WO2005112185A1 - Feed-through structure and feed-through type optical module - Google Patents

Feed-through structure and feed-through type optical module Download PDF

Info

Publication number
WO2005112185A1
WO2005112185A1 PCT/JP2005/008862 JP2005008862W WO2005112185A1 WO 2005112185 A1 WO2005112185 A1 WO 2005112185A1 JP 2005008862 W JP2005008862 W JP 2005008862W WO 2005112185 A1 WO2005112185 A1 WO 2005112185A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric substrate
feed
dielectric
structure according
electrode
Prior art date
Application number
PCT/JP2005/008862
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoaki Kato
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006513576A priority Critical patent/JPWO2005112185A1/en
Publication of WO2005112185A1 publication Critical patent/WO2005112185A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/003Coplanar lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0191Dielectric layers wherein the thickness of the dielectric plays an important role
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2018Presence of a frame in a printed circuit or printed circuit assembly

Definitions

  • the present invention relates to a feed-through structure and a feed-through type optical module.
  • a communication optical module particularly an optical module for a backbone system
  • a high-frequency compatible coaxial connector represented by a GPO connector or the like as an electric input / output interface (also called a butterfly module).
  • Fee-through is known as an electric signal input / output interface, which is smaller and easier to use than a coaxial connector.
  • attempts have been made to improve the feedthrough, which is originally a mechanism for supplying power to elements in a package, so that it can handle even higher frequency signals, and apply it to ultra-high-speed IC modules and optical modules for communication.
  • Fee-through is a general term for a power feeding mechanism in which a conductor penetrates the inside of a side wall of a package as the name implies.
  • the feed-through type has a simple structure in which a metal rod is penetrated through a dielectric wall, and a structure based on a planar circuit (a microstrip coplanar device mainly using ceramic as a dielectric substrate). Waveguides).
  • the above-described coaxial connector is also a feedthrough in a broad sense, and can be classified into the former.
  • Each feedthrough if properly designed, functions as a practical electric signal input / output interface for high-frequency signals. In particular, the latter is advantageous in terms of miniaturization and low cost.
  • the package also becomes a conductive material, a highly airtight dielectric material such as ceramic is buried in the package side wall so that the signal line and the package do not short-circuit, and a lead wire or strip line is penetrated inside. Structure.
  • Feedthroughs have been improved in order to meet the demands for miniaturization and wideband applications required for application to ultra-high-speed ICs and optical modules for communication.
  • those based on coplanar waveguides or microstrip lines can already handle high-speed lOGbZs electrical signals.
  • a conventional configuration example of the feedthrough is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-190541.
  • a frame having a dielectric force is laminated on a dielectric substrate on which high-frequency circuit components are arranged so as to surround the high-frequency circuit components. It is. Further, a lid is mounted on the frame, whereby high-frequency circuit components are packaged!
  • a line conductor (main line) for transmitting a high-frequency signal to a high-frequency circuit component and ground conductor layers (surface ground) provided on both sides thereof are formed as coplanar lines. ing. These conductors are extended to the end of the dielectric substrate. As described above, since the frame is mounted on the dielectric substrate, a part of the coplanar line is sandwiched between the dielectric substrate and the frame.
  • a lower conductor layer (back surface electrode) for grounding is formed on the entire back surface of the dielectric substrate.
  • a metal film (upper electrode) such as gold is formed also on the upper surface of the frame.
  • Both the back electrode and the top electrode are connected to the surface ground of the coplanar line by through electrodes (vias) penetrating the dielectric substrate and the frame in the thickness direction, respectively.
  • the back electrode and the top electrode function as ground conductors.
  • the cross-sectional shape of the ground conductor thus configured is annular, and the main line of the coplanar line is located substantially at the center of the annular conductor. Therefore, the configuration is a pseudo waveguide configuration.
  • the cross-sectional shape force of the structure around the feed-through described in the same document is in the form of a "symmetric strip line" (or an array thereof), that is, the main structure of the strip line is a parallel plate just filled with a dielectric. This is inevitably caused by adopting a form in which the electrode pattern is embedded.
  • the signal transfer characteristics of the feedthrough in this document are expected to behave similarly to those of such a symmetrical strip line (and its derived structure).
  • the dielectric (frame) covering the surface of the strip line is made of the same material as the high-frequency planar circuit board, and the thickness of both members is made relatively easy. It can be resolved. However, there is a difficulty that the degree of freedom in design is restricted because the thickness of the dielectric cannot be freely set.
  • the upper and lower conductors forming parallel plates that is, the back surface conductor and the upper surface conductor of the high frequency planar circuit board are kept at the same potential.
  • the existence itself there is a method of preventing propagation by providing a periodic structure or the like.
  • a method of periodically arranging through conductors at intervals of 1Z4 or less of the propagation wavelength of a dielectric in a medium is widely used as means for suppressing the propagation of the parallel plate mode.
  • feedthroughs are originally useful as electrical input / output interfaces that are small enough to be embedded in the relatively thin sidewalls of the knockout.
  • the propagation wavelength in the medium is thinner in the millimeter wave band than the thickness of the package side wall. Often. Therefore, it is not expected that the through conductors are arranged side by side so that periodicity is generated.
  • the structure of the feedthrough described in the above-mentioned conventional document has a problem in its transfer characteristics, and no measures have been taken for any means for solving the problem. Therefore, it is difficult to put the DC force into practical use as an ultra-wide band electric signal input / output interface over the millimeter wave band.
  • an object of the present invention is to overcome the problems of the conventional feed-through structure described in the above-mentioned conventional literature and to provide a feed-through structure and a feed-through structure having good transmission characteristics over a wide band. To provide a type module.
  • a feed-through structure of the present invention is provided with a first dielectric substrate forming a coplanar line with a back electrode, and is disposed on the first dielectric substrate. At least an opening is formed on the coplanar line, and a second dielectric substrate having an upper surface electrode formed on an upper surface thereof, wherein the first dielectric substrate has a surface ground of the coplanar line.
  • a plurality of first through conductors for short-circuiting the top electrode and the back electrode, and the second dielectric substrate includes a plurality of second through conductors for short-circuiting the surface ground and the top electrode;
  • a feed-through structure formed on an end surface of the first dielectric substrate and intersecting in a direction along a main line of the line, the second end surface conductor short-circuiting the surface ground and the upper surface electrode; 1st and 1st
  • the relative permittivity of the dielectric substrate of FIG. 2 is ⁇ r and ⁇ r, respectively, and the maximum operating frequency at which the main line propagates is f
  • the arrangement pitch of the first through conductors and the arrangement pitch d of the second through conductors are the same, and the arrangement pitch at that time is the same.
  • coplanar lines may be arranged in an array.
  • the feed-through structure of the present invention configured as described above is different from the above-described conventional literature in the following points (1) to (3).
  • (1) the thickness of the second dielectric substrate sandwiched between the surface ground and the upper electrode is specified in accordance with the highest operating frequency, and (2) the input / output discontinuity of the feedthrough
  • the first reason is as follows. That is, in the present invention, the thickness of the second dielectric substrate sandwiched between the surface ground and the top electrode closest to the surface ground is suppressed to 1Z4 or less of the propagation wavelength in the medium at the highest operating frequency. . Therefore, the higher-order mode in the thickness direction is not propagated, and the higher-order mode is prevented from being coupled to the basic propagation mode of the strip line constituting the feedthrough.
  • the second reason is that the surface ground and the upper surface electrode are short-circuited at high frequency using the second end surface conductor formed in the feedthrough. This causes the high-frequency potentials of both conductors to be approximately equal, resulting in unwanted modes (in this case, surface ground and top conductor). Excitation of the parallel plate mode propagating between the body) is prevented.
  • the third reason is that the second through conductors are arranged at intervals of 1Z4 or less of the propagation wavelength in the dielectric at the highest operating frequency, and the surface ground and the upper surface conductor are short-circuited at high frequency. As a result, even if the effect described in the second reason is insufficient and the parallel plate mode is excited, the propagation can be suppressed. Therefore, the parallel plate mode is prevented from being coupled to the fundamental propagation mode of the strip line constituting the feedthrough.
  • a feed-through having an ideal wide-band transfer characteristic over a direct-current millimeter-wave band can be realized only by combining all of the above (1) to (3).
  • the transfer characteristics are necessarily restricted, and it is difficult to function as a practical wideband feedthrough.
  • the above-described structural contrivance can be easily realized without making any change to the ceramic sheet multi-layer firing technique, which is a typical technique for manufacturing a conventional feedthrough. It is possible to use exactly the same process for the pattern jung of the electrode wiring. Regarding the restriction on the thickness of the dielectric substrate, it is only necessary to select a ceramic sheet having an appropriate thickness in advance.
  • the through conductor can be formed in exactly the same manner as the formation of the through conductor on the ceramic-based high-frequency planar circuit board. Further, the end face conductor can be cut by a dicing blade so as to cross the through conductor formed on the ceramic substrate, for example.
  • the material glass, a dielectric crystal, a resin material, or the like can be used in addition to ceramic.
  • the first dielectric substrate is formed on an end face of the first dielectric substrate that intersects in a direction along a main line of the coplanar line, and connects the front surface ground and the rear surface electrode. It further has a first end face conductor to be short-circuited, wherein the first end face conductor is symmetrically arranged between the main lines in the end face of the first dielectric substrate, and Are arranged symmetrically with the main line therebetween in the end surface of the second dielectric substrate, and the distance d between the first end surface conductors is d.
  • first and second end face conductors may be provided by dividing a through conductor penetrating the first and second dielectric substrates.
  • first dielectric substrate and the second dielectric substrate have respective thicknesses t and t.
  • the same material may be made of the same material, and the material may be any one of ceramic, glass, and resin. Alternatively, it is preferable that both substrates have substantially the same linear expansion coefficient even if they are not the same material. More specifically, it is preferable that the materials of the first dielectric substrate and the second dielectric substrate have excellent airtightness and water resistance, and it is preferable that a metal material can be brazed.
  • the coplanar line may be one in which at least a part of the main line and a surface ground is plated. Further, it is preferable that a force capable of wire bonding or a bump can be formed on the electrode surface. Also, a lead electrode may be provided on the electrode surface! /.
  • the feed-through structure of the present invention includes at least one of the outer peripheral surfaces of the first dielectric substrate and at least one of the outer peripheral surfaces of the second dielectric substrate.
  • a plurality of bumps are formed on each of the outer peripheral surfaces of the first and second dielectric substrates in the same plane.
  • the plurality of bumps are configured to conduct to the first and second end surface conductors and a high-frequency circuit component disposed in the opening of the second dielectric substrate, May be used.
  • the outer peripheral surface on which the plurality of bumps are formed may be parallel to a direction along the main line.
  • the following effects can be obtained by the following (1) to (3). That is, according to the present invention, (1) the thickness of the second dielectric substrate sandwiched between the surface ground and the upper surface electrode is defined in accordance with the maximum operating frequency, and (2) the input / output discontinuity of the feedthrough The surface ground and the top electrode are short-circuited using the second end board provided in the section, and (3) the distance between the adjacent penetrating conductors is set to the maximum operating frequency for the first and second penetrating conductors. It is stipulated correspondingly. As a result, even when using elements that handle ultra-high-speed signals, such as ultra-high-speed ICs and optical communication devices, it is possible to obtain ideal broadband transmission characteristics from DC to millimeter-wave bands. .
  • FIG. 1A is a perspective view showing a feed-through type optical module according to a first embodiment of the present invention.
  • FIG. 1B is a sectional view showing the feed-through type optical module according to the first embodiment of the present invention.
  • FIG. 2A is a top view showing a feed-through type optical module according to a second embodiment of the present invention.
  • FIG. 2B is a side view showing the feed-through type optical module according to the second embodiment of the present invention.
  • FIG. 3A is a graph showing a small signal frequency response characteristic of the feed-through type optical module.
  • FIG. 3B is a graph showing a small signal frequency response characteristic of the feed-through type optical module.
  • FIG. 1 shows a feed-through type optical module according to a first embodiment of the present invention.
  • FIG. 1A is a perspective view of a feed-through type optical module
  • FIG. 1B is an enlarged cross-sectional view of the periphery of the feed-through of the same module cut in the longitudinal direction (the “signal propagation axis” direction in the drawing).
  • the feed-through type optical module 100 has a dielectric substrate 1 and a frame 2 disposed on the dielectric substrate 1.
  • forces not shown are mounted, for example, high-frequency circuit components such as optical devices, electronic circuits for controlling them, and lenses for coupling signal light to optical devices. ing.
  • the dielectric substrate 1 is made of a sheet-shaped dielectric member (relative permittivity ⁇ substrate thickness t), a part of which is hollowed out.
  • a main line 25 for transmitting a high-frequency signal to a high-frequency circuit component and surface grounds 22 disposed on both sides thereof are formed.
  • (gap g, the characteristic impedance z between the width w, the main line path 25 and the surface ground 22 of the main line 25) 0 back of the dielectric substrate 1 in the form of a coplanar line
  • a back surface electrode 21 for grounding is formed on the entire surface.
  • the width w of the main line 25 is smaller than the width w of the main line 25.
  • the width of the main line 25 is gradually reduced from the width w to the width w '.
  • the frame 2 is made of a sheet-like dielectric member similar to the dielectric substrate 1 (relative permittivity ⁇ r, substrate thickness t
  • an upper electrode 23 is provided on the upper surface of the frame 2.
  • the thickness t of the dielectric substrate 1 is the same as the thickness t of the frame 2.
  • Each of the through electrodes 5 and 6 is made of a conductive material that penetrates the frame 2 and the dielectric substrate 1 in the thickness direction thereof.
  • the through electrode 5 short-circuits the top ground electrode 22 and the top electrode 23 of the coplanar line
  • the through electrode 6 short-circuits the front ground 22 and the back electrode 21.
  • the through electrodes 5 and 6 are arranged in the frame 2 and the dielectric substrate 1 at predetermined arrangement pitches d and d, respectively, in the direction along the signal propagation axis (the horizontal direction in FIG. 1B).
  • the through electrodes 5 and 6 are both symmetrically arranged with the signal propagation axis therebetween in a plane orthogonal to the signal propagation axis.
  • End surface conductors 10, 11 are formed on the end surface of the dielectric substrate 1 and the end surface of the frame 2, respectively.
  • Each of the end face conductors 10 and 11 is a half-divided through electrode. Therefore, the end face conductor 10 short-circuits the front ground 22 and the back electrode 21, and the end face electrode 11 short-circuits the front ground 22 and the top electrode 2.
  • the thickness t of the dielectric substrate 1, the thickness t of the frame 2, the arrangement pitch d of the through electrodes 5 and 6, d 1s With dimensions that satisfy
  • the thicknesses t and t of the dielectric substrate 1 and the frame 2 and the arrangement pitches d and d of the through electrodes 5 and 6 are defined as described above. . Further, the surface ground 25 and the upper surface electrode 22 are short-circuited by the end surface conductor 11. As a result, excitation and propagation of a higher-order mode and a parallel plate mode in the thickness direction propagating in the frame 2 are suppressed. As a result, the frequency response characteristics can be effectively improved.
  • the feedthrough is used as an electrical signal input / output interface
  • the module itself is smaller, has higher performance, and is less costly than a configuration that uses a coaxial connector that is large and is not suitable for automatic mounting. Done.
  • it can be expected to reduce the cost of mounting the module on the board.
  • this module 100 using feedthroughs can be expected to reduce costs and improve mass productivity by eliminating the need for additional components such as coaxial connectors and being able to be integrated with the package. .
  • FIG. 2 shows a feed-through type optical module according to a second embodiment of the present invention.
  • FIG. 2A is a top view of the feed-through type optical module
  • FIG. 2B is a side view thereof.
  • the feed-through type optical module 101 has a plurality of bumps 8 on the side wall surface of the package in addition to the configuration shown in FIG.
  • the side wall surface of the knockout is configured by positioning the outer peripheral surface of the dielectric substrate and the outer peripheral surface of the frame in the same plane.
  • the side wall surface is formed parallel to the signal propagation axis (see Fig. 1).
  • the bump 8 is electrically connected to a main line 25 and a surface ground 22 of a coplanar line, an optical element (not shown) and an electronic circuit (not shown) in the package via an electric wiring (not shown).
  • the plurality of bumps 8 are provided substantially in a lattice pattern at a predetermined pitch on the side wall surface.
  • the bumps 8 are arranged at the same size and pitch as other bumps, and are not electrically connected to a specific signal line (not shown).
  • the bumps 8 that are electrically connected to the signal lines are quasi-electromagnetically shielded by being surrounded by the bumps 8 having the same potential as the ground conductor.
  • the feed-through type optical module 101 configured as described above has the following advantages, unlike the conventional configuration in which bumps are formed on the bottom surface of the module. That is, Since no through-electrode (via) is interposed in the electric wiring connecting the element or the like in the semiconductor device and the bump 8, the effect of the discontinuity on the electric signal is further reduced.
  • the feed-through type optical module 101 of the present embodiment has a structure that reduces the characteristic deterioration caused by the parallel plate mode and the higher-order mode in the thickness direction generated by the feed-through. . Therefore, an improvement in frequency response characteristics can be expected due to their synergistic effect.
  • the plurality of bumps 8 provided on the side surface of the module as described above are advantageous in the following points. That is, since heat can be efficiently released from the back surface of the package, it is more advantageous than the conventional optical module with bumps in terms of improving the reliability as a module.
  • Example 1 based on the first embodiment described above, a 40 Gb / s receptacle-type receiving module was manufactured using a waveguide-type photodiode as an optical element.
  • the package contained a waveguide-type pin photodetector, preamplifier IC, lens, and bias circuit.
  • Dielectric substrate 1 is made of a 95% pure alumina (a relative dielectric constant ⁇ r) previously processed into a sheet shape.
  • the substrate thicknesses t and t are the same as the maximum used frequency of 50 GHz in the receiving module of the present embodiment.
  • the design is such that high-order modes do not occur in the thickness direction of the substrate inside each substrate.
  • the thickness of the portion of the peripheral wall of the frame 2 that covers the coplanar line is 1.2 mm. That is, the coplanar line is partially covered with the frame 2 over a length of 1.2 mm in the longitudinal direction.
  • the width w of the main line 25 was 104 ⁇ m
  • the gap g was 58 ⁇ m
  • the characteristic impedance z was 50 ⁇
  • tungsten was used for the electrode as a high melting point conductive material.
  • Tungsten was used for the through electrodes 5 and 6, the diameter ⁇ was 150 ⁇ m, and the arrangement intervals d and d were used. was set to 600 ⁇ m.
  • the width w of the main line 25 is set to 108 m and the gap g ′ 7 with 56 ⁇ m.
  • FIG. 3B shows the small signal frequency response characteristics of the feedthrough in the receiving module configured as described above.
  • the transmittance I S I indicated by the solid line is almost constant from DC to 50 GHz.
  • Example 2 a receptacle-type receiving module similar to that of Example 1 was manufactured based on the above-described second embodiment. Note that the other configuration except for the bump 8 is the same as that of the first embodiment, and a description thereof will be omitted.
  • each of the bumps 8 was set to 100 Pm, and the pitch between the adjacent bumps 8 in each of the two grid-like directions was set to about 500 m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Transmission characteristics of feed-through are enhanced over a wide band. A feed-through optical module (100) comprising a dielectric substrate (1) on which a coplanar line with a rear surface conductor is formed and a high frequency component is mounted, and a frame (2) arranged thereon. A plurality of through electrodes (5, 6) are formed in the dielectric substrate (1) and the frame (2). Thicknesses of the dielectric substrate and the frame are respectively t1 and t2, arranging pitches of the through electrodes (5, 6) are respectively d1 and d2, dielectric constants of the dielectric substrate (1) and the frame (2) are respectively &epsiv;r1 and &epsiv;r2, the highest working frequency is f, and the speed of light is c0. The thickness t1 and t2 and the arranging pitch d1 and d2 satisfy the following expressions: t1<c0/(4f·(&epsiv;r1-1)1/2), t2<c0/(4f·(&epsiv;r2-1)1/2), d1<c0/(4f·&epsiv;r11/2), and d2<c0/(4f·&epsiv;r21/2).

