WO2005122676A2 - Dispositivo generador de burbujas para la reducción de fricción en el casco de embarcaciones - Google Patents

Dispositivo generador de burbujas para la reducción de fricción en el casco de embarcaciones Download PDF

Info

Publication number
WO2005122676A2
WO2005122676A2 PCT/ES2005/000329 ES2005000329W WO2005122676A2 WO 2005122676 A2 WO2005122676 A2 WO 2005122676A2 ES 2005000329 W ES2005000329 W ES 2005000329W WO 2005122676 A2 WO2005122676 A2 WO 2005122676A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
gas
water
hull
bubbles
Prior art date
Application number
PCT/ES2005/000329
Other languages
English (en)
French (fr)
Other versions
WO2005122676A3 (es
Inventor
Alfonso Miguel GAÑÁN CALVO
Pascual Riesco Chueca
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Publication of WO2005122676A2 publication Critical patent/WO2005122676A2/es
Publication of WO2005122676A3 publication Critical patent/WO2005122676A3/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • B63B2001/387Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes using means for producing a film of air or air bubbles over at least a significant portion of the hull surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the object of the invention is a device for generating bubbles intended to be incorporated mainly into the turbulent boundary layer of the wet surface of the hull of a moving vessel composed of a multi-cell system adhered to the hull walls of said vessel; said system has at least one main circulation axis covered by two distribution ducts, a pressurized water line (1) (preferably from the navigation water medium) and another duct (2) of a pressurized gas (preferably air ), which feed, sequentially, parallel or in combination, to multiple bubble ejector cells; each of said cells is configured as a hollow space of thin layer limited in the sense of thickness by two essentially flat closing surfaces parallel to each other, the geometry of said thin layer being defined by two main dimensions: a thickness and a surface S extension; the perimeter of each cell is limited by an impermeable edge section except in an ejection orifice (3) of bubbles to the external aquatic environment; at least one of said two closing surfaces is perforated in each cell by one or more water supply holes (4), connected to the water distribution conduit (1); and
  • SUBSTITUTE SHEET (RULE 26) hydrodynamic to said gas and ensuring the concentration of the gas flow in a stream of reduced diameter, which becomes unstable when passing through the ejection hole
  • the section of each of the distribution ducts (1-2) is at least five times greater than the sum of all sections of the ejection holes (3).
  • a device is also object of the invention, in which the area of the ejection hole (3) in each cell is less than the sum of the areas of the water and gas feed holes (4-5) .
  • the total area of the water feed holes (4) in each cell can be made less than 0.5 times the extension S of said cell. It is also possible to choose that the total area of the gas supply holes (5) in each cell is less than 0.5 times the extension S of said cell.
  • Another object of the invention is a device according to the above, characterized in that said cells are distributed longitudinally in a continuous piece or band of deformable synthetic material, said band being longitudinally covered by the water and gas distribution conduits; one of the two outer faces of said band is adhesive or has fasteners to a boat hull.
  • said band can be made to have a cross-section in the form of a half hydrodynamic profile, said face of adhesion or attachment corresponding to the flat edge of said profile; said profile has a blunt leading edge, and a sharp trailing edge in which the outlets of said ejection holes (3) are located.
  • said cells are defined by the assembly of three elongated sheets: a contact sheet (6), whose outer face constitutes the adhesion face of said band; an intermediate sheet (7), periodically punched out, which defines the cell spaces; and a cover sheet (8), in which the feed holes (4-5) are made.
  • at least one of said sheets is made of polymeric material.
  • at least one of said sheets is made of metallic material.
  • Electrolysis by electrodes immersed in a liquid mass for example, platinum filaments. It has been applied extensively in the laboratory for friction tests with a bubbling boundary layer; however, it is scarcely applicable in real scale, given the fragility of the filaments, which should be located very close to the hull wall and therefore would be vulnerable to any contact or collision. To this is added the difficulty of insulating such electrodes with respect to the materials, generally metallic, of the hull of the boat.
  • Electrospray it makes use of electrostatic forces and is based on an already veteran technology, limited by certain inconveniences, which can be summarized as follows: o Dependence of the phenomenon with respect to the electrical properties of the liquid, which, in general, are scarce controllability: in the case of water, the presence, inherently difficult to regulate, of dissolved substances, significantly alters the conductivity. o Low method productivity (very small mass flow); difficulty for your organization at different scales or the addition of cells (multiplexing). o Little robustness of the method, given its great dependence on the physical properties (mainly electrical) of the liquids, and on the surface conditions and sizes of the liquid feeding tubes. The electrospray process has no application in the sector of the reduction of hydrodynamic resistance by bubbles (MBDR), because the
  • Direct injectors an injection head, powered by air or other pressurized gas, releases bubbles in the liquid medium.
  • FF Capillary flow focusing
  • the latter technology abbreviated as FF (Ga ⁇ án-Calvo 1998, Physical Review Letters 80, 285), uses hydrodynamic molding between two coaxial currents to generate microbeads that, after passing the exit orifice, are broken into drops or bubbles of size Very small and substantially homogeneous.
  • the focusing hole in FF has a diameter significantly larger than the diameter of the generated micro-jet, due to the shaping or focusing action of the second fluid, which is concentrically forced with the first.
  • patents US6394429 and US6299145 it is necessary that the gas be injected through a needle located concentrically with the outlet orifice.
  • wave-making drag As the hydrodynamic design of the boat hulls improves, the drag resistance associated with wave production (“wave-making drag”) is reduced and proportionally increases the importance of friction in the submerged part of the hull as the main factor of resistance to the advance (“skin friction drag”). Frequently friction contributes up to 80% of the total resistance. Since the resistance is directly linked to the energy consumption required to propel the vessel, efforts to minimize friction efforts have multiplied. A solution for this purpose is to make the surface in contact with the aquatic environment as smooth as possible. However, the accumulated action of bowel movements and microorganisms shortly reduces this effect. A notable alternative is the so-called bubble resistance reduction systems (“microbubble drag reduction", MBDR).
  • MBDR bubble resistance reduction
  • the bubbles of air, nitrogen or CO 2 , are injected in abundant quantity into the turbulent boundary layer that surrounds the wet surface of the boat's hull.
  • various effects have been reported, such as the decrease in Reynolds tensions and the local slowdown, near the wall, of the velocity profile; it has also been noted that bubbles reduce (by creating "empty" areas, subtracted from the liquid) viscous dissipation: see Sugiyama, K., Kawamura, T., Takagi, S. and Matsumoto, Y., "The Reynolds Number Effect on the Microbubble Drag Reduction ", Proc. of the 5th Symp. on Smart Control of Turbulence, 2004, pp. 31-43.
  • Electrolysis by electrodes submerged in the aquatic environment has been used in laboratory experiments (NK; Deutsch S & Madavan Merkle CL (1985) "Measurements of local skin friction in a microbubble-modified turbulent boundary layer "J. Fluid Mech. 156, 237-256), but no real-scale applications are known, given the poor robustness of the necessary electrodes in the ship's hull.
  • SUBSTITUTE SHEET RULE 26 Another aspect of importance is the spatial distribution of the bubbles. There are no clear prescriptions about the optimal distance in which the bubbles should be placed in relation to the wall, and in some cases the transitional sub layer ("buffer layer”) is worked, while in others the bubbles occupy the entire thickness of the turbulent layer. It is essential in any case to ensure the maximum permanence of the bubbles inside the boundary layer. This is easy to achieve when the boat has the bottom of the hull sufficiently flat, in which case, the bubbles, usually injected near the bow, remain in the immediate vicinity of the hull wall throughout its journey to the stern due to forces of flotation. However, it is more difficult to fix the position of the bubbles when the hull has vertical or strongly inclined walls.
  • the proposed method shares with FF the characteristic that the formed fluid ligament is thinner than the width of the exit channel or orifice because a second focusing fluid is used; however, the method is essentially two-dimensional in its geometry, and does not require alignment between the feed holes and the outlet hole.
  • the feed holes are perforated in the closure surfaces that constitute the boundaries of the bubble generation cell in the sense of thickness; on the contrary, the ejection hole is perforated in the side wall that defines the perimeter of said cell.
  • Fig. 1 Cell detail, in parallel section to the main dimensions. This is the model in which there are two water feed holes flanking the jet formed from a previous gas feed hole.
  • Fig. 2 Detail of a combination of three cells, with another simpler cell configuration that has only one water inlet hole and one of gas.
  • Fig. 3 Cross section of an ejection band or tape, provided with an external shape as a hydrodynamic half profile. The ducts can be seen in cut
  • SUBSTITUTE SHEET (RULE 26) main distribution (1-2), whose section is much higher than the ejection hole (3).
  • Fig. 4 Section of a band, showing the layout of the distribution ducts and cell holes.
  • each cell consists of a single gas and water feed hole.
  • the gas supply holes are located in the anterior position to ensure the focusing effect of the water.
  • the present invention refers to a device for generating bubbles intended to be incorporated mainly into the boundary layer associated with the hull of a moving vessel.
  • the purpose of such bubbles is to reduce the frictional resistance that the aquatic environment exerts on the hull of the boat, limiting its forward speed and contributing significantly to energy consumption. For this, it is necessary to ensure a principle of bubble generation and distribution that facilitates the permanence of a high number of them in the vicinity of the hull wall (wet area) and inside the turbulent boundary layer.
  • the proposed device is a multi-cell system coupled to the vessel. Said system is crossed by two main distribution conduits, one of pressurized water (preferably from the navigational aquatic environment) and another of a pressurized gas (preferably air), which feed, sequentially, parallel or in combination, to multiple bubble ejector cells.
  • Each cell is configured as a thin-layer hollow space limited by two essentially flat closing surfaces parallel to each other; The perimeter of each cell is constituted by a waterproof edge section except in a bubble ejection hole to the external aquatic environment. At least one of said two closing surfaces is perforated in each cell by one or more water feed holes, connected to the water distribution conduit. Likewise, at least one of said two closing surfaces is perforated in each cell by one or more gas supply holes, connected to the gas distribution conduit. The feeding of both fluids in each cell causes an essentially two-dimensional flow regime, parallel to the plane of said closing surfaces.
  • the gas stream injected into each cell causes an essentially two-dimensional flow regime, parallel to the plane of said closing surfaces.
  • RE SUBSTITUTE SHEET it constitutes a jet that presents a laminar and stable section, surrounded and guided by the water also injected into each cell; said jet is directed towards said ejection hole; the conditions for the formation of the jet are regulated by adjusting the flow of gas and water injected.
  • the water surrounds the gas jet, molding under its simple hydrodynamic action to said gas and ensuring its focus, that is, the concentration of the gas flow in a stream of reduced diameter, which becomes unstable when passing through the ejection hole, breaking into a sequence of bubbles released in the outer aquatic environment.
  • the invention described herein contemplates a device for generating bubbles intended to be incorporated mainly into the boundary layer associated with the hull of a moving vessel.
  • the purpose of such bubbles is to reduce the frictional resistance that the aquatic environment exerts on the hull of the boat, limiting its forward speed and contributing significantly to the
  • SUBSTITUTE SHEET RULE 26 energy consumption it is necessary to ensure a principle of bubble generation and distribution that facilitates the permanence of a high number of them in the vicinity of the hull wall (wet area) and inside the turbulent boundary layer.
  • the proposed device is a multi-cell system coupled to the vessel.
  • Said system is covered by two main distribution conduits, a pressure water conduit (1) (preferably from the navigational aquatic medium) and another conduit (2) of a pressurized gas (preferably air), which feed, in the form sequential, parallel or in combination, to multiple bubble ejector cells.
  • Each cell is configured as a thin-layer hollow space limited by two essentially flat closing surfaces parallel to each other;
  • the perimeter of each cell is constituted by a waterproof edge section except in an ejection orifice (3) of bubbles to the external aquatic environment.
  • At least one of said two closing surfaces is perforated in each cell by one or more water feed holes (4), connected to the water distribution conduit (1).
  • at least one of said two closing surfaces is perforated in each cell by one or more gas supply holes (5), connected to the gas distribution conduit (2).
  • the feeding of both fluids in each cell causes an essentially two-dimensional flow regime, parallel to the plane of said closing surfaces.
  • the gas stream injected into each cell gives rise to a continuous micro-torrent that has a stable, stationary laminar section, surrounded and guided by the water also injected into each cell; said micro-torrent is directed towards said ejection hole (3); the conditions for the formation of the micro-torrent are regulated by adjusting the flow of gas and water injected; during the ejection of both fluids through the outlet channel, the water surrounds the gas micro-torrent, molding under its simple hydrodynamic action to said gas and ensuring the concentration of the gas flow in a stream of reduced diameter, which becomes unstable when passing through the ejection hole (3) towards the exit channel, breaking in a sequence of bubbles that are released in the external aquatic environment when leaving said exit channel.
  • each of the distribution ducts (1-2) is at least five times greater than the sum of all sections of the ejection holes (3).
  • Essential aspects of the invention proposed in the following claims are: (1) the possibility of adapting, without modifying the device, the diameter and flow rate in the jet to the bubble production requirements; (two)
  • each cell consists of a single gas and water feed hole: the gas feed holes are placed in the anterior position to ensure the focusing effect of the water; (6) the flat character of each cell is compatible with a general continuous band design that minimizes hydrodynamic losses linked to flow distortion; in particular, each band can be designed so that its section is approximately that of a half slender profile, with a blunt edge at the leading edge and a sharp end on which the ejection holes are located.
  • the present invention allows access to the following advantages, especially attractive for the generation of bubbles and their permanence in the boundary layer of a vessel:
  • SUBSTITUTE SHEET RULE 26 achieved by creating a bubbling boundary layer are not consumed by the over-cost of pumping.

Abstract

Es objeto de la presente invención un dispositivo para la generación de burbujas destinadas a incorporarse principalmente a la capa límite turbulenta de la superficie mojada del casco de una embarcación en movimiento integrado por un sistema multi-celda adherido a las paredes del casco de dicha embarcación; dicho sistema dispone al menos de un eje de circulación principal recorridos por dos conductos de distribución, un conducto (1) de agua a presión (preferentemente procedente del medio acuático de navegación) y otro conducto (2) de un gas a presión (preferentemente aire), que alimentan, en forma secuencial, paralela o en combinación, a múltiples celdas eyectoras de burbujas.

Description

Dispositivo generador de burbujas para la reducción de fricción en el casco de embarcaciones
OBJETO DE LA INVENCIÓN
Es objeto de la invención un dispositivo para la generación de burbujas destinadas a incorporarse principalmente a la capa límite turbulenta de la superficie mojada del casco de una embarcación en movimiento integrado por un sistema multi-celda adherido a las paredes del casco de dicha embarcación; dicho sistema dispone al menos de un eje de circulación principal recorrido por dos conductos de distribución, un conducto (1) de agua a presión (preferentemente procedente del medio acuático de navegación) y otro conducto (2) de un gas a presión (preferentemente aire), que alimentan, en forma secuencial, paralela o en combinación, a múltiples celdas eyectoras de burbujas; cada una de dichas celdas está configurada como un espacio hueco de capa delgada limitada en el sentido del espesor por dos superficies de cierre esencialmente planas y paralelas entre sí, viniendo definida la geometría de dicha capa delgada por dos dimensiones principales: un espesor e y una superficie de extensión S; el perímetro de cada celda está limitado por una sección de borde impermeable salvo en un orificio de eyección (3) de burbujas al medio acuático exterior; al menos una de dichas dos superficies de cierre está perforada en cada celda por uno o más orificios de alimentación de agua (4), conectados con el conducto de distribución de agua (1); y al menos una de dichas dos superficies de cierre está perforada en cada celda por uno o más orificios de alimentación de gas (5), conectados con el conducto de distribución de gas (2); la alimentación de ambos fluidos en cada celda origina un régimen de flujo esencialmente bidimensional, paralelo al plano de dichas superficies de cierre; la corriente de gas inyectada en cada celda da lugar a un micro-torrente continuo que presenta un tramo laminar, estable y estacionario, rodeado y guiado por el agua también inyectada en cada celda; el citado micro- torrente se dirige hacia dicho orificio de eyección (3); las condiciones para la formación del micro-torrente se regulan ajusfando los caudales de gas y agua inyectados; durante la eyección de ambos fluidos a través del canal de salida, el agua rodea al micro-torrente de gas, moldeando bajo su simple acción
HOJA DE SUSTITUCIÓN (REGLA 26) hidrodinámica a dicho gas y asegurando la concentración del flujo del gas en un chorro de diámetro reducido, que se inestabiliza al atravesar el orificio de eyección
(3) hacia el canal de salida, rompiéndose en una secuencia de burbujas que son liberadas en el medio acuático exterior al salir de dicho canal de salida; la sección de cada uno de los conductos de distribución (1-2) es al menos cinco veces superior a la suma de todas las secciones de los orificios de eyección (3).
Es también objeto de la invención un dispositivo según lo anterior, en el que el área del orificio de eyección (3) en cada celda es inferior a la suma de las áreas de los orificios de alimentación de agua y de gas (4-5). Alternativamente, el área total de los orificios de alimentación de agua (4) en cada celda puede hacerse inferior a 0.5 veces la extensión S de dicha celda. También puede optarse por elegir que el área total de los orificios de alimentación de gas (5) en cada celda sea inferior a 0.5 veces la extensión S de dicha celda. Otro objeto de la invención es un dispositivo según lo anterior, caracterizado por que dichas celdas están distribuidas longitudinalmente en una pieza o banda continua de material sintético deformable, siendo dicha banda recorrida longitudinalmente por los conductos de distribución de agua y de gas; una de las dos caras exteriores de dicha banda es adhesiva o dispone de elementos de sujeción a un casco de embarcación. En particular, cabe hacer que dicha banda tenga una sección transversal con la forma de medio perfil hidrodinámico, correspondiendo dicha cara de adhesión o sujeción al borde plano de dicho perfil; dicho perfil dispone de un borde anterior romo, y de un borde posterior afilado en el que se encuentran las salidas de dichos orificios de eyección (3). En otra variante de la invención, dichas celdas son definidas mediante el ensamblaje de tres láminas alargadas: una lámina de contacto (6), cuya cara externa constituye la cara de adhesión de dicha banda; una lámina intermedia (7), troquelada de forma periódica, que define los espacios de celda; y una lámina tapadera (8), en la que están practicados los orificios de alimentación (4-5). Opcionalmente, al menos una de dichas láminas es de material polimérico. También opcionalmente, al menos una de dichas láminas es de material metálico.
ESTADO DE LA TÉCNICA
1. Generación de burbujas
HOJA DE SUSTITUCIÓN (REGLA 26) La actividad investigadora y tecnológica ligada al control microscópico de las corrientes fluidas ha adquirido particular intensidad en los últimos años. Destacan los esfuerzos orientados a generar superficies libres o entrefases entre dos fluidos inmiscibles para la producción de estructuras microscópicas (gotas, burbujas o cápsulas) de forma reproducible y robusta. Cabe citar varias opciones principales para la obtención de burbujas:
(1) Agitación mecánica: se hace uso de dispositivos móviles (paletas) para crear entrefases que originen burbujas. Los tamaños son por lo general de distribución muy variada. Son precisos desembolsos energéticos considerables, que se traducen en grandes pérdidas de fricción. La presencia de partes móviles incrementa la fragilidad de los dispositivos.
(2) Electrificación: el transporte eléctrico es usado para controlar una entrefase (electrospray) o para liberar un componente gaseoso (electrólisis).
• Electrólisis mediante electrodos sumergidos en una masa líquida (por ejemplo, filamentos de platino). Se ha aplicado abundantemente en laboratorio para ensayos de fricción con capa límite burbujeante; sin embargo, es escasamente aplicable en escala real, dada la fragilidad de los filamentos, que deberían estar situados muy cerca de la pared del casco y por ello serían vulnerables a cualquier contacto o colisión. A ello se añade la dificultad de aislar tales electrodos con respecto a los materiales, generalmente metálicos, del casco de la embarcación.
• Electrospray: hace uso de fuerzas electrostáticas y se basa en una tecnología ya veterana, limitada por determinados inconvenientes, que cabe resumir como sigue: o Dependencia del fenómeno con respecto a las propiedades eléctricas del líquido, que, por lo general, son de escasa controlabilidad: en el caso del agua, la presencia, inherentemente difícil de regular, de sustancias disueltas, altera considerablemente la conductividad. o Escasa productividad de método (flujo másico muy pequeño); dificultad para su organización a diferentes escalas o la adición de celdas (multiplexing). o Poca robustez del método, dada su gran dependencia de las propiedades físicas (eléctricas fundamentalmente) de los líquidos, y de las condiciones superficiales y tamaños de los tubos de alimentación de los líquidos. El procedimiento de electrospray no tiene aplicación en el sector de la reducción de resistencia hidrodinámica mediante burbujas (MBDR), debido a que la
HOJA DE SUSTITUCIÓN REGLA 26 considerable conductividad del medio acuático (especialmente en navegación marítima) impide controlar el proceso de electrificación o la formación del chorro precursor de las burbujas.
(3) Procedimientos neumáticos, basados en hacer pasar aire u otro gas a través de tubos de pequeño tamaño, descargando la corriente gaseosa en un recipiente relleno de líquido en reposo o en una corriente líquida en movimiento. Alternativamente, puede hacerse fluir de manera simultánea el líquido y el gas a través de pequeños orificios (WO0174722, US6394429, US6299145). Cabe mencionar algunas opciones frecuentes de producción neumática:
• Inyectores directos: un cabezal de inyección, alimentado por aire u otro gas a presión, libera las burbujas en el medio líquido.
• Emisión de gas a través de una matriz porosa parcialmente sumergida. Se ha usado en ensayos de MBDR, pero da lugar a burbujas de gran diámetro, que tienen tendencia a escapar de la capa límite, salvo en los casos en que el fondo del casco es plano y retiene por flotación a las burbujas en la inmediación de la pared.
• Flow focusing capilar; esta última tecnología, abreviada como FF (Gañán-Calvo 1998, Physical Review Letters 80, 285), utiliza el moldeado hidrodinámico entre dos corrientes coaxiales para generar microchorros que, posteriormente, pasado el orificio de salida, se rompen en gotas o burbujas de tamaño muy pequeño y sustancialmente homogéneo. El orificio de enfocamiento en FF tiene un diámetro significativamente mayor que el diámetro del micro-chorro generado, debido a la acción moldeadora o enfocante del segundo fluido, que es forzado concéntricamente con el primero. En el caso de las patentes US6394429 y US6299145 (FF) es necesario que el gas sea inyectado a través de una aguja situada concéntricamente con el orificio de salida. De ahí la necesidad de asegurar un correcto centrado de la aguja con el orificio, con lo que el problema crece si se trata de producir cantidades de espuma a nivel industrial. En cualquier caso, en los procedimientos a los que hacen referencia las patentes WO0174722, US6394429, US6299145 el gasto de líquido es muy superior al de gas, resultando una relación gas/líquido reducida, aunque el tamaño de las burbujas conseguidas sea pequeño y el gasto energético sea inferior a los métodos referidos en US5674433, EP0523202, WO09212788, WO0176728.
HOJA DE SUSTITUCIÓN REGLA 26 En FF convencional se eliminan los inconvenientes de la dependencia respecto a las propiedades del fluido y se accede a una tecnología muy fácilmente escalable o multiplicable; sin embargo, persisten dificultades relativas al alineamiento de los tubos de alimentación con los orificios de enfocamiento, y la naturaleza esencialmente tridimensional de la geometría involucrada.
2. Reducción de fricción en embarcaciones mediante capas superficiales de burbujas
A medida que mejora el diseño hidrodinámico de los cascos de embarcación, se reduce la resistencia al avance ligada a la producción de olas ("wave-making drag") y aumenta proporcionalmente la importancia de la fricción en la parte sumergida del casco como factor principal de resistencia al avance ("skin friction drag"). Es frecuente que la fricción contribuya hasta el 80% de la resistencia total. Dado que la resistencia está directamente ligada al consumo energético requerido para propulsar la embarcación, se han multiplicado los esfuerzos tendentes a minimizar los esfuerzos de fricción. Una solución a tal fin es la de hacer la superficie en contacto con el medio acuático lo más lisa posible. Sin embargo, la acción acumulada de deposiciones y microorganismos reducen en breve plazo este efecto. Un alternativa notable es la constituida por los llamados sistemas de reducción de resistencia mediante burbujas ("microbubble drag reduction", MBDR). Las burbujas, de aire, nitrógeno o CO2, son inyectadas en cantidad abundante dentro de la capa límite turbulenta que rodea la superficie mojada del casco de la embarcación. No hay unanimidad en torno a cuál sea el mecanismo productor de la reducción de fricción: se han señalado diversos efectos, tales como la disminución en las tensiones de Reynolds y la ralentización local, cerca de la pared, del perfil de velocidades; asimismo se ha señalado que las burbujas reducen (al crear zonas "vacías", sustraídas al líquido) la disipación viscosa: véase Sugiyama, K., Kawamura, T., Takagi, S. and Matsumoto, Y., "The Reynolds Number Effect on the Microbubble Drag Reduction", Proc. of the 5th Symp. on Smart Control of Turbulence, 2004, pp. 31-43. En general, parece observarse que las burbujas causan un engrasamiento de la subcapa viscosa a la vez que inhiben el pleno desarrollo de la turbulencia (A. Ferrante, S. Elghobashi, J. Fluid Mech., vol. 503, pp. 345-355 (2004)).
HOJA DE SUSTITUCIÓN REGLA 26 Los experimentos realizados en el campo de reducción de fricción en embarcaciones mediante burbujas parecen coincidir en señalar que el parámetro fundamental es la relación volumétrica entre fase gaseosa y líquida en la capa límite. El tamaño de burbujas y su carácter monodisperso parecen parámetros de menor influencia (Moriguchi, Y. y Kato, H., "Influence of microbubble diameter and distribution on frictional resistance reduction", Journal of Marine Science and Technology, Springer-Verlag Tokyo, Volume 7, Number 2, September 2002, pp. 79 - 85), aunque se ha observado que la selección de tamaño de burbuja interfiere sobre la escala de turbulencia inhibida en cada caso (H. Kato, T. Iwashina, M. Miyanaga, H. Yamaguchi, "Effect of microbubbles on the structure of turbulence in a turbulent boundary layer", Journal of Marine Science and Technology, Springer-Verlag Tokyo, Volume 4, Number 4, July 2000, pp. 155 - 162). En cualquier caso, sólo se consiguen relaciones altas vacío/lleno a través de un control eficaz de tamaños de burbuja, mantenidos en el rango microscópico y con la suficiente homogeneidad de diámetro.
En cuanto al procedimiento de generación de burbujas, destaca el uso de matrices porosas y la inyección directa. Ésta es la opción usada por R. Latorre, A. Miller y R. Philips, "Micro-bubble resistance reduction on a model SES catamarán", Ocean Engineering, Vol. 30, 17, Dea, 2003. Mediante ocho unidades de inyección, situadas en el casco de un catamarán, se introducen burbujas de nitrógeno en el medio acuático. El uso de una matriz porosa se enfrenta a dificultades de obturación, deposición o corrosión, especialmente cuando el medio acuático es agresivo. En otros ensayos se ha recurrido a sistemas simples, del tipo de placas multiperforadas que dejan pasar una corriente gaseosa a presión. La electrólisis mediante electrodos sumergidos en el medio acuático (por ejemplo, filamentos de platino) ha sido usada en experimentos de laboratorio (N K; Deutsch S & Madavan Merkle C L (1985) "Measurements of local skin friction in a microbubble-modified turbulent boundary layer" J. Fluid Mech. 156, 237-256), pero no se conocen aplicaciones en escala real, dada la escasa robustez de los electrodos necesarios en el casco del barco.
Por lo tanto, en el campo tecnológico de la reducción de fricción naval, parece recomendable buscar procedimientos que minimicen el tamaño de las burbujas, reduzcan el gasto energético y aseguren una elevada relación de volumen de gas frente a volumen de líquido utilizado.
HOJA DE SUSTITUCIÓN REGLA 26 Otro aspecto de importancia es la distribución espacial de las burbujas. No hay prescripciones claras acerca de la distancia óptima en que deben situarse las burbujas con relación a la pared, y en algunos casos se trabaja en la subcapa de transición ("buffer layer"), mientras que en otros las burbujas ocupan todo el espesor de la capa turbulenta. Es esencial en cualquier caso asegurar la máxima permanencia de las burbujas en el interior de la capa límite. Esto es fácil de conseguir cuando la embarcación tiene la parte inferior del casco suficientemente plana, en cuyo caso, las burbujas, generalmente inyectadas cerca de la proa, permanecen en las inmediaciones de la pared del casco durante todo su recorrido hacia la popa debido a fuerzas de flotación. Sin embargo, es más difícil fijar la posición de las burbujas cuando el casco tiene paredes verticales o fuertemente inclinadas. En tales casos, es decisiva la elección de los puntos de inyección de burbujas, que han de ser optimizados para garantizar una máxima permanencia de las burbujas en el interior de la capa límite. Como alternativa a la generación de burbujas, se ha recurrido ocasionalmente a la inyección de polímeros en forma pulverizada (M. D. Warholic; H. Massah y T. J. Hanratty (1999) "Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing" Exp. Fluids 27, 461-472). Es un procedimiento más costoso, con menor capacidad de ajuste y poco aplicable dadas sus repercusiones ambientales.
En la patente española P200300169, en fase PCT con número W0400018ES (también PCT/ES2004/00018, a partir de aquí citada como D1), titulada "Nuevo método de generación de micro-corrientes fluidas para la producción de micro- burbujas, micro-espumas, micro-gotas, micro-emulsiones, y micro-cápsulas", se expone una variante de método FF que está en la base de la presente invención. Se trata de un dispositivo de geometría esencialmente chata, apta para un flujo bidimensional. Como se señala en la citada patente, el método propuesto comparte con FF la característica de que el ligamento fluido formado es más delgado que la anchura del canal u orificio de salida porque se utiliza un segundo fluido enfocante; sin embargo, el método es esencialmente bidimensional en su geometría, y no requiere de alineamiento entre los orificios de alimentación y el orificio de salida. De hecho, los orificios de alimentación están perforados en las superficies de cierre que constituyen los límites de la celda de generación de burbujas en el sentido del espesor; por el contrario, el orificio de eyección está perforado en la pared lateral que define el perímetro de dicha celda.
H Los autores de D1 señalan asimismo las ventajas principales de aquella invención:
• Simplicidad incluso mayor que la de la tecnología FF convencional. • Dispositivo integrado por pocas partes, lo cual facilita enormemente su fabricación masiva.
• Robustez y reproducibilidad del sistema. Las corrientes de fluido se encuentran siempre en contacto con un sólido, lo que asegura una particular robustez del sistema, es decir, no se tienen zonas capilares exentas o flotantes, particularmente susceptibles a imperfecciones e irregularidades de los tubos de alimentación (como ocurre en electrospray o flow focusing convencional).
• Gran adaptabilidad.
• Idoneidad para su escalado o multiplicación (multiplexing), pudiendo alcanzarse densidades de eyección mucho más altas que en cualquier otro sistema debido a que se pueden apilar las láminas, y éstas pueden ser arbitrariamente finas (desde la miera a las varias centenas de mieras), lo cual supone una ventaja muy sustancial frente a cualquier otro método conocido, incluso frente a FF convencional.
Estas ventajas permiten aplicar el concepto divulgado en D1 mediante un dispositivo multi-celda, en el que se dé respuesta a las demandas de generación de burbujas y su posterior inyección en la capa límite turbulenta que envuelve la zona mojada del casco de una embarcación.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Fig. 1 : Detalle de celda, en sección paralela a las dimensiones principales. Se trata del modelo en que hay dos orificios de alimentación de agua flanqueando el chorro formado desde un orificio anterior de alimentación de gas.
Fig. 2: Detalle de una combinación de tres celdas, con otra configuración de celda más simple que dispone de sólo un orificio de entrada de agua y otro de gas.
Fig. 3: Sección transversal de una banda o cinta de eyección, dotada de una forma externa a modo de medio perfil hidrodinámico. Se aprecian en corte los conductos
HOJA DE SUSTITUCIÓN (REGLA 26) principales de distribución (1-2), cuya sección es muy superior a la del orificio de eyección (3).
Fig. 4: Sección de una banda, mostrando la disposición de los conductos de distribución y los huecos de celda. En esta configuración, más simple, cada celda consta de un solo orificio de alimentación de gas y de agua. Los orificios de alimentación de gas están situados en posición anterior para asegurar el efecto enfocante del agua.
DESCRIPCIÓN RESUMIDA DE LA INVENCIÓN
La presente invención hace referencia a un dispositivo para la generación de burbujas destinadas a incorporarse principalmente a la capa límite asociada al casco de una embarcación en movimiento. El objeto de tales burbujas es reducir la resistencia de fricción que el medio acuático ejerce sobre el casco de la embarcación, limitando su velocidad de avance y contribuyendo notablemente al consumo energético. Para ello, es preciso asegurar un principio de generación y distribución de burbujas que facilite la permanencia de un alto número de ellas en la proximidad de la pared del casco (zona mojada) y en el interior de la capa límite turbulenta.
El dispositivo propuesto es un sistema multi-celda acoplado a la embarcación. Dicho sistema está recorrido por dos conductos de distribución principal, uno de agua a presión (preferentemente procedente del medio acuático de navegación) y otro de un gas a presión (preferentemente aire), que alimentan, en forma secuencial, paralela o en combinación, a múltiples celdas eyectoras de burbujas. Cada celda está configurada como un espacio hueco de capa delgada limitada por dos superficies de cierre esencialmente planas y paralelas entre sí; el perímetro de cada celda está constituido por una sección de borde impermeable salvo en un orificio de eyección de burbujas al medio acuático exterior. Al menos una de dichas dos superficies de cierre está perforada en cada celda por uno o más orificios de alimentación de agua, conectados con el conducto de distribución de agua. Asimismo, al menos una de dichas dos superficies de cierre está perforada en cada celda por uno o más orificios de alimentación de gas, conectados con el conducto de distribución de gas. La alimentación de ambos fluidos en cada celda origina un régimen de flujo esencialmente bidimensional, paralelo al plano de dichas superficies de cierre. La corriente de gas inyectada en cada celda
HOJA DE SUSTITUCIÓN RE constituye un chorro que presenta un tramo laminar y estable, rodeado y guiado por el agua también inyectada en cada celda; el citado chorro se dirige hacia dicho orificio de eyección; las condiciones para la formación del chorro se regulan ajusfando los caudales de gas y agua inyectados. Durante la eyección de ambos fluidos, el agua rodea al chorro de gas, moldeando bajo su simple acción hidrodinámica a dicho gas y asegurando su enfoque, es decir, la concentración del flujo del gas en un chorro de diámetro reducido, que se inestabiliza al atravesar el orificio de eyección, rompiéndose en una secuencia de burbujas liberadas en el medio acuático exterior. Aspectos esenciales de la invención propuesta en las reivindicaciones siguientes son: (1) la posibilidad de adaptar, sin modificar el dispositivo, el diámetro y régimen de flujo en el chorro a los requerimientos de producción de burbujas; (2) la posibilidad de utilizar como gas el aire y como líquido el del propio medio acuático, con el consiguiente ahorro en componentes y simplificación en el procedimiento; (3) la geometría plana y aplastada de las celdas, idónea para asegurar la máxima proximidad al casco y por lo tanto la inyección de burbujas próximas a la pared de la embarcación; (4) la simplicidad del diseño, que permite la producción del dispositivo como banda continua, potencial mente flexible y con un número ilimitado de celdas; la banda continua es cortada apropiadamente y situada de forma óptima para formar franjas de emisión de burbujas en la zona mojada del casco; (5) en su configuración más simple, cada celda consta de un solo orificio de alimentación de gas y de agua: los orificios de alimentación de gas están situados en posición anterior para asegurar el efecto enfocante del agua; (6) el carácter achatado de cada celda es compatible con un diseño general de la banda continua que minimice las pérdidas hidrodinámicas ligadas a la distorsión de flujo; en particular, cada banda puede diseñarse de manera que su sección sea aproximadamente la de medio perfil esbelto, con un borde romo en el borde de avance y un extremo afilado en el que se sitúan los orificios de eyección.
DESCRIPCIÓN DE LA INVENCIÓN
La invención descrita en el presente documento contempla un dispositivo para la generación de burbujas destinadas a incorporarse principalmente a la capa límite asociada al casco de una embarcación en movimiento. El objeto de tales burbujas es reducir la resistencia de fricción que el medio acuático ejerce sobre el casco de la embarcación, limitando su velocidad de avance y contribuyendo notablemente al
HOJA DE SUSTITUCIÓN REGLA 26 consumo energético. Para ello, es preciso asegurar un principio de generación y distribución de burbujas que facilite la permanencia de un alto número de ellas en la proximidad de la pared del casco (zona mojada) y en el interior de la capa límite turbulenta. El dispositivo propuesto es un sistema multi-celda acoplado a la embarcación.
Dicho sistema está recorrido por dos conductos de distribución principal, un conducto (1) de agua a presión (preferentemente procedente del medio acuático de navegación) y otro conducto (2) de un gas a presión (preferentemente aire), que alimentan, en forma secuencial, paralela o en combinación, a múltiples celdas eyectoras de burbujas. Cada celda está configurada como un espacio hueco de capa delgada limitada por dos superficies de cierre esencialmente planas y paralelas entre sí; el perímetro de cada celda está constituido por una sección de borde impermeable salvo en un orificio de eyección (3) de burbujas al medio acuático exterior. Al menos una de dichas dos superficies de cierre está perforada en cada celda por uno o más orificios de alimentación de agua (4) , conectados con el conducto de distribución de agua (1). Asimismo, al menos una de dichas dos superficies de cierre está perforada en cada celda por uno o más orificios de alimentación de gas (5), conectados con el conducto de distribución de gas (2). La alimentación de ambos fluidos en cada celda origina un régimen de flujo esencialmente bidimensional, paralelo al plano de dichas superficies de cierre. La corriente de gas inyectada en cada celda da lugar a un micro-torrente continuo que presenta un tramo laminar, estable y estacionario, rodeado y guiado por el agua también inyectada en cada celda; el citado micro-torrente se dirige hacia dicho orificio de eyección (3); las condiciones para la formación del micro-torrente se regulan ajusfando los caudales de gas y agua inyectados; durante la eyección de ambos fluidos a través del canal de salida, el agua rodea al micro-torrente de gas, moldeando bajo su simple acción hidrodinámica a dicho gas y asegurando la concentración del flujo del gas en un chorro de diámetro reducido, que se inestabiliza al atravesar el orificio de eyección (3) hacia el canal de salida, rompiéndose en una secuencia de burbujas que son liberadas en el medio acuático exterior al salir de dicho canal de salida. La sección de cada uno de los conductos de distribución (1-2) es al menos cinco veces superior a la suma de todas las secciones de los orificios de eyección (3). Aspectos esenciales de la invención propuesta en las reivindicaciones siguientes son: (1) la posibilidad de adaptar, sin modificar el dispositivo, el diámetro y régimen de flujo en el chorro a los requerimientos de producción de burbujas; (2)
HOJA DE SUSTITUCIÓN (REGLA 26) la posibilidad de utilizar como gas el aire y como líquido el del propio medio acuático, con el consiguiente ahorro en componentes y simplificación en el procedimiento; (3) la geometría plana y aplastada de las celdas, idónea para asegurar la máxima proximidad al casco y por lo tanto la inyección de burbujas próximas a la pared de la embarcación; (4) la simplicidad del diseño, que permite la producción del dispositivo como banda continua, potencialmente flexible y con un número ilimitado de celdas; la banda continua puede ser cortada apropiadamente y situada de forma óptima para formar franjas de emisión de burbujas en la zona mojada del casco; (5) en su configuración más simple, cada celda consta de un solo orificio de alimentación de gas y de agua: los orificios de alimentación de gas están situados en posición anterior para asegurar el efecto enfocante del agua; (6) el carácter achatado de cada celda es compatible con un diseño general de la banda continua que minimice las pérdidas hidrodinámicas ligadas a la distorsión de flujo; en particular, cada banda puede diseñarse de manera que su sección sea aproximadamente la de medio perfil esbelto, con un borde romo en el borde de avance y un extremo afilado en el que se sitúan los orificios de eyección.
En particular, la presente invención permite acceder a las siguientes ventajas, especialmente atractivas para la generación de burbujas y su permanencia en la capa límite de una embarcación:
• Obtención de burbujas de muy pequeño diámetro, cuya tendencia a permanecer dentro de la capa límite es mayor (más fácilmente arrastrables, menos sometidas a la fuerza de flotación). Por el contrario, las tecnologías basadas en matrices porosas o en simples superficies de cierre perforadas ("array of holes") dan lugar a grandes burbujas, que tienen tendencia a rebasar la escala de la capa límite y a escapar de ella.
• Muy alta relación entre el caudal de gas y el de líquido, que origina una notable reducción en la disipación viscosa dentro de la capa límite turbulenta
(elevada relación de vacío -"void ratio"-).
• Requerimiento energético moderado. Las sobrepresiones de gas y de agua necesarias para impulsar el sistema de burbujeo son reducidas debido a la gran sencillez del diseño de flujos. Con ello se garantiza que los ahorros energéticos
HOJA DE SUSTITUCIÓN REGLA 26 conseguidos mediante la creación de una capa límite burbujeante no son consumidos por el sobre-coste de bombeo.
• Escasa pérdida de carga en los conductos de distribución de gas y de agua, con lo que se asegura la homogeneidad en el funcionamiento de todas las celdas. Para ello es preciso que prácticamente toda la pérdida de carga en la línea de flujo se produzca en cada uno de los orificios de eyección de burbujas. Para conseguirlo, basta con diseñar el dispositivo de manera que la sección de cada uno de los conductos de distribución sea considerablemente superior a la suma de todas las secciones de los orificios de eyección. En la práctica, basta con que la relación de áreas sea superior a 5.
• Facilidad de construcción en serie, en forma de mangas o tiras que alojan longitudinalmente las sucesivas celdas. Esto abre la puerta a un drástico abaratamiento del sistema, que puede orientarse a su instalación y descarte rápidos, ahorrando con ello gastos de mantenimiento.
HOJA DE SUSTITUCIÓN REGLA 26

Claims

REIVINDICACIONES
1. Dispositivo para la generación de burbujas destinadas a incorporarse principalmente a la capa límite turbulenta de la superficie mojada del casco de una embarcación en movimiento integrado por un sistema multi-celda adherido a las paredes del casco de dicha embarcación caracterizado porque dicho sistema dispone al menos de un eje de circulación principal recorrido por dos conductos de distribución, un conducto (1) de agua a presión (preferentemente procedente del medio acuático de navegación) y otro conducto (2) de un gas a presión (preferentemente aire), que alimentan, en forma secuencial, paralela o en combinación, a múltiples celdas eyectoras de burbujas; cada una de dichas celdas está configurada como un espacio hueco de capa delgada limitada en el sentido del espesor por dos superficies de cierre esencialmente planas y paralelas entre sí, viniendo definida la geometría de dicha capa delgada por dos dimensiones principales: un espesor e y una superficie de extensión S; el perímetro de cada celda está limitado por una sección de borde impermeable salvo en un orificio de eyección (3) de burbujas al medio acuático exterior; al menos una de dichas dos superficies de cierre está perforada en cada celda por uno o más orificios de alimentación de agua (4), conectados con el conducto de distribución de agua (1); y al menos una de dichas dos superficies de cierre está perforada en cada celda por uno o más orificios de alimentación de gas (5), conectados con el conducto de distribución de gas (2); la alimentación de ambos fluidos en cada celda origina un régimen de flujo esencialmente bidimensional, paralelo al plano de dichas superficies de cierre; la corriente de gas inyectada en cada celda da lugar a un micro-torrente continuo que presenta un tramo laminar, estable y estacionario, rodeado y guiado por el agua también inyectada en cada celda; el citado micro-torrente se dirige hacia dicho orificio de eyección (3); las condiciones para la formación del micro-torrente se regulan ajusfando los caudales de gas y agua inyectados; durante la eyección de ambos fluidos a través del canal de salida, el agua rodea al micro-torrente de gas, moldeando bajo su simple acción hidrodinámica a dicho gas y asegurando la concentración del flujo del gas en un chorro de diámetro reducido, que se inestabiliza al atravesar el orificio de eyección (3) hacia el canal de
HOJA DE SUSTITUCIÓN (REGLA 26) salida, rompiéndose en una secuencia de burbujas que son liberadas en el medio acuático exterior al salir de dicho canal de salida; la sección de cada uno de los conductos de distribución (1-2) es al menos cinco veces superior a la suma de todas las secciones de los orificios de eyección (3).
2. Dispositivo según la reivindicación 1 , caracterizado por que el área del orificio de eyección (3) en cada celda es inferior a la suma de las áreas de los orificios de alimentación de agua y de gas (4-5).
3. Dispositivo según la reivindicación 1 , caracterizado por que el área total de los orificios de alimentación de agua (4) en cada celda es inferior a 0.5 veces la extensión S de dicha celda.
4. Dispositivo según la reivindicación 1 , caracterizado por que el área total de los orificios de alimentación de gas (5) en cada celda es inferior a 0.5 veces la extensión S de dicha celda.
5. Dispositivo según las reivindicaciones 1 a 4, caracterizado por que dichas celdas están distribuidas longitudinalmente en una pieza o banda continua de un material deformable e impermeable que puede ser un polímero o un metal, siendo dicha banda recorrida longitudinalmente por los conductos de distribución de agua y de gas; una de las dos caras exteriores de dicha banda es adhesiva o dispone de elementos de sujeción a un casco de embarcación.
6. Dispositivo según la reivindicación 5, caracterizado por que dicha banda tiene una sección transversal con la forma de medio perfil hidrodinámico, correspondiendo dicha cara de adhesión o sujeción al borde plano de dicho perfil; dicho perfil dispone de un borde anterior romo, y de un borde posterior afilado en el que se encuentran las salidas de dichos orificios de eyección (3).
7. Dispositivo según las reivindicaciones 5 a 6, caracterizado por que dichas celdas son definidas mediante el ensamblaje de tres láminas delgadas y alargadas: una lámina de contacto (6), cuya cara externa constituye la cara
HOJA DE SUSTITUCIÓN (REGLA 26) de adhesión de dicha banda; una lámina intermedia (7), troquelada de forma periódica, que define los espacios de celda; y una lámina tapadera (8), en la que están practicados los orificios de alimentación (4-5).
8. Dispositivo según la reivindicación 7, caracterizado por que al menos una de dichas láminas es de material polimérico.
9. Dispositivo según la reivindicación 7, caracterizado por que al menos una de dichas láminas es de material metálico.
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2005/000329 2004-06-11 2005-06-09 Dispositivo generador de burbujas para la reducción de fricción en el casco de embarcaciones WO2005122676A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200401474 2004-06-11
ESP200401474 2004-06-11

Publications (2)

Publication Number Publication Date
WO2005122676A2 true WO2005122676A2 (es) 2005-12-29
WO2005122676A3 WO2005122676A3 (es) 2006-02-02

Family

ID=35510171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000329 WO2005122676A2 (es) 2004-06-11 2005-06-09 Dispositivo generador de burbujas para la reducción de fricción en el casco de embarcaciones

Country Status (1)

Country Link
WO (1) WO2005122676A2 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122736A1 (ja) 2008-04-01 2009-10-08 独立行政法人海上技術安全研究所 船舶の摩擦抵抗低減装置
WO2012080583A1 (fr) * 2010-12-14 2012-06-21 Olivier Colas Dispositif pour la reduction des forces de frottement entre une surface immergee d'une embarcation et l'eau.
EP3895974A1 (en) * 2020-04-17 2021-10-20 Marine Performance Systems BV Belt and method for reducing the drag of a hull of a floating vessel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US640946A (en) * 1899-02-17 1900-01-09 Gustave Quanonne Air-ejecting apparatus for vessels.
US2954750A (en) * 1954-11-17 1960-10-04 Stuart F Crump Mixer nozzle
US3125977A (en) * 1964-03-24 Apparatus for reducing the wave making resistance for boats
WO1988007956A1 (en) * 1987-04-16 1988-10-20 Allan Donald Thomas Microbubble injection device for reducing the fluid frictional resistance against a vessel
US5117882A (en) * 1987-02-24 1992-06-02 Corwin R. Horton Microbubble-generating and dispensing devices and methods
US5575232A (en) * 1993-05-11 1996-11-19 Hiroharu Kato Method and device for reducing friction on a navigating vehicle
WO2004065019A1 (es) * 2003-01-17 2004-08-05 Universidad De Sevilla Método y dispositivo de generación de microcorrientes fluidas para la producción de microburbujas, microgotas, microemulsiones, y microcápsulas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1592995A (es) * 1968-11-25 1970-05-19

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125977A (en) * 1964-03-24 Apparatus for reducing the wave making resistance for boats
US640946A (en) * 1899-02-17 1900-01-09 Gustave Quanonne Air-ejecting apparatus for vessels.
US2954750A (en) * 1954-11-17 1960-10-04 Stuart F Crump Mixer nozzle
US5117882A (en) * 1987-02-24 1992-06-02 Corwin R. Horton Microbubble-generating and dispensing devices and methods
WO1988007956A1 (en) * 1987-04-16 1988-10-20 Allan Donald Thomas Microbubble injection device for reducing the fluid frictional resistance against a vessel
US5575232A (en) * 1993-05-11 1996-11-19 Hiroharu Kato Method and device for reducing friction on a navigating vehicle
WO2004065019A1 (es) * 2003-01-17 2004-08-05 Universidad De Sevilla Método y dispositivo de generación de microcorrientes fluidas para la producción de microburbujas, microgotas, microemulsiones, y microcápsulas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122736A1 (ja) 2008-04-01 2009-10-08 独立行政法人海上技術安全研究所 船舶の摩擦抵抗低減装置
US9376167B2 (en) 2008-04-01 2016-06-28 National Maritime Research Institute Frictional resistance reduction device for ship
EP3441298A1 (en) 2008-04-01 2019-02-13 National Institute of Maritime, Port and Aviation Technology Frictional resistance reduction device for ship
WO2012080583A1 (fr) * 2010-12-14 2012-06-21 Olivier Colas Dispositif pour la reduction des forces de frottement entre une surface immergee d'une embarcation et l'eau.
EP3895974A1 (en) * 2020-04-17 2021-10-20 Marine Performance Systems BV Belt and method for reducing the drag of a hull of a floating vessel
WO2021209639A1 (en) 2020-04-17 2021-10-21 Marine Performance Systems B.V. Belt and method for reducing the drag of a hull of a floating vessel.

Also Published As

Publication number Publication date
WO2005122676A3 (es) 2006-02-02

Similar Documents

Publication Publication Date Title
ES2538380T3 (es) Barco de reducida resistencia de rozamiento, y método para dirigirlo
US6145459A (en) Friction-reducing ship and method for reducing skin friction
CN106414229B (zh) 空气润滑系统及包括这种系统的船舶
US5575232A (en) Method and device for reducing friction on a navigating vehicle
US7997221B2 (en) Apparatus for reducing drag on a nautical vessel
JP2009274705A (ja) 摩擦抵抗低減船およびその運転方法
US8763547B2 (en) Apparatus for lowering drag on a moving nautical vessel
WO2008005336B1 (en) Monohull fast ship or semi-planing monohull with a drag reduction method
WO2005122676A2 (es) Dispositivo generador de burbujas para la reducción de fricción en el casco de embarcaciones
JPH07156859A (ja) 航走体の摩擦を低減する方法及び摩擦低減航走体と摩擦低減に使用するマイクロバブルの発生方法及びその装置
CN111746710B (zh) 基于废气利用的船舶减阻系统
JP3185047B2 (ja) 船体摩擦抵抗低減方法
JP2020511364A (ja) 船のエアクッションスカートスリーブ
JP2002002582A (ja) 摩擦抵抗低減船
Kato et al. Microbubbles as a skin friction reduction device–a midterm review of the research
US20020029731A1 (en) Method of reducing frictional resistance of a hull, and frictional resistance reducing vessel
CN102015431A (zh) 组装式休闲游艇
JPH10175587A (ja) 船舶の摩擦抵抗低減装置
JPH09151913A (ja) 船舶等の摩擦を低減する方法及び摩擦低減船
JPH09240571A (ja) 船舶の摩擦抵抗低減装置
Waskito et al. Micro-Bubble drag reduction with triangle bow and stern configuration using porous media on self propelled barge model
CN110304193B (zh) 一种船舶反气泡减阻方法及系统
JP2010115942A (ja) 摩擦抵抗低減船およびその運転方法
JP2023132401A (ja) 摩擦抵抗低減システム、航走体及び航走体の摩擦抵抗低減方法
JP3077032B1 (ja) エアクッション船

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase