JP2016154462A - Nutritious liquid feeding device and nutritious liquid feeding method - Google Patents

Nutritious liquid feeding device and nutritious liquid feeding method Download PDF

Info

Publication number
JP2016154462A
JP2016154462A JP2015033184A JP2015033184A JP2016154462A JP 2016154462 A JP2016154462 A JP 2016154462A JP 2015033184 A JP2015033184 A JP 2015033184A JP 2015033184 A JP2015033184 A JP 2015033184A JP 2016154462 A JP2016154462 A JP 2016154462A
Authority
JP
Japan
Prior art keywords
nutrient solution
water
permeable member
plant
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015033184A
Other languages
Japanese (ja)
Inventor
篤樹 柿谷
Atsuki Kakiya
篤樹 柿谷
安松 拓人
Takuto Yasumatsu
拓人 安松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2015033184A priority Critical patent/JP2016154462A/en
Publication of JP2016154462A publication Critical patent/JP2016154462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To feed nutritious liquid having a high concentration of dissolved oxygen to plants by a simple configuration.SOLUTION: A nutritious liquid feeding device comprises: a nutritious liquid spraying part (6) which atomizes and sprays nutritious liquid; and a water-permeable member (7) which is disposed at least on a side of plants (p) opposed to the nutritious liquid spraying part (6), and the feeding device sprays nutritious liquid from the nutritious liquid spraying part (6) to the water-permeable member (7), and feeds nutritious liquid having passed the water-permeable member (7) to the plants (p).SELECTED DRAWING: Figure 2

Description

本発明は、植物に養液を供給する養液供給装置および養液供給方法に関するものである。   The present invention relates to a nutrient solution supply apparatus and a nutrient solution supply method for supplying a nutrient solution to a plant.

従来、植物の根の部分に溶存酸素濃度の高い養液を供給することにより、植物の生長が促進されることが知られている。   Conventionally, it is known that the growth of a plant is promoted by supplying a nutrient solution having a high dissolved oxygen concentration to the root portion of the plant.

例えば、特許文献1には、含酸素気体のナノバブルを供給することによって溶存酸素濃度を高めた水を植物に供給する技術が開示されている。   For example, Patent Document 1 discloses a technique for supplying plants with water whose dissolved oxygen concentration is increased by supplying oxygen-containing gas nanobubbles.

また、特許文献2には、加圧ミキシングタンクで溶存酸素濃度を高めた水を植物に供給する技術が開示されている。   Patent Document 2 discloses a technique for supplying water having a dissolved oxygen concentration increased in a pressurized mixing tank to a plant.

特開2014−000057号公報(2014年1月9公開)JP 2014-000057 A (published January 9, 2014) 特開2001−211770号公報(2001年8月7日公開)JP 2001- 211770 A (published August 7, 2001)

しかしながら、上記特許文献1,2の技術には、植物に供給する水の溶存酸素濃度を高めるために特別な設備(例えばナノバブル供給装置や加圧ミキシングタンクなど)を設ける必要があるので、構造が複雑化してしまうという問題がある。   However, the techniques of Patent Documents 1 and 2 require a special facility (for example, a nanobubble supply device or a pressurized mixing tank) to increase the dissolved oxygen concentration of water supplied to the plant. There is a problem that it becomes complicated.

また、上記特許文献1,2の技術では、植物に供給する前の水の溶存酸素濃度を高めても、その水が植物に到達するまでに溶存酸素濃度が低下してしまうという問題もある。   Moreover, even if it raises the dissolved oxygen concentration of the water before supplying to a plant in the technique of the said patent documents 1, 2, there exists a problem that dissolved oxygen concentration will fall by the time the water reaches | attains a plant.

本発明は、上記の問題点に鑑みて成されたものであり、その目的は、簡単な構成で植物に溶存酸素濃度の高い養液を供給することにある。   The present invention has been made in view of the above problems, and an object thereof is to supply a nutrient solution having a high dissolved oxygen concentration to a plant with a simple configuration.

本発明の一態様にかかる養液供給装置は、植物に養液を供給する養液供給装置であって、養液を霧化噴射する養液噴射部と、前記植物における少なくとも前記養液噴射部との対向面側に配置された透水性部材とを備え、前記養液噴射部から前記透水性部材に前記養液を噴射し、前記透水性部材を通過した養液を前記植物に供給することを特徴としている。   A nutrient solution supply apparatus according to one aspect of the present invention is a nutrient solution supply device that supplies a nutrient solution to a plant, the nutrient solution ejecting unit that atomizes and sprays the nutrient solution, and at least the nutrient solution ejecting unit in the plant A water permeable member disposed on the opposite surface side of the liquid, and spraying the nutrient solution onto the water permeable member from the nutrient solution ejecting section and supplying the plant with the nutrient solution that has passed through the water permeable member. It is characterized by.

上記の構成によれば、養液噴射部が養液を霧化噴射することによって養液と空気との接触面積および接触時間を増加させて空気中の酸素を養液に取り込ませることができ、さらに、透水性部材を通過させることによって透水性部材中の空気に含まれる酸素を養液に取り込ませることができる。これにより、簡単な構成で植物に溶存酸素濃度の高い養液を供給することができる。   According to the above configuration, the nutrient solution spraying section can increase the contact area between the nutrient solution and air and the contact time by atomizing and spraying the nutrient solution, and allow oxygen in the air to be taken into the nutrient solution. Furthermore, oxygen contained in the air in the permeable member can be taken into the nutrient solution by passing the permeable member. Thereby, a nutrient solution with a high dissolved oxygen concentration can be supplied to a plant with a simple configuration.

本発明の一態様にかかる養液供給装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the nutrient solution supply apparatus concerning 1 aspect of this invention. 図1に示した養液供給装置に備えられるプランタ、養液配管、養液噴射部、および透水性部材の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the planter, nutrient solution piping, nutrient solution injection part, and water-permeable member which are equipped with the nutrient solution supply apparatus shown in FIG. (a)は図1に示した養液供給装置に備えられる透水性部材を構成するロックウールを示す説明図であり、(b)はその拡大図である。(A) is explanatory drawing which shows the rock wool which comprises the water-permeable member with which the nutrient solution supply apparatus shown in FIG. 1 is equipped, (b) is the enlarged view. 図1に示した養液供給装置において養液噴射部から透水性部材に養液の霧化噴射を行っている状態を示す説明図である。It is explanatory drawing which shows the state which is performing the atomization injection of the nutrient solution to a water-permeable member from the nutrient solution injection part in the nutrient solution supply apparatus shown in FIG. 図1に示した養液供給装置を用いて栽培したイチゴを示す説明図である。It is explanatory drawing which shows the strawberry grown using the nutrient solution supply apparatus shown in FIG. (a)は図1に示した養液供給装置における透水性部材の厚さと透水性部材を通過した養液中の溶存酸素濃度との関係を調べるために行った実験の様子を示す説明図であり、(b)および(c)は上記実験の実験結果を示す説明図である。(A) is explanatory drawing which shows the mode of the experiment conducted in order to investigate the relationship between the thickness of the water-permeable member in the nutrient solution supply apparatus shown in FIG. 1, and the dissolved oxygen concentration in the nutrient solution which passed the water-permeable member. (B) and (c) are explanatory diagrams showing the experimental results of the above experiment. (a)は本発明の他の実施形態にかかる養液供給装置に備えられる透水性部材の概略構成を示す説明図であり、(b)〜(d)はその変形例を示す説明図である。(A) is explanatory drawing which shows schematic structure of the water-permeable member with which the nutrient solution supply apparatus concerning other embodiment of this invention is equipped, (b)-(d) is explanatory drawing which shows the modification. . 本発明のさらに他の実施形態にかかる養液供給装置に備えられるプランタ、養液配管、養液噴射部、および透水性部材の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the planter, nutrient solution piping, nutrient solution injection part, and water-permeable member with which the nutrient solution supply apparatus concerning further another embodiment of this invention is equipped. 本発明のさらに他の実施形態にかかる養液供給装置に備えられる養液噴射部の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the nutrient solution injection part with which the nutrient solution supply apparatus concerning further another embodiment of this invention is equipped. 本発明のさらに他の実施形態にかかる養液供給装置に備えられる養液噴射部の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the nutrient solution injection part with which the nutrient solution supply apparatus concerning further another embodiment of this invention is equipped.