Description

フィードスルー構造体およびフィードスルー型光モジュール  Feedthrough structure and feedthrough optical module
技術分野  Technical field
[0001] 本発明は、フィードスルー構造体およびフィードスルー型光モジュールに関する。  The present invention relates to a feed-through structure and a feed-through type optical module.
背景技術  Background art
[0002] インターネット等の広帯域マルチメディア通信サービスの爆発的な需要増加に伴つ て、より大容量かつ高機能な光ファイバ通信システムの開発が求められている。こうし た大規模な通信ネットワークシステムに用いられる光モジュールの数はそのシステム の巨大化にともなって増加の一途をたどっている。光モジュール自体の大きさはもち ろん、光モジュールがシステム全体に占めるコスト'実装負荷も無視できない。このた め、光モジュール自体の小型化'高機能集積化'低コスト化はもちろん、より使い易い 電気 Z光信号入出力インターフェースの実現も重要な課題である。  [0002] With the explosive demand for broadband multimedia communication services such as the Internet, there is a demand for the development of larger capacity and higher performance optical fiber communication systems. The number of optical modules used in such large-scale communication network systems is steadily increasing with the size of the systems. Not to mention the size of the optical module itself, the cost of the optical module occupying the entire system and the mounting load cannot be ignored. For this reason, not only miniaturization of the optical module itself, 'high-performance integration', and cost reduction, but also realization of an easier-to-use electrical Z optical signal input / output interface is an important issue.
[0003] 従来、通信用光モジュール、特に基幹系向けの光モジュールの形態としては、レン ズ等を介してパッケージ内の半導体光素子と結合されたビグテール光ファイバを光 信号入出力インターフェースとしたものが知られている。他にも、 GPOコネクタ等に代 表される高周波対応の同軸コネクタを電気入出力インターフェースとしたもの(バタフ ライモジュールとも呼ばれる)なども知られて 、る。  Conventionally, a communication optical module, particularly an optical module for a backbone system, has a big optical fiber coupled to a semiconductor optical element in a package via a lens or the like as an optical signal input / output interface. It has been known. In addition, there are also known ones that use a high-frequency compatible coaxial connector represented by a GPO connector or the like as an electric input / output interface (also called a butterfly module).
[0004] しかし、光モジュール専用に開発された小型の高周波同軸コネクタはほとんどない に等しぐ現在入手可能な標準規格品は光モジュールのパッケージ寸法に比べて ヽ ずれも大きくなりがちである。パッケージに合わせて同軸コネクタの形状を部分的に 変更することはもちろん可能であるが、結果的にコスト増加や汎用性の低下を招く。  [0004] However, there are almost no small high-frequency coaxial connectors developed exclusively for optical modules, and currently available standard products tend to be larger than the optical module package dimensions. It is of course possible to partially change the shape of the coaxial connector according to the package, but this will result in increased costs and reduced versatility.
[0005] 同軸コネクタ型の電気入出力インターフェースを備えた光モジュールをプリント基板 上へ実装する際には、同軸コネクタの可動スペースや同軸線路を引き回すスペース を考慮する必要がある。また、同軸コネクタを締め付けるトルクレンチの可動範囲まで 予め考慮したうえで、光モジュール搭載部周辺に余裕を持たせたレイアウト設計とす ることも必要であり、部品実装効率やレイアウト自由度の観点からも好ましくない。  [0005] When mounting an optical module having a coaxial connector type electric input / output interface on a printed circuit board, it is necessary to consider a movable space of the coaxial connector and a space for routing a coaxial line. In addition, it is necessary to consider the movable range of the torque wrench for tightening the coaxial connector in advance, and to design a layout with a margin around the optical module mounting part, from the viewpoint of component mounting efficiency and layout flexibility. Is also not preferred.
[0006] なお、この点に関し、コネクタ締め付けが不要な、いわゆる簡易着脱 (スナップ—ォ ン)型の同軸コネクタも一部で使われている。しかし、高周波特性が若干犠牲になるう え、同軸コネクタ自身の可動スペースや同軸線路を引き回すためのスペースが必要 なことには変わりがない。また、たとえロボットを使って光モジュールをプリント基板上 へ自動実装できたとしても、同軸コネクタの引き回しや着脱は人手に頼らざるを得な い。そのため、プリント基板組立工程のスループットの改善やコスト削減効果にも限り がある。 [0006] In this regard, in this regard, a so-called simple attachment and detachment (snap- ) -Type coaxial connectors are also used in some cases. However, the high-frequency characteristics are slightly sacrificed, and the space for moving the coaxial connector itself and the space for running the coaxial line are still required. Even if an optical module can be automatically mounted on a printed circuit board using a robot, the coaxial connectors must be manually routed and removed. Therefore, there is a limit to the improvement of the throughput of the printed circuit board assembly process and the cost reduction effect.
[0007] 同軸コネクタに代わるより小型で使 ヽ易 、電気信号入出力インターフェースとして「 フィードスルー」が知られている。従来、本来パッケージ内の素子に給電するための 機構であるフィードスルーを、より高周波信号まで扱えるように改良し、超高速 ICモジ ユールや通信用光モジュールへ応用する試みが続けられてきた。  [0007] "Feed-through" is known as an electric signal input / output interface, which is smaller and easier to use than a coaxial connector. In the past, attempts have been made to improve the feedthrough, which is originally a mechanism for supplying power to elements in a package, so that it can handle even higher frequency signals, and apply it to ultra-high-speed IC modules and optical modules for communication.
[0008] 「フィードスルー」とは、その名のとおりパッケージの側壁内を導体が貫通する給電 機構の総称である。フィードスルー〖こは、誘電体壁に金属棒を貫通させただけの単 純構造のものと、平面回路をベースとする構造のもの(誘電体基板として主にセラミツ クを用いたマイクロストリップゃコプレーナ導波路など)との 2つに大別できる。なお、 上述の同軸コネクタも広義のフィードスルーであり、前者に分類することができる。  [0008] "Feed-through" is a general term for a power feeding mechanism in which a conductor penetrates the inside of a side wall of a package as the name implies. The feed-through type has a simple structure in which a metal rod is penetrated through a dielectric wall, and a structure based on a planar circuit (a microstrip coplanar device mainly using ceramic as a dielectric substrate). Waveguides). The above-described coaxial connector is also a feedthrough in a broad sense, and can be classified into the former.
[0009] いずれのフィードスルーも、適切に設計すれば高周波信号に対して実用的な電気 信号入出力インターフェースとして機能するものである。特に、後者は小型化ゃ低コ ストイ匕の面で有利な構造である。なお、もしパッケージが導電性材料力もなる場合に は、信号線とパッケージとが短絡しないよう、セラミックなど気密性に優れる誘電体材 料をパッケージ側壁に埋め込み、その内部にリード線やストリップ線路を貫通させる 構造とされる。  [0009] Each feedthrough, if properly designed, functions as a practical electric signal input / output interface for high-frequency signals. In particular, the latter is advantageous in terms of miniaturization and low cost. If the package also becomes a conductive material, a highly airtight dielectric material such as ceramic is buried in the package side wall so that the signal line and the package do not short-circuit, and a lead wire or strip line is penetrated inside. Structure.
[0010] フィードスルーは、超高速 ICや通信用光モジュールへ応用する際に必要とされる 小型化 ·広帯域ィ匕の要求に応えるかたちで改良が加えられてきた。例えば、コプレー ナ導波路やマイクロストリップ線路をベースとしたものでは既に lOGbZsの高速電気 信号まで扱うことができるようになつている。  [0010] Feedthroughs have been improved in order to meet the demands for miniaturization and wideband applications required for application to ultra-high-speed ICs and optical modules for communication. For example, those based on coplanar waveguides or microstrip lines can already handle high-speed lOGbZs electrical signals.
[0011] フィードスルーの従来の構成例については例えば特開 2002— 190541号公報に 開示されている。同文献の高周回路用パッケージでは、高周波回路部品が配置され た誘電体基板上に、その高周波回路部品を囲むように誘電体力 なる枠体が積層さ れている。さらにその枠体上には、蓋体が取り付けられており、これにより高周波回路 部品がパッケージングされて!/ヽる。 [0011] A conventional configuration example of the feedthrough is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-190541. In the high-frequency circuit package described in the document, a frame having a dielectric force is laminated on a dielectric substrate on which high-frequency circuit components are arranged so as to surround the high-frequency circuit components. It is. Further, a lid is mounted on the frame, whereby high-frequency circuit components are packaged!
[0012] 誘電体基板上には、コプレーナ線路として、高周波回路部品に高周波信号を伝送 するための線路導体 (主線路)と、その両側に設けられた接地導体層(表面グラウンド )とが形成されている。これらの導体は、誘電体基板の端部まで引き出されている。上 記のように、誘電体基板上には枠体が取り付けられているため、コプレーナ線路の一 部は、誘電体基板と枠体とによって挟み込まれる。  On the dielectric substrate, a line conductor (main line) for transmitting a high-frequency signal to a high-frequency circuit component and ground conductor layers (surface ground) provided on both sides thereof are formed as coplanar lines. ing. These conductors are extended to the end of the dielectric substrate. As described above, since the frame is mounted on the dielectric substrate, a part of the coplanar line is sandwiched between the dielectric substrate and the frame.
[0013] 誘電体基板の裏面の全体には接地用の下部導体層(裏面電極)が形成されている 。上記枠体の上面にも、例えば金など力 なる金属膜 (上面電極)が形成されている 。裏面電極および上面電極はいずれも、誘電体基板および枠体をその厚さ方向にそ れぞれ貫通する貫通電極 (ビア)によってコプレーナ線路の表面グラウンドに接続さ れる。これにより裏面電極および上面電極は接地導体として機能する。こうして構成さ れた接地導体の断面形状は環状となっており、コプレーナ線路の主線路は、この環 状となった導体の略中心に位置することとなる。このため、その構成は擬似的に導波 管の構成となる。  [0013] A lower conductor layer (back surface electrode) for grounding is formed on the entire back surface of the dielectric substrate. A metal film (upper electrode) such as gold is formed also on the upper surface of the frame. Both the back electrode and the top electrode are connected to the surface ground of the coplanar line by through electrodes (vias) penetrating the dielectric substrate and the frame in the thickness direction, respectively. Thus, the back electrode and the top electrode function as ground conductors. The cross-sectional shape of the ground conductor thus configured is annular, and the main line of the coplanar line is located substantially at the center of the annular conductor. Therefore, the configuration is a pseudo waveguide configuration.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] し力しながら、上記文献 (特開 2002— 190541号公報)には、上面電極が設けられ たことによる伝達特性への影響が十分に考慮されておらず、また、同文献に示された 構造の持つ問題およびその対策が正しく示されて 、な 、。  However, the above document (Japanese Patent Application Laid-Open No. 2002-190541) does not sufficiently consider the effect of the provision of the upper electrode on the transfer characteristics. The problems with the proposed structure and their countermeasures are correctly indicated.
[0015] この問題とは、同文献のフィードスルー周辺の構造の断面形状力 「対称ストリップ 線路」(またはそのアレイ)の形態、すなわち、ちょうど誘電体を充填した平行平板の 中にストリップ線路の主電極パターンが埋め込まれて 、るような形態をとることで必然 的に生じるものである。同文献のフィードスルーの信号伝達特性は、こうした対称スト リップ線路 (およびそれから派生した構造)のそれと同様に振る舞うと考えられる。  [0015] The problem is that the cross-sectional shape force of the structure around the feed-through described in the same document is in the form of a "symmetric strip line" (or an array thereof), that is, the main structure of the strip line is a parallel plate just filled with a dielectric. This is inevitably caused by adopting a form in which the electrode pattern is embedded. The signal transfer characteristics of the feedthrough in this document are expected to behave similarly to those of such a symmetrical strip line (and its derived structure).
