WO2005120211A1 - Method of growing plant and apparatus therefor - Google Patents

Method of growing plant and apparatus therefor Download PDF

Info

Publication number
WO2005120211A1
WO2005120211A1 PCT/JP2005/008747 JP2005008747W WO2005120211A1 WO 2005120211 A1 WO2005120211 A1 WO 2005120211A1 JP 2005008747 W JP2005008747 W JP 2005008747W WO 2005120211 A1 WO2005120211 A1 WO 2005120211A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
plant
nozzle
fog
liquid
Prior art date
Application number
PCT/JP2005/008747
Other languages
French (fr)
Japanese (ja)
Inventor
Akihisa Minato
Takayuki Asada
Original Assignee
Aquatec Co., Ltd.
Oji Paper Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquatec Co., Ltd., Oji Paper Co., Ltd. filed Critical Aquatec Co., Ltd.
Priority to AU2005251579A priority Critical patent/AU2005251579A1/en
Publication of WO2005120211A1 publication Critical patent/WO2005120211A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide

Definitions

  • the present invention relates to a plant growing method and a cutting method.
  • This technology promotes plant growth and can be widely used as a means to increase the yield of products such as agriculture and forestry. It is also a technique to promote rooting of cuttings of plants, and rooted cuttings are used in large quantities for purposes such as planting trees.
  • Patent Document 1 a technique of giving carbonated water in which disodium carbon is dissolved at a high concentration to a plant to promote the growth of the plant
  • Patent Document 2 a technique of giving carbonated water in which disodium carbon is dissolved at a high concentration to a plant to promote the growth of the plant
  • Patent Document 3 a technique of giving carbonated water in which disodium carbon is dissolved at a high concentration to a plant to promote the growth of the plant
  • Patent Document 2 a seedling planted with carbonated water.
  • Patent Document 2 a technique that enables afforestation in areas with severe environmental stress
  • Patent Document 3 A technique for promoting rooting of cuttings by supplying them to cuttings
  • Patent Documents 4 and 5 a method for producing a carbon dioxide solution for growing plants and a supply device of a carbon dioxide solution for growing plants.
  • Patent document 1 JP-A-2003-111521
  • Patent Document 2 JP 2003-325063
  • Patent Document 3 JP-A-2003-339227
  • Patent Document 4 Patent No. 2843772
  • Patent Document 5 Patent No. 2843773
  • Patent Document 6 a technique and a cutting method for exposing carbon dioxide to a certain space to give a high concentration of carbon dioxide to a plant to promote the growth of the plant.
  • the degree of opening of the stomata which is the path of CO present in the leaves of plants, depends on the relative
  • Patent Document 6 JP-A-2001-186814
  • Patent Document 1 has a problem in that since the mist to be sprayed has a large particle size, almost all of the mist drops as droplets after coming into contact with the plant, and a sufficient effect cannot be obtained.
  • Promoting plant cultivation and promoting rooting of cuttings can directly lead to industrial benefits, so plant cultivation can be carried out at a high level under various breeding environments.
  • the development of simple and easy CO fertilization technology that promotes stable and continuous promotion and also enables rooting from cuttings with high efficiency and stability is awaited.
  • the present invention has been made in view of the above circumstances, and is a technology for promoting the stable, stable and sustainable growth of plants at a lower cost, more efficiently, and more efficiently than in the past. Provide cutting techniques to promote rooting from the roots.
  • a method for growing a plant according to the present invention comprises supplying carbon dioxide and a liquid to a two-fluid nozzle, and averaging carbon dioxide at a saturation concentration or higher in atmospheric air. Carbon dioxide fog with a particle size of 20 m or less is generated and sprayed intermittently on plants.
  • the plant to which the present invention is applied is not particularly limited, it also functions effectively for rooting of cutting plants. In this sense, the plant growing method of the present invention can be said to be a cutting rooting promoting method.
  • the two-fluid nozzle according to the present invention is used in the above-described method for growing a plant, and is configured such that a high-pressure gas is supplied from an air supply line and a liquid is supplied from a liquid supply line.
  • the apparatus for producing carbonated fog according to the present invention is used in the above-described plant growing method, and includes a two-fluid nozzle, an air supply line for supplying high-pressure gas to the two-fluid nozzle, and And a supply line for supply.
  • the carbonated fog having an average particle diameter of 20 m or less produced according to the present invention is typically intermittently sprayed into a closed space made of agricultural vinyl or the like.
  • the carbonate fog of the present invention has an average particle diameter of 20 ⁇ m or less, but preferably has an average particle diameter of 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the particle diameter is measured by a laser method using laser light with a measurement point of 200 mm from the ejection port in a state where carbonic acid fog is sprayed sideways.
  • the immersion method in which fog is received on a plate glass coated with thick silicone oil and the number of particles is counted for each photographic power taken cannot be used because the particle size of the carbon dioxide fog of the present invention is small.
  • the liquid typically means water such as tap water or industrial water, but water containing other components is used without departing from the spirit of the present invention. You may do it.
  • the carbon dioxide may be supplied to the two-fluid nozzle alone, or may be supplied to the two-fluid nozzle after being mixed with another gas such as air.
  • the mixed concentration of carbon dioxide can be increased or decreased without changing the pressure of the high-pressure gas, and the carbon dioxide can be adjusted independently of the humidity conditions. The advantage is that the concentration can be controlled.
  • the two-fluid nozzle of the present invention is a device that generates a fog by causing a liquid such as water to collide with a gas containing carbon dioxide at a high speed.
  • Such two-fluid nozzles generally include an internal mixing type in which two fluids collide inside the nozzle, an external mixing type in which two fluids collide outside the nozzle, and fine particles generated by each two-fluid nozzle.
  • any type may be used. However, in order to prevent clogging, gas and liquid are ejected separately and then collide in the outer space of the nozzle. External mixed or collision type should be used.
  • a pressurization method in which a gas and a liquid are respectively pressurized and supplied to the nozzle may be adopted, but the liquid is automatically sucked in due to the gas ejection operation.
  • the siphon type is superior in simplicity.
  • FIG. 1 is a configuration diagram showing a schematic configuration of an apparatus for producing carbonic acid fog.
  • FIG. 2 illustrates a cross-sectional configuration of a discharge nozzle.
  • FIG. 5 is a central cross-sectional view of the relay section in an assembled state.
  • FIG. 4 Central cross-sectional view of the proximal nozzle section (a), right side view of the proximal nozzle section (b), central cross-sectional view of the distal nozzle section (c), right side view of the distal nozzle section (d), FIG. 4 is a central sectional view of a discharge nozzle (e), a central sectional view of a cap portion (f), and a right side view of a cap portion (g).
  • FIG. 5 is a configuration diagram showing a schematic configuration of a carbon dioxide fog production apparatus with improved practicality.
  • FIG. 6 is a drawing showing a growth promoting effect of carbonic acid fog.
  • FIG. 7 is a drawing showing an increase in carbon dioxide concentration by carbon dioxide fog.
  • FIG. 1 is a configuration diagram showing an example of a carbonic acid fog production apparatus EQU of the present invention, which is typically installed in a greenhouse.
  • EQU is operated by supplying only carbon dioxide at a pressure of 0.4 MPa and a flow rate of about 30 to 40 liters Z, an ultrafine mist with an average particle diameter of about 7.0 to 14.0 m is obtained.
  • Carbon dioxide fog having a dissolved carbon dioxide concentration of 2000 mgZ liter or more can be produced.
  • the portion shown by the broken line in FIG. 1 is a portion used for a control experiment of the plant growing method of the present invention, and does not realize the present invention.
  • this manufacturing apparatus EQU adjusts the gas pressure of the compressor 1 that generates compressed air, the gas cylinder 2 that contains the carbon dioxide, and the gas pressure of the carbon dioxide that is output from the gas cylinder 2. It is composed of a regulator 3 that controls the operation state of the EQU of the present device, a discharge nozzle 5 that outputs carbon dioxide fog, and a liquid tank 6 that stores water for carbon dioxide fog.
  • control main unit 4 includes check valves 7 and 9, needle valves 8 and 10, an electromagnetic on-off valve 11, and a sequencer 12 for controlling the operation of the needle valves 8 and 10 and the electromagnetic on-off valve 11. It consists of: Then, the opening ratio of the needle valves 8 and 10 is appropriately adjusted to adjust the mixing ratio of air and carbon dioxide. However, if it is not necessary to adjust the dissolved amount of carbon dioxide, the compressed air flow path consisting of the compressor 1, the check valve 7, and the dollar valve 8 is not necessary. The flow passage is not always essential for the present invention.
  • FIG. 2 illustrates a cross-sectional structure of an example of the discharge nozzle 5.
  • the discharge nozzle 5 has a nozzle body 20 formed in a substantially cylindrical shape, a substantially ring-shaped relay portion 21 forming a high-pressure gas passage, and a high-pressure gas-liquid passage.
  • Base end to form It comprises a nozzle section 22, a tip nozzle section 23 for ejecting a liquid and a high-pressure gas to collide with each other, and a cap section 24 for fastening the above sections 21, 22, 23 to the nozzle body section 20 and fixing them.
  • the protrusions 25, 25 provided on the outer periphery of the distal end of the nozzle body 20 (see FIG. 3 (b))
  • the circumferential grooves 26, 26 provided on the inner periphery of the base end of the force cap portion 24 (FIG. 4 (f) (g), the cap part 24 is fixed to the nozzle body part 20.
  • the nozzle body 20 in FIG. 2 is made of metal such as stainless steel or plastic, and as shown in the central cross-sectional view of FIG.
  • the suction passage 31 and the receiving opening 32 of the member on the distal end side are each formed in a columnar shape.
  • FIG. 3 (b) which is a right side view of FIG. 3 (a)
  • the columnar gas introduction path 30 communicates with the receiving opening 32 through the arcuate communication groove 33.
  • the relay portion 21 is a cylindrical integrally molded product made of an elastic material such as a rubber material. As shown in FIGS. 3 (c) and 3 (d), the relay portion 21 is connected to the central through hole 34 at four locations. A hole 35 is formed. As shown in FIG. 3 (e) in the assembled state, the communication hole 35 communicates with the arcuate communication groove 33, and the high-pressure gas introduced from the gas introduction passage 30 receives four communication holes. It will be introduced in 35.
  • the central through-hole 34 is continuous with the suction passage 31 of the nozzle body 20. As described above, between the gas introduction path 30 and the base end nozzle section 22, the relay section 21, which is an elastic body, is disposed, and the relay section 21 is compressed by the cap member 23, thereby achieving high airtightness. Is performed.
  • the proximal nozzle portion 22 includes a round bar-shaped small-diameter portion 22a, a large-diameter portion 22b, a medium-diameter portion 22c, a conical portion 22d, and a cylindrical protrusion 22e. It is configured integrally.
  • the outer diameter of the small-diameter portion 22a corresponds to the inner diameter of the central through hole 34 of the relay portion 21, and the outer diameter of the large-diameter portion 22b matches the outer diameter of the relay portion 21. 4 (e)).
  • the base nozzle 22 has a columnar liquid passage 36 formed therethrough through the small-diameter portion 22a, the large-diameter portion 22b, and the middle-diameter portion 22c.
  • the liquid passage 36 is continuous with a small-diameter ejection passage 37 formed in the conical portion 22d and the protruding portion 22e.
  • the inner diameter of the ejection passage 37 is not particularly limited, but is about 0.3 to 0.7 mm and is not extremely thin, so that there is little possibility of clogging.
  • a cylindrical gas passage 38 is formed through the large diameter portion 22b and the medium diameter portion 22c. As shown in FIG. 4 (b), which is a right side view of FIG. Are equally formed in the circumferential direction.
  • the gas passage 38 communicates with the communication hole 35 of the relay section 21 (see FIG. 4 (e)), and the high-pressure gas that has passed through the four communication holes 35 is further pressurized to three gas It will be introduced into passage 38.
  • the distal nozzle portion 23 has an internal structure substantially corresponding to the middle diameter portion 22c and the conical portion 22d of the proximal nozzle portion 22. More specifically, the distal nozzle portion 23 has a flange portion 39 having the same outer diameter as the large diameter portion 22b of the proximal nozzle portion 22, an outer peripheral portion 40 continuous with the flange portion 39, and a high pressure gas directed toward the center.
  • the two tip portions 41, 41, which are ejected so as to hit each other, and the central portion 42 are integrally formed.
  • Two cylindrical holes 43, 43 are formed outside the central portion 42, and the cylindrical holes 43 are continuous with the conical holes 44, 44 of the distal end portion 41. Further, small-diameter ejection holes 45, 45 are formed in the distal end portion 41 so as to be continuous with the conical holes 44, 44. The ejection holes 45, 45 are formed so as to be inclined so as to intersect at the position of the center axis of the distal nozzle portion 23 and the proximal nozzle portion 22 (see FIG. 4 (e)).
  • the central portion 42 has a conical taper surface 42a having a gentler smooth surface than the conical portion 22d of the proximal nozzle portion 22, and a central hole 46 is formed at the center of the distal end. I have. As shown in FIG. 4 (e), the cylindrical projection 22e of the proximal nozzle portion 22 is inserted into the center hole 46, and the conical portion 22d of the proximal nozzle portion 22 and the conical taper surface 42a of the central portion 42 are inserted. A gas passage narrowing toward the tip is formed between them.
  • the discharge nozzle 5 shown in FIG. 1 is configured as described above. Therefore, the high-pressure gas supplied from the control main unit 4 is ejected from the ejection hole 45 through the gas introduction path 30, the communication groove 33, the communication hole 35, and the gas passage 38, and is also formed around the cylindrical projection 22e. It is further pressurized and ejected from the formed gas passage. Therefore, the distal end side of the cylindrical projection 22e is in a negative pressure state, and the liquid stored in the liquid tank 6 is sucked by the siphon principle. The suctioned liquid becomes narrower in the traveling direction with the suction flow path 31, the central through hole 34, the liquid path 36, and the ejection path 37, so that the liquid is spouted vigorously from the cylindrical projection 22e. .
  • the high-pressure gas in the gas passage 38 is also ejected from the small-diameter ejection holes 45.
  • the ejection direction of the high-pressure gas ejected from these two ejection holes 45 is The force intersected on the center axis of the liquid.
  • the liquid sucked into the high-pressure gas is ejected to the center axis together with the high-pressure gas at a high speed. Therefore, at the intersection 0 (see Fig. 4 (e)), the liquid and the gas collide again at a high speed, and as a result, the liquid particles become ultrafine to an average particle diameter of about 7.0 to 14.0 m.
  • a high concentration of dissolved gas can be achieved by contact of the gas with the fine liquid.
  • carbon dioxide fog having a high dissolved concentration of carbon dioxide is ejected from the discharge nozzle 5.
  • the carbon fog particles are so fine that they stay in the air for a long time after being ejected, and are effective in growing plants because the area of contact with plants is small.
  • the effect of the present device EQU can be further described as follows.
  • it is the concentration of carbon dioxide in the intercellular space of plant leaves that controls the rate-limiting step of carbon fixation (such as photosynthesis) necessary for plant growth.
  • the most effective way to increase this is to increase the concentration of carbon dioxide around the leaves of the plant and at the same time to increase the humidity around the leaves of the plant so that the pores are sufficiently open. It is.
  • the concentration of carbon dioxide and the humidity around the leaves of the plant can be simultaneously and simply increased in an inexpensive and high state as much as possible. It is thought that promotion of rooting of cuttings is easily achieved.
  • the maximum width of the stomatal opening is a characteristic peculiar to the plant species, but is known to be in the range of 1 to 10 m except for evergreen conifers and desert shrubs.
  • the carbonated water can directly enter the intercellular space of the plant leaf through the pore opening, so that the plant Promotion of breeding and rooting of cuttings are thought to be easily achieved
  • nitrogen and phosphate (per leaf area) contained in leaves other than the concentration of carbon dioxide in the intercellular space of the leaves of the plant are included.
  • Raw water for producing the carbonic acid fog of the present invention may contain these because it depends on the amounts of trace elements such as potassium, magnesium, calcium, iron and other trace elements. Each concentration can be freely changed according to the type of plant to be grown or cut.
  • the plants targeted by the present invention include, but are not particularly limited to, all common plants used in agriculture, forestry, and horticulture. Among them, the techniques of growing and cutting the cuttings of the genus Iris and Acacia, which have been widely planted in recent years, are particularly important.
  • Eucalyptus plants include Eucalyptus camaldulensis, Eucalyptus grandis (E. grandis), Eucalyptus globulus, and Eucalyptus nitens as pulpwood species for papermaking.
  • E. nitens eucalyptus 'E. tereticornis' ⁇ eucalyptus 'E. urophylla' ⁇ eucalyptus 'E. dunnii', etc.
  • Varieties and landscaping 'greening' ornamental species include eucalyptus 'Dan- (E. gunnii), eucalyptus' E. viminalis) and the like.
  • Acacia plants include Acacia auriculiformis (Acacia auriculiformis), Acacia mangium (A. mangium), Acacia mearansi (A. mearnsii), and Acacia classica (A crassicarpa), acacia 'A. aulacocarpa', etc., and hybrids having these as one parent, and their subspecies, varieties, and landscaping-greening 'as ornamental species, A. baileyana, Husa acacia (A. dealbata) etc. are included.
  • the force described for the “external mixing type” that mixes the liquid and the gas outside the discharge nozzle, in particular, the liquid inside the discharge nozzle is not limited to this configuration.
  • an “internal mixing type” for mixing gas and gas for mixing gas and gas.
  • a “collision type” in which the external mixing type discharge nozzles face each other and the particles are further hit against each other may be used.
  • the two-fluid nozzle since the two-fluid nozzle is used, it is possible to produce high-concentration carbon dioxide fog with a simple configuration.
  • the siphon system is adopted, and the liquid is sucked and supplied to the discharge nozzle, so that a liquid pump is not required, and in this sense, the simplicity is excellent.
  • the liquid may be supplied to the discharge nozzle using a liquid pump.
  • the liquid tank 6 may store nitrogen, phosphoric acid, potassium, magnesium, calcium, iron, and other components in the raw water. Also, if necessary, use raw water containing liquid manure or pesticides.
  • the discharge nozzle is An operation mode in which the operation is performed without supplying elements is also conceivable.
  • a vinyl dome covered with agricultural vinyl was provided, and the carbonated carbon dioxide equipment EQU shown in Fig. 1 was installed on both sides in the longitudinal direction. Then, using the broken line part of the carbon dioxide fog production equipment EQU, as a control experiment, air with a pressure increased to 0.4 Mpa by an air compressor was applied to tap water at a rate of 40 liters per minute per nozzle (hereinafter referred to as 40 L). Fine fog (fog) was created and sprayed into the dome covered with agricultural vinyl for 15 seconds at intervals of 15 minutes during the sunshine hours from 5:00 to 17:00 (Comparative Example 1). In this case, the spray amount was 40 ccZ per nozzle.
  • the above air (0.4 Mpa: 22.5 L / min per nozzle) was mixed with carbon dioxide blown from a carbon dioxide gas cylinder at a pressure of 0.4 Mpa at a rate of 17.5 L per minute, and mixed at a rate of 80 L per minute.
  • Tap water is drawn into carbonated water fine fog (carbonated fog) and sprayed into the dome covered with agricultural vinyl for 15 seconds from 5:00 to 17:00 at 15 minute intervals during the daylight hours (Example 1). ).
  • the spray amount was the same as that in Comparative Example 1, and the concentration of dissolved carbon dioxide measured by collecting the sprayed carbonated water was 700 mg / L.
  • the average particle size of the carbon dioxide fog was about 10 m when measured at a measurement point of 200 mm from the jet port by the laser method.
  • Seedling height at start of experiment ( Cl m) Seedling height after start of experiment ( Cl m) Increase rate 65 days after start of experiment Comparative example 1 30.9 ⁇ 0.7 41.3+ 1.5 1.34 ⁇ 0.03
  • Example 1 the carbon dioxide fog gradually increased the growth promoting effect after the start of the experiment compared to Comparative Example 1, and a statistically significant difference in the seedling height and the increase rate appeared 65 days after the start of the experiment.
  • Example 1 the carbon dioxide fog gradually increased the growth promoting effect after the start of the experiment compared to Comparative Example 1, and a statistically significant difference in the seedling height and the increase rate appeared 65 days after the start of the experiment.
  • eucalyptus globulus (E.globulus) was used as an experimental plant, and cuttings were performed in 12 replicates of 6 in each experimental environment. . ⁇ Moisture Two months later, excavation was carried out, and the number of roots, callus, and rot was counted. Table 2 shows the results.
  • Carbon dioxide fog promotes rooting of cuttings
  • Example 2 the effect of carbonic acid fog on promoting rooting appeared compared to Comparative Example 2, and the number of roots increased and the number of rots decreased, resulting in a statistically significant difference.
  • the first and second vinyl domes were installed in the greenhouse.
  • high-concentration carbonated water obtained by the plant growing apparatus described in FIG. 1 of Patent Document 1 was placed in the first vinyl dome.
  • a second vinyl dome installed in a greenhouse for 10 seconds at 10-minute intervals by blowing out carbon dioxide at a pressure of 0.4 Mpa at a rate of 30 L / min per nozzle and drawing tap water into the fog. (Example 3).
  • the concentration of the carbonated water collected near the sprayed outlet was measured and found to be 2,000 mg / L.
  • FIG. 7 shows the results of successive measurements of the carbon dioxide concentration in the second vinyl dome immediately after spraying.
  • the concentration of carbon dioxide in the dome rises sharply. This is probably because the carbon dioxide that is insoluble in water blew out. After that, the carbon dioxide fog floated inside the dome, so that the carbon dioxide concentration could be kept at 1,000 ppm or more for 2 minutes after spraying.
  • the amount of carbon dioxide in the dome was still about 500 ppm. Since the concentration of carbon dioxide in the greenhouse was 420 ppm, it was confirmed that the concentration of carbon dioxide in the second vinyl dome was increasing. Humidity was more than 90% immediately after spraying and more than 80% 6 minutes after spraying, and was kept higher than the humidity in the greenhouse (70%).
  • the present invention can be widely applied to agriculture 'forestry' and horticulture in general, and can increase yield and quality of crops such as cereals and vegetables, flowers and fruits, plantations and 'trees for greening'. It has an excellent effect on improvement and large-scale clone propagation by cuttings.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)

Abstract

Carbon dioxide and a liquid are fed to a binary nozzle, thereby forming a carbonic acid fog of about 10 μm average particle diameter containing carbon dioxide in a concentration of ≥ saturated concentration of atmospheric-pressure air, and the carbonic acid fog is intermittently sprayed over a plant. This enables acceleration of the growth of the plant efficiently, stably and continuously. Further, the rhizogenesis from scions can be accelerated efficiently and stably.

Description

明 細 書  Specification
植物の育成方法及びその装置  Plant growing method and apparatus
技術分野  Technical field
[0001] 本発明は、植物の育成方法および挿し木方法に関する。植物の育成を促進させる 技術であり、農業'林業などの生産物収量を増大させる手段として広く用いることがで きる。また植物の挿し穂の発根を促進させる技術であり、発根した挿し木苗は植林な どの目的で大量に使用される。  The present invention relates to a plant growing method and a cutting method. This technology promotes plant growth and can be widely used as a means to increase the yield of products such as agriculture and forestry. It is also a technique to promote rooting of cuttings of plants, and rooted cuttings are used in large quantities for purposes such as planting trees.
背景技術  Background art
[0002] 本発明者らは既に、二酸ィ匕炭素を高濃度に溶解させた炭酸水を植物に与えて植 物の育成を促進する技術 (特許文献 1)、また炭酸水を植林した苗に供給することで 環境ストレスの厳しい地域への植林を可能にする技術 (特許文献 2)、さらには炭酸 水、炭酸水素イオン水、炭酸イオン水力 なる群より選択される少なくとも一種の溶解 水を植物の挿し穂に供給して挿し穂の発根を促進する技術 (特許文献 3)を開発して いる。  [0002] The present inventors have already applied a technique of giving carbonated water in which disodium carbon is dissolved at a high concentration to a plant to promote the growth of the plant (Patent Document 1), and a seedling planted with carbonated water. Technology that enables afforestation in areas with severe environmental stress (Patent Document 2), and at least one type of dissolved water selected from the group consisting of carbonated water, bicarbonate ionized water, and carbonated ion hydropower. A technique for promoting rooting of cuttings by supplying them to cuttings (Patent Document 3) has been developed.
[0003] 類似の技術として、植物類生育用二酸化炭素溶液の製造方法及び植物類生育用 二酸化炭素溶液の供給装置 (特許文献 4及び特許文献 5)が開発されて ヽる。  [0003] As a similar technique, a method for producing a carbon dioxide solution for growing plants and a supply device of a carbon dioxide solution for growing plants (Patent Documents 4 and 5) have been developed.
特許文献 1:特開 2003-111521  Patent document 1: JP-A-2003-111521
特許文献 2:特開 2003-325063  Patent Document 2: JP 2003-325063
特許文献 3:特開 2003-339227  Patent Document 3: JP-A-2003-339227
特許文献 4:特許 2843772号  Patent Document 4: Patent No. 2843772
特許文献 5:特許 2843773号  Patent Document 5: Patent No. 2843773
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、二酸ィ匕炭素は水に溶解した後に極めて緩やかに炭酸 (H CO [0004] However, after dissolving in water, carbon dioxide (HCO)
2 3 )との平衡状 態に達し、炭酸の一部が電離して水素イオン (H+)を生じるため、水素イオン指数 (p H)は二酸化炭素の分圧に応じて低下する。例えば、純水 1リットルに二酸ィ匕炭素を 1 気圧での飽和濃度まで溶解させていくと、最大 10_3 91molの水素イオンと 0.12mMの重 炭酸イオンを含み、その pHは 3.91となる。従って pHの低下した炭酸水を植物に与え 、葉の表面に炭酸水を付着させて育成した場合、酸性化による障害や植物体からの 陽イオン (NH + K+など)の溶脱が起きるために、従来開発された技術では供給初 23), and a part of carbonic acid is ionized to generate hydrogen ions (H +), so that the hydrogen ion exponent (pH) decreases according to the partial pressure of carbon dioxide. For example, dissolving carbon dioxide in 1 liter of pure water to a saturation concentration of 1 atm gives a maximum of 10 3 91 mol of hydrogen ions and a weight of 0.12 mM. It contains carbonate ions and its pH is 3.91. Therefore, when carbonated water with a reduced pH is given to a plant and grown by attaching carbonated water to the leaf surface, damage due to acidification and leaching of cations (NH + K +, etc.) from the plant occur. First to supply with previously developed technology
4 、  Four ,
期には効果が上がるものの、安定的にかつ持続的に植物の育成を促進する技術、さ らには効率良く安定的に挿し穂からの発根を促進する技術として最適ではなぐ課題 を残していた。  However, there are still problems that are not optimal as technologies for stably and sustainably promoting plant growth, and for efficiently and stably promoting rooting from cuttings. Was.
[0005] また、実際の農業'林業などの生産場面で炭酸水を作り置きしておくことは無駄な 点もある。すなわち、先の発明では、 25°Cにおいて二酸ィ匕炭素 1気圧下で水 1リットル あたりに最大 l,491mgの二酸ィ匕炭素を溶解させることができ、 5°Cにおいては最大 2,815mgの二酸ィ匕炭素を溶解させることができる。しかし、 25°Cの大気中の気体分圧 (二酸ィ匕炭素 350ppm、通常の条件で植物が育成される二酸ィ匕炭素分圧)では水 1リ ットルあたりに最大 0.52mgの二酸ィ匕炭素が溶解できるが、これが飽和濃度であるため に、作り置きした炭酸水力 溶存ニ酸ィ匕炭素がガス化して抜けてしまう点が問題であ つた o  [0005] In addition, it is wasteful to prepare and store carbonated water in production scenes such as actual agriculture and forestry. That is, in the above-mentioned invention, a maximum of 1,491 mg of dioxygenated carbon can be dissolved per liter of water at 25 ° C. under 1 atm of dioxygenated carbon at 25 ° C., and a maximum of 2,815 mg at 5 ° C. Can be dissolved. However, at a gas partial pressure of 25 ° C in the atmosphere (350 ppm of diacid carbon, a partial pressure of carbon dioxide at which plants are grown under normal conditions), a maximum of 0.52 mg of diacid per liter of water can be obtained. Although carbon dioxide can be dissolved, it has a problem in that since it is at a saturated concentration, the prepared carbon dioxide-hydrogen-dissolved carbon dioxide is gasified and comes out.
[0006] 一方、二酸化炭素を一定空間全体に暴露し、植物に高い濃度の二酸化炭素を与 えることにより植物の育成を促進させる技術および挿し木方法 (特許文献 6)が「CO  [0006] On the other hand, a technique and a cutting method (Patent Document 6) for exposing carbon dioxide to a certain space to give a high concentration of carbon dioxide to a plant to promote the growth of the plant (Patent Document 6) have been disclosed.
2 施肥」として実用化されている。また最近では、森林の一定区画全体に CO  2 Fertilizer application. Also, recently, CO
2を暴露す る FACE実験 (Free Air CO Enrichment,解放形 CO增カロ)が行われ、森林の樹木の  A FACE experiment (Free Air CO Enrichment, open-type CO2
2 2  twenty two
成長が増大することが知られるようになった。このようなガス環境下で植物を育成する と初期には成長が急激に進むが、温室のような閉鎖環境であってもガスの拡散速度 が大きいために、 COを高濃度で付加し続けることの維持費が極めて高ぐ実用化や  It has become known that growth will increase. When plants are grown in such a gaseous environment, the growth proceeds rapidly at the beginning, but even in a closed environment such as a greenhouse, the gas diffusion rate is high, so it is necessary to keep adding CO at a high concentration. Is extremely expensive to maintain,
2  2
研究の継続の障壁となっている。高額な維持費用を削減するために、光合成を行わ ない夜間は CO付加を停止したり、風上からのみ CO付加したり、施設の密閉度を  This is a barrier to continuing research. In order to reduce high maintenance costs, stop CO addition at night without photosynthesis, add CO only from the windward side,
2 2  twenty two
高めるなどの工夫がなされているのが現状である力 依然として作用効果を経済的 に見合わせて普及させるのが難 、現状である。  At present it is difficult to disseminate the effects economically and disseminate it.
[0007] さらに、植物の葉に存在する COの通り道である気孔の開く程度は、空気中の相対 [0007] Furthermore, the degree of opening of the stomata, which is the path of CO present in the leaves of plants, depends on the relative
2  2
湿度に影響され、湿度が低い場合気孔が閉じ気味となるために空気中の CO濃度を  It is affected by humidity.If the humidity is low, the pores tend to close and the CO concentration in the air is reduced.
2 高めるだけでは、必ずしも効果が十分期待できるわけでは無力つた。 特許文献 6:特開 2001-186814 2 Simply raising the level of power did not always help. Patent Document 6: JP-A-2001-186814
[0008] ところで、特許文献 1の発明では、加圧状態の COを原水に溶解させた後、直ちに [0008] By the way, in the invention of Patent Document 1, immediately after dissolving pressurized CO in raw water,
2  2
CO溶解水を植物体に噴霧するので、上記した作り置きの炭酸水のような問題は生 Because the CO-dissolved water is sprayed on the plant, the above-mentioned problems such as carbonated water,
2 2
じない。しかし、特許文献 1の発明では、噴霧するミストの粒子径が大きいので植物と 接触した後、殆どが液滴として落下してしま ヽ十分な効果が得られな ヽと ヽぅ問題点 がある。  I don't care. However, the invention of Patent Document 1 has a problem in that since the mist to be sprayed has a large particle size, almost all of the mist drops as droplets after coming into contact with the plant, and a sufficient effect cannot be obtained.
[0009] 植物の育成を促進すること、および挿し穂の発根を促進することは、 Vヽずれも産業 上の利益に直接繋がるので、植物の育成を様々な育成環境の元に高いレベルで安 定的にかつ持続的に促進し、さらには挿し穂からの発根を高い効率で安定的に行わ せる簡便な CO施肥技術の開発が待ち望まれている。特に製紙原料の安定供給と  [0009] Promoting plant cultivation and promoting rooting of cuttings can directly lead to industrial benefits, so plant cultivation can be carried out at a high level under various breeding environments. The development of simple and easy CO fertilization technology that promotes stable and continuous promotion and also enables rooting from cuttings with high efficiency and stability is awaited. In particular, stable supply of papermaking raw materials
2  2
大気中の二酸化炭素の大規模固定化を推進する目的で、大面積に植林されている ユーカリ属植物及びアカシア属植物のクローン苗を効率的に生産する方法を提供す ることが課題となっている。  In order to promote large-scale fixation of atmospheric carbon dioxide, it has been an issue to provide a method for efficiently producing cloned seedlings of Eucalyptus plants and Acacia plants planted on large areas. I have.
[0010] 本発明は、上記事情に鑑みてなされたものであり、従来に比べて安価で効率良く 安定的にかつ持続的に植物の育成を促進する技術、さらには効率良く安定的に挿し 穂からの発根を促進させる挿し木技術を提供する。  [0010] The present invention has been made in view of the above circumstances, and is a technology for promoting the stable, stable and sustainable growth of plants at a lower cost, more efficiently, and more efficiently than in the past. Provide cutting techniques to promote rooting from the roots.
課題を解決するための手段  Means for solving the problem
[0011] 上記の課題を解決するため、本発明に係る植物の育成方法は、二酸化炭素と液体 とを二流体ノズルに供給して、常圧大気中の飽和濃度以上に二酸化炭素を含有した 平均粒子径 20 m以下の炭酸フォグを生成し、これを間欠的に植物に噴霧するよう にしている。本発明の適用対象の植物は特に限定されないが、挿し木状態の植物の 発根にも効果的に機能する。この意味では、本発明の植物育成方法は、挿し木の発 根促進方法と言 、替えることもできる。  [0011] In order to solve the above-mentioned problems, a method for growing a plant according to the present invention comprises supplying carbon dioxide and a liquid to a two-fluid nozzle, and averaging carbon dioxide at a saturation concentration or higher in atmospheric air. Carbon dioxide fog with a particle size of 20 m or less is generated and sprayed intermittently on plants. Although the plant to which the present invention is applied is not particularly limited, it also functions effectively for rooting of cutting plants. In this sense, the plant growing method of the present invention can be said to be a cutting rooting promoting method.
[0012] 本発明に係る二流体ノズルは、上記の植物育成方法で使用され、給気ラインから 高圧ガスが供給され、給液ライン力も液体が供給されるようになっている。また、本発 明に係る炭酸フォグの製造装置は、上記の植物育成方法で使用され、二流体ノズル と、前記二流体ノズルに高圧ガスを供給する給気ラインと、前記二流体ノズルに液体 を供給する給液ラインとを備えて 、る。 [0013] 本発明により製造された平均粒子径 20 m以下の炭酸フォグは、典型的には、農 業用ビニールなどによる閉空間に間欠的に噴霧される。その場合、炭酸フォグが閉 空間を浮遊しながら蒸散するまでの期間中、持続的に適度な湿度が与えられると共 に、大気中の二酸ィ匕炭素濃度を同時に増カロさせることが可能となり、各植物に最適 な湿度と二酸ィ匕炭素雰囲気を簡易かつ同時に実現できることになる。また、本発明 によって噴霧される炭酸フォグは、その粒子径が細かいので、植物に接触する炭酸 水の接触面積が極めて狭ぐ従来技術における酸性ィ匕の障害や陽イオンの溶脱など が殆ど問題にならない。また、葉のぬれが少ないので、葉の表面のクチクラ構造 (ヮッ タス層)の破壊を軽減し、病原菌の侵入の問題も起こらない。 [0012] The two-fluid nozzle according to the present invention is used in the above-described method for growing a plant, and is configured such that a high-pressure gas is supplied from an air supply line and a liquid is supplied from a liquid supply line. Further, the apparatus for producing carbonated fog according to the present invention is used in the above-described plant growing method, and includes a two-fluid nozzle, an air supply line for supplying high-pressure gas to the two-fluid nozzle, and And a supply line for supply. [0013] The carbonated fog having an average particle diameter of 20 m or less produced according to the present invention is typically intermittently sprayed into a closed space made of agricultural vinyl or the like. In this case, while the carbon dioxide fog floats in the closed space and evaporates while being suspended, it is possible to continuously provide appropriate humidity and increase the concentration of carbon dioxide in the atmosphere at the same time. Therefore, it is possible to easily and simultaneously realize the optimum humidity and carbon dioxide atmosphere for each plant. In addition, since the carbon dioxide fog sprayed by the present invention has a very small particle size, the contact area of carbonated water that comes into contact with plants is extremely small. No. In addition, less leaf wetting reduces the destruction of the cuticular structure (pettus layer) on the leaf surface and does not cause the problem of pathogen invasion.
[0014] 本発明の炭酸フォグは、その平均粒子径が 20 μ m以下であるが、好ましくは、 15 μ m以下、更に好ましくは 10 μ m以下の平均粒子径とすべきである。ここで粒子径は 、横向きに炭酸フォグを噴霧した状態で、噴出口から 200mmの測定ポイントとし、レ 一ザ一光を使用したレーザー法による。なお、シリコンオイルを厚めに塗布したプレ ートグラス上に霧を受け止め、撮影した写真力 サイズごとに粒子数をカウントする液 浸法は、本発明の炭酸フォグの粒子径が小さいため使用できない。  The carbonate fog of the present invention has an average particle diameter of 20 μm or less, but preferably has an average particle diameter of 15 μm or less, more preferably 10 μm or less. Here, the particle diameter is measured by a laser method using laser light with a measurement point of 200 mm from the ejection port in a state where carbonic acid fog is sprayed sideways. The immersion method in which fog is received on a plate glass coated with thick silicone oil and the number of particles is counted for each photographic power taken cannot be used because the particle size of the carbon dioxide fog of the present invention is small.
[0015] 上記各発明において、液体とは、典型的には水道水や工業用水などの水を意味す るが、本発明の趣旨を逸脱しない範囲で、他の成分を含有させた水を使用しても良 い。同様に、二酸ィ匕炭素は、それ単独で二流体ノズルに供給しても良いし、空気など の他の気体と混合後に二流体ノズルに供給しても良い。二酸化炭素と空気とを予め 混合させた高圧ガスを使用する場合には、高圧ガスの圧力を変化させることなく二酸 化炭素の混合濃度を増減させることができ、湿度条件とは独立に二酸化炭素濃度を 制御できる利点がある。  [0015] In the above inventions, the liquid typically means water such as tap water or industrial water, but water containing other components is used without departing from the spirit of the present invention. You may do it. Similarly, the carbon dioxide may be supplied to the two-fluid nozzle alone, or may be supplied to the two-fluid nozzle after being mixed with another gas such as air. When using a high-pressure gas in which carbon dioxide and air are mixed in advance, the mixed concentration of carbon dioxide can be increased or decreased without changing the pressure of the high-pressure gas, and the carbon dioxide can be adjusted independently of the humidity conditions. The advantage is that the concentration can be controlled.
[0016] 本発明の二流体ノズルは、水などの液体と二酸ィ匕炭素を含む気体とを、高速度で 衝突させて霧 (フォグ)を生成する装置である。このような二流体ノズルとしては、一般 に、ノズル内部で二流体を衝突させる内部混合型と、ノズル外部で二流体を衝突さ せる外部混合型と、各二流体ノズルで生成された微粒子どうしを更に衝突させる衝突 型とがあるが、本発明では、いずれのタイプを使用しても良い。但し、目詰まりを防止 する意味では、気体と液体とを別々に噴出された後、ノズルの外部空間で衝突させる 外部混合型か衝突型を使用すべきである。 [0016] The two-fluid nozzle of the present invention is a device that generates a fog by causing a liquid such as water to collide with a gas containing carbon dioxide at a high speed. Such two-fluid nozzles generally include an internal mixing type in which two fluids collide inside the nozzle, an external mixing type in which two fluids collide outside the nozzle, and fine particles generated by each two-fluid nozzle. Further, there is a collision type in which collision occurs. In the present invention, any type may be used. However, in order to prevent clogging, gas and liquid are ejected separately and then collide in the outer space of the nozzle. External mixed or collision type should be used.
[0017] 二流体ノズルの動作方式として、気体と液体とをそれぞれ加圧してノズルに供給す る加圧方式を採っても良いが、気体の噴出動作に起因して液体が自動的に吸入され るサイフォン式の方が簡易性に優れて 、る。  As an operation method of the two-fluid nozzle, a pressurization method in which a gas and a liquid are respectively pressurized and supplied to the nozzle may be adopted, but the liquid is automatically sucked in due to the gas ejection operation. The siphon type is superior in simplicity.
発明の効果  The invention's effect
[0018] 本発明の植物育成方法および挿し木方法によれば、 COガスを用いる施設農業 ·  According to the plant growing method and the cutting method of the present invention, facility agriculture using CO gas
2  2
FACE森林実験と比べて安価に COガス濃度を高めることができるだけでなくガス濃  Compared to the FACE forest experiment, not only can CO gas concentration be increased
2  2
度や空気中の湿度維持にも優れた効果を発揮する。さらに、従来開示されている二 酸ィ匕炭素を高濃度に溶解させた炭酸水を植物に与える植物育成方法および挿し木 方法と比べて、葉の表面に過剰に炭酸水を付着させないこと、必要量の炭酸水をそ の場で作り使うことができる。以上のことから従来技術と比較して、安価で安定的にか つ持続的に植物の育成を促進させ、挿し穂の発根を促進させることができる。  It is also effective in maintaining the temperature and humidity in the air. Furthermore, compared to the conventionally disclosed plant growing method and cutting method in which carbonated water in which diacid carbon is dissolved in a high concentration is provided to the plant, the amount of carbonated water is not excessively attached to the leaf surface, Carbonated water can be made and used on the spot. From the above, it is possible to promote the growth of plants inexpensively, stably and sustainably, and to promote the rooting of cuttings as compared with the prior art.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]炭酸フォグ製造装置の概略構成を示す構成図である。 FIG. 1 is a configuration diagram showing a schematic configuration of an apparatus for producing carbonic acid fog.
[図 2]吐出ノズルの断面構成を図示したものである。  FIG. 2 illustrates a cross-sectional configuration of a discharge nozzle.
[図 3]ノズル本体部の中央断面図(a)、ノズル本体部の右側面図(b)、中継部の中央 断面図(c)、中継部の右側面図(d)、ノズル本体部と中継部の組立て状態の中央断 面図である。  [Figure 3] Central sectional view of the nozzle body (a), right side view of the nozzle body (b), central sectional view of the relay section (c), right side view of the relay section (d), FIG. 5 is a central cross-sectional view of the relay section in an assembled state.
[図 4]基端ノズル部の中央断面図(a)、基端ノズル部の右側面図 (b)、先端ノズル部 の中央断面図(c)、先端ノズル部の右側面図(d)、吐出ノズルの中央断面図(e)、キ ヤップ部の中央断面図(f)、キャップ部の右側面図(g)である。  [FIG. 4] Central cross-sectional view of the proximal nozzle section (a), right side view of the proximal nozzle section (b), central cross-sectional view of the distal nozzle section (c), right side view of the distal nozzle section (d), FIG. 4 is a central sectional view of a discharge nozzle (e), a central sectional view of a cap portion (f), and a right side view of a cap portion (g).
[図 5]実用性を高めた炭酸フォグ製造装置の概略構成を示す構成図である。  FIG. 5 is a configuration diagram showing a schematic configuration of a carbon dioxide fog production apparatus with improved practicality.
[図 6]炭酸フォグによる成長促進効果を示す図面である。  FIG. 6 is a drawing showing a growth promoting effect of carbonic acid fog.
[図 7]炭酸フォグによる二酸ィ匕炭素濃度の上昇を示す図面である。  FIG. 7 is a drawing showing an increase in carbon dioxide concentration by carbon dioxide fog.
符号の説明  Explanation of symbols
[0020] 5 二流体ノズル(吐出ノズル) [0020] 5 Two-fluid nozzle (discharge nozzle)
EQU 炭酸フォグ製造装置 発明を実施するための最良の形態 EQU Carbonated fog production equipment BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明を実施するための最良の形態を詳細に説明する。図 1は、本発明の 炭酸フォグ製造装置 EQUの一例を示す構成図であり、典型的にはビニールハウス 内に設置される。二酸化炭素のみを圧力 0. 4MPa、流速 30〜40リットル Z分程度 で供給して本装置 EQUを運転すると、平均粒子径が 7. 0〜14. 0 m程度の超微 細な霧であって、 2000mgZリットル以上の溶存ニ酸ィ匕炭素濃度を有する炭酸フォ グを製造することができる。なお、図 1の破線で示す部分は、本発明の植物育成方法 の対照実験に使用する部分であり、本発明を実現する部分ではない。  Hereinafter, the best mode for carrying out the present invention will be described in detail. FIG. 1 is a configuration diagram showing an example of a carbonic acid fog production apparatus EQU of the present invention, which is typically installed in a greenhouse. When this device EQU is operated by supplying only carbon dioxide at a pressure of 0.4 MPa and a flow rate of about 30 to 40 liters Z, an ultrafine mist with an average particle diameter of about 7.0 to 14.0 m is obtained. Carbon dioxide fog having a dissolved carbon dioxide concentration of 2000 mgZ liter or more can be produced. The portion shown by the broken line in FIG. 1 is a portion used for a control experiment of the plant growing method of the present invention, and does not realize the present invention.
[0022] 図示の通り、この製造装置 EQUは、圧縮空気を生成するコンプレッサ 1と、二酸ィ匕 炭素を収容するガスボンベ 2と、ガスボンベ 2から出力される二酸ィ匕炭素のガス圧を 調整するレギユレータ 3と、本装置 EQUの運転状態を制御する制御本体部 4と、炭酸 フォグを出力する吐出ノズル 5と、炭酸フォグ用の水を貯留する液タンク 6とで構成さ れている。  [0022] As shown in the figure, this manufacturing apparatus EQU adjusts the gas pressure of the compressor 1 that generates compressed air, the gas cylinder 2 that contains the carbon dioxide, and the gas pressure of the carbon dioxide that is output from the gas cylinder 2. It is composed of a regulator 3 that controls the operation state of the EQU of the present device, a discharge nozzle 5 that outputs carbon dioxide fog, and a liquid tank 6 that stores water for carbon dioxide fog.
[0023] ここで、制御本体部 4は、逆止弁 7, 9と、ニードルバルブ 8, 10と、電磁開閉弁 11と 、ニードルバルブ 8, 10や電磁開閉弁 11の動作を制御するシーケンサ 12とで構成さ れている。そして、ニードルバルブ 8, 10の開度を適宜に調整して、空気と二酸化炭 素の混合比を調整するようにしている。但し、二酸化炭素の溶存量を特に調整する 必要がない場合には、コンプレッサ 1、逆止弁 7、及び-一ドルバルブ 8からなる圧縮 空気の流通路は不要であり、言い替えると、加圧空気の流通路は、本発明にとって 必ずしも必須ではない。  Here, the control main unit 4 includes check valves 7 and 9, needle valves 8 and 10, an electromagnetic on-off valve 11, and a sequencer 12 for controlling the operation of the needle valves 8 and 10 and the electromagnetic on-off valve 11. It consists of: Then, the opening ratio of the needle valves 8 and 10 is appropriately adjusted to adjust the mixing ratio of air and carbon dioxide. However, if it is not necessary to adjust the dissolved amount of carbon dioxide, the compressed air flow path consisting of the compressor 1, the check valve 7, and the dollar valve 8 is not necessary. The flow passage is not always essential for the present invention.
[0024] もっとも、圧縮空気の流通路を設けておくと、必要に応じて、ビニールハウス内で適 宜な加湿効果を発揮させることが可能となる。このような加湿目的のみで本装置を使 用する場合には、ニードルバルブ 10を閉塞する一方でニードルバルブ 8を開放する 力 この場合には、圧縮空気だけが吐出ノズル 5に供給されることになり、二酸化炭 素を含まな 、水フォグを生成することができる。  [0024] Providing a flow passage for compressed air, however, enables an appropriate humidifying effect to be exhibited in a greenhouse, if necessary. When this device is used only for such humidification purpose, the force to open the needle valve 8 while closing the needle valve 10 In this case, only the compressed air is supplied to the discharge nozzle 5. Thus, water fog containing no carbon dioxide can be generated.
[0025] 図 2は、吐出ノズル 5の一例について、その断面構造を図示したものである。図示の 通り、この吐出ノズル 5は、略円筒状に形成されたノズル本体部 20と、高圧ガスの通 過流路を形成する略リング状の中継部 21と、高圧ガスと液体の流路を形成する基端 ノズル部 22と、液体と高圧ガスを噴出させて衝突させる先端ノズル部 23と、ノズル本 体部 20に前記の各部 21, 22, 23を締め込んで固定するキャップ部 24とで構成され ている。なお、ノズル本体部 20の先端外周に設けられた突起 25, 25 (図 3 (b)参照) 力 キャップ部 24の基端内周に設けられた周方向溝 26, 26 (図 4 (f) (g)参照)に収 容されることで、キャップ部 24がノズル本体部 20に固定される。 FIG. 2 illustrates a cross-sectional structure of an example of the discharge nozzle 5. As shown in the figure, the discharge nozzle 5 has a nozzle body 20 formed in a substantially cylindrical shape, a substantially ring-shaped relay portion 21 forming a high-pressure gas passage, and a high-pressure gas-liquid passage. Base end to form It comprises a nozzle section 22, a tip nozzle section 23 for ejecting a liquid and a high-pressure gas to collide with each other, and a cap section 24 for fastening the above sections 21, 22, 23 to the nozzle body section 20 and fixing them. . The protrusions 25, 25 provided on the outer periphery of the distal end of the nozzle body 20 (see FIG. 3 (b)) The circumferential grooves 26, 26 provided on the inner periphery of the base end of the force cap portion 24 (FIG. 4 (f) (g), the cap part 24 is fixed to the nozzle body part 20.
[0026] 図 2のノズル本体部 20は、ステンレス鋼などの金属製か又はプラスチック製であり、 図 3 (a)の中央断面図に示すように、高圧ガスのガス導入路 30と、液体の吸入流路 3 1と、先端側の部材の受入開口部 32とがそれぞれ円柱状に形成されて構成されてい る。図 3 (a)の右側面図である図 3 (b)に現れるように、円柱状のガス導入路 30は、円 弧状の連絡溝 33を通して、受入開口部 32に連通している。  [0026] The nozzle body 20 in FIG. 2 is made of metal such as stainless steel or plastic, and as shown in the central cross-sectional view of FIG. The suction passage 31 and the receiving opening 32 of the member on the distal end side are each formed in a columnar shape. As shown in FIG. 3 (b), which is a right side view of FIG. 3 (a), the columnar gas introduction path 30 communicates with the receiving opening 32 through the arcuate communication groove 33.
[0027] 中継部 21は、ゴム材のように弾性のある材料による円筒状の一体成形品であり、図 3 (c) (d)に示すように、中央貫通穴 34と、 4箇所の連絡穴 35とが形成されている。組 み立て状態の図 3 (e)に示すように、連絡穴 35は、円弧状の連絡溝 33に連通してお り、ガス導入路 30から導入された高圧ガスは、 4個の連絡穴 35に導入されることにな る。なお、中央貫通穴 34は、ノズル本体部 20の吸入流路 31に連続している。このよ うに、ガス導入路 30と基端ノズル部 22との間には、弾性体である中継部 21が配置さ れ、この中継部 21がキャップ部材 23によって圧縮されるので高い気密性が達成され る。  [0027] The relay portion 21 is a cylindrical integrally molded product made of an elastic material such as a rubber material. As shown in FIGS. 3 (c) and 3 (d), the relay portion 21 is connected to the central through hole 34 at four locations. A hole 35 is formed. As shown in FIG. 3 (e) in the assembled state, the communication hole 35 communicates with the arcuate communication groove 33, and the high-pressure gas introduced from the gas introduction passage 30 receives four communication holes. It will be introduced in 35. The central through-hole 34 is continuous with the suction passage 31 of the nozzle body 20. As described above, between the gas introduction path 30 and the base end nozzle section 22, the relay section 21, which is an elastic body, is disposed, and the relay section 21 is compressed by the cap member 23, thereby achieving high airtightness. Is performed.
[0028] 基端ノズル部 22は、図 4 (a)に示す通り、丸棒状の小径部 22aと、大径部 22bと、中 径部 22cと、円錐部 22dと、円柱突出部 22eとが一体的に構成されている。小径部 2 2aの外径は、中継部 21の中央貫通穴 34の内径に対応しており、大径部 22bの外径 は、中継部 21の外径に一致している (組み立て状態の図 4 (e)参照)。  As shown in FIG. 4 (a), the proximal nozzle portion 22 includes a round bar-shaped small-diameter portion 22a, a large-diameter portion 22b, a medium-diameter portion 22c, a conical portion 22d, and a cylindrical protrusion 22e. It is configured integrally. The outer diameter of the small-diameter portion 22a corresponds to the inner diameter of the central through hole 34 of the relay portion 21, and the outer diameter of the large-diameter portion 22b matches the outer diameter of the relay portion 21. 4 (e)).
[0029] 基端ノズル部 22には、小径部 22aと大径部 22bと中径部 22cとを貫通して、円柱状 の液体通路 36が形成されている。そして、この液体通路 36は、円錐部 22dと突出部 22eに形成された小径の噴出通路 37に連続している。なお、噴出通路 37の内径は 、特に限定されないが、 0. 3〜0. 7mm程度であって極端に細くないので、目詰まり のおそれが少ない。また、大径部 22bと中径部 22cとを貫通して、円柱状のガス通路 38が形成されている。図 4 (a)の右側面図である図 4 (b)に現れるように、ガス通路 38 は周方向に均等に 3個形成されている。このガス通路 38は、中継部 21の連絡穴 35 に連通しており(図 4 (e)参照)、 4個の連絡穴 35を通過した高圧ガスは、更に加圧さ れて 3個のガス通路 38に導入されることになる。 [0029] The base nozzle 22 has a columnar liquid passage 36 formed therethrough through the small-diameter portion 22a, the large-diameter portion 22b, and the middle-diameter portion 22c. The liquid passage 36 is continuous with a small-diameter ejection passage 37 formed in the conical portion 22d and the protruding portion 22e. The inner diameter of the ejection passage 37 is not particularly limited, but is about 0.3 to 0.7 mm and is not extremely thin, so that there is little possibility of clogging. A cylindrical gas passage 38 is formed through the large diameter portion 22b and the medium diameter portion 22c. As shown in FIG. 4 (b), which is a right side view of FIG. Are equally formed in the circumferential direction. The gas passage 38 communicates with the communication hole 35 of the relay section 21 (see FIG. 4 (e)), and the high-pressure gas that has passed through the four communication holes 35 is further pressurized to three gas It will be introduced into passage 38.
[0030] 図 4 (c)に示すように、先端ノズル部 23は、基端ノズル部 22の中径部 22cと円錐部 22dにほぼ対応した内部構造を有している。より詳細には、先端ノズル部 23は、基端 ノズル部 22の大径部 22bと同一外径のフランジ部 39と、フランジ部 39に連続する外 周部 40と、高圧ガスを中心に向けてぶっけるように噴出させる 2つの先端部 41, 41 と、中央部 42とが一体ィ匕されて構成されている。  As shown in FIG. 4C, the distal nozzle portion 23 has an internal structure substantially corresponding to the middle diameter portion 22c and the conical portion 22d of the proximal nozzle portion 22. More specifically, the distal nozzle portion 23 has a flange portion 39 having the same outer diameter as the large diameter portion 22b of the proximal nozzle portion 22, an outer peripheral portion 40 continuous with the flange portion 39, and a high pressure gas directed toward the center. The two tip portions 41, 41, which are ejected so as to hit each other, and the central portion 42 are integrally formed.
[0031] 中央部 42の外側には、 2つの円柱穴 43, 43が形成され、この円柱穴 43は、先端 部 41の円錐穴 44, 44に連続している。そして、先端部 41には、各円錐穴 44, 44に 連続して、小径の噴出穴 45, 45が形成されている。なお、各噴出穴 45, 45は、先端 ノズル部 23及び基端ノズル部 22の中心軸の位置で交差するよう傾斜して形成され ている(図 4 (e)参照)。  [0031] Two cylindrical holes 43, 43 are formed outside the central portion 42, and the cylindrical holes 43 are continuous with the conical holes 44, 44 of the distal end portion 41. Further, small-diameter ejection holes 45, 45 are formed in the distal end portion 41 so as to be continuous with the conical holes 44, 44. The ejection holes 45, 45 are formed so as to be inclined so as to intersect at the position of the center axis of the distal nozzle portion 23 and the proximal nozzle portion 22 (see FIG. 4 (e)).
[0032] 中央部 42には、基端ノズル部 22の円錐部 22dより緩やかな平滑面を有する円錐テ ーパ面 42aが形成されており、その先端中心には、中心穴 46が形成されている。図 4 (e)に示すように、中心穴 46には、基端ノズル部 22の円柱突出部 22eが挿入され、 基端ノズル部 22の円錐部 22dと中央部 42の円錐テーパ面 42aとの間には、先端に 向けて細くなるガス通路が形成されている。  [0032] The central portion 42 has a conical taper surface 42a having a gentler smooth surface than the conical portion 22d of the proximal nozzle portion 22, and a central hole 46 is formed at the center of the distal end. I have. As shown in FIG. 4 (e), the cylindrical projection 22e of the proximal nozzle portion 22 is inserted into the center hole 46, and the conical portion 22d of the proximal nozzle portion 22 and the conical taper surface 42a of the central portion 42 are inserted. A gas passage narrowing toward the tip is formed between them.
[0033] 図 1に示す吐出ノズル 5は、上記の通り構成されている。そのため、制御本体部 4か ら供給された高圧ガスは、ガス導入路 30、連絡溝 33、連絡穴 35、及びガス通路 38 を経て噴出穴 45から噴出されると共に、円柱突出部 22eの回りに形成されたガス通 路から更に加圧されて噴出される。そのため、円柱突出部 22eの先端側は負圧状態 となり、液タンク 6に貯留されている液体は、サイフォンの原理によって吸引されること になる。吸引された液体は、吸入流路 31、中央貫通穴 34、液体通路 36、噴出通路 3 7と進行方向に向けて流路が狭くなるので、円柱突出部 22eから勢い良く噴出される ことになる。  The discharge nozzle 5 shown in FIG. 1 is configured as described above. Therefore, the high-pressure gas supplied from the control main unit 4 is ejected from the ejection hole 45 through the gas introduction path 30, the communication groove 33, the communication hole 35, and the gas passage 38, and is also formed around the cylindrical projection 22e. It is further pressurized and ejected from the formed gas passage. Therefore, the distal end side of the cylindrical projection 22e is in a negative pressure state, and the liquid stored in the liquid tank 6 is sucked by the siphon principle. The suctioned liquid becomes narrower in the traveling direction with the suction flow path 31, the central through hole 34, the liquid path 36, and the ejection path 37, so that the liquid is spouted vigorously from the cylindrical projection 22e. .
[0034] 先に説明した通り、ガス通路 38の高圧ガスは、小径噴出穴 45, 45からも噴出して いる。この二つ噴出穴 45, 45から噴出される高圧ガスの噴出方向は、吐出ノズル 5 の中心軸上で交差している力 この中心軸には、高圧ガスに吸入された液体が高圧 ガスと共に高速度で噴出している。そのため、交差点 0 (図 4 (e)参照)において液体 と気体とが高速度で再び衝突することになり、その結果、液体粒子が平均粒子径 7. 0〜14. 0 m程度まで超微細化され、また、微細な液体とガスの接触によって高濃 度のガス溶存濃度を実現することができる。 [0034] As described above, the high-pressure gas in the gas passage 38 is also ejected from the small-diameter ejection holes 45. The ejection direction of the high-pressure gas ejected from these two ejection holes 45 is The force intersected on the center axis of the liquid. The liquid sucked into the high-pressure gas is ejected to the center axis together with the high-pressure gas at a high speed. Therefore, at the intersection 0 (see Fig. 4 (e)), the liquid and the gas collide again at a high speed, and as a result, the liquid particles become ultrafine to an average particle diameter of about 7.0 to 14.0 m. In addition, a high concentration of dissolved gas can be achieved by contact of the gas with the fine liquid.
[0035] 以上の動作によって、吐出ノズル 5から、二酸化炭素の溶存濃度の高い炭酸フォグ が噴出されることになる。この炭酸フォグは、その粒子が微細であるため、噴出された 後、空気中に滞留している時間が長ぐ植物に接触している面積が狭い分だけ植物 育成に効果的である。 By the above operation, carbon dioxide fog having a high dissolved concentration of carbon dioxide is ejected from the discharge nozzle 5. The carbon fog particles are so fine that they stay in the air for a long time after being ejected, and are effective in growing plants because the area of contact with plants is small.
[0036] 本装置 EQUの効果は、更に以下のように説明することができる。すなわち、植物の 育成に必要な炭酸固定 (光合成など)の律速段階を支配するのは、植物の葉の細胞 間隙の二酸化炭素の濃度である。これを高めるために一番効果のある方策は、植物 の葉の周辺の二酸ィ匕炭素濃度を高めると同時に気孔が十分に開 、て 、るように植物 の葉の周辺の湿度を高めることである。本装置 EQUによれば、植物の葉の周辺の二 酸ィ匕炭素濃度と湿度を同時に簡便に高めることができるだけでなぐ安価に高い状 態で維持させることができるために、植物の育成促進および挿し穂の発根促進が容 易に達成されるものと考えられる。  [0036] The effect of the present device EQU can be further described as follows. In other words, it is the concentration of carbon dioxide in the intercellular space of plant leaves that controls the rate-limiting step of carbon fixation (such as photosynthesis) necessary for plant growth. The most effective way to increase this is to increase the concentration of carbon dioxide around the leaves of the plant and at the same time to increase the humidity around the leaves of the plant so that the pores are sufficiently open. It is. According to the present apparatus EQU, the concentration of carbon dioxide and the humidity around the leaves of the plant can be simultaneously and simply increased in an inexpensive and high state as much as possible. It is thought that promotion of rooting of cuttings is easily achieved.
[0037] また、気孔開口部の最大幅は、植物種に特有な性質であるが、常緑性の針葉樹や 砂漠の低木を除き 1〜10 mの範囲にあることが知られているので、その範囲のサイ ズの炭酸水の水滴力 成る炭酸フォグ雰囲気内で植物を育てる本発明によれば、気 孔の開口部を通じて直接炭酸水が植物の葉の細胞間隙に入り込むことができるため に、植物の育成促進および挿し穂の発根促進が容易に達成されるものと考えられる  [0037] Further, the maximum width of the stomatal opening is a characteristic peculiar to the plant species, but is known to be in the range of 1 to 10 m except for evergreen conifers and desert shrubs. According to the present invention, which grows a plant in a carbonated fog atmosphere consisting of a range of sizes of carbonated water, the carbonated water can directly enter the intercellular space of the plant leaf through the pore opening, so that the plant Promotion of breeding and rooting of cuttings are thought to be easily achieved
[0038] また、植物の育成に必要な炭酸固定 (光合成など)は、植物の葉の細胞間隙の二 酸ィ匕炭素の濃度以外にも葉に含まれる (葉面積あたりの)窒素、リン酸、カリウム、マ グネシゥム、カルシウム、鉄その他の微量元素の量にも依存するために、本発明の炭 酸フォグを作る際の原水にはそれらを含んでもよい。それぞれの濃度については、育 成や挿し木する植物の種類に応じて自在に変えればょ 、。 [0039] 本発明の対象とする植物については特に限定はなぐ農業、林業、園芸に用いら れる一般的な植物の全てが対象となる。その中でも、近年植林が広く行われているュ 一力リ属植物、アカシア属植物の育成技術および挿し木技術は特に重要である。 [0038] In addition to carbon dioxide fixation (photosynthesis, etc.) necessary for plant cultivation, nitrogen and phosphate (per leaf area) contained in leaves other than the concentration of carbon dioxide in the intercellular space of the leaves of the plant are included. Raw water for producing the carbonic acid fog of the present invention may contain these because it depends on the amounts of trace elements such as potassium, magnesium, calcium, iron and other trace elements. Each concentration can be freely changed according to the type of plant to be grown or cut. [0039] The plants targeted by the present invention include, but are not particularly limited to, all common plants used in agriculture, forestry, and horticulture. Among them, the techniques of growing and cutting the cuttings of the genus Iris and Acacia, which have been widely planted in recent years, are particularly important.
[0040] ユーカリ属植物としては、製紙原料用榭種 (パルプ材)としてユーカリ 'カマルドレン シス (Eucalyptus camaldulensis)、ユーカリ 'グランデイス (E. grandis)、ユーカリ 'グロブ ラス . globulus),ユーカリ 'ナイテンス (E. nitens)、ユーカリ 'テルティコル-ス (E. tereticornis)ゝユーカリ 'ユーロフイラ (E. urophylla)ゝユーカリ 'ダニアイ (E. dunnii)等、 及びこれらを片親とする交雑種や、これらの亜種'変種、及び造園 '緑化'観賞用榭 種としてユーカリ'ダン- (E. gunnii)、ユーカリ'ビミナリス (E. viminalis)等が含まれる。 またアカシア属植物としては、製紙原料用榭種としてアカシア'ァゥリカリフオルミス (Acacia auriculiformis)、アカシア 'マンギゥム (A. mangium)、アカシア'メァランシー (A. mearnsii)、アカシア 'クラシカルパ (A. crassicarpa)、アカシア 'アウラコカルパ (A. aulacocarpa)等、及びこれらを片親とする交雑種や、これらの亜種 ·変種、及び造園- 緑化'観賞用榭種としてハナアカシア (A. baileyana),フサアカシア (A. dealbata)等が 含まれる。  [0040] Eucalyptus plants include Eucalyptus camaldulensis, Eucalyptus grandis (E. grandis), Eucalyptus globulus, and Eucalyptus nitens as pulpwood species for papermaking. E. nitens), eucalyptus 'E. tereticornis' ゝ eucalyptus 'E. urophylla' ゝ eucalyptus 'E. dunnii', etc. Varieties and landscaping 'greening' ornamental species include eucalyptus 'Dan- (E. gunnii), eucalyptus' E. viminalis) and the like. Acacia plants include Acacia auriculiformis (Acacia auriculiformis), Acacia mangium (A. mangium), Acacia mearansi (A. mearnsii), and Acacia classica (A crassicarpa), acacia 'A. aulacocarpa', etc., and hybrids having these as one parent, and their subspecies, varieties, and landscaping-greening 'as ornamental species, A. baileyana, Husa acacia (A. dealbata) etc. are included.
[0041] ところで、以上の説明では、吐出ノズルの外部で液体と気体とを混合させる「外部混 合タイプ」について説明した力 特に、この構成に限定されるものではなぐ吐出ノズ ルの内部で液体と気体とを混合させる「内部混合タイプ」を使用しても良い。また、外 部混合タイプの吐出ノズルを向かい合わせて、さらに微粒子同士をぶつけある「衝突 タイプ」を使用しても良い。何れにしても本発明では、二流体ノズルを用いるので、簡 易な構成でありならが高濃度の炭酸フォグを製造することができる。  By the way, in the above description, the force described for the “external mixing type” that mixes the liquid and the gas outside the discharge nozzle, in particular, the liquid inside the discharge nozzle is not limited to this configuration. And an "internal mixing type" for mixing gas and gas. Alternatively, a “collision type” in which the external mixing type discharge nozzles face each other and the particles are further hit against each other may be used. In any case, in the present invention, since the two-fluid nozzle is used, it is possible to produce high-concentration carbon dioxide fog with a simple configuration.
[0042] し力も、本装置 EQUでは、サイフォン方式を採用しており、液体は吸入されて吐出 ノズルに供給されるので液ポンプが不要となり、この意味でも簡易性に優れて ヽる。 但し、特にサイフォン方式に限定される必要はなぐ噴霧量を増やしたいような場合 には、液ポンプを用いて吐出ノズルに液体を供給しても良い。なお、液タンク 6には、 原水を貯留している力 この原水に、窒素、リン酸、カリウム、マグネシウム、カルシゥ ム、鉄その他の成分を含ませても良いのは上述した通りである。また、必要に応じて、 液肥や農薬などを含有させた原水を使用し、この場合には、吐出ノズルに二酸ィ匕炭 素を供給しな ヽで運転させる動作態様も考えられる。 [0042] Also, in the present device EQU, the siphon system is adopted, and the liquid is sucked and supplied to the discharge nozzle, so that a liquid pump is not required, and in this sense, the simplicity is excellent. However, in the case where it is desired to increase the spray amount, which is not particularly limited to the siphon system, the liquid may be supplied to the discharge nozzle using a liquid pump. It is to be noted that, as described above, the liquid tank 6 may store nitrogen, phosphoric acid, potassium, magnesium, calcium, iron, and other components in the raw water. Also, if necessary, use raw water containing liquid manure or pesticides. In this case, the discharge nozzle is An operation mode in which the operation is performed without supplying elements is also conceivable.
[0043] また、より実用的なシステムとしては、多数の吐出ノズル 5 · · · 5が必要となる力 この 場合には、図 5に示すように、吐出ノズル 5 " ' 5の数だけ電磁開閉弁11八' ' ' 11八を 設け、これらをシーケンサ 12の制御によって時間順次に動作させるのが効果的であ る。このような図 5の構成によれば、コンプレッサ 1ゃレギユレータ 3の能力を高めなく ても、多数の吐出ノズル 5 · · · 5を動作させることができる。更にまた、各吐出ノズル 5 · • · 5に設置箇所に近接して、湿度センサや二酸ィ匕炭素濃度を計測するガスセンサを 配置して、必要な箇所にだけ炭酸フォグを供給するようにすれば更に効果的である。 なお、電磁開閉弁 11を閉塞する一方、電磁開閉弁 11 'を開放すれば水フォグを製 造することができる。この場合も、電磁開閉弁 11Α· · · 11Aを時間順次に動作させれ ば良い。  Further, as a more practical system, a force that requires a large number of discharge nozzles 5... 5 In this case, as shown in FIG. It is effective to provide valves 118 '' and 118 '' and operate them in a time-sequential manner by controlling the sequencer 12. According to such a configuration of FIG. 5, the capacity of the compressor 1 ゃ regulator 3 is reduced. It is possible to operate a large number of discharge nozzles 5 · · · 5 without increasing the pressure.Furthermore, close the installation location of each discharge nozzle 5 · · · 5, the humidity sensor and carbon dioxide concentration It is more effective to arrange a gas sensor to be measured and supply the carbon dioxide fog only to the necessary places.While closing the solenoid on-off valve 11 and opening the solenoid on-off valve 11 ', water fog In this case, too, the solenoid on-off valve 11Α · · · It is only necessary to operate 11A in time sequence.
実施例  Example
[0044] 以下に本発明の植物の育成方法および挿し木方法について、実施例によりさら〖こ 詳細に説明する。  Hereinafter, the method for growing a plant and the method for cutting according to the present invention will be described in more detail with reference to Examples.
〈実施例 比較例 1〉  <Example Comparative Example 1>
農業用ビニールで覆ったビニールドームを設け、その長さ方向両側に図 1の炭酸フ オダ装置 EQUをそれぞれ設置した。そして、炭酸フォグ製造装置 EQUの破線部を 用い、対照実験として空気コンプレッサで 0.4Mpaに圧を高めた空気をノズル当り毎分 40リットル (以下、 40Lと表記する)の速度で水道水に当てて細霧 (フォグ)を作り、 5時 から 17時まで日照時間中に 15分間間隔で 15秒間、農業用ビニールで覆ったドーム 内に噴霧した (比較例 1)。この場合、噴霧量は 1ノズルあたり 40ccZ分とした。  A vinyl dome covered with agricultural vinyl was provided, and the carbonated carbon dioxide equipment EQU shown in Fig. 1 was installed on both sides in the longitudinal direction. Then, using the broken line part of the carbon dioxide fog production equipment EQU, as a control experiment, air with a pressure increased to 0.4 Mpa by an air compressor was applied to tap water at a rate of 40 liters per minute per nozzle (hereinafter referred to as 40 L). Fine fog (fog) was created and sprayed into the dome covered with agricultural vinyl for 15 seconds at intervals of 15 minutes during the sunshine hours from 5:00 to 17:00 (Comparative Example 1). In this case, the spray amount was 40 ccZ per nozzle.
[0045] 一方、前記空気(0.4Mpa:ノズル当り 22.5L/分)に炭酸ガスボンベから 0.4Mpaの圧 で毎分 17.5Lの速度で吹き出す二酸ィ匕炭素を混合し、毎分 80Lの速度で水道水を吸 引して炭酸水細霧 (炭酸フォグ)を作り、 5時から 17時まで日照時間中に 15分間間隔 で 15秒間、農業用ビニールで覆ったドーム内に噴霧した (実施例 1)。噴霧量は比較 例 1と同量であり、噴霧された炭酸水を回収して測定した溶存ニ酸ィ匕炭素濃度は 700mg/Lであった。なお、レーザー方式で噴出口から 200mmの測定ポイントで測定 したところ、炭酸フォグの平均粒子径は 10 m程度であった。 [0046] 実験植物として成長の揃ったユーカリ ·グロブラス(E.globulus)の挿し木苗木をそれ ぞれの実験環境下で 4本ずつ 65日間育成した。尚、灌水は雨量換算で ImmZ日とな るように自動灌水で行った。 On the other hand, the above air (0.4 Mpa: 22.5 L / min per nozzle) was mixed with carbon dioxide blown from a carbon dioxide gas cylinder at a pressure of 0.4 Mpa at a rate of 17.5 L per minute, and mixed at a rate of 80 L per minute. Tap water is drawn into carbonated water fine fog (carbonated fog) and sprayed into the dome covered with agricultural vinyl for 15 seconds from 5:00 to 17:00 at 15 minute intervals during the daylight hours (Example 1). ). The spray amount was the same as that in Comparative Example 1, and the concentration of dissolved carbon dioxide measured by collecting the sprayed carbonated water was 700 mg / L. The average particle size of the carbon dioxide fog was about 10 m when measured at a measurement point of 200 mm from the jet port by the laser method. [0046] Four cuttings of Eucalyptus globulus (E. globulus) cuttings, which grew as experimental plants, were grown in each experimental environment for 65 days. The irrigation was performed by automatic irrigation so that ImmZ days would be calculated in terms of rainfall.
[0047] 比較例 1及び実施例 1で育成した実験植物の苗高を継時的に測定し、実験開始時 の苗高、実験開始 65日後の苗高および実験開始 65日後の苗高を実験開始時の苗 高で割った増加率を表 1に平均値士標準偏差で示す。また苗高平均値の継時変化 をグラフ化したものが図 6である。  [0047] The seedling height of the experimental plants grown in Comparative Example 1 and Example 1 was measured over time, and the seedling height at the start of the experiment, the seedling height 65 days after the start of the experiment, and the seedling height 65 days after the start of the experiment were tested. The growth rate divided by the seedling height at the start is shown in Table 1 as the mean standard deviation. Figure 6 shows the change in the average seedling height over time.
[0048] [表 1]  [Table 1]
炭酸フォグによる成長促進効果  Growth promotion effect of carbonic fog
実験開始時の苗高 (Cl m) 実験開始 65曰後の苗高 (Cl m) 実験開始 65日後の増加率 比較例 1 30.9±0.7 41.3+ 1.5 1.34 ±0.03 Seedling height at start of experiment ( Cl m) Seedling height after start of experiment ( Cl m) Increase rate 65 days after start of experiment Comparative example 1 30.9 ± 0.7 41.3+ 1.5 1.34 ± 0.03
実施例 1 30.6 ± 1.9 44.6 ± 1.7 * 1.46 ±0.09 *  Example 1 30.6 ± 1.9 44.6 ± 1.7 * 1.46 ± 0.09 *
* :統計検定による有意差有り  *: Significant difference by statistical test
[0049] 実施例 1では炭酸フォグにより、比較例 1と比べて実験開始後徐々に成長促進効果 が現れて、実験開始 65日後には苗高およびその増加率で統計的に有意な差が現れ た。  [0049] In Example 1, the carbon dioxide fog gradually increased the growth promoting effect after the start of the experiment compared to Comparative Example 1, and a statistically significant difference in the seedling height and the increase rate appeared 65 days after the start of the experiment. Was.
〈実施例 2、比較例 2〉  <Example 2, Comparative Example 2>
次に、実施例 1および比較例 1と同一の実験環境下で、実験植物としてユーカリ'グ ロブラス (E.globulus)を用い、挿し木をそれぞれの実験環境下で、 6本ずつ 12反復で 行った。揷しっけ 2ヶ月後に掘り取り、発根しているもの、カルスができているもの、腐 敗しているものを計数した。結果を表 2に示す。  Next, under the same experimental environment as in Example 1 and Comparative Example 1, eucalyptus globulus (E.globulus) was used as an experimental plant, and cuttings were performed in 12 replicates of 6 in each experimental environment. .揷 Moisture Two months later, excavation was carried out, and the number of roots, callus, and rot was counted. Table 2 shows the results.
[0050] [表 2] [0050] [Table 2]
炭酸フォグによる挿し木の発根促進効果 Carbon dioxide fog promotes rooting of cuttings
各 6本中 比較例 2 実施例 2  Out of 6 each Comparative Example 2 Example 2
反復 発根 カルス 腐敗 発根 カルス 腐敗  Repetition rooting callus rot rooting callus rot
1 1 1 4 3 0 3  1 1 1 4 3 0 3
2 2 3 1 3 1 2  2 2 3 1 3 1 2
3 2 1 3 2 3 1  3 2 1 3 2 3 1
4 0 2 4 1 0 5  4 0 2 4 1 0 5
5 1 1 4 0 1 4  5 1 1 4 0 1 4
6 1 2 3 3 1 2  6 1 2 3 3 1 2
7 1 0 5 1 2 3  7 1 0 5 1 2 3
8 2 1 3 2 2 2  8 2 1 3 2 2 2
9 1 2 3 4 0 2  9 1 2 3 4 0 2
10 0 1 5 4 0 2  10 0 1 5 4 0 2
1 1 0 0 6 4 1 1  1 1 0 0 6 4 1 1
12 0 0 6 3 3 0  12 0 0 6 3 3 0
平均土偏差 0.9±0.8 1.2 ±0.9 3.9 ± 1.4 2.5± 1.3* 1.2 ± 1.1 2.3 ± 1.4*  Average soil deviation 0.9 ± 0.8 1.2 ± 0.9 3.9 ± 1.4 2.5 ± 1.3 * 1.2 ± 1.1 2.3 ± 1.4 *
合計数 1 1 14 47 30 14 27 率(%) 15 19 65 42 19 38 Total number 1 1 14 47 30 14 27 Rate (%) 15 19 65 42 19 38
* :統計検定による有意差あり *: Significant difference by statistical test
[0051] 実施例 2では炭酸フォグにより、比較例 2と比べて発根促進効果が現れて、発根の 本数が増加し腐敗の本数が減少して、統計的に有意な差が現れた。 [0051] In Example 2, the effect of carbonic acid fog on promoting rooting appeared compared to Comparative Example 2, and the number of roots increased and the number of rots decreased, resulting in a statistically significant difference.
〈実施例 3、比較例 3〉  <Example 3, Comparative Example 3>
比較テスト用として、温室内に、それぞれ農業用ビニールで覆った第一と第二のビ ニールドームを設置した。そして、対照実験として、第一ビニールドーム内に、特許文 献 1の図 1に記載の植物育成用の装置によって得られた高濃度の炭酸水(  For comparative tests, the first and second vinyl domes, each covered with agricultural vinyl, were installed in the greenhouse. As a control experiment, high-concentration carbonated water obtained by the plant growing apparatus described in FIG. 1 of Patent Document 1 was placed in the first vinyl dome.
2,000mg/L)を、 0.2Mpaの圧力でミストノズル力も 30分間間隔で 10秒間噴霧した (炭 酸ミスト;比較例 3)。噴霧された噴出口付近の炭酸水を回収して濃度を測定したとこ ろ、 980mg/Lであった。  2,000 mg / L) was sprayed at a pressure of 0.2 Mpa with a mist nozzle force of 30 minutes at intervals of 10 seconds (carbonic acid mist; Comparative Example 3). When the carbonated water near the sprayed outlet was collected and the concentration was measured, it was 980 mg / L.
[0052] また、噴霧直後の第一ビニールドーム内の二酸ィ匕炭素濃度を測定した結果は、 [0052] Also, the result of measuring the concentration of carbon dioxide in the first vinyl dome immediately after spraying was as follows:
420ppmであった。この時、温室内の二酸ィ匕炭素濃度も同じく 420ppmであり、第一ビ ニールドーム内の二酸化炭素濃度の上昇は認められなかった。第一ビニールドーム 内の湿度は、噴霧直後は 90%以上となった力 噴霧 6分後には温室内の湿度(70%)と 平衡に達した。 420 ppm. At this time, the carbon dioxide concentration in the greenhouse was also 420 ppm, and no increase in the carbon dioxide concentration in the first vinyl dome was observed. The humidity in the first vinyl dome became 90% or more immediately after spraying. Six minutes after the force spraying, the humidity reached equilibrium with the humidity in the greenhouse (70%).
[0053] 一方、本発明の図 1の炭酸フォグ製造装置 EQUを用い、炭酸ガスボンベから  On the other hand, using the carbon dioxide fog producing apparatus EQU of FIG. 1 of the present invention,
0.4Mpaの圧でノズル当り毎分 30Lの速度で二酸ィ匕炭素を噴出させ、水道水を吸引さ せて炭酸フォグを作り、 10分間隔で 10秒間、温室内に設置した第二ビニールドーム 内に噴霧した (実施例 3)。噴霧された噴出口付近の炭酸水を回収して濃度を測定し たところ、 2,000mg/Lであった。 A second vinyl dome installed in a greenhouse for 10 seconds at 10-minute intervals by blowing out carbon dioxide at a pressure of 0.4 Mpa at a rate of 30 L / min per nozzle and drawing tap water into the fog. (Example 3). The concentration of the carbonated water collected near the sprayed outlet was measured and found to be 2,000 mg / L.
[0054] また、噴霧直後の第二ビニールドーム内の二酸ィ匕炭素濃度を継時的に測定した結 果は図 7に示す通りである。炭酸フォグ噴霧後、ドーム内の二酸化炭素濃度が急激 に上昇するがこれは水に溶けきらない二酸ィ匕炭素がそのまま噴出したためと思われ る。その後、炭酸フォグはドーム内を浮遊するために、噴霧後 2分間は二酸ィ匕炭素濃 度を l,000ppm以上に保つことができた。噴霧 6分後(300秒)でもドーム内の二酸ィ匕炭 素は 500ppm程度であった。温室内の二酸ィ匕炭素濃度は 420ppmであったため、第二 ビニールドーム内の二酸ィ匕炭素濃度の上昇を保持していることが認められた。湿度 は、噴霧直後は 90%以上となり、噴霧 6分後にも 80%以上であり、温室内の湿度(70%) より高いまま保持された。 FIG. 7 shows the results of successive measurements of the carbon dioxide concentration in the second vinyl dome immediately after spraying. After spraying the carbon dioxide fog, the concentration of carbon dioxide in the dome rises sharply. This is probably because the carbon dioxide that is insoluble in water blew out. After that, the carbon dioxide fog floated inside the dome, so that the carbon dioxide concentration could be kept at 1,000 ppm or more for 2 minutes after spraying. Six minutes after spraying (300 seconds), the amount of carbon dioxide in the dome was still about 500 ppm. Since the concentration of carbon dioxide in the greenhouse was 420 ppm, it was confirmed that the concentration of carbon dioxide in the second vinyl dome was increasing. Humidity was more than 90% immediately after spraying and more than 80% 6 minutes after spraying, and was kept higher than the humidity in the greenhouse (70%).
[0055] 第一と第二のビニールドームについて、上記の動作を 5時から 17時まで 2ヶ月間毎 日繰り返したところ、炭酸ミスト(比較例 3)でのユーカリ 'グロブラスの発根率 20%に 対し、炭酸フォグ (実施例 3)での発根率が 50%に向上した。なお、比較例 3の噴霧 間隔 (30分)は、実施例 3の噴霧間隔 (10分)よりかなり長いが、これは、上記の噴霧間 隔カ 比較例にとっての最適値であることを過去の実験力 確認しているためである [0055] The above operation was repeated every day for two months from 5:00 to 17:00 for the first and second vinyl domes. On the other hand, the rooting rate of carbonate fog (Example 3) was improved to 50%. Note that the spray interval (30 minutes) in Comparative Example 3 was considerably longer than the spray interval (10 minutes) in Example 3, but this is an optimal value for the above-described comparative example. Experimental power
産業上の利用可能性 Industrial applicability
[0056] 本発明は、農業 '林業'園芸全般に対しても広く適用することができ、穀類'野菜類 などの農作物、花卉類、果榭、植林'緑化用榭木などの収量増加、品質向上、挿し 木による大量クローン増殖などに優れた効果を発揮する。 [0056] The present invention can be widely applied to agriculture 'forestry' and horticulture in general, and can increase yield and quality of crops such as cereals and vegetables, flowers and fruits, plantations and 'trees for greening'. It has an excellent effect on improvement and large-scale clone propagation by cuttings.

Claims

請求の範囲 The scope of the claims
[1] 二酸ィ匕炭素と液体とを二流体ノズルに供給して、常圧大気中の飽和濃度以上に二 酸ィ匕炭素を含有した平均粒子径 20 μ m以下の炭酸フォグを生成し、これを間欠的 に植物に噴霧するようにした植物の育成方法。  [1] The carbon dioxide and the liquid are supplied to a two-fluid nozzle to produce carbon dioxide fog having an average particle diameter of 20 μm or less containing the carbon dioxide at a saturation concentration or more in the atmospheric pressure atmosphere. And a method of growing a plant in which this is intermittently sprayed on the plant.
[2] 前記植物は、挿し木状態の植物である請求項 1に記載の植物の育成方法。 [2] The method for growing a plant according to claim 1, wherein the plant is a cutting plant.
[3] 二酸ィ匕炭素と液体とは、高速度で前記ノズル力も別々に噴出された後、前記ノズル の外部空間で衝突させて前記炭酸フォグを生成するようにしている請求項 1又は 2に 記載の植物の育成方法。 [3] The carbon dioxide fog is generated by separately jetting the nozzle force at a high speed from the diacid carbon and the liquid, and then colliding in the outer space of the nozzle. The method for growing a plant according to the above.
[4] 前記二酸化炭素を前記ノズルから噴出させることに起因して、前記液体が前記ノズ ルに自動的に吸引されている請求項 1〜3の何れかに記載の育成方法。 4. The growing method according to claim 1, wherein the liquid is automatically sucked into the nozzle due to the carbon dioxide being ejected from the nozzle.
[5] 請求項 1〜3の何れかに記載の育成方法で使用され、 [5] Used in the breeding method according to any one of claims 1 to 3,
給気ライン力 高圧ガスが供給され、給液ライン力 液体が供給されるようになって いる二流体ノズル。  Air supply line force A two-fluid nozzle that is supplied with high-pressure gas and liquid supply line force.
[6] 請求項 1〜3の何れかに記載の育成方法に使用され、 [6] Used in the breeding method according to any one of claims 1 to 3,
二流体ノズルと、前記二流体ノズルに高圧ガスを供給する給気ラインと、前記二流 体ノズルに液体を供給する給液ラインとを備える炭酸フォグの製造装置。  An apparatus for producing carbon dioxide fog, comprising: a two-fluid nozzle; an air supply line for supplying a high-pressure gas to the two-fluid nozzle; and a liquid supply line for supplying a liquid to the two-fluid nozzle.
PCT/JP2005/008747 2004-06-07 2005-05-13 Method of growing plant and apparatus therefor WO2005120211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2005251579A AU2005251579A1 (en) 2004-06-07 2005-05-13 Method of growing plant and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004167968A JP4522153B2 (en) 2004-06-07 2004-06-07 Plant growth method
JP2004-167968 2004-06-07

Publications (1)

Publication Number Publication Date
WO2005120211A1 true WO2005120211A1 (en) 2005-12-22

Family

ID=35494847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008747 WO2005120211A1 (en) 2004-06-07 2005-05-13 Method of growing plant and apparatus therefor

Country Status (3)

Country Link
JP (1) JP4522153B2 (en)
AU (1) AU2005251579A1 (en)
WO (1) WO2005120211A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206454A (en) * 2007-02-27 2008-09-11 Kao Corp Plant cultivating method
JP5382906B2 (en) * 2008-07-25 2014-01-08 正一 中村 Carbon dioxide pressure bath system
EP2246030A4 (en) * 2008-12-04 2014-10-22 Shoichi Nakamura System for pressure bathing in gas-containing mist
KR20110107788A (en) * 2008-12-26 2011-10-04 쇼이치 나카무라 Pressurized carbon dioxide-containing mist bathing system
JP6385636B2 (en) * 2012-07-20 2018-09-05 株式会社大林組 Fine fog cooling method and fine fog cooling system in plant cultivation facilities

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215449A (en) * 1997-02-04 1997-08-19 Toyo Tanso Kk Production device for carbon dioxide solution for breeding plant
JP2001276678A (en) * 2000-01-26 2001-10-09 Spraying Syst Co Air atomizing nozzle assembly having advanced air cap
JP2002508238A (en) * 1997-12-17 2002-03-19 ユニバーシィダッド デ セビリヤ Device and method for aeration of fluid
JP2003111521A (en) * 2001-10-02 2003-04-15 Aquatech:Kk Method for raising plant and device for raising plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215449A (en) * 1997-02-04 1997-08-19 Toyo Tanso Kk Production device for carbon dioxide solution for breeding plant
JP2002508238A (en) * 1997-12-17 2002-03-19 ユニバーシィダッド デ セビリヤ Device and method for aeration of fluid
JP2001276678A (en) * 2000-01-26 2001-10-09 Spraying Syst Co Air atomizing nozzle assembly having advanced air cap
JP2003111521A (en) * 2001-10-02 2003-04-15 Aquatech:Kk Method for raising plant and device for raising plant

Also Published As

Publication number Publication date
JP4522153B2 (en) 2010-08-11
JP2005341919A (en) 2005-12-15
AU2005251579A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US20090293357A1 (en) Aeroponic atomizer for horticulture
AU2016260385B2 (en) Nutrient system
WO2005120211A1 (en) Method of growing plant and apparatus therefor
KR101794622B1 (en) Carbon dioxide supply system to enhancing carbon dioxide application efficiency of verticality growth crop and method for controlling the same
JP4456410B2 (en) Plant growth method
ZA200402799B (en) Method of producing rooted cutting of arboreous plant.
JP2525826B2 (en) Medium improvement method
JP2006246833A (en) Device for producing agricultural irrigation water by maintaining dissolved concentration suitable for kind and growing state of cultivated crops
JPH0884530A (en) Method for growing plants
JPH0799849A (en) Cultivation of plant by house culture and automatic irrigation apparatus
WO2003030627A1 (en) Method of producing rooted cutting of arboreous plant
Kaur et al. Role of micro-irrigation in vegetable crops
JP2004166648A (en) Vegetable cultivation method and apparatus
CN108124662A (en) Plant culture mist ploughing system and its small plant factory of utilization
TW202002758A (en) Magnesium deficiency control method
TW202002759A (en) Clubroot disease control method
JPH10229752A (en) Method for cultivating plant and device therefor
CN214413731U (en) Watering device for fruit planting
EP4074163A1 (en) Plant cultivation method and plant cultivation device
US20220192113A1 (en) Gas Diffusion System for Agriculture
JP2003339227A (en) Method for producing cuttage seedling of woody plant
WO2019230766A1 (en) Tomato fruit shape control method
WO2023233401A1 (en) Apparatus and method for preserving aeroponic vegetation
JPH11275963A (en) Irrigation in protected horticulture and apparatus therefor
Beljanskaja et al. SPRINKLING AS AN IRRIGATION METHOD

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005251579

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2005251579

Country of ref document: AU

Date of ref document: 20050513

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005251579

Country of ref document: AU

122 Ep: pct application non-entry in european phase