〔実施形態1〕
本発明の一実施形態について説明する。
Embodiment 1
An embodiment of the present invention will be described.

(1−1.養液供給装置100の構成)
図1は、本発明の一態様にかかる養液供給装置100の概略構成を示す説明図である。この図に示すように、養液供給装置100は、タンク1、ポンプ2、養液供給管3、養液配管4、およびプランタ5を備えている。
(1-1. Configuration of Nutrient Solution Supply Device 100)
FIG. 1 is an explanatory diagram showing a schematic configuration of a nutrient solution supply apparatus 100 according to one aspect of the present invention. As shown in this figure, the nutrient solution supply apparatus 100 includes a tank 1, a pump 2, a nutrient solution supply pipe 3, a nutrient solution pipe 4, and a planter 5.

タンク1は、プランタ5で栽培される植物に供給する養液を貯蔵する。なお、本実施形態では、園試処方の培養液(成分濃度:N=16me/L、P=4me/L、K=8me/L、Ca=8me/L、Mg=4me/L)を希釈した養液を用いている。ただし、養液の構成はこれに限るものではなく、他の成分からなる養液を用いてもよく、水(例えば真水、農業用水、水道水など)であってもよい。   The tank 1 stores the nutrient solution supplied to the plant cultivated by the planter 5. In the present embodiment, the culture liquid of the prescription formulation (component concentration: N = 16 me / L, P = 4 me / L, K = 8 me / L, Ca = 8 me / L, Mg = 4 me / L) was diluted. A nutrient solution is used. However, the configuration of the nutrient solution is not limited to this, and a nutrient solution composed of other components may be used, or water (for example, fresh water, agricultural water, tap water, etc.) may be used.

ポンプ2は、タンク1に貯蔵された養液を加圧して養液供給管3に供給する。本実施形態では、養液供給管3に供給される養液の水圧を0.2MPaとした。ただし、養液供給管3に供給される養液の水圧はこれに限るものではなく、大気圧よりも高い水圧であればよい。   The pump 2 pressurizes the nutrient solution stored in the tank 1 and supplies it to the nutrient solution supply pipe 3. In the present embodiment, the water pressure of the nutrient solution supplied to the nutrient solution supply pipe 3 is 0.2 MPa. However, the water pressure of the nutrient solution supplied to the nutrient solution supply pipe 3 is not limited to this, and may be a water pressure higher than the atmospheric pressure.

養液供給管3には複数の養液配管4が接続されており、ポンプ2から養液供給管3に供給された養液はそれら各養液配管4に供給される。   A plurality of nutrient solution pipes 4 are connected to the nutrient solution supply pipe 3, and the nutrient solution supplied from the pump 2 to the nutrient solution supply pipe 3 is supplied to each of the nutrient solution pipes 4.

養液配管4は、プランタ5に対応して設けられており、プランタ5で栽培される植物に養液を供給する。なお、図2に示した例では、6個のプランタ5と、各プランタ5に対応する6本の養液配管4とが備えられているが、プランタ5および養液配管4の数はこれに限るものではなく、適宜変更してもよい。また、養液供給管3の数についても特に限定されるものではなく、適宜変更してもよい。   The nutrient solution piping 4 is provided corresponding to the planter 5 and supplies the nutrient solution to the plant cultivated by the planter 5. In the example shown in FIG. 2, six planters 5 and six nutrient solution pipes 4 corresponding to each planter 5 are provided, but the number of planters 5 and nutrient solution pipes 4 is not limited thereto. It is not limited and may be changed as appropriate. Further, the number of nutrient solution supply pipes 3 is not particularly limited, and may be changed as appropriate.

図2は、プランタ5および養液配管4の概略構成を示す説明図である。この図に示すように、プランタ5は一方向に延伸する形状を有しており、養液配管4はプランタ5上に当該プランタ5の延伸方向に略平行な方向に延伸するように配置されている。   FIG. 2 is an explanatory diagram showing a schematic configuration of the planter 5 and the nutrient solution piping 4. As shown in this figure, the planter 5 has a shape extending in one direction, and the nutrient solution piping 4 is arranged on the planter 5 so as to extend in a direction substantially parallel to the extending direction of the planter 5. Yes.

また、プランタ5では複数の植物p(例えばイチゴなど)が栽培されており、各植物pにおける株元部(クラウン部)の周囲には透水性部材7が配置されている。また、養液配管4における各植物pとの対向部には、植物pとの間に配置された透水性部材7に向けて養液を霧化噴射(スプレー噴射)する養液噴射部6が取り付けられている。養液噴射部6は、先端部に多数の微小な孔が設けられたノズル部を備えており、養液配管4から供給される養液をノズル部の各孔から噴射する。   In the planter 5, a plurality of plants p (for example, strawberries) are cultivated, and a water permeable member 7 is disposed around the plant base (crown) of each plant p. Moreover, the nutrient solution injection part 6 which atomizes and sprays a nutrient solution toward the water-permeable member 7 arrange | positioned between the plants p in the part facing each plant p in the nutrient solution piping 4 (spray injection). It is attached. The nutrient solution injection unit 6 includes a nozzle portion provided with a large number of minute holes at the tip, and injects the nutrient solution supplied from the nutrient solution pipe 4 from each hole of the nozzle portion.

本実施形態では、幅3mm×奥行3mm×長さ5mm程度のロックウール(玄武石等を溶解して形成される鉱石繊維)からなる粒状綿(繊維体)を植物pと養液噴射部6との対向方向の厚さ(平均厚さ)が約1cmになるように多数備えてなる透水性部材7を用いた。図3の(a)は透水性部材7を構成するロックウールからなる粒状綿を示す説明図であり、(b)はその拡大図である。ただし、透水性部材7の材質は、養液噴射部6から霧化噴射された養液を透過する性質(浸み通る性質)を有するものであれば特に限定されるものではなく、例えば養液を通過させることができる程度の孔あるいは隙間を多数備えた繊維体や多孔質体などを用いることができる。より具体的には、例えば、ロックウールをブロック状あるいはマット状に成形した繊維体、ウレタン樹脂等の合成樹脂からなる多孔質体(例えば合成スポンジ)、合成樹脂からなる繊維体、ガラス繊維からなる繊維体などを用いてもよい。また、ロックウール、合成樹脂、およびガラス繊維のうちのいずれか2つ以上を組み合わせて用いてもよい。   In this embodiment, the granular cotton (fiber body) which consists of rock wool (ore fiber formed by melt | dissolving basalt etc.) about width 3mm x depth 3mm x length 5mm is plant p, the nutrient solution injection part 6, and The water-permeable member 7 provided in large numbers was used so that the thickness in the opposite direction (average thickness) was about 1 cm. (A) of FIG. 3 is explanatory drawing which shows the granular cotton which consists of rock wool which comprises the water-permeable member 7, (b) is the enlarged view. However, the material of the water permeable member 7 is not particularly limited as long as it has a property (permeation property) that allows the nutrient solution sprayed from the nutrient solution injection unit 6 to pass through. It is possible to use a fibrous body or a porous body provided with a large number of holes or gaps that can pass through. More specifically, for example, a rock body made of rock wool in a block shape or a mat shape, a porous body made of a synthetic resin such as urethane resin (for example, a synthetic sponge), a fiber body made of a synthetic resin, or a glass fiber. A fibrous body or the like may be used. Further, any two or more of rock wool, synthetic resin, and glass fiber may be used in combination.

また、養液噴射部6から養液が噴射される透水性部材7に加えて、植物pの周囲に、植物pあるいは培地を保温のための保温部材(例えばウレタン樹脂などの樹脂部材や各種繊維体など)を配置してもよい。   Further, in addition to the water permeable member 7 from which the nutrient solution is ejected from the nutrient solution ejecting unit 6, a thermal insulation member (for example, a resin member such as urethane resin or various fibers) for keeping the plant p or the culture medium around the plant p. Body etc.) may be arranged.

養液噴射部6は、養液配管4における各植物pに対応する位置(より具体的には各植物pの周囲に配置された透水性部材7に所定間隔(本実施形態では2cm)を隔てて対向する位置)にそれぞれ設けられている。なお、養液噴射部6と透水性部材7との間隔は、上記間隔に限るものではないが、1cm〜5cm程度に設定することが好ましい。   The nutrient solution injection unit 6 is located at a position corresponding to each plant p in the nutrient solution pipe 4 (more specifically, a predetermined interval (2 cm in the present embodiment) between the water permeable members 7 arranged around each plant p). Are provided at opposite positions). In addition, although the space | interval of the nutrient solution injection part 6 and the water-permeable member 7 is not restricted to the said space | interval, it is preferable to set to about 1 cm-5 cm.

図4は、養液噴射部6から透水性部材7に向けて霧化噴射を行っている状態を示す説明図である。この図に示すように、本実施形態では、養液噴射部6から植物pの周囲に配置された透水性部材7に養液を霧化噴射する。   FIG. 4 is an explanatory diagram showing a state in which atomization injection is performed from the nutrient solution injection unit 6 toward the water permeable member 7. As shown in this figure, in this embodiment, the nutrient solution is atomized and ejected from the nutrient solution ejecting unit 6 to the water permeable member 7 disposed around the plant p.

これにより、養液噴射部6から霧化噴射された養液は透水性部材7を透過して植物pに供給される。この際、養液噴射部6から霧化噴射されることにより養液に酸素が取り込まれ、さらに透水性部材7を通過する際に透水性部材7に入り込んだ酸素が養液に取り込まれることで養液の溶存酸素濃度が上昇する。その結果、植物pに供給される養液の溶存酸素濃度を簡単な構成で向上させることができる。   As a result, the nutrient solution sprayed from the nutrient solution ejecting section 6 passes through the water permeable member 7 and is supplied to the plant p. At this time, oxygen is taken into the nutrient solution by being atomized and jetted from the nutrient solution ejecting section 6, and further oxygen that has entered the water permeable member 7 when passing through the water permeable member 7 is taken into the nutrient solution. Increases the dissolved oxygen concentration in the nutrient solution. As a result, the dissolved oxygen concentration of the nutrient solution supplied to the plant p can be improved with a simple configuration.

図5は、本実施形態にかかる養液供給装置100を用いて栽培したイチゴの株元部(クラウン部)を示す説明図である。この図に示すように、本実施形態にかかる養液供給装置100を用いて栽培することにより(より詳細には養液50mLを霧化噴射して灌水する処理をイチゴの各株について1日4回行う処理を約2週間継続することにより)、イチゴに供給される養液の溶存酸素濃度を増大させ、イチゴの株元部(クラウン部)から不定根を発生させることができた。   FIG. 5 is an explanatory diagram showing a strawberry stock (crown) grown using the nutrient solution feeder 100 according to the present embodiment. As shown in this figure, by growing using the nutrient solution supply apparatus 100 according to the present embodiment (more specifically, the process of atomizing and spraying 50 mL of nutrient solution for irrigation is performed 4 times a day for each strawberry strain. By continuing the repeated treatment for about 2 weeks), the dissolved oxygen concentration of the nutrient solution supplied to the strawberry was increased, and adventitious roots could be generated from the strawberry stock (crown).

なお、不定根は、植物における培地よりも上の株元部(クラウン部)から伸びる根であり、不定根が発生するとより収量が向上することが知られている。また、一般に、連続して果実を収穫すると品質が低下する、いわゆる成り疲れが生じる。このため、従来の植物栽培方法では、成り疲れを抑制するために、一定期間、花芽を摘んで株(特に根)の充実を図る作業を行う必要がある。これに対して、不定根が発生すると、連続収穫期間が延び、花芽を摘んで株の充実を図る作業の頻度を低減することができる。   In addition, adventitious roots are roots that extend from the plant base part (crown part) above the culture medium in plants, and it is known that yield increases more when adventitious roots are generated. Moreover, generally, when fruits are continuously harvested, quality is deteriorated, so-called fatigue occurs. For this reason, in the conventional plant cultivation method, in order to suppress fatigue, it is necessary to work to enhance the stock (particularly the root) by picking flower buds for a certain period of time. On the other hand, when adventitious roots are generated, the continuous harvest period is extended, and the frequency of the work of picking flower buds and enhancing the stock can be reduced.