[0016] ここで、「対称ストリップ線路」における課題は、  [0016] Here, the problem in the "symmetric stripline" is as follows.
( 1)厚さ方向の対称性が破れた場合の放射抑制  (1) Suppression of radiation when thickness symmetry is broken
(2)平行平板間を充たす誘電体の厚さ方向高次モードの伝搬抑制 (3)平行平板モードの伝搬抑制 (2) Suppression of propagation of higher-order modes in the thickness direction of the dielectric filling the gap between parallel plates (3) Propagation suppression of parallel plate mode
の 3つに大別できる。  It can be roughly divided into three.
[0017] まず、(1)については、ストリップ線路表面を覆う誘電体 (枠体)を、高周波平面回路 基板と同材料とすること、および両部材の厚さを同じにすることで比較的容易に解決 可能である。しかし、誘電体の厚さを自由に設定できなくという、設計上の自由度が 制約される難点ちある。  [0017] First, regarding (1), the dielectric (frame) covering the surface of the strip line is made of the same material as the high-frequency planar circuit board, and the thickness of both members is made relatively easy. It can be resolved. However, there is a difficulty that the degree of freedom in design is restricted because the thickness of the dielectric cannot be freely set.
[0018] 次に、(2)の厚さ方向高次モードの伝搬を抑制するためには、フィードスルーを使 用するモジュールの最高使用周波数において、誘電体の厚さ方向に単一モード条 件を満たす必要がある。また、誘電体の比誘電率と最高使用周波数とに応じて、誘 電体の厚さに制約を設ける必要がある。  Next, in order to suppress the propagation of the higher-order mode in the thickness direction in (2), at the maximum operating frequency of the module using the feedthrough, a single-mode condition must be satisfied in the thickness direction of the dielectric. Need to be satisfied. In addition, it is necessary to limit the thickness of the dielectric according to the relative permittivity of the dielectric and the maximum operating frequency.
[0019] さらに、(3)の平行平板モードの伝搬を抑制するためには、互いに平行平板を成す 上下の導体、すなわち高周波平面回路基板の裏面導体と、上面導体とを同電位に 保つことで存在そのものを抑える方法がある。あるいは、周期構造などを設けて伝搬 を阻止する方法もある。  Further, in order to suppress the propagation of the parallel plate mode of (3), the upper and lower conductors forming parallel plates, that is, the back surface conductor and the upper surface conductor of the high frequency planar circuit board are kept at the same potential. There are ways to suppress the existence itself. Alternatively, there is a method of preventing propagation by providing a periodic structure or the like.
[0020] 前者では、平行平板を成す両方の導体を互いに高周波的に短絡させる構造上の 工夫が必要となる。高周波平面回路基板が裏面導体付きコプレーナ導波路の場合 には、その表面グラウンドと上面電極、および表面グラウンドと裏面導体がそれぞれ 平行平板を成す。そのため、これら 3つの導体を、例えば貫通導体を用いて高周波 的に短絡する機構が必要である。しかし、高周波平面回路基板に広く用いられる貫 通導体 (ビア)は、代表的な電極材料である金 (Au)を用いたとしてもミリ波帯では表 皮厚さが 1 mに満たない。また、貫通導体はその寄生インダクタンスも無視できない 。よって周波数とともにインピーダンスが増加し、特にミリ波帯では理想的な短絡状態 を実現することが難しい。  [0020] In the former case, it is necessary to devise a structure in which both conductors forming the parallel plate are short-circuited at high frequency to each other. When the high-frequency planar circuit board is a coplanar waveguide with a back conductor, the front ground and the top electrode, and the front ground and the back conductor form a parallel plate. Therefore, a mechanism for short-circuiting these three conductors at high frequencies using, for example, through conductors is required. However, through-conductors (vias) widely used in high-frequency planar circuit boards have a skin thickness of less than 1 m in the millimeter-wave band even when gold (Au), a typical electrode material, is used. In addition, the parasitic inductance of the through conductor cannot be ignored. Therefore, the impedance increases with the frequency, and it is difficult to realize an ideal short-circuit state especially in the millimeter wave band.
[0021] 一方、後者の周期構造に関しては、平行平板モードの伝搬を抑制する手段として、 貫通導体を、誘電体の媒質内伝搬波長の 1Z4以下の間隔で周期的に配置する方 法が広く用いられている。ところで、フィードスルーとは本来、ノ ッケージの比較的薄 い側壁に埋め込める程度に小さな電気入出力インターフェースとして有用なものであ る。また、媒質内伝搬波長は、ミリ波帯においてパッケージ側壁の厚さに比べて薄く なる場合が多い。したがって、周期性が生まれるほど貫通導体を並べて配置すること はあまり期待できない。 On the other hand, regarding the latter periodic structure, a method of periodically arranging through conductors at intervals of 1Z4 or less of the propagation wavelength of a dielectric in a medium is widely used as means for suppressing the propagation of the parallel plate mode. Have been. By the way, feedthroughs are originally useful as electrical input / output interfaces that are small enough to be embedded in the relatively thin sidewalls of the knockout. The propagation wavelength in the medium is thinner in the millimeter wave band than the thickness of the package side wall. Often. Therefore, it is not expected that the through conductors are arranged side by side so that periodicity is generated.
[0022] 以上述べたとおり、上記従来文献に記載のフィードスルーの構造は、その伝達特性 に課題を抱えているうえ、これを解決するための手段についても何ら対策が講じられ ていない。よって、直流力もミリ波帯にわたる超広帯域な電気信号入出力インターフ エースとして実用化することが困難である。  [0022] As described above, the structure of the feedthrough described in the above-mentioned conventional document has a problem in its transfer characteristics, and no measures have been taken for any means for solving the problem. Therefore, it is difficult to put the DC force into practical use as an ultra-wide band electric signal input / output interface over the millimeter wave band.
[0023] そこで本発明の目的は、上記従来文献に記載された従来のフィードスルー構造体 が抱えるこれらの問題点を克服し、広帯域にわたって良好な伝達特性を有する、フィ 一ドスルー構造体およびフィードスルー型モジュールを提供することにある。  Accordingly, an object of the present invention is to overcome the problems of the conventional feed-through structure described in the above-mentioned conventional literature and to provide a feed-through structure and a feed-through structure having good transmission characteristics over a wide band. To provide a type module.
課題を解決するための手段  Means for solving the problem
[0024] 上記目的を達成するため、本発明のフィードスルー構造体は、裏面電極付きコプレ ーナ線路を形成する第 1の誘電体基板と、前記第 1の誘電体基板上に配置され、少 なくとも前記コプレーナ線路上に開口部が形成されると共に、上面に上面電極が形 成された第 2の誘電体基板とを有し、前記第 1の誘電体基板は、前記コプレーナ線路 の表面グラウンドと前記裏面電極とを短絡する複数の第 1の貫通導体を備え、前記第 2の誘電体基板は、前記表面グラウンドと前記上面電極とを短絡する複数の第 2の貫 通導体と、前記コプレーナ線路の主線路に沿う方向に交差する、前記第 1の誘電体 基板の端面に形成され、前記表面グラウンドと前記上面電極とを短絡する第 2の端面 導体とを備えるフィードスルー構造体において、前記第 1および前記第 2の誘電体基 板の比誘電率をそれぞれ ε r、 ε r、前記主線路が伝搬する最高使用周波数を f [0024] In order to achieve the above object, a feed-through structure of the present invention is provided with a first dielectric substrate forming a coplanar line with a back electrode, and is disposed on the first dielectric substrate. At least an opening is formed on the coplanar line, and a second dielectric substrate having an upper surface electrode formed on an upper surface thereof, wherein the first dielectric substrate has a surface ground of the coplanar line. A plurality of first through conductors for short-circuiting the top electrode and the back electrode, and the second dielectric substrate includes a plurality of second through conductors for short-circuiting the surface ground and the top electrode; A feed-through structure formed on an end surface of the first dielectric substrate and intersecting in a direction along a main line of the line, the second end surface conductor short-circuiting the surface ground and the upper surface electrode; 1st and 1st The relative permittivity of the dielectric substrate of FIG. 2 is ε r and ε r, respectively, and the maximum operating frequency at which the main line propagates is f
1 2 、 光速を cとしたときに、前記第 1および前記第 2の誘電体基板のそれぞれの厚さ t、 t 1 2, when the speed of light is c, the thicknesses t and t of the first and second dielectric substrates, respectively.
0 1 20 1 2
、および前記主線路に沿う方向における、前記第 1および前記第 2の貫通導体のそ れぞれの配置ピッチ d And the respective arrangement pitch d of the first and second through conductors in the direction along the main line.
1、 dは、  1, d is
2  2
t <c /(4f-( sr -1)1/2) t <c / (4f- (sr -1) 1/2 )
1 0 1  1 0 1
t <c /(4f-( sr -1)1/2) t <c / (4f- (sr -1) 1/2 )
2 0 2  2 0 2
d <c /(4f- ε r 1/2) d <c / (4f- ε r 1/2 )
1 0 1  1 0 1
d <c /(4f- ε r 1/2) d <c / (4f- ε r 1/2 )
2 0 2  2 0 2
を満たすことを特徴とする。 [0025] また、本発明のフィードスルー構造体は、前記第 1の貫通導体の前記配置ピッチ と、前記第 2の貫通導体の前記配置ピッチ dとが同じであって、そのときの配置ピッチ Is satisfied. [0025] In the feed-through structure of the present invention, the arrangement pitch of the first through conductors and the arrangement pitch d of the second through conductors are the same, and the arrangement pitch at that time is the same.
2  2
d力 d< c0/ (4f - ε τ1/2) ( : と のいずれか大きい方)を満たすものであ d force d <c0 / (4f-ετ1 / 2 ) (: or whichever is greater)
1 2  1 2
つてもよい。さらに、コプレーナ線路がアレイ状に配置されているものであってもよい。  May be used. Further, the coplanar lines may be arranged in an array.
[0026] このように構成された本発明のフィードスルー構造体は、上述した従来文献の構成 と比較して、次の(1)〜(3)の点で相違している。すなわち、(1)表面グラウンドと上 面電極とに挟まれた第 2の誘電体基板の厚さを、最高使用周波数に対応させて規定 している点、(2)フィードスルーの入出力不連続部に設けた第 2の端面基板を用い、 表面グラウンドと上面電極とを短絡している点、および、(3)第 1および第 2の貫通導 体に関して、隣接する貫通導体同士の間隔を、最高使用周波数に対応させて規定し ている点である。 [0026] The feed-through structure of the present invention configured as described above is different from the above-described conventional literature in the following points (1) to (3). In other words, (1) the thickness of the second dielectric substrate sandwiched between the surface ground and the upper electrode is specified in accordance with the highest operating frequency, and (2) the input / output discontinuity of the feedthrough The point that the surface ground and the upper surface electrode are short-circuited by using the second end substrate provided in the section, and (3) the distance between the adjacent penetrating conductors with respect to the first and second penetrating conductors, It is specified in correspondence with the maximum operating frequency.
[0027] これにより、フィードスルーのような導波路不連続構造において発生しやすい不要 モード (表面グラウンドと上面電極とに挟まれた第 2の誘電体基板中を伝搬する厚さ 方向の高次モードおよび平行平板モード)の励振と伝搬が効果的に抑えられる。そ の結果、電気信号入出力インターフェースとしての伝達特性が飛躍的に改善される。  [0027] Accordingly, unnecessary modes that are likely to occur in a discontinuous waveguide structure such as a feedthrough (higher-order modes in the thickness direction propagating in the second dielectric substrate sandwiched between the surface ground and the upper surface electrode) And the parallel plate mode) are effectively suppressed. As a result, the transfer characteristics as an electrical signal input / output interface are dramatically improved.
[0028] この第 1の理由は次のとおりである。すなわち、本発明では、表面グラウンドとこれに 最も近い上面電極とに挟まれた第 2の誘電体基板の厚さが、最高使用周波数におけ るその媒質内伝搬波長の 1Z4以下に抑えられている。そのため、厚さ方向の高次モ ードが伝搬されなくなり、高次モードがフィードスルーを構成するストリップ線路の基 本伝搬モードに結合することが阻止されるためである。  [0028] The first reason is as follows. That is, in the present invention, the thickness of the second dielectric substrate sandwiched between the surface ground and the top electrode closest to the surface ground is suppressed to 1Z4 or less of the propagation wavelength in the medium at the highest operating frequency. . Therefore, the higher-order mode in the thickness direction is not propagated, and the higher-order mode is prevented from being coupled to the basic propagation mode of the strip line constituting the feedthrough.
[0029] 仮に、こうした誘電体厚さに関する規定がない従来の構造体を用いて電気信号を 伝達させた場合、ある周波数を超えたところから、厚さ方向の高次モードの励振と伝 搬を阻止できない可能性がある。その結果、フィードスルーを構成するストリップ線路 の基本伝搬モードの伝達特性が、この高次モードとの結合によって著しく損なわれる ヽぅ不都合を招くことが懸念される。  [0029] If an electric signal is transmitted using a conventional structure that does not specify such a dielectric thickness, excitation and transmission of a higher-order mode in the thickness direction are performed from a point where a certain frequency is exceeded. May not be stopped. As a result, the transfer characteristic of the fundamental propagation mode of the strip line constituting the feedthrough is significantly impaired by the coupling with the higher-order mode.
[0030] 第 2の理由は、フィードスルーに形成した第 2の端面導体を用い、表面グラウンドと 上面電極とを高周波的に短絡している点にある。これにより、両方の導体の高周波的 な電位がほぼ等しくなり、その結果、不要モード (この場合は表面グラウンドと上面導 体との間を伝搬する平行平板モード)が励振されることが未然に阻止される。 [0030] The second reason is that the surface ground and the upper surface electrode are short-circuited at high frequency using the second end surface conductor formed in the feedthrough. This causes the high-frequency potentials of both conductors to be approximately equal, resulting in unwanted modes (in this case, surface ground and top conductor). Excitation of the parallel plate mode propagating between the body) is prevented.
[0031] 仮に、こうした高周波短絡するための端面導体がない従来例の構造を用いて電気 信号を伝達させた場合、上記の不連続境界における表面グラウンドと上面導体の間 に高周波的な電位差が生じる。これにより、これらに挟まれた誘電体中に平行平板モ ードが励振される可能性がある。そうすると、フィードスルーを構成するストリップ線路 の基本伝搬モードの伝達特性カこの平行平板モードとの結合によって著しく損なわ れると!/、う不都合を招くことが懸念される。  [0031] If an electric signal is transmitted using a conventional structure having no end conductor for short-circuiting at high frequency, a high-frequency potential difference occurs between the surface ground and the upper conductor at the discontinuous boundary described above. . As a result, the parallel plate mode may be excited in the dielectric sandwiched between them. Then, if the transfer characteristics of the fundamental propagation mode of the strip line constituting the feedthrough are significantly impaired by the coupling with the parallel plate mode, there is a concern that inconvenience may be caused.
[0032] 第 3の理由は、最高使用周波数における誘電体内伝搬波長の 1Z4以下の間隔で 第 2の貫通導体を配置し、表面グラウンドと上面導体とを高周波的に短絡している点 にある。これにより、仮に第 2の理由で述べた効果が不十分で平行平板モードが励振 されてしまったとしてもその伝搬を抑えることができる。よって、この平行平板モードが フィードスルーを構成するストリップ線路の基本伝搬モードに結合することが阻止され る。  [0032] The third reason is that the second through conductors are arranged at intervals of 1Z4 or less of the propagation wavelength in the dielectric at the highest operating frequency, and the surface ground and the upper surface conductor are short-circuited at high frequency. As a result, even if the effect described in the second reason is insufficient and the parallel plate mode is excited, the propagation can be suppressed. Therefore, the parallel plate mode is prevented from being coupled to the fundamental propagation mode of the strip line constituting the feedthrough.
[0033] 上述したように、上記(1)〜(3)をすベて組み合わせることで初めて直流力 ミリ波 帯にわたる理想的な広帯域伝達特性を備えるフィードスルーが実現できる。一方、も しこれらのうちどれか一つでも条件を満たさない場合にはその伝達特性が必ず制約 を受け、実用的な広帯域フィードスルーとして機能させることは難しい。  As described above, a feed-through having an ideal wide-band transfer characteristic over a direct-current millimeter-wave band can be realized only by combining all of the above (1) to (3). On the other hand, if any one of these conditions is not satisfied, the transfer characteristics are necessarily restricted, and it is difficult to function as a practical wideband feedthrough.
[0034] なお、上述した構造上の工夫は、従来のフィードスルーを製造する代表的な手法で あるセラミックシートの多層焼成技術に何ら変更を加えることなく容易に実現可能であ る。電極配線のパターユングについては全く同じ工程を用いることが可能である。誘 電体基板の厚さの制約に関しても、予め適当な厚さのセラミックシートを選択するだ けでよい。また、貫通導体についても、セラミックをベースとする高周波平面回路基板 の貫通導体の形成と全く同一手法で形成可能である。さらに、端面導体についても、 例えば、セラミック基板に形成された貫通導体を横切るようにダイシングブレードで切 断することで実施可能である。なお、材料に関しては、セラミック以外にもガラスや誘 電体結晶、榭脂材料などを用いることが可能である。  [0034] The above-described structural contrivance can be easily realized without making any change to the ceramic sheet multi-layer firing technique, which is a typical technique for manufacturing a conventional feedthrough. It is possible to use exactly the same process for the pattern jung of the electrode wiring. Regarding the restriction on the thickness of the dielectric substrate, it is only necessary to select a ceramic sheet having an appropriate thickness in advance. Also, the through conductor can be formed in exactly the same manner as the formation of the through conductor on the ceramic-based high-frequency planar circuit board. Further, the end face conductor can be cut by a dicing blade so as to cross the through conductor formed on the ceramic substrate, for example. As for the material, glass, a dielectric crystal, a resin material, or the like can be used in addition to ceramic.
[0035] 上記本発明のフィードスルー構造体は、また、前記第 1および前記第 2の誘電体基 板が、 t · s r 1/2=t · ε r 1/2を満たすものであってもよい。 [0036] また、前記第 1の誘電体基板が、前記コプレーナ線路の主線路に沿う方向に交差 する、前記第 1の誘電体基板の端面に形成され、前記表面グラウンドと前記裏面電 極とを短絡する第 1の端面導体をさらに有するものであって、前記第 1の端面導体は 、前記第 1の誘電体基板の前記端面内において、前記主線路を間において対称に 配置され、前記第 2の端面導体は、前記第 2の誘電体基板の前記端面内において、 前記主線路を間において対称に配置され、前記第 1の端面導体同士の距離 d [0035] Feed-through structure of the present invention, also, the first and the second dielectric board is even fulfills t · sr 1/2 = t · ε r 1/2 Good. [0036] Further, the first dielectric substrate is formed on an end face of the first dielectric substrate that intersects in a direction along a main line of the coplanar line, and connects the front surface ground and the rear surface electrode. It further has a first end face conductor to be short-circuited, wherein the first end face conductor is symmetrically arranged between the main lines in the end face of the first dielectric substrate, and Are arranged symmetrically with the main line therebetween in the end surface of the second dielectric substrate, and the distance d between the first end surface conductors is d.
11およ び前記第 2の端面導体同士の距離 d は、それぞれ、 d ≤c Z (2f ' £ r 1/2)および 11 and the distance d between the second end surface conductors are d ≤ c Z (2f ' £ r 1/2 ) and
12 11 0 1  12 11 0 1
d ≤c / (2f- ε r 1/2)を満たすものであってもよい。 It may satisfy d ≤c / (2f- ε r 1/2 ).
12 0 2  12 0 2
[0037] また、前記第 1および前記第 2の端面導体は、前記第 1および前記第 2の誘電体基 板を貫通する貫通導体を分割して設けられたものであってもよい。  [0037] Further, the first and second end face conductors may be provided by dividing a through conductor penetrating the first and second dielectric substrates.
[0038] また、第 1の誘電体基板および第 2の誘電体基板は、それぞれの前記厚さ t、 tが Further, the first dielectric substrate and the second dielectric substrate have respective thicknesses t and t.
1 2 同一であり、かつ、同一材料からなるものでもよぐその材料としてはセラミック、ガラス 、または榭脂のうちのいずれか 1つであってもよい。あるいは、同一材料ではなくても 、両基板は互いにほぼ等しい線膨張係数を有することが好ましい。さらに具体的には 、第 1の誘電体基板および第 2の誘電体基板の材料は、気密性および耐水性に優れ ていることが好ましぐまた、金属材料をろう付けできることが好ましい。  1 2 The same material may be made of the same material, and the material may be any one of ceramic, glass, and resin. Alternatively, it is preferable that both substrates have substantially the same linear expansion coefficient even if they are not the same material. More specifically, it is preferable that the materials of the first dielectric substrate and the second dielectric substrate have excellent airtightness and water resistance, and it is preferable that a metal material can be brazed.
[0039] また、前記コプレーナ線路は、前記主線路および表面グラウンドの少なくとも部分に メツキが施されているものであってもよい。さらに、それら電極表面にワイヤボンディン グが可能である力、または、バンプを形成できることが好ましい。また、電極表面にリ ード電極が設けられて 、てもよ!/、。  [0039] Further, the coplanar line may be one in which at least a part of the main line and a surface ground is plated. Further, it is preferable that a force capable of wire bonding or a bump can be formed on the electrode surface. Also, a lead electrode may be provided on the electrode surface! /.
[0040] また、上記本発明のフィードスルー構造体は、前記第 1の誘電体基板の外周面のう ちの少なくとも 1面と、前記第 2の誘電体基板の外周面のうちの少なくとも 1面とが同 一平面内にあるものであってもよぐこの場合、前記同一平面内にある、前記第 1およ び前記第 2の誘電体基板の前記外周面のそれぞれに複数のバンプが形成されてお り、前記複数のバンプは、前記第 1および前記第 2の端面導体と、前記第 2の誘電体 基板の前記開口部内に配置される高周波回路部品とに導通するように構成されて 、 るものであってもよい。さらに、前記複数のバンプの形成された前記外周面は、前記 主線路に沿う方向と平行であってもよい。 [0041] 上記本発明のフィードスルー構造体の、前記第 1の誘電体基板上であって、前記 第 2の誘電体基板の前記開口部内に高周波回路部品を配置することにより、本発明 のフィードスルー型光モジュールが得られる。 [0040] Further, the feed-through structure of the present invention includes at least one of the outer peripheral surfaces of the first dielectric substrate and at least one of the outer peripheral surfaces of the second dielectric substrate. In this case, a plurality of bumps are formed on each of the outer peripheral surfaces of the first and second dielectric substrates in the same plane. The plurality of bumps are configured to conduct to the first and second end surface conductors and a high-frequency circuit component disposed in the opening of the second dielectric substrate, May be used. Further, the outer peripheral surface on which the plurality of bumps are formed may be parallel to a direction along the main line. [0041] By arranging a high-frequency circuit component in the feed-through structure of the present invention on the first dielectric substrate and in the opening of the second dielectric substrate, the feed through structure of the present invention can be obtained. A through-type optical module is obtained.
発明の効果  The invention's effect
[0042] 上述したように、本発明のフィードスルー構造体およびフィードスルー型光モジユー ルによれば、下記(1)〜(3)により次のような効果が得られる。すなわち、本発明では 、(1)表面グラウンドと上面電極とに挟まれた第 2の誘電体基板の厚さを、最高使用 周波数に対応させて規定し、 (2)フィードスルーの入出力不連続部に設けた第 2の 端面基板を用いて表面グラウンドと上面電極とを短絡し、さらに、(3)第 1および第 2 の貫通導体に関して、隣接する貫通導体同士の間隔を、最高使用周波数に対応さ せて規定している。これにより、超高速 ICや光通信用デバイスなど、超高速信号を扱 う素子を使用する場合であっても、直流カゝらミリ波帯にわたる理想的な広帯域伝達特 '性を得ることができる。  As described above, according to the feed-through structure and the feed-through type optical module of the present invention, the following effects can be obtained by the following (1) to (3). That is, according to the present invention, (1) the thickness of the second dielectric substrate sandwiched between the surface ground and the upper surface electrode is defined in accordance with the maximum operating frequency, and (2) the input / output discontinuity of the feedthrough The surface ground and the top electrode are short-circuited using the second end board provided in the section, and (3) the distance between the adjacent penetrating conductors is set to the maximum operating frequency for the first and second penetrating conductors. It is stipulated correspondingly. As a result, even when using elements that handle ultra-high-speed signals, such as ultra-high-speed ICs and optical communication devices, it is possible to obtain ideal broadband transmission characteristics from DC to millimeter-wave bands. .
図面の簡単な説明  Brief Description of Drawings
[0043] [図 1A]本発明の第 1の実施形態によるフィードスルー型光モジュールを示す斜視図 である。  FIG. 1A is a perspective view showing a feed-through type optical module according to a first embodiment of the present invention.
[図 1B]本発明の第 1の実施形態によるフィードスルー型光モジュールを示す断面図 である。  FIG. 1B is a sectional view showing the feed-through type optical module according to the first embodiment of the present invention.
[図 2A]本発明の第 2の実施形態によるフィードスルー型光モジュールを示す上面図 である。  FIG. 2A is a top view showing a feed-through type optical module according to a second embodiment of the present invention.
[図 2B]本発明の第 2の実施形態によるフィードスルー型光モジュールを示す側面図 である。  FIG. 2B is a side view showing the feed-through type optical module according to the second embodiment of the present invention.
[図 3A]フィードスルー型光モジュールの小信号周波数応答特性を示すグラフである [図 3B]フィードスルー型光モジュールの小信号周波数応答特性を示すグラフである 符号の説明  FIG. 3A is a graph showing a small signal frequency response characteristic of the feed-through type optical module. FIG. 3B is a graph showing a small signal frequency response characteristic of the feed-through type optical module.
[0044] 1 誘電体基板 2 枠体 [0044] 1 Dielectric substrate 2 Frame
5、 6 貫通電極  5, 6 Through electrode
10、 11 端面電極  10, 11 End electrode
21 裏面電極  21 Back electrode
22 表面グラウンド  22 Surface ground
23 上面電極  23 Top electrode
25 主線路  25 main tracks
100、 101 フィードスルー型光モジュール  100, 101 feed-through type optical module
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0045] 以下、本発明の実施の形態について図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0046] (第 1の実施形態)  (First Embodiment)
図 1は、本発明の第 1の実施形態によるフィードスルー型光モジュールを示している 。図 1 Aはフィードスルー型光モジュールの斜視図であり、また、図 1Bは同モジユー ルのフィードスルー周辺をその長手方向(図示「信号伝搬軸」方向)に切断した拡大 断面図である。  FIG. 1 shows a feed-through type optical module according to a first embodiment of the present invention. FIG. 1A is a perspective view of a feed-through type optical module, and FIG. 1B is an enlarged cross-sectional view of the periphery of the feed-through of the same module cut in the longitudinal direction (the “signal propagation axis” direction in the drawing).
[0047] フィードスルー型光モジュール 100は、誘電体基板 1と、誘電体基板 1上に配置さ れる枠体 2とを有ししている。パッケージ内(誘電体基板 1上)にいずれも図示しない 力 例えば、光素子等の高周波回路部品、それを制御するための電子回路、および 光素子に信号光を結合するためのレンズ等が搭載されている。  The feed-through type optical module 100 has a dielectric substrate 1 and a frame 2 disposed on the dielectric substrate 1. In the package (on the dielectric substrate 1), forces not shown are mounted, for example, high-frequency circuit components such as optical devices, electronic circuits for controlling them, and lenses for coupling signal light to optical devices. ing.
[0048] 誘電体基板 1は、シート状の誘電体部材 (比誘電率 ε 基板厚さ t )からなり、そ の一部がくり抜かれている。誘電体基板 1の表面には、高周波回路部品に高周波信 号を伝送するための主線路 25と、その両側に配置された表面グラウンド 22とが形成 されている。これにより、コプレーナ線路の形態をなしている(主線路 25の幅 w、主線 路 25と表面グラウンド 22との間の空隙 g、特性インピーダンス z ) 0誘電体基板 1の裏 [0048] The dielectric substrate 1 is made of a sheet-shaped dielectric member (relative permittivity ε substrate thickness t), a part of which is hollowed out. On the surface of the dielectric substrate 1, a main line 25 for transmitting a high-frequency signal to a high-frequency circuit component and surface grounds 22 disposed on both sides thereof are formed. Thus, (gap g, the characteristic impedance z between the width w, the main line path 25 and the surface ground 22 of the main line 25) 0 back of the dielectric substrate 1 in the form of a coplanar line
0  0
面には、接地用の裏面電極 21が全面にわたって形成されている。  A back surface electrode 21 for grounding is formed on the entire surface.
[0049] 主線路 25が枠体 2の下に隠れる部分では、主線路 25の幅 w,は上記主線路 25の 幅 wより小さい値となっている。また、主線路 25の幅寸法は幅 wから幅 w'となるように 徐々に小さくなつている。これにより、コプレーナ線路の特性インピーダンスを長手方 向で一定に保たれるようになって!/、る。 [0049] In the portion where the main line 25 is hidden under the frame 2, the width w of the main line 25 is smaller than the width w of the main line 25. The width of the main line 25 is gradually reduced from the width w to the width w '. As a result, the characteristic impedance of the coplanar line is It keeps constant in the direction!
[0050] なお、コプレーナ線路を構成するこれらの電極としては、高融点の導電性材料が用 いられている。これにより、シート状の誘電体部材を焼成する際に劣化しにくくなる。 焼成後には、導電性の向上と腐食防止を目的としてメツキが施される。  [0050] Note that high-melting-point conductive materials are used for these electrodes constituting the coplanar line. This makes it difficult for the sheet-shaped dielectric member to deteriorate when it is fired. After firing, plating is performed for the purpose of improving conductivity and preventing corrosion.
[0051] 枠体 2は、誘電体基板 1と同様のシート状の誘電体部材 (比誘電率 ε r、基板厚さ t  The frame 2 is made of a sheet-like dielectric member similar to the dielectric substrate 1 (relative permittivity ε r, substrate thickness t
2  2
)をくり抜くことによって枠形状とされている。枠体 2の上面には、上面電極 23がその ) Is hollowed out. On the upper surface of the frame 2, an upper electrode 23 is provided.
2 2
全面にわたって形成されている。また、誘電体基板 1の厚さ tと枠体 2の厚さ tは同一  It is formed over the entire surface. The thickness t of the dielectric substrate 1 is the same as the thickness t of the frame 2.
1 2 となっており、これにより、枠体 2の内部での、厚さ方向への高次モードの伝搬が防止 されるようになつている。  1 2, whereby the propagation of higher-order modes in the thickness direction inside the frame 2 is prevented.
[0052] 貫通電極 5、 6はいずれも、枠体 2および誘電体基板 1のそれぞれをその厚さ方向 に貫通する導電性材料で構成されて 、る。貫通電極 5はコプレーナ線路の表面ダラ ゥンド 22と上面電極 23とを短絡し、貫通電極 6は表面グラウンド 22と裏面電極 21とを 短絡している。貫通電極 5、 6はそれぞれ、枠体 2および誘電体基板 1内において、 信号伝搬軸に沿う方向(図 1Bの水平方向)に、所定の配置ピッチ d、 dで配置され Each of the through electrodes 5 and 6 is made of a conductive material that penetrates the frame 2 and the dielectric substrate 1 in the thickness direction thereof. The through electrode 5 short-circuits the top ground electrode 22 and the top electrode 23 of the coplanar line, and the through electrode 6 short-circuits the front ground 22 and the back electrode 21. The through electrodes 5 and 6 are arranged in the frame 2 and the dielectric substrate 1 at predetermined arrangement pitches d and d, respectively, in the direction along the signal propagation axis (the horizontal direction in FIG. 1B).
1 2  1 2
ている。また、貫通電極 5、 6はいずれも、信号伝搬軸に直交する面内において、信 号伝搬軸を間にお 、て左右対称に配置されて 、る。  ing. Further, the through electrodes 5 and 6 are both symmetrically arranged with the signal propagation axis therebetween in a plane orthogonal to the signal propagation axis.
[0053] 誘電体基板 1の端面および枠体 2の端面には、それぞれ端面導体 10、 11が形成さ れている。端面導体 10、 11はいずれも貫通電極を半分割したものである。したがつ て、端面導体 10は表面グラウンド 22と裏面電極 21とを短絡し、端面電極 11は表面 グラウンド 22と上面電極 2とを短絡して 、る。 [0053] End surface conductors 10, 11 are formed on the end surface of the dielectric substrate 1 and the end surface of the frame 2, respectively. Each of the end face conductors 10 and 11 is a half-divided through electrode. Therefore, the end face conductor 10 short-circuits the front ground 22 and the back electrode 21, and the end face electrode 11 short-circuits the front ground 22 and the top electrode 2.
[0054] 本実施形態のフィードスルー型光モジュール 100では、誘電体基板 1の厚さ t、枠 体 2の厚さ t、貫通電極 5、 6の配置ピッチ d、 d 1S 次のような数式を満たす寸法で In the feed-through type optical module 100 of the present embodiment, the thickness t of the dielectric substrate 1, the thickness t of the frame 2, the arrangement pitch d of the through electrodes 5 and 6, d 1s With dimensions that satisfy
2 2 1  2 2 1
設けられている。  Is provided.
t <c /(4f-( sr -1)1/2) t <c / (4f- (sr -1) 1/2 )
1 0 1  1 0 1
t <c /(4f-( sr -1)1/2) t <c / (4f- (sr -1) 1/2 )
2 0 2  2 0 2
d <c /(4f- ε r 1/2) d <c / (4f- ε r 1/2 )
1 0 1  1 0 1
d <c /(4f- ε r 1/2) d <c / (4f- ε r 1/2 )
2 0 2  2 0 2
(ここで、 cは光速、 fは本モジュールに使用される最高使用周波数である。 ) 本実施形態のフィードスルー型光モジュール 100は、誘電体基板 1および枠体 2の それぞれの厚さ t、 tと、貫通電極 5、 6の配置ピッチ d、 dが上記のように規定され ている。また、端面導体 11によって表面グラウンド 25と上面電極 22とが短絡されてい る。これにより、枠体 2内を伝搬する厚さ方向の高次モードおよび平行平板モードの 励振と伝搬が抑えられる。その結果として、周波数応答特性を効果的に改善すること ができる。また、フィードスルーを電気信号入出力インターフェースとして用いている ため、サイズが大きく自動実装にも適さない同軸コネクタを用いる構成と比較して、モ ジュール自体の小型化、高性能化、低コストィ匕がなされる。しかも、モジュールをボー ド実装する際のコストの低減まで期待できる。具体的には、フィードスルーを用いた本 モジュール 100では、同軸コネクタなどの部品を別途必要としないこと、パッケージと の一体形成が可能なことなどにより、低コスト化、量産性の向上が期待できる。 (Where c is the speed of light and f is the highest operating frequency used in this module.) In the feed-through type optical module 100 of the present embodiment, the thicknesses t and t of the dielectric substrate 1 and the frame 2 and the arrangement pitches d and d of the through electrodes 5 and 6 are defined as described above. . Further, the surface ground 25 and the upper surface electrode 22 are short-circuited by the end surface conductor 11. As a result, excitation and propagation of a higher-order mode and a parallel plate mode in the thickness direction propagating in the frame 2 are suppressed. As a result, the frequency response characteristics can be effectively improved. In addition, since the feedthrough is used as an electrical signal input / output interface, the module itself is smaller, has higher performance, and is less costly than a configuration that uses a coaxial connector that is large and is not suitable for automatic mounting. Done. Moreover, it can be expected to reduce the cost of mounting the module on the board. Specifically, this module 100 using feedthroughs can be expected to reduce costs and improve mass productivity by eliminating the need for additional components such as coaxial connectors and being able to be integrated with the package. .
[0055] (第 2の実施形態) (Second Embodiment)
図 2は、本発明の第 2の実施形態によるフィードスルー型光モジュールを示している 。図 2Aはフィードスルー型光モジュールの上面図であり、図 2Bはその側面図である  FIG. 2 shows a feed-through type optical module according to a second embodiment of the present invention. FIG. 2A is a top view of the feed-through type optical module, and FIG. 2B is a side view thereof.
[0056] フィードスルー型光モジュール 101は、図 1の構成に加え、パッケージの側壁面に 複数のバンプ 8を有している。なお、ノ ッケージの側壁面は、誘電体基板の外周面と 枠体の外周面とを同一面内に位置させることにより構成されたものである。側壁面は 信号伝搬軸(図 1参照)に平行に形成されている。このバンプ 8は、不図示の電気配 線を介して、コプレーナ線路の主線路 25および表面グラウンド 22や、パッケージ内 の光素子 (不図示)や電子回路 (不図示)に電気的に接続されて 、る。 The feed-through type optical module 101 has a plurality of bumps 8 on the side wall surface of the package in addition to the configuration shown in FIG. Note that the side wall surface of the knockout is configured by positioning the outer peripheral surface of the dielectric substrate and the outer peripheral surface of the frame in the same plane. The side wall surface is formed parallel to the signal propagation axis (see Fig. 1). The bump 8 is electrically connected to a main line 25 and a surface ground 22 of a coplanar line, an optical element (not shown) and an electronic circuit (not shown) in the package via an electric wiring (not shown). RU
[0057] 複数のバンプ 8は、側壁面において所定のピッチでほぼ格子状に設けられている。  [0057] The plurality of bumps 8 are provided substantially in a lattice pattern at a predetermined pitch on the side wall surface.
また、プリント基板との接合強度を確保するため、特定の信号線 (不図示)と何ら導通 して ヽな 、バンプ 8も他のバンプと同様のサイズおよびピッチで配置されて!、る。なお 、信号線に導通するバンプ 8は、接地導体と同電位のバンプ 8で周囲を囲まれること により、擬似的に電磁遮蔽されている。  Further, in order to secure the bonding strength with the printed circuit board, the bumps 8 are arranged at the same size and pitch as other bumps, and are not electrically connected to a specific signal line (not shown). The bumps 8 that are electrically connected to the signal lines are quasi-electromagnetically shielded by being surrounded by the bumps 8 having the same potential as the ground conductor.
[0058] このように構成されたフィードスルー型光モジュール 101によれば、モジュール底面 にバンプを形成した従来の構成とは異なり、次のような利点がある。すなわち、ノ ッケ ージ内の素子等とバンプ 8とを接続する電気配線において貫通電極 (ビア)を介在さ せていないため、その不連続性による電気的信号への影響がより緩和される。 The feed-through type optical module 101 configured as described above has the following advantages, unlike the conventional configuration in which bumps are formed on the bottom surface of the module. That is, Since no through-electrode (via) is interposed in the electric wiring connecting the element or the like in the semiconductor device and the bump 8, the effect of the discontinuity on the electric signal is further reduced.
[0059] なお、本実施形態のようにモジュール側面にバンプ 8を設ける構成にっ 、ては例え ば特開 39037Z83号公報にも提案されている。しかし同文献の構成と比較すると、 本実施形態のフィードスルー型光モジュール 101は、フィードスルーで発生する平行 平板モードや厚さ方向の高次モードに起因した特性劣化を低減する構造となってい る。したがって、それらの相乗効果により周波数応答特性の向上が期待できる。さら に、ノッケージ内に ICを配置する場合において、上記のようにモジュール側面に設 けた複数のバンプ 8は以下の点で有利である。すなわち、発熱をパッケージの裏面 力 効率的に逃がすことが可能であるため、モジュールとしての信頼性を向上させる 点からも従来のバンプ付き光モジュールと比較して有利なのである。  A configuration in which the bumps 8 are provided on the side surfaces of the module as in the present embodiment is proposed, for example, in Japanese Patent Application Laid-Open No. 39037Z83. However, compared to the configuration of the document, the feed-through type optical module 101 of the present embodiment has a structure that reduces the characteristic deterioration caused by the parallel plate mode and the higher-order mode in the thickness direction generated by the feed-through. . Therefore, an improvement in frequency response characteristics can be expected due to their synergistic effect. Furthermore, when arranging the IC in the knockage, the plurality of bumps 8 provided on the side surface of the module as described above are advantageous in the following points. That is, since heat can be efficiently released from the back surface of the package, it is more advantageous than the conventional optical module with bumps in terms of improving the reliability as a module.
[0060] (実施例 1)  (Example 1)
上述した第 1の実施形態に基づき、実施例 1では、光素子として導波路型のフォト ダイオードを用い、 40Gb/sレセプタクル型受信モジュールを製造した。パッケージ 内には、導波路型 pin受光素子、プリアンプ IC、レンズ、およびバイアス回路等を搭 載した。  In Example 1, based on the first embodiment described above, a 40 Gb / s receptacle-type receiving module was manufactured using a waveguide-type photodiode as an optical element. The package contained a waveguide-type pin photodetector, preamplifier IC, lens, and bias circuit.
[0061] 誘電体基板 1には、予めシート状に加工された純度 95%のアルミナ(比誘電率 ε r  [0061] Dielectric substrate 1 is made of a 95% pure alumina (a relative dielectric constant ε r) previously processed into a sheet shape.
= 9、基板厚さ t = 380 m)を用いた。枠体 2には、誘電体基板 1と同様に純度 95 %のアルミナ(比誘電率 ε r= 9、基板厚さ t = 380 m)を用いた。ここで、基板厚さ t、 tは、本実施例の受信モジュールにおける最高使用周波数 50GHzに対しても、 = 9, substrate thickness t = 380 m). Alumina having a purity of 95% (relative permittivity εr = 9, substrate thickness t = 380 m) was used for the frame 2 as in the dielectric substrate 1. Here, the substrate thicknesses t and t are the same as the maximum used frequency of 50 GHz in the receiving module of the present embodiment.
1 2 1 2
それぞれの基板内部で基板の厚さ方向に高次モードが発生しな 、ように設計されて いる。また、枠体 2の周壁のうち、コプレーナ線路を覆う部分の厚さは 1. 2mmである 。すなわち、コプレーナ線路は、その長手方向における一部分が 1. 2mmにわたつて 枠体 2で覆われている。  The design is such that high-order modes do not occur in the thickness direction of the substrate inside each substrate. The thickness of the portion of the peripheral wall of the frame 2 that covers the coplanar line is 1.2 mm. That is, the coplanar line is partially covered with the frame 2 over a length of 1.2 mm in the longitudinal direction.
[0062] コプレーナ線路としては、主線路 25の幅 wを 104 μ m、空隙 gを 58 μ m、特性イン ピーダンス zを 50 Ωとし、電極には高融点の導電性材料としてタングステンを用いた [0062] As the coplanar line, the width w of the main line 25 was 104 µm, the gap g was 58 µm, the characteristic impedance z was 50 Ω, and tungsten was used for the electrode as a high melting point conductive material.
0  0
。焼成後のメツキとしては、厚さ: L mの金メッキを施した。  . After plating, gold plating with a thickness of Lm was applied.
[0063] 貫通電極 5、 6には、タングステンを用い、その直径 φを 150 μ m、配置間隔 d、 d を 600 μ mとした。 [0063] Tungsten was used for the through electrodes 5 and 6, the diameter φ was 150 µm, and the arrangement intervals d and d were used. Was set to 600 μm.
[0064] また、コプレーナ線路の特性インピーダンスを長手方向で一定に保っために、主線 路 25が枠体 2の下に隠れる部分の近傍では、主線路 25の幅 w,を 108 m、空隙 g' 56 μ mとし 7こ。  Further, in order to keep the characteristic impedance of the coplanar line constant in the longitudinal direction, near the portion where the main line 25 is hidden under the frame 2, the width w of the main line 25 is set to 108 m and the gap g ′ 7 with 56 μm.
[0065] このように構成した受信モジュールにおけるフィードスルーの小信号周波数応答特 性を図 3Bに示す。実線で示した透過率 I S Iは直流から 50GHzにわたつてほぼ  FIG. 3B shows the small signal frequency response characteristics of the feedthrough in the receiving module configured as described above. The transmittance I S I indicated by the solid line is almost constant from DC to 50 GHz.
21  twenty one
平坦であり、挿入損失は— ldB以内である。また、破線で示した反射率 | s  It is flat and the insertion loss is within -ldB. In addition, the reflectance | s
11 Iも同 じく直流力 45GHzにわたつて 15dB以下であり、 40GbZs通信用光素子や ICを 搭載する上で実用上十分な広帯域特性が得られた。これに対し、枠体 2の上側の導 体のみを取り除いて同様のフィードスルー構造体を試作し、その小信号周波数応答 特性を評価したところ、図 3Aに示すように透過率 | S  Similarly, 11 I was 15 dB or less over DC power of 45 GHz, and practically sufficient wideband characteristics were obtained for mounting 40GbZs communication optical elements and ICs. On the other hand, a similar feedthrough structure was prototyped by removing only the upper conductor of frame 2, and its small signal frequency response characteristics were evaluated. As shown in Fig. 3A, the transmittance | S
21 I、反射率 I S  21 I, reflectance I S
11 Iともに 35 35 for both 11 I
GHz近傍に顕著なディップが観察された。また、受信モジュール自体としての特性はA remarkable dip was observed near GHz. The characteristics of the receiving module itself are
、帯域 40GHz、トランスインピーダンス 6(ΜΒ Ω、受光感度 0. 8AZWであり、こちら も 40GbZs用途に十分な特性を実現して 、た。 , Bandwidth 40 GHz, transimpedance 6 (ΜΒΩ, light sensitivity 0.8 AZW), which also achieved sufficient characteristics for 40 GbZs applications.
[0066] (実施例 2) (Example 2)
上述した第 2の実施形態に基づき、実施例 2では、実施例 1と同様のレセプタクル 型受信モジュールを製造した。なお、バンプ 8を除く他の構成については実施例 1と 同様であるため、その説明は省略する。  In Example 2, a receptacle-type receiving module similar to that of Example 1 was manufactured based on the above-described second embodiment. Note that the other configuration except for the bump 8 is the same as that of the first embodiment, and a description thereof will be omitted.
[0067] バンプ 8は、その直径を 100 μ mとし、隣接するバンプ 8同士の、格子状をなす 2方 向におけるそれぞれのピッチはいずれも約 500 mとした。なお、複数のバンプ 8は[0067] The diameter of each of the bumps 8 was set to 100 Pm, and the pitch between the adjacent bumps 8 in each of the two grid-like directions was set to about 500 m. The bumps 8
、実施例 1と同じようにパッケージ内に配置された導波路型 pin受光素子、プリアンプ I, The waveguide type pin photodetector and preamplifier I
C、レンズ、およびバイアス回路等に導通するように構成した。 It was configured to conduct to C, lens, bias circuit and the like.
[0068] このように構成した受信モジュールにおける、フィードスルーおよび受信モジュール 自体の特性も実施例 1と同様のものとなった。 [0068] The characteristics of the feed-through and the receiving module itself in the receiving module configured as described above are also the same as those in the first embodiment.

Claims

請求の範囲 The scope of the claims
[1] 裏面電極付きコプレーナ線路を形成する第 1の誘電体基板と、前記第 1の誘電体 基板上に配置され、少なくとも前記コプレーナ線路上に開口部が形成されると共に、 上面に上面電極が形成された第 2の誘電体基板とを有し、  [1] A first dielectric substrate forming a coplanar line with a back surface electrode, and an opening is formed on at least the coplanar line disposed on the first dielectric substrate, and an upper surface electrode is formed on an upper surface. And a second dielectric substrate formed,
前記第 1の誘電体基板は、前記コプレーナ線路の表面グラウンドと前記裏面電極と を短絡する複数の第 1の貫通導体を備え、  The first dielectric substrate includes a plurality of first through conductors that short-circuit the surface ground of the coplanar line and the back surface electrode,
前記第 2の誘電体基板は、前記表面グラウンドと前記上面電極とを短絡する複数の 第 2の貫通導体と、前記コプレーナ線路の主線路に沿う方向に交差する、前記第 2 の誘電体基板の端面に形成され、前記表面グラウンドと前記上面電極とを短絡する 第 2の端面導体とを備えるフィードスルー構造体において、  The second dielectric substrate includes a plurality of second through conductors that short-circuit the surface ground and the upper surface electrode, and a plurality of second through conductors that intersect in a direction along a main line of the coplanar line. A feed-through structure formed on an end face and including a second end face conductor that short-circuits the surface ground and the upper surface electrode,
前記第 1および前記第 2の誘電体基板の比誘電率をそれぞれ ε r、 ε r、前記主  The relative dielectric constants of the first and second dielectric substrates are εr, εr,
1 2 線路が伝搬する最高使用周波数を f、光速を c  1 2 f is the maximum operating frequency that the line propagates, and c is the speed of light
0としたときに、  When set to 0,
前記第 1および前記第 2の誘電体基板のそれぞれの厚さ t、 t、および、前記主線  Thicknesses t and t of the first and second dielectric substrates, respectively, and the main line
1 2  1 2
路に沿う方向における、前記第 1および前記第 2の貫通導体のそれぞれの配置ピッ チ d、 dは、  The respective arrangement pitches d, d of the first and second through conductors in the direction along the road are:
1 2  1 2
t <c /(4f- ( s r -1)1/2) t <c / (4f- (sr -1) 1/2 )
1 0 1  1 0 1
t <c /(4f- ( s r -1)1/2) t <c / (4f- (sr -1) 1/2 )
2 0 2  2 0 2
d <c /(4f- ε r 1/2) d <c / (4f- ε r 1/2 )
1 0 1  1 0 1
d <c /(4f- ε r 1/2) d <c / (4f- ε r 1/2 )
2 0 2  2 0 2
を満たすことを特徴とするフィードスルー構造体。  A feed-through structure characterized by satisfying the following.
[2] 前記第 1の貫通導体の前記配置ピッチ と、前記第 2の貫通導体の前記配置ピッ チ dとが同じであって、そのときの配置ピッチ dが、 [2] The arrangement pitch of the first through conductor and the arrangement pitch d of the second through conductor are the same, and the arrangement pitch d at that time is:
2  2
d<c /(4f- ε r1/2) ( ε r: ε rと ε rのいずれ力大きい方) d <c / (4f- ε r 1/2 ) (ε r: whichever is greater, ε r or ε r)
0 1 2  0 1 2
を満たす、請求項 1に記載のフィードスルー構造体。  The feed-through structure according to claim 1, which satisfies the following.
[3] 前記第 1および前記第 2の誘電体基板が、 [3] The first and second dielectric substrates are:
, 1/2 . 1/2  , 1/2. 1/2
t · ε r =t · ε r  t · ε r = t · ε r
1 1 2 2  1 1 2 2
を満たす、請求項 1または 2に記載のフィードスルー構造体。  3. The feed-through structure according to claim 1, which satisfies the following.
[4] 前記第 1の誘電体基板が、前記主線路に沿う方向に交差する、前記第 1の誘電体 基板の端面に形成され、前記表面グラウンドと前記裏面電極とを短絡する第 1の端面 導体をさらに有するものであって、 [4] The first dielectric substrate, wherein the first dielectric substrate intersects in a direction along the main line. A first end surface conductor formed on an end surface of the substrate and short-circuiting the front surface ground and the back electrode, further comprising:
前記第 1の端面導体は、前記第 1の誘電体基板の前記端面内において、前記主線 路を間にお!/、て対称に配置され、  The first end surface conductor is symmetrically disposed within the end surface of the first dielectric substrate with the main line therebetween.
前記第 2の端面導体は、前記第 2の誘電体基板の前記端面内において、前記主線 路を間にお!/、て対称に配置され、  The second end surface conductor is symmetrically arranged within the end surface of the second dielectric substrate with the main line therebetween.
前記第 1の端面導体同士の距離 d および前記第 2の端面導体同士の距離 d は、  The distance d between the first end face conductors and the distance d between the second end face conductors are:
11 12 それぞれ、  11 12 Each
d ≤c / (2f - ε r 1/2) d ≤c / (2f-ε r 1/2 )
11 0 1  11 0 1
d ≤c / (2f - ε r 1/2) d ≤c / (2f-ε r 1/2 )
12 0 2  12 0 2
を満たす、請求項 1な!、し 3の 、ずれか 1項に記載のフィードスルー構造体。  Satisfy, claim 1! 3. The feed-through structure according to any one of items 1 to 3 above.
[5] 前記第 1および前記第 2の端面導体は、前記第 1および前記第 2の誘電体基板を 貫通する貫通導体を分割して設けられたものである、請求項 4に記載のフィードスル 一構造体。 5. The feedthrough according to claim 4, wherein the first and second end surface conductors are provided by dividing a through conductor penetrating the first and second dielectric substrates. One structure.
[6] 前記第 1の誘電体基板および前記第 2の誘電体基板は、それぞれの前記厚さ t、 t が同一であり、かつ、同一材料からなる、請求項 1ないし 5のいずれ力 1項に記載の [6] Any one of claims 1 to 5, wherein the first dielectric substrate and the second dielectric substrate have the same thicknesses t, t and are made of the same material. Described in
2 2
フィードスルー構造体。  Feedthrough structure.
[7] 前記第 1の誘電体基板および前記第 2の誘電体基板は、セラミック、ガラス、または 榭脂のうちのいずれか 1つ力もなる、請求項 6に記載のフィードスルー構造体。  7. The feed-through structure according to claim 6, wherein the first dielectric substrate and the second dielectric substrate are also made of any one of ceramic, glass, and resin.
[8] 前記第 1の誘電体基板および前記第 2の誘電体基板は、互いにほぼ等しい線膨張 係数を有する、請求項 1な!ヽし 5の ヽずれか 1項に記載のフィードスルー構造体。 [8] The feed-through structure according to any one of claims 1 to 5, wherein the first dielectric substrate and the second dielectric substrate have substantially equal linear expansion coefficients. .
[9] 前記第 1の誘電体基板および前記第 2の誘電体基板は、気密性および耐水性に優 れた材料からなる、請求項 1な 、し 8の!、ずれ力 1項に記載のフィードスルー構造体。 9. The method according to claim 1, wherein the first dielectric substrate and the second dielectric substrate are made of a material excellent in airtightness and water resistance. Feedthrough structure.
[10] 前記第 1の誘電体基板および前記第 2の誘電体基板は、金属材料をろう付けでき る材料力もなる、請求項 1な 、し 9の 、ずれ力 1項に記載に記載のフィードスルー構 造体。 [10] The feed according to claim 1, wherein the first dielectric substrate and the second dielectric substrate also have a material strength capable of brazing a metal material. Through structure.
[11] 前記コプレーナ線路の前記主線路および前記表面グラウンドの少なくとも一部にメ ツキが施されて 、る、請求項 1な 、し 10の!、ずれ力 1項に記載のフィードスルー構造 体。 [11] The feed-through structure according to claim 1, wherein a plating is applied to at least a part of the main line and the surface ground of the coplanar line. body.
[12] 電極表面にワイヤボンディングが可能である力、または、バンプを形成できる請求 項 1な!、し 11の!、ずれ力 1項に記載のフィードスルー構造体。  [12] The feed-through structure according to claim 1, wherein a force enabling wire bonding or a bump can be formed on the electrode surface.
[13] 電極表面にリード電極が設けられている、請求項 1ないし 12のいずれか 1項に記載 のフィードスルー構造体。 [13] The feed-through structure according to any one of claims 1 to 12, wherein a lead electrode is provided on the electrode surface.
[14] 前記第 1の誘電体基板の外周面のうちの少なくとも 1面と、前記第 2の誘電体基板 の外周面のうちの少なくとも 1面とが同一平面内にある、請求項 1ないし 13のいずれ 力 1項に記載のフィードスルー構造体。 [14] At least one of the outer peripheral surfaces of the first dielectric substrate and at least one of the outer peripheral surfaces of the second dielectric substrate are in the same plane. The feed-through structure according to item 1.
[15] 前記同一平面内にある、前記第 1および前記第 2の誘電体基板の前記外周面のそ れぞれに複数のバンプが形成されており、 [15] A plurality of bumps are formed on each of the outer peripheral surfaces of the first and second dielectric substrates in the same plane,
前記複数のバンプは、前記第 2の誘電体基板の前記開口部内に配置される高周 波回路部品とに導通するように構成されている、請求項 14に記載のフィードスルー 構造体。  15. The feed-through structure according to claim 14, wherein the plurality of bumps are configured to conduct to a high-frequency circuit component disposed in the opening of the second dielectric substrate.
[16] 前記複数のバンプが形成された前記外周面は、前記主線路に沿う方向と平行であ る、請求項 15に記載のフィードスルー構造体。  16. The feed-through structure according to claim 15, wherein the outer peripheral surface on which the plurality of bumps are formed is parallel to a direction along the main line.
[17] 前記コプレーナ線路がアレイ状に配置されている、請求項 1ないし 16のいずれか 1 項に記載のフィードスルー構造体。 [17] The feed-through structure according to any one of claims 1 to 16, wherein the coplanar lines are arranged in an array.
[18] 請求項 1ないし 17のいずれ力 1項に記載のフィードスルー構造体と、 [18] The feed-through structure according to any one of claims 1 to 17, and
前記第 1の誘電体基板上であって、前記第 2の誘電体基板の前記開口部内に配置 された高周波回路部品とを有する、フィードスルー型光モジュール。  A feed-through type optical module, comprising: a high-frequency circuit component disposed on the first dielectric substrate and in the opening of the second dielectric substrate.
PCT/JP2005/008862 2004-05-14 2005-05-16 Feed-through structure and feed-through type optical module WO2005112185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513576A JPWO2005112185A1 (en) 2004-05-14 2005-05-16 Feedthrough structure and feedthrough type optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004145226 2004-05-14
JP2004-145226 2004-05-14

Publications (1)

Publication Number Publication Date
WO2005112185A1 true WO2005112185A1 (en) 2005-11-24

Family

ID=35394453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008862 WO2005112185A1 (en) 2004-05-14 2005-05-16 Feed-through structure and feed-through type optical module

Country Status (2)

Country Link
JP (1) JPWO2005112185A1 (en)
WO (1) WO2005112185A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100994A (en) * 1998-09-21 2000-04-07 Sumitomo Metal Electronics Devices Inc High-frequency package
JP2003258142A (en) * 2002-02-28 2003-09-12 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100994A (en) * 1998-09-21 2000-04-07 Sumitomo Metal Electronics Devices Inc High-frequency package
JP2003258142A (en) * 2002-02-28 2003-09-12 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPWO2005112185A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
US6674347B1 (en) Multi-layer substrate suppressing an unwanted transmission mode
JP3346752B2 (en) High frequency package
JP5580994B2 (en) Optical module
US6356173B1 (en) High-frequency module coupled via aperture in a ground plane
JP3241019B2 (en) Coplanar railway track
US8847696B2 (en) Flexible interconnect cable having signal trace pairs and ground layer pairs disposed on opposite sides of a flexible dielectric
US6483406B1 (en) High-frequency module using slot coupling
EP2738798B1 (en) Package for accommodating semiconductor element, semiconductor device provided with same, and electronic device
JP5654288B2 (en) Optical module and high frequency module
EP2428989B1 (en) High-frequency circuit package and high-frequency circuit device
JP2001320208A (en) High frequency circuit, module and communication equipment using the same
EP2782133B1 (en) High-frequency module
US10512155B2 (en) Wiring board, optical semiconductor element package, and optical semiconductor device
US20060082422A1 (en) Connection structure of high frequency lines and optical transmission module using the connection structure
JP2004093606A (en) Optical module and optical transmitter
WO2005112185A1 (en) Feed-through structure and feed-through type optical module
JP2007123950A (en) Coaxial line-flat substrate conversion structure and high-frequency signal converter
JP3618046B2 (en) High frequency circuit package
US20180374787A1 (en) Semiconductor device
WO2023228456A1 (en) Mode conversion device
JP2004304233A (en) Transmission line and semiconductor device
JPH11186458A (en) Connecting structure for transmission path for high frequency and wiring board
WO2023054419A1 (en) Substrate for mounting semiconductor element and semiconductor device
JP5414364B2 (en) High frequency substrate and high frequency module
JP3670574B2 (en) I / O terminal and semiconductor element storage package

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513576

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase