JP4456410B2 - Plant growth method - Google Patents

Plant growth method Download PDF

Info

Publication number
JP4456410B2
JP4456410B2 JP2004154924A JP2004154924A JP4456410B2 JP 4456410 B2 JP4456410 B2 JP 4456410B2 JP 2004154924 A JP2004154924 A JP 2004154924A JP 2004154924 A JP2004154924 A JP 2004154924A JP 4456410 B2 JP4456410 B2 JP 4456410B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
water
plant
bicarbonate
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004154924A
Other languages
Japanese (ja)
Other versions
JP2005333854A (en
Inventor
隆之 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2004154924A priority Critical patent/JP4456410B2/en
Publication of JP2005333854A publication Critical patent/JP2005333854A/en
Application granted granted Critical
Publication of JP4456410B2 publication Critical patent/JP4456410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、植物の育成方法に関するものであって、さらに詳しくは、環境ストレスに対する耐性を高めながら植物の育成を促進させることができ、また植物の挿し穂の発根を促進させることも可能な植物育成方法に係る。   The present invention relates to a method for growing plants, and more specifically, it can promote the growth of plants while enhancing resistance to environmental stress, and can also promote the rooting of plant cuttings. It relates to a plant growing method.

本発明者らは既に、二酸化炭素を高濃度に溶解させた炭酸水を植物に与えて植物の育成を促進する技術(特許文献1参照)、また炭酸水を植林した苗に供給することで環境ストレスの厳しい地域への植林を可能にする技術(特許文献2参照)、さらには炭酸水、炭酸水素イオン水、炭酸イオン水からなる群より選択される少なくとも一種の溶解水を植物の挿し穂に供給して挿し穂の発根を促進する技術(特許文献3参照)を開発している。
類似の技術として、植物類生育用二酸化炭素溶液の製造方法及び植物類生育用二酸化炭素溶液の供給装置(特許文献4,5参照)が開発されている。
The present inventors have already provided a plant with carbonated water in which carbon dioxide is dissolved at a high concentration to promote plant growth (see Patent Document 1), and the carbonated water is supplied to planted seedlings for environmental protection. A technique that enables planting in areas with severe stress (see Patent Document 2), and at least one type of dissolved water selected from the group consisting of carbonated water, bicarbonate ionized water, and carbonated ionized water for cuttings of plants A technology for supplying and promoting rooting of cuttings (see Patent Document 3) has been developed.
As a similar technique, a method for producing a carbon dioxide solution for plant growth and a device for supplying a carbon dioxide solution for plant growth (see Patent Documents 4 and 5) have been developed.

二酸化炭素が水に溶解して生ずる炭酸(HCO)は、水溶液としてのみ存在する。二酸化炭素の水への溶解度は、気相の二酸化炭素分圧に依存し、大気圧下では0.52ppmの二酸化炭素が水に溶解する。水溶液中の炭酸は、その一部が電離して水素イオンと重炭酸イオンを生じ、ここで生じた重炭酸イオンの一部は、さらに水素イオンと炭酸イオンとに電離するので、炭酸の水溶液である炭酸水は、酸性を呈するのが通例である。そして、その酸性の程度は溶解した二酸化炭素量に依存し、溶解した二酸化炭素量の増大に伴って、炭酸水の水素イオン指数(pH)は低下する。ちなみに、純水1リットルに二酸化炭素を1気圧での飽和濃度まで溶解させると、その水溶液は、最大10−3.91molの水素イオンと0.12mMの重炭酸イオンを含み、そのpHは3.91となる。 Carbonic acid (H 2 CO 3 ) produced by dissolving carbon dioxide in water exists only as an aqueous solution. The solubility of carbon dioxide in water depends on the partial pressure of carbon dioxide in the gas phase, and 0.52 ppm of carbon dioxide dissolves in water at atmospheric pressure. Carbonic acid in the aqueous solution is partly ionized to generate hydrogen ions and bicarbonate ions, and some of the bicarbonate ions generated here are further ionized into hydrogen ions and carbonate ions. Some carbonated water is typically acidic. The degree of acidity depends on the amount of dissolved carbon dioxide, and the hydrogen ion exponent (pH) of carbonated water decreases as the amount of dissolved carbon dioxide increases. By the way, when carbon dioxide is dissolved in 1 liter of pure water to a saturation concentration at 1 atm, the aqueous solution contains a maximum of 10 −3.91 mol hydrogen ions and 0.12 mM bicarbonate ions, and the pH is 3.91. It becomes.

二酸化炭素を水に強制的に溶解させて得られる炭酸水を植物に与えることは、植物の育成を促進する上で極めて有効ではあるが、上記したように、二酸化炭素を高濃度に溶解させた炭酸水は、必然的に低いpH値にあるので、こうした炭酸水を植物に与えることは、植物体から陽イオン(NH など)を溶脱させる結果を招くため好ましくない。 Giving carbonated water obtained by forcibly dissolving carbon dioxide in water to plants is extremely effective in promoting plant growth, but as described above, carbon dioxide was dissolved at a high concentration. Since carbonated water inevitably has a low pH value, it is not preferable to give such carbonated water to a plant because it results in leaching of cations (NH 4 + , K + etc.) from the plant body.

一方、実際の農業・林業などの生産場面では、植物供給水として純水やイオン交換水を使うことは極めて稀であり、通常は最寄りの河川からの河川水又は当該河川水を処理した水道水を使うことがほとんどである。各地域の河川に含まれる重炭酸イオン濃度は、世界平均値で51.7mg/l(約0.85mM/L)とされているが、日本でのそれは、珊瑚礁上にある沖縄を除くと総じて低く、全国平均では31mg/l(約0.51mM/L)とされている。このような水を原水とし、これに二酸化炭素を溶解させて炭酸水とした場合、溶解当初の炭酸水のpHは、植物に悪影響を及ぼす程には低下しない。
しかし、本発明者らによる最近の研究によれば、液中の炭酸が水素イオンと重炭酸イオンに電離する平衡関係が逆方向に進み、水素イオンと重炭酸イオンとの中和反応により炭酸分子が生成し、この分子がやがて炭酸ガスとして大気中に放出される。このため、炭酸水の調製を密閉タンクで行い、新しい原水を添加(補給)しない状態で炭酸水を調製し続けると、重炭酸イオンが消費されて次第に炭酸水のpHが低下し、これを植物に連続施用すると、植物に悪影響が及ぶことが判明した。
On the other hand, in actual production situations such as agriculture and forestry, it is extremely rare to use pure water or ion-exchanged water as plant supply water. Usually, river water from the nearest river or tap water that has processed the river water is used. It is almost to use. The concentration of bicarbonate ions in rivers in each region is 51.7 mg / l (approximately 0.85 mM / L) in the world average, but in Japan it is generally excluding Okinawa on coral reefs. The national average is 31 mg / l (about 0.51 mM / L). When such water is used as raw water, and carbon dioxide is dissolved therein to form carbonated water, the pH of the carbonated water at the beginning of dissolution is not lowered to the extent that it adversely affects plants.
However, according to a recent study by the present inventors, the equilibrium relationship in which the carbonic acid in the liquid is ionized into hydrogen ions and bicarbonate ions proceeds in the reverse direction, and the neutralization reaction between hydrogen ions and bicarbonate ions causes This molecule is eventually released as carbon dioxide into the atmosphere. For this reason, if carbonated water is prepared in a closed tank and carbonated water is continuously prepared without adding (supplementing) fresh raw water, bicarbonate ions are consumed and the pH of the carbonated water gradually decreases. It has been found that when applied continuously, the plant is adversely affected.