また、不定根を発生させるためには、溶存酸素濃度の高い養液を植物の株元部に繰り返し供給する必要があることが知られている。ところが、植物栽培施設では、養液をタンクに貯めておくため、養液の動きがないタンク内で微生物が発生すること等によりタンク内の養液の溶存酸素濃度が低下する。このため、従来の栽培方法では、ロックウールや土などの培地を用いて栽培することにより、培地に入り込んだ空気中の酸素が養液に巻き込まれて養液の酸素濃度がある程度回復するものの、その程度の溶存酸素量の回復では株元部(株根元の茎の部分)から不定根を発生させることはできなかった。   In addition, it is known that in order to generate adventitious roots, it is necessary to repeatedly supply a nutrient solution having a high dissolved oxygen concentration to the plant root of the plant. However, in the plant cultivation facility, since the nutrient solution is stored in the tank, the dissolved oxygen concentration of the nutrient solution in the tank decreases due to generation of microorganisms in the tank where the nutrient solution does not move. For this reason, in the conventional cultivation method, by cultivating using a medium such as rock wool or soil, oxygen in the air that has entered the medium is involved in the nutrient solution, and the oxygen concentration of the nutrient solution is restored to some extent, With such a recovery of the dissolved oxygen amount, adventitious roots could not be generated from the plant base (the stem at the base of the plant root).

これに対して、本実施形態では、養液噴射部6から透水性部材7に養液を霧化噴射し、透水性部材7を介して植物pに養液を供給することにより、植物pに供給される溶液中の溶存酸素濃度を上昇させ、不定根を発生させることができた。   On the other hand, in this embodiment, the nutrient solution is atomized and jetted from the nutrient solution ejecting unit 6 to the water permeable member 7, and the nutrient solution is supplied to the plant p through the water permeable member 7. The dissolved oxygen concentration in the supplied solution was increased, and adventitious roots were generated.

(1−2.溶存酸素濃度の測定実験)
図6の(a)は、透水性部材7の厚さと透水性部材7を通過した養液中の溶存酸素濃度との関係を調べるために行った実験の様子を示す説明図であり、(b)および(c)は上記実験の実験結果を示す図である。
(1-2. Measurement experiment of dissolved oxygen concentration)
(A) of FIG. 6 is explanatory drawing which shows the mode of the experiment conducted in order to investigate the relationship between the thickness of the water-permeable member 7, and the dissolved oxygen concentration in the nutrient solution which passed the water-permeable member 7, ) And (c) are diagrams showing the experimental results of the above experiment.

図6の(a)に示すように、本実施形態では、養液噴射部6から透水性部材7に養液を霧化噴射し、透水性部材7に浸透して通過した養液を容器8で収集し、収集した養液中の溶存酸素濃度を測定した。なお、養液噴射部6を透水性部材7との間隔は2cmとし、養液噴射部6に供給される養液の水圧は0.2MPa、水温は21℃とした。また、各条件について、容器8に100mLの養液を収集して溶存酸素濃度を測定する処理をそれぞれ2回ずつ行い、その平均値を取った。また、(i)ロックウールからなる粒状綿を多数備えた繊維体、(ii)ロックウールからなるブロック状の繊維体、および(iii)ウレタン樹脂からなる合成スポンジ(多孔質体)の3種類の透水性部材7を用いて実験を行った。   As shown to (a) of FIG. 6, in this embodiment, a nutrient solution is atomized and injected from the nutrient solution injection part 6 to the water-permeable member 7, and the nutrient solution which permeate | transmitted and passed the water-permeable member 7 is container 8 And the dissolved oxygen concentration in the collected nutrient solution was measured. In addition, the space | interval of the nutrient solution injection part 6 and the water-permeable member 7 was 2 cm, the water pressure of the nutrient solution supplied to the nutrient solution injection part 6 was 0.2 MPa, and the water temperature was 21 degreeC. Moreover, about each condition, the process which collects 100 mL of nutrient solution in the container 8 and measures a dissolved oxygen concentration was each performed twice, and the average value was taken. In addition, (i) a fiber body provided with many granular cottons made of rock wool, (ii) a block-like fiber body made of rock wool, and (iii) a synthetic sponge (porous body) made of urethane resin. An experiment was conducted using the water-permeable member 7.

その結果、図6の(b)および(c)に示すように、透水性部材7を用いずに養液噴射部6から霧化噴射させただけの養液の溶存酸素濃度は8.66mg/Lであったのに対して、養液噴射部6から透水性部材7に養液を霧化噴射して透水性部材7を透過させることにより、溶液中の溶存酸素濃度を増加させることができた。なお、従来の植物栽培において一般的に採用されている潅水方法である点滴灌水を行った場合(透水性部材7を用いない場合)の養液中の溶存酸素濃度は7.3mg/Lであった。   As a result, as shown in (b) and (c) of FIG. 6, the dissolved oxygen concentration of the nutrient solution just sprayed from the nutrient solution injection unit 6 without using the water-permeable member 7 is 8.66 mg / Although it was L, the concentration of dissolved oxygen in the solution can be increased by atomizing and spraying the nutrient solution from the nutrient solution injection unit 6 to the permeable member 7 and allowing the permeable member 7 to permeate. It was. Note that the dissolved oxygen concentration in the nutrient solution when drip irrigation, which is a irrigation method generally used in conventional plant cultivation (when the permeable member 7 is not used), was 7.3 mg / L. It was.

また、上記実験の結果、溶液中の溶存酸素濃度を効果的に増加させるためには、透水性部材7の厚さを0.5cm以上3.0cm以下にすることが好ましく、0.5cm以上2cm以下にすることがより好ましく、0.5cm以上1.5cm以下にすることがさらに好ましいことがわかった。   As a result of the above experiment, in order to effectively increase the dissolved oxygen concentration in the solution, the thickness of the water permeable member 7 is preferably 0.5 cm or more and 3.0 cm or less, and 0.5 cm or more and 2 cm or less. It has been found that it is more preferable that the thickness is 0.5 cm or more and 1.5 cm or less.

なお、培地の上面を防水シートで覆い、養液配管4および養液噴射部6を防水シートの下に配置するようにしてもよい。これにより、植物栽培設備内の湿度の上昇を抑制することを抑制できる。   The upper surface of the culture medium may be covered with a waterproof sheet, and the nutrient solution piping 4 and the nutrient solution injection unit 6 may be disposed under the waterproof sheet. Thereby, it can suppress that the raise in the humidity in plant cultivation equipment is suppressed.

また、養液噴射部6の先端部(養液を吐出する吐出穴部の周囲)に電圧を印加することにより、先端部を殺菌してヌメリ等で穴が詰まることを防止するようにしてもよい。   In addition, by applying a voltage to the tip of the nutrient solution injection unit 6 (around the discharge hole for discharging the nutrient solution), the tip may be sterilized to prevent the hole from being clogged with slime or the like. Good.

また、本実施形態にかかる養液供給装置100は、植物栽培工場(スマートアグリ等)に用いてもよく、露地栽培に用いてもよい。   Moreover, the nutrient solution supply apparatus 100 concerning this embodiment may be used for plant cultivation factories (smart agri etc.), and may be used for outdoor cultivation.

〔実施形態2〕
本発明の他の実施形態について説明する。なお、説明の便宜上、実施形態1と同じ機能を有する部材については同じ符号を付し、その説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described. For convenience of explanation, members having the same functions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図7の(a)は、本実施形態にかかる養液供給装置100に備えられる透水性部材7の構成を示す説明図である。   (A) of FIG. 7 is explanatory drawing which shows the structure of the water-permeable member 7 with which the nutrient solution supply apparatus 100 concerning this embodiment is equipped.

実施形態1では、ロックウールからなる粒状綿を多数個配置してなる透水性部材7を用いる例について説明した。   Embodiment 1 demonstrated the example using the water-permeable member 7 which arrange | positions many granular cotton which consists of rock wool.

これに対して本実施形態では、図7の(a)に示したように、ロックウールを筒状に成形した透水性部材7を用い、この筒状の透水性部材7の中空部分に植物pを配置して植物pにおける株元部の周囲を透水性部材7で覆う。このような構成でも、実施形態1と略同様の効果を得ることができる。   On the other hand, in this embodiment, as shown to (a) of FIG. 7, the water-permeable member 7 which shape | molded rock wool in the cylinder shape is used, and plant p is used for the hollow part of this cylindrical water-permeable member 7. And the periphery of the plant base in the plant p is covered with the water permeable member 7. Even with such a configuration, it is possible to obtain substantially the same effect as in the first embodiment.

また、図7の(b)〜(d)に示すように、ロックウールをブロック状に成形した透水性部材7を植物pにおける少なくとも養液噴射部6側の面に配置してもよい。これら各構成の透水性部材7を用いても実施形態1と略同様の効果を得ることができる。   Moreover, as shown to (b)-(d) of FIG. 7, you may arrange | position the water-permeable member 7 which shape | molded rock wool in the block shape in the surface at the side of the nutrient solution injection part 6 in the plant p at least. Even if the water permeable member 7 having each of these configurations is used, substantially the same effects as those of the first embodiment can be obtained.

なお、上述した各構成において、ロックウールに代えて、ウレタン等の合成樹脂やガラス繊維などの他の透水性部材7を用いてもよい。   In addition, in each structure mentioned above, it replaces with rock wool and you may use other water-permeable members 7, such as synthetic resins, such as urethane, and glass fiber.

〔実施形態3〕
本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態と同じ機能を有する部材については同じ符号を付し、その説明を省略する。
[Embodiment 3]
Still another embodiment of the present invention will be described. For convenience of explanation, members having the same functions as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

図8は、本実施形態にかかる養液供給装置100におけるプランタ5および養液配管4の概略構成を示す説明図である。   FIG. 8 is an explanatory diagram showing a schematic configuration of the planter 5 and the nutrient solution piping 4 in the nutrient solution supply apparatus 100 according to the present embodiment.

実施形態1では、各プランタ5に対して養液配管4を1本ずつ設け、各プランタ5上に養液配管4を配置する構成について説明した。   In the first embodiment, the configuration in which one nutrient solution pipe 4 is provided for each planter 5 and the nutrient solution pipe 4 is disposed on each planter 5 has been described.

これに対して、本実施形態では、図8に示すように、各プランタ5に対して養液配管4を2本ずつ設け、養液配管4を各プランタ5の延伸方向に平行かつ各プランタ5に対して水平方向の両側に配置する。   On the other hand, in this embodiment, as shown in FIG. 8, two nutrient solution pipes 4 are provided for each planter 5, and the nutrient solution pipes 4 are parallel to the extending direction of each planter 5 and each planter 5. Is placed on both sides in the horizontal direction.

これにより、プランタ5における植物pの栽培領域を広くするとともに、各植物pに対する養液の供給効率を向上させることができる。   Thereby, while growing the cultivation area | region of the plant p in the planter 5, the supply efficiency of the nutrient solution with respect to each plant p can be improved.

なお、本実施形態では、各プランタ5に養液配管4をそれぞれ2本ずつ配置する構成について説明したが、これに限らず、各プランタ5に3本以上の養液配管4を配置してもよい。   In the present embodiment, the configuration in which two nutrient solutions 4 are arranged in each planter 5 has been described. However, the present invention is not limited thereto, and three or more nutrient solutions 4 may be arranged in each planter 5. Good.

〔実施形態4〕
本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態と同じ機能を有する部材については同じ符号を付し、その説明を省略する。
[Embodiment 4]
Still another embodiment of the present invention will be described. For convenience of explanation, members having the same functions as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

図9は、本実施形態にかかる養液供給装置100に備えられる養液噴射部6の概略構成を示す説明図である。   FIG. 9 is an explanatory diagram illustrating a schematic configuration of the nutrient solution injection unit 6 provided in the nutrient solution supply apparatus 100 according to the present embodiment.

この図に示すように、本実施形態にかかる養液噴射部6は、略円筒状の本体部6aと、本体部6aの先端に配置された多数の微小な孔部を有するノズル部6bと、本体部6aの内部(養液配管4から供給される養液が流れる流路6d中)に配置された透水性部材6cとを備えている。   As shown in this figure, the nutrient solution injection unit 6 according to this embodiment includes a substantially cylindrical main body 6a, and a nozzle 6b having a large number of minute holes arranged at the tip of the main body 6a. And a water permeable member 6c disposed inside the main body 6a (in the flow path 6d through which the nutrient solution supplied from the nutrient solution pipe 4 flows).

透水性部材6cは、例えば多数の微小な孔を有する多孔質体あるいは各種繊維体からなり、本体部6aの内部における養液の流路6dを塞ぐように配置されている。これにより、養液配管4から養液噴射部6に供給された養液は当該養液の水圧により透水性部材6cを通過してノズル部6bから霧化噴射される。これにより、透水性部材6cを通過する際に養液中に空気が巻き込ませ、溶液中の溶存酸素濃度を増加させることができる。   The water permeable member 6c is made of, for example, a porous body or various fiber bodies having a large number of minute holes, and is disposed so as to block the nutrient solution flow path 6d inside the main body 6a. Thereby, the nutrient solution supplied to the nutrient solution injection part 6 from the nutrient solution piping 4 passes the water-permeable member 6c by the water pressure of the said nutrient solution, and is atomized and injected from the nozzle part 6b. Thereby, when passing the water-permeable member 6c, air can be entrained in the nutrient solution, and the dissolved oxygen concentration in the solution can be increased.

なお、本実施形態では、本体部6a内に透水性部材6cを設けることにより養液中の溶存酸素濃度を増加させているが、透水性部材6cに加えて、あるいは透水性部材6cに代えて、溶存酸素濃度を増加させるための他の手段を養液の供給経路(養液噴射部6、養液配管4、養液供給管3、あるいはタンク1)に設けてもよい。   In this embodiment, the dissolved oxygen concentration in the nutrient solution is increased by providing the water permeable member 6c in the main body 6a. However, in addition to the water permeable member 6c or in place of the water permeable member 6c. Other means for increasing the dissolved oxygen concentration may be provided in the nutrient solution supply path (the nutrient solution injection unit 6, the nutrient solution piping 4, the nutrient solution supply tube 3, or the tank 1).

例えば、養液噴射部6におけるノズル部6bの上流側に養液噴射部6の外部の空気を養液噴射部6内に取り込む空気取込穴を設け、この空気取込穴から取り込んだ空気を溶液中に巻き込ませることにより溶存酸素濃度を増加させるようにしてもよい。また、養液噴射部6内の養液流路の一部をベンチュリ管とすることにより、溶液中に空気を巻き込ませて溶存酸素濃度を増加させるようにしてもよい。   For example, an air intake hole is provided on the upstream side of the nozzle portion 6b in the nutrient solution injection unit 6 to take in air outside the nutrient solution injection unit 6 into the nutrient solution injection unit 6, and the air acquired from the air intake hole is The dissolved oxygen concentration may be increased by entraining in the solution. Moreover, you may make it increase dissolved oxygen concentration by entraining air in a solution by making a part of nutrient solution flow path in the nutrient solution injection part 6 into a venturi tube.

また、養液の流路中に酸素ボンベの酸素供給手段から酸素を直接供給するようにしてもよい。この場合、空気を供給する場合に比べて酸素分圧が高くなるので、溶存酸素濃度をより効率的に上げることができる。   Further, oxygen may be directly supplied from the oxygen supply means of the oxygen cylinder into the nutrient solution flow path. In this case, since the oxygen partial pressure is higher than when air is supplied, the dissolved oxygen concentration can be increased more efficiently.

また、酸素と二酸化炭素の混合ガスを溶液中に供給するようにしてもよい。これにより、密植された植物の各株に酸素と二酸化炭素とを供給する送風手段を設けなくても、植物栽培施設内の酸素濃度と二酸化炭素濃度の比率を均一化させることができる。   Further, a mixed gas of oxygen and carbon dioxide may be supplied into the solution. Thereby, even if it does not provide the ventilation means which supplies oxygen and carbon dioxide to each strain | stump | stock of a plant planted densely, the ratio of the oxygen concentration in a plant cultivation facility can be equalize | homogenized.

〔実施形態5〕
本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態と同じ機能を有する部材については同じ符号を付し、その説明を省略する。
[Embodiment 5]
Still another embodiment of the present invention will be described. For convenience of explanation, members having the same functions as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

図10は、本実施形態にかかる養液供給装置100に備えられる養液噴射部6の概略構成を示す説明図である。   FIG. 10 is an explanatory diagram illustrating a schematic configuration of the nutrient solution injection unit 6 provided in the nutrient solution supply apparatus 100 according to the present embodiment.

上述した各実施形態では、先端に多数の孔部を備えたノズル部を有し、養液の水圧によってノズル部から養液を噴射する構成の養液噴射部6について説明した。   In each of the above-described embodiments, the nutrient solution ejecting section 6 having the nozzle portion having a large number of holes at the tip and ejecting the nutrient solution from the nozzle portion by the water pressure of the nutrient solution has been described.

これに対して、本実施形態にかかる養液噴射部6は、図10に示すように、養液配管4から植物p側に向けて突出するニードル電極6eと、ニードル電極6eの先端部の周囲を囲むように配置されたリング状の接地電極6fと、ニードル電極6eに所定の電位を印加する電源部6gとを備えている。また、接地電極6fは、グランドに接続(接地)されている。   On the other hand, as shown in FIG. 10, the nutrient solution injection section 6 according to the present embodiment includes a needle electrode 6e protruding from the nutrient solution pipe 4 toward the plant p side, and the periphery of the tip of the needle electrode 6e. A ring-shaped ground electrode 6f arranged so as to surround the power source 6g, and a power supply unit 6g for applying a predetermined potential to the needle electrode 6e. The ground electrode 6f is connected (grounded) to the ground.

ニードル電極6eは、中空の針状になっており、中空部分を介して養液配管4から当該ニードル電極6eの先端に養液が供給される。   The needle electrode 6e has a hollow needle shape, and the nutrient solution is supplied from the nutrient solution piping 4 to the tip of the needle electrode 6e through the hollow portion.

電源部6gによってニードル電極6eに所定の電位(負の電位)を印加すると、ニードル電極6eと接地電極6fとの電位差によりニードル電極6eの先端の養液が微細な液滴となって飛散する。具体的には、ニードル電極6eの先端の養液が電界により円錐状に歪められ、歪められた円錐状部分の先端から数百ナノメートル〜数十マイクロメートル程度の負に帯電した養液のミスト(霧)が噴射される。これにより、養液噴射部6から植物pにおける養液噴射部6側の面に配置された透水性部材7へ養液を霧化噴射させることができる。   When a predetermined potential (negative potential) is applied to the needle electrode 6e by the power supply unit 6g, the nutrient solution at the tip of the needle electrode 6e is scattered as fine droplets due to the potential difference between the needle electrode 6e and the ground electrode 6f. Specifically, the nutrient solution at the tip of the needle electrode 6e is distorted in a conical shape by an electric field, and a negatively charged nutrient solution mist of about several hundred nanometers to several tens of micrometers from the tip of the distorted conical portion. (Fog) is injected. Thereby, a nutrient solution can be atomized and injected from the nutrient solution injection part 6 to the water-permeable member 7 arrange | positioned at the surface at the nutrient solution injection part 6 side in the plant p.

なお、ニードル電極6eの構成は、中空形状に限るものではなく、先端に養液を供給可能な構成であればよい。また、接地電極6fの形状および配置位置も図10に示した構成に限るものではなく、ニードル電極6eから養液を霧化噴射させることができる構成および配置位置であればよい。例えば、接地電極6fをニードル電極6eの近傍に配置してもよく、植物pあるいは透水性部材7の近傍に配置してもよい。   In addition, the structure of the needle electrode 6e is not restricted to a hollow shape, What is necessary is just a structure which can supply a nutrient solution to a front-end | tip. Further, the shape and the arrangement position of the ground electrode 6f are not limited to the configuration shown in FIG. 10, and may be any configuration and arrangement position capable of atomizing and spraying the nutrient solution from the needle electrode 6e. For example, the ground electrode 6f may be disposed in the vicinity of the needle electrode 6e, or may be disposed in the vicinity of the plant p or the water-permeable member 7.

〔まとめ〕
本発明の態様1にかかる養液供給装置100は、植物pに養液を供給する養液供給装置100であって、養液を霧化噴射する養液噴射部6と、前記植物pにおける少なくとも前記養液噴射部6との対向面側に配置された透水性部材7とを備え、前記養液噴射部6から前記透水性部材7に前記養液を噴射し、前記透水性部材7を通過した養液を前記植物pに供給することを特徴としている。
[Summary]
A nutrient solution supply apparatus 100 according to aspect 1 of the present invention is a nutrient solution supply apparatus 100 that supplies a nutrient solution to a plant p, and includes a nutrient solution injection unit 6 that atomizes and sprays the nutrient solution, and at least the plant p. A water permeable member 7 disposed on the surface facing the nutrient solution injection unit 6, the nutrient solution is injected from the nutrient solution injection unit 6 to the water permeable member 7, and passes through the water permeable member 7. It supplies the said nutrient solution to the said plant p, It is characterized by the above-mentioned.

上記の構成によれば、養液噴射部6が養液を霧化噴射することによって養液と空気との接触面積および接触時間を増加させて空気中の酸素を養液に取り込ませることができ、さらに、透水性部材7を通過させることによって透水性部材7中の空気に含まれる酸素を養液に取り込ませることができる。これにより、植物pに簡単な構成で溶存酸素濃度の高い養液を供給することができる。   According to said structure, the nutrient solution injection part 6 can increase the contact area and contact time of nutrient solution and air by atomizing and spraying nutrient solution, and can take in oxygen in air. Furthermore, oxygen contained in the air in the water permeable member 7 can be taken into the nutrient solution by passing the water permeable member 7. Thereby, the nutrient solution with high dissolved oxygen concentration can be supplied to the plant p with a simple structure.

本発明の態様2にかかる養液供給装置100は、上記態様1において、前記透水性部材7は、ロックウール、合成樹脂、およびガラス繊維のうちのいずれか1つ以上からなる構成である。   The nutrient solution supply apparatus 100 according to aspect 2 of the present invention is configured in the above aspect 1, wherein the water-permeable member 7 is composed of any one or more of rock wool, synthetic resin, and glass fiber.

上記の構成によれば、透水性部材を通過する養液の溶存酸素濃度を効果的に増加させることができる。   According to said structure, the dissolved oxygen concentration of the nutrient solution which passes a water-permeable member can be increased effectively.

本発明の態様3にかかる養液供給装置100は、上記態様1または2において、前記透水性部材7における前記養液噴射部6と前記植物pとの対向方向の厚さが0.5cm以上3cm以下である構成である。   The nutrient solution supply apparatus 100 according to Aspect 3 of the present invention is the aspect 1 or 2, wherein the thickness of the water-permeable member 7 in the facing direction between the nutrient solution injection unit 6 and the plant p is 0.5 cm to 3 cm. The configuration is as follows.

透水性部材を通過させることで透水性部材を配置しない場合よりも養液中の溶存酸素濃度を増加させることができるが、透水性部材の厚さが厚すぎると養液中の溶存酸素濃度がかえって低下してしまう。これに対して、上記の構成によれば、透水性部材7の厚さを0.5cm以上3cm以下にすることにより、透水性部材を通過する養液の溶存酸素濃度を効果的に増加させることができる。   By passing the water permeable member, the dissolved oxygen concentration in the nutrient solution can be increased as compared with the case where the water permeable member is not disposed. However, if the thickness of the water permeable member is too thick, the dissolved oxygen concentration in the nutrient solution is increased. On the contrary, it falls. On the other hand, according to said structure, the dissolved oxygen concentration of the nutrient solution which passes a water-permeable member can be effectively increased by making the thickness of the water-permeable member 7 into 0.5 cm or more and 3 cm or less. Can do.

本発明の態様4にかかる養液供給装置100は、上記態様1から3のいずれかにおいて、前記養液噴射部6は、前記養液の流路6dに配置された透水性部材6cを備え、前記透水性部材6cを通過した養液を霧化噴射する構成である。   The nutrient solution supply apparatus 100 according to aspect 4 of the present invention is the nutrient solution supply device 100 according to any one of the above aspects 1 to 3, wherein the nutrient solution injection unit 6 includes a water-permeable member 6c disposed in the nutrient solution flow path 6d. It is the structure which atomizes and sprays the nutrient solution which passed the said water-permeable member 6c.

上記の構成によれば、透水性部材6cを通過させることで霧化噴射される養液の溶存酸素濃度を増加させることができる。これにより、植物pにより溶存酸素濃度が高い養液を供給することができる。   According to said structure, the dissolved oxygen concentration of the nutrient solution sprayed can be increased by allowing the water-permeable member 6c to pass through. Thereby, the nutrient solution with high dissolved oxygen concentration can be supplied with the plant p.

本発明の態様5にかかる養液供給装置100は、上記態様1から4のいずれかにおいて、前記養液噴射部6は、前記透水性部材7側に突出する第1電極部(ニードル電極6e)と、前記第1電極部(ニードル電極6e)と離間して配置された第2電極部(接地電極6f)とを備え、前記第1電極部(ニードル電極6e)と前記第2電極部(接地電極6f)との間に形成される電界により前記第1電極部(ニードル電極6e)の先端から前記透水性部材7に前記養液を霧化噴射させる構成である。   The nutrient solution supply apparatus 100 according to the aspect 5 of the present invention is the nutrient solution supply device 100 according to any one of the aspects 1 to 4, wherein the nutrient solution injection unit 6 is a first electrode portion (needle electrode 6e) protruding toward the water permeable member 7 side. And a second electrode portion (ground electrode 6f) spaced apart from the first electrode portion (needle electrode 6e), the first electrode portion (needle electrode 6e) and the second electrode portion (ground) The nutrient solution is atomized and sprayed from the tip of the first electrode portion (needle electrode 6e) to the water-permeable member 7 by an electric field formed between the electrode 6f) and the electrode 6f).

上記の構成によれば、養液噴射部6から透水性部材7に養液の微細なミストを噴射することができ、透水性部材7を介して植物pに溶存酸素濃度の高い養液を供給することができる。   According to said structure, the fine mist of nutrient solution can be injected from the nutrient solution injection part 6 to the water-permeable member 7, and the nutrient solution with high dissolved oxygen concentration is supplied to the plant p through the water-permeable member 7. can do.

本発明の態様6にかかる養液供給方法は、植物pに養液を供給する養液供給方法であって、植物pの近傍に透水性部材7を配置する工程と、前記透水性部材7に養液を霧化噴射し、前記透水性部材7を通過した前記養液を前記植物pに供給する工程とを含むことを特徴としている。   The nutrient solution supply method according to aspect 6 of the present invention is a nutrient solution supply method for supplying a nutrient solution to the plant p, the step of disposing the water-permeable member 7 in the vicinity of the plant p, and the water-permeable member 7 A step of atomizing and spraying the nutrient solution and supplying the nutrient solution that has passed through the water-permeable member 7 to the plant p.

上記の方法によれば、養液を霧化噴射することによって養液と空気との接触面積および接触時間を増加させて空気中の酸素を養液に取り込ませることができ、さらに、透水性部材7を通過させることによって透水性部材7中の空気に含まれる酸素を養液に取り込ませることができる。これにより、植物pに簡単な構成で溶存酸素濃度の高い養液を供給することができる。   According to the above method, it is possible to increase the contact area and contact time between the nutrient solution and air by atomizing and spraying the nutrient solution, and to allow oxygen in the air to be taken into the nutrient solution, By allowing 7 to pass, oxygen contained in the air in the water permeable member 7 can be taken into the nutrient solution. Thereby, the nutrient solution with high dissolved oxygen concentration can be supplied to the plant p with a simple structure.

本発明の態様7にかかる養液供給方法は、上記態様6において、前記透水性部材7を前記植物pのクラウン部に対向する位置に配置し、前記透水性部材7を介して前記養液を前記植物pの前記クラウン部に供給する方法である。   The nutrient solution supply method according to Aspect 7 of the present invention is the nutrient solution supply method according to Aspect 6, wherein the water permeable member 7 is disposed at a position facing the crown portion of the plant p, and the nutrient solution is supplied via the water permeable member 7. It is a method of supplying to the crown part of the plant p.

上記の方法によれば、植物pのクラウン部に溶存酸素濃度の高い養液を供給することにより、クラウン部からの不定根の発生を促進させることができる。   According to said method, generation | occurrence | production of adventitious root from a crown part can be accelerated | stimulated by supplying a nutrient solution with a high dissolved oxygen concentration to the crown part of the plant p.

本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することもできる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and the embodiments can be obtained by appropriately combining technical means disclosed in different embodiments. The form is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.

本発明は、植物に養液を供給する養液供給装置および養液供給方法に適用できる。   The present invention can be applied to a nutrient solution supply apparatus and a nutrient solution supply method for supplying a nutrient solution to a plant.

1 タンク
2 ポンプ
3 養液供給管
4 養液配管
5 プランタ
6 養液噴射部
6a 本体部
6b ノズル部
6c 透水性部材
6d 流路
6e ニードル電極(第1電極部)
6f 接地電極(第2電極部)
6g 電源部
7 透水性部材
8 容器
100 養液供給装置
p 植物
DESCRIPTION OF SYMBOLS 1 Tank 2 Pump 3 Nutrient solution supply pipe 4 Nutrient solution pipe 5 Planter 6 Nutrient solution injection part 6a Main body part 6b Nozzle part 6c Permeable member 6d Flow path 6e Needle electrode (first electrode part)
6f Ground electrode (second electrode part)
6g Power supply part 7 Water-permeable member 8 Container 100 Nutrient solution supply device p Plant

Claims (5)

植物に養液を供給する養液供給装置であって、
養液を霧化噴射する養液噴射部と、
前記植物における少なくとも前記養液噴射部との対向面側に配置された透水性部材とを備え、
前記養液噴射部から前記透水性部材に前記養液を噴射し、前記透水性部材を通過した養液を前記植物に供給することを特徴とする養液供給装置。
A nutrient solution supply device for supplying a nutrient solution to a plant,
A nutrient solution injection unit for atomizing and spraying the nutrient solution;
A water permeable member disposed on the opposite surface side of the plant with at least the nutrient solution jetting unit;
The nutrient solution supply apparatus, wherein the nutrient solution is ejected from the nutrient solution ejecting unit onto the water-permeable member, and the nutrient solution that has passed through the water-permeable member is supplied to the plant.
前記透水性部材は、ロックウール、合成樹脂、およびガラス繊維のうちのいずれか1つ以上からなることを特徴とする請求項1に記載の養液供給装置。   The nutrient solution supply apparatus according to claim 1, wherein the water permeable member is made of one or more of rock wool, synthetic resin, and glass fiber. 前記透水性部材における前記養液噴射部と前記植物との対向方向の厚さが0.5cm以上3cm以下であることを特徴とする請求項1または2に記載の養液供給装置。   3. The nutrient solution supply apparatus according to claim 1, wherein a thickness of the water permeable member in a facing direction between the nutrient solution ejecting unit and the plant is 0.5 cm or more and 3 cm or less. 植物に養液を供給する養液供給方法であって、
植物の近傍に透水性部材を配置する工程と、
前記透水性部材に養液を霧化噴射し、前記透水性部材を通過した前記養液を前記植物に供給する工程とを含むことを特徴とする養液供給方法。
A nutrient solution supply method for supplying a nutrient solution to a plant,
Arranging a water permeable member in the vicinity of the plant;
And a step of atomizing and spraying the nutrient solution onto the water-permeable member and supplying the nutrient solution that has passed through the water-permeable member to the plant.
前記透水性部材を前記植物のクラウン部に対向する位置に配置し、前記透水性部材を介して前記養液を前記植物の前記クラウン部に供給することを特徴とする請求項4に記載の養液供給方法。   The said water-permeable member is arrange | positioned in the position facing the crown part of the said plant, The said nutrient solution is supplied to the said crown part of the said plant through the said water-permeable member, The nutrient of Claim 4 characterized by the above-mentioned. Liquid supply method.
JP2015033184A 2015-02-23 2015-02-23 Nutritious liquid feeding device and nutritious liquid feeding method Pending JP2016154462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033184A JP2016154462A (en) 2015-02-23 2015-02-23 Nutritious liquid feeding device and nutritious liquid feeding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033184A JP2016154462A (en) 2015-02-23 2015-02-23 Nutritious liquid feeding device and nutritious liquid feeding method

Publications (1)

Publication Number Publication Date
JP2016154462A true JP2016154462A (en) 2016-09-01

Family

ID=56824165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033184A Pending JP2016154462A (en) 2015-02-23 2015-02-23 Nutritious liquid feeding device and nutritious liquid feeding method

Country Status (1)

Country Link
JP (1) JP2016154462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106879350A (en) * 2017-03-27 2017-06-23 中国农业大学 Implantation methods are sowed in a kind of underground drip irrigation scraping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106879350A (en) * 2017-03-27 2017-06-23 中国农业大学 Implantation methods are sowed in a kind of underground drip irrigation scraping

Similar Documents

Publication Publication Date Title
US20180368346A1 (en) Fogponic plant growth system
US7823328B2 (en) Aeroponic plant growing system
US20110023359A1 (en) Aeroponic growing apparatus and method
CN202035362U (en) Rotary type aeroponic three-dimensional planting device
CN105050386B (en) Device and method for hydroponics
JP5707065B2 (en) Plant cultivation method
TW201410141A (en) Soilless environmentally controlled cultivation system
JPWO2019230778A1 (en) How to improve the soil
KR101452276B1 (en) Hybrid aeroponics system and method
CA2892131A1 (en) Fogponic plant growth system
CN106069057A (en) A kind of Litsea mollifolia cutting seedling mating system
JP2016154462A (en) Nutritious liquid feeding device and nutritious liquid feeding method
JP2005060296A (en) Method and apparatus for sterilizing soil
CN104871947A (en) Individual root-spraying plant planting method and device
CN207767047U (en) Plant culture mist ploughing system and its small plant factory of utilization
KR20190080998A (en) aeroponics cultivation
CN108651264A (en) A kind of modularization leaf vegetables aerial fog cultivation system
US20180220603A1 (en) Industrial aeroponics
KR101842155B1 (en) Apparatus for water culture including device for generating nanobubble
CN203952037U (en) Three-dimensional triangle posture potato seedling aerosol culture apparatus
CN211558353U (en) Water-gas composite cultivation frame
JPH0799849A (en) Cultivation of plant by house culture and automatic irrigation apparatus
CN202819208U (en) Column type cultivation frame
TW202002785A (en) Bacterial blight disease control method
WO2019230766A1 (en) Tomato fruit shape control method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170607