WO2005117134A1 - Diode and thyristor - Google Patents

Diode and thyristor Download PDF

Info

Publication number
WO2005117134A1
WO2005117134A1 PCT/JP2004/007181 JP2004007181W WO2005117134A1 WO 2005117134 A1 WO2005117134 A1 WO 2005117134A1 JP 2004007181 W JP2004007181 W JP 2004007181W WO 2005117134 A1 WO2005117134 A1 WO 2005117134A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive region
type
type conductive
semiconductor substrate
region
Prior art date
Application number
PCT/JP2004/007181
Other languages
French (fr)
Japanese (ja)
Inventor
Ikuko Ogasawara
Masaaki Tomita
Kazuhiko Ito
Original Assignee
Shindengen Electric Manufacturing Co., Ltd.
Akita Shindengen Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co., Ltd., Akita Shindengen Co., Ltd. filed Critical Shindengen Electric Manufacturing Co., Ltd.
Priority to JP2006513774A priority Critical patent/JP4907341B2/en
Priority to PCT/JP2004/007181 priority patent/WO2005117134A1/en
Publication of WO2005117134A1 publication Critical patent/WO2005117134A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/87Thyristor diodes, e.g. Shockley diodes, break-over diodes

Definitions

  • the present invention relates to a semiconductor device, and further relates to an overvoltage protection diode and an overvoltage protection semiconductor thyristor for protecting an electronic circuit system from an abnormal voltage or an abnormal current.
  • Diodes and thyristors are widely used as semiconductor devices for overvoltage protection that protect electronic circuits from abnormal voltages occurring in communication lines such as home appliances, in-vehicle electronic boards, and telephone lines.
  • FIG. 2 is a cross-sectional view showing a diode according to the related art.
  • 1 is a semiconductor substrate conductive region
  • 2 is a first P-type conductive region
  • 3 is a first N-type conductive region
  • 10 is a first electrode
  • 11 is a second electrode
  • 20 is an insulator
  • 100 is a semiconductor substrate. It is.
  • FIG. 4 is a graph showing the reverse characteristics of the diode shown in FIG.
  • the semiconductor substrate 100 has N-type conductivity.
  • the first P-type conductive region 2 has a P-type conductivity type formed inside the semiconductor substrate 100 by impurity diffusion.
  • the first N-type conductive region 3 has N-type conductivity formed inside the semiconductor substrate 100 by impurity diffusion.
  • the semiconductor substrate conductive region 1 is a remaining portion where the first P-type conductive region 2 and the first N-type conductive region 3 are not formed.
  • the insulators 20 and 21 are formed for stabilizing the bonding interface between the exposed semiconductor substrate conductive region 1 and the first P-type conductive region 2, and are usually silicon oxide films obtained by oxidizing silicon. is there.
  • the first electrode 10 and the second electrode 11 are electrodes formed on both main surfaces of the semiconductor substrate 100.
  • first electrode 10 is electrically connected to the first P-type conductive region 2.
  • second electrode 11 is electrically connected to first N-type conductive region 3.
  • the insulators 20 and 21 are formed for stabilizing the interface, and are usually silicon oxide films obtained by oxidizing silicon.
  • the side of the surface of semiconductor substrate 100 on which first P-type conductive region 2 is provided (hereinafter, this side is referred to as the upper surface side. Also, the side of the semiconductor substrate 100 on which the first P-type conductive region 2 is provided is referred to as the upper side.)
  • the side of the surface on which the IN-type conductive region 3 is provided (hereinafter referred to as the lower surface side.
  • the side of the semiconductor substrate 100 on which the first N-type conductive region 3 is provided is the lower surface side.
  • the forward direction is the direction of application of a voltage that is a positive potential with respect to ().
  • This direction is also referred to as the forward direction of the voltage applied to the other diodes described hereinafter.
  • the direction of application of the voltage that makes the upper surface side a negative potential with respect to the lower surface side is the reverse direction (this direction is also the reverse direction of the voltage application direction of the other diodes described hereinafter). I do.
  • FIG. 4 is a graph showing the electrical characteristics in the reverse direction of the diode shown in FIG. As shown in FIG. 4, in the reverse direction, when a breakdown voltage is reached at the junction interface between the first P-type conductive region 2 and the first N-type conductive region 3, electrons and holes are actively generated, and the reverse voltage is increased. Is limited.
  • a diode having the above reverse characteristics has a power S for suppressing a surge voltage with a breakdown voltage vb , and a very fast electric surge in a nanosecond unit like an electrostatic discharge.
  • the response is very fast, so it is almost used in places where surge voltage due to static electricity is easily picked up, such as in-vehicle electronic equipment that requires high reliability and reliability (for example, see Patent Document 1).
  • the breakdown voltage may change as it is used at a high temperature for a long time. This is because at the interface 9 between the first P-type conductive region 2 and the semiconductor substrate conductive region 1 and in the vicinity of the interface 9 adjacent to the insulators 20 and 21, the interface charge and the electronic state of the interface trap change.
  • FIG. 3 is a cross-sectional view showing a thyristor according to the related art.
  • 101 is a semiconductor Body conductive area
  • 102 is the 1st N-type conductive area
  • 103 is the 2nd N-type conductive area
  • 104 is the 1st P-type conductive area
  • the body 200 is a semiconductor substrate.
  • FIG. 5 is a graph showing the forward characteristics of the thyristor shown in FIG.
  • the semiconductor substrate 200 has a ⁇ ⁇ ⁇ -type conductivity.
  • the first N-type conductive region 102 and the second ⁇ -type conductive region 103 have a ⁇ -type conductivity formed inside the semiconductor substrate 200 by impurity diffusion.
  • the first P-type conductive region 104 has a ⁇ -type conductivity type formed by impurity diffusion inside the semiconductor substrate 200.
  • the semiconductor substrate conductive region 101 is a remaining portion where the first N-type conductive region 102, the second ⁇ -type conductive region 103, and the first P-type conductive region 104 are not formed.
  • the first electrode 110 and the second electrode 111 are electrodes formed on both main surfaces of the semiconductor substrate 200.
  • the first electrode 110 is electrically connected to both the first P-type conductive region 104 and the first N-type conductive region 102.
  • the second electrode 111 is electrically connected to the second type conductive region 3.
  • the side of the surface of the semiconductor substrate 200 on which the first N-type conductive region 102 is provided (hereinafter referred to as the upper surface side).
  • the side of the surface on which the first N-type conductive region 102 is provided is referred to as the upper surface side
  • the side of the surface on which the second ⁇ -type conductive region 103 is provided (hereinafter referred to as the lower surface side).
  • the side of the surface of the semiconductor substrate 200 where the second type conductive region 103 is provided is referred to as the lower surface side.
  • This direction is also referred to as a forward direction.
  • the direction of application of the voltage that makes the upper surface side a negative potential with respect to the lower surface side is the reverse direction (the direction of the voltage application to the other thyristors described hereinafter is also the reverse direction). It shall be.
  • FIG. 5 is a graph showing forward electrical characteristics of the thyristor shown in FIG.
  • the first P-type conductive region 104 is an emitter
  • the first N-type conductive region 102 is a base
  • the semiconductor substrate conductive region 101 is a collector.
  • Electrons and holes are exchanged between transistors and turned off. An ignition operation for shifting from the state to the on state is performed.
  • the forward voltage force applied between the first electrode 110 and the second electrode 111 reaches the breakover voltage Vb in FIG.
  • the thyristor performing the above-described ignition operation suppresses the surge voltage with the breakover voltage Vb as described above. Therefore, although the change is smaller than that of electrostatic discharge, the response to electrical surges in microseconds such as large lightning-induced surges of energy is not affected by other surge protection elements, such as lightning arresters and metal. Since it is much faster than oxide varistors, it is almost used where lightning-induced surges can be easily picked up, such as electronic equipment in communication networks that require high reliability.
  • the breakover voltage may change as the thyristor is used at a high temperature for a long time. This is because the insulator 12 in the boundary between the first N-type conductive region 102 and the semiconductor substrate conductive region 101 and near the boundary 190 Forces considered to be due to changes in the electronic state of interface charges and interface traps in the region adjacent to 0, 121 It is necessary to control very accurately the impurities contained in the manufacturing environment such as clean rooms and the materials used .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-373897
  • the present invention further improves a diode or thyristor having a conventional structure so that a breakdown voltage or a breakover voltage does not fluctuate even at a high temperature, that is, a blocking voltage is reduced by an overvoltage protection semiconductor device. For the purpose of stabilizing.
  • the present invention provides a semiconductor device of a second conductivity type opposite to a semiconductor substrate formed by being exposed on one surface of a semiconductor substrate of the first conductivity type.
  • a diode formed by forming a first conductive region and a second conductive region of a first conductivity type formed by being exposed on the other surface opposite to the one surface of the semiconductor substrate;
  • a third conductive region of a second conductive type is formed so as to be exposed on one surface and to be adjacent to the first conductive region or to partially overlap the periphery of the first conductive region.
  • the breakdown occurs in the inner peripheral portion of the third conductive region or in the vicinity of the inner peripheral portion or in the first conductive region or in the vicinity of the first conductive region.
  • the breakdown voltage in the reverse direction is not determined at the boundary between the exposed third conductive region and the semiconductor substrate conductive region 1 and in the vicinity thereof, the exposed third conductive region is not determined. It is possible to stabilize the breakdown voltage even if the interface charge or the electronic state of the interface trap at and near the interface between the semiconductor substrate and the conductive region of the semiconductor substrate changes. That is, in the above-described configuration, the breakdown voltage is determined at the inner peripheral portion of the third conductive region or at the first conductive region.
  • the blocking voltage is more stable than the semiconductor for overvoltage protection. It is easy to realize the body device.
  • the third conductive region may surround the first conductive region when the semiconductor substrate is viewed in a plan view.
  • the present invention also provides a first conductive region of a second conductivity type opposite to the semiconductor substrate, which is formed by being exposed on one surface of a semiconductor substrate of the first conductivity type; And a second conductive region of the first conductivity type formed in the first conductive region and exposed on the other surface of the semiconductor substrate opposite to the one surface.
  • a fourth conductive region of the second conductivity type is provided, and a breakover occurs at the inner peripheral portion of the fourth conductive region or in the vicinity of the inner peripheral portion, or the first conductive region or the first conductive region. In the vicinity of the building.
  • the avalanche breakdown or punch-through that triggers a breakover is not determined at the boundary between the exposed fourth conductive region and the semiconductor substrate conductive region and in the vicinity thereof.
  • the breakover voltage can be stabilized even if the interface charge or the electronic state of the interface trap changes at and near the boundary between the conductive region of FIG. 4 and the semiconductor substrate conductive region. That is, in the above-described configuration, the breakover voltage is determined at the inner peripheral portion of the fourth conductive region or at the first conductive region.
  • the fourth conductive region may surround the first conductive region when the semiconductor substrate is viewed in a plan view.
  • the fourth conductive region may be exposed on the one surface.
  • the present invention may be arranged such that a plurality of the second conductive regions are provided in the above configuration.
  • the present invention provides a first conductive region of a second conductivity type opposite to the semiconductor substrate formed by being exposed on one surface of a semiconductor substrate of the first conductivity type; And a second conductive region of the first conductivity type formed in the first conductive region and exposed on the other surface of the semiconductor substrate opposite to the one surface.
  • the fourth conductive type fourth conductive region is formed so as to be adjacent to the first conductive region or partially overlap the peripheral portion of the first conductive region.
  • the region is formed so as to be adjacent to the third conductive region or to partially overlap the peripheral portion of the third conductive region.
  • a sixth conductive region of the second conductivity type is provided, and a breakover occurs at an inner periphery of the fourth conductive region or near the inner periphery, or near the first conductive region or the first conductive region, Alternatively, it occurs in the inner periphery of the sixth conductive region or in the vicinity of the inner periphery or in the third conductive region or in the vicinity of the third conductive region.
  • the breakdown voltage that triggers a breakover in both the forward and reverse directions causes the boundary surface between the exposed fourth conductive region and the semiconductor substrate conductive region and the vicinity thereof or the exposed sixth conductive region.
  • the boundary between the exposed fourth conductive region and the semiconductor substrate conductive region and the boundary between the exposed sixth conductive region and the exposed sixth conductive region and the semiconductor substrate conductive region because the boundary is not determined at or near the boundary surface of the semiconductor substrate conductive region.
  • the bar voltage can be stabilized. That is, in the above configuration, the breakover voltage is determined by the inner peripheral portion of the fourth conductive region, the inner peripheral portion of the first conductive region, the inner peripheral portion of the sixth conductive region, or the third conductive region. .
  • a thyristor having a stable blocking voltage can be realized as compared with the conventional structure shown in FIG.
  • the fourth conductive region may surround the first conductive region when the semiconductor substrate is viewed in a plan view.
  • the sixth conductive region may surround the third conductive region when the semiconductor substrate is viewed in plan.
  • the present invention may be arranged such that in the thyristor, the fourth conductive region is exposed on the one surface.
  • the sixth conductive region may be exposed on the other surface.
  • the present invention further provides a thyristor according to the present invention, further comprising a second conductive type seventh conductive region that is exposed on the one surface and penetrates the second conductive region. May be formed. In this case, a so-called short emitter structure is formed on the upper surface side.
  • an eighth conductive region of the second conductivity type which is exposed on the other surface opposite to the one surface and formed so as to penetrate the fifth conductive region, may be further provided. Good. In this case, a so-called short emitter structure is formed on the lower surface side.
  • one or two of the second conductive region, the fifth conductive region, the seventh conductive region, and the eighth conductive region are provided. There may be more than one.
  • the region for determining the blocking voltage is not located at the PN junction exposed on the surface of the semiconductor substrate and in the vicinity thereof. Therefore, even when the PN junction exposed on the surface of the semiconductor substrate and the electronic state of interface charges and interface traps existing near the PN junction change, the blocking voltage does not easily change. Therefore, even when exposed to high temperature for a long time, the overvoltage It is easy to realize a protective semiconductor device.
  • any semiconductor device having a diode or thyristor structure can be used as a composite device having other types of element structures such as an insulated gate field effect transistor. It can be preferably applied to a type semiconductor device and the like.
  • FIG. 1 is a sectional view showing a diode according to the first embodiment of the present invention.
  • 1 is a semiconductor substrate conductive region
  • 2 is a first P-type conductive region
  • 3 is a first N-type conductive region
  • 10 is a first electrode
  • 11 is a second electrode
  • 20 is an insulator
  • 40, 41 Denotes a second P-type conductive region
  • 100 denotes a semiconductor substrate.
  • the semiconductor substrate 100 is silicon having a rectangular cylindrical shape, and has N-type conductivity.
  • a first P-type conductive region 2 and a first N-type conductive region 3 are formed on a semiconductor substrate 100. Further, the second P-type conductive regions 40 and 41 are formed adjacent to the first P-type conductive region 2.
  • the semiconductor substrate conductive region 1 is a remaining portion where the first P-type conductive region 2, the first N-type conductive region 3, and the second P-type conductive regions 40 and 41 are not formed.
  • the first P-type conductive region 2 and the second P-type conductive regions 40 and 41 are electrically connected to the first electrode 10
  • the first N-type conductive region 3 is electrically connected to the second electrode 11.
  • the first P-type conductive region 2 and the second P-type conductive regions 40 and 41 are formed by high-temperature diffusion after introducing a P-type impurity from the outside using an appropriate mask.
  • deep diffusion is performed so that the breakdown occurs at the boundary surface between the semiconductor substrate conductive region 1 and the first P-type conductive region 2 and near the boundary surface between the semiconductor substrate conductive region 1 and the second P-type conductive region 40, 41.
  • the concentration of the second P-type conductive regions 40 and 41 is lower than that of the first P-type conductive region 2.
  • the first N-type conductive region 3 is formed by high-temperature diffusion after introducing N-type impurities from the outside.
  • the first P-type conductive region 2 and the first N-type conductive region 3 are separated by another mask in order to increase the conductivity of the region in contact with the first electrode 10 and the region in contact with the second electrode 11. It is of course possible to form them.
  • the first P-type conductive region 2 and the first N-type conductive region After the impurity diffusion in the region 3, the resistance of the region in contact with the first electrode 10 and the second electrode 11 of the first P-type conductive region 2 and the first N-type conductive region 3 is reduced separately.
  • high-temperature diffusion may be performed.
  • Other conductive regions may be formed by multiple diffusions as needed, but are usually formed by a single diffusion.
  • insulators 20 and 21 such as an oxide film are laminated and formed, and further, a first electrode 10 and a second electrode 11 are formed. Openings (diffusion windows) are formed in insulators 20 and 21 by etching. After that, the first electrode 10 and the second electrode 11 are formed.
  • the insulators 20, 21 are usually formed of a silicon oxide film or the like. If it does not adversely affect the characteristics of the diode to be manufactured, it may be formed of a silicon nitride film or glass, and may be formed of a multilayer structure including a plurality of insulators.
  • the second P-type conductive regions 40 and 41 are preferably formed in a frame shape so as to surround the first P-type conductive region 2.
  • the reason for this is that, by surrounding the first P-type conductive region 2, the breakdown voltage described below is not affected by the state of the interface charge and the interface trap between the semiconductor substrate 100 and the insulators 20, 21 according to the present invention. This is because the effect of the above can be surely achieved.
  • the first P-type conductive region 2 may have another shape such as a circle or an ellipse.
  • the shape of the semiconductor substrate 100 is not limited to a rectangular cylinder, but may be another shape such as a cylindrical shape.
  • the diode according to the first embodiment of the present invention is formed so that breakdown occurs in the reverse direction at the boundary surface between the semiconductor substrate conductive region 1 and the first P-type conductive region 2. I have. Therefore, the influence of the interface charge generated between the insulators 20 and 21 and the semiconductor substrate 100 and the electronic state of the interface trap on the breakdown voltage is almost negligible. Almost disappears. Further, the reason why the breakdown occurs at the interface between the semiconductor substrate conductive region 1 and the IP-type conductive region 2 due to the reverse voltage and the breakdown voltage does not fluctuate will be described in detail.
  • FIG. 10 is a cross-sectional view for assisting the explanation of mathematical formulas related to the breakdown voltage stabilizing mechanism.
  • the two-dimensional concentration distribution N of the first P-type conductive region 2 can be approximated by the following equation, where x is the horizontal direction and y is the vertical direction in FIG.
  • exp is an exponential function
  • erfc is a complementary error function
  • N is the surface concentration of the first P-type conductive region 2
  • X is the characteristic depth of the IP type conductive region 2 in the X direction
  • y is the characteristic of the IP type conductive region 2 in the y direction.
  • X is the left end of the diffusion window when the first P-type conductive region 2 is formed, and X is the right end of the diffusion window when the first P-type conductive region 2 is formed. Also, holes are made in the diffusion mask.
  • the density distribution N can be approximated by the following equation, where x is the horizontal direction and y is the vertical direction.
  • N is the surface concentration of the second P-type conductive regions 40 and 41
  • x is the second P-type conductive regions 40 and 41 s2 c2
  • X is the left edge of the diffusion window when forming the second P-type conductive region 40, X is the second P-type conductive
  • X is the right end of the diffusion window when the region 40 is formed, X is the left end of the diffusion window when the second P-type conductive region 41 is formed,
  • X is the right end of the diffusion window when the second P-type conductive region 41 is formed. Also, holes are formed in the diffusion mask.
  • the second P-type conductive regions 40 and 41 are adjacent to each other from the outside of the first P-type conductive region 2 when the semiconductor substrate 100 is viewed from above or at the periphery of the first P-type conductive region 2. It is formed so as to partially overlap. Therefore, for example, since it is formed in a frame shape so as to surround the first P-type conductive region 2,
  • junction depth of the first P-type conductive region 2 with the semiconductor substrate conductive region 1 is X
  • junction depth of the second P-type conductive regions 40 and 41 with the semiconductor substrate conductive region 1 is X.
  • the first P-type conductive regions 2 are the same P-type and N-type second P-type conductive regions 40 and 41.
  • the breakdown voltage is the semiconductor substrate conductive region N, the surface concentration N,
  • B S1 is considered to be determined by the junction depth X. That is, the breakdown voltage V is
  • V bl f (N B ,
  • the depth X If it is sufficiently larger than the depth X, it is almost infinite. Therefore, when the junction between the second P-type conductive regions 40 and 41 and the semiconductor substrate conductive region 1 is in a reverse bias state, the electric field strength is increased at the ends. Therefore, when a breakdown occurs in the second P-type conductive regions 40 and 41, the point at which the breakdown starts is the end.
  • the breakdown voltage has a close relationship with the electric field distribution generated at the junction between the second P-type conductive regions 40 and 41 and the semiconductor substrate conductive region 1 and in the vicinity thereof, in particular, the second P-type conductive regions 40 and 41
  • the electric field distribution at and around the outer periphery of the substrate is affected by the state of the interface charge and the interface trap between the semiconductor substrate 100 and the insulators 20 and 21. That is, when a breakdown occurs at the outer periphery of the second P-type conductive regions 40 and 41, the breakdown voltage V is approximated by the following equation.
  • V b 2 f (N B , x j2, N s2, r, Q 88) where, Q is the interface charge density.
  • the semiconductor substrate When breakdown occurs at the inner peripheral portions 50 and 51 of the second P-type conductive region, the semiconductor substrate
  • the breakdown voltage V can be approximated by the following equation, since it is considered that it is not easily affected by the interface charge between 100 and insulators 20, 21 and the state of the interface trap.
  • V b 2i f (N B , x j2, N s2, r)
  • the concentration gradient a of the impurity is considered to be the ratio of the concentration difference N between the two points to the distance q between the two points when viewed two-dimensionally, so that the concentration gradient a of the first P-type conductive region 2 is Next formula
  • the down voltage V tends to be small.
  • Equation 11 the concentration gradient a of the second P-type conductive regions 40 and 41 represented by the following equation increases.
  • Equation 13 The relationship is established.
  • the breakdown voltage is not affected by the state of the interface charge or interface trap between the semiconductor substrate 100 and the insulators 20, 21. An effect is obtained.
  • the diode as an overvoltage protection semiconductor device having a stable breakdown voltage and little change in blocking voltage. Can be realized.
  • FIG. 6 is a sectional view showing a thyristor according to the second embodiment of the present invention.
  • 101 is a semiconductor substrate conductive region
  • 102 is a first N-type conductive region
  • 103 is a second N-type conductive region
  • 104 ⁇ m is a first P-type conductive region
  • 110 f is a first electrode
  • lllf is a second electrode
  • 140, 141 are third N-type conductive regions
  • 200 is a semiconductor substrate.
  • the semiconductor substrate 200 is silicon having a rectangular cylindrical shape, and has a P-type conductivity.
  • a first N-type conductive region 102 and a second N-type conductive region 103 are formed on a semiconductor substrate 200.
  • a first P-type conductive region 104 is formed in the first N-type conductive region 102.
  • the first N-type conductive region 102 and the first P-type conductive region 104 are electrically connected to the first electrode 110
  • the second N-type conductive region 103 is electrically connected to the second electrode 111.
  • the third N-type conductive regions 140 and 141 are arranged so as to be adjacent to the first N-type conductive region 102.
  • the first N-type conductive region 102, the second N-type conductive region 103, and the third N-type conductive regions 140 and 141 are formed by high-temperature diffusion after introducing N-type impurities from the outside using an appropriate mask. You. Here, deep diffusion is performed so that a breakover occurs at the interface between the semiconductor substrate conductive region 101 and the first N-type conductive region 102 and the interface between the semiconductor substrate conductive region 101 and the third N-type conductive region 140, 141. The concentration of the nearby third N-type conductive regions 140 and 141 is lower than that of the first N-type conductive region 102.
  • the first P-type conductive region 104 is formed by high-temperature diffusion after introducing a P-type impurity from the outside.
  • the semiconductor substrate conductive region 101 is a remaining portion where the first N-type conductive region 102, the second N-type conductive region 103, the first P-type conductive region 104, and the third N-type conductive regions 140 and 141 are not formed. .
  • the first P-type conductive region 104 and the second N-type conductive region 103 are formed by another mask in order to increase the conductivity of the region in contact with the first electrode 110 and the second electrode 111.
  • the first P-type conductive region 104 and the second N-type conductive region After the impurity diffusion of 103, the P-type conductive region 104 and the second N-type conductive region 103 are separated by P in order to reduce the resistance of the region in contact with the first electrode 110 and the second electrode 111.
  • High-temperature diffusion may be performed after high-type and N-type impurities are introduced.
  • Other conductive regions may be formed by multiple diffusions as needed, but are usually one time.
  • insulators 120, 121, 122, 123 such as oxide films are laminated and formed, and the first electrode 110 and the second electrode 111 are further etched. Open the windows for After that, the first electrode 110 and the second electrode 111 are formed.
  • the insulators 120, 121, 122, and 123 are usually formed of a silicon oxide film or the like. If there is no problem in characteristics, it can be made of silicon nitride film or glass, and it can be formed with a multilayer structure composed of multiple insulators.
  • the third N-type conductive region is preferably formed in a frame shape. Note that it is also possible to form a plurality of portions by dividing the frame without forming them in a frame shape. Alternatively, a large number of these may be arranged as independent small island-shaped regions.
  • the first N-type conductive region 102 may have another shape such as a circle or an ellipse. Further, the shape of the semiconductor substrate 200 is not limited to a rectangular cylinder, but may be another shape such as a cylindrical shape.
  • the thyristor according to the second embodiment of the present invention is formed so that breakover occurs in the forward direction at the boundary between the semiconductor substrate conductive region 101 and the first N-type conductive region 102. I have.
  • the third N-type conductive regions 140 and 141 are usually deeply diffused in order to make the impurity concentration lower than that of the first N-type conductive region 102. In this case, the first N-type conductive region 102 is surrounded around the upper surface.
  • the third N-type conductive regions 140 and 141 have regions of large curvature at the inner peripheral portions 150 and 151 of the third N-type conductive regions 140 and 141 as well as at the outer peripheral portion. Will be. [0098] Therefore, depending on the design, breakdown may occur on the inner peripheral side of the third N-type conductive regions 140 and 141, but even in such a case, the effect of the interface charge and the electronic state of the interface trap on the breakdown voltage is not significant. Almost no fluctuations in the blocking voltage due to the change in the interface charge and the electronic state of the interface trap are almost eliminated.
  • a semiconductor device for overvoltage protection in which the breakover voltage is stable and the fluctuation of the blocking voltage is almost zero is obtained.
  • a thyristor can be realized.
  • FIG. 7 is a sectional view showing a thyristor according to the third embodiment of the present invention.
  • 101 is a semiconductor substrate conductive region
  • 102 is a first N-type conductive region
  • 103 is a second N-type conductive region
  • 104 is a first P-type conductive region
  • 105 is a second P-type conductive region
  • 110 is a first electrode.
  • Reference numeral 111 denotes a second electrode, insulators 120, 121, 122, and 123f, third N-type conductive regions 140 and 141f, fourth N-type conductive regions 142 and 143f, and 200 a semiconductor substrate.
  • the semiconductor substrate 200 is silicon having a prismatic shape, and has a P-type conductivity.
  • a first N-type conductive region 102 and a second N-type conductive region 103 are formed on a semiconductor substrate 200.
  • a first P-type conductive region 104 is formed in the first N-type conductive region 102.
  • a second P-type conductive region 105 is formed in the second N-type conductive region 103.
  • the first N-type conductive region 102 and the first P-type conductive region 104 are electrically connected to the first electrode 110
  • the second N-type conductive region 103 and the second P-type conductive region 105 are electrically connected to the second electrode 111. Connected to.
  • the third N-type conductive regions 140 and 141 are arranged so as to be adjacent to the first N-type conductive region 102. Further, the fourth N-type conductive regions 142 and 143 are arranged so as to be adjacent to the second N-type conductive region 103.
  • the first N-type conductive region 102, the second N-type conductive region 103, the third N-type conductive regions 140 and 141, and the fourth N-type conductive regions 142 and 143 are formed by using an appropriate mask to remove N-type impurities from the outside. After being introduced from, it is formed by high-temperature diffusion. Here, deep diffusion is performed so that breakover occurs at the boundary between the semiconductor substrate conductive region 101 and the first N-type conductive region 102 or at the boundary between the semiconductor substrate conductive region 101 and the second N-type conductive region 103.
  • the concentration of the third N-type conductive regions 140 and 141 near the boundary between the semiconductor substrate conductive region 101 and the third N-type conductive regions 140 and 141 is made smaller than that of the first N-type conductive region 102, and the semiconductor substrate conductive region 101 and the fourth N-type
  • the concentration of the fourth N-type conductive regions 142 and 143 near the boundary surface between the conductive regions 142 and 143 is made lower than that of the second N-type conductive region 103.
  • the first P-type conductive region 104 and the second P-type conductive region 105 are formed by high-temperature diffusion after introducing P-type impurities from the outside.
  • the first P-type conductive region 104, the second P-type conductive region 105, and the first N-type are formed by using another mask in order to increase the conductivity of the region in contact with the first electrode 110 and the second electrode 111. It is of course possible to form the conductive region 102 and the second N-type conductive region 103. For example, after performing the impurity diffusion of the first N-type conductive region 102 and the second N-type conductive region 103, the first electrode 110 and the second electrode 111 in the first N-type conductive region 102 and the second N-type conductive region 103 are formed. In order to reduce the resistance value of the contact region, high-temperature diffusion may be performed after separately introducing a high-concentration N-type impurity. Other conductive regions may be formed by multiple diffusions as needed, but usually only once.
  • insulators 120, 121, 122, 123 such as oxide films are laminated and formed, and the first electrode 110 and the second electrode 111 are further etched. Open the windows for After that, the first electrode 110 and the second electrode 111 are formed.
  • the insulators 120, 121, 122, and 123 are usually formed of an oxide film or the like. If there is no problem in terms of characteristics, force S, which can be made of silicon nitride film or glass, or a multilayer structure consisting of multiple insulators.
  • the third N-type conductive region and the fourth N-type conductive region are preferably formed in a frame shape. Note that it is also possible to form a plurality of divided portions without forming them in a frame shape, but in this case, it is preferable to form them at the corners of the first N-type conductive region 102 and the second N-type conductive region 103. Also, a large number of these may be arranged as independent small island regions. Further, the first N-type conductive region 102 and the second N-type conductive region 103 may have other shapes such as a circle and an ellipse. Furthermore, the shape of the semiconductor substrate 200 is not limited to the rectangular tube shape, but may be another shape such as a cylindrical shape.
  • the thyristor according to the third embodiment of the present invention is formed so as to perform a firing operation in both forward and reverse directions. Therefore, the basic operation is the same in both the forward and reverse directions, and the following description will be made in the forward direction.
  • Forward break The breakover voltage in the opposite direction to the bar voltage can be the same value or different values. In the structure shown in FIG. 7, when a voltage is applied in the forward direction, a breakover is formed at a boundary surface between the semiconductor substrate conductive region 101 and the first N-type conductive region 102.
  • the third N-type conductive regions 140 and 141 usually perform deep diffusion to lower the impurity concentration than the first N-type conductive region 102. In this case, the third N-type conductive regions 140 and 141 surround the first N-type conductive region 102 when viewed from above. As described above, the third N-type conductive regions 140 and 141 have regions of large curvature at the inner peripheral portions 150 and 151 of the third N-type conductive regions 140 and 141 as well as the outer peripheral portions. Will be.
  • breakover may occur on the inner peripheral side of the third N-type conductive regions 140 and 141, but even in such a case, the influence of the interface charge and the electronic state of the interface trap on the breakover voltage is obtained. Almost no fluctuations in the blocking voltage due to the change of the interface charge and the electronic state of the interface trap are hardly observed.
  • a semiconductor device for overvoltage protection in which the breakover voltage is stable and the blocking voltage hardly varies.
  • a thyristor can be realized.
  • FIG. 8 is a sectional view showing a thyristor according to the fourth embodiment of the present invention.
  • 101 is a semiconductor substrate conductive region
  • 102 is a first N-type conductive region
  • 103 is a second N-type conductive region
  • 104 is a first P-type conductive region
  • 105 is a second P-type conductive region
  • 106 is a first hole.
  • 107 is the second to L-shaped conductive region
  • 110 is the first electrode
  • 111 is the second electrode
  • 120, 121, 122, 123 is an insulator
  • 140 is the third N-type conductive region
  • 142, 143 Denotes a fourth N-type conductive region
  • 200 denotes a semiconductor substrate.
  • the thyristor according to the fourth embodiment of the present invention is different from the thyristor according to the third embodiment of the present invention in that the first hole-shaped conductive region 106 and the second hole-shaped Conductive area When there is 107, it is usually called a short emitter structure, but sometimes it is called a short gate structure.
  • the basic operation is the same as the thyristor according to the third embodiment.
  • the first hole-shaped conductive region and the second hole-shaped conductive region may be singular or plural, but usually the shape and arrangement are determined in consideration of the holding current and the surge withstand capability against surge.
  • the basic operation is exactly the same as that of the thyristor according to the third embodiment of the present invention.
  • the structure of the thyristor according to the fourth embodiment of the present invention it is possible to realize a thyristor as a semiconductor device for overvoltage protection in which the break-over voltage is stable and the variation in the blocking voltage is almost zero. Can be done.
  • the first conductivity type semiconductor layer exposed on one surface of the semiconductor substrate is exposed on the one surface and formed in the semiconductor layer.
  • An overvoltage protection semiconductor device having a first conductive region of a second conductivity type opposite to that of the semiconductor layer, wherein the semiconductor device is exposed on the one surface and in the semiconductor layer;
  • a second conductive region of a second conductivity type formed so as to be adjacent to or partially overlap with the periphery of the first conductive region, wherein the breakdown or breakover is performed. If it occurs in the inner peripheral portion of the second conductive region or in the vicinity of the inner peripheral portion or in the vicinity of the first conductive region or the first conductive region, the breakdown voltage or the breakover voltage becomes stable. And there is almost no change in blocking voltage Les, cormorants action can be obtained.
  • FIG. 1 is a sectional view showing a diode according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a diode according to a conventional technique.
  • FIG. 3 is a cross-sectional view showing a thyristor according to a conventional technique.
  • FIG. 4 is a graph showing electrical characteristics of a diode according to a conventional technique.
  • FIG. 5 is a graph showing electrical characteristics of a thyristor according to a conventional technique.
  • FIG. 6 is a sectional view showing a thyristor according to a second embodiment of the present invention.
  • FIG. 7 is a sectional view showing a thyristor according to a third embodiment of the present invention.
  • FIG. 8 is a sectional view showing a thyristor according to a fourth embodiment of the present invention.
  • FIG. 9 is a plan view showing a diode according to the first embodiment of the present invention.
  • Garden 10 is a cross-sectional view for assisting explanation of mathematical formulas relating to a breakdown voltage stabilizing mechanism.

Abstract

In order to realize a semiconductor device for overvoltage protection enabling to obtain a stabilized blocking voltage, a first P type conductive region (2) and a first N type conductive region (3) are formed in an N type semiconductor substrate (100) and second P type conductive regions (40, 41) are formed contiguously to the first P type conductive region (2) such that breakdown is determined in the first P type conductive region (2). Since the breakdown voltage is insusceptible to interface charges or interface trap due to this structure, the breakdown voltage is stabilized and the blocking voltage is not varied easily.

Description

明 細 書  Specification
ダイオード及びサイリスタ  Diodes and thyristors
技術分野  Technical field
[0001] 本発明は、半導体装置、さらに異常電圧又は異常電流から電子回路系を保護する 過電圧保護用ダイオード及び過電圧保護用半導体サイリスタに関するものである。 背景技術  The present invention relates to a semiconductor device, and further relates to an overvoltage protection diode and an overvoltage protection semiconductor thyristor for protecting an electronic circuit system from an abnormal voltage or an abnormal current. Background art
[0002] ダイオードやサイリスタは、家電製品、車載用電子基板、電話回線などの通信回線 に発生した異常電圧から電子回路を保護する過電圧保護用半導体装置として、幅 広く用いられている。  [0002] Diodes and thyristors are widely used as semiconductor devices for overvoltage protection that protect electronic circuits from abnormal voltages occurring in communication lines such as home appliances, in-vehicle electronic boards, and telephone lines.
[0003] 図 2は、従来技術に係るダイオードを示す断面図である。図 2において、 1は半導体 基板導電領域、 2は第 1P型導電領域、 3は第 1N型導電領域、 10は第1電極、 11は 第 2電極、 20, 21は絶縁体、 100は半導体基板である。また、図 4は、図 2に示した ダイオードの逆方向特性を示すグラフである。  FIG. 2 is a cross-sectional view showing a diode according to the related art. In FIG. 2, 1 is a semiconductor substrate conductive region, 2 is a first P-type conductive region, 3 is a first N-type conductive region, 10 is a first electrode, 11 is a second electrode, 20, 21 is an insulator, and 100 is a semiconductor substrate. It is. FIG. 4 is a graph showing the reverse characteristics of the diode shown in FIG.
[0004] 半導体基板 100は、 N型の導電型を有するものである。第 1P型導電領域 2は、半 導体基板 100内部に不純物拡散によって形成された P型の導電型を有するものであ る。第 1N型導電領域 3は、半導体基板 100内部に不純物拡散によって形成された N 型の導電型を有するものである。半導体基板導電領域 1は、第 1P型導電領域 2及び 第 1N型導電領域 3を形成していない残余の部分である。絶縁体 20、 21は、露出し た半導体基板導電領域 1と第 1P型導電領域 2の接合界面の安定化のために形成さ れるもので、通常はシリコンを酸化して得られるシリコン酸化膜である。第 1電極 10及 び第 2電極 11は、半導体基板 100の両主面に形成された電極である。ここで、第 1電 極 10は、第 1P型導電領域 2と電気的に接続される。また、第 2電極 11は、第 1N型 導電領域 3と電気的に接続される。絶縁体 20、 21は、界面の安定化のために形成さ れるもので、通常はシリコンを酸化して得られるシリコン酸化膜である。  [0004] The semiconductor substrate 100 has N-type conductivity. The first P-type conductive region 2 has a P-type conductivity type formed inside the semiconductor substrate 100 by impurity diffusion. The first N-type conductive region 3 has N-type conductivity formed inside the semiconductor substrate 100 by impurity diffusion. The semiconductor substrate conductive region 1 is a remaining portion where the first P-type conductive region 2 and the first N-type conductive region 3 are not formed. The insulators 20 and 21 are formed for stabilizing the bonding interface between the exposed semiconductor substrate conductive region 1 and the first P-type conductive region 2, and are usually silicon oxide films obtained by oxidizing silicon. is there. The first electrode 10 and the second electrode 11 are electrodes formed on both main surfaces of the semiconductor substrate 100. Here, the first electrode 10 is electrically connected to the first P-type conductive region 2. Further, second electrode 11 is electrically connected to first N-type conductive region 3. The insulators 20 and 21 are formed for stabilizing the interface, and are usually silicon oxide films obtained by oxidizing silicon.
[0005] 図 2に示したダイオードにおいて、半導体基板 100の第 1P型導電領域 2を設けた 面の側(以下、この面の側を上面側とする。これ以降に説明する他のダイオードにつ レ、ても、半導体基板 100の第 1P型導電領域 2を設けた面の側を上面側とする。)を、 第 IN型導電領域 3を設けた面の側(以下、下面側とする。これ以降に説明する他の ダイオードについても、半導体基板 100の第 1N型導電領域 3を設けた面の側を下面 側とする。 )に対して正の電位とする電圧の印加方向を順方向(これ以降に説明する 他のダイオードの電圧の印加方向についても、この方向を順方向とする。)とする。逆 に、上面側を下面側に対して負の電位とする電圧の印加方向を逆方向(これ以降に 説明する他のダイオードの電圧の印加方向についても、この方向を逆方向とする。 ) とする。 [0005] In the diode shown in FIG. 2, the side of the surface of semiconductor substrate 100 on which first P-type conductive region 2 is provided (hereinafter, this side is referred to as the upper surface side. Also, the side of the semiconductor substrate 100 on which the first P-type conductive region 2 is provided is referred to as the upper side.) The side of the surface on which the IN-type conductive region 3 is provided (hereinafter referred to as the lower surface side. For other diodes to be described hereinafter, the side of the semiconductor substrate 100 on which the first N-type conductive region 3 is provided is the lower surface side. The forward direction is the direction of application of a voltage that is a positive potential with respect to (). This direction is also referred to as the forward direction of the voltage applied to the other diodes described hereinafter. Conversely, the direction of application of the voltage that makes the upper surface side a negative potential with respect to the lower surface side is the reverse direction (this direction is also the reverse direction of the voltage application direction of the other diodes described hereinafter). I do.
[0006] 図 4は、図 2に示したダイオードの逆方向の電気的特性を示すグラフである。図 4に 示すように、逆方向においては、第 1P型導電領域 2と第 1N型導電領域 3の接合界 面においてブレークダウン電圧に達すると電子と正孔の発生が活発に生じて逆方向 電圧が制限される。  FIG. 4 is a graph showing the electrical characteristics in the reverse direction of the diode shown in FIG. As shown in FIG. 4, in the reverse direction, when a breakdown voltage is reached at the junction interface between the first P-type conductive region 2 and the first N-type conductive region 3, electrons and holes are actively generated, and the reverse voltage is increased. Is limited.
[0007] 以上のような逆方向特性を有するダイオードは、前記したように、ブレークダウン電 圧 vbでサージ電圧を抑圧する力 S、静電気放電のようにナノ秒単位のかなり速い電気 的サージに対してもその応答が非常に早レ、ために、高レ、信頼性を要求される車載用 の電子機器のように静電気によるサージ電圧を拾い易いところでは殆ど利用されて レ、る状況にある(例えば、特許文献 1を参照)。 [0007] As described above, a diode having the above reverse characteristics has a power S for suppressing a surge voltage with a breakdown voltage vb , and a very fast electric surge in a nanosecond unit like an electrostatic discharge. However, the response is very fast, so it is almost used in places where surge voltage due to static electricity is easily picked up, such as in-vehicle electronic equipment that requires high reliability and reliability ( For example, see Patent Document 1).
[0008] また、半導体材料で出来ているため、電気的サージによって消耗するところがなく 長期間に亘つて信頼性を維持することが可能であるという保守上の大きな利点を有し ている。 [0008] In addition, since it is made of a semiconductor material, it has a great advantage in maintenance that reliability can be maintained for a long time without being consumed by an electric surge.
[0009] ところが、このような利点を有するダイオードにおいても、高温下で長時間使用する に従って、ブレークダウン電圧が変化する場合がある。これは、第 1P型導電領域 2と 半導体基板導電領域 1の境界面 9及び境界面 9近傍のうち絶縁体 20, 21に隣接す る領域において界面電荷や界面トラップの電子的状態が変化するためであると考え られるが、クリーンルーム等の製造環境や使用材料に含まれる不純物を非常に正確 に制御する必要がある。  [0009] However, even in a diode having such an advantage, the breakdown voltage may change as it is used at a high temperature for a long time. This is because at the interface 9 between the first P-type conductive region 2 and the semiconductor substrate conductive region 1 and in the vicinity of the interface 9 adjacent to the insulators 20 and 21, the interface charge and the electronic state of the interface trap change. However, it is necessary to control very accurately the impurities contained in the manufacturing environment such as a clean room and the materials used.
[0010] し力、しながら、前記した製造環境や使用材料の不純物制御等には大きなコストがか かるため、その実施には限界があった。  [0010] However, since the production environment and the control of impurities in the materials used are costly, there is a limit to the implementation.
[0011] 図 3は、従来技術に係るサイリスタを示す断面図である。図 3において、 101は半導 体基板導電領域、 102は第 1N型導電領域、 103は第 2N型導電領域、 104は第 1P 型導電領域、 110ίま第 1電極、 l l l iま第 2電極、 120, 121 , 122, 123ίま絶縁体、 2 00は半導体基板である。また、図 5は、図 3に示したサイリスタの順方向特性を示す グラフである。 FIG. 3 is a cross-sectional view showing a thyristor according to the related art. In FIG. 3, 101 is a semiconductor Body conductive area, 102 is the 1st N-type conductive area, 103 is the 2nd N-type conductive area, 104 is the 1st P-type conductive area, 110-pole first electrode, llli-second electrode, 120, 121, 122, 123-pole insulation The body 200 is a semiconductor substrate. FIG. 5 is a graph showing the forward characteristics of the thyristor shown in FIG.
[0012] 半導体基板 200は、 Ρ型の導電型を有するものである。第 1N型導電領域 102及び 第 2Ν型導電領域 103は、半導体基板 200内部に不純物拡散によって形成された Ν 型の導電型を有するものである。第 1P型導電領域 104は、半導体基板 200内部に 不純物拡散によって形成された Ρ型の導電型を有するものである。半導体基板導電 領域 101は、第 1N型導電領域 102、第 2Ν型導電領域 103及び第 1P型導電領域 1 04を形成していない残余の部分である。第 1電極 110及び第 2電極 111は、半導体 基板 200の両主面に形成された電極である。ここで、第 1電極 110は、第 1P型導電 領域 104と第 1N型導電領域 102の双方と電気的に接続される。また、第 2電極 111 は、第 2Ν型導電領域 3と電気的に接続される。  The semiconductor substrate 200 has a 有 す る -type conductivity. The first N-type conductive region 102 and the second Ν-type conductive region 103 have a Ν-type conductivity formed inside the semiconductor substrate 200 by impurity diffusion. The first P-type conductive region 104 has a 導電 -type conductivity type formed by impurity diffusion inside the semiconductor substrate 200. The semiconductor substrate conductive region 101 is a remaining portion where the first N-type conductive region 102, the second Ν-type conductive region 103, and the first P-type conductive region 104 are not formed. The first electrode 110 and the second electrode 111 are electrodes formed on both main surfaces of the semiconductor substrate 200. Here, the first electrode 110 is electrically connected to both the first P-type conductive region 104 and the first N-type conductive region 102. Further, the second electrode 111 is electrically connected to the second type conductive region 3.
[0013] 図 3に示したサイリスタにおいて、半導体基板 200の第 1N型導電領域 102を設け た面の側(以下、上面側とする。これ以降に説明する他のサイリスタについても、半導 体基板 200の第 1N型導電領域 102を設けた面の側を上面側とする。)を、第 2Ν型 導電領域 103を設けた面の側(以下、下面側とする。これ以降に説明する他のサイリ スタについても、半導体基板 200の第 2Ν型導電領域 103を設けた面の側を下面側 とする。 )に対して正の電位とする電圧の印加方向を順方向(これ以降に説明する他 のサイリスタの電圧の印加方向についても、この方向を順方向とする。)とする。逆に 、上面側を下面側に対して負の電位とする電圧の印加方向を逆方向(これ以降に説 明する他のサイリスタの電圧の印加方向についても、この方向を逆方向とする。)とす る。  [0013] In the thyristor shown in FIG. 3, the side of the surface of the semiconductor substrate 200 on which the first N-type conductive region 102 is provided (hereinafter referred to as the upper surface side). The side of the surface on which the first N-type conductive region 102 is provided is referred to as the upper surface side, and the side of the surface on which the second Ν-type conductive region 103 is provided (hereinafter referred to as the lower surface side). For the thyristor, the side of the surface of the semiconductor substrate 200 where the second type conductive region 103 is provided is referred to as the lower surface side. This direction is also referred to as a forward direction. Conversely, the direction of application of the voltage that makes the upper surface side a negative potential with respect to the lower surface side is the reverse direction (the direction of the voltage application to the other thyristors described hereinafter is also the reverse direction). It shall be.
[0014] 図 5は、図 3に示したサイリスタの順方向の電気的特性を示すグラフである。図 5に 示すように、順方向においては、第 1P型導電領域 104をェミッタ、第 1N型導電領域 102をベース、半導体基板導電領域 101をコレクタとする ΡΝΡトランジスタと、第 2Ν 型導電領域 103をェミッタ、半導体基板導電領域 101をベース、第 1N型導電領域 1 02をコレクタとする ΝΡΝトランジスタの間で電子と正孔の交換が行なわれて、オフ状 態からオン状態へ移行する点弧動作が行なわれる。 FIG. 5 is a graph showing forward electrical characteristics of the thyristor shown in FIG. As shown in FIG. 5, in the forward direction, the first P-type conductive region 104 is an emitter, the first N-type conductive region 102 is a base, and the semiconductor substrate conductive region 101 is a collector. Emitter, with semiconductor substrate conductive region 101 as the base and first N-type conductive region 102 as the collector 電子 Electrons and holes are exchanged between transistors and turned off. An ignition operation for shifting from the state to the on state is performed.
[0015] すなわち、最初オフ状態にあった図 3のサイリスタにおいて、第 1電極 110と第 2電 極 111との間に印加される順方向電圧力 図 5のブレークオーバー電圧 Vbに達する と雪崩降伏或いはパンチスルーにより電流が流れるようになる。すなわち、逆バイアス 状態にある第 1 N型導電領域 102と半導体基板導電領域 101の境界面 190及びこ の境界面 190近傍において、電子と正孔の交換が活発に行なわれるようになる。そし て、前記の PNPトランジスタのベースと前記の NPNトランジスタのコレクタが共通の第 1N型導電領域 102であるため、サイリスタが点弧してオン状態へ遷移する。前記し たブレークオーバー電圧に達したときに空乏層が最大に広がることは言うまでもない ことである。  That is, in the thyristor shown in FIG. 3 which was initially in the off state, the forward voltage force applied between the first electrode 110 and the second electrode 111 reaches the breakover voltage Vb in FIG. Alternatively, current flows due to punch-through. That is, electrons and holes are actively exchanged at the boundary surface 190 between the first N-type conductive region 102 and the semiconductor substrate conductive region 101 in the reverse bias state and near the boundary surface 190. Since the base of the PNP transistor and the collector of the NPN transistor are the common first N-type conductive region 102, the thyristor is fired and transitions to the ON state. It goes without saying that the depletion layer is maximized when the above-mentioned breakover voltage is reached.
[0016] なお、 PNPN構造からなるサイリスタが点弧動作してオフ状態からオン状態へ移行 することは周知の事実であるので、ここでは内部動作のより詳細な説明については省 略するが、図 3に示す構造では第 1N型導電領域 102の周辺部が曲率をもっていて 局所的に電界強度が大きくなるため、雪崩降伏によって点弧動作が開始する場合、 点弧の引き金となる電流は、第 1P型導電領域 104が位置する第 1N型導電領域 10 2の周辺部から当該第 1N型導電領域 102の中央付近に向かって流れる。  It is a well-known fact that a thyristor having a PNPN structure shifts from an off state to an on state due to a firing operation. Therefore, a more detailed description of the internal operation is omitted here. In the structure shown in FIG. 3, since the periphery of the first N-type conductive region 102 has a curvature and the electric field intensity locally increases, when the avalanche breakdown starts the ignition operation, the current that triggers the ignition is the first P-type current. It flows from the peripheral portion of the first N-type conductive region 102 where the type conductive region 104 is located toward the vicinity of the center of the first N-type conductive region 102.
[0017] 以上のような点弧動作を行うサイリスタは、前記したように、ブレークオーバー電圧 V bでサージ電圧を抑圧する。従って、静電気放電よりは変化が緩和であるもののエネ ルギ一の大きな雷誘導サージのようにマイクロ秒単位の電気的サージに対しては、そ の応答が他のサージ防護素子、例えば避雷管や金属酸化物バリスタなどと比較して 非常に速いために、高い信頼性を要求される通信ネットワーク系の電子機器のように 雷誘導サージを拾い易いところでは殆ど利用されている状況にある。  The thyristor performing the above-described ignition operation suppresses the surge voltage with the breakover voltage Vb as described above. Therefore, although the change is smaller than that of electrostatic discharge, the response to electrical surges in microseconds such as large lightning-induced surges of energy is not affected by other surge protection elements, such as lightning arresters and metal. Since it is much faster than oxide varistors, it is almost used where lightning-induced surges can be easily picked up, such as electronic equipment in communication networks that require high reliability.
[0018] また、半導体材料で出来ているため、サージ電流によって消耗するところがなく長 期間に亘つて信頼性を維持することが可能であるという保守上の大きな利点を有して いる。  [0018] Further, since it is made of a semiconductor material, there is a great advantage in maintenance that reliability can be maintained for a long period without being consumed by a surge current.
[0019] ところ力 このような利点を有するサイリスタにおいても、高温下で長時間使用する に従って、ブレークオーバー電圧が変化する場合がある。これは、第 1N型導電領域 102と半導体基板導電領域 101の境界面及びこの境界面 190近傍のうち絶縁体 12 0, 121に隣接する領域において界面電荷や界面トラップの電子的状態が変化する ためであると考えられる力 クリーンルーム等の製造環境や使用材料に含まれる不純 物を非常に正確に制御する必要がある。 However, even in a thyristor having such an advantage, the breakover voltage may change as the thyristor is used at a high temperature for a long time. This is because the insulator 12 in the boundary between the first N-type conductive region 102 and the semiconductor substrate conductive region 101 and near the boundary 190 Forces considered to be due to changes in the electronic state of interface charges and interface traps in the region adjacent to 0, 121 It is necessary to control very accurately the impurities contained in the manufacturing environment such as clean rooms and the materials used .
[0020] し力、しながら、前記した製造環境や使用材料の不純物制御等には大きなコストがか かるため、その実施には限界があった。 [0020] However, since the production environment and the control of impurities in the materials used are costly, there is a limit to the implementation.
特許文献 1:特開 2002—373897  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-373897
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0021] 本発明は、従来構造のダイオードやサイリスタをさらに改良して、ブレークダウン電 圧やブレークオーバー電圧が高温下でも変動しないこと、すなわち過電圧保護用半 導体装置にぉレ、て阻止電圧を安定させることを目的としてレ、る。 The present invention further improves a diode or thyristor having a conventional structure so that a breakdown voltage or a breakover voltage does not fluctuate even at a high temperature, that is, a blocking voltage is reduced by an overvoltage protection semiconductor device. For the purpose of stabilizing.
課題を解決するための手段  Means for solving the problem
[0022] 上記課題を解決するための手段として、本発明は、第 1導電型の半導体基板の一 方の面に露出させて形成してなる該半導体基板とは反対型の第 2導電型の第 1の導 電領域と、前記半導体基板の前記一方の面に背向する他方の面に露出させて形成 してなる第 1導電型の第 2の導電領域を形成してなるダイオードにおいて、前記一方 の面に露出させると共に前記第 1の導電領域に隣接する又は該第 1の導電領域の周 辺部に部分的に重なり合うように形成してなる第 2導電型の第 3の導電領域を設けて 、ブレークダウンが前記第 3の導電領域の内周部若しくは前記内周部の近傍又は前 記第 1の導電領域若しくは前記第 1の導電領域の近傍で生じることを特徴とするもの とした。 [0022] As a means for solving the above-mentioned problems, the present invention provides a semiconductor device of a second conductivity type opposite to a semiconductor substrate formed by being exposed on one surface of a semiconductor substrate of the first conductivity type. A diode formed by forming a first conductive region and a second conductive region of a first conductivity type formed by being exposed on the other surface opposite to the one surface of the semiconductor substrate; A third conductive region of a second conductive type is formed so as to be exposed on one surface and to be adjacent to the first conductive region or to partially overlap the periphery of the first conductive region. Thus, the breakdown occurs in the inner peripheral portion of the third conductive region or in the vicinity of the inner peripheral portion or in the first conductive region or in the vicinity of the first conductive region.
[0023] 前記したダイオードの構成においては、逆方向のブレークダウン電圧が露出した第 3の導電領域と半導体基板導電領域 1の境界面及びその近傍では決定されないた め、露出した第 3の導電領域と半導体基板導電領域の境界面及びその近傍におけ る界面電荷又は界面トラップの電子状態が変化してもブレークダウン電圧を安定させ ること力 S出来るようになる。すなわち、前記した構成においては、第 3の導電領域の内 周部または第 1の導電領域でブレークダウン電圧が決定される。  In the above-described diode configuration, since the breakdown voltage in the reverse direction is not determined at the boundary between the exposed third conductive region and the semiconductor substrate conductive region 1 and in the vicinity thereof, the exposed third conductive region is not determined. It is possible to stabilize the breakdown voltage even if the interface charge or the electronic state of the interface trap at and near the interface between the semiconductor substrate and the conductive region of the semiconductor substrate changes. That is, in the above-described configuration, the breakdown voltage is determined at the inner peripheral portion of the third conductive region or at the first conductive region.
[0024] よって、図 2に示した従来構造と比較して、阻止電圧が安定した過電圧保護用半導 体装置を実現することが容易になる。 Accordingly, compared to the conventional structure shown in FIG. 2, the blocking voltage is more stable than the semiconductor for overvoltage protection. It is easy to realize the body device.
[0025] 上記のダイオードにおいて、前記第 3の導電領域は、前記半導体基板を平面的に 見たときに前記第 1の導電領域を取り囲んでいることを特徴とすることが出来る。  [0025] In the above-described diode, the third conductive region may surround the first conductive region when the semiconductor substrate is viewed in a plan view.
[0026] よって、前記第 3の導電領域の内周部若しくは前記内周部の近傍又は前記第 1の 導電領域若しくは前記第 1の導電領域の近傍でブレークダウンをさらに確実に発生 させること力できる。  Therefore, it is possible to more reliably generate a breakdown in the inner peripheral portion of the third conductive region or in the vicinity of the inner peripheral portion or in the vicinity of the first conductive region or the first conductive region. .
[0027] また、本発明は、第 1導電型の半導体基板の一方の面に露出させて形成してなる 該半導体基板とは反対型の第 2導電型の第 1の導電領域と、前記一方の面に露出さ せると共に前記第 1の導電領域内に形成してなる第 1導電型の第 2の導電領域と、前 記半導体基板の前記一方の面に背向する他方の面に露出させて形成してなる第 2 導電型の第 3の導電領域を有するサイリスタにおいて、前記第 1の導電領域に隣接 する又は該第 1の導電領域の周辺部に部分的に重なり合うように形成してなる第 2導 電型の第 4の導電領域を設け、ブレークオーバーが前記第 4の導電領域の内周部若 しくは前記内周部の近傍又は前記第 1の導電領域若しくは前記第 1の導電領域の近 傍で生じることを特徴とするものとした。  [0027] The present invention also provides a first conductive region of a second conductivity type opposite to the semiconductor substrate, which is formed by being exposed on one surface of a semiconductor substrate of the first conductivity type; And a second conductive region of the first conductivity type formed in the first conductive region and exposed on the other surface of the semiconductor substrate opposite to the one surface. A thyristor having a third conductive region of a second conductivity type formed in such a manner that the thyristor is formed so as to be adjacent to the first conductive region or to partially overlap the peripheral portion of the first conductive region. A fourth conductive region of the second conductivity type is provided, and a breakover occurs at the inner peripheral portion of the fourth conductive region or in the vicinity of the inner peripheral portion, or the first conductive region or the first conductive region. In the vicinity of the building.
[0028] 前記したサイリスタの構成においては、ブレークオーバーのトリガーとなる雪崩降伏 或いはパンチスルーが、露出した第 4の導電領域と半導体基板導電領域の境界面 及びその近傍では決定されないため、露出した第 4の導電領域と半導体基板導電領 域の境界面及びその近傍における界面電荷又は界面トラップの電子状態が変化し てもブレークオーバー電圧を安定させることが出来るようになる。すなわち、前記した 構成においては、第 4の導電領域の内周部または第 1の導電領域でブレークオーバ 一電圧が決定される。  In the configuration of the thyristor described above, the avalanche breakdown or punch-through that triggers a breakover is not determined at the boundary between the exposed fourth conductive region and the semiconductor substrate conductive region and in the vicinity thereof. The breakover voltage can be stabilized even if the interface charge or the electronic state of the interface trap changes at and near the boundary between the conductive region of FIG. 4 and the semiconductor substrate conductive region. That is, in the above-described configuration, the breakover voltage is determined at the inner peripheral portion of the fourth conductive region or at the first conductive region.
[0029] よって、図 3に示した従来構造と比較して、阻止電圧が安定した過電圧保護用半導 体装置を実現することが出来るようになる。  Therefore, as compared with the conventional structure shown in FIG. 3, a semiconductor device for overvoltage protection with a stable blocking voltage can be realized.
[0030] また、上記のサイリスタにおいて、前記第 4の導電領域は、前記半導体基板を平面 的に見たときに前記第 1の導電領域を取り囲んでいることを特徴とすることができる。 Further, in the thyristor, the fourth conductive region may surround the first conductive region when the semiconductor substrate is viewed in a plan view.
[0031] よって、前記第 4の導電領域の内周部若しくは前記内周部の近傍又は前記第 1の 導電領域若しくは前記第 1の導電領域の近傍でブレークオーバーをさらに確実に発 生させることができる。 Therefore, a breakover occurs more reliably in the inner peripheral portion of the fourth conductive region or in the vicinity of the inner peripheral portion or in the vicinity of the first conductive region or the first conductive region. You can live.
[0032] さらに、前記第 4の導電領域は、前記一方の面に露出していることを特徴とすること ができる。  [0032] Further, the fourth conductive region may be exposed on the one surface.
[0033] よって、前記第 4の導電領域の内周部若しくは前記内周部の近傍又は前記第 1の 導電領域若しくは前記第 1の導電領域の近傍でブレークオーバーをさらに確実に発 生させることができる。  Accordingly, it is possible to more reliably cause a breakover in the inner peripheral portion of the fourth conductive region or in the vicinity of the inner peripheral portion, or in the vicinity of the first conductive region or the first conductive region. it can.
[0034] くわえて、本発明は、以上の構成において、前記第 2の導電領域が複数設けてあつ てもよい。  [0034] In addition, the present invention may be arranged such that a plurality of the second conductive regions are provided in the above configuration.
[0035] また、本発明は、第 1導電型の半導体基板の一方の面に露出させて形成してなる 該半導体基板とは反対型の第 2導電型の第 1の導電領域と、前記一方の面に露出さ せると共に前記第 1の導電領域内に形成してなる第 1導電型の第 2の導電領域と、前 記半導体基板の前記一方の面に背向する他方の面に露出させて形成してなる第 2 導電型の第 3の導電領域と、前記一方の面に背向する他方の面に露出させて前記 第 3の導電領域内に形成してなる第 1導電型の第 5の導電領域を有するサイリスタに おいて、前記第 1の導電領域に隣接する又は該第 1の導電領域の周辺部に部分的 に重なり合うように形成してなる第 2導電型の第 4の導電領域と、前記第 3の導電領域 に隣接する又は該第 3の導電領域の周辺部に部分的に重なり合うように形成してな る第 2導電型の第 6の導電領域を設け、ブレークオーバーが前記第 4の導電領域の 内周部若しくは前記内周部の近傍又は前記第 1の導電領域若しくは前記第 1の導電 領域の近傍、又は前記第 6の導電領域の内周部若しくは前記内周部の近傍又は前 記第 3の導電領域若しくは前記第 3の導電領域の近傍で生じることを特徴とするもの とした。  [0035] Further, the present invention provides a first conductive region of a second conductivity type opposite to the semiconductor substrate formed by being exposed on one surface of a semiconductor substrate of the first conductivity type; And a second conductive region of the first conductivity type formed in the first conductive region and exposed on the other surface of the semiconductor substrate opposite to the one surface. A third conductive region of the second conductivity type formed in the third conductive region, and a third conductive region of the first conductivity type formed in the third conductive region exposed on the other surface opposite to the one surface. In the thyristor having the fifth conductive region, the fourth conductive type fourth conductive region is formed so as to be adjacent to the first conductive region or partially overlap the peripheral portion of the first conductive region. The region is formed so as to be adjacent to the third conductive region or to partially overlap the peripheral portion of the third conductive region. A sixth conductive region of the second conductivity type is provided, and a breakover occurs at an inner periphery of the fourth conductive region or near the inner periphery, or near the first conductive region or the first conductive region, Alternatively, it occurs in the inner periphery of the sixth conductive region or in the vicinity of the inner periphery or in the third conductive region or in the vicinity of the third conductive region.
[0036] 前記した構成においては、順逆方向共にブレークオーバーのトリガーとなるブレー クダウン電圧が、露出した第 4の導電領域と半導体基板導電領域の境界面及びその 近傍若しくは露出した第 6の導電領域と半導体基板導電領域の境界面及びその近 傍では決定されないため、露出した第 4の導電領域と半導体基板導電領域の境界面 及びその近傍又は露出した第 6の導電領域と半導体基板導電領域の境界面及びそ の近傍における界面電荷若しくは界面トラップの電子状態が変化してもブレークオ一 バー電圧を安定させることが出来るようになる。すなわち、前記した構成においては、 第 4の導電領域の内周部若しくは第 1の導電領域又は第 6の導電領域の内周部若し くは第 3の導電領域でブレークオーバー電圧が決定される。 [0036] In the above-described configuration, the breakdown voltage that triggers a breakover in both the forward and reverse directions causes the boundary surface between the exposed fourth conductive region and the semiconductor substrate conductive region and the vicinity thereof or the exposed sixth conductive region. The boundary between the exposed fourth conductive region and the semiconductor substrate conductive region and the boundary between the exposed sixth conductive region and the exposed sixth conductive region and the semiconductor substrate conductive region because the boundary is not determined at or near the boundary surface of the semiconductor substrate conductive region. And the electronic state of the interface charge or interface trap in the vicinity of the interface changes, The bar voltage can be stabilized. That is, in the above configuration, the breakover voltage is determined by the inner peripheral portion of the fourth conductive region, the inner peripheral portion of the first conductive region, the inner peripheral portion of the sixth conductive region, or the third conductive region. .
[0037] よって、図 3に示した従来構造と比較して、阻止電圧が安定したサイリスタを実現す ることが出来るようになる。 Accordingly, a thyristor having a stable blocking voltage can be realized as compared with the conventional structure shown in FIG.
[0038] また、本発明は、以上のサイリスタにおいて、前記第 4の導電領域は、前記半導体 基板を平面的に見たときに前記第 1の導電領域を取り囲んでいるものとしてもよい。 [0038] Further, in the thyristor of the present invention, the fourth conductive region may surround the first conductive region when the semiconductor substrate is viewed in a plan view.
[0039] さらに、本発明は、以上のサイリスタにおいて、前記第 6の導電領域は、前記半導 体基板を平面的に見たときに前記第 3の導電領域を取り囲んでいるものとしてもよい Further, according to the present invention, in the above thyristor, the sixth conductive region may surround the third conductive region when the semiconductor substrate is viewed in plan.
[0040] くわえて、本発明は、以上のサイリスタにおいて、前記第 4の導電領域は、前記一方 の面に露出しているものとしてもよい。 [0040] In addition, the present invention may be arranged such that in the thyristor, the fourth conductive region is exposed on the one surface.
[0041] また、本発明は、以上のサイリスタにおいて、前記第 6の導電領域は、前記他方の 面に露出しているものとしてもよい。 [0041] In the present invention, in the thyristor described above, the sixth conductive region may be exposed on the other surface.
[0042] また、本発明は、以上のサイリスタにおいて、前記一方の面に露出させると共に前 記第 2の導電領域を貫通するように形成してなる第 2導電型の第 7の導電領域をさら に形成してもよい。この場合、上面側で所謂ショートェミッタ構造が形成される。 [0042] Further, the present invention further provides a thyristor according to the present invention, further comprising a second conductive type seventh conductive region that is exposed on the one surface and penetrates the second conductive region. May be formed. In this case, a so-called short emitter structure is formed on the upper surface side.
[0043] また、前記一方の面に背向する他方の面に露出させると共に前記第 5の導電領域 を貫通するように形成してなる第 2導電型の第 8の導電領域をさらに設けてもよい。こ の場合、下面側で所謂ショートェミッタ構造が形成される。 Further, an eighth conductive region of the second conductivity type, which is exposed on the other surface opposite to the one surface and formed so as to penetrate the fifth conductive region, may be further provided. Good. In this case, a so-called short emitter structure is formed on the lower surface side.
[0044] さらに、本発明は、以上の構成において、前記第 2の導電領域、前記第 5の導電領 域、前記第 7の導電領域、前記第 8の導電領域のいずれか 1つまたは 2つ以上が複 数あってもよレヽ。 Further, according to the present invention, in the above configuration, one or two of the second conductive region, the fifth conductive region, the seventh conductive region, and the eighth conductive region are provided. There may be more than one.
発明の効果  The invention's effect
[0045] このように本発明によれば、阻止電圧を決定する領域が、半導体基板表面に露出し た PN接合とその近傍ではなくなる。そのため、半導体基板表面に露出した PN接合 とその近傍に存在する界面電荷や界面トラップの電子状態が変化しても阻止電圧が 変動しにくくなる。従って、高温下に長時間晒されても阻止電圧が安定した過電圧保 護用半導体装置を実現することが容易になる。 As described above, according to the present invention, the region for determining the blocking voltage is not located at the PN junction exposed on the surface of the semiconductor substrate and in the vicinity thereof. Therefore, even when the PN junction exposed on the surface of the semiconductor substrate and the electronic state of interface charges and interface traps existing near the PN junction change, the blocking voltage does not easily change. Therefore, even when exposed to high temperature for a long time, the overvoltage It is easy to realize a protective semiconductor device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0046] 以下に、本発明の実施の形態に係るダイオード及びサイリスタについて説明する。  Hereinafter, a diode and a thyristor according to an embodiment of the present invention will be described.
なお、本発明は、以下に説明する実施の形態にのみ適用可能なものではなぐダイ オードまたはサイリスタの構造を有する半導体装置であれば、絶縁ゲート型電界効果 トランジスタなど他種の素子構造を併せ持つ複合型半導体装置などにも好ましく適 用できるものである。  Note that the present invention is not limited to the embodiments described below, and any semiconductor device having a diode or thyristor structure can be used as a composite device having other types of element structures such as an insulated gate field effect transistor. It can be preferably applied to a type semiconductor device and the like.
[0047] 最初に、本発明の第 1の実施の形態に係るダイオードを図面に基づいて詳細に説 明する。図 1は、本発明の第 1の実施の形態に係るダイオードを示す断面図である。 図 1において、 1は半導体基板導電領域、 2は第 1P型導電領域、 3は第 1N型導電領 域、 10は第 1電極、 11は第 2電極、 20, 21は絶縁体、 40, 41は第 2P型導電領域、 100は半導体基板である。  First, the diode according to the first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing a diode according to the first embodiment of the present invention. In FIG. 1, 1 is a semiconductor substrate conductive region, 2 is a first P-type conductive region, 3 is a first N-type conductive region, 10 is a first electrode, 11 is a second electrode, 20, 21 is an insulator, and 40, 41. Denotes a second P-type conductive region, and 100 denotes a semiconductor substrate.
[0048] 半導体基板 100は、角筒形を有するシリコンで、 N型の導電型を有する。半導体基 板 100に、第 1P型導電領域 2、第 1N型導電領域 3を形成する。また、第 1P型導電 領域 2に隣接して第 2P型導電領域 40, 41を形成する。半導体基板導電領域 1は、 第 1P型導電領域 2、第 1N型導電領域 3及び第 2P型導電領域 40, 41を形成してい ない残余の部分である。ここで第 1P型導電領域 2と第 2P型導電領域 40, 41は第 1 電極 10と電気的に接続され、第 1N型導電領 3は第 2電極 11と電気的に接続される  [0048] The semiconductor substrate 100 is silicon having a rectangular cylindrical shape, and has N-type conductivity. A first P-type conductive region 2 and a first N-type conductive region 3 are formed on a semiconductor substrate 100. Further, the second P-type conductive regions 40 and 41 are formed adjacent to the first P-type conductive region 2. The semiconductor substrate conductive region 1 is a remaining portion where the first P-type conductive region 2, the first N-type conductive region 3, and the second P-type conductive regions 40 and 41 are not formed. Here, the first P-type conductive region 2 and the second P-type conductive regions 40 and 41 are electrically connected to the first electrode 10, and the first N-type conductive region 3 is electrically connected to the second electrode 11.
[0049] また、第 1P型導電領域 2と第 2P型導電領域 40, 41は、適当なマスクを用いて P型 の不純物を外部から導入後、高温拡散によって形成される。ここで、ブレークダウン が半導体基板導電領域 1と第 1P型導電領域 2の境界面で生じるように、深い拡散を 実施して半導体基板導電領域 1と第 2P型導電領域 40, 41の境界面近傍の第 2P型 導電領域 40, 41の濃度を第 1P型導電領域 2より小さくする。第 1N型導電領域 3は、 N型の不純物を外部から導入後、高温拡散によって形成される。 The first P-type conductive region 2 and the second P-type conductive regions 40 and 41 are formed by high-temperature diffusion after introducing a P-type impurity from the outside using an appropriate mask. Here, deep diffusion is performed so that the breakdown occurs at the boundary surface between the semiconductor substrate conductive region 1 and the first P-type conductive region 2 and near the boundary surface between the semiconductor substrate conductive region 1 and the second P-type conductive region 40, 41. The concentration of the second P-type conductive regions 40 and 41 is lower than that of the first P-type conductive region 2. The first N-type conductive region 3 is formed by high-temperature diffusion after introducing N-type impurities from the outside.
[0050] また必要に応じて、第 1電極 10と接する領域及び第 2電極 11と接する領域の導電 率を大きくするために別のマスクによって第 1P型導電領域 2及び第 1N型導電領域 3 を形成することも勿論可能である。例えば、第 1P型導電領域 2及び第 1N型導電領 域 3の不純物拡散を実施した後で、第 1P型導電領域 2及び第 1N型導電領域 3のな 力の第 1電極 10及び第 2電極 11と接する領域の抵抗値を小さくするために、別途 P 型及び N型の高濃度の不純物を導入した後、高温拡散を行ってもよい。他の導電領 域も必要に応じて複数の拡散によって形成してよいが、普通は 1回の拡散で形成す る。 [0050] If necessary, the first P-type conductive region 2 and the first N-type conductive region 3 are separated by another mask in order to increase the conductivity of the region in contact with the first electrode 10 and the region in contact with the second electrode 11. It is of course possible to form them. For example, the first P-type conductive region 2 and the first N-type conductive region After the impurity diffusion in the region 3, the resistance of the region in contact with the first electrode 10 and the second electrode 11 of the first P-type conductive region 2 and the first N-type conductive region 3 is reduced separately. After introducing a high concentration of P-type and N-type impurities, high-temperature diffusion may be performed. Other conductive regions may be formed by multiple diffusions as needed, but are usually formed by a single diffusion.
[0051] N型と P型の不純物拡散工程が全て終了した後、酸化膜などの絶縁体 20, 21を積 層して形成し、さらに第 1電極 10,第 2電極 11を形成するためにエッチングで絶縁体 20, 21に開口部(拡散窓)を形成する。その後、第 1電極 10と第 2電極 11の形成を 行なう。  After the N-type and P-type impurity diffusion processes are all completed, insulators 20 and 21 such as an oxide film are laminated and formed, and further, a first electrode 10 and a second electrode 11 are formed. Openings (diffusion windows) are formed in insulators 20 and 21 by etching. After that, the first electrode 10 and the second electrode 11 are formed.
[0052] なお、絶縁体 20, 21は、通常はシリコン酸化膜などで形成する。製造するダイォー ドの特性に悪影響を与えないならばシリコン窒化膜やガラスで構成することも可能で あり、複数の絶縁体からなる多層構造で形成してもよい。  [0052] The insulators 20, 21 are usually formed of a silicon oxide film or the like. If it does not adversely affect the characteristics of the diode to be manufactured, it may be formed of a silicon nitride film or glass, and may be formed of a multilayer structure including a plurality of insulators.
[0053] 第 2P型導電領域 40, 41は、第 1P型導電領域 2を囲むように枠状に形成すること が好ましい。その理由は、第 1P型導電領域 2を囲むことによって、後述するブレーク ダウン電圧が半導体基板 100と絶縁体 20, 21との間の界面電荷や界面トラップの状 態の影響を受けなくなるという本発明の作用を確実に奏することが出来るからである 。なお、枠状に形成せずに分割して複数形成することも可能であるが、この場合は第 1P型導電領域 2の角部に形成することが好ましい。また、独立した小さい島状の領 域としてこれらを多数配置するようにしてもよい。また、第 1P型導電領域 2は、円形や 楕円形など他の形状であってもよい。さらに、半導体基板 100の形状も、角筒形に限 られるものではなぐ円筒形など他の形状であってもよい。  The second P-type conductive regions 40 and 41 are preferably formed in a frame shape so as to surround the first P-type conductive region 2. The reason for this is that, by surrounding the first P-type conductive region 2, the breakdown voltage described below is not affected by the state of the interface charge and the interface trap between the semiconductor substrate 100 and the insulators 20, 21 according to the present invention. This is because the effect of the above can be surely achieved. Note that it is also possible to form a plurality of divided portions without forming them in a frame shape, but in this case, it is preferable to form them at the corners of the first P-type conductive region 2. Also, many of these may be arranged as independent small island-shaped areas. Further, the first P-type conductive region 2 may have another shape such as a circle or an ellipse. Further, the shape of the semiconductor substrate 100 is not limited to a rectangular cylinder, but may be another shape such as a cylindrical shape.
[0054] 続けて、本発明の第 1の実施の形態に係るダイオードの動作の特徴について説明 する。図 1に示されるように、本発明の第 1の実施の形態に係るダイオードは、逆方向 でブレークダウンが半導体基板導電領域 1と第 1P型導電領域 2の境界面で生じるよ うに形成している。従って、絶縁体 20, 21と半導体基板 100の間で生じる界面電荷 や界面トラップの電子状態がブレークダウン電圧に与える影響は殆どなぐ界面電荷 や界面トラップの電子状態の変化に起因する阻止電圧の変動がほとんど見られなく なる。 [0055] さらに、逆方向電圧でブレークダウンが半導体基板導電領域 1と第 IP型導電領域 2の境界面で生じ、ブレークダウン電圧に変動を生じない理由について詳しく述べる 。図 10は、ブレークダウン電圧の安定化メカニズムに関する数式の説明を補助する 断面図である。 Subsequently, characteristics of the operation of the diode according to the first embodiment of the present invention will be described. As shown in FIG. 1, the diode according to the first embodiment of the present invention is formed so that breakdown occurs in the reverse direction at the boundary surface between the semiconductor substrate conductive region 1 and the first P-type conductive region 2. I have. Therefore, the influence of the interface charge generated between the insulators 20 and 21 and the semiconductor substrate 100 and the electronic state of the interface trap on the breakdown voltage is almost negligible. Almost disappears. Further, the reason why the breakdown occurs at the interface between the semiconductor substrate conductive region 1 and the IP-type conductive region 2 due to the reverse voltage and the breakdown voltage does not fluctuate will be described in detail. FIG. 10 is a cross-sectional view for assisting the explanation of mathematical formulas related to the breakdown voltage stabilizing mechanism.
[0056] ここで、図 10の水平方向を x、垂直方向を yとして第 1P型導電領域 2の 2次元濃度 分布 Nは次式で近似することが出来る。  Here, the two-dimensional concentration distribution N of the first P-type conductive region 2 can be approximated by the following equation, where x is the horizontal direction and y is the vertical direction in FIG.
1  1
式 1  Equation 1
[0057]
Figure imgf000013_0001
[0057]
Figure imgf000013_0001
[0058] ここで、 expは指数関数、 erfcは補誤差関数、 N は第 1P型導電領域 2の表面濃度、  [0058] Here, exp is an exponential function, erfc is a complementary error function, N is the surface concentration of the first P-type conductive region 2,
sl  sl
X は第 IP型導電領域 2の X方向の特性深さ、 y は第 IP型導電領域 2の y方向の特 cl cl  X is the characteristic depth of the IP type conductive region 2 in the X direction, and y is the characteristic of the IP type conductive region 2 in the y direction. Cl cl
性深さ、 y= 0は半導体基板表面、 Xは第 1P型導電領域 2形成時の拡散窓の左端、 Xは第 1P型導電領域 2形成時の拡散窓の右端である。また、拡散マスクに孔が空け Is the semiconductor substrate surface, X is the left end of the diffusion window when the first P-type conductive region 2 is formed, and X is the right end of the diffusion window when the first P-type conductive region 2 is formed. Also, holes are made in the diffusion mask.
2 2
られ、 x = x力ら x = xの拡散窓を通じて拡散が行なわれると仮定している。  It is assumed that diffusion takes place through a diffusion window of x = x and x = x.
1 2  1 2
[0059] この近似式は、例えば深さが 30 β m程度の深い拡散を行なうときに実際の濃度分 布と比較的よく一致する。ただし、シリコン半導体基板中の不純物拡散のメカニズム は単純ではないことが知られており、不純物原子の種類並びに拡散の方法若しくは 時間などによっては上式の近似の精度が十分でないこともありえる。 [0059] This approximation formula relatively well agrees with the actual concentration distribution when deep diffusion is performed, for example, at a depth of about 30 βm . However, it is known that the mechanism of impurity diffusion in a silicon semiconductor substrate is not simple, and the approximation accuracy of the above equation may not be sufficient depending on the type of impurity atoms and the diffusion method or time.
[0060] 同様に、第 2P型導電領域 40の 2次元濃度分布 N と第 2P型導電領域 41の 2次元  Similarly, the two-dimensional concentration distribution N of the second P-type conductive region 40 and the two-dimensional
2a  2a
濃度分布 N は水平方向を x、垂直方向を yとして各々次式で近似することが出来る。  The density distribution N can be approximated by the following equation, where x is the horizontal direction and y is the vertical direction.
2b  2b
式 2  Equation 2
[0061]
Figure imgf000013_0002
[0061]
Figure imgf000013_0002
式 3
Figure imgf000014_0001
Equation 3
Figure imgf000014_0001
[0063] ここで、 N は第 2P型導電領域 40, 41の表面濃度、x は第 2P型導電領域 40, 41 s2 c2  Here, N is the surface concentration of the second P-type conductive regions 40 and 41, and x is the second P-type conductive regions 40 and 41 s2 c2
の x方向の特性深さ、 y は第 2P型導電領域 40, 41の y方向の特性深さ、 y = 0は半 c2  Is the characteristic depth in the x direction, y is the characteristic depth in the y direction of the second P-type conductive regions 40 and 41, and y = 0 is half c2
導体基板表面、 Xは第 2P型導電領域 40形成時の拡散窓の左端、 Xは第 2P型導電  X is the left edge of the diffusion window when forming the second P-type conductive region 40, X is the second P-type conductive
3 4  3 4
領域 40形成時の拡散窓の右端、 Xは第 2P型導電領域 41形成時の拡散窓の左端、  X is the right end of the diffusion window when the region 40 is formed, X is the left end of the diffusion window when the second P-type conductive region 41 is formed,
5  Five
Xは第 2P型導電領域 41形成時の拡散窓の右端である。また、拡散マスクに孔が空 X is the right end of the diffusion window when the second P-type conductive region 41 is formed. Also, holes are formed in the diffusion mask.
6 6
けられ x = xから x = xの拡散窓と x = x力、ら x = xの拡散窓を通じて同時に且つ同一  X = x from x = x diffusion window and x = x force, etc. simultaneously and identically through x = x diffusion window
1 2 3 4  1 2 3 4
方法で拡散が行なわれると仮定している。この近似式は、前記第 1P型導電領域 2の 場合と同じように、不純物原子の種類並びに拡散の方法若しくは時間などによっては 精度が十分でないこともありえる。  It is assumed that diffusion is performed in a manner. As in the case of the first P-type conductive region 2, this approximate expression may not have sufficient accuracy depending on the type of impurity atoms, the method of diffusion, the time, and the like.
[0064] ここで、第 2P型導電領域 40, 41は、半導体基板 100を上面から見て第 1P型導電 領域 2の外側から隣接するように、又は、第 1P型導電領域 2の周辺部に部分的に重 なり合うように形成する。従って、例えば第 1P型導電領域 2を取り囲むように枠状に 形成するので、  Here, the second P-type conductive regions 40 and 41 are adjacent to each other from the outside of the first P-type conductive region 2 when the semiconductor substrate 100 is viewed from above or at the periphery of the first P-type conductive region 2. It is formed so as to partially overlap. Therefore, for example, since it is formed in a frame shape so as to surround the first P-type conductive region 2,
式 4  Equation 4
[0065]  [0065]
χ 3 χ 3
[0066] [0066]
x 2 く x 6 の関係がある。 relationship of x 2 rather than x 6.
[0067] また、前記第 1P型導電領域 2の半導体基板導電領域 1との接合深さを X 、前記第 2P型導電領域 40, 41の半導体基板導電領域 1との接合深さを X とすると、半導体 j2  Further, when the junction depth of the first P-type conductive region 2 with the semiconductor substrate conductive region 1 is X, and the junction depth of the second P-type conductive regions 40 and 41 with the semiconductor substrate conductive region 1 is X. , Semiconductor j2
基板導電領域 1の濃度を Nとして次式の関係がある。 [0068] Assuming that the concentration of the substrate conductive region 1 is N, the following relationship is established. [0068]
[0069]
Figure imgf000015_0001
[0069]
Figure imgf000015_0001
 ,
[0070] ここで、第 1P型導電領域 2は、同じ P型 Nの導電領域である第 2P型導電領域 40, 41  Here, the first P-type conductive regions 2 are the same P-type and N-type second P-type conductive regions 40 and 41.
8  8
が上面から見て第 1P型導電領域 2の端部すな 1わち x = xとそれを含む近傍並びに X =xとそれを含む近傍に形成されるので、前記第 1P型導電領域 2でブレークダウン  Are formed at the end of the first P-type conductive region 2 when viewed from the top, i.e., at x = x and its vicinity and X = x and its vicinity. breakdown
2  2
が生じる場合、そのブレークダウンの電圧は半導体基板導電領域 N、表面濃度 N 、  Occurs, the breakdown voltage is the semiconductor substrate conductive region N, the surface concentration N,
B S1 前記接合深さ X で決まると考えられる。すなわち、前記ブレークダウンの電圧 V は次  B S1 is considered to be determined by the junction depth X. That is, the breakdown voltage V is
jl bl 式で近似出来る。  It can be approximated by jl bl expression.
式 8  Equation 8
[0071]  [0071]
Vb l =f (NB, V bl = f (N B ,
[0072] また、第 2P型導電領域 40, 41は、第 1P型導電領域 2を上面から見て第 1P型導電 領域 2を取り囲むと共に第 1P型導電領域 2より深く形成されるため、 x = x若しくはそ  Further, since the second P-type conductive regions 40 and 41 surround the first P-type conductive region 2 and are formed deeper than the first P-type conductive region 2 when the first P-type conductive region 2 is viewed from above, x = x or its
3  Three
の近傍並びに χ=χ若しくはその近傍で示される外周部(外側、すなわち第 1P型導  And the outer periphery indicated at or near χ = χ (outside, that is,
6  6
電領域 2とは反対側の周辺部)に曲率 rで示される端部と、 χ=χ若しくはその近傍並  The edge indicated by the curvature r at the periphery on the opposite side of the
4  Four
びに χ=χ若しくはその近傍で示される内周部に曲率 rで示される端部とを有する。  And has an end portion indicated by a curvature r on an inner peripheral portion indicated by or near χ = χ.
5  Five
[0073] 前記外周部の端部と前記内周部の端部は、その曲率が第 2P型導電領域 40, 41 の中央部分 (x=(x +x ) Z2、x = (x +x ) /2)の曲率よりは小さい。ちなみに、第 2  The end of the outer peripheral portion and the end of the inner peripheral portion have a curvature (x = (x + x) Z2, x = (x + x)) at the center of the second P-type conductive regions 40 and 41. / 2) is smaller than the curvature. By the way, the second
3 4 5 6  3 4 5 6
P型導電領域 40, 41の中央部分 (x=(x +x ) /2、 x=(x +x ) /2)の曲率は、第 2  The curvature of the central portion (x = (x + x) / 2, x = (x + x) / 2) of the P-type conductive regions 40 and 41 is the second.
5 6  5 6
P型導電領域 40, 41の拡散窓の水平方向の大きさ (W = x— X、 X— X )が前記接合  The horizontal size (W = x-X, X-X) of the diffusion window of the P-type conductive regions 40 and 41 is
4 3 6 5  4 3 6 5
深さ X より十分大きい場合、略無限大である。 [0074] 従って、第 2P型導電領域 40, 41と半導体基板導電領域 1の接合部が逆バイアス 状態にあるとき、前記端部で電界強度が強くなる。そのため、第 2P型導電領域 40, 4 1でブレークダウンが発生する場合、ブレークダウンが始まるポイントは前記端部とな る。 If it is sufficiently larger than the depth X, it is almost infinite. Therefore, when the junction between the second P-type conductive regions 40 and 41 and the semiconductor substrate conductive region 1 is in a reverse bias state, the electric field strength is increased at the ends. Therefore, when a breakdown occurs in the second P-type conductive regions 40 and 41, the point at which the breakdown starts is the end.
[0075] ブレークダウン電圧は第 2P型導電領域 40, 41と半導体基板導電領域 1の接合部 とその近傍で発生する電界分布と密接な関係があるが、特に、第 2P型導電領域 40 , 41の外周部とその近傍の電界分布は半導体基板 100と絶縁体 20, 21の間の界面 電荷や界面トラップの状態の影響を受ける。すなわち、第 2P型導電領域 40, 41の 外周部でブレークダウンが発生する場合、そのブレークダウン電圧 V は次式で近似  Although the breakdown voltage has a close relationship with the electric field distribution generated at the junction between the second P-type conductive regions 40 and 41 and the semiconductor substrate conductive region 1 and in the vicinity thereof, in particular, the second P-type conductive regions 40 and 41 The electric field distribution at and around the outer periphery of the substrate is affected by the state of the interface charge and the interface trap between the semiconductor substrate 100 and the insulators 20 and 21. That is, when a breakdown occurs at the outer periphery of the second P-type conductive regions 40 and 41, the breakdown voltage V is approximated by the following equation.
b2  b2
出来る。  I can do it.
式 9  Equation 9
[0076]  [0076]
Vb 2 = f (NB, xj2, Ns2, r, Q88) ここで、 Q は界面電荷密度である。 V b 2 = f (N B , x j2, N s2, r, Q 88) where, Q is the interface charge density.
ss  ss
[0077] 第 2P型導電領域の内周部 50, 51でブレークダウンが発生する場合、半導体基板  When breakdown occurs at the inner peripheral portions 50 and 51 of the second P-type conductive region, the semiconductor substrate
100と絶縁体 20, 21との間の界面電荷や界面トラップの状態の影響を受けにくいと 考えられるので、そのブレークダウン電圧 V は次式で近似出来る。  The breakdown voltage V can be approximated by the following equation, since it is considered that it is not easily affected by the interface charge between 100 and insulators 20, 21 and the state of the interface trap.
b2i  b2i
式 10  Equation 10
Vb 2i = f (NB,xj2,Ns2,r) V b 2i = f (N B , x j2, N s2, r)
ここで、不純物の濃度勾配 aは、二次元的に捉えると二点間の距離 qに対する二点 間の濃度差 Nの比であると考えられるので、第 1P型導電領域 2の濃度勾配 aは次式  Here, the concentration gradient a of the impurity is considered to be the ratio of the concentration difference N between the two points to the distance q between the two points when viewed two-dimensionally, so that the concentration gradient a of the first P-type conductive region 2 is Next formula
1 で表わされる。ところで、この濃度勾配 aが大きくなると第 IP型導電領域 2のブレーク  Represented by 1. By the way, when the concentration gradient a increases, the break of the IP type conductive region 2 occurs.
1  1
ダウン電圧 V は小さくなる傾向がある。  The down voltage V tends to be small.
bl  bl
式 11
Figure imgf000017_0001
また、同様に第 2P型導電領域 40, 41の次式で表わされる濃度勾配 aが大きくなる
Equation 11
Figure imgf000017_0001
Similarly, the concentration gradient a of the second P-type conductive regions 40 and 41 represented by the following equation increases.
2  2
と第 2P型導電領域 40, 41のブレークダウン電圧 V , V は小さくなる傾向がある。 式 12  And the breakdown voltages V, V of the second P-type conductive regions 40, 41 tend to be small. Equation 12
Figure imgf000017_0002
Figure imgf000017_0002
[0082] そこで、本発明の第 1の実施例では、第 1P型導電領域 2の前記濃度勾配 aの x= ( Therefore, in the first embodiment of the present invention, x = (
1  1
X +χ ) /2、 y = x での値が、第 2P型導電領域 40, 41の前記濃度勾配 aの x= (x X + χ) / 2, the value at y = x is x = (x) of the concentration gradient a of the second P-type conductive regions 40, 41.
2 2
+ χ ) Ζ2若しくは χ= (χ +χ ) /2, y = x での値より大きくなるようにしている。  + χ) Ζ2 or χ = (χ + χ) / 2, y = x.
4 5 6 jl  4 5 6 jl
[0083] すなわち、前記 aと前記 aの間に  [0083] That is, between the a and the a
1 2  1 2
式 13
Figure imgf000017_0003
の関係が成り立つようにしている。
Equation 13
Figure imgf000017_0003
The relationship is established.
[0085] 従って、  [0085] Therefore,
式 14  Equation 14
[0086] [0086]
1 , ^ b 2i 、 b 2 となり、本発明の第 1の実施例では、ブレークダウン電圧が半導体基板 100と絶縁体 20, 21との間の界面電荷や界面トラップの状態の影響を受けなくなるという作用が得 られる。  1, ^ b 2i, b 2, and in the first embodiment of the present invention, the breakdown voltage is not affected by the state of the interface charge or interface trap between the semiconductor substrate 100 and the insulators 20, 21. An effect is obtained.
[0087] 勿論、設計によっては第 2P型導電領域の内周部 50, 51でブレークダウンが生じる こともあり得る。しかし、その場合でも界面電荷や界面トラップの電子状態がブレーク ダウン電圧に与える影響は殆どなぐ界面電荷や界面トラップの電子状態の変化に 起因する阻止電圧の変動がほとんど見られなくなる。 [0087] Of course, depending on the design, breakdown may occur at the inner peripheral portions 50 and 51 of the second P-type conductive region. However, even in such a case, the electronic state of interface charge and interface trap breaks. The influence on the down voltage is almost negligible, and there is almost no change in the blocking voltage due to the change in the interface charge and the electronic state of the interface trap.
[0088] 以上のように、本発明の第 1の実施の形態に係るダイオードの構造によれば、ブレ ークダウン電圧が安定して阻止電圧の変動が殆どない過電圧保護用半導体装置と してのダイオードを実現することが出来る。  As described above, according to the structure of the diode according to the first embodiment of the present invention, the diode as an overvoltage protection semiconductor device having a stable breakdown voltage and little change in blocking voltage. Can be realized.
[0089] 本発明の第 2の実施の形態に係るサイリスタを図面に基づいて説明する。図 6は、 本発明の第 2の実施の形態に係るサイリスタを示す断面図である。図 6において、 10 1は半導体基板導電領域、 102は第 1N型導電領域、 103は第 2N型導電領域、 10 4ίま第 1P型導電領域、 110fま第 1電極、 l l l fま第 2電極、 120, 121, 122, 123» 絶縁体、 140, 141は第 3N型導電領域、 200は半導体基板である。  A thyristor according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a sectional view showing a thyristor according to the second embodiment of the present invention. In FIG. 6, 101 is a semiconductor substrate conductive region, 102 is a first N-type conductive region, 103 is a second N-type conductive region, 104 μm is a first P-type conductive region, 110 f is a first electrode, lllf is a second electrode, 120 , 121, 122, 123 »insulators, 140, 141 are third N-type conductive regions, and 200 is a semiconductor substrate.
[0090] 半導体基板 200は、角筒形を有するシリコンで、 P型の導電型を有する。半導体基 板 200に、第 1N型導電領域 102、第 2N型導電領域 103を形成する。また、第 1N型 導電領域 102内に第 1 P型導電領域 104を形成する。ここで第 1 N型導電領域 102と 第 1P型導電領域 104は第 1電極 110と電気的に接続され、第 2N型導電領域 103は 第 2電極 111と電気的に接続される。さらに、第 3N型導電領域 140, 141を第 1N型 導電領域 102に隣接するように配置する。  [0090] The semiconductor substrate 200 is silicon having a rectangular cylindrical shape, and has a P-type conductivity. A first N-type conductive region 102 and a second N-type conductive region 103 are formed on a semiconductor substrate 200. Further, a first P-type conductive region 104 is formed in the first N-type conductive region 102. Here, the first N-type conductive region 102 and the first P-type conductive region 104 are electrically connected to the first electrode 110, and the second N-type conductive region 103 is electrically connected to the second electrode 111. Further, the third N-type conductive regions 140 and 141 are arranged so as to be adjacent to the first N-type conductive region 102.
[0091] また、第 1N型導電領域 102、第 2N型導電領域 103、第 3N型導電領域 140, 141 は、適当なマスクを用いて N型の不純物を外部から導入後、高温拡散によって形成 される。ここで、ブレークオーバーが半導体基板導電領域 101と第 1N型導電領域 10 2の境界面で生じるように、深い拡散を実施して半導体基板導電領域 101と第 3N型 導電領域 140, 141の境界面近傍の第 3N型導電領域 140, 141の濃度を第 1N型 導電領域 102より小さくする。第 1P型導電領域 104は、 P型の不純物を外部から導 入後、高温拡散によって形成される。また、半導体基板導電領域 101は、第 1N型導 電領域 102、第 2N型導電領域 103、第 1P型導電領域 104及び第 3N型導電領域 1 40, 141を形成していない残余の部分である。  [0091] The first N-type conductive region 102, the second N-type conductive region 103, and the third N-type conductive regions 140 and 141 are formed by high-temperature diffusion after introducing N-type impurities from the outside using an appropriate mask. You. Here, deep diffusion is performed so that a breakover occurs at the interface between the semiconductor substrate conductive region 101 and the first N-type conductive region 102 and the interface between the semiconductor substrate conductive region 101 and the third N-type conductive region 140, 141. The concentration of the nearby third N-type conductive regions 140 and 141 is lower than that of the first N-type conductive region 102. The first P-type conductive region 104 is formed by high-temperature diffusion after introducing a P-type impurity from the outside. The semiconductor substrate conductive region 101 is a remaining portion where the first N-type conductive region 102, the second N-type conductive region 103, the first P-type conductive region 104, and the third N-type conductive regions 140 and 141 are not formed. .
[0092] また必要に応じて、第 1電極 110及び第 2電極 111と接する領域の導電率を大きく するために別のマスクによって第 1P型導電領域 104及び第 2N型導電領域 103を形 成することも勿論可能である。例えば、第 1P型導電領域 104及び第 2N型導電領域 103の不純物拡散を実施した後で、第 1P型導電領域 104及び第 2N型導電領域 10 3のなかで第 1電極 110及び第 2電極 111と接する領域の抵抗値を小さくするために 、別途 P型及び N型の高濃度の不純物を導入した後、高温拡散を行ってもよい。他 の導電領域も必要に応じて複数の拡散によって形成してよいが、普通は 1回である。 [0092] If necessary, the first P-type conductive region 104 and the second N-type conductive region 103 are formed by another mask in order to increase the conductivity of the region in contact with the first electrode 110 and the second electrode 111. Of course, it is possible. For example, the first P-type conductive region 104 and the second N-type conductive region After the impurity diffusion of 103, the P-type conductive region 104 and the second N-type conductive region 103 are separated by P in order to reduce the resistance of the region in contact with the first electrode 110 and the second electrode 111. High-temperature diffusion may be performed after high-type and N-type impurities are introduced. Other conductive regions may be formed by multiple diffusions as needed, but are usually one time.
[0093] N型と P型の不純物拡散工程が全て終了した後、酸化膜などの絶縁体 120, 121, 122, 123を積層して形成し、さらにエッチングで第 1電極 110,第 2電極 111のため の窓空けを行う。その後、第 1電極 110,第 2電極 111の形成を行なう。  After the N-type and P-type impurity diffusion steps are all completed, insulators 120, 121, 122, 123 such as oxide films are laminated and formed, and the first electrode 110 and the second electrode 111 are further etched. Open the windows for After that, the first electrode 110 and the second electrode 111 are formed.
[0094] なお、絶縁体 120, 121 , 122, 123は、通常はシリコン酸化膜などで形成する。特 性上問題がなレ、ならばシリコン窒化膜やガラスで構成することも可能であり、複数の 絶縁体からなる多層構造で形成してもよレ、。  [0094] The insulators 120, 121, 122, and 123 are usually formed of a silicon oxide film or the like. If there is no problem in characteristics, it can be made of silicon nitride film or glass, and it can be formed with a multilayer structure composed of multiple insulators.
[0095] 第 3N型導電領域は、枠状に形成することが好ましい。なお、枠状に形成せずに分 割して複数形成することも可能であるが、この場合は第 1N型導電領域 102の角部に 形成することが好ましい。また、独立した小さい島状の領域としてこれらを多数配置す るようにしてもよレ、。また、第 1N型導電領域 102は、円形や楕円形など他の形状であ つてもよレ、。さらに、半導体基板 200の形状も、角筒形に限られるものではなぐ円筒 形など他の形状であってもよレ、。  [0095] The third N-type conductive region is preferably formed in a frame shape. Note that it is also possible to form a plurality of portions by dividing the frame without forming them in a frame shape. Alternatively, a large number of these may be arranged as independent small island-shaped regions. In addition, the first N-type conductive region 102 may have another shape such as a circle or an ellipse. Further, the shape of the semiconductor substrate 200 is not limited to a rectangular cylinder, but may be another shape such as a cylindrical shape.
[0096] 続けて、本発明の第 2の実施の形態に係るサイリスタの動作の特徴について説明 する。図 6に示されるように、本発明の第 2の実施の形態に係るサイリスタは、順方向 でブレークオーバーが半導体基板導電領域 101と第 1N型導電領域 102の境界面 で生じるように形成している。  [0096] Next, characteristics of the operation of the thyristor according to the second embodiment of the present invention will be described. As shown in FIG. 6, the thyristor according to the second embodiment of the present invention is formed so that breakover occurs in the forward direction at the boundary between the semiconductor substrate conductive region 101 and the first N-type conductive region 102. I have.
[0097] 従って、絶縁体 120, 121と半導体基板 200の間で生じる界面電荷や界面トラップ の電子状態がブレークオーバー電圧に与える影響は殆どなぐ界面電荷や界面トラ ップの電子状態の変化に起因する阻止電圧の変動がほとんど見られなくなる。第 3N 型導電領域 140, 141は第 1N型導電領域 102より不純物濃度を低くするために通 常深い拡散を実施するが、その場合、上面側から見て第 1N型導電領域 102を取り 卷くように帯状の形をした拡散を行なうことから第 3N型導電領域 140, 141は第 3N 型導電領域 140, 141の内周部 150, 151にも外周部と同じように曲率の大きな領域 をもつことになる。 [0098] 従って、設計によっては第 3N型導電領域 140, 141の内周側でブレークダウンが 生じることもあり得るが、その場合でも界面電荷や界面トラップの電子状態がブレーク ダウン電圧に与える影響は殆どなぐ界面電荷や界面トラップの電子状態の変化に 起因する阻止電圧の変動がほとんど見られなくなる。 [0097] Therefore, the influence of the interface charge generated between the insulators 120 and 121 and the semiconductor substrate 200 and the electronic state of the interface trap on the breakover voltage is almost negligible due to the change in the interface charge and the electronic state of the interface trap. The fluctuation of the blocking voltage that occurs is hardly observed. The third N-type conductive regions 140 and 141 are usually deeply diffused in order to make the impurity concentration lower than that of the first N-type conductive region 102. In this case, the first N-type conductive region 102 is surrounded around the upper surface. As described above, the third N-type conductive regions 140 and 141 have regions of large curvature at the inner peripheral portions 150 and 151 of the third N-type conductive regions 140 and 141 as well as at the outer peripheral portion. Will be. [0098] Therefore, depending on the design, breakdown may occur on the inner peripheral side of the third N-type conductive regions 140 and 141, but even in such a case, the effect of the interface charge and the electronic state of the interface trap on the breakdown voltage is not significant. Almost no fluctuations in the blocking voltage due to the change in the interface charge and the electronic state of the interface trap are almost eliminated.
[0099] 以上のように、本発明の第 2の実施の形態に係るサイリスタの構造によれば、ブレー クオーバー電圧が安定して阻止電圧の変動が殆どない過電圧保護用半導体装置と してのサイリスタを実現することが出来る。  As described above, according to the structure of the thyristor according to the second embodiment of the present invention, a semiconductor device for overvoltage protection in which the breakover voltage is stable and the fluctuation of the blocking voltage is almost zero is obtained. A thyristor can be realized.
[0100] 本発明の第 3の実施の形態に係るサイリスタを図面に基づいて説明する。図 7は、 本発明の第 3の実施の形態に係るサイリスタを示す断面図である。図 7において、 10 1は半導体基板導電領域、 102は第 1N型導電領域、 103は第 2N型導電領域、 10 4は第 1P型導電領域、 105は第 2P型導電領域、 110は第 1電極、 111は第 2電極、 120, 121, 122, 123fま絶縁体、 140, 141 fま第 3N型導電領域、 142, 143fま第 4 N型導電領域、 200は半導体基板である。  [0100] A thyristor according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a sectional view showing a thyristor according to the third embodiment of the present invention. In FIG. 7, 101 is a semiconductor substrate conductive region, 102 is a first N-type conductive region, 103 is a second N-type conductive region, 104 is a first P-type conductive region, 105 is a second P-type conductive region, and 110 is a first electrode. Reference numeral 111 denotes a second electrode, insulators 120, 121, 122, and 123f, third N-type conductive regions 140 and 141f, fourth N-type conductive regions 142 and 143f, and 200 a semiconductor substrate.
[0101] 半導体基板 200は、角筒形を有するシリコンで、 P型の導電型を有する。半導体基 板 200に、第 1N型導電領域 102、第 2N型導電領域 103を形成する。また、第 1N型 導電領域 102内に第 1P型導電領域 104を形成する。さらに、第 2N型導電領域 103 内に第 2P型導電領域 105を形成する。ここで第 1 N型導電領域 102と第 1 P型導電 領域 104は第 1電極 110と電気的に接続され、第 2N型導電領域 103と第 2P型導電 領域 105は第 2電極 111と電気的に接続される。さらに、第 3N型導電領域 140, 14 1を第 1N型導電領域 102に隣接するように配置する。また、第 4N型導電領域 142, 143を第 2N型導電領域 103に隣接するように配置する。  [0101] The semiconductor substrate 200 is silicon having a prismatic shape, and has a P-type conductivity. A first N-type conductive region 102 and a second N-type conductive region 103 are formed on a semiconductor substrate 200. Further, a first P-type conductive region 104 is formed in the first N-type conductive region 102. Further, a second P-type conductive region 105 is formed in the second N-type conductive region 103. Here, the first N-type conductive region 102 and the first P-type conductive region 104 are electrically connected to the first electrode 110, and the second N-type conductive region 103 and the second P-type conductive region 105 are electrically connected to the second electrode 111. Connected to. Further, the third N-type conductive regions 140 and 141 are arranged so as to be adjacent to the first N-type conductive region 102. Further, the fourth N-type conductive regions 142 and 143 are arranged so as to be adjacent to the second N-type conductive region 103.
[0102] また、第 1N型導電領域 102、第 2N型導電領域 103、第 3N型導電領域 140, 141 、第 4N型導電領域 142, 143は、適当なマスクを用いて N型の不純物を外部から導 入後、高温拡散によって形成される。ここで、ブレークオーバーが半導体基板導電領 域 101と第 1N型導電領域 102の境界面又は半導体基板導電領域 101と第 2N型導 電領域 103の境界面で生じるように、深い拡散を実施して半導体基板導電領域 101 と第 3N型導電領域 140, 141の境界面近傍の第 3N型導電領域 140, 141の濃度 を第 1N型導電領域 102より小さくすると共に、半導体基板導電領域 101と第 4N型 導電領域 142, 143の境界面近傍の第 4N型導電領域 142, 143の濃度を第 2N型 導電領域 103より小さくする。第 1P型導電領域 104と第 2P型導電領域 105は、 P型 の不純物を外部から導入後、高温拡散によって形成される。 [0102] Further, the first N-type conductive region 102, the second N-type conductive region 103, the third N-type conductive regions 140 and 141, and the fourth N-type conductive regions 142 and 143 are formed by using an appropriate mask to remove N-type impurities from the outside. After being introduced from, it is formed by high-temperature diffusion. Here, deep diffusion is performed so that breakover occurs at the boundary between the semiconductor substrate conductive region 101 and the first N-type conductive region 102 or at the boundary between the semiconductor substrate conductive region 101 and the second N-type conductive region 103. The concentration of the third N-type conductive regions 140 and 141 near the boundary between the semiconductor substrate conductive region 101 and the third N-type conductive regions 140 and 141 is made smaller than that of the first N-type conductive region 102, and the semiconductor substrate conductive region 101 and the fourth N-type The concentration of the fourth N-type conductive regions 142 and 143 near the boundary surface between the conductive regions 142 and 143 is made lower than that of the second N-type conductive region 103. The first P-type conductive region 104 and the second P-type conductive region 105 are formed by high-temperature diffusion after introducing P-type impurities from the outside.
[0103] また必要に応じて、第 1電極 110及び第 2電極 111と接する領域の導電率を大きく するために別のマスクによって第 1P型導電領域 104、第 2P型導電領域 105、第 1N 型導電領域 102、第 2N型導電領域 103を形成することも勿論可能である。例えば、 第 1N型導電領域 102、第 2N型導電領域 103の不純物拡散を実施した後で、第 1N 型導電領域 102、第 2N型導電領域 103のなかで第 1電極 110及び第 2電極 111と 接する領域の抵抗値を小さくするために、別途 N型の高濃度の不純物を導入した後 、高温拡散を行ってもよい。他の導電領域も必要に応じて複数の拡散によって形成 してよいが、普通は 1回である。  [0103] If necessary, the first P-type conductive region 104, the second P-type conductive region 105, and the first N-type are formed by using another mask in order to increase the conductivity of the region in contact with the first electrode 110 and the second electrode 111. It is of course possible to form the conductive region 102 and the second N-type conductive region 103. For example, after performing the impurity diffusion of the first N-type conductive region 102 and the second N-type conductive region 103, the first electrode 110 and the second electrode 111 in the first N-type conductive region 102 and the second N-type conductive region 103 are formed. In order to reduce the resistance value of the contact region, high-temperature diffusion may be performed after separately introducing a high-concentration N-type impurity. Other conductive regions may be formed by multiple diffusions as needed, but usually only once.
[0104] N型と P型の不純物拡散工程が全て終了した後、酸化膜などの絶縁体 120, 121, 122, 123を積層して形成し、さらにエッチングで第 1電極 110,第 2電極 111のため の窓空けを行う。その後、第 1電極 110,第 2電極 111の形成を行なう。  After the N-type and P-type impurity diffusion steps have all been completed, insulators 120, 121, 122, 123 such as oxide films are laminated and formed, and the first electrode 110 and the second electrode 111 are further etched. Open the windows for After that, the first electrode 110 and the second electrode 111 are formed.
[0105] なお、絶縁体 120, 121 , 122, 123は、通常は酸化膜などで形成する。特性上問 題がなレ、ならばシリコン窒化膜やガラスで構成することも可能である力 S、複数の絶縁 体からなる多層構造で形成してもよレ、。  [0105] The insulators 120, 121, 122, and 123 are usually formed of an oxide film or the like. If there is no problem in terms of characteristics, force S, which can be made of silicon nitride film or glass, or a multilayer structure consisting of multiple insulators.
[0106] 第 3N型導電領域と第 4N型導電領域は、枠状に形成することが好ましレ、。なお、枠 状に形成せずに分割して複数形成することも可能であるが、この場合は第 1N型導電 領域 102と第 2N型導電領域 103の角部に形成することが好ましい。また、独立した 小さい島状の領域としてこれらを多数配置するようにしてもよい。また、第 1N型導電 領域 102と第 2N型導電領域 103は、円形や楕円形など他の形状であってもよい。さ らに、半導体基板 200の形状も、角筒形に限られるものではなぐ円筒形など他の形 状であってもよい。  The third N-type conductive region and the fourth N-type conductive region are preferably formed in a frame shape. Note that it is also possible to form a plurality of divided portions without forming them in a frame shape, but in this case, it is preferable to form them at the corners of the first N-type conductive region 102 and the second N-type conductive region 103. Also, a large number of these may be arranged as independent small island regions. Further, the first N-type conductive region 102 and the second N-type conductive region 103 may have other shapes such as a circle and an ellipse. Furthermore, the shape of the semiconductor substrate 200 is not limited to the rectangular tube shape, but may be another shape such as a cylindrical shape.
[0107] 続けて、本発明の第 3の実施の形態に係るサイリスタの動作の特徴について説明 する。図 7に示されるように、本発明の第 3の実施の形態に係るサイリスタは、順逆両 方向で点弧動作するように形成している。従って、基本的な動作は順逆どちらも同じ であり、以下の説明では順方向について説明することにする。順方向のブレークオ一 バー電圧と逆方向のブレークオーバー電圧は同じ値にすることも出来るし、異なる値 とすることも出来る。図 7に示される構造においては、順方向に電圧が印加されると、 ブレークオーバーが半導体基板導電領域 101と第 1N型導電領域 102の境界面で 生じるように形成している。 [0107] Next, characteristics of the operation of the thyristor according to the third embodiment of the present invention will be described. As shown in FIG. 7, the thyristor according to the third embodiment of the present invention is formed so as to perform a firing operation in both forward and reverse directions. Therefore, the basic operation is the same in both the forward and reverse directions, and the following description will be made in the forward direction. Forward break The breakover voltage in the opposite direction to the bar voltage can be the same value or different values. In the structure shown in FIG. 7, when a voltage is applied in the forward direction, a breakover is formed at a boundary surface between the semiconductor substrate conductive region 101 and the first N-type conductive region 102.
[0108] 従って、絶縁体 120, 121と半導体基板 200の間で生じる界面電荷や界面トラップ の電子状態がブレークオーバー電圧に与える影響は殆どなぐ界面電荷や界面トラ ップの電子状態の変化に起因する阻止電圧の変動がほとんど見られなくなる。第 3N 型導電領域 140, 141は第 1N型導電領域 102より不純物濃度を低くするために通 常深い拡散を実施するが、その場合、上面側から見て第 1N型導電領域 102を取り 卷くように帯状の形をした拡散を行なうことから第 3N型導電領域 140, 141は第 3N 型導電領域 140, 141の内周部 150, 151にも外周部と同じように曲率の大きな領域 をもつことになる。 [0108] Therefore, the influence of the interface charge generated between the insulators 120 and 121 and the semiconductor substrate 200 and the electronic state of the interface trap on the breakover voltage is almost negligible due to the change in the interface charge and the electronic state of the interface trap. The fluctuation of the blocking voltage that occurs is hardly observed. The third N-type conductive regions 140 and 141 usually perform deep diffusion to lower the impurity concentration than the first N-type conductive region 102. In this case, the third N-type conductive regions 140 and 141 surround the first N-type conductive region 102 when viewed from above. As described above, the third N-type conductive regions 140 and 141 have regions of large curvature at the inner peripheral portions 150 and 151 of the third N-type conductive regions 140 and 141 as well as the outer peripheral portions. Will be.
[0109] 従って、設計によっては第 3N型導電領域 140, 141の内周側でブレークオーバー が生じることもあり得るが、その場合でも界面電荷や界面トラップの電子状態がブレー クオーバー電圧に与える影響は殆どなぐ界面電荷や界面トラップの電子状態の変 化に起因する阻止電圧の変動がほとんど見られなくなる。  [0109] Therefore, depending on the design, breakover may occur on the inner peripheral side of the third N-type conductive regions 140 and 141, but even in such a case, the influence of the interface charge and the electronic state of the interface trap on the breakover voltage is obtained. Almost no fluctuations in the blocking voltage due to the change of the interface charge and the electronic state of the interface trap are hardly observed.
[0110] 以上のように、本発明の第 3の実施の形態に係るサイリスタの構造によれば、ブレー クオーバー電圧が安定して阻止電圧の変動が殆どない過電圧保護用半導体装置と してのサイリスタを実現することが出来る。  As described above, according to the structure of the thyristor according to the third embodiment of the present invention, a semiconductor device for overvoltage protection in which the breakover voltage is stable and the blocking voltage hardly varies. A thyristor can be realized.
[0111] 本発明の第 4の実施の形態に係るサイリスタを図面に基づいて説明する。図 8は、 本発明の第 4の実施の形態に係るサイリスタを示す断面図である。図 8において、 10 1は半導体基板導電領域、 102は第 1N型導電領域、 103は第 2N型導電領域、 10 4は第 1P型導電領域、 105は第 2P型導電領域、 106は第 1孔状導電領域、 107は 第 2?L状導電領域、 110は第 1電極、 111は第 2電極、 120, 121 , 122, 123は絶縁 体、 140, 141は第 3N型導電領域、 142, 143は第 4N型導電領域、 200は半導体 基板である。  [0111] A thyristor according to a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a sectional view showing a thyristor according to the fourth embodiment of the present invention. In FIG. 8, 101 is a semiconductor substrate conductive region, 102 is a first N-type conductive region, 103 is a second N-type conductive region, 104 is a first P-type conductive region, 105 is a second P-type conductive region, and 106 is a first hole. -Shaped conductive region, 107 is the second to L-shaped conductive region, 110 is the first electrode, 111 is the second electrode, 120, 121, 122, 123 is an insulator, 140, 141 is the third N-type conductive region, 142, 143 Denotes a fourth N-type conductive region, and 200 denotes a semiconductor substrate.
[0112] 図 8に示されるように、本発明の第 4の実施の形態に係るサイリスタは、本発明の第 3の実施の形態に係るサイリスタにおいて第 1孔状導電領域 106と第 2孔状導電領域 107がある場合で、通常はショートェミッタ構造と言われるがショートゲート構造と言う こともある。基本動作は第 3の実施の形態に係るサイリスタと変わるところはない。ここ で、第 1孔状導電領域と第 2孔状導電領域は単数でも複数でも構わないが、通常は サージに対する保持電流やサージ耐量を考慮して形状や配置を決定する。基本的 な動作は本発明の第 3の実施の形態に係るサイリスタと全く同じである。 As shown in FIG. 8, the thyristor according to the fourth embodiment of the present invention is different from the thyristor according to the third embodiment of the present invention in that the first hole-shaped conductive region 106 and the second hole-shaped Conductive area When there is 107, it is usually called a short emitter structure, but sometimes it is called a short gate structure. The basic operation is the same as the thyristor according to the third embodiment. Here, the first hole-shaped conductive region and the second hole-shaped conductive region may be singular or plural, but usually the shape and arrangement are determined in consideration of the holding current and the surge withstand capability against surge. The basic operation is exactly the same as that of the thyristor according to the third embodiment of the present invention.
[0113] 従って、本発明の第 4の実施の形態に係るサイリスタの構造によれば、ブレークオ 一バー電圧が安定して阻止電圧の変動が殆どない過電圧保護用半導体装置として のサイリスタを実現することが出来る。  Therefore, according to the structure of the thyristor according to the fourth embodiment of the present invention, it is possible to realize a thyristor as a semiconductor device for overvoltage protection in which the break-over voltage is stable and the variation in the blocking voltage is almost zero. Can be done.
[0114] 以上、実施の形態に基づいて説明したように、半導体基板の一方の面に露出して なる第 1導電型の半導体層と、該一方の面に露出すると共に該半導体層内に形成し てなる前記半導体層とは反対型の第 2導電型の第 1の導電領域を有する過電圧保 護用半導体装置において、前記一方の面に露出すると共に該半導体層内に、且つ 、該第 1の導電領域に隣接する又は該第 1の導電領域の周辺部に部分的に重なり合 うように形成してなる第 2導電型の第 2の導電領域をさらに有し、ブレークダウン又は ブレークオーバーが前記第 2の導電領域の内周部若しくは前記内周部の近傍又は 前記第 1の導電領域若しくは前記第 1の導電領域の近傍で生じるものであれば、ブレ ークダウン電圧又はブレークオーバー電圧が安定して阻止電圧の変動が殆どないと レ、う作用が得られる。  As described above based on the embodiment, the first conductivity type semiconductor layer exposed on one surface of the semiconductor substrate is exposed on the one surface and formed in the semiconductor layer. An overvoltage protection semiconductor device having a first conductive region of a second conductivity type opposite to that of the semiconductor layer, wherein the semiconductor device is exposed on the one surface and in the semiconductor layer; A second conductive region of a second conductivity type formed so as to be adjacent to or partially overlap with the periphery of the first conductive region, wherein the breakdown or breakover is performed. If it occurs in the inner peripheral portion of the second conductive region or in the vicinity of the inner peripheral portion or in the vicinity of the first conductive region or the first conductive region, the breakdown voltage or the breakover voltage becomes stable. And there is almost no change in blocking voltage Les, cormorants action can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0115] [図 1]本発明の第 1の実施の形態に係るダイオードを示す断面図である。  FIG. 1 is a sectional view showing a diode according to a first embodiment of the present invention.
[図 2]従来技術に係るダイオードを示す断面図である。  FIG. 2 is a cross-sectional view showing a diode according to a conventional technique.
[図 3]従来技術に係るサイリスタを示す断面図である。  FIG. 3 is a cross-sectional view showing a thyristor according to a conventional technique.
[図 4]従来技術に係るダイオードの電気的特性を示すグラフである。  FIG. 4 is a graph showing electrical characteristics of a diode according to a conventional technique.
[図 5]従来技術に係るサイリスタの電気的特性を示すグラフである。  FIG. 5 is a graph showing electrical characteristics of a thyristor according to a conventional technique.
[図 6]本発明の第 2の実施の形態に係るサイリスタを示す断面図である。  FIG. 6 is a sectional view showing a thyristor according to a second embodiment of the present invention.
[図 7]本発明の第 3の実施の形態に係るサイリスタを示す断面図である。  FIG. 7 is a sectional view showing a thyristor according to a third embodiment of the present invention.
[図 8]本発明の第 4の実施の形態に係るサイリスタを示す断面図である。  FIG. 8 is a sectional view showing a thyristor according to a fourth embodiment of the present invention.
[図 9]本発明の第 1の実施の形態に係るダイオードを示す平面図である。 園 10]ブレークダウン電圧の安定化メカニズムに関する数式の説明を補助する断面 図である。 FIG. 9 is a plan view showing a diode according to the first embodiment of the present invention. Garden 10] is a cross-sectional view for assisting explanation of mathematical formulas relating to a breakdown voltage stabilizing mechanism.
符号の説明 Explanation of symbols
1 半導体基板導電領域  1 Conductive area of semiconductor substrate
2 第 1P型導電領域  2 1st P type conductive area
3 第 1N型導電領域  3 1st N-type conductive area
9 第 1 P型導電領域 2と半導体基板導電領域 1の境界面  9 Interface between first P-type conductive region 2 and semiconductor substrate conductive region 1
10 弟 1 極  10 brother 1 pole
11 第 2電極  11 2nd electrode
20 絶縁体  20 Insulator
21 絶縁体  21 Insulator
23 絶縁体  23 Insulator
24 絶縁体  24 Insulator
40 第 2P型導電領域  40 2P type conductive area
41 第 2P型導電領域  41 Second P-type conductive region
50 第 2P型導電領域の内周部  50 Inner circumference of 2P-type conductive region
51 第 2P型導電領域の内周部  51 Inner circumference of 2P-type conductive region
100 半導体基板  100 Semiconductor substrate
101 半導体基板導電領域  101 Semiconductor substrate conductive area
102 第 1N型導電領域  102 1st N-type conductive region
103 第 2N型導電領域  103 2nd N-type conductive area
104 第 1P型導電領域  104 1st P type conductive area
105 第 2P型導電領域  105 2nd P conductive area
106 第 1孔状導電領域  106 1st hole conductive area
107 第 2孔状導電領域  107 Second conductive hole
110 弟 1 極  110 brother 1 pole
111 第 2電極  111 2nd electrode
120 絶縁体 121 絶縁体 120 Insulator 121 insulator
122 絶縁体  122 insulator
123 絶縁体  123 insulator
140 第 3N型導電領域  140 3rd N-type conductive region
141 第 3N型導電領域  141 3rd N-type conductive region
142 第 4N型導電領域  142 4th N-type conductive region
143 第 4N型導電領域  143 4th N-type conductive region
150 第 3N型導電領域の内周部  150 Inner circumference of 3rd N-type conductive region
151 第 3N型導電領域の内周部  151 Inner circumference of 3rd N-type conductive region
190 第 1N型導電領域 102と半導体基板導電領域 101の境界面 200 半導体基板  190 Interface between first N-type conductive region 102 and semiconductor substrate conductive region 101 200 Semiconductor substrate

Claims

請求の範囲 The scope of the claims
[1] 第 1導電型の半導体基板の一方の面に露出させて形成してなる該半導体基板とは 反対型の第 2導電型の第 1の導電領域と、前記半導体基板の前記一方の面に背向 する他方の面に露出させて形成してなる第 1導電型の第 2の導電領域を形成してな るダイオードにおいて、  [1] A first conductive region of a second conductivity type opposite to the semiconductor substrate formed by being exposed on one surface of a semiconductor substrate of the first conductivity type, and the one surface of the semiconductor substrate A diode having a first conductive type second conductive region formed by being exposed on the other surface opposite to
前記一方の面に露出させると共に前記第 1の導電領域に隣接する又は該第 1の導 電領域の周辺部に部分的に重なり合うように形成してなる第 2導電型の第 3の導電領 域を設けて、ブレークダウンが前記第 3の導電領域の内周部若しくは前記内周部の 近傍又は前記第 1の導電領域若しくは前記第 1の導電領域の近傍で生じることを特 徴とするダイオード。  A third conductive region of the second conductive type which is exposed on the one surface and is formed so as to be adjacent to the first conductive region or to partially overlap a peripheral portion of the first conductive region. Wherein the breakdown occurs in the inner peripheral portion of the third conductive region or in the vicinity of the inner peripheral portion, or in the vicinity of the first conductive region or the first conductive region.
[2] 前記第 3の導電領域は、前記半導体基板を平面的に見たときに前記第 1の導電領域 を取り囲んでいることを特徴とする請求項 1に記載のダイオード。  2. The diode according to claim 1, wherein the third conductive region surrounds the first conductive region when the semiconductor substrate is viewed in a plan view.
[3] 第 1導電型の半導体基板の一方の面に露出させて形成してなる該半導体基板とは 反対型の第 2導電型の第 1の導電領域と、前記一方の面に露出させると共に前記第 1の導電領域内に形成してなる第 1導電型の第 2の導電領域と、前記半導体基板の 前記一方の面に背向する他方の面に露出させて形成してなる第 2導電型の第 3の導 電領域を有するサイリスタにおレ、て、  [3] A first conductive region of a second conductivity type opposite to the semiconductor substrate formed by being exposed on one surface of the semiconductor substrate of the first conductivity type, and exposed on the one surface. A second conductive region of a first conductivity type formed in the first conductive region; and a second conductive region formed by being exposed on the other surface of the semiconductor substrate opposite to the one surface. A thyristor having a third conductive region of the type;
前記第 1の導電領域に隣接する又は該第 1の導電領域の周辺部に部分的に重なり 合うように形成してなる第 2導電型の第 4の導電領域を設け、ブレークオーバーが前 記第 4の導電領域の内周部若しくは前記内周部の近傍又は前記第 1の導電領域若 しくは前記第 1の導電領域の近傍で生じることを特徴とするサイリスタ。  A second conductive type fourth conductive region formed adjacent to the first conductive region or partially overlapping the peripheral portion of the first conductive region; 4. A thyristor, which is generated in an inner peripheral portion of the fourth conductive region, in the vicinity of the inner peripheral portion, or in the vicinity of the first conductive region or the first conductive region.
[4] 前記第 4の導電領域は、前記半導体基板を平面的に見たときに前記第 1の導電領域 を取り囲んでレ、ることを特徴とする請求項 3に記載のサイリスタ。  4. The thyristor according to claim 3, wherein the fourth conductive region surrounds the first conductive region when the semiconductor substrate is viewed in a plan view.
[5] 前記第 4の導電領域は、前記一方の面に露出していることを特徴とする請求項 3又は 請求項 4に記載のサイリスタ。  5. The thyristor according to claim 3, wherein the fourth conductive region is exposed on the one surface.
[6] 前記第 2の導電領域が複数設けてなることを特徴とする請求項 3乃至請求項 5のい ずれかに記載のサイリスタ。  6. The thyristor according to claim 3, wherein a plurality of the second conductive regions are provided.
[7] 第 1導電型の半導体基板の一方の面に露出させて形成してなる該半導体基板とは 反対型の第 2導電型の第 1の導電領域と、前記一方の面に露出させると共に前記第 1の導電領域内に形成してなる第 1導電型の第 2の導電領域と、前記半導体基板の 前記一方の面に背向する他方の面に露出させて形成してなる第 2導電型の第 3の導 電領域と、前記一方の面に背向する他方の面に露出させて前記第 3の導電領域内 に形成してなる第 1導電型の第 5の導電領域を有するサイリスタにおいて、 前記第 1の導電領域に隣接する又は該第 1の導電領域の周辺部に部分的に重なり 合うように形成してなる第 2導電型の第 4の導電領域と、前記第 3の導電領域に隣接 する又は該第 3の導電領域の周辺部に部分的に重なり合うように形成してなる第 2導 電型の第 6の導電領域を設け、ブレークオーバーが前記第 4の導電領域の内周部若 しくは前記内周部の近傍又は前記第 1の導電領域若しくは前記第 1の導電領域の近 傍、又は前記第 6の導電領域の内周部若しくは前記内周部の近傍又は前記第 3の 導電領域若しくは前記第 3の導電領域の近傍で生じることを特徴とするサイリスタ。 [7] What is a semiconductor substrate formed by being exposed on one surface of a semiconductor substrate of the first conductivity type? A first conductive region of a second conductive type of an opposite type, a second conductive region of a first conductive type exposed on the one surface and formed in the first conductive region; A third conductive region of the second conductivity type formed by being exposed on the other surface opposite to the one surface; and the third conductive region being exposed on the other surface opposite to the one surface. A thyristor having a first conductive type fifth conductive region formed in the third conductive region, wherein the thyristor is adjacent to the first conductive region or partially overlaps a peripheral portion of the first conductive region. A second conductive type fourth conductive region formed as described above and a second conductive type formed so as to be adjacent to the third conductive region or partially overlap the peripheral portion of the third conductive region. A conductive type sixth conductive region is provided, and a breakover is provided on the inner peripheral portion or the inner peripheral portion of the fourth conductive region. In the vicinity of the first conductive region or the first conductive region, or in the vicinity of the inner periphery of the sixth conductive region or the inner periphery, or in the third conductive region or the third conductive region. A thyristor generated in the vicinity of the conductive region.
[8] 前記第 4の導電領域は、前記半導体基板を平面的に見たときに前記第 1の導電領域 を取り囲んでレ、ることを特徴とする請求項 7に記載のサイリスタ。  [8] The thyristor according to claim 7, wherein the fourth conductive region surrounds the first conductive region when the semiconductor substrate is viewed in a plan view.
[9] 前記第 6の導電領域は、前記半導体基板を平面的に見たときに前記第 3の導電領域 を取り囲んでいることを特徴とする請求項 7又は請求項 8に記載のサイリスタ。  9. The thyristor according to claim 7, wherein the sixth conductive region surrounds the third conductive region when the semiconductor substrate is viewed in a plan view.
[10] 前記第 4の導電領域は、前記一方の面に露出していることを特徴とする請求項 7乃至 請求項 9のレ、ずれかに記載のサイリスタ。  10. The thyristor according to claim 7, wherein the fourth conductive region is exposed on the one surface.
[11] 前記第 6の導電領域は、前記他方の面に露出していることを特徴とする請求項 7乃至 請求項 10のいずれかに記載のサイリスタ。  [11] The thyristor according to any one of claims 7 to 10, wherein the sixth conductive region is exposed on the other surface.
[12] 前記第 2の導電領域、前記第 5の導電領域の少なくともいずれ力 1つが複数設けてな ることを特徴とする請求項 7乃至請求項 11に記載のサイリスタ。  12. The thyristor according to claim 7, wherein a plurality of at least one of the second conductive region and the fifth conductive region is provided.
[13] 前記一方の面に露出させると共に前記第 2の導電領域を貫通するように形成してな る第 2導電型の第 7の導電領域をさらに設けることを特徴とする請求項 3乃至請求項 12のレ、ずれかに記載のサイリスタ。  13. The semiconductor device according to claim 3, further comprising: a seventh conductive region of a second conductivity type that is exposed on the one surface and penetrates the second conductive region. The thyristor according to item 12 or ず れ.
[14] 前記第 7の導電領域が複数設けてなることを特徴とする請求項 13に記載のサイリスタ  14. The thyristor according to claim 13, wherein a plurality of said seventh conductive regions are provided.
[15] 前記一方の面に背向する他方の面に露出させると共に前記第 5の導電領域を貫通 するように形成してなる第 2導電型の第 8の導電領域をさらに設けることを特徴とする 請求項 7乃至請求項 14のいずれかに記載のサイリスタ。 [15] The semiconductor device is exposed on the other surface opposite to the one surface and penetrates the fifth conductive region. The thyristor according to any one of claims 7 to 14, further comprising an eighth conductive region of the second conductivity type formed so as to be formed.
前記第 8の導電領域が複数設けてなることを特徴とする請求項 15に記載のサイリスタ The thyristor according to claim 15, wherein a plurality of the eighth conductive regions are provided.
PCT/JP2004/007181 2004-05-26 2004-05-26 Diode and thyristor WO2005117134A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006513774A JP4907341B2 (en) 2004-05-26 2004-05-26 Thyristor
PCT/JP2004/007181 WO2005117134A1 (en) 2004-05-26 2004-05-26 Diode and thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/007181 WO2005117134A1 (en) 2004-05-26 2004-05-26 Diode and thyristor

Publications (1)

Publication Number Publication Date
WO2005117134A1 true WO2005117134A1 (en) 2005-12-08

Family

ID=35451159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007181 WO2005117134A1 (en) 2004-05-26 2004-05-26 Diode and thyristor

Country Status (2)

Country Link
JP (1) JP4907341B2 (en)
WO (1) WO2005117134A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2315255A1 (en) * 2009-10-22 2011-04-27 Nxp B.V. Surge protection device
WO2011141981A1 (en) * 2010-05-10 2011-11-17 株式会社日立製作所 Semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341187A (en) * 1976-09-28 1978-04-14 Toshiba Corp Thyristor
JPS59205768A (en) * 1983-05-09 1984-11-21 Nec Corp Constant-voltage diode
JPH06314781A (en) * 1992-03-27 1994-11-08 Agency Of Ind Science & Technol Surge protective device
JPH09232598A (en) * 1996-02-26 1997-09-05 Sankosha Corp Surge protection device and manufacture thereof
JP2000004031A (en) * 1998-06-15 2000-01-07 Shindengen Electric Mfg Co Ltd Two-terminal surge protective element
JP2000340807A (en) * 1999-05-27 2000-12-08 Hitachi Ltd Surge absorber
JP2001352079A (en) * 2000-06-07 2001-12-21 Nec Corp Diode and its manufacturing method
JP2003282865A (en) * 2002-03-27 2003-10-03 Shindengen Electric Mfg Co Ltd Thyristor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3236698A (en) * 1964-04-08 1966-02-22 Clevite Corp Semiconductive device and method of making the same
JP3898893B2 (en) * 1999-02-22 2007-03-28 インフィネオン テクノロジース アクチエンゲゼルシャフト Setting the thyristor breakover voltage
GB9919764D0 (en) * 1999-08-21 1999-10-27 Koninkl Philips Electronics Nv Thyristors and their manufacture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341187A (en) * 1976-09-28 1978-04-14 Toshiba Corp Thyristor
JPS59205768A (en) * 1983-05-09 1984-11-21 Nec Corp Constant-voltage diode
JPH06314781A (en) * 1992-03-27 1994-11-08 Agency Of Ind Science & Technol Surge protective device
JPH09232598A (en) * 1996-02-26 1997-09-05 Sankosha Corp Surge protection device and manufacture thereof
JP2000004031A (en) * 1998-06-15 2000-01-07 Shindengen Electric Mfg Co Ltd Two-terminal surge protective element
JP2000340807A (en) * 1999-05-27 2000-12-08 Hitachi Ltd Surge absorber
JP2001352079A (en) * 2000-06-07 2001-12-21 Nec Corp Diode and its manufacturing method
JP2003282865A (en) * 2002-03-27 2003-10-03 Shindengen Electric Mfg Co Ltd Thyristor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2315255A1 (en) * 2009-10-22 2011-04-27 Nxp B.V. Surge protection device
WO2011048580A1 (en) * 2009-10-22 2011-04-28 Nxp B.V. Surge protection device
CN102576740A (en) * 2009-10-22 2012-07-11 Nxp股份有限公司 Surge protection device
CN102576740B (en) * 2009-10-22 2014-12-10 Nxp股份有限公司 Surge protection device
WO2011141981A1 (en) * 2010-05-10 2011-11-17 株式会社日立製作所 Semiconductor device

Also Published As

Publication number Publication date
JPWO2005117134A1 (en) 2008-04-03
JP4907341B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
CN101517727B (en) Symmetric blocking transient voltage suppressor (TVS) using bipolar transistor base snatch
US20140247527A1 (en) Circuit including a resistive element, a diode, and a switch and a method of using the same
JP2009076761A (en) Semiconductor device and manufacturing method therefor
KR20070118659A (en) Asymmetric bidirectional transient voltage suppressor and method of forming same
US9691752B1 (en) Semiconductor device for electrostatic discharge protection and method of forming the same
JP2015126149A (en) Low capacity semiconductor device and method of manufacturing the same
US7012308B2 (en) Diode
US9299817B2 (en) Bipolar junction transistor and method of manufacturing the same
JP2007294765A (en) Semiconductor device
JP2000164894A (en) Semiconductor device element and manufacture thereof
JP2000294778A (en) Semiconductor device
CN108565260B (en) Semiconductor device with a plurality of transistors
JP2008172165A (en) Semiconductor device
WO2005117134A1 (en) Diode and thyristor
JP2014175324A (en) Low capacity semiconductor device
CN115881716A (en) Power device
JP2022132663A (en) Tvs diode and assembly having asymmetric breakdown voltage
KR101893673B1 (en) Transient voltage suppressor and manufacturing method thereof
JP4260414B2 (en) Thyristor
JP2003282865A (en) Thyristor
JP3998514B2 (en) Thyristor
KR20090113964A (en) Fabrication method of a high voltage Schottky diode
JP3963751B2 (en) Thyristor
JP2014038922A (en) Semiconductor device
KR102187243B1 (en) Uni-directional Transient Voltage Suppressor and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513774

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase