WO2005112245A1 - 電源装置およびディスプレイ装置 - Google Patents

電源装置およびディスプレイ装置 Download PDF

Info

Publication number
WO2005112245A1
WO2005112245A1 PCT/JP2004/018418 JP2004018418W WO2005112245A1 WO 2005112245 A1 WO2005112245 A1 WO 2005112245A1 JP 2004018418 W JP2004018418 W JP 2004018418W WO 2005112245 A1 WO2005112245 A1 WO 2005112245A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
voltage
circuit
backlight
Prior art date
Application number
PCT/JP2004/018418
Other languages
English (en)
French (fr)
Inventor
Noburo Ogura
Yoshiki Oyama
Nobuhiko Kanoi
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004145987A external-priority patent/JP4794826B2/ja
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US13/560,215 priority Critical patent/USRE47794E1/en
Priority to US14/989,388 priority patent/USRE47993E1/en
Priority to US10/565,067 priority patent/US7764022B2/en
Priority to KR1020057024616A priority patent/KR101142468B1/ko
Publication of WO2005112245A1 publication Critical patent/WO2005112245A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2827Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/24Controlling the colour of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output

Definitions

  • the present invention relates to a display device and a power supply device required to obtain a power supply voltage to be supplied to a backlight together with a DC power supply voltage to be supplied to a predetermined load of the display device.
  • a display device that is not a self-luminous type, such as a liquid crystal display
  • an image is displayed using a backlight as a light source.
  • a backlight of such a liquid crystal display device for example, a backlight using a cold cathode fluorescent tube and a backlight using a light emitting diode (LED: Light Emitter) are used.
  • LED Light Emitter
  • the power supply unit of the display device is provided with an inverter circuit for generating an AC voltage for driving the backlight.
  • a display apparatus receives a DC power output from a main power supply circuit and generates an AC voltage.
  • a rectifying / smoothing circuit 101 inputs a commercial AC power supply AC to generate a DC voltage. Then, it is connected to the stage after the rectifying and smoothing circuit 101.
  • the DC voltage output from the rectifying / smoothing circuit 101 is subjected to DC-DC power conversion, for example, a stabilized DC power supply of a predetermined level. It is designed to output voltage.
  • the primary side and the secondary side are DC-isolated by, for example, an insulating transformer. In other words, a DC voltage is input from the primary side, which is the commercial AC power supply, and a DC power supply voltage is output from the secondary side.
  • the DC power supply voltage output from the secondary side of the main power supply circuit 102 is supplied to the load 103 that operates using the DC power supply voltage as a power supply.
  • the DC power supply voltage from the main power supply circuit 102 is also branched and supplied to the inverter circuit 104 as shown in the figure.
  • inverter circuit 104 DC-AC power conversion is performed on the input DC power supply voltage, and the AC voltage is supplied to the backlight unit 105.
  • the backlight unit 105 is driven to emit light by this AC voltage.
  • the main power supply circuit 102 has a switching converter on the primary side and a rectifying and smoothing circuit on the secondary side, and rectifies and smoothes the switching output obtained on the primary side on the secondary side.
  • a DC voltage is obtained as the power supply voltage.
  • the inverter circuit 104 in this case is adapted to input the obtained DC power to the secondary side of the main power supply circuit 102 as shown in the figure.
  • inverter circuit 104 DC-AC power conversion is performed on the DC power obtained in this manner, and the obtained result is obtained.
  • the backlight unit 105 is driven by the AC voltage.
  • FIG. 8 the configuration in the case of a liquid crystal display device provided with an LED backlight unit is as shown in FIG. 8 below.
  • the same parts as those described in FIG. 7 are denoted by the same reference numerals.
  • a chopper regulator circuit 109 is provided as a drive circuit system for driving the backlight unit 110 on the secondary side.
  • a plurality of LEDs forming the backlight section 110 are provided with a plurality of choppers / regulators 109a, 109b, 1c. 0 9 c are connected in parallel.
  • Each of the plurality of chopper leggings 109a, 109b, and 109c is connected to a series connection circuit using a plurality of LEDs. Then, these chopper regulators 109 receive the DC voltage obtained on the secondary side by the main power supply circuit 102 and perform DC-DC power conversion on the DC voltage. Then, the obtained DC voltage is stabilized according to the detection result of the current level flowing through the LED, and a plurality of LEDs are driven to emit light based on the stabilized output.
  • the reason why the multiple choppers are connected in parallel is because the screen size of the liquid crystal display is large and the number of LEDs is relatively large, or the required brightness is high. This is to cope with a case where a relatively high DC current level is required for driving. In other words, when the number of LEDs to be driven is large in this way, when a large current is required, for example, one LED If a plurality of LED series connected circuits are driven by a single timer circuit, the circuit size of the chopper timer circuit itself will increase. This can be avoided by connecting several in parallel.
  • the chopper regulator 1109 inputs the DC voltage obtained by the main power supply circuit 102, and further applies the DC voltage to this DC voltage.
  • the DC / DC conversion is performed to obtain a DC power supply for driving the backlight unit 110.
  • Japanese Utility Model Application Laid-Open No. 2-799182 describes a technology related to an inverter circuit provided when a fluorescent tube is used as a light source of a display device.
  • Japanese Patent Application Laid-Open No. 2002-244103 discloses a technique related to a chopper regulator provided when an LED is used as a light source.
  • the provision of the inverter circuit 104 after the main power supply circuit 102 means that power is not supplied to the inverter circuit 104 above. Then, power conversion is performed in the main power supply circuit 102. Then, in order to generate an AC voltage for driving the backlight unit 105, power conversion is performed again in the inverter circuit 104.
  • the screen size has been increasing due to technological innovations in the liquid crystal display field.
  • the power consumption for driving the backlight has increased accordingly.
  • Power consumption increases.
  • the power consumption of the entire set may be about 250 W, and the power loss as described above reaches a relatively large level in recent large displays. ing.
  • the main power circuit 10 It is necessary to provide a large amount of power in 2.
  • the inverter circuit 104 and the chopper regulator circuit 109 are provided after the main power supply circuit 102, the main power supply circuit 102 is provided in order to cope with an increase in power consumption in these circuits. The power to be covered will increase.
  • the main power supply circuit 102 can supply a large amount of power, The calorific value will increase. In order to do this, it is necessary to secure sufficient space for thermal measures or to provide measures such as installing a cooling fan.
  • the present invention is configured as follows as a power supply device.
  • an input voltage generating unit that inputs an alternating current to generate a dc input voltage, and the dc input voltage is input to the primary side, and is also insulated from the primary side by performing dc-dc power conversion.
  • a first power conversion unit for generating a DC power supply voltage to be supplied to a predetermined load on the secondary side.
  • the DC input voltage is input to the primary side, and power conversion by DC-AC conversion is performed, so that the power supply voltage to be supplied to the backlight on the secondary side isolated from the primary side is determined.
  • a second power conversion unit for generating power is provided.
  • a display unit for displaying an image using a backlight is further provided.
  • the second power converter directly converts the DC voltage generated by the input voltage generator, instead of the DC output voltage output from the first power converter. It will work by inputting it. That is, according to the present invention, a circuit configuration in which power conversion is performed a plurality of times is not adopted.
  • the first power conversion unit and the second power conversion unit are not connected in series but connected in parallel with the DC input voltage, so that the first power conversion unit and the second power conversion unit are connected in parallel. Since the power to be covered by the power conversion unit is independent of the power consumption of the second power conversion unit, even if the power consumption of the load connected to the second power conversion unit increases, The need for increasing the capacity of the first power conversion section is eliminated.
  • FIG. 1 is a simplified diagram showing a configuration of a power supply device in a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration example of a rectifying / smoothing circuit included in the power supply device according to the embodiment.
  • FIG. 3 is a circuit diagram showing a configuration of an Invar evening circuit provided in the power supply device according to the first embodiment.
  • FIG. 4 is a diagram showing a simplified configuration of a power supply device as a modified example of the first embodiment.
  • FIG. 5 shows the PFC converter circuit included in the power supply unit of the modified example.
  • FIG. 3 is a circuit diagram illustrating a configuration example.
  • FIG. 6 is a diagram showing a configuration example of a power supply device in a liquid display device according to a second embodiment of the present invention.
  • FIG. 7 is a block diagram schematically showing, as a conventional example, a configuration of a power supply unit in a liquid crystal display device having a backlight unit using fluorescent tubes.
  • FIG. 8 is a block diagram schematically showing, as a conventional example, a configuration of a power supply unit in a liquid crystal display device having a backlight unit using an LED.
  • FIG. 1 is a simplified view of a display device 20 according to a first embodiment, for example, a liquid crystal display device including a configuration of a power supply device 10 for supplying power to the liquid crystal display device.
  • FIG. 1 is a simplified view of a display device 20 according to a first embodiment, for example, a liquid crystal display device including a configuration of a power supply device 10 for supplying power to the liquid crystal display device.
  • the power supply device 10 is provided as a source of a liquid crystal display device.
  • the power supply voltage generated by the power supply device 10 is supplied to a load 3 corresponding to various circuit units that operate by inputting a DC power supply voltage, and a c-light unit 5 driven by an AC voltage. Supplied.
  • the back light of the liquid crystal display as the display unit 6 is irradiated by the pack light unit 5 to display an image.
  • a rectifying and smoothing circuit 1 rectifies and smoothes a commercial AC power supply AC shown to generate a DC input voltage E i.
  • the rectifying / smoothing circuit 1 includes a bridge rectifying circuit D i composed of four rectifying diodes D 1 to D 4 and a bridge rectifying circuit D i. And a smoothing capacitor C 1 for smoothing the rectified output by D i.
  • the positive input terminal of the bridge rectifier circuit Di is connected to the positive line of the commercial AC power supply AC.
  • the positive output terminal is connected to the positive terminal of the smoothing capacitor C 1.
  • the negative terminal of this smoothing capacitor C 1 is grounded to the primary side ground.
  • the negative input terminal of the bridge rectifier circuit Di is grounded to the primary side ground, and the negative output terminal is connected to the negative line of the commercial AC power supply AC.
  • the rectifying diodes D 1 and D 3 conduct during the half cycle in which the input voltage from the commercial AC power supply AC has a positive polarity, and these rectified outputs are smoothed.
  • the capacitor C1 is charged.
  • the rectifier diodes D2 and D4 conduct, and these rectified outputs are charged into the smoothing capacitor C1.
  • the configuration of the rectifying / smoothing circuit 1 is the same as that shown in FIG. However, the present invention is not limited to this, and another configuration may be adopted as a condensed input method such as a voltage doubler rectifying / smoothing circuit.
  • the main power supply circuit 2 and the inverter circuit 4 are connected in parallel to the rectifying / smoothing circuit 1 as shown in FIG.
  • the main power supply circuit 2 is a so-called switching converter having an insulation transformer for insulating the AC side of the commercial AC power supply and the load 3 side, a switching element on the primary side, and a rectifying and smoothing circuit on the secondary side. Is adopted.
  • the main power supply circuit 2 switches the DC input voltage Ei supplied from the rectifying / smoothing circuit 1 by a switching element forming a switching converter, and outputs the output to the secondary side of the insulating transformer. It is excited and rectified and smoothed in the rectifying and smoothing circuit on the secondary side to obtain a DC voltage.
  • the DC voltage thus obtained is supplied as operating power (DC power supply voltage) for the load 3 shown in the figure.
  • the inverter circuit 4 drives the backlight unit 5 using the DC input voltage supplied from the rectifying / smoothing circuit 1.
  • the DC input voltage E i generated by the rectifying and smoothing circuit 1 is directly input to the primary side which is not DC-isolated from the commercial AC power supply AC. It is done as follows. Then, the DC input voltage E i input at the primary side is subjected to DC ⁇ AC power conversion, and the corresponding AC voltage is converted to the secondary side which is DC-isolated from the commercial AC power supply AC. It is configured to obtain.
  • the inverter circuit 4 drives the switching element Ql and the switching element Q2 under the control of the illustrated control circuit 4a to obtain an AC voltage for driving the backlight. It has an excitation type configuration.
  • four fluorescent tubes 14a to 14d are arranged in the backlight unit 5 driven by the inverter circuit 4, as shown in the figure.
  • a DC input voltage E i supplied from the rectifying and smoothing circuit 1 shown in FIG. 1 is applied between the illustrated terminals t l and t 2.
  • the source of the switching element Q 1 is connected to the drain of the switching element Q 2, which is also formed by MOS-FET.
  • the source of the switching element Q2 is connected to the terminal t2.
  • Control signals from the control / drive circuit 4a are applied to the gates of the switching element Q1 and the switching element Q2, respectively.
  • the control drive circuit 4a is a programmed IC (Integrated Circuit), and controls the switching element Ql and the switching element Q2 to be turned on and off alternately.
  • connection point switching output point
  • one end of the primary winding Nal of the transformer T1 and one end of the primary winding Nbl of the transformer T2 shown in the figure. are connected respectively.
  • the other end of the primary winding Nal is connected to a terminal t 2 via a capacitor C 2
  • the other end of the primary winding Nbl is It is connected to the connection point between these primary windings N al and capacitor C 2.
  • the primary winding Nal and the primary winding Nbl are not insulated from the commercial AC power supply AC in this case.
  • the DC input voltage E i is applied between the terminals t 1 and t 2
  • these primary windings Nal and primary windings in the inverter circuit 4 can be understood.
  • the former stage from line Nbl is on the primary side that is not DC isolated from the commercial AC power supply AC.
  • the DC isolation state between the primary side and the secondary side with the load (backlight unit 5) provided at the subsequent stage is determined by the transformer Tl and the transformer ⁇ 2. It is to be secured at For this reason, in the transformer Tl and the transformer ⁇ 2 in this case, a sufficient distance is provided between the primary winding Na1 and the secondary winding Na2 and the primary winding Nbl and the secondary winding Nb2. It is necessary to ensure sufficient insulation between the primary side and the secondary side, for example, by securing the insulation.
  • a current limiting capacitor CC1 and a capacitor CC2 are connected in parallel to one end of the secondary winding Na2 of the transformer T1 as shown in the figure, and these capacitors CC1 and CC2 are connected in parallel.
  • One end of the fluorescent tube 14a and one end of the fluorescent tube 14b are connected to CC2.
  • the other end of each of the fluorescent tubes 14a and 14b is connected to the other end of the secondary winding Na2.
  • a capacitor CC3 and a capacitor CC4 are connected in parallel to one end of the secondary winding Nb2 of the transformer T2 as shown in the figure, and these capacitors CC3 and CC4 Fluorescent tube 14c, one end of the fluorescent tube 14d is connected. The other ends of the fluorescent tubes 14c and 14d are connected to the other end of the secondary winding Nb2.
  • the feedback circuit 4b receives the tube voltage of the fluorescent tube 14d detected by the illustrated detection circuit 4c, and performs peak rectification of the tube voltage. Then, the output is supplied to the control / drive circuit 4a as a dimming signal.
  • the control / drive circuit 4a controls the fluorescent tubes 14a to 14d to keep the light emission amount constant based on the dimming signal.
  • the feedback circuit 4b is insulated by, for example, a photo-plastic plug.
  • the switching output is obtained at the primary winding Nal and the primary winding Nbl, so that the windings of the primary winding Nal and the primary winding Nbl are provided at the secondary winding Na2 and the secondary winding Nb2.
  • a high AC voltage corresponding to the ratio is excited.
  • the fluorescent lamps 14 a to l 4 d in the knock light section 5 generate a tube current. Is flowing
  • the fluorescent tubes 14a to 14d emit light.
  • the inverter circuit 4 is separately excited here, it may be self-excited. As described above, in the first embodiment, the main power supply circuit 2 and the inverter circuit 4 are connected in parallel to the rectification / smoothing circuit 1, so that the backlight is connected without passing through the main power supply circuit 2. Since the AC voltage for driving the unit 5 is obtained, no power loss occurs in the main power supply circuit 2 for obtaining the AC voltage for driving the backlight.
  • the power conversion efficiency in the main power supply circuit be 7]
  • the power conversion efficiency in the Inver evening circuit be 7 or 2
  • the load power other than the backlight part be Pl
  • the load power in the backlight part be P2.
  • the power conversion on the path for obtaining the AC voltage is performed. Since the conversion efficiency depends only on the inverter circuit, the power conversion efficiency can be kept higher than before in this regard. In other words, this makes it possible to reduce the power loss compared to the conventional configuration shown in FIG.
  • the power conversion efficiency in the path for generating the AC voltage for driving the backlight as described above can be kept higher than in the past, for example, the display becomes large and the load of the backlight section becomes negative.
  • the power loss when the load power P 2 increases can be kept lower than before.
  • the difference in input power between the configuration of FIG. 7 and the configuration of the power supply device 10 of the present embodiment is as follows.
  • the power supply specification of the main power supply circuit 2 is as follows.
  • the present invention was first conceived because, in the first place, with the recent enlargement of the screen of a liquid crystal display, the power consumption of a knock light has been reduced. Because it started to grow.
  • the present invention has been conceived as a technique for solving this. As described above, when the present invention is applied to a liquid crystal display device, the effect of reducing power loss can be obtained as the size of the display increases. It is thought that the importance increases with.
  • FIG. 4 is a simplified block diagram showing a configuration of a power supply device 11 as a modification of the first embodiment.
  • the power supply device 11 includes a rectifying and smoothing circuit shown in FIG.
  • a PFC (Power Factor Correction) connector and an overnight circuit 7 will be provided. That is, for example, as a measure against power supply harmonic distortion, a converter for improving the power factor is conventionally provided in the preceding stage of the main power supply circuit. However, a PFC converter circuit 7 is provided before the main power supply circuit 2 and the inverter circuit 4.
  • the configuration of the PFC converter circuit 7 is, for example, as shown in Fig. 5. As shown.
  • the PFC converter circuit 7 shown in this figure is a step-up converter of the PWM control type, which operates to bring the power factor close to 1 and operates to stabilize the DC input voltage Ei. It is assumed that
  • an AC input voltage VAC from a commercial AC power supply AC is supplied to an input terminal of a bridge rectification circuit Di as shown in the figure.
  • An output capacitor Co is connected in parallel to the positive and negative lines of the bridge rectifier circuit Di.
  • This DC input voltage E i is supplied as an input voltage to the main power supply circuit 2 and the inverter circuit 4 shown in FIG.
  • a configuration for improving the power factor includes an inductor L, a high-speed recovery type diode D, and a switching element Q3.
  • the inductor L and the fast recovery diode D are connected in series between the positive output terminal of the bridge rectifier circuit Di and the positive terminal of the output capacitor Co.
  • a MOS-FET is selected as the switching element Q 3, and as shown in the figure, a connection is made between the connection point between the inductor L and the diode D and the negative line of the bridge rectifier circuit Di. Inserted into
  • a switching control circuit for driving the switching element Q 3 is provided.
  • This drive control circuit performs PWM control based on the AC input voltage VAC and the variation difference between the DC input voltage E i, and variably controls the duty of the switching element Q3 during the ON period.
  • the control is performed so that the waveform of the AC input current flowing through the bridge rectifier circuit D i becomes the same waveform as the AC input voltage VAC, and the power factor is improved so that the power factor approaches almost 1. Will be achieved.
  • the duty of the switching element Q3 during the on-period changes depending on the variation difference of the DC input voltage E i, so that the variation of the DC input voltage E i is also suppressed. In other words, this stabilizes the DC input voltage E i.
  • the inverter circuit 4 can generate the AC voltage for driving the backlight without passing through the main power supply circuit 2, so that the AC voltage for driving the backlight can be generated. Therefore, the power loss when obtaining the above can be reduced as compared with the conventional case. In other words, in this case, the power loss can be reduced compared to the case where a circuit equivalent to the PFC converter overnight circuit 7 is provided in the conventional configuration shown in FIG. It is.
  • the inverter circuit 4 since the DC input voltage E i input to the main power supply circuit 2 and the inverter circuit 4 is stabilized, the inverter circuit 4 However, the design should be performed on the assumption that a stable DC voltage is input. For this reason, the design of the inverter circuit 4 becomes easy, so that it is very advantageous in practice, including the occupancy combined with the configuration for improving the power factor.
  • FIG. 6 shows a configuration example of a power supply device 12 according to a second embodiment of the present invention. Note that in Figure 6 The parts already described in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the power supply unit 12 in this case is also provided as a power supply unit of the liquid crystal display device 21, and supplies power for driving the backlight unit 15 shown in FIG. It is like that.
  • the backlight unit 1 of the liquid crystal display device 1 the backlight unit 1 of the liquid crystal display device 1
  • the backlight unit 15 is composed of a plurality of series-connected circuits in which a plurality of predetermined LEDs are connected in series as shown in the figure.
  • a DC-DC converter 9a is used as a system for supplying a DC current to each of these series-connected LEDs.
  • DC-DC converter 9b A plurality of DC-DC converters 9c are provided.
  • Each of these DC-DC converters 9a, 9b, and 9c inputs the DC input voltage generated by the rectifying and smoothing circuit 1 on the primary side, which is not isolated from the commercial AC power supply AC as shown in the figure. To be connected. In other words, these DC-DC converters 9a, 9b, and 9c are also connected to the rectifying and smoothing circuit 1 in parallel with the main power supply circuit 2, as in the inverter circuit 4 shown in FIG. Is what it is.
  • an insulating transformer for insulating the AC side of the commercial AC power supply from the load side is provided, and a switching element and a drive circuit for driving and controlling this switching element are provided on the primary side.
  • the configuration as a switching converter with a rectifying and smoothing circuit on the secondary side is adopted. That is, thereby, a DC voltage corresponding to the DC input voltage input on the primary side is obtained on the secondary side.
  • Each of the DC-DC converters 9a, 9b, and 9c is provided with a control system for stabilizing a DC current to be supplied to the series connection circuit of the predetermined plurality of LEDs.
  • a stabilization control system includes, for example, detection circuits 4d, 4e, and 4f that detect the level of current flowing in a series connection circuit of LEDs, and a feedback circuit that insulates the detection results and feeds back to the primary side.
  • the switching frequency of the drive signal supplied from the drive circuit to the switching element is variably controlled according to the detection result via the feedback circuit 4 g, 4 h, 4 i, and the feedback circuit.
  • the power conversion means for obtaining the power supply voltage for driving the backlight of the liquid crystal display device is not provided after the main power supply circuit 2, but instead. It is connected in parallel with the main power supply circuit 2 at the subsequent stage of the rectifying and smoothing circuit 1.
  • the power supply voltage for driving the backlight can be controlled by the DC-DC converters 9a, 9b, and 9c once by the power supply device 12 according to the second embodiment.
  • power loss in the power supply device can be reduced as compared with the conventional configuration shown in FIG.
  • the power supply device 12 is also configured as described above. Since a DC voltage for driving the backlight unit 15 can be obtained without passing through the main power supply circuit 2, the main power supply circuit 2 does not need to supply a large amount of power as the size of the display increases.
  • the power supply device 1 of the second embodiment is connected. Even in the second configuration, as compared with the configuration shown in FIG. 8 as a conventional example, the greater the power consumption for backlight driving, the greater the power loss reduction effect.
  • the main power supply circuit 2 does not need to supply power to the knock light unit 15, so that the power supply specification of the main power supply circuit 2 only has to depend on the condition of the load 3. become.
  • each DC-DC converter 9 can be compared with a case where only one DC-DC converter 9 is provided.
  • the size of the DC-DC converters 9a, 9b, and 9c will be very small because the core of the isolation transformer and the element size can be reduced by reducing the withstand voltage in the evening 9. It can be.
  • the power supply device 12 of the second embodiment is similar to that of the modification shown in FIGS. 4 and 5 above.
  • a configuration in which the rectifying and smoothing circuit 1 is used as the PFC converter circuit 7 can be adopted.
  • a plurality of LED series connection circuits are provided and each of them is provided with the DC-DC converter 9, but instead of this, the LED is connected in parallel with the main power supply circuit 2. Only one DC-DC converter 9 is connected, and for these multiple LED series connection circuits, a plurality of isolation transformers in this DC-DC converter 9 are connected in parallel and connected to the secondary side. This may be achieved by providing a plurality of DC voltage generation systems.
  • one DC-DC converter 9 connected in parallel with the main power supply circuit 2 can be used by connecting multiple insulating transformers in series and providing multiple DC voltage generation systems on the secondary side. It may be.
  • the power supply device of the present invention is provided as a power supply unit of the liquid crystal display device, and the inverter circuit 4 or the DC-DC converter 9 is provided with an AC voltage or a backlight driving AC voltage.
  • the present invention provides that the second power converter supplies a power supply voltage to an AC drive or a DC drive load other than a backlight, for example. It can also be widely applied to the case where it is configured as follows.
  • a piezoelectric transformer may be used in addition to the electromagnetic transformer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Dc-Dc Converters (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Inverter Devices (AREA)
  • Liquid Crystal (AREA)

Description

明細書 電源装置およびディスプレイ装置 技術分野
本発明は、 ディスプレイ装置およびこのディスプレイ装置の所 定の負荷に供給されるべき直流電源電圧と共に、 バックライ 卜に 供給すべき電源電圧を得ることが必要とされる電源装置に関す る。 背景技術
例えば液晶ディスプレイ等、 自己発光型でないディスプレイ装 置においては、 光源としてバックライ トを用いて画像表示を行う ようにされている。
そして、 このような液晶ディスプレイ装置のバックライ トとし ては、 例えば冷陰極蛍光管を用いたものと、 発光ダイオード ( L E D : L i gh t Em i 1 1 i ng D i o d o ) を用いたものとが存在する。 バックライ トとして蛍光管を用いた場合、 ディスプレイ装置の 電源部においては、 バックライ トを駆動するための交流電圧生成 用のインバー夕回路が備えられている。
このようなインバー夕回路としては、 例えば第 7 図に示すよう に、 ディスプレイ装置において主電源回路から出力される直流電 源を入力して交流電圧を生成するようにされている。
この図に示される液晶ディスプレイ装置では、 先ず、 整流平滑 回路 1 0 1 により商用交流電源 A Cを入力して直流電圧を生成 するようにされている。 そして、 整流平滑回路 1 0 1 の後段に接 続された主電源回路 (DC-DCコンバータ) 1 0 2 において、 整流 平滑回路 1 0 1 から出力された直流電圧について直流一直流電 力変換を行って、 例えば安定化された所定のレベルの直流電源電 圧を出力するようにされている。 ここで、 主電源回路 1 0 2 にお いては、 例えば絶縁トランスなどにより一次側と二次側を直流的 に絶緣するようにされている。 つまり、 商用交流電源側である一 次側から直流電圧を入力し、 二次側から直流電源電圧を出力する ようにしている。
主電源回路 1 0 2 の二次側から出力される直流電源電圧は、 図 示するようにして、 この直流電源電圧を電源として動作する負荷 1 0 3 に供給される。 そしてこの場合には、 主電源回路 1 0 2か らの直流電源電圧は、 図示するように分岐してイ ンバー夕回路 1 0 4に対しても供給される。
インバー夕回路 1 0 4では、 入力された直流電源電圧について 直流一交流電力変換を行って、 交流電圧をバックライ ト部 1 0 5 に供給する。 バックライ ト部 1 0 5は、 この交流電圧によって発 光駆動されることになる。
この場合、 上記主電源回路 1 0 2 としては、 一次側にスィ ッチ ングコンバータ、 二次側に整流平滑回路を備え、 一次側において 得られたスイ ッチング出力を二次側において整流平滑して、 上記 電源電圧としての直流電圧を得るようにされている。 従ってこの 場合のインバー夕回路 1 0 4は、 図示するようにこの主電源回路 1 0 2 の二次側に得られた直流電源を入力するようにされてい る。
そして、 このイ ンバー夕回路 1 0 4では、 このように得られる 直流電源に対して直流一交流電力変換を行い、 この結果得られた 交流電圧によってバック ライ ト部 1 0 5 を駆動するものとされ る。
また、 一方で、 L E Dによるバックライ ト部を備えた液晶ディ スプレイ装置の場合の構成としては、 次の第 8図に示すようにな る。 なお、 第 8図では、 第 7図にて説明した部分と同様の部分に は同一符号を付している。
図示するようにバックライ ト部 1 1 0 として L E Dを用いた 場合、 二次側においてこのバックライ ト部 1 1 0 を駆動する駆動 回路系として、 チョ ッパーレギユレ一夕 1 0 9が備えられる。 こ の第 8図に示される例の場合は、 バックライ ト部 1 1 0 を形成す る複数の L E Dに対して、 複数のチヨ ッパ一レギユレ一夕 1 0 9 a、 1 0 9 b、 1 0 9 cが並列接続されている。
これら複数のチョ ッパーレギユレ一夕 1 0 9 a、 1 0 9 b、 1 0 9 cのそれぞれには、 複数の L E Dによる直列接続回路が接続 されている。 そして、 これらチョ ッパーレギユレ一夕 1 0 9は、 主電源回路 1 0 2 によって二次側に得られた直流電圧を入力し、 この直流電圧に対する直流一直流電力変換を行う。 そして、 これ により得られた直流電圧について、 L E Dに流れる電流レベルの 検出結果に応じた安定化を行った上で、 この安定化出力に基づい て複数の L E Dを発光駆動するようにされている。
この場合において、 複数のチヨ ッパーレギユレ一夕 1 0 9 を並 列に接続しているのは、 液晶ディスプレイ.の画面サイズが大型と されて L E Dの数が比較的多くなる場合や、 必要輝度が高く駆動 用の直流電流レベルとして比較的高レベルが必要となる場合等 に対応するためである。 つまり、 このように駆動すべき L E Dの 数が多い場合ゃ大電流が必要となった場合に、 例えば 1 つのチヨ ッパ一レギユレ一夕 1 0 9 により複数の L E D直列接続回路を 駆動するように構成した場合には、 チョ ッパーレギユレ一夕 1 0 9 自体の回路サイズが大型化してしまうところを、 このように複 数並列接続したことで回避できるものである。
上記のように L E Dによるバックライ ト部 1 1 0が用いられ る場合では、 チヨ ッパーレギユレ一夕 1 0 9が、 主電源回路 1 0 2 により得られた直流電圧を入力し、 さらにこの直流電圧に対し て直流—直流変換による電力変換を行ってバックライ ト部 1 1 0駆動用の直流電源を得るようにされている。
なお、 実開平 2 — 7 9 1 8 2号公報には、 ディスプレイ装置の 光源として蛍光管が用いられる場合に備えられるイ ンバー夕回 路に関連する技術が記載されている。
また、 特開 2 0 0 2 - 2 4 4 1 0 3号公報には、 光源として L E Dが用いられる場合に備えられるチョ ッパーレギユ レ一夕に 関連する技術が記載されている。
ところで、 先の第 7図に示したようにして、 主電源回路 1 0 2 の後段にインバー夕回路 1 0 4を設けるという ことは、 上記イン バー夕回路 1 0 4 に電力が供給される以前に、 この主電源回路 1 0 2 において電力変換が行われることになる。 そして、 上記バッ クライ ト部 1 0 5 を駆動するための交流電圧を生成するために、 このイ ンバー夕回路 1 0 4においても再度電力変換が行われる ものとなる。
つまり、 第 7図に示した従来の構成においては、 バックライ ト 部 1 0 5 を駆動するために、 主電源回路 1 0 2、 イ ンバ一夕回路 1 0 4による二度の電力変換を行っていることになる。
また、 第 8図に示した場合も同様にして、 バックライ ト部 1 1 0 を駆動するために、 主電源回路 1 0 2 における直流一直流電力 変換、 及びチヨ ッパーレギユレ一夕 1 0 9による直流一直流電力 変換の二度の電力変換を行うようにされている。
このようにして、 複数回の電力変換が行われることによっては、 電力変換効率が低下して電力損失が増大することになる。
特に近年では、 液晶ディスプレイ分野での技術革新により画面 が大型化しつつあるが、 このように画面が大型となると、 その分 バックライ ト駆動のための消費電力が大きくなり、 これによつて セッ ト全体の消費電力が増大することとなる。 例えば、 画面サイ ズが 4 0インチクラスになると、 セッ ト全体の消費電力が 2 5 0 W程度となる例もあり、 近年の大型ディスプレイでは上記のよう な電力損失が比較的大きなレベルにまで達している。
またこの際、 上記のようにディスプレイが大型化し、 イ ンバー タ回路 1 0 4やチヨ ッパ一レギユレ一夕 1 0 9での消費電力が 増大することによっては、 その分、 主電源回路 1 0 2で大電力を まかなう必要がでて.くる。 つまり、 インバー夕回路 1 0 4、 チヨ ッパーレギユレ一夕 1 0 9が主電源回路 1 0 2 の後段に備えら れることから、 これらにおける消費電力の増大に対応するために 主電源回路 1 0 2がまかなうべき電力が増大することになるも のである。
このために、 先の第 7 図、 第 8図に示した従来の構成によって は、 大画面化が進むほど主電源回路 1 0 2が大型化するものとな り、 これに伴って主電源回路 1 0 2 の回路製造コス トが増加する ものとされていた。
さらに、 上記のようにして主電源回路 1 0 2 において大電力を まかなうようにされることによっては、 この際の電力損失による 発熱量が増大することになる。 そしてこれによつては、 熱対策に 充分なスペースを確保するか、 或いは冷却ファンを設けるなどの 対策が必要となってく る。
しかしながら上記のように発熱対策のためにスペースを設け る場合、 当然装置の大型化につながることになる。 また、 冷却フ アンを設ける場合、 その動作音がユーザーに不快感を与える要因 となる。 発明の開示
そこで、 本発明では以上の問題点に鑑み、 電源装置として以下 のように構成することとした。
すなわち、 先ず、 交流を入力して直流入力電圧を生成する入力 電圧生成部と、 上記直流入力電圧が一次側に入力されるとともに、 直流一直流電力変換を行う ことで、 上記一次側と絶縁された二次 側において、 所定の負荷に供給すべき直流電源電圧を生成する第 1 の電力変換部とを備える。
そして、 上記直流入力電圧が一次側に入力されるとともに、 直 流一交流変換による電力変換を行う ことで、 上記一次側と絶縁さ れた二次側において、 バックライ トに供給すべき電源電圧を生成 する第 2 の電力変換部を備えるようにした。
ディスプレイ装置として、 バックライ トを用いて画像表示する ディ スプレイ部をさらに備えるようにした。
このような本発明の構成によれば、 上記第 2の電力変換部は、 上記第 1 の電力変換手段から出力される直流出力電圧ではなく 、 上記入力電圧生成部により生成される直流電圧を直接的に入力 して動作することになる。 つまり、 本発明によっては、 複数回の電力変換が行われる回路 構成は採らないようにされているものである。
このようにして本発明よれば、 ディスプレイ装置におけるバッ クライ 卜の駆動用電圧を生成するための構成として、 複数回の電 力変換が行われる回路系がなくなり、 これによつて電源装置にお ける電力損失を従来の構成と比較して低減することが可能とな る。
また、 本発明によれば、 第 1 の電力変換部と 第 2の電力変換 部は 、 直列接続された関係ではなく 直流入力電圧に対して並列 接続された関係となるので、 第 1 の電力変換部がまかなうべき電 力は 、 第 2の電力変換部の消費電力とは独立したものとなる のために、 第 2 の電力変換部側に接 された負荷の消費電力が増 加する場合にも、 上記第 1 の電力変換部の容量を増やす必要がな くなる 図面の簡単な説明
1 図は、 本発明における第 1 の実施の形態としての液晶ディ スプレイ装置における電源装置の構成を簡略化して示した図で ある。
第 2図は、 実施の形態の電源装置が備える整流平滑回路の構成 例を示す回路図である。
第 3図は、 第 1 の実施の形態の電源装置が備えるインバー夕回 路の構成を示す回路図である。
第 4図は、 第 1 の実施の形態の変形例としての電源装置の構成 を簡略化して示した図である。
第 5図は、 変形例の電源装置が備える P F Cコンバータ回路の 構成例を示す回路図である。
第 6図は 、 本発明における第 2の実施の形態としての液曰曰丁ィ スプレイ装置における電源装置の構成例を示した図である
第 7図は 、 従来例として、 蛍光管によるバックライ ト部を備え る液晶ティスプレイ装置における電源部の構成を簡略的に示し たブロック図である。
第 8図は 、 従来例として、 L E Dによるバックライ ト部を備え る液晶ディスプレイ装置における電源部の構成を簡略的に示し たブロック図である。 発明を実施するための最良の形態
以下、 発明を実施するための最良の形態 (以下実施の形 とす る ) について説明していく。
1 図は 、 第 1 の実施の形態としてのディスプレイ装置 2 0 は 例えば液晶ディスプレイ装置であって、 この液晶ディスプレイ装 置に電源供給する電源装置 1 0 の構成を含んだものを簡略化し て示したブ口ック図である。
先ず 実施の形態の電源装置 1 0 としては、 液晶ディスプレイ 装置の 源部として備えられるものとされる。 そして、 この電源 装置 1 0 によ 生成される電源電圧は、 直流電源電圧を入力して 動作する各種の回路部に相当する負荷 3 と、 交流電圧により駆動 されるハ、ックラィ ト部 5 とに供給される。 このパ'ックライ 卜部 5 によつてディスプレイ部 6としての液晶ディスプレイのパネル背 面が照射されて画像表示が行なわれる。
第 1 図において、 整流平滑回路 1 は、 図示する商用交流電源 A Cを整流平滑して直流入力電圧 E i を生成する。 この整流平滑回路 1 としては、 例えば第 2図に示すように、 整 流ダイォー ド D 1 〜 D 4の 4本の整流ダイォー ドからなるブリ ッジ整流回路 D i と、 このブリ ッジ整流回路 D i による整流出力 を平滑する平滑コンデンサ C 1 とを備えて構成される。
図示するように、 上記ブリ ッジ整流回路 D i の正極入力端子は 商用交流電源 A Cの正極ラインに対して接続される。 そして、 正 極出力端子が平滑コンデンサ C 1 の正極端子に対して接続され る。 この平滑コンデンサ C 1 の負極端子は一次側アースに接地さ れる。 さ らに、 上記ブリ ッジ整流回路 D i の負極入力端子は一次 側アースに対して接地され、 負極出力端子は商用交流電源 A Cの 負極ライ ンに対して接続されている。
このように構成される整流平滑回路 1 において、 商用交流電源 A Cからの入力電圧が正極性となる半周期間は、 整流ダイオー ド D 1 、 整流ダイオー ド D 3が導通し、 これらの整流出力が平滑コ ンデンサ C 1 に充電される。 また、 商用交流電源 A Cからの入力 電圧が負極性となる半周期間は、 整流ダイォ一 ド D 2、 整流ダイ オード D 4が導通し、 これらの整流出力が平滑コンデンサ C 1 に 充電される。
つまり この場合、 交流入力電圧が正 Z負となる各半周期間で充 電が行われる、 全波整流による整流平滑動作が得られるものであ る。 そして、 このような整流平滑動作が行われる結果、 平滑コン デンサ C 1 の両端には、 商用交流電源 A Cのレベルの等倍に対応 したレベルによる直流入力電圧 E i が得られる。 これは、 いわゆ るコ ンデンサイ ンプッ ト方式によ り直流入力電圧 E i を生成す る構成とされているという ことがいえる。
なお、 整流平滑回路 1 の構成としては、 この第 2 図に示したも のに限定されず、 例えば倍電圧整流平滑回路とする等、 コンデン サインプッ ト方式として他の構成が採られてもよい。
ここで、 本実施の形態の場合、 このような整流平滑回路 1 に対 しては、 第 1 図に示すように主電源回路 2 とインバー夕回路 4 と が並列に接続される。
主電源回路 2は、 上記商用交流電源 A C側と負荷 3側とを絶縁 する絶縁トランスを備え、 その一次側にスイ ッチング素子、 二次 側に整流平滑回路を備えた、 いわゆるスイッチングコンバータと しての構成を採るものとされる。 この主電源回路 2は、 上記整流 平滑回路 1 から供給された直流入力電圧 E i をスイ ッチングコ ンバ一夕を形成するスイ ッチング素子によりスイ ッチングし、 そ の出力を上記絶縁トランスの二次側に励起させ、 これを上記二次 側の整流平滑回路において整流平滑して直流電圧を得る。 このよ うにして得られた直流電圧を、 図示する負荷 3の動作電源 (直流 電源電圧) として供給する。
インバー夕回路 4は、 この場合は上記整流平滑回路 1から供給 される直流入力電圧を利用してバックライ ト部 5 を駆動する。
この場合のインバー夕回路 4 としては、 商用交流電源 A Cに対 して直流的に絶縁されていない一次側において、 上記整流平滑回 路 1 によ り生成された直流入力電圧 E i を直接入力するように される。 そして、 このように一次側において入力した直流入力電 圧 E i について直流→交流電力変換を行って、 これに応じた交流 電圧を、 商用交流電源 A Cに対して直流的に絶縁された二次側に 得るように構成されている。
このようなインバー夕回路 4の内部構成は、 例えば次の第 3図 に示すようになる。 第 3図において、 イ ンバー夕回路 4では、 図示する制御 ' 駆動 回路 4 aの制御によりスイ ッチング素子 Q l 、 スイ ッチング素子 Q 2 を駆動して、 バックライ ト駆動用の交流電圧を得る、 他励式 の構成を有する。 また、 この場合、 インバータ回路 4により駆動 されるバックライ ト部 5 には、 例えば図のように蛍光管 1 4 a〜 1 4 dの 4本の蛍光管 1 4が配置される。
先ず、 この図において、 図示する端子 t l 、 端子 t 2間には、 第 1 図に示した整流平滑回路 1 から供給される直流入力電圧 E i が印加される。
上記端子 t 1 に対しては、 この場合は MO S — F E Tとされた 上記スイッチング素子 Q 1 のドレイ ンが接続されている。 そして、 このスイッチング素子 Q 1 のソースは、 同じく MO S— F E Tに よる上記スイ ッチング素子 Q 2 の ドレインに対して接続される。
また、 このスイ ッチング素子 Q 2のソースは、 上記端子 t 2 と 接続されている。
上記スイッチング素子 Q 1、 及びスイ ッチング素子 Q 2のゲー トに対しては、 それぞれ制御 ·駆動回路 4 aからの制御信号が印 加される。
この制御'駆動回路 4 aは、プログラムされた I C ( Integrated Circui t) であり、 これらスイ ッチング素子 Q l 、 スイ ッチング 素子 Q 2が交互にオン Zオフするように制御を行う。
スイ ッチング素子 Q 1 のソースとスイ ッチング素子 Q 2 の接 続点 (スイ ッチング出力点) に対しては、 図示する トランス T 1 の一次巻線 Nal、及びトランス T 2の一次巻線 Nbl の一端がそれ ぞれ接続される。 また、 上記一次巻線 Nal の他端は、 コンデンサ C 2 を介して端子 t 2 と接続され、 上記一次巻線 Nbl の他端は、 これら一次巻線 N al とコ ンデンサ C 2 との接続点に対して接続 される。
ここで、 これら トランス T 1及びトランス T 2 において、 上記 一次巻線 Nal、 一次巻線 Nbl は、 この場合、 共に商用交流電源 A Cに対しては絶縁されていない。 つまり この場合、 上記した端子 t 1 —端子 t 2 間に直流入力電圧 E i が印加されている こ とか らも理解できるように、 このイ ンバー夕回路 4におけるこれら一 次巻線 Nal、 一次巻線 Nbl から前段が、 商用交流電源 A Cに対し て直流的に絶縁されていない一次側に在ることになる。
従ってこの場合のイ ンバー夕回路 4においては、 後段に備えら れる負荷 (バック ライ ト部 5 ) との一次側と二次側との直流的絶 縁状態を、 これら トランス T l 、 トランス Τ 2 において確保する ものとしている。 このために、 この場合の トランス T l、 トラン ス Τ 2 においては、 一次巻線 N a 1 と二次巻線 N a2、 一次巻線 N bl と二次巻線 Nb2 との間に充分な距離を確保しておく等、 それ ぞれ一次側と二次側との間で充分な絶縁状態が得られるよう に しておく必要がある。
上記 トランス T 1 の二次巻線 Na2 の一端に対しては、図示する よう に電流制限用のコ ンデンサ C C 1 とコ ンデンサ C C 2が並 列に接続され、 さ らに、 これらコ ンデンサ C C 1 、 C C 2 に対し ては、 蛍光管 1 4 a、 蛍光管 1 4 bの一端が接続されている。 そして、 これら蛍光管 1 4 a、 蛍光管 1 4 bの他端は、 それぞ れ上記二次巻線 Na2 の他端と接続されている。
同様に、 トランス T 2の二次巻線 Nb2の一端に対しては、 図示 するよう にコ ンデンサ C C 3 とコ ンデンサ C C 4が並列に接続 され、 さ らに、 これらコ ンデンサ C C 3、 C C 4に対し、 蛍光管 1 4 c、 蛍光管 1 4 dの一端が接続されている。 そして、 これら 蛍光管 1 4 c 、 蛍光管 1 4 dの他端が、 上記二次巻線 N b 2 の他 端と接続されている。
フィー ドバック回路 4 bは、 図示する検出回路 4 c により検出 される蛍光管 1 4 dの管電圧を入力し、 この管電圧のピーク整流 を行う。 そして、 その出力を上記制御 · 駆動回路 4 aに対して調 光信号として供給する。 制御 · 駆動回路 4 aは、 この調光信号に 基づき、 蛍光管 1 4 a〜 l 4 dの発光量を一定とする制御を行う ようにされている。
なお、 このフィードバック回路 4 bは、 例えばフォ ト力プラ等 により絶縁しておく。
このような構成によるインバ一夕回路 4においては、 端子 t 1
―端子 t 2間に得られる直流入力電圧 E i が、 制御 ·駆動回路 4 の制御によ り交互にオン オフするよう にされたスイ ツチング 素子 Q l 、 スイ ッチング素子 Q 2 によりスイ ッチングされる 。 そ して、 そのスイ ッチング出力が、 卜ランス T l 、 卜ランス T 2の 一次巻線 Nal、 一次巻線 Nbl のそれぞれに得られる。
このように一次巻線 Nal、一次巻線 Nbl にスイ ッチング出力が 得られることにより、 二次巻線 Na2、 二次巻線 Nb2 には、 これら 一次巻線 Nal、一次巻線 Nbl との巻線比に応じた高圧の交流電圧 が励起される。 そして、 このように二次卷線 N a2、 二次卷線 N b2 に交流電圧が励起されることによって、 ノ ックライ ト部 5 におけ るそれぞれの蛍光管 1 4 a〜 l 4 d に管電流が流れるよう にな
Ό 、 これら蛍光管 1 4 a〜 l 4 dが発光するものとなる。
なお、 ここではイ ンバー夕回路 4を他励式としたが、 自励式と してもよい。 このようにして第 1 の実施の形態では、 整流平滑回路 1 に対し て主電源回路 2 とィ ンバ一夕回路 4 とを並列に接続することに より 、 主電源回路 2 を介さずにバックライ ト部 5 を駆動するため の交流電圧を得るようにしたから、 主電源回路 2 においてハ'ック ラィ ト駆動用の交流電圧を得るための電力損失が生じない と になる
また、 この際、 上記交流電圧をインバ一タ回路 4による一度の 電力変換により得ることができるようになるから、 第 7図に示し た従来の構成と比較して、 電源装置における電力損失を低減する ことができる。
このことを以下の式により説明してみる。
先ず、 主電源回路における電力変換効率を 7] 1、 インバー夕回 路における電力変換効率を 7? 2 とし、 またバックライ ト部以外の 負荷電力を P l、 バックライ ト部の負荷電力を P 2 とすると、 第 7図に示した従来の構成による入力電力は、
( 1 / V \ ) P 1 + ( 1 / 7? 1 7? 2 ) P 2
となる。 そして、 第 1 図に示した実施の形態の構成による入力 電力は、 主電源回路 2及びインバー夕回路における電力変換効率 がそれぞれ第 6図の場合と同等とすると、
( 1 / V \ ) P 1 + ( 1 / 7? 2 ) P 2
となる。 つまり、 主電源回路の後段にィ ンバ一夕回路が設けら れる第 7図の構成においては、 交流電圧を得る経路での電力変換 効率が 、 主電源回路とインバー夕回路における電力変換効率の積 とされることになるから、 その分電力変換効率の低下が者しくな る。
これに対し本実施の形態では、 交流電圧を得る経路での電力変 換効率は、 イ ンバー夕回路にのみ依存するから、 この点で従来よ り も電力変換効率を高く保つことができる。 つま り、 これによつ て第 7 図に示した従来の構成よ り も電力損失を低減する こ とが できるものである。
また 、 上記のようにバックライ ト駆動用の交流電圧を生成する 経路での電力変換効率を従来よ り高く 保つこ とができる こ とに よつて 、 例えばディ スプレイが大型化し上記バックライ ト部の負 荷電力 P 2 が増大した場合の電力損失量を、 従来よ り も低く抑え ることができる。
つま り この場合、 第 7 図の構成と本実施の形態の電源装置 1 0 の構成との入力電力の差は、
( 1 / 7? 1 7? 2 - 1 ) P 2
となり、バックライ ト部の負荷電力 P 2 の値が大きくなるほど、 従来との入力電力量の差を広げることができる。
このことから、 本実施の形態の電源装置 1 0 によっては、 画面 サイズが大きく なり、 イ ンバー夕回路 4 における消費電力が大き く なる程、 従来の構成と比較してよ り大きな電力損失低減効果を 得ることができるものである。
また 、 さ らに、 上記のよう に主電源回路 2 を介さずにバックラ ィ 卜部 5 を駆動するための交流電圧を得ることによっては、 ディ スプレイが大型化した場合にも、 主電源回路 2 において大電力を まかなう必要がなくなる。 そして、 これによつては、 ディ スプレ ィの大型化に伴い主電源回路 2 における発熱量が増大する こ と もなく なり、 これによつて従来のように熱対策に充分なスペース を確保する必要がなく なってディ スプレイ装置の小型化が図ら れる。 また、 熱対策用の冷却ファンを設ける必要もなくなり、 その動 作音がユーザ一に不快感を与えるといったこともなくすことが でさる
また 、 主電源回路 2は、 バックライ ト部 5 に電力を供給する必 要がなくなるから、 この主電源回路 2の電源仕様としては、 負荷
3の条件のみに依存すればよいことになる。 これにより、 主電源 回路 2 の設計についての標準化を図ることが容易になるもので ある
これに対し先の第 7図に示した従来の構成では、 バックラィ 卜 部 1 0 5の種類 (ディスプレイパネルの種類) などに依存して、 ィンバ —夕回路の仕様も変更されるのに伴い、 主電源回路の仕様 も変更する必要が生じていたために、 設計の標準化は困難とされ ていたものである。
で、 従来において、 上記実施の形態のように主電源回路と ィンバ一夕回路とを並列に備えられなかったのは、 以下のような 事情に
従来の液晶ディスプレイの分野では、 例えば 1 5 1 7ィンチ 程度の小型画面サイズのディスプレイが主流で、 これに伴いィン バ一夕部の消費電力も比較的少ないものとされていた。 このため に従来においては、 バックライ ト駆動用の交流電圧を生成する過 で生じる電力損失が、 比較的少ないレベルで抑えられ、 このこ とから、 主電源回路からの電力を利用しインバー夕を非絶縁とす る従来からの構成を踏襲した方が、 コス ト · 回路スペース的に都 合がよく有利とされていたものである。
本発明が想起されるに至ったのは、 そもそも近年における液晶 ディスプレイの画面の大型化に伴い、 ノ ックライ トの消費電力が 増大化しはじめたことによる。
つまり、 近年では、 例えば画面サイズが 4 0インチクラスに至 るようなディ スプレイ装置が普及してきているが、 このような 4 0インチクラスのディスプレイでは、 例えばバックライ トイ ンバ —夕における消費電力が 2 0 0 W程度となっている例もある。 そ して、 このようにバックライ トイ ンバ一夕における消費電力が増 大することにより、 従来の構成では各電力変換過程での電力損失 量が比較的大きなものとなり、 多くの問題を抱えるようになった。
これを解決する技術として、 本発明が想起されたものである。 上述のように、 本発明を液晶ディスプレイ装置に適用することに よっては、 ディスプレイが大型化するほど電力損失低減効果が得 られるものであるから、 このようなディスプレイの大型化という 今後の環境の変化に伴いその重要度が増すものと考えられる。
いては、 第 1 の実施の形態の変形例としての電源装置の構成 について説明する。
第 4図は、 第 1 の実施の形態の変形例としての電源装置 1 1 の 構成を簡略化して示すブロック図である。
この電源装置 1 1 としては、 先の第 1 図に示した整流平滑回路
1 に代えて、 P F C (Power Factor Correct ion) コンノ、、一夕回 路 7 を設けるようにしたものである。 すなわち、 例えば電源高調 波歪への対応策の 1つとして、 従来より主電源回路の前段に力率 改善のためのコンバータを備えるという ことが行われているが、 これと同様に電源装置 1 1 としても、 主電源回路 2、 インバー夕 回路 4の前段に P F Cコンバータ回路 7 を設けるようにするも のである
のような P F Cコンバータ回路 7 の構成は、 例えば第 5図に 示すようになる。
この図に示す P F Cコンバータ回路 7 としては、 P W M制御方 式の昇圧型コンパ一夕とされ、 力率を 1 に近づけるように動作す ると共に、 直流入力電圧 E i の安定化を行うように動作するもの とされる。
先ず、 この P F Cコンパ一夕回路 7 においては、 図示するよう に商用交流電源 A Cからの交流入力電圧 V ACが、ブリ ッジ整流回 路 D i の入力端子に供給されている。 そして、 このブリ ッジ整流 回路 D i の正極 負極ラインに対しては、 並列に出力コンデンサ C oが接続されている。 プリ ッジ整流回路 D i の整流出力が出力 コンデンサ C oに供給されることで、 出力コンデンサ C oの両端 電圧として、 図のように直流入力電圧 E i が得られる。
この直流入力電圧 E i は、 第 4図に示す主電源回路 2、 及びィ ンバータ回路 4の入力電圧として供給される。
また、 力率改善のための構成としては、 図示するように、 イ ン ダク夕 L、 高速リカバリ型ダイオー ド D、 スイ ッチング素子 Q 3 が備えられる。
上記インダクタ L、 高速リカバリ型ダイオー ド Dは、 ブリ ッジ 整流回路 D i の正極出力端子と出力コンデンサ C oの正極端子 との間に、 直列に接続されている。
そして、 上記スイ ッチング素子 Q 3 としては、 この場合 M O S 一 F E Tが選定され、 図示するようにイ ンダクタ Lとダイオー ド Dの接続点と、 ブリ ッジ整流回路 D i の負極ライ ンとの間に挿入 される。
このスイ ッチング素子 Q 3 に対しては、 図示は省略しているが、 これを駆動するための駆動制御回路が備えられる。 この駆動制御回路によっては、交流入力電圧 V AC と直流入力電 圧 E i の変動差分とに基づいた P W M制御が行われ、 スィ ッチン グ素子 Q 3のオン期間のデューティが可変制御される。 そして、 この結果、 ブリ ッジ整流回路 D i に流れる交流入力電流の波形が、 交流入力電圧 V AC と同一波形となるように制御が行われ、力率が ほぼ 1 に近づくように力率改善が図られることになる。
またこの場合、 スイ ッチング素子 Q 3のオン期間のデューティ は、 直流入力電圧 E i の変動差分に応じても変化することになる から、 直流入力電圧 E i の変動も抑制される。 つまり、 これによ つて直流入力電圧 E i の安定化が図られるものである。
このような変形例としての電源装置 1 1 によっても、 イ ンバー 夕回路 4が主電源回路 2 を介さずにバックライ ト駆動用の交流 電圧を生成することができるから、 バックライ ト駆動用の交流電 圧を得る際の電力損失を従来より も低減することができる。 つま り この場合は、 先の第 7 図に示した従来の構成に対して P F Cコ ンバ一夕回路 7 と同等の回路が備えられた場合と比較して、 電力 損失を低減させることができるものである。
さ らに、 P F Cコンバータ回路 7 を備える構成の場合、 主 源 回路 2及びィ ンバ一夕回路 4 に入力される直流入力電圧 E i は 安定化されたものであるので、 イ ンバ一夕回路 4 としても 、 安定 的な直流電圧を入力することを前提として設計すればよい と になる 。 このため、 インバー夕回路 4についての設計は容易なも のとなるので、 力率改善を図る構成と組み合わされている占も含 め、 実用上も非常に有利である。
さらに、 次の第 6図には、 本発明における第 2 の実施の形能と しての電源装置 1 2 の構成例について示す。 なお、 第 6図におい て、 既に第 1 図にて説明した部分については同一の符号を付して 説明を省略する。
第 6図において、 この場合の電源装置 1 2 としても液晶ディス プレイ装置 2 1 の電源部として備えられるものとされ、 負荷 3 と itに 、 図示するバックライ ト部 1 5の駆動用電源を供給するよう にされている。
そして、 この場合の液晶ディスプレイ装置のバックライ ト部 1
5 としては L E Dを用いたものとされ、 ノ ックライ ト部 1 5 に対 しては直流による駆動電流を供給するようにされている。
バックライ ト部 1 5 に対して直流電流を供給する構成として、 の場合は複数の DC- DCコンパ一夕 9 a 9 b 9 c を備えるも のとしている。
の場合のバックライ ト部 1 5 としては、 図のように所定複数 の L E Dが直列接続されて成る直列接続回路の複数から成るよ にされている。 そして、 これらそれぞれの L E Dの直列接続回 路に対して直流電流を供給する系として、 DC- DCコンバータ 9 a
DC-DC コンバータ 9 b DC-DC コンバータ 9 cの複数が備えられ ている。
そして、 これら DC -DCコンバータ 9 a 9 b 9 c は、 図示す るようにして各々が商用交流電源 A Cと絶縁されていない一次 側において、 整流平滑回路 1 により生成される直流入力電圧を入 力するように接続される。つまり、これら DC- DCコンバータ 9 a 9 b 9 c としても、 先の第 1 図に示したインバー夕回路 4 と同 様に、 整流平滑回路 1 に対して、 主電源回路 2 と並列に接続され ているものである。
そして、 これら DC- DC コンバータ 9 a 9 b 9 c としては、 主電源回路 2 の構成とほぼ同様に、 商用交流電源 A C側と負荷側 とを絶縁する絶縁トランスを備え、 その一次側にスイ ッチング素 子とこのスイ ッチング素子を駆動, 制御する駆動回路、 二次側に 整流平滑回路を備えたスィ ツチングコンバータとしての構成を 採る。 つまり、 これにより、 一次側において入力された上記直流 入力電圧に応じた直流電圧を二次側において得るようにされる。
そして、 これら DC- DC コンバータ 9 a、 9 b、 9 c としても、 それぞれ上記した所定複数の L E Dの直列接続回路に供給すベ き直流電流の安定化のための制御系を備えるようにされる。 この ような安定化制御系としては、 例えば L E Dの直列接続回路に流 れる電流レベルの検出を行なう検出回路 4 d、 4 e、 4 f、 検出結 果を絶縁して一次側にフィー ドバックするフィ ー ドバック回路 4 g、 4 h、 4 i、フィ一 ドバック回路を介しての検出結果に応じて、 上記駆動回路からスィ ツチング素子へ供給される駆動信号のス イ ッチング周波数を可変制御するように構成する。
このような第 2 の実施の形態の電源装置 1 2 の構成によって も、 液晶ディスプレイ装置のバックライ 卜駆動用の電源電圧を得 るための電力変換手段としては、 主電源回路 2 の後段ではなく、 整流平滑回路 1 の後段において主電源回路 2 と並列に接続され るものとなる。 つまり、 これにより第 2の実施の形態の電源装置 1 2の構成によっても、バックライ ト駆動用の電源電圧は、 DC-DC コンバータ 9 a、 9 b、 9 c のそれぞれによる一度の電力変換に より得ることができるようになるから、 第 8図に示した従来の構 成と比較して、 電源装置における電力損失を低減することができ る。
また、 第 2の実施の形態の電源装置 1 2 としても、 上記のよう に主電源回路 2 を介さずにバック ライ ト部 1 5 を駆動するため の直流電圧を得ることができるので、 ディスプレイの大型化に伴 つて主電源回路 2 において大電力をまかなう必要もなくなる。
また、 上記のようにして整流平滑回路 1 に対して主電源回路 2 と DC-DCコンバータ 9 a、 9 b、 9 cが並列に接続されることで、 第 2の実施の形態の電源装置 1 2の構成としても、 従来例として 第 8図に示した構成と比較して、 バックライ ト駆動のための消費 電力が大きくなる程よ り大きな電力損失低減効果が得られるも のとなる。
さ らに、 この場合も主電源回路 2 としては、 ノ ックライ ト部 1 5に電力を供給する必要がなくなるから、 主電源回路 2の電源仕 様は負荷 3の条件のみに依存すればよいことになる。
なお、 第 2の実施の形態では DC- DC コンバータ 9の複数を並列 に接続する例を挙げたが、 このように DC-DC コンバータ 9 を並列 接続するのは、 先の第 8図におけるチヨ ツバ一レギユレ一タ 1 0 9の場合と同様、 DC- DC コンバータ 9の 1つのみで複数の L E D 直列接続回路を駆動する場合は DC- DCコンバータ 9が大型化して しまう ことによる。
また 、 特にこの場合は DC-DCコンバータ 9 について複数を並列 接続していることで、 例えば DC-DC コンバ一夕 9 を 1つのみ備え る構成とした場合より も、 個々の DC- DC コンバ一夕 9 における絶 縁トランスのコアの小型化や耐圧の低下等による素子の小型化 が図られるので、 DC- DC コンバータ 9 a、 9 b 、 9 c の口計サイ ズの大型化は微少なものとすることができる。
また、 図示は省略したが、 第 2の実施の形態の電源装置 1 2 と しても、 先の第 4図、 第 5図において示した変形例の場合と同様 に、 整流平滑回路 1 を P F Cコンバータ回路 7 とする構成を採る ことができる。
また、 第 2の実施の形態では、 L E Dの直列接続回路が複数設 けられ、 これらのそれぞれについて DC-D C コンバータ 9 を備える 例を挙げたが、これに代え、主電源回路 2 と並列に接続する DC-DC コンバータ 9 は 1 つのみとした上で、 これら複数の L E D直列接 続回路に対しては、 この DC-DC コンバータ 9内の絶縁トランスを 複数並列接続して、 二次側に複数の直流電圧生成系を設けること で対応するものとしてもよい。
或いは、 同様に主電源回路 2 と並列に接続する DC- DCコンバー 夕 9は 1つとして、 絶縁トランスを複数直列接続して二次側に複 数の直流電圧生成系を設けることで対応するものとしてもよい。
そして、 このように DC-DCコンバータ 9における絶縁トランス を複数とした場合は、 例えばそれぞれの トランスの二次側におい て、 例えば L E D直列接続回路に流れる電流レベルの検出結果に 応じて二次側で独立して安定化を行う構成を備えるようにすれ ば、 DC- DC コンバータ 9 を複数並列接続した場合と同様にそれぞ れの L E D直列接続回路に供給されるべき直流電流の安定化を 図ることができる。
なお、 これまでに説明した実施の形態では、 本発明の電源装置 が液晶ディスプレイ装置の電源部として備えられ、 イ ンバー夕回 路 4又は DC-DCコンバータ 9がバックライ ト駆動用の交流電圧又 は直流電圧を生成する場合を例に挙げたが、 本発明としては、 こ れら第 2 の電力変換手段が例えばバック ライ 卜以外の交流駆動 又は直流駆動の負荷に対して電源電圧を供給するように構成さ れる場合にも広く適用することも可能である。 また、 実施の形態において、 イ ンバ一夕回路 4 、 DC-DC コンパ 一夕 9が備える トランスとしては、 電磁トランスの他にも圧電 ト ランスを採用する こともできる。

Claims

請求の範囲
1 . 交流を入力して直流入力電圧を生成する入力電圧生成部と、 上記直流入力電圧が一次側に入力されるとともに、 直流一直流 電力変換を行う ことで、 上記一次側と絶縁された二次側において 所定の負荷に供給すべき直流電源電圧を生成する第 1 の電力変 換部と、
上記直流入力電圧が一次側に入力されるとともに、 上記一次側 と絶縁された二次側においてディ スプレイ装置のバックライ ト に供給すべき電源電圧を生成する第 2 の電力変換部と
を備えることを特徴とする電源装置。
2 . 上記入力電圧生成部は、上記交流を整流するダイオー ドと、 このダイオー ドの整流出力を平滑するコンデンサとから成り、 こ のコンデンサの両端電圧として上記直流入力電圧を得るように された整流平滑回路であることを特徴とする請求の範囲第 1項 に記載の電源装置。
3 . 上記入力電圧生成部は、 力率を改善すると共に、 安定化さ れた直流出力電圧を上記直流入力電圧と して出力する力率改善 コンバータとされることを特徴とする請求の範囲第 1 項に記載 の電源装置。
4 . 上記バックライ 卜への電圧または電流を検出する検出部、 および該検出部からの検出信号をフィー ドバックする帰還部を さ らに備え、
上記第 2の電力変換部は、 上記直流入力電圧をスイ ッチングす るスイ ッチング素子、 該スイ ッチング素子を駆動する駆動部を有 し、 上記帰還部は、 上記検出信号を絶縁してこの絶縁された検出信 を上記駆動部にフィ ー ドバッ クする こ とによ り上記電圧また は電流を安定化する こ とを特徴とする請求の範囲第 1 項に記載 の電源装置。
5 5 . 上記ディ スプレイ装置には複数個のバックライ トが備えら れ 、 上記第 2 の電力変換部は、 上記複数個のバックライ トに対応 して所要数設けられる こ とを特徴とする請求の範囲第 1 項に記 載の電源装置。
6 . 上記バックライ 卜 として蛍光管が用いられ、
L 0 上記第 2 の電力変換部は、 直流一交流変換による電力変換を行
Ό ことで、 上記蛍光管に上記電源電圧として交流を供給すること を特徴とする請求の範囲第 4項に記載の電源装置。
7 • 上記バック ライ 卜として発光ダイオー ドが用いられ、 上記第 2 の電力変換部は、 直流一直流変換による電力変換を行う 5 とで、 上記発光ダイオー ドに上記電源電圧として直流を供給す る とを特徴とする請求の範囲第 4項に記載の電源装置。
8 - バックライ トおよび該バック ライ トを除く負荷を有するデ ィ スプレイ装置であって、
交流を入力して直流入力電圧を生成する入力電圧生成部と、 0 上記直流入力電圧が一次側に入力されるとともに、 直流一直流 電力変換を行う ことで、 上記一次側と絶縁された二次側において 上記負荷に供給すべき直流電源電圧を生成する第 1 の電力変換 部と
上記直流入力電圧が一次側に入力されるとともに、 上記一次側 5 と絶縁された二次側において、 上記バックライ トに供給すべき電 源電圧を生成する第 2 の電力変換部と 上記バック ライ トを用いて画像表示するディスプレイ部と を備える ことを特徴とするディ スプレイ装置。
9 . 上記ディ スプレイ部の光源として複数個のバックライ トが 備えられ、 上記第 2 の電力変換部は、 上記複数個のバックライ ト に対応して所要数設けられる こ とを特徴とする請求の範囲第 8 項に記載の電源装置。
1 0 . 上記バックライ トとして蛍光管が用いられ、
上記第 2 の電力変換部は、 直流一交流変換による電力変換を行 う ことで、 上記蛍光管に上記電源電圧として交流を供給する こと を特徴とする請求の範囲第 8項に記載の電源装置。
1 1 . 上記バックライ トとして発光ダイオー ドが用いられ、 上 記第 2 の電力変換部は、 直流一直流変換による電力変換を行う こ とで、 上記発光ダイオー ドに上記電源電圧として直流を供給する ことを特徴とする請求の範囲第 8項に記載の電源装置。
PCT/JP2004/018418 2004-05-17 2004-12-03 電源装置およびディスプレイ装置 WO2005112245A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/560,215 USRE47794E1 (en) 2004-05-17 2004-12-03 Power supply apparatus and display apparatus
US14/989,388 USRE47993E1 (en) 2004-05-17 2004-12-03 Power-supply apparatus and display apparatus
US10/565,067 US7764022B2 (en) 2004-05-17 2004-12-03 Power supply apparatus and display apparatus
KR1020057024616A KR101142468B1 (ko) 2004-05-17 2004-12-03 전원장치 및 디스플레이장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004145987A JP4794826B2 (ja) 2003-06-06 2004-05-17 電源装置
JP2004-145987 2004-05-17

Publications (1)

Publication Number Publication Date
WO2005112245A1 true WO2005112245A1 (ja) 2005-11-24

Family

ID=35394478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018418 WO2005112245A1 (ja) 2004-05-17 2004-12-03 電源装置およびディスプレイ装置

Country Status (4)

Country Link
US (3) US7764022B2 (ja)
KR (1) KR101142468B1 (ja)
CN (2) CN103746581B (ja)
WO (1) WO2005112245A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474190A (zh) * 2018-12-07 2019-03-15 湖北集润科技有限公司 一种led显示屏供电装置及系统
CN110730528A (zh) * 2019-11-22 2020-01-24 浙江嘉科电子有限公司 一种集鱼灯电源分布式供电系统
CN116390444A (zh) * 2023-04-18 2023-07-04 金华托菲电器有限公司 智能离子体电源及电源系统

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746581B (zh) 2004-05-17 2017-08-08 索尼株式会社 电源设备和显示设备
JP2006216251A (ja) * 2005-02-01 2006-08-17 Koito Mfg Co Ltd 車両用前照灯装置
KR101215513B1 (ko) * 2006-10-17 2013-01-09 삼성디스플레이 주식회사 게이트 온 전압/발광 다이오드 구동전압 발생부와, 이를포함하는 직류/직류 컨버터 및 이를 갖는 액정표시장치와,액정표시장치의 에이징 테스트 장치
WO2008084439A1 (en) * 2007-01-10 2008-07-17 Nxp B.V. Power supply for led backlight
KR100857301B1 (ko) * 2007-02-28 2008-09-05 엘지이노텍 주식회사 엘이디 백라이트 구동회로
JP2008235199A (ja) * 2007-03-23 2008-10-02 Harison Toshiba Lighting Corp 放電灯点灯装置、画像投影装置
US7579786B2 (en) * 2007-06-04 2009-08-25 Applied Concepts, Inc. Method, apparatus, and system for driving LED's
TW200930133A (en) * 2007-12-21 2009-07-01 Alliance Optotek Co Ltd Light emitting diode lamp and driving apparatus for the same
WO2009104508A1 (ja) * 2008-02-20 2009-08-27 シャープ株式会社 バックライト装置およびこれを備えた表示装置
CN101516147A (zh) * 2008-02-21 2009-08-26 富士迈半导体精密工业(上海)有限公司 发光二极管驱动系统
US8085541B1 (en) * 2008-04-15 2011-12-27 Vlt, Inc. Thin flat panel video display
TWM346239U (en) * 2008-07-16 2008-12-01 Gigno Technology Co Ltd Driving device of lighting apparatus
JP2010035270A (ja) * 2008-07-25 2010-02-12 Sanken Electric Co Ltd 電力変換装置
KR101015649B1 (ko) * 2010-06-11 2011-02-22 임태환 전등의 rf 스위치 콘트롤러 전원공급장치
KR101773489B1 (ko) * 2010-09-27 2017-08-31 삼성전자주식회사 전원 공급 장치 및 이를 포함하는 디스플레이 장치
US20130117589A1 (en) * 2011-11-04 2013-05-09 Anand Satyamoorthy Stability control in a voltage scaling system
KR101272227B1 (ko) * 2011-12-28 2013-06-11 주식회사 포스코엘이디 복수의 전원 공급부를 구비한 엘이디 조명장치 및 그 제어방법
US20150241486A1 (en) * 2012-08-29 2015-08-27 Scott T Christensen Controller to determine a risk of thermal damage based on current measurements
TWI541470B (zh) * 2013-02-07 2016-07-11 Hep Tech Co Ltd Dimmable light emitting diode lighting system
KR102389836B1 (ko) * 2015-06-05 2022-04-25 삼성전자주식회사 전원공급장치, 이를 구비한 디스플레이 장치 및 전원 공급 방법
CN106787844B (zh) * 2016-06-21 2023-06-30 中国工程物理研究院应用电子学研究所 紧凑型激光电源
KR102536673B1 (ko) 2018-10-08 2023-05-25 삼성디스플레이 주식회사 표시 장치, 표시 장치를 위한 전원 공급 장치 및 표시 장치의 구동 방법
CN110164354B (zh) * 2019-05-24 2022-06-10 京东方科技集团股份有限公司 基于可编程逻辑器件的数据处理装置及其驱动方法和显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058218A1 (en) * 2000-02-03 2001-08-09 Koninklijke Philips Electronics N.V. Supply assembly for a led lighting module
WO2003005110A1 (en) * 2001-07-03 2003-01-16 Samsung Electronics Co., Ltd. Apparatus for supplying power and liquid crystal display having the same
JP3096519U (ja) * 2003-03-18 2003-09-26 船井電機株式会社 ビデオプリンタおよび液晶表示装置

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119028U (ja) 1976-03-08 1977-09-09
JPH0619315Y2 (ja) 1988-12-06 1994-05-18 第一電機株式会社 パワーmos−fetスイツチング電源回路
JPH0619315A (ja) 1992-07-02 1994-01-28 Minolta Camera Co Ltd 現像装置
JPH07281155A (ja) 1994-04-11 1995-10-27 Canon Inc ランプ制御装置
JP3531385B2 (ja) 1996-10-28 2004-05-31 ソニー株式会社 電源装置
JP3216572B2 (ja) 1997-05-27 2001-10-09 日本電気株式会社 圧電トランスの駆動回路
WO1999007059A2 (en) 1997-08-01 1999-02-11 Koninklijke Philips Electronics N.V. Multiresonant dc-dc converter with full-wave rectifying means
JPH11305198A (ja) 1998-04-24 1999-11-05 Optrex Corp 液晶表示装置
US6232806B1 (en) 1998-10-21 2001-05-15 International Business Machines Corporation Multiple-mode clock distribution apparatus and method with adaptive skew compensation
JP2000137474A (ja) 1998-11-02 2000-05-16 Hitachi Ltd データ処理システム
JP3510513B2 (ja) 1998-12-25 2004-03-29 東光株式会社 多チャンネルインバータ
JP2000304795A (ja) 1999-04-20 2000-11-02 Fuji Xerox Co Ltd 電気部品モジュール
JP2001145347A (ja) 1999-11-15 2001-05-25 Cosel Co Ltd スイッチング電源装置
JP2001228477A (ja) 2000-02-15 2001-08-24 Sakae Tanaka 液晶表示素子の製造方法とバックライト
JP2002125371A (ja) 2000-10-16 2002-04-26 Sharp Corp 多出力電源装置及びそれを備えた電子機器
JP4737828B2 (ja) 2000-12-21 2011-08-03 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6717559B2 (en) * 2001-01-16 2004-04-06 Visteon Global Technologies, Inc. Temperature compensated parallel LED drive circuit
US7071762B2 (en) 2001-01-31 2006-07-04 Koninklijke Philips Electronics N.V. Supply assembly for a led lighting module
JP2002232010A (ja) 2001-02-07 2002-08-16 Sony Corp 表示装置およびその製造方法
JP4305802B2 (ja) 2001-02-14 2009-07-29 日立金属株式会社 発光ダイオード点灯回路
JP2002289383A (ja) 2001-03-23 2002-10-04 Harison Toshiba Lighting Corp 放電灯点灯装置および機器
US6975695B1 (en) 2001-04-30 2005-12-13 Cypress Semiconductor Corp. Circuit for correction of differential signal path delays in a PLL
US6577512B2 (en) 2001-05-25 2003-06-10 Koninklijke Philips Electronics N.V. Power supply for LEDs
JP2003003684A (ja) 2001-06-21 2003-01-08 Akiyama Shigeju 物置付きガレージ
JP4043848B2 (ja) 2001-06-28 2008-02-06 東芝松下ディスプレイテクノロジー株式会社 液晶表示装置およびその製造方法、並びに照明装置の駆動制御方法
US7194052B2 (en) 2001-09-06 2007-03-20 Agere Systems Inc. Data capture circuit with self-test capability
US6597130B2 (en) * 2001-10-13 2003-07-22 Lg. Philips Lcd Co., Ltd. Driving apparatus of discharge tube lamp
US6703796B2 (en) 2001-11-09 2004-03-09 Ambit Microsystems Corp. Power supply and inverter used therefor
CN1215639C (zh) * 2002-01-10 2005-08-17 达方电子股份有限公司 适用于显示装置背光模块的可调亮度变电电路
KR100840933B1 (ko) * 2002-01-31 2008-06-24 삼성전자주식회사 램프 구동 장치 및 이를 갖는 액정 표시 장치
JP2004012778A (ja) * 2002-06-06 2004-01-15 Toshiba Corp プロジェクタ装置とランプ点灯回路及びその制御方法
US20040012556A1 (en) * 2002-07-17 2004-01-22 Sea-Weng Yong Method and related device for controlling illumination of a backlight of a liquid crystal display
KR100892584B1 (ko) 2002-08-26 2009-04-08 삼성전자주식회사 전원공급장치와 이를 갖는 백라이트 어셈블리 및 액정표시 장치
JP3092603U (ja) * 2002-09-05 2003-03-20 船井電機株式会社 プロジェクタ、および電源装置
US20060192927A1 (en) * 2003-03-27 2006-08-31 Toshio Ikeuchi Display
US6936975B2 (en) * 2003-04-15 2005-08-30 02Micro International Limited Power supply for an LCD panel
KR100471161B1 (ko) * 2003-05-28 2005-03-14 삼성전기주식회사 자기 보호기능을 갖는 lcd 패널용 백라이트 인버터
US7042170B2 (en) * 2003-05-31 2006-05-09 Lights Of America, Inc. Digital ballast
JP4794826B2 (ja) 2003-06-06 2011-10-19 ソニー株式会社 電源装置
JP2005129004A (ja) * 2003-10-03 2005-05-19 Sharp Corp 駆動システムおよび交流変換装置
US7659673B2 (en) * 2004-03-15 2010-02-09 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for providing a controllably variable power to a load
TWI277282B (en) * 2004-04-26 2007-03-21 Delta Electronics Inc New structured power supply system for a LCD apparatus
CN103746581B (zh) 2004-05-17 2017-08-08 索尼株式会社 电源设备和显示设备
KR100649508B1 (ko) * 2005-02-02 2006-11-27 권오영 하이브리드 전원시스템
US7667411B2 (en) * 2005-11-24 2010-02-23 Samsung Electro-Mechanics Co., Ltd. Backlight assembly having voltage boosting section with electrically isolated primary side and secondary side
KR101243402B1 (ko) * 2005-12-27 2013-03-13 엘지디스플레이 주식회사 액정표시소자의 하이브리드 백라이트 구동 장치
US7641358B1 (en) * 2007-06-13 2010-01-05 Sunlite Safety Products, LLC Explosion proof lantern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058218A1 (en) * 2000-02-03 2001-08-09 Koninklijke Philips Electronics N.V. Supply assembly for a led lighting module
WO2003005110A1 (en) * 2001-07-03 2003-01-16 Samsung Electronics Co., Ltd. Apparatus for supplying power and liquid crystal display having the same
JP3096519U (ja) * 2003-03-18 2003-09-26 船井電機株式会社 ビデオプリンタおよび液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474190A (zh) * 2018-12-07 2019-03-15 湖北集润科技有限公司 一种led显示屏供电装置及系统
CN110730528A (zh) * 2019-11-22 2020-01-24 浙江嘉科电子有限公司 一种集鱼灯电源分布式供电系统
CN110730528B (zh) * 2019-11-22 2023-09-29 浙江嘉科电子有限公司 一种集鱼灯电源分布式供电系统
CN116390444A (zh) * 2023-04-18 2023-07-04 金华托菲电器有限公司 智能离子体电源及电源系统
CN116390444B (zh) * 2023-04-18 2023-09-01 金华托菲电器有限公司 智能离子体电源及电源系统

Also Published As

Publication number Publication date
KR20070010097A (ko) 2007-01-22
CN103746581B (zh) 2017-08-08
USRE47794E1 (en) 2019-12-31
US7764022B2 (en) 2010-07-27
CN103746581A (zh) 2014-04-23
US20060192501A1 (en) 2006-08-31
USRE47993E1 (en) 2020-05-12
KR101142468B1 (ko) 2012-05-16
CN1826721A (zh) 2006-08-30

Similar Documents

Publication Publication Date Title
WO2005112245A1 (ja) 電源装置およびディスプレイ装置
KR100872467B1 (ko) 액정 표시 장치
US8587220B2 (en) Power converter
US8330391B2 (en) Supply circuit and device comprising a supply circuit
US8242712B2 (en) Power supply apparatus
US20100019692A1 (en) Power conversion apparatus
US6969958B2 (en) Square wave drive system
KR100649508B1 (ko) 하이브리드 전원시스템
US8604707B2 (en) Power supply
US7247996B2 (en) Projector
JP4794826B2 (ja) 電源装置
TW200814501A (en) Power adapter and power supply system using the same
JP2011041465A (ja) 電源装置
US20070091647A1 (en) Switching power supply unit
CN202210400U (zh) 背光源驱动电路及液晶电视机
CN111724747B (zh) 显示装置及电源启动方法
Chou et al. Half-bridge LLC series-resonant converter with hybrid rectifier for LED signage backlighting systems
WO2007010718A1 (ja) 自励式インバータ駆動回路
JP2008177139A (ja) 電源装置
CN102843847B (zh) 萤光灯管的驱动装置
CN117097143A (zh) 一种电源变换电路
KR20120003350A (ko) Led 차동 구동 장치
JP2002315318A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020692.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020057024616

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006192501

Country of ref document: US

Ref document number: 10565067

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 10565067

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020057024616

Country of ref document: KR

122 Ep: pct application non-entry in european phase