culture ⁇ composition: 2-mercaptoethanol 5 X 10- 5 M and a 10 wt% serum 20 ml of an ⁇ MEM culture solution (manufactured by GIBCO) containing the same was added, and the cells were cultured at 37 ° C. and 5% by volume CO. In addition, the culture solution was
  • the VE-cadherin-positive cells became confluent, the VE-cadherin-positive cells were detached from the dish with a 0.25% by weight trypsin solution ⁇ manufactured by GIBCO ⁇ .
  • the obtained cells were diluted with the culture solution to a dilution ratio of 1: 2 to 1: 3, and the obtained cells were further coated with collagen IV or fibronectin in the same manner as described above. Seed each well of the dish ⁇ manufactured by BD Biosciences ⁇ and subculture using a new culture medium in the presence of 50 ngZml of trade name: human recombinant VEGF ⁇ manufactured by PEPROTECH ⁇ . Done.
  • VE cadherin-positive cells could not be expanded in the same manner as in Example 2 because they died after the passage process.
  • VE cadherin-positive cells (5 ⁇ 10 5 cells / 50 ⁇ phosphate buffered saline) obtained in Example 2 and subcultured and amplified in the same manner as in Example 2 were trade names: Vybrant CM—Dil cell -labeling solution Labeling was performed using ⁇ Molecular Probes ⁇ according to the Molecular Probes manual attached to the product.
  • VE cadherin-positive cells were injected subcutaneously into one skin ulcer of the KSN nude mouse.
  • the cells were transplanted by subcutaneously injecting only 50 ⁇ l of phosphate buffered saline ⁇ GIBCO ⁇ on the opposite side of the skin ulcer injected with VE-cadherin-positive cells. The healing process of the ulcer was observed.
  • the KSN nude mouse was intraperitoneally injected with 10 1 16% Nembutal (registered trademark, manufactured by Dainippon Pharmaceutical Co., Ltd.) per 1 g of body weight. Dogs were anesthetized.
  • Nembutal registered trademark, manufactured by Dainippon Pharmaceutical Co., Ltd.
  • Pentobarbital (manufactured by Dainippon Pharmaceutical Co., Ltd.) SOmgZkg was intraperitoneally administered to an 8-week-old male KSN nude mouse (Japan SLC, Inc.), and the KSN nude mouse was anesthetized.
  • VE cadherin-positive cells (1 ⁇ 10 6 cells) obtained in Example 2 were added to a trade name: Vybrant CM-Dil cell-labeling solution ⁇ manufactured by Molecular Probes ⁇ . And cell suspension was prepared with 100 ⁇ l of phosphate buffered saline in the same manner as described above.
  • the cell suspension was injected into the right femoral artery of a KSN nude mouse, and immediately after that, the artery was ligated and excised.
  • the obtained mouse was used as a lower limb ischemia model mouse.
  • Pentobarbital 80 mg Zkg was intraperitoneally administered to the lower limb ischemia model mouse on day 7 after the cell group transplantation to anesthetize a KSN nude mouse (lower limb ischemia model mouse).
  • the thoracic cavity of the anesthetized KSN nude mouse (lower limb ischemia model mouse) was dissected.
  • a 23G injection needle (Terumo Corporation) was inserted into the left ventricle to release the right ventricle. Thereafter, subjected to 15 min perfusion with saline, further subjected to perfusion for 15 minutes at 4 weight 0/0 Bruno la phosphate-buffered saline solution of formaldehyde were fixed. Thereafter, the ischemic lower leg muscle was collected to obtain a tissue specimen.
  • anesthetized KSN nude mouse (lower limb ischemia model mouse) was treated in the same manner as described above. After fixation, the ischemic lower leg muscle was collected. The solution components in the fixed tissue were replaced with a phosphate buffer containing 30% by weight of sucrose (PH 7.2). Thereafter, the tissue was embedded in a trade name: OCT compound (manufactured by Sakura Seiki Co., Ltd.), frozen, and a tissue section was prepared using a cryostat (manufactured by Rai Riki Co., Ltd.). As a control group, tissue sections were similarly prepared from KSN nude mice (lower limb ischemia model mice) injected with phosphate buffered saline without transplanting VE-cadherin-positive cells.
  • OCT compound manufactured by Sakura Seiki Co., Ltd.
  • the obtained tissue section was subjected to immunostaining using an anti-mouse PECAM1 antibody and an anti-human PECAM1 antibody.
  • Fig. 7 shows the results.
  • Fig. 7 panel (B) As a result, as shown in Fig. 7 panel (B), after transplantation of VE-cadherin-positive cells, On the day, anti-human PECAM1 antibody-positive cells were detected at the site of cell transplantation of the ischemic leg muscle. Therefore, it can be seen that human vascular endothelial cells derived from the transplanted VE-cadherin-positive cells are present.
  • tissue sections were subjected to immunostaining using an anti-human PECAM1 antibody.
  • Fig. 8 shows the results.
  • the present invention it is possible to apply the present invention to the treatment of a condition or disease in which a therapeutic effect can be expected by improving local blood flow.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Vascular Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 霊長類動物胚性幹細胞から血管内皮細胞への分化方法及びそれを用いる技術を提供すること。霊長類動物胚性幹細胞を、血管内皮細胞マーカー陽性細胞群へ分化させる、霊長類動物胚性幹細胞から発生初期血管内皮細胞への分化方法、該発生初期血管内皮細胞、その製造方法及びその増幅方法、該発生初期血管内皮細胞を有効成分として含有した血管損傷治療剤、該発生初期血管内皮細胞を供給する血管再生方法、該発生初期血管内皮細胞を移植する移植方法、並びに該発生初期血管内皮細胞を、治療有効量投与する治療方法。

Description

明 細 書
霊長類動物胚性幹細胞からの血管内皮細胞の製造方法
技術分野
[0001] 本発明は、霊長類動物胚性幹細胞から、血管内皮細胞への分化方法及びそれを 用いる技術に関する。さらに詳しくは、本発明は、霊長類動物胚性幹細胞から、血管 内皮細胞 (例えば、発生初期血管内皮細胞等)への分化方法、該血管内皮細胞 (例 えば、発生初期血管内皮細胞等)の製造方法、該発生初期血管内皮細胞の増幅方 法、該製造方法により得られる発生初期血管内皮細胞、血管損傷治療剤、血管再生 方法、該発生初期血管内皮細胞の使用、局所の血流を改善することにより治療効果 が期待できる状態及び Z又は疾患の治療方法、血管構造の構築方法等に関する。 背景技術
[0002] 近年、各種臓器の分化'再生に関する研究が進み、臨床医学の現場での再生治 療も現実的な研究テーマとして視野に入ってきている。したがって、再生医療に対す る期待は、日に日に高まってきている。なかでも、生体のあらゆる細胞'臓器に分ィ匕 する能力を有する胚性幹細胞を用いた研究は、発生'分化機構の解明や再生医療 における大きな柱の 1つである。
[0003] これまで、マウス胚性幹細胞にっ 、ての研究は進んで 、る。また、ヒトゃサルなどの 霊長類動物胚性幹細胞が榭立されている。しかしながら、霊長類動物胚性幹細胞は 、例えば、コロニーの形態'細胞表面抗原の発現様式'増殖分裂速度'白血病阻害 因子 (LIF)への依存性等の点で、マウス胚性幹細胞とは大きく異なることがわ力つて きている (非特許文献 1)。
[0004] 一方、血管再生療法においては、例えば、虚血性疾患に対して、血管内皮増殖因 子 (VEGF)、塩基性線維芽細胞成長因子 (bFGF)、肝臓成長因子 (HGF)等の単 独の血管新生因子を用いる血管新生療法に関する臨床試験が行われている。しか しながら、前記のように、血管新生因子を用いる血管新生療法は、例えば、冠動脈疾 患に対して、血管新生因子として、 bFGFを用いる方法の場合、ランダムな二重盲検 対照臨床試験により、長期にわたる症状改善ではなぐ短期での症状改善の傾向が 示され、安定性に欠ける場合があると 、う欠点がある。
[0005] 非特許文献 1 :ペラ(Pera)ら, Journal of Cell Science, 113, 5— 10 (2000) 発明の開示
発明が解決しょうとする課題
[0006] 本発明は、霊長類動物胚性幹細胞から、血管内皮細胞若しくは発生初期血管内 皮細胞への分ィ匕手段又はそれを用いる技術を提供することに関する。
[0007] 本発明は、第 1の側面では、長期培養を行なうこと、継代すること、インビトロで増殖 させること、高い効率で生着させること、個体への高い適合性を得ること、個体におい て、血管内皮細胞を発生させること、局所の血流を改善することにより治療効果が期 待できる状態及び Z又は疾患等を治療すること等のいずれかを少なくとも達成する 発生初期血管内皮細胞を提供すること;該発生初期血管内皮細胞を大量に供給す ること;局所の血流を改善することにより治療効果が期待できる状態及び Z又は疾患 の治療のための材料を提供すること;霊長類動物胚性幹細胞から発生初期血管内 皮細胞への分ィ匕過程において機能を発揮する因子を評価すること等のいずれかを 少なくとも達成することができる、霊長類動物胚性幹細胞から発生初期血管内皮細 胞への分ィ匕方法を提供することに関する。
[0008] 本発明は、第 2の側面では、長期培養を行なうこと、継代すること、インビトロで増殖 させること、高い効率で生着させること、個体への高い適合性を得ること、個体におい て、血管内皮細胞を発生させること、局所の血流を改善することにより治療効果が期 待できる状態及び Z又は疾患等を治療すること等のいずれかを少なくとも可能にす るという優れた性質を有する発生初期血管内皮細胞を提供すること;該発生初期血 管内皮細胞を大量に供給すること;局所の血流を改善することにより治療効果が期待 できる状態及び Z又は疾患等の治療のための材料を提供すること等のいずれかを 少なくとも達成することができる、発生初期血管内皮細胞の製造方法を提供すること に関する。
[0009] また、本発明は、第 3の側面では、発生初期血管内皮細胞を大量に供給すること、 実質的に均一な品質の発生初期血管内皮細胞を得ること等のいずれかを少なくとも 達成する、発生初期血管内皮細胞の増幅方法を提供することに関する。 [0010] さらに、本発明は、第 4の側面では、血管損傷を効率よく治療すること、局所の血流 を改善することにより治療効果が期待できる状態及び Z又は疾患等を治療すること 等のいずれかを少なくとも達成することができる、血管損傷治療剤を提供すること〖こ 関する。
[0011] 本発明は、第 5の側面では、長期培養を行なうこと、継代すること、インビトロで増殖 させること、高い効率で生着させること、個体への高い適合性を得ること、個体におい て、血管内皮細胞を発生させること、局所の血流を改善することにより治療効果が期 待できる状態及び Z又は疾患等を治療すること等のいずれかを少なくとも達成する、 発生初期血管内皮細胞を提供することに関する。
[0012] また、本発明は、第 6の側面では、血管の損傷部位を治療すること、局所の血流を 改善することにより治療効果が期待できる状態及び Z又は疾患等を治療すること、血 管の再生を必要とする箇所にぉ 、て血管を再生すること等の 、ずれかを少なくとも達 成する、血管再生方法を提供することに関する。
[0013] 本発明は、第 7の側面では、高い生着効率を得ること、個体への高い適合性を得る こと、個体において、移植した発生初期血管内皮細胞力 個体自体の血管との交通 をもつ機能的な血管を発生させること等のいずれかを少なくとも達成する、移植方法 を提供することにある。
[0014] 本発明は、第 8の側面では、局所の血流を改善することにより治療効果が期待でき る状態及び Z又は疾患、例えば、潰瘍、虚血性疾患等の治療を可能にする、血管損 傷の治療方法を提供することに関する。
[0015] 本発明は、第 9の側面では、局所の血流を改善することにより治療効果が期待でき る状態及び Z又は疾患等を治療すること等を可能にする医薬の製造のための、前記 製造方法により得られる発生初期血管内皮細胞の使用を提供することに関する。
[0016] 本発明は、第 10の側面では、血管構造を構築すること、個体への高い適合性を呈 する血管構造を得ること、高 、効率で生着しうる血管構造を得ること等の 、ずれかを 少なくとも達成しうる、局所の血流を改善することにより治療効果が期待できる状態及 び Z又は疾患等の治療のための材料を提供すること等のいずれかを少なくとも達成 することができる、血管構造の構築方法を提供することに関する。 [0017] なお、本発明のさらなる課題は、本明細書の記載から明らかである。
課題を解決するための手段
[0018] 本発明の要旨は、
(1) 霊長類動物胚性幹細胞を、血管内皮細胞マーカー陽性細胞群へ分化させるこ とを特徴とする、霊長類動物胚性幹細胞から発生初期血管内皮細胞への分化方法
(2) (I)霊長類動物胚性幹細胞を、フィーダ一細胞と共培養して、血管内皮細胞マ 一力一陽性細胞を含む細胞群 Aへ分化させるステップ、及び
(II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ、
を含む、前記(1)記載の分化方法、
(3) (I)霊長類動物胚性幹細胞を、フィーダ一細胞と共培養して、血管内皮細胞マ 一力一陽性細胞を含む細胞群 Aへ分化させるステップ、及び
(II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ、
を含む、発生初期血管内皮細胞の製造方法、
(4) (III)前記ステップ (Π)で得られた細胞を増幅するステップをさらに含む、前記( 3)記載の製造方法、
(5) (I)霊長類動物胚性幹細胞を、フィーダ一細胞と共培養して、血管内皮細胞マ 一力一陽性細胞を含む細胞群 Aへ分ィ匕させるステップ、
(II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ、及び
(III)前記ステップ (Π)で得られた細胞を増幅するステップ、
を含む、発生初期血管内皮細胞の増幅方法、
(6) 前記(3)又は (4)記載の製造方法により得られる、発生初期血管内皮細胞、
(7) 霊長類動物胚性幹細胞を分化させることにより得られる発生初期血管内皮細 胞を有効成分として含有してなる、血管損傷治療剤、
(8) 霊長類動物胚性幹細胞を分化させることにより得られる発生初期血管内皮細 胞を、血管の再生を必要とする部位に供給することを特徴とする、血管再生方法、
(9) 前記(3)又は (4)記載の製造方法により得られる発生初期血管内皮細胞を、血 管の再生を必要とする部位に供給することを特徴とする、血管再生方法、
(10) 前記(3)又は (4)記載の製造方法により得られる発生初期血管内皮細胞を、 生体内へ移植することを特徴とする、移植方法、
(11) 局所の血流を改善することにより治療効果が期待できる状態又は疾患を有す る哺乳動物被験体に、前記(3)又は (4)記載の製造方法により得られる発生初期血 管内皮細胞を、治療有効量投与することを特徴とする、哺乳動物被験体における局 所の血流を改善することにより治療効果が期待できる状態又は疾患の治療方法、
(12) 局所の血流を改善することにより治療効果が期待できる状態又は疾患を有す る哺乳動物被験体における血管の再生を必要とする部位に供給して、血管再生する ことにより哺乳動物被験体を治療するための医薬の製造のための、霊長類動物胚性 幹細胞を分化させることにより得られる発生初期血管内皮細胞の使用、
(13) 霊長類動物胚性幹細胞を分化させることにより得られる発生初期血管内皮細 胞を、血管形成に適した環境下に培養することを特徴とする、血管構造の構築方法
(14) (I)霊長類動物胚性幹細胞を、フィーダ一細胞と共培養して、血管内皮細胞 マーカー陽性細胞を含む細胞群 Aへ分ィ匕させるステップ、
(II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ、及び
(III ' )前記血管内皮細胞マーカー陽性細胞を、血管形成に適した環境又は血管環 境下に培養するステップ
を含む、前記(13)記載の構築方法、並びに
(15) ステップ (ΠΓ )に先立ち、
(III)前記ステップ (Π)で得られた細胞を増幅するステップ、
をさらに行なう、前記(14)記載の構築方法、
に関する。
発明の効果 [0019] 本発明の霊長類動物胚性幹細胞から発生初期血管内皮細胞への分化方法によ れば、長期培養、継代、インビト口での増殖が可能であり、高い生着効率や個体への 高い適合性を示し、個体において、血管内皮細胞を発生させ得、局所の血流を改善 することにより治療効果が期待できる状態及び Z又は疾患等を治療することを可能 にするという優れた性質を有する発生初期血管内皮細胞を大量に供給することがで きるという優れた効果を奏する。また、本発明の分化方法によれば、局所の血流を改 善することにより治療効果が期待できる状態及び Z又は疾患等の治療のための材料 を提供することができるという優れた効果を奏する。さらに、本発明の分化方法によれ ば、霊長類動物胚性幹細胞から発生初期血管内皮細胞への分化過程において機 能を発揮する因子を評価することができるという優れた効果を奏する。
[0020] また、本発明の発生初期血管内皮細胞の製造方法によれば、前記の性質を有する 発生初期血管内皮細胞を大量に供給することができるという優れた効果を奏する。ま た、本発明の製造方法によれば、局所の血流を改善することにより治療効果が期待 できる状態及び Z又は疾患等の治療のための材料を安定的に、大量に提供すること ができると!、う優れた効果を奏する。
[0021] さらに、本発明の発生初期血管内皮細胞の増幅方法によれば、実質的に均一な品 質の発生初期血管内皮細胞を大量に得ることができるという優れた効果を奏する。
[0022] 本発明の発生初期血管内皮細胞によれば、長期培養及び継代することができ、ィ ンビトロで増殖できるという優れた効果を奏する。また、本発明の発生初期血管内皮 細胞によれば、高い効率で生体に生着させることができるという優れた効果を奏する 。本発明の発生初期血管内皮細胞によれば、高い適合性で個体に用いることができ 、個体において、血管内皮細胞を発生させ得、局所の血流を改善することにより治療 効果が期待できる状態及び Z又は疾患等を治療することを可能にするという優れた 効果を奏する。
[0023] また、本発明の血管損傷治療剤によれば、血管損傷を効率よく治療することができ るという優れた効果を奏する。さらに、本発明の血管損傷治療剤によれば、局所の血 流を改善することにより治療効果が期待できる状態及び Z又は疾患等を治療するこ とができると!ヽぅ優れた効果を奏する。 [0024] 本発明の血管再生方法によれば、血管の損傷部位を治療し、局所の血流を改善 することにより治療効果が期待できる状態及び Z又は疾患等を治療することができ、 血管の再生を必要とする箇所にぉ 、て血管を再生することができると 、う優れた効果 を奏する。また、本発明の移植方法によれば、高い生着効率、かつ個体への高い適 合性で、個体において、移植した発生初期血管内皮細胞から、個体自体の血管との 交通をもつ機能的な血管を発生させることができ、局所の血流を改善することにより 治療効果が期待できる状態及び Z又は疾患等の治療が可能になるという優れた効 果を奏する。
[0025] 本発明の発生初期血管内皮細胞の使用によれば、局所の血流を改善することによ り治療効果が期待できる状態及び Z又は疾患を治療すること等を可能にする医薬を 製造することができるという優れた効果を奏する。
[0026] 本発明の血管損傷の治療方法によれば、局所の血流を改善することにより治療効 果が期待できる状態及び Z又は疾患、例えば、潰瘍、虚血性疾患、閉塞性動脈硬 化等の治療が可能になるという優れた効果を奏する。
[0027] 本発明の血管構造の構築方法によれば、高 、効率での生着性を示し、個体への 高 、適合性を呈する血管構造を構築することができると 、う優れた効果を奏する。本 発明の血管構造の構築方法によれば、局所の血流を改善することにより治療効果が 期待できる状態及び Z又は疾患等の治療のための材料を提供することができるとい う優れた効果を奏する。
図面の簡単な説明
[0028] [図 1]図 1は、皮膚潰瘍モデルマウスにおける皮膚潰瘍部位の外観変化を示す図で ある。パネル (A)は、 VEカドヘリン陽性細胞 (ヒト発生初期血管内皮細胞)の移植後 3日目の外観変化を示し、パネル (B)は、 6日目の肉眼所見を示す。各パネル中、左 側の皮膚潰瘍部位は、 VEカドヘリン陽性細胞 (発生初期血管内皮細胞)を移植した 部位であり、右側の皮膚潰瘍部位は、 VEカドヘリン陽性細胞を移植せず、リン酸緩 衝化生理食塩水を注入した (無処置)部位である。
[0029] [図 2]図 2は、皮膚潰瘍モデルマウスにおける VEカドヘリン陽性細胞 (ヒト発生初期血 管内皮細胞)を移植した後の皮膚潰瘍面積を示す図である。パネル (A)は、移植 3 日後の皮膚潰瘍面積の比較を示し、パネル (B)は、移植 6日後の皮膚潰瘍面積の比 較を示す。図中、「VPC」は、 VEカドヘリン陽性細胞の移植側の皮膚潰瘍面積を示 し、「PBS」は、リン酸緩衝生理食塩水を注入した (無処置)側の皮膚潰瘍面積を示 す。なお、パネル )においては、 pく 0. 05である。また、力かる図により示される結 果は、 11症例について調べた結果である。
[0030] [図 3]図 3は、 VEカドヘリン陽性細胞 (ヒト発生初期血管内皮細胞)を移植された皮膚 潰瘍モデルマウスにおける細胞移植部位の皮膚の組織切片を示す。図中、赤色は、 Dil標識された移植細胞 (VEカドヘリン陽性細胞)を示し、緑色は、 ISOLECTIN B 4 (商品名)で標識 (染色)された KSNヌードマウスの血管内に存在する血管内皮細 胞を示す。図中、黄色は、移植された VEカドヘリン陽性細胞 (赤色)が KSNヌードマ ウスの血管と交通がある(緑色)と判断される箇所である。スケールバーは、 100 μ m である。
[0031] [図 4]図 4は、 KSNヌードマウスの大腿動脈への VEカドヘリン陽性細胞の移植の概 要を示す図である。パネル (A)は、 KSNヌードマウスの右大腿部を縦に切開し、大 腿動静脈を露出させた箇所を示し、パネル (B)及び (C)は、前記パネル (A)に示さ れる箇所において、大腿動脈を露出させる過程を示し、パネル (D)は、大腿動脈に 細胞を注射する過程を示す。
[0032] [図 5]図 5は、 VEカドヘリン陽性細胞 (ヒト発生初期血管内皮細胞)の移植による血流 改善効果をレーザードップラー血流計で計測した結果を示す図である。図 5中、 1)は 、 p< 0. 05、 2) ίま、 ρ< 0. 01、 3) ίま、 ρ< 0. 001である。
[0033] [図 6]図 6は、 VEカドヘリン陽性細胞 (ヒト発生初期血管内皮細胞)の移植後 7日目に おける虚血側下腿筋での移植細胞の生着を調べた結果を示す図である。図中、赤 色は、 Dil標識された移植細胞 (VEカドヘリン陽性細胞)を示し、緑色は、 ISOLECT IN B4 (商品名)で標識 (染色)された KSNヌードマウスの血管内に存在する血管内 皮細胞を示す。図中、黄色は、移植された VEカドヘリン陽性細胞 (赤色)が KSNヌ 一ドマウスの血管(緑色)に取り込まれたものと判断される箇所である。パネル (A)中 、囲み部分の横の辺は、 1mmである。また、パネル(B)は、パネル (A)の囲み部分全 体の拡大図である。 [0034] [図 7]図 7は、 VEカドヘリン陽性細胞 (ヒト発生初期血管内皮細胞)の移植後 42日目 における虚血側下腿筋の免疫組織学的解析の結果を示す図である。パネル (A)は 、 VEカドヘリン陽性細胞を移植せず、リン酸緩衝化生理食塩水を注入した (無処置) KSNヌードマウスの組織 (対照群)を示し、パネル )は、 VEカドヘリン陽性細胞を 移植した KSNヌードマウスの組織を示す。図中、緑色は、マウス PECAM1を示し、 赤色は、ヒト PECAM1を示す。スケールバーは、 100 mである。
[0035] [図 8]図 8は、 VEカドヘリン陽性細胞 (ヒト発生初期血管内皮細胞)の移植後 7日目に おける虚血側下腿筋での VEカドヘリン陽性細胞の血管内への取り込みを調べた結 果を示す図である。図中、青色は、ヒト PECAM1を示し、緑色は、 ISOLECTIN B 4 (商品名)で標識 (染色)された部位を示す。スケールバーは、 100 μ mである。 発明を実施するための最良の形態
[0036] 本発明は、霊長類動物胚性幹細胞から VEカドヘリン陽性細胞を分化させることに より得られた細胞が、発生初期血管内皮細胞として、生体へ移植すると良好に生着し 、機能的な血管が構築されるという本発明者等の知見に基づく。
[0037] 本発明の 1つの側面は、霊長類動物胚性幹細胞を、血管内皮細胞マーカー陽性 細胞群へ分化させることを特徴とする、霊長類動物胚性幹細胞力 発生初期血管内 皮細胞への分化方法に関する。
[0038] 本発明の分化方法により得られる発生初期血管内皮細胞は、長期培養及び継代 が可能であり、インビトロで増殖させることができるという優れた性質を有する。また、 本発明の分化方法により得られる発生初期血管内皮細胞は、所望の動物種、例え ば、ヒト、サル等の胚性幹細胞からの分ィ匕により得られるものであるため、生体への高 い生着効率を示し、個体への高い適合性を示すという優れた性質を有する。さらに、 本発明の分ィ匕方法により得られる発生初期血管内皮細胞は、個体において、血管 内皮細胞を発生させることができるという優れた性質を有する。したがって、本発明の 分化方法により得られた細胞によれば、局所の血流を改善することにより治療効果が 期待できる状態及び Z又は疾患等を治療することが可能になる。
[0039] 本発明の分化方法では、自己複製によって無制限に増幅可能な霊長類動物胚性 幹細胞、特に、ヒト胚性幹細胞が用いられているため、本発明の分化方法によれば、 実質的に均一な品質の発生初期血管内皮細胞を、大量に得ることができる。したが つて、本発明の分化方法によれば、再生医療分野での利用に適した血管構築材、局 所の血流を改善することにより治療効果が期待できる状態及び Z又は疾患等の治療 のための材料等を大量に効率よく安定的に供給することができる。
[0040] さらに、本発明の分化方法によれば、霊長類動物胚性幹細胞が用いられているた め、霊長類動物、例えば、ヒト及びサル、好ましくは、ヒトの生体に対し、高い効率で 生着させることができ、高い適合性を得ることができる発生初期血管内皮細胞を得る ことができる。
[0041] 本明細書において、前記「局所の血流を改善することにより治療効果が期待できる 状態及び Z又は疾患」としては、例えば、潰瘍、閉塞性動脈硬化症、虚血性心疾患 、脳血管障害、バージァ病、皮膚潰瘍等が挙げられる。
[0042] 本明細書において、「血管内皮細胞」とは、特に断りのない限り、発生初期血管内 皮細胞と成熟血管内皮細胞とを包含する概念を意味する。
[0043] 本明細書において、前記「発生初期血管内皮細胞」は、霊長類動物胚性幹細胞か ら分化した VEカドヘリン(Vascular Endothelial - cadherin)陽性かつ CD34陽 性かつ VEGF (Vascular Endothelial Growth Factor)—R2陽性かつ PECA M (Platelet and Endothelial Cell Adhesion Molecule) 1陽性細胞をいう。 また、前記「発生初期血管内皮細胞」は、成人の完全に成熟した血管内皮細胞とは 異なり、生体に移植すると機能的な血管を構築し血流を改善する等の性質を有する
[0044] 本明細書において、前記「成熟血管内皮細胞」は、成人の完全に成熟した血管内 皮細胞と同等の性質を示す細胞を 、う。
[0045] 本明細書にぉ 、て、「霊長類動物」とは、ヒト、サル等を!、う。前記サルとしては、特 に限定されないが、例えば、力二クイザル、ァカゲザル、二ホンザル、マーモセット等 が挙げられる。
[0046] また、本明細書にぉ 、て、「霊長類動物胚性幹細胞」とは、多分化能と自己複製能 とを有する未分化細胞をいう。前記霊長類動物胚性幹細胞とは、より具体的には、ァ ルカリホスファターゼ(ALP)活性陽性、 SSEA (Stage Specific Embrvonic An tigen)— 3陽性、 SSEA— 4陽性、 TRA(Tumor Rejection Antigen) 1— 60陽 性、 TRA1— 81陽性の性質を示す細胞をいう。なお、前記性質は、慣用の抗体、例 えば、抗 SSEA—1抗体、抗 SSEA—3抗体、抗 SSEA— 4抗体、抗 TRA1— 60抗 体、抗 TRA1— 81抗体等を用いた免疫染色、アルカリホスファターゼ活性測定手段 {例えば、市販の ALP検定キット(シグマ社製)等 }を用 、るアルカリホスファターゼの 検出方法等の方法により確認されうる。
[0047] なお、前記免疫染色は、慣用の手順 {例えば、ヒラシマ (Hirashima)ら、 Blood, 9 3, 1253— 1263 (1999)を参照のこと)により行なわれうる。
[0048] また、本明細書にぉ 、て、「未分化霊長類動物胚性幹細胞マーカー」としては、例 えば、 ALP、 SSEA— 3、 SSEA— 4、 TRA1— 60、 TRA1— 81等力挙げられる。
[0049] 本発明に用いられる血管内皮マーカーとしては、通常、当該技術分野で用いられ るものが挙げられる。具体的には、血管内皮マーカーとしては、例えば、 VEカドヘリ ン、 CD34及び PECAM1が挙げられる。なかでも、好ましくは、 VEカドヘリンである
[0050] 本発明に用いられる霊長類動物胚性幹細胞としては、具体的には、例えば、 CMK
6細胞株 {末盛博文ら、 Developmental Dynamics, 222, 273- 279 (2001) } 、 HES— 3細胞株 {ベンジャミン ィー. ロイビノフ(Benjamin E. Reubinof)ら, Na ture Biotechnology, 18, 399— 404 (2000) }等が挙げられる。前記霊長類動物 胚性幹細胞は、例えば、前記末盛博文らの文献、ベンジャミン ィー.口イビノフらの 文献等に従って、未分化状態を維持することができる。
[0051] なお、前記霊長類動物胚性幹細胞は、適切なフィーダ一細胞を用い、胚性幹細胞 用培地で培養することにより維持、増殖又は供給されうる。
[0052] 前記胚性幹細胞の未分化状態の維持及び増殖のために用いられるフィーダ一細 胞としては、胚性幹細胞の培養で慣用の細胞であればよい。前記フィーダ一細胞と しては、例えば、妊娠 12日〜 16日目のマウス胎児の線維芽細胞の初代培養細胞、 マウスの胎児線維芽細胞株である STO細胞等をマイトマイシン Cや X線処理して得ら れた細胞等が挙げられる。
[0053] また、前記胚性幹細胞の未分化状態の維持及び増殖のために用いられるフィーダ 一細胞は、細胞の種類により異なる力 例えば、マウス胎仔由来線維芽細胞をフィー ダー細胞として用いる場合、 0. 1重量% ゼラチン水溶液 {ゥシ皮膚由来、例えば、 シグマ(SIGMA)社製のゼラチン等 }でコートした 10cmディッシュ上で、該マウス胎 仔由来線維芽細胞をマイトマイシン C処理又は X線照射し、コンフルェントになるまで 培養し、フィーダ一層として得られうる。
[0054] 前記フィーダ一細胞の培養条件は、細胞の種類により異なるが、例えば、 5体積%
COの気相で、 36〜38°C、好ましくは、 37°Cで維持すること等が挙げられる。
2
[0055] また、前記胚性幹細胞の未分化状態の維持及び増殖のために用いられる培地とし ては、特に限定されないが、例えば、使用する胚性幹細胞の供給源となる動物種に 応じた慣用の培地成分を用いればよい。培地成分は、胚性幹細胞の種類により異な る力 サル胚性幹細胞に用いる場合、 β—メルカプトエタノールと非必須アミノ酸と血 清又は血清代替物(例えば、 20重量% KNOCKOUT-™ Serum Replaceme nt) {インビトロジェン(Invitrogen)社製 }とを含むダルベッコ改変イーグル培地 ZF1 2培地等が挙げられる。ヒトの胚性幹細胞に用いる場合、前記培地成分としては、例 えば、 j8 -メルカプトエタノールと非必須アミノ酸と血清又は血清代替物 {例えば、イン ビトロジェン(Invitrogen)社製、 20重量0 /0 KNOCKOUT-™ Serum Replace ment}とを含むダルベッコ改変イーグル培地等が挙げられる。
[0056] 前記霊長類動物胚性幹細胞の未分化状態の維持及び増殖のための培養条件とし ては、胚性幹細胞の種類により異なる力 例えば、サル胚性幹細胞の場合、好ましく は、 5体積% COの気相で、 36〜38°C、より好ましくは、 37°C、ヒト胚性幹細胞の場
2
合、好ましくは、 5体積% COの気相で、 36
2 〜38°C、より好ましくは、 37°Cで維持す ること等が挙げられる。なお、前記培養条件は、細胞が生存及び増殖可能な範囲で 適宜変動させて設定することもできる。
[0057] 前記霊長類動物胚性幹細胞は、サル胚性幹細胞の場合、適切な手段、例えば、 細胞同士の解離に適した試薬 {例えば、ギブコ(GIBCO)社製、商品名:デイソシェ ーシヨンバッファー、コラゲナーゼ、デイスパーゼ、トリプシン等 こより処理され、細胞 同士を解離された細胞であることが望ましい。また、ヒト胚性幹細胞の場合、単細胞に 分離すると生育率が著しく低下する場合は、適切な手段、例えば、細胞同士の解離 に適した試薬 {例えば、コラゲナーゼ、デイスパーゼ等}により処理され、得られた小 塊を代用してもよい。
[0058] 前記フィーダ一細胞は、血管内皮細胞への分化誘導能を有し、細胞の生着を確保 する観点から、胚性幹細胞力 血管 ·血球系の細胞への分ィ匕を促進し、種々の生理 活性物質や接着因子を発現する細胞であればよ!ヽ。前記フィーダ一細胞としては、 頭蓋冠線維芽細胞等のストローマ細胞が挙げられる。具体的には、 OP9細胞株等が 挙げられる。
[0059] 本発明の分ィ匕方法においては、例えば、分化誘導に適した条件下に、霊長類動物 胚性幹細胞を、フィーダ一細胞と共培養することにより、霊長類動物胚性幹細胞を、 血管内皮細胞マーカー陽性細胞群へ分化させることができる。
[0060] 本発明の分ィ匕方法の 1つの実施態様としては、
(I)霊長類動物胚性幹細胞を、フィーダ一細胞と共培養して、血管内皮細胞マーカ 一陽性細胞群 Aへ分化させるステップ、及び
(II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ、
を含む方法が挙げられる。
[0061] 前記ステップ (I)にお 、て、霊長類動物胚性幹細胞と、フィーダ一細胞との共培養 は、例えば、前記フィーダ一層上に霊長類動物胚性幹細胞を播種し、分化誘導に適 した条件下に培養することにより行われうる。
[0062] 前記ステップ (I)にお 、て、播種される霊長類動物胚性幹細胞の量は、例えば、サ ル胚性幹細胞の場合、 10cm径細胞組織培養ディッシュに対し、好ましくは、 2 X 104 細胞〜 5 X 105細胞であることが望ましい。ヒト胚性幹細胞の場合、細胞を小塊として 播種する場合、細胞数をカウントすることができず、正確に把握することが困難である 場合があるが、通常の胚性幹細胞の継代と同等の細胞密度で播種することが望まし い。
[0063] 分ィ匕誘導の際の培養条件としては、胚性幹細胞の種類により異なるが、例えば、サ ル胚性幹細胞又はヒト胚性幹細胞の場合、好ましくは、 5体積% COの気相で、 36
2
〜38°C、より好ましくは、 37°Cで、好ましくは、 8〜10日間、より好ましくは、 10日間 維持すること等が挙げられる。
[0064] 共培養に用いられる培地としては、胚性幹細胞の種類により適宜選択され得、該胚 性幹細胞の分化に適した培地であればよぐ例えば、 5 X 10— 5Mの 2—メルカプトエタ ノールと 10重量% 血清とを含む a MEM等の分ィヒ培養液が挙げられる。
[0065] 共培養の際に用いられる培養容器としては、細胞培養に適したものであればよぐ 例えば、 6cm径組織培養ディッシュ、 10cm径組織培養ディッシュ等が挙げられる。
[0066] ステップ (I)において、前記培地中における血清の濃度は、適宜設定することがで きるが、 10重量%前後であることが望ましい。なお、前記血清の代わりに、機能的に 同等の物質、例えば、血清代替物等を用いてもよい。
[0067] 前記ステップ (I)にお 、て、血管内皮細胞マーカー陽性細胞群 Aは、例えば、前記 血管内皮マーカーに対する抗体を用いた手段、例えば、免疫染色、フローサイトメト リー等により、血管内皮細胞マーカー陽性細胞を含むことを指標として確認されうる。
[0068] 前記抗体は、市販の抗体、慣用の手法により作製された抗体及びそれらの抗体断 片の 、ずれであってもよ!/、。
[0069] っ 、で、前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細 胞を実質的に分離する {ステップ (Π) }。
[0070] 前記ステップ (Π)にお 、て、前記血管内皮細胞マーカー陽性細胞の分離は、適切 なセルソーティング手段、例えば、慣用のフローサイトメトリー {FACS (Fluorescenc e Activated Cell Sorter) }によるセルソーティング; MACS (Magnetic Activ ated Cell Sorter)によるセルソーティング等により行なわれる。前記 FACSでは、 ソーティングに適した標識抗体の標識を指標として用いて、 目的とする細胞をソーテ イングすればよい。また、前記 MACSでは、ソーティングに適した抗体を保持した磁 気ビーズと目的とする細胞とを結合させ、磁気ビーズを回収することにより、 目的とす る細胞をソーティングすればょ 、。
[0071] 前記セルソーティングの際に用いられる抗体としては、血管内皮細胞マーカーに対 する少なくとも 1種の抗体が挙げられる。
[0072] 例えば、フローサイトメトリーを用いる場合、細胞群を、適切な溶液に懸濁して、適 切な細胞濃度の細胞懸濁液を得、得られた細胞懸濁液をフローサイトメーターに供 して、セルソーティングすることにより、目的とする細胞を分取することができる。
[0073] 前記細胞の懸濁に用いられる「適切な溶液」としては、フローサイトメトリー及びセル ソーティングを行なうに適した溶液であればよぐ例えば、リン酸緩衝化生理的食塩 水(PBS)、ハンクス緩衝液 (HBSS)等が挙げられる。
[0074] また、前記細胞懸濁液における細胞濃度は、フローサイトメトリー及びセルソーティ ングに際し、複数の細胞を電気的に十分に識別できる濃度であればよぐ用いるセル ソーティング機器に応じて適宜設定することができる。前記細胞懸濁液における細胞 濃度は、例えば、好ましくは、 1 X 106細胞/ ml〜l X 107細胞/ mlであることが望ま しい。
[0075] フローサイトメトリー及びセルソーティングの条件は、用いられるフローサイトメーター におけるソーティングの方式 (例えば、水滴荷電方式、セルキヤプチヤー方式)に応じ て、適宜設定されうる。
[0076] 前記条件としては、例えば、目的とする細胞を高純度で得るに適したソート滴数、ソ ート細胞数及び流速であればょ 、。
[0077] なお、 FACSにより分離を行なう場合、標識抗体に用いられる標識物質としては、 蛍光色素が挙げられ、用いられるフローサイトメーターのレーザー光及びフィルター の種類により適宜選択されうる。前記蛍光色素としては、例えば、フルォレセイン ィ ソチオシァネート (FITC)、フィコエリスリン(PE)、ァロフィコシァニン (APC)、テキサ スレッド (TR)、 Cy3、 Cy5、 PerCO (登録商標)(BDバイオサイエンシーズ社製)、 R ed613 (登録商標)(ギブコ社製)、 Red670 (登録商標)(ギブコ社製)、 Alexa647 ( モレキュラーシーブス社製)、 Alexa488 (モレキュラーシーブス社製)等が挙げられ る。
[0078] なお、セルソーティングの際、 2種以上の抗体を用いる場合には、前記抗体のそれ ぞれは、互いに異なる標識物質で標識すればょ 、。
[0079] 本発明の分化方法によれば、霊長類動物胚性幹細胞から発生初期血管内皮細胞 への分ィ匕過程において機能を発揮する因子を評価することも可能になる。したがって 、本発明の分化方法は、当該分ィ匕方法に基づく霊長類動物胚性幹細胞力 発生初 期血管内皮細胞への分ィ匕過程の進行が、評価対象物質により促進されること又は阻 害されることを指標として、発生初期血管内皮細胞への分化の誘導剤又は阻害剤を スクリーニングする、スクリーニング方法に応用されうる。なお、かかるスクリーニング方 法は、薬物の評価にも適用されうる。
[0080] 前記評価対象物質としては、低分子化合物、ポリペプチド、糖、その他の高分子化 合物等が挙げられる。前記誘導剤又は阻害剤をスクリーニングする場合、評価対象 物質の物質を、前記分ィ匕方法のステップ (I)の際に用いられる培地に添加し、ステツ プ (I)を行なえばよい。分化過程の進行の促進又は阻害は、例えば、一定の時間あ たりの分化した細胞数、分化した細胞の形態、分ィ匕した細胞の性質 (例えば、マーカ 一の発現)等を指標として用いて評価される。前記誘導剤は、例えば、前記局所の血 流を改善することにより治療効果が期待できる状態及び Z又は疾患等の治療手段の 開発に有用である。また、前記阻害剤は、例えば、腫瘍の増殖、転移等における血 管新生を阻害することに基づく治療手段の開発に有用である。
[0081] さらに、本発明の分化方法によれば、霊長類動物胚性幹細胞から発生初期血管内 皮細胞に分化させることができるため、本発明の分ィ匕方法は、発生初期血管内皮細 胞の製造に応用されうる。
[0082] したがって、本発明の他の側面は、(I)霊長類動物胚性幹細胞を、フィーダ一細胞 と共培養して、血管内皮細胞マーカー陽性細胞群 Aへ分ィ匕させるステップ、及び (II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ
を含む、発生初期血管内皮細胞の製造方法に関する。
[0083] 本発明の製造方法では、本発明の分ィ匕方法に基づくステップが行なわれているた め、本発明の製造方法によれば、長期培養及び継代が可能であり、インビトロで増殖 させることができ、霊長類動物、例えば、ヒト及びサル、好ましくは、ヒトの生体に対し、 高い効率で生着させることができ、高い適合性を得ることができる発生初期血管内皮 細胞を製造することができる。
[0084] 本発明の製造方法では、本発明の分ィ匕方法に基づくステップが行なわれているた め、自己複製によって無制限に増幅可能な霊長類動物胚性幹細胞、例えば、ヒト胚 性幹細胞が用いられている。したがって、本発明の製造方法によれば、実質的に均 一な品質の前記発生初期血管内皮細胞を大量に供給することができる。また、本発 明の製造方法によれば、霊長類動物胚性幹細胞、特に、ヒト胚性幹細胞が用いられ ているため、局所の血流を改善することにより治療効果が期待できる状態及び Z又 は疾患等の治療のための材料を提供することができ、再生医療分野での臨床応用 に結びつく血管構築材を大量に効率よく製造することができる。
[0085] 本発明の製造方法において、ステップ (I)及び (Π)は、前記分化方法の場合と同様 である。
[0086] 本発明の製造方法にお!、ては、前記ステップ (Π)で得られた細胞を増幅する {ステ ップ (ΠΙ) }をさらに行なってもよい。本発明の製造方法によれば、かかるステップ (III) を行なうことにより、前記発生初期血管内皮細胞を、より大量に得ることができる。
[0087] 前記ステップ (ΠΙ)にお 、て、前記ステップ (Π)で得られた細胞の増幅は、例えば、 前記ステップ (Π)で得られた細胞を、細胞外マトリクスでコートした培養容器中にぉ ヽ て、適切な成長因子、血清又は血清代替物等を含有した培地上、分化誘導に適した 条件下に、コンフルェントになるまで培養することにより行なわれうる。
[0088] 前記細胞外マトリクスとしては、例えば、コラーゲン IV、フイブロネクチン等が挙げら れる。前記細胞外マトリクス等による培養容器のコーティングは、慣用の方法により行 なわれうる。
[0089] 前記成長因子としては、 VEGF (血管内皮成長因子)等が挙げられる。
[0090] 前記ステップ(ΠΙ)に用いられうる培地としては、細胞の増幅に適した培地であれば よぐ例えば、 5 X 10— 5Mの 2—メルカプトエタノールと 10重量% 血清と成長因子と を含む α MEM等の培地が挙げられる。具体的には、例えば、 5 X 10— 5Mの 2—メル カプトエタノールと 10重量% 血清とを含む (X MEM等が挙げられる。
[0091] なお、前記培地中における前記成長因子の含有量は、適宜設定され得、細胞の増 殖効果を十分に発揮させる観点から、例えば、 VEGFの場合、前記培地中における VEGFの含有量は、発生初期血管内皮細胞の増殖効果を十分に得る観点から、 10 ngZml以上、好ましくは、 50ngZml以上であり、 lOOngZml以下であることが望ま しい。力かる範囲内において、適宜、濃度を設定することができる。
[0092] 前記培地中における血清若しくは血清代替物の濃度は、適宜設定することができ、 好ましくは、 2重量%以上であり、 20重量%以下、好ましくは、 10重量%以下である ことが望ましい。力かる範囲内において、適宜、濃度を設定することができる。
[0093] 前記ステップ (III)における培養条件としては、 5体積% COの気相で、 36〜38
2
°C、より好ましくは、 37°C前後(例えば、 37°C)で、 0〜30日間培養すること等が挙げ られる。
[0094] なお、前記ステップ (ΠΙ)にお 、て、血管内皮細胞マーカー陽性細胞がコンフルェ ントになった段階で、
該血管内皮細胞マーカー陽性細胞が生育している培養容器に、細胞を解離す るに適した溶液、例えば、 0. 25重量% トリプシン溶液等を添加し、
該培養容器から、該血管内皮細胞マーカー陽性細胞をはがし、
- 得られた血管内皮細胞マーカー陽性細胞を、 1 X 104細胞 /cm2〜l . 5 X 104細 胞 Zcm2となるように、前記と同様の培地成分を含有したプレートに播種し、同様に、 培養すること
により継代し、該血管内皮細胞マーカー陽性細胞を増幅させることができる。かかる 継代は、適宜繰り返して行なわれうる。本発明の製造方法においては、霊長類胚性 幹細胞が用いられているため、マウス胚性幹細胞等とは異なり、予想外にも、上記の ような継代により、目的の血管内皮細胞マーカー陽性細胞をさらに増幅することが可 會 になる。
[0095] また、本発明の別の側面は、
(I)霊長類動物胚性幹細胞を、フィーダ一細胞と共培養して、血管内皮細胞マーカ 一陽性細胞群 Aへ分化させるステップ、
(II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ、及び
(III)前記ステップ (II)で得られた細胞を増幅するステップ
を含む、発生初期血管内皮細胞の増幅方法に関する。
[0096] 本発明の増幅方法によれば、前記分ィ匕方法及び製造方法と同様のステップにより 、発生初期血管内皮細胞を増幅させることができる。また、本発明の増幅方法は、自 己複製によって無制限に増幅可能な霊長類動物胚性幹細胞、例えば、ヒト胚性幹細 胞が用いられているため、実質的に均一な品質の前記発生初期血管内皮細胞を大 量に供給することができる。
[0097] 本発明の分化方法、製造方法及び増幅方法により得られた発生初期血管内皮細 胞は、実質的に均一な品質を有し、また、大量に供給されうるため、本発明の分化方 法、製造方法及び増幅方法によれば、血管再生 (例えば、血管の損傷部位の治療 等)等の材料を安定して供給することができる。本発明により得られる発生初期血管 内皮細胞は、血管の再生等を行なうことができ、また、高い効率で生着させることがで き、霊長類動物、具体的には、ヒト及びサル、特に、ヒトの生体に対し、特に高い適合 性を示すと!ゝぅ優れた性質を発現する。
[0098] したがって、本発明の別の側面は、霊長類動物胚性幹細胞を血管内皮細胞マーカ 一陽性細胞群へ分化させることにより得られる発生初期血管内皮細胞に関する。
[0099] 本発明の発生初期血管内皮細胞は、霊長類動物胚性幹細胞から製造されている ため、高い効率で生体に生着させることができ、高い適合性で個体に用いることがで きる。
[0100] 本発明の発生初期血管内皮細胞は、霊長類動物の血管内皮細胞への分化能を 有し、かつ高い生着効率及び個体への高い適合性を示す。したがって、本発明の発 生初期血管内皮細胞によれば、個体において、血管内皮細胞を発生させ得、局所 の血流を改善することにより治療効果が期待できる状態及び Z又は疾患等を治療す ることを可能になる。
[0101] 前記生着効率及び適合性は、例えば、被験対象の細胞を、ヌードマウスの皮膚潰 瘍部位に注射し、皮膚潰瘍部位における前記被験対象の細胞に特異的なマーカー の存在を介して、さらに、個体の血流を介して、血管内皮を特異的に染色することに より、個体の血流と交通を有する機能的な血管が構築されていることを確認すること により評価されうる。
[0102] 血管再生による治療効果は、例えば、被験対象の細胞を、ヌードマウスの皮膚潰瘍 部位に注射し、皮膚潰瘍部位を経時的に観察し、該細胞の注射により、皮膚潰瘍部 位の大きさの変化を観察することにより評価されうる。
[0103] 本発明の発生初期血管内皮細胞は、ソーティングに用いた抗体の抗原とは異なる 血管内皮細胞マーカーに対する抗体を用いた免疫染色等により、陽性を示すこと、 すなわち、 VEカドヘリン、 CD34、 PECAM1及び VEGF— R2のいずれもが陽性で あること等を指標として目的の発生初期血管内皮細胞であることが評価されうる。
[0104] 本発明の発生初期血管内皮細胞は、例えば、 10重量% ジメチルスルホキシドと 9 0重量% 血清との存在下、液体窒素中での凍結保存により安定に保存されうる。
[0105] また、本発明の発生初期血管内皮細胞によれば、血管損傷治療剤が提供されうる
[0106] したがって、本発明のさらに別の側面は、霊長類動物胚性幹細胞を血管内皮細胞 マーカー陽性細胞群へ分化させることにより得られる発生初期血管内皮細胞を有効 成分として含有してなる、血管損傷治療剤に関する。
[0107] 本発明の血管損傷治療剤は、虚血性疾患、例えば、閉塞性動脈硬化症、虚血性 心疾患 (心筋梗塞、狭心症、心不全等)、脳血管障害、皮膚潰瘍、虚血性腸炎、腎 硬化症等の疾患の治療、創傷部位における血管の再生等に用いることもできる。
[0108] 本明細書において、前記「血管の再生を必要とする部位」としては、例えば、血管 損傷部位等が挙げられる。前記「血管の再生を必要とする部位」としては、より具体的 には、例えば、下肢虚血部、心筋虚血部、脳虚血部等の虚血部位、皮膚潰瘍部位、 創傷部位における血管切断又は破壊箇所等が挙げられる。
[0109] 本発明の血管損傷治療剤は、本発明により得られる発生初期血管内皮細胞を維 持するに適した溶液 (例えば、薬学上許容され得る緩衝液等)、薬学上許容されうる 助剤、血管形成を促進しうる物質若しくは該物質を含有した徐放性担体等を適宜含 有してもよい。前記血管形成を促進しうる物質としては、 bFGF、 VEGF, HGF、これ らと同等の機能を発揮する物質等が挙げられる。また、前記徐放性担体としては、ゼ ラチン粒子、該ゼラチン粒子と同等の機能を発揮する担体等が挙げられる。
[0110] 本発明の血管損傷治療剤中における発生初期血管内皮細胞の含有量は、該発生 初期血管内皮細胞の生存及び機能の維持、該発生初期血管内皮細胞から他の血 管内皮細胞への分ィ匕能の維持等に適した範囲であればよい。
[0111] 本発明の血管損傷治療剤は、適用対象となる疾患、該疾患の重篤度、投与対象と なる個体の年齢、該個体の体力、疾患部位等に応じて、血管の再生を必要とする部 位等に直接又は間接的に投与されうる。本発明の血管損傷治療剤の投与法としては 、具体的には、例えば、局所注射、血管内投与、カテーテルを介した送達等が挙げ られる。また、本発明の血管損傷治療剤の投与に際し、必要により、外科的手術等を 行なってもよい。
[0112] 本発明の血管損傷治療剤の投与量は、適用対象となる疾患、該疾患の重篤度、投 与対象となる個体の年齢、該個体の体力、疾患部位等に応じた「治療上有効量」、す なわち、適用対象となる部位への生着を行なうに適した量であり、血管の再生効果( 例えば、血管損傷の治療効果等)を十分に発揮しうる量であればよい。
[0113] 本発明の血管損傷治療剤の効果の判定は、例えば、血管造影、組織切片の血管 組織の免疫染色等により、血管の再生を必要とする部位を観察すること、レーザード ップラー法による血流量の測定、心筋梗塞 '脳梗塞巣の定量、脳血流シンチグラフィ 一、エコーによる心筋運動の観察等により、本発明の血管損傷治療剤の投与により、 投与前に比べ、血管構造の再生、血流の改善、虚血部位の機能改善、局所血圧の 改善、皮膚温度の正常化、血管の再生を必要とする部位 (例えば、血管損傷部位等 )における毛細血管の増加等を血管が再生されたことの指標として用いて行なわれう る。
[0114] 本発明の発生初期血管内皮細胞によれば、血管再生を行なうことができる。
[0115] したがって、本発明の他の側面は、霊長類動物胚性幹細胞を血管内皮細胞マーカ 一陽性細胞群へ分化させることにより得られる発生初期血管内皮細胞を、血管の再 生を必要とする部位、例えば、血管損傷部位等に供給することを特徴とする、血管再 生方法に関する。
[0116] 本発明の血管再生方法においては、 1つの実施態様では、本発明の製造方法によ り得られる発生初期血管内皮細胞が用いられる。
[0117] 本発明の血管再生方法では、前記発生初期血管内皮細胞が用いられているため 、本発明の血管再生方法によれば、血管の損傷部位を治療することができ、局所の 血流を改善することにより治療効果が期待できる状態及び Z又は疾患等を治療する ことができる。また、本発明の血管再生方法では、前記発生初期血管内皮細胞が用 いられているため、本発明の血管再生方法によれば、血管の再生を必要とする部位 にお 、て血管を再生することができる。
[0118] 本発明の血管再生方法は、本発明の血管損傷治療剤の投与法と同様に、前記発 生初期血管内皮細胞を、対象となる部位に直接又は間接的に投与されうることにより 行なわれうる。対象となる部位への前記発生初期血管内皮細胞の投与法としては、 具体的には、例えば、局所注射、血管内投与、カテーテルを介した送達等が挙げら れる。なお、対象となる部位への前記発生初期血管内皮細胞の投与に際して、必要 に応じ、外科的手術等を行なってもよい。
[0119] 本発明の発生初期血管内皮細胞の投与量は、前記血管損傷治療剤の場合と同様 に設定され得、適用対象となる部位への生着を行なうに適した量であり、血管の再生 効果を十分に発揮しうる量であればょ 、。
[0120] また、本発明の血管再生方法による再生効果は、前記血管損傷治療剤の効果の 評価と同様の手法及び指標により評価されうる。前記再生効果は、具体的には、例え ば、血管造影、組織切片の血管組織の免疫染色等により、対象となる部位を観察す ること、レーザードップラー法により、血流量を測定すること等により、前記発生初期 血管内皮細胞の投与により、投与前に比べ、血管構造の再生、血流の改善、対象と なる部位の機能改善、局所血圧の改善、皮膚温度の正常化、対象となる部位におけ る毛細血管の増加等を、血管が再生されたことの指標として用いて評価されうる。
[0121] 本発明の血管再生方法においては、前記発生初期血管内皮細胞の投与後、血管 形成を促進しうる物質若しくは該物質を含有した徐放性担体等をさらに投与してもよ い。
[0122] また、本発明の血管再生方法においては、前記発生初期血管内皮細胞と、壁細胞 又はその分ィ匕系譜上の前駆体となる細胞とを共存させて用いてもよい。
[0123] また、本発明は、 1つの側面では、本発明の製造方法により得られる発生初期血管 内皮細胞を、生体内へ移植することを特徴とする、移植方法に関する。
[0124] 本発明の移植方法は、本発明の血管再生方法と同様に行なわれうる。本発明の移 植方法では、本発明の製造方法により得られる発生初期血管内皮細胞が用いられ ているため、本発明の移植方法によれば、生体への高い生着効率及び個体への高 い適合性を得ることができる。また、本発明の移植方法では、本発明の製造方法によ り得られる発生初期血管内皮細胞が用いられているため、本発明の移植方法によれ ば、個体における移植対象部位において、血管を再生させることができる。したがつ て、本発明の移植方法によれば、血管を再生させることにより治療効果が期待できる 疾患、例えば、前記虚血性疾患等の治療、創傷における血管の回復等が可能にな る。
[0125] 本発明の移植方法は、例えば、
1)本発明の製造方法により得られる発生初期血管内皮細胞の移植を必要とする個 体において、疾患部位、移植を必要とする部位、移植により治療効果が期待できる 部位等を特定するステップ、
2)前記ステップ 1)で特定された部位 (移植対象部位)へ、本発明の製造方法により 得られた発生初期血管内皮細胞を移植するに適した処理を行なうステップ、及び
3)前記ステップ 2)の後の個体における移植対象部位に、本発明の製造方法により 得られた発生初期血管内皮細胞を移植するステップ、
を含むプロセスにより行なわれうる。また、前記ステップ 3)の後、移植後の個体につ Vヽて、血管形成を促進させうる薬剤等を適宜投与してもよ!/ヽ。
[0126] 前記ステップ 1)における「移植対象部位」の同定は、例えば、血管造影、 X線照射 【こよる診断、 CT (computed tomographyノスやヤン、 MRI (magnetic resonanc e imaging)、各種診断マーカーの発現、血管エコー検査、シンチグラフィー、 ABI 測定、経皮的酵素局在測定等により、病因を同定し、疾患部位を特定すること等によ り行なわれうる。
[0127] 前記移植対象部位としては、例えば、前記「血管の再生を必要とする部位」と同様 の部位が挙げられる。
[0128] 前記ステップ 2)における「発生初期血管内皮細胞を移植するに適した処理」として は、前記移植対象部位への発生初期血管内皮細胞の送達を容易にするための外科 的手術による前記移植対象部位の露出、前記移植対象部位への発生初期血管内 皮細胞の送達を容易にするためのカテーテルの挿入、前記移植対象部位へ発生初 期血管内皮細胞を安定した状態で送達するための発生初期血管内皮細胞の処理 等が挙げられる。 [0129] 前記ステップ 3)において、発生初期血管内皮細胞の移植は、局所注射、血管内投 与、カテーテルを介した送達等により行なわれうる。
[0130] 前記ステップ 3)における移植時に用いられる発生初期血管内皮細胞の量は、前記 血管損傷治療剤の場合と同様に設定され得、移植対象部位への生着を行なうに適 した量であり、血管の再生効果等を十分に発揮しうる量であればよい。
[0131] 本発明の移植方法は、霊長類動物、例えば、ヒト、サル等に適用されうる。
[0132] また、本発明の移植方法は、虚血性疾患、例えば、閉塞性動脈硬化症、虚血性心 疾患 (心筋梗塞、狭心症、心不全等)、脳血管障害、皮膚潰瘍等の疾患の治療、創 傷部位における血管の再生等に適用されうる。
[0133] 本発明のさらに別の側面は、局所の血流を改善することにより治療効果が期待でき る状態及び Z又は疾患を有する哺乳動物被験体に、本発明の製造方法により得ら れる発生初期血管内皮細胞を、治療有効量投与することを特徴とする、哺乳動物被 験体における局所の血流を改善することにより治療効果が期待できる状態及び Z又 は疾患の治療方法に関する。本発明の治療方法は、局所の血流を改善することによ り治療効果が期待できる状態及び Z又は疾患、例えば、潰瘍、虚血性疾患等に有効 である。
[0134] 本発明の治療方法は、上記のように、本発明の血管損傷治療剤を用いること、本発 明の移植方法を行なうこと等により実施されうる。
[0135] さらに、本発明の発生初期血管内皮細胞は、局所の血流を改善することにより治療 効果が期待できる状態及び Z又は疾患を有する哺乳動物被験体の血管の再生を必 要とする部位、例えば、血管損傷部位等に供給して、血管再生することにより哺乳動 物被験体を治療するための医薬の製造のために使用されうる。
[0136] したがって、本発明の別の側面は、局所の血流を改善することにより治療効果が期 待できる状態及び Z又は疾患を有する哺乳動物被験体の血管の再生を必要とする 部位に供給して、血管再生することにより哺乳動物被験体を治療するための医薬の 製造のための、霊長類動物胚性幹細胞を血管内皮細胞マーカー陽性細胞群へ分 ィ匕させることにより得られる発生初期血管内皮細胞の使用に関する。
[0137] 本発明の発生初期血管内皮細胞は、血管内皮細胞の前駆細胞に比べ、供給性に 優れ、かつより高い生着性を示す。
[0138] また、本発明の発生初期血管内皮細胞を、血管形成に適した環境下に培養するこ とにより、成熟血管内皮細胞を含む血管構造を生じさせることができる。
[0139] したがって、本発明のさらに別の側面は、霊長類動物胚性幹細胞を分化させること により得られる発生初期血管内皮細胞を、血管形成に適した環境下に培養すること を特徴とする、血管構造の構築方法である。
[0140] 本発明の血管構造の構築方法としては、前記発生初期血管内皮細胞の製造方法 におけるステップ (I)及び (Π)、所望により、ステップ (ΠΙ)に加え、
(III ' )前記血管内皮細胞マーカー陽性細胞を、血管形成に適した環境又は血管環 境下に培養するステップ
を含む方法が挙げられる。
[0141] 本発明の血管構造の構築方法によれば、局所の血流を改善することにより治療効 果が期待できる状態及び Z又は疾患等の治療のための材料を安定的に提供するこ とが可能になる。また、本発明の血管構造の構築方法では、霊長類動物胚性幹細胞 を分化させて得られた発生初期血管内皮細胞 (血管内皮細胞マーカー陽性細胞群 )が用いられているため、本発明の血管構造の構築方法によれば、高い効率で生着 し、血管構造を構築することができ、個体への高い適合性を得ることができる前記状 態及び Z又は疾患等の治療のための材料を提供することができる。
[0142] 前記「血管形成に適した環境又は血管環境」としては、生体外における条件の場合 、例えば、 VEGFとホルボール 12—ミリスタート 13—ァセタートとを含む適切な培 地 {例えば、 5 X 10— 5Mの 2—メルカプトエタノールと 10重量% 血清とを含む at ME M}において、例えば、コラーゲンゲル (例えば、コラーゲン IAゲル等)、マトリゲル等 の担体内で、 37°C、 5体積% COで、前記発生初期血管内皮細胞の 3次元培養を
2
行なう条件等が挙げられる。培地中における VEGFの濃度は、前記と同様である。ま た、培地中におけるホルボール 12—ミリスタート 13—ァセタートの濃度は、適切な 管腔構造形成を得る観点から、 10 M〜: LOO/z M、より好ましくは、 100 Mである ことが望ましい。また、前記「血管形成に適した環境又は血管環境」としては、生体内 における条件の場合、血管内又は血管周辺に、前記発生初期血管内皮細胞を維持 する条件等が挙げられる。
[0143] 本発明の血管構造の構築方法によれば、血管構造を構築することができる。
[0144] したがって、本発明の血管構造の構築方法においては、前記ステップ (ΠΓ )におい て、発生初期血管内皮細胞に加えて、壁細胞等の他の血管系細胞を共存させて用 いてもよい。
[0145] 以下、本発明を実施例等により詳細に説明するが、本発明は、力かる実施例等によ り、何ら限定されるものではない。
実施例 1
[0146] ( 1)サル胚性幹細胞からの分化誘導
サル胚性幹細胞として、力-クイザル胚性幹細胞である CMK— 6細胞株 {末盛博 文ら、 Developmental Dynamics, 222, 273— 279 (2001) }を用いた。
[0147] 未分ィ匕維持用培地 { 200mlあたりの組成:ダルベッコ改変最小必須培地(DMEM ) /F12 163ml、ゥシ胎仔血清 30ml (最終濃度 15重量0 /0)、 L—グルタミン 2ml (最終濃度 2mM)、ペニシリン(lOOUZml)—ストレプトマイシン(100 μ g/ml) 2 ml、 MEM非必須アミノ酸溶液(ギブコ(GIBCO)社製) 2ml、 2—メルカプトエタノ ール 1ml (最終濃度 0. ImM) }を含むディッシュ上で維持されたサル胚性幹細胞 に、セルディソシエーシヨンバッファー {ギブコ(GIBCO社製)}を添カ卩し、 37°C 10分 間インキュベーションした。その後、ディッシュをタッピングして、胚性幹細胞を、単細 胞の状態で、ピペッティングにより前記ディッシュ力 剥がし、回収した。
[0148] なお、 0. 1重量% ゼラチン水溶液 {ゥシ皮膚由来、シグマ(SIGMA)社製 }でコー トした 10cmディッシュ上で、 OP9細胞株をコンフルェントになるまで、培養し、 OP9 フィーダ一層を得た。
[0149] 回収された前記胚性幹細胞 5 X 104細胞を、前記 OP9細胞株上に、播種した。そ の後、分化培養液 {組成: 5 X 10— 5Mの 2—メルカプトエタノールと 10重量0 /0 血清と を含む a MEM培養液(ギブコ(GIBCO)社製) } 20mlを添カ卩し、 37°C、 5体積% COで 8〜10日間、胚性幹細胞を、 OP9細胞と共培養した。
2
[0150] 得られた培養物から、培養上清を除去し、ディッシュをリン酸緩衝生理食塩水で洗 浄した。ついで、洗浄後のディッシュに、セルディソシエーシヨンバッファー 2mlを添 加し、 37°C 10分間インキュベーションした。その結果、 OP9細胞は、シート上の構造 のまま残り、胚性幹細胞由来細胞は、単細胞の状態で剥がれた。そこで、前記インキ ュベーシヨン後に得られたディッシュ上の溶液を、セルストレイナー(70 μ m径のフィ ルター) {BDバイオサイエンシーズ(BD Biosciences)社製 }に通して、それにより、 胚性幹細胞由来細胞群のみを回収した。
[0151] つ!、で、得られた細胞群につ!、て、 1重量% ゥシ血清アルブミン(BSA) {シグマ( SIGMA)社製 }含有 HBSS液 {ギブコ(GIBCO)社製 } 100 μ 1あたり 1 X 106細胞を 浮遊させた。得られた細胞浮遊液に、抗 VEカドヘリン抗体 {BDバイオサイエンシー ズ(BD Biosciences)社製 }を添カ卩し、室温 20分間インキュベーションした。その後 、得られた産物を、 1重量% BSA含有 HBSS液で 2回洗浄した。洗浄後の産物を、 フローサイトメトリー解析に供した。前記フローサイトメトリー解析には、商品名: FACS Vantage {BDバイオサイエンシーズ(BD Biosciences)社製 }を用いた。
[0152] その結果、得られた胚性幹細胞由来細胞群において、血管内皮細胞マーカーであ る VEカドヘリンを発現している細胞群が見出された。
[0153] また、前記 VEカドヘリン陽性細胞は、フローサイトメトリー解析により、 CD34陽性か つ PECAM1陽性かつ VEGF— R2陽性であったため、血管内皮細胞であることが 示唆された。
[0154] ついで、前記抗 VEカドヘリン抗体を用い、商品名: FACSVantage{BDバイオサ ィエンシーズ(BD Biosciences)社製 }によるセルソーティングにより、前記胚性幹 細胞由来細胞群から VEカドヘリン陽性細胞を分離した。
[0155] (2)ヒト胚性幹細胞力もの分ィ匕誘導
ヒト胚性幹細胞として、オーストラリア モナッシュ大学にて榭立された HES— 3細胞 株 {ベンジャミン ィー.ロイビノフ(Benjamin E. Reubinof)ら, Nature Biotech nology, 18, 399— 404 (2000) }を用いた。
[0156] 0. 1重量% コラゲナーゼ (和光純薬株式会社製)を用いて、ヒト胚性幹細胞を 37 °Cで 10分間処理し、タッピング及びピペッティングにより、未分化の該ヒト胚性幹細胞 を小塊のまま回収した。ついで、得られたヒト胚性幹細胞を、実施例 1のサル胚性幹 細胞の場合と同様に、ゼラチンコートディッシュの OP9フィーダ一層上に播種した。ヒ ト胚性幹細胞は、小塊のまま、 OP9細胞との共培養を行なった。
[0157] その後、共培養開始から 8〜10日目、 VEカドヘリン陽性細胞が出現した。
[0158] ついで、 VEカドヘリン細胞について、前記(1)の場合と同様に、血管内皮細胞マ 一力一を用い、フローサイトメトリー解析を行なった。
[0159] その結果、前記 VEカドヘリン陽性細胞は、 CD34陽性かつ VEGF— R2陽性かつ
PECAM1陽性であった。したがって、得られた細胞は、血管内皮細胞であることが 示唆された。
実施例 2
[0160] 前記実施例 1の(2)で得られた VEカドヘリン陽性細胞群(5 X 104個)を、コラーゲ ン IV又はフイブロネクチンでコートした 6ゥエルディッシュ {BDバイオサイエンシーズ 社製 }の各ゥエルに播種し、商品名: human recombinant VEGF{ぺプロテック( PEPROTECH)社製 } 50ngZmlの存在下、培養液 {組成: 5 X 10— 5Mの 2—メル カプトエタノールと 10重量% 血清とを含む α MEM培養液(ギブコ(GIBCO)社製) } 20mlを添加し、 37°C、 5体積% COで培養した。なお、前記培養液を、 2日に 1
2
回交換した。
[0161] VEカドヘリン陽性細胞がコンフルェントになった段階で、 0. 25重量% トリプシン 溶液 {ギブコ(GIBCO)社製 }にて、該 VEカドヘリン陽性細胞をディッシュより剥がし た。得られた細胞を、前記培養液で 1: 2〜1: 3の希釈率となるように希釈し、得られ た細胞を、さらに、前記と同様に、コラーゲン IV又はフイブロネクチンでコートした 6ゥ エルディッシュ {BDバイオサイエンシーズ社製 }の各ゥエルに播種し、商品名: huma n recombinant VEGF {ぺプロテック(PEPROTECH)社製 } 50ngZmlの存在 下、新しい培養液を用いて継代し、培養を行なった。
[0162] 得られた細胞について、前記実施例 1と同様に、フローサイトメトリー解析を行なつ た。
[0163] その結果、得られた細胞は、継代 6代目においても、約 35%の細胞が、 VEカドヘリ ンようせい、 CD34陽性、 VEGF— R2陽性、 PECAM1陽性を示した。したがって、 得られた細胞のうち約 35%の細胞は、培養前の細胞と同じ性質を示す VEカドヘリン 陽性細胞であり、発生初期血管内皮細胞であることが示唆された。 比較例 1
[0164] マウス胚性幹細胞を用い、前記実施例 1及び 2と同様の手法を行なった。
[0165] その結果、マウス胚性幹細胞を用いた場合では、前記実施例 2と同様の手法では、 継代過程を経ると死滅するため、 VEカドヘリン陽性細胞を増幅させることはできなか つた o
実施例 3
[0166] 皮膚潰瘍モデルへの血管内皮マーカー陽性細胞の移植
8〜: L 1週齢の KSNヌードマウス(日本エスエルシー株式会社)の背部皮膚両側に 、商品名: KAI STERILE DERMAL BIOPSY PUNCH (カイインダストリーズ 株式会社製、サイズ: 4. 00mm,商品番号: BP— 40F)にて皮膚潰瘍を形成させた
[0167] また、実施例 2で得られた継代増幅した VEカドヘリン陽性細胞(5 X 105細胞 /50 μ \ リン酸緩衝食塩水)を、商品名: Vybrant CM— Dil cell -labeling solutio n{モレキュラープローブス(Molecular Probes)社製 }を用いて、製品添付の Mole cular Probesマニュアルに従って、標識した。
[0168] 標識された VEカドヘリン陽性細胞を、前記 KSNヌードマウスの一方の皮膚潰瘍に 、皮下注射した。また、対照として、 VEカドヘリン陽性細胞を注射した皮膚潰瘍の反 対側に、リン酸緩衝食塩水 {ギブコ(GIBCO)社製 } 50 μ 1のみを皮下注射すること により、細胞を移植し、皮膚潰瘍の治癒過程を観察した。
[0169] その結果、図 1のパネル (Α)及び図 2のパネル (Α)に示されるように、細胞注入 3日 後では、両側で皮膚潰瘍の面積に差が見られな力つた力 図 1のパネル (Β)及び図 2のパネル (Β)に示されるように、 6日後〖こは、増幅した VEカドヘリン陽性細胞を皮下 注射した側で有意に皮膚潰瘍の面積が小さくなることがわ力る。
[0170] また、細胞移植後 7日目に、前記 KSNヌードマウスに、体重 lgあたり 10 1の 16% ネンブタール (登録商標、大日本製薬株式会社製)を腹腔内注射して、該 KSNヌ 一ドマウスを麻酔した。
[0171] ついで、門脈より、商品名: FLUORESCEIN GRIFFONIA SIMPLICIFOLI A LECTIN I, ISOLECTIN B4{ベクター(VECTOR)社製 } 100 1を静脈注 射し、その後、 4重量% ノラホルムアルデヒド (武藤科学社製)を門脈から点滴で 30 分間静脈注射し、還流固定した。その後、皮膚組織を切除し、凍結固定して組織切 片を作製した。
[0172] 得られた組織切片を、蛍光顕微鏡 (カールツァイス社製、商品名: LSM— 5 PAS CAL)で観察した。図 3に結果を示す。
[0173] その結果、図 3に示されるように、 VEカドヘリン陽性細胞を皮下注射した側の皮下 に、 ISOLECTIN B4陽性でかつ Dil陽性の細胞が認められ、皮下注射した VEカド ヘリン陽性細胞が KSNヌードマウスの血管内に取り込まれていることが示された。 実施例 4
[0174] 下肢虚血モデルへの血管内皮マーカー陽性細胞の移植
8週齢雄の KSNヌードマウス(日本エスエルシー株式会社)に、ペントバルビタール (大日本製薬株式会社製) SOmgZkgを腹腔内投与して、該 KSNヌードマウスを麻 酔した。
[0175] その後、右大腿部の皮膚を縦に切開し、大腿動静脈を露出させた。動脈と静脈とを 剥離後、大腿静脈を結紮した。得られたマウスを、下肢虚血モデルマウスとした。
[0176] また、実施例 2で得られた VEカドヘリン陽性細胞(1 X 106細胞)を、商品名: Vybra nt CM -Dil cell -labeling solution {モレキュラープローブス(Molecular Pr obes)社製 }にて標識し、前記と同様に、リン酸緩衝食塩水 100 μ 1で細胞浮遊液に 調製した。
[0177] 29G針付きインスリンシリンジ (テルモ株式会社)を用いて、前記細胞浮遊液を、前 記 KSNヌードマウスの右大腿動脈力 動脈注射し、直後に同動脈を結紮切除した。 これらの操作の概略を図 4に示す。なお、対照群として、細胞を含まないリン酸緩衝 水溶液のみを、前記細胞浮遊液の場合と同様に、動脈注射した。
[0178] VEカドヘリン陽性細胞の移植後、 0、 14、 28及び 42日目のそれぞれで、虚血側下 腿の皮膚表面の血流を、レーザードップラー血流計 {ムーア (Moor)社製 }を用いて 、経時的に観察した。結果を、図 5に示す。
[0179] その結果、細胞移植群において、虚血側下腿筋に対照群と比べて有意な血流回 復が認められた。また、図 5に示されるように、虚血側下腿の皮膚表面の血流を経時 的に観察したところ、対照群と比べ細胞移植群において、虚血側下腿筋に有意な血 流回復が認められた。
[0180] 前記と同様に、前記細胞浮遊液を、 KSNヌードマウスの右大腿動脈力 動脈注射 し、直後に同動脈を結紮切除した。なお、得られたマウスを、下肢虚血モデルマウス とした。
[0181] 細胞群移植後 7日目の前記下肢虚血モデルマウスに、ペントバルビタール 80mg Zkgを腹腔内投与して、 KSNヌードマウス(下肢虚血モデルマウス)を麻酔した。
[0182] つ!、で、麻酔した KSNヌードマウス(下肢虚血モデルマウス)の胸腔を切開した。左 心室に 23G注射針 (テルモ株式会社)を挿入し、右心室を解放した。その後、生理的 食塩水にて 15分間灌流を行ない、さらに、 4重量0 /0 ノ ラホルムアルデヒドのリン酸 緩衝食塩水溶液で 15分間灌流を行ない、固定した。その後、虚血側下腿筋を採取 し、組織標本を得た。
[0183] 得られた組織標本を蛍光実体顕微鏡 {ライカ社製 }で観察した結果を図 6に示す。
[0184] その結果、図 6に示されるように、 VEカドヘリン陽性細胞の移植後 7日目における 虚血側下腿筋の組織標本において、標識した移植細胞が広範囲に脈管に沿った形 で生着していること示された。したがって、移植された VEカドヘリン陽性細胞力 KS Nヌードマウス(下肢虚血モデルマウス)の血管に取りこまれたことがわかる。
[0185] また、 VEカドヘリン陽性細胞の移植後 42日目にお 、て、麻酔した KSNヌードマウ ス(下肢虚血モデルマウス)を、前記と同様に、ノ《ラホルムアルデヒドリン酸緩衝ィ匕食 塩水で固定後、虚血側下腿筋を採取した。固定後の組織中の溶液成分を、 30重量 % スクロース含有リン酸緩衝液 (PH7. 2)に置き換えた。その後、前記組織を、商品 名: OCTコンパゥンド (サクラ精機株式会社製)に包埋、凍結させ、クリオスタツト (ライ 力社製)を用いて、組織切片を作製した。対照群として、 VEカドヘリン陽性細胞を移 植せず、リン酸緩衝ィ匕生理食塩水を注入した KSNヌードマウス(下肢虚血モデルマ ウス)について、同様に、組織切片を作製した。
[0186] 得られた組織切片について、抗マウス PECAM1抗体と抗ヒト PECAM1抗体とを 用いて免疫染色を行なった。結果を図 7に示す。
[0187] その結果、図 7のパネル (B)に示されるように、 VEカドヘリン陽性細胞の移植後 42 日目における虚血側下腿筋の細胞移植部位において、抗ヒト PECAM1抗体陽性細 胞が検出された。したがって、移植された VEカドヘリン陽性細胞に由来するヒト血管 内皮細胞が存在することがわかる。
[0188] また、前記 VEカドヘリン陽性細胞の移植後の KSNヌードマウス(下肢虚血モデル マウス)について、安楽殺直前に、門脈より、商品名: GRIFFONIA SIMPLIFOLI A LECTIN I, ISOLECTIN B4{ベクター(VECTOR)社製 } 100 1を注射し た。 15分後、前記と同様に、還流固定を行ない、凍結包埋後、組織切片を作製した
[0189] 得られた組織切片にっ 、て、抗ヒト PECAM1抗体を用いて免疫染色を行なった。
結果を図 8に示す。
[0190] その結果、図 8に示されるように、 ISOLECTIN B4陽性かつヒト血管内皮マーカ 一陽性細胞が検出された。したがって、移植された VEカドヘリン陽性細胞力 KSN ヌードマウスの血管内に取り込まれていることがわかる。
産業上の利用可能性
[0191] 本発明によれば、局所の血流を改善することにより治療効果が期待できる状態又は 疾患等の治療への応用が可能になる。

Claims

請求の範囲
[1] 霊長類動物胚性幹細胞を、血管内皮細胞マーカー陽性細胞群へ分化させることを 特徴とする、霊長類動物胚性幹細胞から発生初期血管内皮細胞への分化方法。
[2] (I)霊長類動物胚性幹細胞を、フィーダ一細胞と共培養して、血管内皮細胞マーカ 一陽性細胞を含む細胞群 Aへ分化させるステップ、及び
(II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ、
を含む、請求項 1記載の分化方法。
[3] (I)霊長類動物胚性幹細胞を、フィーダ一細胞と共培養して、血管内皮細胞マーカ 一陽性細胞を含む細胞群 Aへ分化させるステップ、及び
(II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ、
を含む、発生初期血管内皮細胞の製造方法。
[4] (III)前記ステップ (Π)で得られた細胞を増幅するステップをさらに含む、請求項 3 記載の製造方法。
[5] (I)霊長類動物胚性幹細胞を、フィーダ一細胞と共培養して、血管内皮細胞マーカ 一陽性細胞を含む細胞群 Aへ分化させるステップ、
(II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ、及び
(III)前記ステップ (Π)で得られた細胞を増幅するステップ、
を含む、発生初期血管内皮細胞の増幅方法。
[6] 請求項 3又は 4記載の製造方法により得られる、発生初期血管内皮細胞。
[7] 霊長類動物胚性幹細胞を分化させることにより得られる発生初期血管内皮細胞を 有効成分として含有してなる、血管損傷治療剤。
[8] 霊長類動物胚性幹細胞を分化させることにより得られる発生初期血管内皮細胞を、 血管の再生を必要とする部位に供給することを特徴とする、血管再生方法。
[9] 請求項 3又は 4記載の製造方法により得られる発生初期血管内皮細胞を、血管の 再生を必要とする部位に供給することを特徴とする、血管再生方法。
[10] 請求項 3又は 4記載の製造方法により得られる発生初期血管内皮細胞を、生体内 へ移植することを特徴とする、移植方法。
[11] 局所の血流を改善することにより治療効果が期待できる状態又は疾患を有する哺 乳動物被験体に、請求項 3又は 4記載の製造方法により得られる発生初期血管内皮 細胞を、治療有効量投与することを特徴とする、哺乳動物被験体における局所の血 流を改善することにより治療効果が期待できる状態又は疾患の治療方法。
[12] 局所の血流を改善することにより治療効果が期待できる状態又は疾患を有する哺 乳動物被験体における血管の再生を必要とする部位に供給して、血管再生すること により哺乳動物被験体を治療するための医薬の製造のための、霊長類動物胚性幹 細胞を分化させることにより得られる発生初期血管内皮細胞の使用。
[13] 霊長類動物胚性幹細胞を分化させることにより得られる発生初期血管内皮細胞を、 血管形成に適した環境下に培養することを特徴とする、血管構造の構築方法。
[14] (I)霊長類動物胚性幹細胞を、フィーダ一細胞と共培養して、血管内皮細胞マーカ 一陽性細胞を含む細胞群 Aへ分化させるステップ、
(II)前記ステップ (I)で得られた細胞群 Aから、血管内皮細胞マーカー陽性細胞を実 質的に分離するステップ、及び
(III ' )前記血管内皮細胞マーカー陽性細胞を、血管形成に適した環境又は血管環 境下に培養するステップ
を含む、請求項 13記載の構築方法。
[15] ステップ (ΠΓ )に先立ち、
(III)前記ステップ (Π)で得られた細胞を増幅するステップ、
をさらに行なう、請求項 14記載の構築方法。
PCT/JP2005/010962 2004-06-22 2005-06-15 霊長類動物胚性幹細胞からの血管内皮細胞の製造方法 WO2005123904A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05751180A EP1783207A4 (en) 2004-06-22 2005-06-15 PRODUCTION PROCESS FOR VASCULAR ENDOTHELIAL CELLS FROM EMBRYONIC STEM CELLS
JP2006514767A JPWO2005123904A1 (ja) 2004-06-22 2005-06-15 霊長類動物胚性幹細胞からの血管内皮細胞の製造方法
US11/630,208 US20080025955A1 (en) 2004-06-22 2005-06-15 Method Of Producing Vascular Endothelial Cells From Primate Embryonic Stem Cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004184138 2004-06-22
JP2004-184138 2004-06-22

Publications (1)

Publication Number Publication Date
WO2005123904A1 true WO2005123904A1 (ja) 2005-12-29

Family

ID=35509670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010962 WO2005123904A1 (ja) 2004-06-22 2005-06-15 霊長類動物胚性幹細胞からの血管内皮細胞の製造方法

Country Status (4)

Country Link
US (1) US20080025955A1 (ja)
EP (1) EP1783207A4 (ja)
JP (1) JPWO2005123904A1 (ja)
WO (1) WO2005123904A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958762B2 (ja) * 2007-03-30 2012-06-20 株式会社日立製作所 ディスクアレイ装置
US20110236971A2 (en) 2007-09-25 2011-09-29 Maksym Vodyanyk Generation of Clonal Mesenchymal Progenitors and Mesenchymal Stem Cell Lines Under Serum-Free Conditions
WO2010110596A2 (en) * 2009-03-24 2010-09-30 Korea Institute Of Science And Technology Method for differentiation of stem cells into vascular cells and the induction of angiogenesis using the same
KR101109125B1 (ko) 2009-03-24 2012-02-15 한국과학기술연구원 줄기세포를 혈관세포로 분화시키는 방법 및 이를 이용한 생체 내 혈관신생 유도
US20110014356A1 (en) * 2009-06-12 2011-01-20 Lord Corporation Method for protecting a substrate from lightning strikes
US20120064040A1 (en) * 2010-06-03 2012-03-15 The Regents Of The University Of California Serum free culture medium and supplement
US20150349831A1 (en) * 2014-06-02 2015-12-03 Two Technologies, Inc. Protective case for an electronic device
US20150358043A1 (en) * 2014-06-05 2015-12-10 Samsung Electronics Co., Ltd. Wearable device, main unit of wearable device, fixing unit of wearable device, and control method of wearable device
US10858627B2 (en) * 2015-07-30 2020-12-08 Regents Of The University Of Minnesota Regulation of mesodermal specification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083070A2 (en) * 2002-03-26 2003-10-09 Massachusetts Institute Of Technology Endothelial cells derived from human embryonic stem cells
JP2004350601A (ja) * 2003-05-29 2004-12-16 Tanabe Seiyaku Co Ltd 霊長類動物の胚性幹細胞から造血系細胞への分化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4317337B2 (ja) * 2001-10-16 2009-08-19 株式会社リプロセル 細胞株継代用酵素溶液、および、それを用いた霊長類胚性幹細胞の培養増殖方法
EP1446476A4 (en) * 2001-11-02 2005-01-26 Wisconsin Alumni Res Found ENDOTHELIAL CELLS FROM EMBRYONIC STEM CELLS OF PRIMATES
US7572630B2 (en) * 2004-02-27 2009-08-11 Mitsubishi Tanabe Pharma Corporation Method for differentiating primate embryonic stem cell into vascular cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083070A2 (en) * 2002-03-26 2003-10-09 Massachusetts Institute Of Technology Endothelial cells derived from human embryonic stem cells
JP2004350601A (ja) * 2003-05-29 2004-12-16 Tanabe Seiyaku Co Ltd 霊長類動物の胚性幹細胞から造血系細胞への分化方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
HIRASHIMA M. ET AL: "Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis", BLOOD, vol. 93, no. 4, 1999, pages 1253 - 1263, XP002963054 *
MANGI K. ET AL: "ES Saibo Yurai Kekkan Zenku Saibo o Mochiita Mouse Shuyo Model ni Okeru Kekkan Saisei", FOLIA ENDOCRINOLOGICA JAPONICA, vol. 77, no. 1, 2001, pages 188, XP002995860 *
See also references of EP1783207A4 *
SONE M. ET AL: "Different Differentiation kinetics of vascular progenitor cells in primate and mouse embryonic stem cells", CIRCULATION, vol. 107, no. 16, 2003, pages 2085 - 2088, XP002995859 *
SONE M. ET AL: "Identification of vascular progenitor cells from primate embryonic stem cells", CIRCULATION, vol. 108, no. 17, 2003, pages I,IV/171, XP009040361 *
SONE M.: "Identification of Vascular Progenitor Cells from Primate Embryonic Stem Cells", THE CELL, vol. 37, no. 6, 20 June 2005 (2005-06-20), pages 235 - 238, XP002995863 *
YAMAHARA K. ET AL: "ES Saibo Yurai Kekkan Zenku Saibo No Mouse Kashi Kyoketsu Model heno Donyu", FOLIA ENDOCRINOLOGICA JAPONICA, vol. 77, no. 1, 2001, pages 91, XP002995861 *
YAMASHITA J.: "ES Saibo o Mochiita Kekkan no Bunka Tayoka Kiko to Kekkan Saisei", THER RES., vol. 24, no. 12, 2003, pages 2148 - 2160, XP002995862 *
YAMASHITA J.: "Vascular Formation Using Embryonic Stem Cells", GEKKAN MEDICAL SCIENCE DIGEST, vol. 30, no. 14, 30 December 2004 (2004-12-30), pages 570 - 573, XP002995864 *

Also Published As

Publication number Publication date
US20080025955A1 (en) 2008-01-31
EP1783207A1 (en) 2007-05-09
JPWO2005123904A1 (ja) 2008-04-10
EP1783207A4 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
WO2005123904A1 (ja) 霊長類動物胚性幹細胞からの血管内皮細胞の製造方法
JP4146802B2 (ja) 単球を起源に持つ、脱分化したプログラム可能な幹細胞およびそれらの製造と使用
JP3934539B2 (ja) 胎盤等由来の成体又は生後組織の前駆細胞
US11045502B2 (en) Method of isolating cells for therapy and prophylaxis
US8685724B2 (en) In vitro techniques for use with stem cells
BR112021007748A2 (pt) métodos e sistemas para fabricar células de linhagem hematopoiética
JP2005523328A (ja) 胎盤由来の幹細胞及びその使用
JP4085062B2 (ja) 霊長類の胚性幹細胞から由来した内皮細胞
WO2008085221A2 (en) Therapeutic use of cd31 expressing cells
US20080194023A1 (en) Generating vascular smooth muscle cells in vitro from ES cells
JPWO2006093172A1 (ja) 成体幹細胞の体外増幅方法
CN109689858A (zh) 用于产生具有体内血管形成能力的中胚层和/或内皮集落形成细胞样细胞的方法
JP2017511125A (ja) 内皮コロニー形成細胞様細胞の生成方法
EP1807509B1 (en) Multipotent stem cells isolated from umbilical cord blood and the cellular therapeutic agent comprising the same for treating ischemic disease
JPWO2004101775A1 (ja) 新規な成体組織由来の幹細胞およびその用途
CA2776882A1 (en) Preparation and use of stromal cells for treatment of cardiac diseases
JP6095272B2 (ja) 上皮系体性幹細胞の製造方法
RU2510276C1 (ru) Способ получения клеток для заместительной клеточной терапии патологий печени
SALTIK et al. Expansion of human umbilical cord blood hematopoieticprogenitors with cord vein pericytes
JPWO2019189324A1 (ja) 細胞塊融合法
JP2007014273A (ja) 肝組織・臓器及びその製造方法
EP4043554A1 (en) Production method for vascular endothelial stem cell
WO2023286832A1 (ja) 血管内皮増殖因子(vegf)高発現ペリサイト様細胞の製造方法
WO2023286834A1 (ja) 血管内皮増殖因子(vegf)高発現ペリサイト様細胞
US20200095557A1 (en) Cell spheroids containing capillary structures and methods of using same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514767

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11630208

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005751180

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005751180

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11630208

Country of ref document: US