炭酸水を使用する代わりに、二酸化炭素を一定空間全体に暴露し、植物に高い濃度の二酸化炭素を与えることにより植物の育成を促進させる技術および挿し木方法(特許文献6参照)が「CO施肥」として実用化されている。このようなガス環境下で植物を育成すると初期には成長が急激に進むが、やがて植物体内の窒素濃度の減少が起こり、光合成速度や成長速度の低下が生じることが知られている。この現象も前述したように植物体内の水が酸性化することによって説明できる。高い濃度のCO環境で成長を続けるためには、窒素養分をはじめリン、カリウムなどの各種栄養塩を十分に供給し、植物体内の水の酸性化を緩和する対策を施さなければならず、作用効果を経済的に見合わせて普及させるのが難しい現状である。
特開2003-111521号公報 特開2003-325063号公報 特開2003-339227号公報 特許2843772号公報 特許2843773号公報 特開2001-186814号公報
Instead of using the carbonated water, carbon dioxide and exposed to a whole constant space, techniques and cuttings methods to promote the growth of plants by providing carbon dioxide concentrations high plant (see Patent Document 6) is "CO 2 fertilization It has been put to practical use. It is known that when a plant is grown under such a gas environment, the growth proceeds rapidly at an early stage, but eventually the nitrogen concentration in the plant body decreases and the photosynthetic rate and the growth rate decrease. This phenomenon can also be explained by the acidification of the water in the plant body as described above. In order to continue growing in a high-concentration CO 2 environment, it is necessary to supply various nutrient salts such as nitrogen and phosphorus, potassium, etc., and take measures to alleviate the acidification of water in the plant body. It is difficult to disseminate the effects by economically matching them.
Japanese Patent Laid-Open No. 2003-111521 JP2003-325063 JP2003-339227 Japanese Patent No. 2847372 Japanese Patent No. 2847373 JP 2001-186814 A

植物の育成を促進すること、植物の環境に対する耐性を高めること、および挿し穂の発根を促進することは、いずれも産業上の利益に直接繋がるので、植物の育成を様々な育成環境の元に高いレベルで安定的にかつ持続的に促進し、さらには挿し穂からの発根を高い効率で安定的に行わせる簡便なCO施肥技術の開発が待ち望まれている。特に製紙原料の安定供給と大気中の二酸化炭素の大規模固定化を推進する目的で、大面積に植林されているユーカリ属植物及びアカシア属植物のクローン苗を効率的に生産する方法を提供することが課題となっている。
本発明は、上記事情に鑑みてなされたものであり、従来に比べて効率良く安定的にかつ持続的に植物の育成を促進する技術、植物の環境に対する耐性を高める技術、さらには効率良く安定的に挿し穂からの発根を促進させる挿し木技術を提供する。
Promoting plant growth, increasing plant tolerance to the environment, and promoting rooting of cuttings directly lead to industrial benefits, so plant growth is based on various growth environments. The development of a simple CO 2 fertilization technique that promotes stable and sustainable at a very high level and further enables rooting from cuttings to be stably carried out with high efficiency is awaited. Provide a method for efficiently producing eucalyptus and acacia clonal seedlings planted in large areas, particularly for the purpose of promoting a stable supply of papermaking raw materials and large-scale fixation of carbon dioxide in the atmosphere. This is an issue.
The present invention has been made in view of the above circumstances, and is a technique that promotes the growth of plants more efficiently and stably than conventional techniques, a technique that enhances the resistance of plants to the environment, and an efficient and stable technique. A cutting technique that promotes rooting from cuttings is provided.

上記課題を解決するため、本発明は以下の構成を採用する。
即ち、本発明に係る植物の育成方法は、二酸化炭素を強制的に水に溶解させて得た炭酸水を植物に供給する植物の育成方法において、植物に供給される炭酸水の二酸化炭素含有量を50ppm以上とする共に、重炭酸塩又は炭酸塩を添加することで、当該炭酸水のpHを4〜6.6の範囲に保持することを特徴とする。
炭酸水に添加される炭酸塩又は重炭酸塩の量は、炭酸水中の重炭酸イオン量が0.12〜2.0mM/Lの範囲になるように選ばれる。
本発明の方法で育成される植物には、ユーカリ属植物(Eucalyptus spp.)及びアカシア属植物(Acacia spp.)が含まれ、また、本発明で言う植物の育成には、挿し穂の発根が含まれる。
In order to solve the above problems, the present invention adopts the following configuration.
That is, the plant growing method according to the present invention is a plant growing method for supplying carbonated water obtained by forcibly dissolving carbon dioxide in water to the plant. Carbon dioxide content of carbonated water supplied to the plant The pH of the carbonated water is maintained in the range of 4 to 6.6 by adding bicarbonate or carbonate together with the content of 50 ppm or more.
The amount of carbonate or bicarbonate added to the carbonated water is selected such that the amount of bicarbonate ions in the carbonated water is in the range of 0.12-2.0 mM / L.
Plants cultivated by the method of the present invention include Eucalyptus spp. And Acacia spp., And for plant growth in the present invention, rooting of cuttings is used. Is included.

本発明の植物育成方法によれば、水道水を用いる一般的な農業・林業や、従来開示されている二酸化炭素を高濃度に溶解させた炭酸水を植物に与える植物育成方法および挿し木方法と比べて、より植物の育成を促進させ、植物の環境に対する耐性を高め、挿し穂の発根を促進させることができる。   According to the plant growing method of the present invention, compared to general agriculture and forestry using tap water, and a plant growing method and cutting method that give carbonated water in which carbon dioxide dissolved in a high concentration is disclosed to the plant. Thus, it is possible to further promote plant growth, increase the tolerance of the plant to the environment, and promote rooting of the cuttings.

以下、本発明を実施するための最良の形態について説明する。
本発明は二酸化炭素を高濃度に溶解した炭酸水を使用する。ここで炭酸水とは、大気中の二酸化炭素分圧(350ppm)及び水温25℃において、水1リットル当たり0.52mgを超える二酸化炭素が溶解している水を意味する。本発明で使用する炭酸水の二酸化炭素含有量は、50ppm以上であれば特に制限はないが、5℃の水に対する1気圧の炭酸ガスの飽和溶解度である約2800ppm以上の二酸化炭素を含有する炭酸水は、過剰な炭酸ガスが逃げ易く経済的でないので、好ましい二酸化炭素含有量は、50〜2800ppmの範囲にある。
Hereinafter, the best mode for carrying out the present invention will be described.
The present invention uses carbonated water in which carbon dioxide is dissolved at a high concentration. Here, carbonated water means water in which more than 0.52 mg of carbon dioxide per liter of water is dissolved at a partial pressure of carbon dioxide (350 ppm) in the atmosphere and a water temperature of 25 ° C. The carbon dioxide content of carbonated water used in the present invention is not particularly limited as long as it is 50 ppm or more, but carbon dioxide containing about 2800 ppm or more of carbon dioxide, which is the saturated solubility of carbon dioxide at 1 atm. The preferred carbon dioxide content is in the range of 50-2800 ppm because water is not economical because excess carbon dioxide escapes easily.

25℃において二酸化炭素1気圧の下で、水1リットル当たり最大1,491mgの二酸化炭素を溶解させることができ、5℃においては最大2,815mgの二酸化炭素を溶解させることができる。水と接触している二酸化炭素は、極めてゆるやかに溶解し、液中では炭酸として存在する。液中の炭酸は、水素イオンと重炭酸イオンとに電離して平衡状態に達している。この時の水1リットルは、10−3.91molの水素イオンと、0.12mM/Lの重炭酸イオンを含み、そのpHは3.91となる。なお、25℃の大気中の二酸化炭素分圧(0.035気圧)の下では、水1リットル当たり最大0.52mgの二酸化炭素が溶解できるが、この時の水1リットルは、10−5.64molの水素イオンと約2μM/Lの重炭酸イオンを含み、そのpHは5.64である。
二酸化炭素が50ppm溶解している炭酸水のpHは、約4.7であるが、この炭酸水の重炭酸イオン含有量は、約0.02mM/L(20μM/L)でしかない。然るに、この炭酸水に重炭酸塩を溶解させ、重炭酸イオンの量を2.0mM/Lにまで強制的に増大させると、そのpHは一時的に約6.6まで上昇させることができる。
A maximum of 1,491 mg of carbon dioxide per liter of water can be dissolved under 1 atm of carbon dioxide at 25 ° C., and a maximum of 2,815 mg of carbon dioxide can be dissolved at 5 ° C. Carbon dioxide in contact with water dissolves very slowly and exists as carbonic acid in the liquid. Carbonic acid in the liquid is ionized into hydrogen ions and bicarbonate ions to reach an equilibrium state. One liter of water at this time contains 10 −3.91 mol of hydrogen ions and 0.12 mM / L bicarbonate ions, and its pH is 3.91. In addition, under a carbon dioxide partial pressure (0.035 atm) in the atmosphere at 25 ° C., a maximum of 0.52 mg of carbon dioxide can be dissolved per liter of water. At this time, 1 liter of water is 10 −5.64 mol. Of hydrogen ion and about 2 μM / L bicarbonate ion, and its pH is 5.64.
The pH of carbonated water in which 50 ppm of carbon dioxide is dissolved is about 4.7, but the bicarbonate ion content of this carbonated water is only about 0.02 mM / L (20 μM / L). However, by dissolving bicarbonate in this carbonated water and forcibly increasing the amount of bicarbonate ions to 2.0 mM / L, the pH can be temporarily raised to about 6.6.

炭酸水のpHを調節するには、アルカリ性物質が何れも使用可能であるが、植物に二酸化炭素を供給することを目的とする本発明では、アルカリ性物質として炭酸塩又は重炭酸塩を使用する。これ以外のアルカリ性物質を炭酸水に添加すると、溶解している炭酸が解離(電離)して失われるため、炭酸塩又は重炭酸塩の使用が好ましい。炭酸塩又は重炭酸塩としては、アルカリ金属塩又はアンモニウム塩が適している。
重炭酸塩を使用してpH調整した炭酸水を取得する方法(1)(2)を、数値例を挙げて以下に説明するが、特に断らない限り、本発明で言う二酸化炭素の溶解濃度や重炭酸イオン濃度は、液温25℃の水溶液における二酸化炭素溶解量や重炭酸イオン濃度を意味する。
In order to adjust the pH of carbonated water, any alkaline substance can be used. In the present invention, which aims to supply carbon dioxide to a plant, carbonate or bicarbonate is used as the alkaline substance. When an alkaline substance other than this is added to carbonated water, the dissolved carbonic acid is dissociated (ionized) and lost, so use of carbonate or bicarbonate is preferred. As the carbonate or bicarbonate, alkali metal salts or ammonium salts are suitable.
Methods (1) and (2) for obtaining carbonated water adjusted to pH using bicarbonate will be described below with numerical examples. Unless otherwise specified, the dissolved concentration of carbon dioxide referred to in the present invention The bicarbonate ion concentration means the amount of carbon dioxide dissolved in the aqueous solution having a liquid temperature of 25 ° C. and the bicarbonate ion concentration.

(1)大気中に存在する水に、重炭酸塩を添加していくと、そのpHは順次上昇し、重炭酸塩の添加量が1mM/Lの時、pHは8.27になり、2mM/Lの時、pHは8.57となる。この水を原水として、これに二酸化炭素を1気圧下での飽和濃度まで溶解させると、pHはそれぞれ4.82及び5.11まで低下する。
(2)大気中に存在する水に、二酸化炭素を1気圧下での飽和濃度まで溶解させると、そのpHは3.91(重炭酸イオン濃度0.12mM/L)であるが、この炭酸水に重炭酸塩を添加していくと、そのpHは順次上昇し、添加量1mM/Lで4.82、添加量2mM/Lで5.11となる。
方法(1)の場合、重炭酸塩に変えて炭酸塩を使用することもできるが、重炭酸塩の添加に比較して炭酸塩の添加は、pHを急激に上昇させるので、重炭酸塩の使用が好ましい。また、方法(2)の場合も、重炭酸塩の代わりに炭酸塩を使用し、これを炭酸水に添加することで、液中の重炭酸イオン量を0.12mM/L以上に増加させることができるが、炭酸塩は少量の添加でpHを著しく上昇させるので、重炭酸塩の使用が好ましい。
(1) When bicarbonate is added to water existing in the atmosphere, the pH gradually increases. When the amount of bicarbonate added is 1 mM / L, the pH becomes 8.27 and 2 mM. At / L, the pH is 8.57. When this water is used as raw water and carbon dioxide is dissolved to a saturated concentration under 1 atm, the pH drops to 4.82 and 5.11, respectively.
(2) When carbon dioxide is dissolved in water present in the atmosphere to a saturated concentration at 1 atm, the pH is 3.91 (bicarbonate ion concentration 0.12 mM / L). As bicarbonate is added to the pH, the pH will increase successively, reaching 4.82 at an addition amount of 1 mM / L and 5.11 at an addition amount of 2 mM / L.
In the case of the method (1), carbonate can be used instead of bicarbonate, but the addition of carbonate increases the pH sharply compared to the addition of bicarbonate. Use is preferred. In the case of method (2), carbonate is used in place of bicarbonate, and this is added to carbonated water to increase the amount of bicarbonate ions in the liquid to 0.12 mM / L or more. However, the use of bicarbonate is preferred because carbonate increases the pH significantly with small additions.

本発明では、上記した方法(1)と方法(2)を組み合わせて、二酸化炭素の溶解と重炭酸塩の添加を同時に進行させ、原水に二酸化炭素を溶解させながら、炭酸塩又は重炭酸塩あるいはその溶液を添加することで、二酸化炭素を50ppm以上含有し、しかも所望のpH値に調整された炭酸水を得ることもできる。
いずれにしても、二酸化炭素を50ppm以上含有している炭酸水を植物に供給する時点で、当該炭酸水が重炭酸イオンを0.12〜2.0mM/L含有する状態を強制的に作り、そのpHを4〜6.6の範囲に調整すればよい。
植物はその種類によって最適な育成を示すpHが異なるが、本発明によれば、二酸化炭素を高濃度で含有する炭酸水を、育成する植物に最適なpHで植物に供給することができるので、植物の成長促進効果や挿し穂の発根促進効果などを最大限に引き出すことが可能となる。ちなみに、多くの植物では、細胞内外のpHの差によって生じる細胞内pHの受動的な変化を抑え、細胞内pHを好適な範囲に維持することが、生化学的なプロセスを進行させるために重要であり、細胞内外のpHの差が小さいことが、水素イオンの輸送に要するエネルギーの消費が少なくなるので好ましい。通常植物が育成する最適なpHは、4〜7の範囲にあるとされており、最適値は個々の植物で異なるが、本発明では、炭酸水に溶存する重炭酸イオン量を加減することで、その炭酸水のpHを4〜6.6の範囲で任意に調節することができる。
In the present invention, the above-described method (1) and method (2) are combined, and the dissolution of carbon dioxide and the addition of bicarbonate are simultaneously advanced to dissolve the carbon dioxide in the raw water. By adding the solution, carbonated water containing 50 ppm or more of carbon dioxide and adjusted to a desired pH value can be obtained.
In any case, when supplying carbonated water containing 50 ppm or more of carbon dioxide to the plant, the carbonated water is forcibly made to contain 0.12 to 2.0 mM / L of bicarbonate ions, What is necessary is just to adjust the pH in the range of 4-6.6.
Plants have different pH values for optimal growth depending on the type of the plant, but according to the present invention, carbonated water containing carbon dioxide at a high concentration can be supplied to the plant at a pH optimum for the plant to be grown. It is possible to maximize the effects of promoting plant growth and rooting promotion of cuttings. By the way, in many plants, it is important to suppress the passive change in intracellular pH caused by the difference in pH between inside and outside the cell, and to maintain the intracellular pH within a suitable range in order to advance the biochemical process. In addition, it is preferable that the difference in pH between the inside and outside of the cell is small because energy consumption required for transporting hydrogen ions is reduced. Usually, the optimal pH for plants to grow is said to be in the range of 4-7, and the optimal value differs for each plant, but in the present invention, by adjusting the amount of bicarbonate ions dissolved in carbonated water, The pH of the carbonated water can be arbitrarily adjusted within the range of 4 to 6.6.

本発明において、「50ppm以上の二酸化炭素が溶解し、pHが4〜6.6の範囲に調整された炭酸水」が、植物の育成及び挿し穂の発根に及ぼす作用は、以下のように説明することができる。
すなわち、植物の育成に必要な炭酸固定(光合成など)の律速段階を支配するのは、植物体内の水に溶けている二酸化炭素及び重炭酸イオンの濃度である。植物が育成される二酸化炭素分圧下において、植物体内の水にはその分圧での飽和濃度以上の二酸化炭素は溶けることができない。一方で、植物体内の水のpHに従って水に溶けた二酸化炭素は、重炭酸イオンに電離して平衡状態に達しようとする。さらには植物に広く存在しているカルボニックアンヒドラーゼ(炭酸デヒドラターゼ)の高い分子活性により、二酸化炭素は速やかに重炭酸イオンに変換されてしまう場合もある。特に、葉緑体のpHは8付近であるために、この反応は積極的に行われていると言える。
以上のことから、植物体内の水に溶けている二酸化炭素の濃度は、二酸化炭素分圧と植物体内の水のpHとカルボニックアンヒドラーゼの働きにより決定されており、植物の育成又は挿し穂の発根を実現させるのに充分な条件であるとは限らない。本発明によれば、大気中で育成される植物体内の水に溶けている二酸化炭素及び重炭酸イオンの濃度を、植物が通常育成される状態のそれよりも高めることができると考えられるので、炭酸固定に関わるリブロースビスリン酸カルボキシラーゼやホスホエノールピルビン酸カルボキシラーゼなどの酵素反応を活性化でき、その結果、植物の育成促進や挿し穂の発根促進が達成されるものと考えられる。
In the present invention, "the carbonated water in which 50 ppm or more of carbon dioxide is dissolved and the pH is adjusted to a range of 4 to 6.6" has an effect on plant growth and cutting rooting as follows. Can be explained.
That is, it is the concentration of carbon dioxide and bicarbonate ions dissolved in water in the plant that controls the rate-limiting step of carbon dioxide fixation (photosynthesis, etc.) necessary for plant growth. Under the partial pressure of carbon dioxide at which plants are grown, water in the plant body cannot dissolve carbon dioxide above the saturation concentration at that partial pressure. On the other hand, carbon dioxide dissolved in water according to the pH of the water in the plant body is ionized into bicarbonate ions to reach an equilibrium state. Furthermore, carbon dioxide may be quickly converted into bicarbonate ions due to the high molecular activity of carbonic anhydrase (carbonic acid dehydratase) widely present in plants. In particular, since the pH of the chloroplast is around 8, it can be said that this reaction is actively carried out.
From the above, the concentration of carbon dioxide dissolved in the water in the plant body is determined by the partial pressure of carbon dioxide, the pH of the water in the plant body, and the action of carbonic anhydrase. It is not necessarily a sufficient condition for realizing rooting. According to the present invention, it is considered that the concentration of carbon dioxide and bicarbonate ions dissolved in the water in the plant grown in the atmosphere can be higher than that in a state where the plant is normally grown, Enzymatic reactions such as ribulose bisphosphate carboxylase and phosphoenolpyruvate carboxylase involved in carbon fixation can be activated. As a result, it is considered that plant growth promotion and rooting promotion are achieved.

また、上記した本発明の炭酸水が果たす植物の環境ストレス耐性向上作用は、以下のように説明することができる。
その第一は、二酸化炭素欠乏ストレスの緩和である。植物は光合成反応の最終電子受容体である二酸化炭素が十分供給されないと、光合成反応は停止し、細胞はストレスを受ける。クロロフィルによって受容された過剰な光エネルギーは、炭酸固定反応で消費できず、一部は蛍光や熱として放出されるが、残りのエネルギーによって酸素分子が還元されて活性酸素が生じ、光化学系などの細胞構成成分が損傷を受ける。
本発明によれば、大気中で育成される植物体内の水に溶けている二酸化炭素及び重炭酸イオンの濃度を、植物が通常育成される状態のそれよりも高めることができると考えられるので、強光・乾燥・塩分過多などの環境ストレス条件においても、C4植物や水生光合成生物が有する無機炭素(二酸化炭素または重炭酸イオン)を能動的に生体内へ取り込み濃縮する機構と同じ理由によって、二酸化炭素欠乏ストレス状態を回避し、環境ストレスに対する耐性が高まるものと考えられる。
また、第二には、高濃度の二酸化炭素により誘導される気孔閉鎖による蒸散量の抑制を挙げることができる。植物体内の二酸化炭素分圧が高まると、気孔が閉じられることは良く知られているが、本発明によれば、この作用により乾燥や高塩濃度などによって引き起こされる水分損失を緩和又は回避し、環境ストレスに対する耐性が高まるものと考えられる。
Moreover, the environmental stress tolerance improvement effect | action of the plant which the above-mentioned carbonated water of this invention fulfills can be demonstrated as follows.
The first is mitigation of carbon dioxide deficiency stress. If the plant is not sufficiently supplied with carbon dioxide, the final electron acceptor of the photosynthetic reaction, the photosynthetic reaction stops and the cells are stressed. Excess light energy received by chlorophyll cannot be consumed in the carbonic acid fixation reaction, and part of it is released as fluorescence or heat, but the remaining energy reduces oxygen molecules to produce active oxygen, which causes photochemical systems, etc. Cell components are damaged.
According to the present invention, it is considered that the concentration of carbon dioxide and bicarbonate ions dissolved in the water in the plant grown in the atmosphere can be higher than that in a state where the plant is normally grown, even in environmental stress conditions such as strong light, drying, salinity excessive, for the same reason as the mechanism to actively uptake concentrated into a living body to inorganic carbon (carbon dioxide or bicarbonate ions) with the C 4 plants and aquatic photosynthetic organisms, It is thought that the tolerance to environmental stress is increased by avoiding the carbon dioxide deficiency stress state.
Secondly, suppression of transpiration due to pore closure induced by high-concentration carbon dioxide can be mentioned. It is well known that when the partial pressure of carbon dioxide in the plant is increased, the pores are closed, but according to the present invention, this action reduces or avoids water loss caused by drying, high salt concentration, etc. Resistance to environmental stress is considered to increase.

次に、炭酸水の製造方法を以下に例示する。二酸化炭素を水に溶解させるには、従来公知の方法が何れも採用可能である。例えば、化石燃料等の燃焼ガスやガスボンベに充填された二酸化炭素を、水に吹き込む方法、炭素材料製電極を使用して水を電解する方法、ドライアイスを水に接触させる方法、二酸化炭素を充満させたタンクの中に水を導入する方法、可溶性の炭酸塩または重炭酸塩を水に溶解させた後に酸を作用させる方法、微小径の多孔質膜や非多孔質ガス透過膜からなる中空糸膜などの膜モジュールを用いて、二酸化炭素を給気することにより膜の反対側にある水に溶解させる方法などを採ることができる。
これらの方法のなかでは、所望濃度の炭酸水を必要な量だけ簡便に調製できる点で、膜モジュールを備えた植物育成用の装置(特許文献1参照)を使用する方法が好ましい。
また、水又は炭酸水に重炭酸イオンを含有させるには、可溶性の炭酸塩又は重炭酸塩を水又は炭酸水に直接添加するか、あるいは炭酸塩又は重炭酸塩の水溶液を予め調製し、これを水又は炭酸水に添加する方法が採用できる。或いはまた、水酸化ナトリウムのような強い塩基性化合物を添加した水やアンモニア水を炭酸水とするなど、いずれの方法も採ることができる。
最終的に重炭酸イオンの濃度が0.12〜2.0mM/Lの範囲にあり、二酸化炭素の濃度が50〜2,815ppmの範囲にあり、前述のようにpHが好適に調整された水を簡便に迅速に調達できることが、本発明では重要である。このためには、二酸化炭素給気装置や重炭酸塩などの塩基性化合物溶液の送液ポンプと、二酸化炭素濃度計やpH計とを連動させることが好ましい。
本発明で使用するところの、pH調整された炭酸水には、必要に応じて、窒素、リン酸、カリウム,マグネシウム、カルシウム、鉄などの元素を、所望濃度で溶解させておくことができる。
Next, the manufacturing method of carbonated water is illustrated below. Any conventionally known method can be employed to dissolve carbon dioxide in water. For example, a method of blowing combustion gas such as fossil fuel or carbon dioxide filled in a gas cylinder, a method of electrolyzing water using an electrode made of a carbon material, a method of bringing dry ice into contact with water, and filling carbon dioxide A method of introducing water into a tank, a method in which a soluble carbonate or bicarbonate is dissolved in water and then an acid is acted on, a hollow fiber comprising a microporous membrane or a nonporous gas permeable membrane By using a membrane module such as a membrane and supplying carbon dioxide, a method of dissolving in water on the opposite side of the membrane can be adopted.
Among these methods, a method of using a plant growing apparatus (see Patent Document 1) equipped with a membrane module is preferable in that a necessary amount of carbonated water having a desired concentration can be easily prepared.
In order to contain bicarbonate ions in water or carbonated water, a soluble carbonate or bicarbonate is added directly to water or carbonated water, or an aqueous solution of carbonate or bicarbonate is prepared in advance. The method of adding to water or carbonated water can be employed. Alternatively, any method can be employed, for example, water to which a strong basic compound such as sodium hydroxide is added or ammonia water is used as carbonated water.
Finally, the concentration of bicarbonate ions is in the range of 0.12-2.0 mM / L, the concentration of carbon dioxide is in the range of 50-2,815 ppm, and the pH is suitably adjusted as described above. It is important in the present invention that can be procured easily and quickly. For this purpose, it is preferable to link a carbon dioxide supply device or a feed pump for a basic compound solution such as bicarbonate with a carbon dioxide concentration meter or a pH meter.
In the carbonated water adjusted in pH used in the present invention, elements such as nitrogen, phosphoric acid, potassium, magnesium, calcium, and iron can be dissolved at a desired concentration as required.

本発明の炭酸水を植物あるいは植物の挿し穂に供給する方法を説明する。
第1の例としては、植物体又は植物の挿し穂の地上部に間欠的に噴霧する方法がある。噴霧の頻度は、植物の種類及びその育成環境によって異なるので一概には特定できないが、例えば、1回の噴霧時間を15秒〜1分程度とした場合、噴霧頻度は1回/10分間〜1回/2日の範囲で選ぶことができる。第2の例としては、植物体又は植物の挿し穂の地下部に灌水する方法がある。灌水の頻度は、植物の種類及びその育成環境によって異なるので一概には特定できないが、例えば、1日に数回〜1週間に1回程度の範囲で選ぶことができる。
A method of supplying the carbonated water of the present invention to a plant or a plant cutting head will be described.
As a first example, there is a method of spraying intermittently on the above-ground part of the plant body or the cutting head of the plant. Since the frequency of spraying differs depending on the type of plant and its growing environment, it cannot be specified unconditionally. For example, when the spraying time is about 15 seconds to 1 minute, the spraying frequency is 1/10 minutes to 1 You can choose from times / two days. As a second example, there is a method of irrigating the underground part of the plant body or the cutting head of the plant. The frequency of irrigation varies depending on the type of plant and its growing environment and cannot be specified unconditionally. For example, it can be selected within a range of several times a day to once a week.

本発明において、育成対象とする植物については特に限定はなく、農業、林業,園芸の分野で普通に育成されている植物を全て対象とすることができる。近年植林が奨励されているユーカリ属植物、アカシア属植物は、典型的な育成対象植物である。
ちなみに、ユーカリ属植物としては、製紙原料用樹種(パルプ材)としてユーカリ・カマルドレンシス(Eucalyptus camaldulensis)、ユーカリ・グランディス(E. grandis)、ユーカリ・グロブラス(E. globulus)、ユーカリ・ナイテンス(E. nitens)、ユーカリ・テルティコルニス(E. tereticornis)、ユーカリ・ユーロフィラ(E. urophylla)等、及びこれらを片親とする交雑種や、これらの亜種・変種、及び造園・緑化・観賞用樹種としてユーカリ・グンニ(E. gunnii)、ユーカリ・ビミナリス(E. viminalis)等が含まれる。
In the present invention, the plants to be grown are not particularly limited, and all plants that are normally grown in the fields of agriculture, forestry, and horticulture can be targeted. Eucalyptus plants and Acacia plants, which have recently been encouraged to plant trees, are typical plants for breeding.
By the way, as Eucalyptus plants, tree species for papermaking (pulp), Eucalyptus camaldulensis (Eucalyptus camaldulensis), Eucalyptus grandis (E. grandis), Eucalyptus globulus (E. globulus), Eucalyptus night ten (E nitens), Eucalyptus tereticornis, Eucalyptus europhylla, etc., and hybrids with these as one parent, subspecies / variants, and landscaping / greening / decorative tree species Eucalyptus Gunnii, Eucalyptus Viminalis, etc. are included.

また、アカシア属植物としては、製紙原料用樹種としてアカシア・アウリカリフォルミス(Acacia auriculiformis)、アカシア・マンギウム(A. mangium)、アカシア・メアランシー(A. mearnsii)、アカシア・クラシカルパ(A. crassicarpa)、アカシア・アウラコカルパ(A. aulacocarpa)等、及びこれらを片親とする交雑種や、これらの亜種・変種、及び造園・緑化・観賞用樹種としてハナアカシア(A. baileyana)、フサアカシア(A. dealbata)等が含まれる。   In addition, as an Acacia genus plant, Acacia auriculiformis (Acacia auriculiformis), Acacia mangium (A. mangium), A. mearnsii (A. mearnsii), Acacia classical carpa (A. crassicarpa) , A. aulacocarpa, etc., and hybrids with these as one parent, subspecies / variant, and landscaping / greening / decorative tree species, A. baileyana, A. dealbata ) Etc. are included.

実験例1
次のような7種類の水耕液A〜Gを用意した。
水耕液A:重炭酸イオンを38mg/L(約0.62mM/L)含む水道水(pHの測定値は7.70)を原水とし、この原水に硫酸カリウム4mM/L、硝酸アンモニウム2mM/L、リン酸二水素カリウム0.4mM/L、硝酸マグネシウム0.2mM/L、塩化カルシウム0.8mM/L、Fe(III)-EDTA0.02mM/L、ホウ酸9.7μM/L、硫酸マンガン8.3μM/L、硫酸亜鉛1.4μM/L、ヨウ化カリウム0.9μM/L、モリブデン酸二ナトリウム0.2μM/L、硫酸銅0.02μM/L、塩化コバルト0.02μM/Lをそれぞれ溶解させて水耕液Aとした。水耕液AのpHは7.32であった。
水耕液B:上記水耕液Aに対して2日に1回の割で、二酸化炭素を1000ppm溶解させた水溶液を水耕液Bとした。二酸化炭素を溶解させた直後の水耕液BのpHは、4.72に低下した。
水耕液C:水耕液Aの硫酸カリウム4mM/Lの代わりに、重炭酸カリウム0.25mM/Lと硫酸カリウム3.875mM/Lを使用し、2日に1回の割で、二酸化炭素を1000ppm溶解させた水溶液を水耕液Cとした。
水耕液D:水耕液Aの硫酸カリウム4mM/Lの代わりに、重炭酸カリウム0.5mM/Lと硫酸カリウム3.75mM/Lを使用し、2日に1回の割で二酸化炭素を1000ppm溶解させた水溶液を水耕液Dとした。
水耕液E:水耕液Aの硫酸カリウム4mM/Lの代わりに、重炭酸カリウム1.0mM/Lと硫酸カリウム3.5mM/Lを使用し、2日に1回の割で二酸化炭素を1000ppm溶解させ水溶液を水耕液Eとした。
水耕液F:水耕液Aの硫酸カリウム4mM/Lの代わりに、重炭酸カリウム2.0mM/Lと硫酸カリウム3.0mM/Lを使用し、2日に1回の割で二酸化炭素を1000ppm溶解させ水溶液を水耕液Fとした。
水耕液G:水耕液Aの硫酸カリウム4mM/Lの代わりに、重炭酸カリウム4.0mM/Lと硫酸カリウム2.0mM/Lを使用し、2日に1回の割で二酸化炭素を1000ppm溶解させ水溶液を水耕液Gとした。
Experimental example 1
The following seven types of hydroponics A to G were prepared.
Hydroponic solution A : Tap water containing 38 mg / L (about 0.62 mM / L) of bicarbonate ion (pH measured value: 7.70) is used as raw water, and potassium sulfate 4 mM / L, ammonium nitrate 2 mM / L , Potassium dihydrogen phosphate 0.4 mM / L, magnesium nitrate 0.2 mM / L, calcium chloride 0.8 mM / L, Fe (III) -EDTA 0.02 mM / L, boric acid 9.7 μM / L, manganese sulfate 8 .3 μM / L, zinc sulfate 1.4 μM / L, potassium iodide 0.9 μM / L, disodium molybdate 0.2 μM / L, copper sulfate 0.02 μM / L, cobalt chloride 0.02 μM / L A hydroponic solution A was obtained. The pH of the hydroponics A was 7.32.
Hydroponic solution B : An aqueous solution in which 1000 ppm of carbon dioxide was dissolved once every two days with respect to the hydroponic solution A was designated as hydroponic solution B. The pH of the hydroponics B immediately after dissolving the carbon dioxide dropped to 4.72.
Hydroponic solution C : Instead of potassium sulfate 4 mM / L of hydroponic solution A, 0.25 mM / L of potassium bicarbonate and 3.875 mM / L of potassium sulfate were used. Aqueous solution C was dissolved in 1000 ppm.
Hydroponic solution D : Instead of potassium sulfate 4 mM / L in hydroponic solution A, 0.5 mM / L potassium bicarbonate and 3.75 mM potassium sulfate are used, and carbon dioxide is emitted once every two days. An aqueous solution in which 1000 ppm was dissolved was designated as hydroponic solution D.
Hydroponic liquid E : Instead of 4 mM / L of potassium sulfate in hydroponic liquid A, 1.0 mM / L of potassium bicarbonate and 3.5 mM / L of potassium sulfate are used, and carbon dioxide is emitted once every two days. 1000 ppm was dissolved and the aqueous solution was designated as hydroponic solution E.
Hydroponic fluid F : Instead of potassium sulfate 4 mM / L in hydroponic fluid A, use potassium bicarbonate 2.0 mM / L and potassium sulfate 3.0 mM / L, and carbon dioxide once every two days. 1000 ppm was dissolved, and the aqueous solution was designated as hydroponic solution F.
Hydroponic solution G : Instead of 4 mM / L of potassium sulfate in hydroponic solution A, 4.0 mM / L of potassium bicarbonate and 2.0 mM / L of potassium sulfate are used, and carbon dioxide is emitted once every two days. 1000 ppm was dissolved and the aqueous solution was used as hydroponic solution G.

図1に概要を示す実験システムを用い、循環実験水として上記の各水耕液A〜Gをそれぞれ使用し、実験植物としてユーカリ・グロブラス(E.globulus)の挿し木苗木を選んで7週間育成した。水耕液は容器に入れ、エアーポンプにて常時通気しながら循環させた。水耕液A〜Gは、それぞれ最初の1週間後に交換し、その後はpH4以下になる以前に調製したての水耕液A〜Gと交換した。
二酸化炭素を溶解させる前の各水耕液のpH、溶解後の各水耕液のpH並びに実験植物を1週間育成後の各水耕液のpH及び重炭酸イオン濃度を測定した。結果を表1に示す。
Using the experimental system outlined in FIG. 1, using each of the above-mentioned hydroponic fluids A to G as circulating experimental water, and selecting Eucalyptus globulus cuttings as experimental plants and growing them for 7 weeks . The hydroponic solution was put in a container and circulated while constantly ventilating with an air pump. Hydroponic liquids A to G were each replaced after the first week, and thereafter replaced with freshly prepared hydroponic liquids A to G before becoming pH 4 or lower.
The pH of each hydroponic solution before dissolving carbon dioxide, the pH of each hydroponic solution after dissolution, and the pH and bicarbonate ion concentration of each hydroponic solution after growing the experimental plant for one week were measured. The results are shown in Table 1.

Figure 0004456410
Figure 0004456410

重炭酸イオンを0.62〜4.62mM/L含有する原水(pH7.32〜8.35)に、二酸化炭素を1000ppm溶解させると、水のpHは4.72〜5.59となり、実験植物1週間栽培後の水のpHは3.98〜8.29となった。その時に水に含まれる重炭酸イオン濃度は、水耕液Bでは0.08mM/L以下となり、pHも4以下となって実験植物の育成に不適となった。しかし、液中の重炭酸イオンの濃度が0.87〜2.62mM/Lの範囲になるように、重炭酸カリウムが添加されている水耕液C〜Fは、育成1週間後でも、液中の重炭酸イオン濃度が0.19〜1.00mM/Lとなり、pHも4〜6.6の範囲内となって実験植物の育成に好適な条件を維持している。
なお、水耕液Bの場合でも、重炭酸イオンが0.12mM/L以下になる1週間以内に調製したての水耕液Bに交換すれば、実験植物の育成に好適な条件を維持できる。また、水耕液Gの場合、育成1週間後に実験植物の葉の一部が黄変した。これは育成1週間後の水耕液GのpHが8以上と高すぎるためであるが、そうした水耕液でも重炭酸イオンが2.0mM/L以下に、かつ、pHを4〜6.6の範囲になるように高濃度の二酸化炭素を溶解させておけば実験植物の育成に適した水耕液とすることができる。
When 1000 ppm of carbon dioxide was dissolved in raw water (pH 7.32 to 8.35) containing 0.62 to 4.62 mM / L bicarbonate ion, the pH of the water became 4.72 to 5.59, which is an experimental plant. The pH of the water after 1 week of cultivation was 3.98-8.29. At that time, the bicarbonate ion concentration contained in the water was 0.08 mM / L or less in the hydroponics B, and the pH was 4 or less, making it unsuitable for growing experimental plants. However, hydroponic liquids C to F to which potassium bicarbonate is added so that the concentration of bicarbonate ions in the liquid is in the range of 0.87 to 2.62 mM / L are liquid even after one week of growth. The bicarbonate ion concentration in the solution was 0.19 to 1.00 mM / L, and the pH was within the range of 4 to 6.6, maintaining conditions suitable for growing experimental plants.
Even in the case of hydroponic solution B, conditions suitable for growing experimental plants can be maintained by replacing with freshly prepared hydroponic solution B within one week when bicarbonate ions are 0.12 mM / L or less. . In the case of hydroponic solution G, some of the leaves of the experimental plant turned yellow after one week of growth. This is because the pH of the hydroponics G after one week of cultivation is too high, such as 8 or higher, but even in such hydroponics, the bicarbonate ion is 2.0 mM / L or less and the pH is 4 to 6.6. If high-concentration carbon dioxide is dissolved so as to be in the range, a hydroponic solution suitable for growing experimental plants can be obtained.

実験例2
上記した各水耕液A〜Gをそれぞれ使用して4週間育成した実験植物(クローン苗木を4本づつ)の苗高・葉のサイズ(縦×横)・SPAD値、並びに育成7週間後の実験植物の乾物重量を測定した。結果を表2に示す。なお、表中のカッコ内の数値は、実験開始当初のデータである。
Experimental example 2
Seed height, leaf size (vertical x horizontal), SPAD value, and 7 weeks after growth of experimental plants (4 clone seedlings each) grown for 4 weeks using each of the above-mentioned hydroponics A to G The dry weight of the experimental plants was measured. The results are shown in Table 2. The numbers in parentheses in the table are the data at the beginning of the experiment.

Figure 0004456410
Figure 0004456410

水耕液B〜Gで育成した実験植物の7週間後の全乾物重は、7.38〜8.39g/plantの範囲であり、二酸化炭素を溶解させていない水耕液Aで育成した実験植物の7週間後の全乾物重である7.14g/plantと比較して、育成が促進されていることが分かる。特に根の重量増加が顕著であった。
しかしながら、水耕液B(これには2日に1回の割で二酸化炭素を溶解させているので、従来技術の炭酸水に相当する)で育成した実験植物の7週間後の全乾物重は、二酸化炭素を溶解させていない水耕液Aの全乾物重と有意差がなく、茎乾物重ではむしろ小さかった。苗高・葉のサイズ・SPAD値のいずれの値も、水耕液Aのそれより小さく、従来技術による二酸化炭素を高濃度に溶解させた炭酸水では、必ずしもすべての部位で植物の育成を促進した結果とならないことが分かる。
これとは対照的に、重炭酸イオンの濃度が0.87mM/L以上となるように重炭酸カリウムを添加した水耕液C〜Gで育成した場合には、実験植物の7週間後の乾物重がすべて水耕液Aでのそれを大きく上回っている。但し、苗高はそれほど変わらず、葉のサイズ・SPAD値は水耕液Aの値より小さい。特に水耕液Gで育成した実験植物は、葉の一部が黄変し、葉のクロロフィル濃度の指標値であるSPAD値も著しく小さかった。このことから、重炭酸イオン濃度が2.0mM/L以上の状態が続くと、二酸化炭素が高濃度で溶解している場合を除いてpH値が過度に上昇し、鉄イオン等の微量要素の欠乏が厳しくなって植物の育成に不適となることが判明した。
The total dry weight of experimental plants grown in hydroponic broth B to G after 7 weeks was in the range of 7.38 to 8.39 g / plant, and was grown in hydroponic broth A in which carbon dioxide was not dissolved It can be seen that the growth is promoted compared to 7.14 g / plant, which is the total dry weight of the plant after 7 weeks. In particular, the root weight increase was remarkable.
However, the total dry weight after 7 weeks of the experimental plant grown in hydroponic solution B (which is equivalent to carbonated water of the prior art because carbon dioxide is dissolved once every two days) There was no significant difference from the total dry weight of hydroponic solution A in which carbon dioxide was not dissolved, and the dry weight of stem was rather small. The seedling height, leaf size, and SPAD value are all smaller than those of hydroponics solution A, and the carbonated water in which carbon dioxide is dissolved at a high concentration according to the conventional technology does not necessarily promote the growth of plants in all parts. It turns out that it does not become the result.
In contrast, when grown in hydroponic solution C to G to which potassium bicarbonate was added so that the concentration of bicarbonate ions was 0.87 mM / L or more, the dry matter 7 weeks after the experimental plant All the weight is much higher than that of hydroponic liquid A. However, the seedling height does not change so much, and the leaf size / SPAD value is smaller than that of the hydroponic liquid A. In particular, in the experimental plants grown with hydroponic solution G, some of the leaves turned yellow, and the SPAD value, which is an index value of the chlorophyll concentration in the leaves, was also extremely small. From this, when the bicarbonate ion concentration continues to be 2.0 mM / L or more, the pH value increases excessively except when carbon dioxide is dissolved at a high concentration, and trace elements such as iron ions It became clear that deficiency became severe and became unsuitable for plant growth.

実験例3
上記した水耕液A,B,D,Fそれぞれを使用して6週間育成した実験植物(クローン苗木を3本づつ)の光合成速度、暗適応後(30-40分間暗黒処理)の蒸散速度、光飽和後(350ppm二酸化炭素、1,500μmol光量子m-2-1)の蒸散速度及びコンダクタンスを測定した。また、実験植物が環境ストレス(光阻害)を受けた場合の影響を調べるために、塩化ナトリウムの200mM/L溶液に植物根部を浸漬しながら弱光下に12〜14時間放置して適応後、400μmol光量子m-2-1の光照射下に6時間放置して、上と同様の測定を行った。結果を表3に示す。
Experimental example 3
Photosynthetic rate of experimental plants (three clone seedlings each) grown for 6 weeks using each of the above-mentioned hydroponics A, B, D, F, transpiration rate after dark adaptation (dark treatment for 30-40 minutes), The transpiration rate and conductance after light saturation (350 ppm carbon dioxide, 1,500 μmol photon m −2 s −1 ) were measured. Moreover, in order to investigate the influence when an experimental plant receives environmental stress (light inhibition), after being adapted for 12-14 hours under weak light while immersing the root of the plant in a 200 mM / L solution of sodium chloride, The measurement was carried out in the same manner as above by leaving it to stand for 6 hours under light irradiation of 400 μmol photon m 2 s −1 . The results are shown in Table 3.

Figure 0004456410
Figure 0004456410

2日に1回の割で二酸化炭素を溶解させた水耕液B,D,Fで6週間育成し、環境ストレスを与えていない(光阻害前の)実験植物の蒸散速度及びコンダクタンスは、水耕液Aで育成した実験植物のそれに比較して小さい。この傾向は環境ストレスを与えた後(光阻害後)も同様であった。特に水耕液Dで育成した実験植物の光合成速度は、実験植物は水分損失を緩和して回避し、環境ストレスに対する耐性が向上していた。   The transpiration rate and conductance of the experimental plants that were grown for 6 weeks in hydroponic broth B, D, and F in which carbon dioxide was dissolved once every two days and were not subjected to environmental stress (before light inhibition) Smaller than that of the experimental plant grown in the cultivation liquid A. This tendency was the same after applying environmental stress (after light inhibition). In particular, the photosynthetic rate of the experimental plants grown in hydroponic fluid D was reduced and avoided by the experimental plants, and resistance to environmental stress was improved.

ユーカリ・グロブラス(Eucalyptus globulus)の採穂母樹から調整した挿し穂を、赤玉土に挿し付けて育成対象物とし、図2に概要を示す実験システムの温室に、前記の育成対象植物を収容した。次いで、1日あたりの灌水量が1〜2mm/cmになるように、温室の天井から下記の散水液を噴霧した。
散水液a:重炭酸イオンを0.62mM/L含有する水道水に、膜モジュールを搭載した二酸化炭素注気装置において、二酸化炭素を溶解させて炭酸水とし、これを処理水タンクに貯留した。また、処理タンクに供給される炭酸水6L当たり、約30mlの重炭酸アンモニウム溶液(濃度100mM/L)を、薬液タンクから処理水タンクに送液して炭酸水に添加した。さらに、循環ポンプを1時間毎に2分間稼働させて処理水タンクの液を、前記の二酸化炭素注気装置に循環させ、液中に二酸化炭素を注気した。これにより大気圧下での飽和濃度以上に二酸化炭素が溶解し(1500ppm)、しかも、重炭酸イオンが0.5〜1.2mM/Lの範囲で含まれる散水液aを調製することができた。
散水液b:重炭酸アンモニウム溶液(濃度100mM/L)を添加しなかった以外は、散水液aと同様な炭酸水を散水液bとした。この散水液bは重炭酸塩を添加していないので、従来技術の炭酸水に相当する。
散水液c:重炭酸イオンを0.62mM/L含有する水道水そのものを散水液cとした。
The cutting target adjusted from the Eucalyptus globulus harvesting mother tree was inserted into red jade soil as a growing target, and the growing target plant was housed in the greenhouse of the experimental system schematically shown in FIG. Then, the following water spray was sprayed from the ceiling of the greenhouse so that the irrigation amount per day was 1 to 2 mm / cm 2 .
Water sprinkling liquid a : Carbon dioxide was dissolved in tap water containing 0.62 mM / L of bicarbonate ions and a membrane module was installed to form carbonated water, which was stored in a treated water tank. Moreover, about 30 ml of ammonium bicarbonate solution (concentration 100 mM / L) per 6 L of carbonated water supplied to the treatment tank was sent from the chemical solution tank to the treatment water tank and added to the carbonated water. Further, the circulation pump was operated for 2 minutes every hour to circulate the liquid in the treated water tank to the carbon dioxide inhaler, and carbon dioxide was infused into the liquid. As a result, carbon dioxide was dissolved above the saturation concentration under atmospheric pressure (1500 ppm), and a water spray a containing bicarbonate ions in the range of 0.5 to 1.2 mM / L could be prepared. .
Watering solution b: Except for not adding ammonium bicarbonate solution (concentration 100 mM / L), and the watering solution a similar carbonated water and watering solution b. Since the water spray b does not contain bicarbonate, it corresponds to carbonated water of the prior art.
Water spray c : Tap water itself containing bicarbonate ion of 0.62 mM / L was used as water spray c.

上記の散水液a〜cそれぞれを、散水条件を変えて育成対象物に散水してこれを育成し、8週間後の発根率を調査した。結果を表4に示す。発根率は各実験12本の挿し穂あたりの発根した挿し穂の本数を百分率で示す。   Each of the above-mentioned water sprays a to c was sprinkled on a growing object under different watering conditions to grow it, and the rooting rate after 8 weeks was investigated. The results are shown in Table 4. The rooting rate indicates the number of cuttings rooted per 12 cuttings of each experiment as a percentage.

Figure 0004456410
Figure 0004456410

植物が育成される大気圧下での飽和濃度以上に二酸化炭素を溶解させ、さらに重炭酸イオンを含有させた散水液aを用いて上記の挿し穂を育成した場合、発根率は58%であるのに対し、二酸化炭素が大気圧下での飽和濃度以上には溶解していない普通の水道水(散水液c)を使用した場合の発根率は、8〜25%でしかない。また、従来技術の炭酸水(散水液b)を使用した場合の発根率は、33〜42%である。このことから、挿し穂の発根を含む植物の育成にとって、高濃度で二酸化炭素が溶解し、しかも適当量の重炭酸イオンを含有する炭酸水が有効であることが分かる。   When the above-mentioned cuttings are grown using watering solution a in which carbon dioxide is dissolved to a saturated concentration or higher under atmospheric pressure where a plant is grown and further contains bicarbonate ions, the rooting rate is 58%. On the other hand, the rooting rate when using ordinary tap water (water spray c) in which carbon dioxide is not dissolved at a saturation concentration or higher under atmospheric pressure is only 8 to 25%. Moreover, the rooting rate at the time of using the carbonated water (sprinkling liquid b) of a prior art is 33 to 42%. From this, it can be seen that for the growth of plants including the rooting of cuttings, carbon dioxide dissolved at a high concentration and containing an appropriate amount of bicarbonate ions is effective.

本発明は、農業・林業・園芸全般に対しても広く適用することができ、穀類・野菜類などの農作物、花卉類、果樹、植林・緑化用樹木などの収量増加、品質向上、挿し木による大量クローン増殖などに優れた効果を発揮する。   The present invention can be widely applied to agriculture, forestry, and horticulture in general. Yield increase, quality improvement, mass cutting by cuttings, crops such as cereals and vegetables, flowering plants, fruit trees, tree planting and tree planting. Excellent effect on clonal propagation.

実験例で採用した実験システムの概要図。Schematic diagram of the experimental system adopted in the experimental example. 実施例で採用した実験システムの概要図。The schematic diagram of the experimental system employ | adopted in the Example.

Claims (2)

二酸化炭素を強制的に溶解させて得た炭酸水を植物に供給する植物の育成方法において、植物に供給される前記炭酸水の二酸化炭素含有量を50ppm以上とすると共に、液中の重炭酸イオン濃度が0.87〜2.62mM/Lとなるように重炭酸塩を添加して前記炭酸水のpHを4〜6.6の範囲に調整することを特徴とする植物の育成方法。   In the plant growth method for supplying carbonated water obtained by forcibly dissolving carbon dioxide to a plant, the carbon dioxide content of the carbonated water supplied to the plant is 50 ppm or more, and bicarbonate ions in the liquid A plant growth method comprising adjusting the pH of the carbonated water to a range of 4 to 6.6 by adding bicarbonate so that the concentration is 0.87 to 2.62 mM / L. 育成される植物が、ユーカリ属植物(Eucalyptus spp.)及びアカシア属植物(Acacia spp.)からなる群より選択される植物であることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the plant to be grown is a plant selected from the group consisting of Eucalyptus spp. And Acacia spp.
JP2004154924A 2004-05-25 2004-05-25 Plant growth method Expired - Lifetime JP4456410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154924A JP4456410B2 (en) 2004-05-25 2004-05-25 Plant growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154924A JP4456410B2 (en) 2004-05-25 2004-05-25 Plant growth method

Publications (2)

Publication Number Publication Date
JP2005333854A JP2005333854A (en) 2005-12-08
JP4456410B2 true JP4456410B2 (en) 2010-04-28

Family

ID=35488089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154924A Expired - Lifetime JP4456410B2 (en) 2004-05-25 2004-05-25 Plant growth method

Country Status (1)

Country Link
JP (1) JP4456410B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105993470A (en) * 2016-05-20 2016-10-12 芜湖欧标农业发展有限公司 Cutting seedling raising method for calliandra haematocephala
CN105993469A (en) * 2016-05-20 2016-10-12 芜湖欧标农业发展有限公司 Cutting seedling raising method for calliandra haematocephala hassk

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319047A (en) * 2006-05-31 2007-12-13 Oji Paper Co Ltd Method for creating seedling or scion-production mother tree
JP2008199920A (en) * 2007-02-19 2008-09-04 Showa Tansan Co Ltd Feeding method and feeding apparatus of carbon dioxide to plant
JP5500790B2 (en) * 2008-06-19 2014-05-21 昭和電工ガスプロダクツ株式会社 Plant growing device
JP7362487B2 (en) * 2018-01-12 2023-10-17 亨将 吉武 Pest repellent method, hypochlorous acid aqueous solution manufacturing method, and manufacturing device
CN109380049B (en) * 2018-10-26 2021-07-27 国家林业局桉树研究开发中心 Eucalyptus composite cultivation method combining long-short cycle management

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105993470A (en) * 2016-05-20 2016-10-12 芜湖欧标农业发展有限公司 Cutting seedling raising method for calliandra haematocephala
CN105993469A (en) * 2016-05-20 2016-10-12 芜湖欧标农业发展有限公司 Cutting seedling raising method for calliandra haematocephala hassk

Also Published As

Publication number Publication date
JP2005333854A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
Jones Jr Hydroponics: its history and use in plant nutrition studies
CA2985824C (en) Nutrient system
Hagin et al. Fertigation for minimizing environmental pollution by fertilizers
Daum et al. Influence of nutrient solution pH on N 2 O and N 2 emissions from a soilless culture system
Gaikwad et al. Hydroponics cultivation of crops
RU2013104363A (en) ELECTROCHEMICALLY PROCESSED NUTRIENT SOLUTIONS
CN101468926A (en) Soilless cultivation nutrient fluid for flowers
RU2014130413A (en) ELECTROCHEMICALLY PROCESSED NUTRIENT SOLUTIONS
Peyvast et al. Uptake of calcium nitrate and potassium phosphate from foliar fertilization by tomato
Rouphael et al. Fertigation strategies for improving water use efficiency and limiting nutrient loss in soilless Hippeastrum production
JP4456410B2 (en) Plant growth method
KR20140035821A (en) Composition of nutrient solution for hydroponic culture of ice plant and culturing method using the same
Komosa et al. Yield and nutrient status of greenhouse tomato (Lycopersicon esculentum mill.) grown in new and re-used rockwool, polyurethane, nft and aeroponics
KR101748423B1 (en) Plant-activating agent composition with soil improvement property and method of boosting growth of plant as well as improving soil property using the composition
KR102586212B1 (en) Functional composition of oxygen generating which for a long time can supply the oxygen to the crop cultivation and farming method using the same
US20220192190A1 (en) Nutrient solution formula for inhibiting green algae
Kafkafi et al. A Tool for Efficient Fertilizer and Water Management
Souri et al. Split Daily Applications of ammonium can not ameliorate ammonium toxicity in tomato plants
Yeo et al. Determination of optimal levels of Ca and Mg for single-stemmed roses grown in closed aeroponic system
RU2785120C1 (en) Liquid complex nitrogen-phosphorus-potassium fertilizer and method for its production
SALMAN et al. RESPONSE OF YIELD AND QUALITY OF BROCCOLI TO TYPE OF NUTRIENT SOLUTION UNDER HYDROPONIC SYSTEM WITH MODIFIED NFT TECHNOLOGY
Jadhav Nutrient Management in Hydroponic Systems for Urban and Peri-Urban Agriculture
Gent et al. Managing a simple system to recycle nutrient solution to greenhouse tomato grown in rockwool
Jamwal et al. 23 Soilless Culture
JPH0576251A (en) Hydroponic water and hydroponics using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4456410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term