WO2005111417A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2005111417A1
WO2005111417A1 PCT/JP2005/002404 JP2005002404W WO2005111417A1 WO 2005111417 A1 WO2005111417 A1 WO 2005111417A1 JP 2005002404 W JP2005002404 W JP 2005002404W WO 2005111417 A1 WO2005111417 A1 WO 2005111417A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
compressor according
drive shaft
compressor
oil
Prior art date
Application number
PCT/JP2005/002404
Other languages
English (en)
French (fr)
Inventor
Hironobu Deguchi
Hiroshi Kanai
Original Assignee
Valeo Thermal Systems Japan Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corporation filed Critical Valeo Thermal Systems Japan Corporation
Publication of WO2005111417A1 publication Critical patent/WO2005111417A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/109Lubrication

Definitions

  • the present invention relates to a variable displacement compressor in which lubricating oil separated by an oil separator can be favorably supplied to a shaft sealing device and a bearing.
  • a lubricating oil is supplied to a bearing that supports a rotating shaft (drive shaft) to prevent seizure.
  • a lubricating oil passage 2b formed in the front housing 2 is connected to a separation space 9a defined by a lip seal 10 and a slide bearing 7 provided on the tip side of the drive shaft 6, and is connected to the crank chamber 5.
  • Oil is supplied to the isolation space 9a through the passage 2b to lubricate each lip seal 10 and the slide bearing 7.
  • a lubricating oil passage 6a for returning the oil to the crank chamber 5 by the isolation space 9a is formed in the rotating shaft 6!
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-310067
  • Patent Document 1 the turbid liquid of the lubricating oil and the refrigerant stirred by the rotating members (12, 13 and the like) in the crank chamber is introduced into the isolated space 9a, and some of the liquid adheres to the inner wall surface. Since the lubricating oil is only introduced by the action of gravity, there is a disadvantage that stable and sufficient lubricating oil is not supplied to each lubricating portion, and problems such as seizure have occurred due to insufficient lubricating oil.
  • an object of the present invention is to efficiently introduce the supply of lubricating oil separated by an oil separator into a shaft sealing device or a slide bearing.
  • a compressor according to the present invention includes a drive shaft to which a rotational force is transmitted from the outside and is rotated; In a compressor having a piston reciprocated by the swash plate, the fluid discharged from the compressor flows.
  • An oil separator provided in the discharge flow path for separating lubricating oil from the refrigerant; and a lubricating oil provided behind the drive shaft and separated by the oil separator.
  • a second separation space separated from the crank chamber by a seal structure separate from the first separation space, a lubricating oil introduction flow passage communicating with the first separation space and the second separation space, It comprises a recirculation flow path communicating from the isolated space to the crank chamber (claim 1).
  • the lubricating oil forcibly separated by the oil separator flows into the first isolation space, lubricates the bearing having a seal structure, and further, through the lubricating oil introduction flow path, the second lubricating oil. Flows into the enclosed space. Therefore, the shaft sealing device is lubricated, and the bearing that forms the front seal structure is lubricated. Then, the lubricating oil is also returned to the crank chamber by the recirculation flow path.
  • the fluidity is given to the lubricating oil by the pressure difference between the oil separator where the discharge pressure is strong and the crank chamber.
  • the recirculation flow path is formed in either the front head or the drive shaft (claim 2).
  • a pressure difference is applied to the lubricating oil, so that the lubricating oil can be reliably supplied to the shaft sealing device and the like.
  • a throttle is provided in a lubricating oil flow path between the oil separator and the first isolation space (claim 3). Thereby, the lubricating oil pressure can be reduced.
  • a bearing supporting the drive shaft also has a seal (Claim 4).
  • Lubricating oil is supplied to the bearing supporting the drive shaft from a lubricating oil introduction passage (Claim 5).
  • a slide bearing is used as a bearing for supporting the drive shaft (claim 6).
  • the lubricating oil introduction flow path may be a hollow shaft provided in the drive shaft separately from the drive shaft (claim 7).
  • the lubricating oil introduction flow path is provided with a bombing mechanism for lubricating oil pressure feeding! Thereby, the fluidity of the lubricating oil is enhanced.
  • the bombing mechanism is a cascade provided at the end of the drive shaft (claim 9).
  • the shaft sealing device employs a mechanical seal (Claim 10) and a lip seal (Claim 11). Have been used.
  • a mechanical seal (Claim 10) and a lip seal (Claim 11).
  • a baked carbon-based material or a silicon carbide-based material is used for at least a part of the sliding member (claim 12).
  • a fluororesin material or a hydrogenated-tolyl rubber material is used for at least a part of the sliding member (claim 13).
  • the sliding bearing can receive a thrust load and a radial load (Claim 14), and its configuration is such that a combination of an annular member and a tubular member receives thrust and radial loads (claim 14). Claim 15).
  • An elastic body that eliminates a thrust gap is in contact with the slide bearing that defines the first isolated space (claim 16), and an elastic material is in contact with the slide bearing (claim 17).
  • the compression medium used in this compressor is dioxygenated carbon (Claim 18), the lubricating oil is a polyalkylene glycol base oil (Claim 19), and further compressed.
  • the compressor is a clutchless compressor (Claim 20).
  • the lubricating oil separated by the oil separator can be directly guided to the shaft sealing device or the like without passing through the crank chamber. Since the first and second isolation spaces and the lubricating oil introduction flow path are partitioned from the crank chamber and the return flow path is provided, the lubricating oil has a pressure difference between the discharge pressure and the crank chamber pressure, and the lubrication oil has a lubricating oil. It can impart fluidity to the oil. Therefore, not only the oil amount of the lubricating oil but also the fluidity is ensured, so that the heat generated by the sliding of the shaft sealing device and the bearing can be transported and dissipated to the crankcase. Thereby, the wear resistance of the shaft sealing device and the bearing can be significantly improved.
  • FIG. 1 is a sectional view showing Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of a shaft sealing device 11 and a slide bearing 12 of the same.
  • FIG. 3 is an enlarged cross-sectional view of the vicinity of the slide bearing 14 and the first isolation space 50 of the same.
  • FIG. 4 is an enlarged sectional view of the vicinity of the shaft sealing device 11 and the slide bearing 12, showing Embodiment 2 of the present invention.
  • FIG. 5 is an enlarged sectional view showing the vicinity of a shaft sealing device 11 and a slide bearing 12 according to a third embodiment of the present invention.
  • FIG. 6 is an enlarged cross-sectional view of the vicinity of the sliding bearing 14 and the first isolation space 50, showing Example 4 of the present invention.
  • FIG. 7 is an enlarged cross-sectional view showing the vicinity of the slide bearing 14 and the first isolation space 50, showing Embodiment 5 of the present invention.
  • FIGS. 1 to 3 show a clutchless variable displacement compressor used in a refrigeration cycle as an example of the compressor.
  • This compressor is assembled so as to cover the cylinder block 1, the rear head 3 attached to the rear side (right side in the figure) of the cylinder block 1 via the valve plate 2, and the cylinder block 1.
  • a front head 5 defining a crank chamber 4 on the front side (left side in the figure) of the cylinder block.
  • the front head 5, the valve plate 2, and the rear head 3 are axially fastened by fastening bolts 6 to form a compressor housing.
  • a drive shaft 7 whose one end projects from the front head 5 is accommodated.
  • a drive pulley 9 fixed in the axial direction by bolts 8 is rotatably fitted to the cylindrical portion 5a of the front head 5 via a bearing 10 at a portion where the front head 5 of the drive shaft 7 also protrudes.
  • the front end side of the drive shaft 7 is hermetically sealed with the front head 5 via a shaft sealing device 11 provided between the drive shaft 7 and the drive shaft 7 and is rotatable by a slide bearing 12.
  • the rear end of the drive shaft 7 is housed in the support recess 13 of the cylinder block 1. It is rotatably supported by the sliding bearing 14.
  • the shaft sealing device 11 uses a mechanical seal or a lip seal.
  • the mechanical seal one of sliding portions thereof is made of a fired carbon material or silicon carbide.
  • one of the sliding portions (fixed side) is provided integrally with the front head 5.
  • a lip seal a fluororesin-based material or a hydrogenated nitrile rubber-based material is used for one of the sliding portions.
  • the sliding bearings 12, 14 are radially arranged by arranging two cylindrical members (tubular members) 12 a, 12 a and 14 a, 14 a slidably on the outer periphery of the drive shaft 7 in series in the axial direction.
  • an annular (disk-shaped) member 12b is disposed on the shaft sealing device side of the front slide bearing 12, and receives a thrust load.
  • an annular (disk-shaped) member 14b is arranged on the rear head side, and a coil spring 63 for eliminating a thrust gap is in contact with the sliding bearing 14. Is receiving.
  • Known materials can be used for the above-mentioned sliding bearings 12 and 14, and the materials are not disclosed.
  • the cylinder block 1 is formed with a support recess 13 for accommodating the slide bearing 14 and a plurality of cylinder bores 16 arranged at equal intervals on a circumference centered on the support recess 13.
  • a single-headed piston 17 is inserted into each of the cylinder bores 16 so as to be able to slide back and forth.
  • a thrust flange 18 that rotates integrally with the drive shaft 7 in the crank chamber 4 is fixed to the drive shaft 7.
  • a swash plate 21 is connected to the thrust flange 18 via a link member 20.
  • the swash plate 21 is mounted so as to be tiltable around a support shaft 29 inserted into an elongated hole 22 formed in the drive shaft 7, and rotates integrally with the rotation of the thrust flange 18. It is becoming so.
  • the swash plate 21 has its peripheral edge moored to the engaging portion 17b of the single-headed piston 17 via a pair of front and rear shoes 23.
  • the rear head 3 defines a suction chamber 25 and a discharge chamber 26 continuously formed around the suction chamber 25.
  • the valve plate 2 includes a suction chamber 25 and a compression chamber 24.
  • a suction hole 27 that communicates through a suction valve (not shown) and a discharge hole 28 that communicates the discharge chamber 26 and the compression chamber 24 through a discharge valve (not shown) are formed.
  • a pressure control valve 30 for controlling the pressure in the crank chamber is mounted on the rear head 3.
  • the pressure control valve 30 has a discharge pressure side connection passage 40 connected to the discharge pressure side, and a pressure control valve 30 connected to the crank chamber 4.
  • a suction pressure side connection passage 42 connected to the crank chamber connection passage 41 and the suction chamber 25 is connected.
  • the piston stroke is determined by the pressure acting on the front face of the piston 17, ie, the pressure in the compression chamber (the pressure in the cylinder bore), and the pressure acting on the back face of the piston, ie, the pressure in the crank chamber 4 (crank chamber).
  • the pressure difference between the compression chamber and the crank chamber 4 is reduced by increasing the crank chamber pressure, so that the inclination angle (swing angle) of the swash plate 21 is reduced.
  • the smaller the smaller the piston stroke.
  • the crank chamber pressure is reduced, the differential pressure between the compression chamber 24 and the crank chamber 4 increases, so that the inclination angle (swing angle) of the swash plate 21 increases, and the piston stroke increases. .
  • the rear head 3 is provided with a centrifugal oil separator 31 for separating oil mixed in the refrigerant gas discharged into the discharge chamber 26.
  • the oil separator 31 is provided with an oil separation chamber 33 in a discharge flow path 32 from a discharge chamber 26.
  • the oil separation chamber 33 is formed by a space extending in the vertical direction. It is configured by inserting the separation tube 34 toward it.
  • the refrigerant gas discharged from the discharge chamber 26 to the oil separation chamber 33 through the discharge passage 32 is also introduced into the oil separation chamber 33, and the introduced refrigerant gas is swirled around the separation cylinder 34.
  • the lubricating oil is guided downward, and the lubricating oil mixed during the process is separated.
  • the discharged refrigerant gas from which the lubricating oil has been separated is oiled through the separation cylinder 34.
  • the lubricating oil sent out and separated from the discharge passage 35 formed at the upper end of the oil separator 31 is supplied to the shaft sealing device 11 and the slide bearings 12 and 14 via oil supply means described below. . That is, the oil flows out through a lubricating oil flow passage 37 formed at the bottom of the oil separation chamber 33 and is stored in an oil sump chamber 38 disposed below the oil separation chamber 33.
  • the oil sump chamber 38 is provided inside the suction chamber 25, that is, at the center of the rear head 3, and accommodates a bolt 39 for fixing the cylinder block 1 and the valve plate 2 to each other.
  • the bolt 39 is formed with a through hole 39a serving as a throttle in the axial direction, and the through hole 39a opens to the first isolation space 50. Therefore, the oil is forced to flow into the first isolation space 50. At that time, the pressure of the lubricating oil is reduced by the throttling action of the through hole 39a.
  • the first isolated space 50 is a space surrounded by the support recess 13, the rear end of the drive shaft 7, and the slide bearing 14 having the above-described seal structure, and is filled with lubricating oil. This lubricating oil lubricates the slide bearing 14 and flows into the lubricating oil introduction flow path 51.
  • the lubricating oil introduction flow path 51 is constituted by a hollow shaft 53 having a vertical hole 52 at the center, and the hollow shaft 53 is inserted into a vertical hole 54 formed at the center of the drive shaft 7. .
  • a cascade 56 is provided at the rear end of the drive shaft 7 to allow oil to flow to another portion through the lubricating oil introduction flow path 51, and is rotated with the rotation of the drive shaft 7 to perform a pump action. Be done.
  • the hollow shaft 53 is screwed or pressed into the drive shaft 7 as shown in FIGS.
  • the left end of the lubricating oil introduction flow path 51 is formed with a drilled hole 57 drilled in the drive shaft 7, and the branch holes 58a, 58b, 58c have the above-described seal structure of the slide bearing 12 and the shaft. It communicates with the second isolated space 60 constituted by the sealing device 11 and the like.
  • the second isolation space 60 is filled with lubricating oil supplied through the lubricating oil introduction passage 51, and the lubricating oil lubricates the shaft sealing device 11.
  • a recirculation flow path 61 formed in the front head 5 along the outer periphery of the above-described slide bearing 12 has a low pressure, and The oil in the second isolation space 60 flows into the crank chamber 4 due to the pressure difference. As a result, the pressure in the second isolation space 60 becomes lower than the pressure in the first isolation space 50, Is given a flow.
  • the recirculation flow path 61 may be formed on the drive shaft 7 or the slide bearing 12 although not shown.
  • FIG. 4 and FIG. 5 show second and third embodiments of the present invention.
  • the example shown in FIG. 4 shows an embodiment in which the hollow shaft 53 constituting the lubricating oil introduction passage 51 is screwed and mounted on the drive shaft 7 with a screw cylinder 65 provided at the tip thereof.
  • a plurality of tubular (tubular) members 12a are provided between the drive shaft 7 and the front head 5 to receive a radial load, and a plurality of annular (disk-shaped) members 12b are connected to the front head 5 and the thrust flange 18. It is provided between and to receive the thrust load and to share the load according to the nature of the load.
  • the lubricating oil sent through the lubricating oil introduction flow path 51 is sent from the perforated hole 57 to the cylindrical member 12a and the annular member 12b through the branch holes 58a and 58b, and also through the branch hole 58c. It is also sent to the shaft sealing device 11.
  • FIG. 5 an embodiment is shown in which the hollow shaft 53 constituting the lubricating oil introduction flow path 51 is mounted by press-fitting its tip to the drive shaft 7, and the sliding bearing 12 has a plurality of slide bearings 12.
  • the cylindrical (tubular) member 12a and a plurality of annular (disc-shaped) members 12b disposed before and after the tubular member 12a are combined to receive a thrust and a radial load.
  • the other parts are the same as those in the first embodiment, and thus the same reference numerals are given and the description is omitted.
  • FIGS. 6 and 7 show fourth and fifth embodiments of the present invention.
  • an elastic material 66 such as rubber is provided on the annular member 14b of the slide bearing 14 in order to generate a panel load for eliminating the thrust gap.
  • a coil spring 63 is provided directly at the end of the sliding bearing 14 which receives a radial and thrust load, thereby eliminating the thrust gap.
  • a screw cap 67 serving as a pump is provided in order to improve the fluidity of the lubricating oil flowing in the lubricating oil introduction flow path 51 described above.
  • the other parts are the same as those in the first embodiment, and thus the same numbers are assigned and the description is omitted.
  • a panel washer such as a co-card washer may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

【課題】 吐出流路に設けられたオイル分離器で分離された潤滑オイルを効率良く軸封装置や滑り軸受に供給すること。 【解決手段】 外部より回転力が伝達されて回転される駆動軸7と、この駆動軸7により揺動される斜板21と、この斜板21により往復動されるピストン17とを備えた圧縮機において、吐出流路35にオイル分離器31が設けられ、このオイル分離器31により潤滑オイルが分離される。分離されたオイルは、駆動軸7の後方に設けられた滑り軸受14により画成される第1の隔離空間50に導かれ、滑り軸受14を潤滑する。そして、潤滑オイル導入流路51を通って駆動軸7の前方に設けられた軸封装置11及び滑り軸受12により画成の第2の隔離空間60に導かれ、軸封装置11及び滑り軸受12を潤滑し、さらに潤滑オイルは、第2の隔離空間60とクランク室4との間に形成の還流流路61からクランク室4へ圧力差によって導かれる。

Description

明 細 書
圧縮機
技術分野
[0001] この発明は、可変容量型の圧縮機において、オイル分離器により分離された潤滑 オイルを軸封装置及び軸受に良好に供給することができるようにした圧縮機に関する 背景技術
[0002] 従来、圧縮機にあって、回転軸 (駆動軸)を軸支する軸受には、焼付防止のため、 潤滑油が供給されている。例えば特許文献 1に示されるような構成のものがある。即 ち、駆動軸 6の先端側に設けられたリップシール 10と滑り軸受 7とにより区画された隔 離空間 9aに、フロントハウジング 2に穿設した潤滑オイル通路 2bが接続され、クランク 室 5からオイルが該通路 2bを通して前記隔離空間 9aに供給され、各リップシール 10 と、滑り軸受 7を潤滑する。そして、そのオイルを隔離空間 9aによりクランク室 5へ戻す ための潤滑オイル通路 6aが回転軸 6に形成されて!、る。
特許文献 1:特開 2002 - 310067
[0003] 前記した特許文献 1では、クランク室内で回転部材(12, 13等)により攪拌された潤 滑オイルと冷媒の混濁した液体が隔離空間 9aに導入され、ある 、は内壁面に付着し た潤滑オイルが重力の作用によって導入されるのみであるから、各潤滑部位に安定 し且つ充分な潤滑オイルが供給されない不都合があり、潤滑オイル不足から焼付等 の問題が起きていた。
[0004] そこで、この発明は、オイル分離器で分離された潤滑オイルの供給を効率良く軸封 装置や滑り軸受に導入することを課題としている。
発明の開示
発明が解決しょうとする課題
[0005] 上記課題を達成するために、この発明に係る圧縮機は、外部より回転力が伝達さ れ、回転される駆動軸と、この駆動軸の回転により少なくとも揺動される斜板と、この 斜板により往復動されるピストンとを備えた圧縮機において、圧縮機の吐出流体が流 れる吐出流路に設けられ、冷媒から潤滑オイルを分離するオイル分離器と、前記駆 動軸の後方に設けられ、前記オイル分離器により分離された潤滑オイルが供給され
、当該駆動軸に装着のシール構造により閉じられた第 1の隔離空間と、前記駆動軸 の前方に設けられ、軸封装置により圧縮機外部と区画され、かつ前記した駆動軸後 方のシール構造とは別体のシール構造によって前記クランク室と区画された第 2の隔 離空間と、前記第 1の隔離空間と前記第 2の隔離空間と連通する潤滑オイル導入流 路と、前記第 2の隔離空間から前記クランク室へ連通する還流流路とより成ることにあ る(請求項 1)。
[0006] これにより、オイル分離器で強制的に分離された潤滑オイルが第 1の隔離空間に流 入されて、シール構造となる軸受を潤滑し、さらに潤滑オイル導入流路を介して第 2 の隔離空間内に流入する。そこで、軸封装置を潤滑すると共に、前方側のシール構 造となる軸受を潤滑する。そして、潤滑オイルは還流流路カもクランク室内に戻される 。このように、吐出圧が力かるオイル分離器とクランク室との圧力差により、潤滑オイル に流動性が与えられる。
[0007] 前記還流流路はフロントヘッドあるいは前記駆動軸のどちらか一方に形成したこと にある(請求項 2)。これにより、潤滑オイルに圧力差が付加されることから、潤滑オイ ルを確実に軸封装置等に供給できる。
[0008] 前記オイル分離器と前記第 1の隔離空間との間の潤滑オイル流路に絞りが設けら れている(請求項 3)。これにより、潤滑オイル圧を減圧することができる。前記シール 構造として前記駆動軸を支える軸受がシールを兼ね備えている (請求項 4)。前記駆 動軸を支える軸受には潤滑油導入流路から潤滑オイルが供給される (請求項 5)。 また、前記駆動軸を支える軸受として滑り軸受が用いられる(請求項 6)。さらにまた、 前記潤滑油導入流路は、駆動軸とは別体で、当該駆動軸内に設けられた中空軸で あっても良い(請求項 7)。
[0009] 前記潤滑オイル導入流路には潤滑オイル圧送用のボンビング機構が設けられて!/ヽ る(請求項 8)。これにより、潤滑オイルの流動性が高められる。前記ボンビング機構は 、前記駆動軸端に設けた翼列である (請求項 9)。
[0010] 前記軸封装置はメカニカルシール (請求項 10)や、リップシール (請求項 11)が採 用されている。このメカ-カルシールは、その摺動部材の少なくとも一部に焼成炭素 系の材料あるいは炭化珪素系の材料が用いられている(請求項 12)。リップシールは
、その摺動部材の少なくとも一部にフッ素榭脂材料あるいは水素添加-トリルゴム系 材料が用いられて ヽる(請求項 13)。
[0011] 前記滑り軸受はスラスト荷重とラジアル荷重を受けることができる(請求項 14)、その 構成は、環状部材と筒状部材を組み合わせることによりスラスト兼ラジアル荷重を受 けるようにして 、る(請求項 15)。
[0012] 前記第 1の隔離空間を画成する滑り軸受に、スラストギャップを解消する弾性体が 当接され (請求項 16)、また弾性材料が当接されている (請求項 17)。
[0013] この圧縮機に用いられる圧縮媒体が二酸ィ匕炭素であるし (請求項 18)、また潤滑ォ ィルはポリアルキレングリコール系の基油であるし (請求項 19)、さらに圧縮機はクラッ チレス圧縮機である (請求項 20)。
発明の効果
[0014] 以上のように、この発明によれば、オイル分離器によって分離された潤滑オイルはク ランク室を介さずに直接軸封装置等に導くことができる。第 1及び第 2の隔離空間お よび潤滑オイル導入流路をクランク室と区画すると共に、還流流路を持つことから、潤 滑オイルに吐出圧とクランク室圧との圧力差が持たされ、潤滑オイルに流動性を与え ることができる。したがって、潤滑オイルのオイル量の確保のみならず流動性が確保 されるので、軸封装置や軸受の摺動による発生熱をクランク室へ輸送'放散すること ができる。これにより、軸封装置や軸受の耐摩耗性が著しく向上させることができる。 図面の簡単な説明
[0015] [図 1]この発明の実施例 1を示す断面図である。
[図 2]同上の軸封装置 11及び滑り軸受 12付近の拡大断面図である。
[図 3]同上の滑り軸受 14及び第 1の隔離空間 50付近の拡大断面図である。
[図 4]この発明の実施例 2を示し、軸封装置 11及び滑り軸受 12付近の拡大断面図で ある。
[図 5]この発明の実施例 3を示し、軸封装置 11及び滑り軸受 12付近の拡大断面図で ある。 圆 6]この発明の実施例 4を示し、滑り軸受 14及び第 1の隔離空間 50付近の拡大断 面図である。
[図 7]この発明の実施例 5を示し、滑り軸受 14及び第 1の隔離空間 50付近の拡大断 面図である。
符号の説明
1 シリンダブロック
2 バノレブプレート
3 リアヘッド
4 クランク室
5 フロントヘッド
7 駆動軸
12 滑り軸受
12a 円筒部材
12b 環状部材
14 滑り軸受
14a 円筒部材
14b 環状部材
16 シリンダボア
17 片頭ピストン
18 スラストフランジ
21 斜板
25 吸入室
26 吐出室
29 支軸
30 圧力制御弁
31 オイル分離器
33 オイル分離室
35 吐出流路 37 潤滑オイル流路
50 第 1の隔離室
51 潤滑オイル導入流路
53 中空軸
56 翼列
57 穿設孔
58a, 58b, 58c 枝孔
Ό1 流流路
63 コイルスプリング
65 ねじ筒
66 弾性材料
67 ネジ加工
発明を実施するための最良の形態
[0017] 以下、この発明の実施例を図面にもとづいて説明する。
[0018] 図 1乃至図 3において、圧縮機の一例として冷凍サイクルに用いられるクラッチレス の可変容量型圧縮機が示されている。この圧縮機は、シリンダブロック 1と、このシリン ダブロック 1のリア側(図中、右側)にバルブプレート 2を介して組み付けられたリアへ ッド 3と、シリンダブロック 1を覆うように組付けられ、シリンダブロックのフロント側(図中 、左側)でクランク室 4を画成するフロントヘッド 5とを有して構成されている。これらフ ロントヘッド 5、バルブプレート 2、及び、リアヘッド 3は、締結ボルト 6により軸方向に締 結され、圧縮機のハウジングを構成している。
[0019] フロントヘッド 5とシリンダブロック 1とによって画成されるクランク室 4には、一端がフ ロントヘッド 5から突出する駆動軸 7が収容されている。この駆動軸 7のフロントヘッド 5 力も突出した部分には、ボルト 8によって軸方向に固定された駆動プーリ 9が、フロン トヘッド 5の円筒部 5aにベアリング 10を介して回転自在に外嵌されて 、る。
[0020] また、この駆動軸 7の先端側は、フロントヘッド 5との間に設けられた軸封装置 11を 介してフロントヘッド 5との間が気密よく封じられると共に滑り軸受 12にて回転自在に 支持されており、駆動軸 7の後端側は、シリンダブロック 1の支持凹部 13に収容され た滑り軸受 14にて回転自在に支持されて 、る。
前記軸封装置 11は、メカ-カルシール又はリップシールが用いられ、メカ-カルシ ールの場合、その摺動部の一方に焼成炭素の材料あるいは炭化珪素系が採用され ている。ここでは、摺動部の一方(固定側)がフロントヘッド 5と一体に設けられている 。またリップシールの場合、その摺動部の一方にフッ素榭脂系の材料あるいは水素 添加二トリルゴム系材料が採用される。なお、前記軸封装置 11及び滑り軸受 12, 14 に対するオイルの供給手段を下記に改めて説明する。
[0021] また、前記滑り軸受 12, 14は、円筒部材 (管状部材) 12a, 12a及び 14a, 14aが前 記駆動軸 7の外周に摺動可能に 2つ軸方向に直列に配されてラジアル荷重を受ける と共に、前方側の滑り軸受 12では、その軸封装置側に環状(円板状)部材 12bが配 され、スラスト荷重を受けている。
[0022] また、後方側の滑り軸受 14では、そのリアヘッド側に環状(円板状)部材 14bが配さ れ、スラストギャップを解消するためのコイルスプリング 63が当接しており、やはりスラ スト荷重を受けている。前記した滑り軸受 12, 14の素材については、公知の材質を 用いることができるもので、その材質を開示しな 、。
[0023] シリンダブロック 1には、前記滑り軸受 14が収容される支持凹部 13と、この支持凹 部 13を中心とする円周上に等間隔に配された複数のシリンダボア 16とが形成されて おり、それぞれのシリンダボア 16には、片頭ピストン 17が往復摺動可能に挿入されて いる。
[0024] 前記駆動軸 7には、クランク室 4内において、該駆動軸 7と一体に回転するスラスト フランジ 18が固定されている。このスラストフランジ 18には、リンク部材 20を介して斜 板 21が連結されている。
[0025] 斜板 21は、駆動軸 7に形成の長穴 22内に挿入の支軸 29を中心に傾動可能に取り 付けられているもので、スラストフランジ 18の回転に同期して一体に回転するようにな つている。そして、斜板 21は、その周縁部分が前後に設けられた一対のシユー 23を 介して片頭ピストン 17の係合部 17bに係留されて 、る。
[0026] したがって、駆動軸 7が回転すると、これに伴って斜板 21が回転し、この斜板 21の 回転運動がシユー 23を介して片頭ピストン 17の直線往復運動に変換され、シリンダ ボア 16内においてピストン 17とバルブプレート 2とにより画成される圧縮室 24の容積 が変更されるようになっている。なお、前記斜板 21を支える支軸 29はスプリング 36に よりシリンダブロック 1方向に付勢されて 、る。
[0027] リアヘッド 3には、吸入室 25とこの吸入室 25の周囲に連続的に形成された吐出室 2 6とが画成され、バルブプレート 2には、吸入室 25と圧縮室 24とを図示しない吸入弁 を介して連通する吸入孔 27と、吐出室 26と圧縮室 24とを図示しない吐出弁を介して 連通する吐出孔 28とが形成されている。
[0028] また、リアヘッド 3には、クランク室内の圧力を制御する圧力制御弁 30が装着されて おり、この圧力制御弁 30に吐出圧側と接続の吐出圧側接続通路 40、クランク室 4と 接続のクランク室接続通路 41及び吸入室 25と接続の吸入圧側接続通路 42が接続 されている。この圧力制御弁 30によってクランク室圧を制御することでピストンストロー ク、即ち吐出容量を調節するようにしている。
[0029] ここで、ピストンストロークは、ピストン 17の前面に力かる圧力、即ち圧縮室の圧力( シリンダボア内の圧力)と、ピストンの背面に力かる圧力、即ちクランク室 4内の圧力( クランク室圧 Pc)との差圧によって決定されるもので、クランク室圧を高くすれば、圧 縮室とクランク室 4との差圧が小さくなるので、斜板 21の傾斜角(揺動角)が小さくなり 、ピストンストロークは小さくなる。逆に、クランク室圧を低くすれば、圧縮室 24とクラン ク室 4との差圧が大きくなるので、斜板 21の傾斜角(揺動角)が大きくなり、ピストンスト ロークは大さくなる。
[0030] さらに、リアヘッド 3には、吐出室 26に吐出した吐出冷媒ガスに混在しているオイル を分離する遠心分離式のオイル分離器 31が設けられている。このオイル分離器 31 は、吐出室 26からの吐出流路 32にオイル分離室 33を備えているもので、このオイル 分離室 33を上下方向に延びる空間によって形成し、その内部に上方から下方に向 けて分離筒 34を挿入して構成されて 、る。
[0031] したがって、吐出室 26から吐出流路 32を介して側方力もオイル分離室 33に吐出 冷媒ガスが導入され、この導入された吐出冷媒ガスは、分離筒 34の周りを旋回しな がら下方へ導かれ、その過程にぉ ヽて混在して ヽる潤滑オイルが分離されるようにな つている。そして、潤滑オイルが分離された吐出冷媒ガスは、分離筒 34を介してオイ ル分離器 31の上端に形成された吐出流路 35から送出し、分離された潤滑オイルは 、下記するオイル供給手段を介して前記軸封装置 11及び前記滑り軸受 12, 14に供 給される。即ち、オイルは、オイル分離室 33の底部に形成された潤滑オイル流路 37 を介して流出し、オイル分離室 33より下方に配されたオイル溜り室 38に貯められるよ うになつている。
[0032] このオイル溜り室 38は、吸入室 25の内側、即ち、リアヘッド 3の中央部に設けられ ているもので、シリンダブロック 1とバルブプレート 2とを固定するためのボルト 39が収 容され、このボルト 39には、軸方向に絞りとなる通孔 39aが形成され、該通孔 39aが 第 1の隔離空間 50に開口している。したがって、オイルは第 1の隔離空間 50に流さ れる力 その際に通孔 39aの絞り作用にて潤滑オイルの圧力が低下される。
[0033] 第 1の隔離空間 50は前記した支持凹部 13と、駆動軸 7の後端と、前記したシール 構造となる滑り軸受 14とで囲まれる空間で、潤滑オイルが満たされている。この潤滑 オイルは滑り軸受 14を潤滑すると共に、潤滑オイル導入流路 51に流入する。
[0034] 潤滑オイル導入流路 51は、中心に縦孔 52を持つ中空軸 53等で構成され、前記中 空軸 53は、前記駆動軸 7の中心に形成の縦孔 54に挿入されている。この潤滑オイ ル導入流路 51を介してオイルを他の部位に流すために翼列 56が前記駆動軸 7の後 端に設けられ、駆動軸 7の回転に伴って回転されてポンプ作用が行われる。なお、前 記中空軸 53は、図 4,図 5に示すように駆動軸 7にねじ込まれ、または圧入されてい る。
[0035] 潤滑オイル導入流路 51の左端は、駆動軸 7に穿設した穿設孔 57となっており、そ の枝孔 58a, 58b, 58cが前記したシール構造となる滑り軸受 12及び軸封装置 11等 により構成される第 2の隔離空間 60に連通している。この第 2の隔離空間 60は、潤滑 オイル導入流路 51を介して供給される潤滑オイルが満たされ、この潤滑オイルが軸 封装置 11を潤滑する。
[0036] 第 2の隔離空間 60内の潤滑オイルに流れを与えるために、前述の滑り軸受 12の外 周に添ってフロントヘッド 5に形成の還流流路 61が圧力の低 、前記クランク室 4まで 伸び、第 2の隔離空間 60内のオイルを圧力差によりクランク室 4内に流している。この ために、第 2隔離空間 60の圧力が第 1の隔離空間 50の圧力よりも低下して、オイル に流れが与えられる。なお、還流流路 61として、前記実施例と異なり、図示しないが 、駆動軸 7又は滑り軸受 12に形成しても良い。
[0037] 図 4,図 5において、この発明の第 2,第 3の実施例が示されている。図 4に示す例 では、潤滑オイル導入流路 51を構成する中空軸 53が、その先端に設けられたねじ 筒 65にて駆動軸 7にねじ込まれて取付られる実施例が示され、また滑り軸受 12は、 複数の筒状 (管状)部材 12aが駆動軸 7とフロントヘッド 5との間に設けられ、ラジアル 荷重を受け、複数の環状(円板状)部材 12bがフロントヘッド 5とスラストフランジ 18と の間に設けられ、スラスト荷重を受けて、荷重の性質ごとに分担を図っている。
そして、潤滑オイル導入流路 51を介して送られる潤滑オイルは、穿設孔 57から各 枝孔 58a, 58bを介して筒状部材 12a、環状部材 12bに送られ、また枝孔 58cを介し て軸封装置 11にも送られる。
[0038] 図 5に示す例では、潤滑オイル導入流路 51を構成する中空軸 53が、その先端を 駆動軸 7に圧入して取付られる実施例が示され、また、滑り軸受 12は、複数の筒状( 管状)部材 12aと、その前後に配された複数の環状(円板状)部材 12bとを組み合わ せてスラスト及びラジアル荷重を受ける構成としている。この実施例 2, 3において、そ の他の部分は前述の実施例 1と同一のため同一の番号を付して説明を省略する。
[0039] 図 6,図 7において、この発明の第 4, 5の実施例が示されている。図 6に示す例で は、スラストギャップを解消するためのパネ荷重を発生させるために、滑り軸受 14の 環状部材 14bにゴム等の弾性材料 66が設けられている。また図 7に示す例では、ラ ジアル及びスラスト荷重を受ける滑り軸受 14の端に直接コイルスプリング 63が設けら れ、スラストギャップの解消を図っている。また前述した潤滑オイル導入流路 51内を 流れる潤滑オイルの流動性の向上のために、ポンプ作用をなすネジカ卩ェ 67が施さ れている。その他の部分は実施例 1と同一のため同一の番号を付して説明を省略す る。なお、前述のコイルスプリング 63に代わってコ-カルヮッシャ等のパネ座金でも良 い。

Claims

請求の範囲
[1] 外部より回転力が伝達され、回転される駆動軸と、
この駆動軸の回転により少なくとも揺動される斜板と、
この斜板により往復動されるピストンとを備えた圧縮機において、
圧縮機の吐出流体が流れる吐出流路に設けられ、冷媒から潤滑オイルを分離する オイル分離器と、
前記駆動軸の後方に設けられ、前記オイル分離器により分離された潤滑オイルが 供給され、当該駆動軸に装着のシール構造により閉じられた第 1の隔離空間と、 前記駆動軸の前方に設けられ、軸封装置により圧縮機外部と区画され、かつ前記 した駆動軸後方のシール構造とは別体のシール構造によって前記クランク室と区画 された第 2の隔離空間と、
前記第 1の隔離空間と前記第 2の隔離空間と連通する潤滑オイル導入流路と、 前記第 2の隔離空間から前記クランク室へ連通する還流流路とより成ることを特徴と する圧縮機。
[2] 前記還流流路はフロントヘッドあるいは前記駆動軸のどちらか一方に形成したこと を特徴とする請求項 1記載の圧縮機。
[3] 前記オイル分離器と前記第 1の隔離空間との間の潤滑オイル流路に絞りが設けら れたことを特徴とする請求項 1記載の圧縮機。
[4] 前記シール構造として前記駆動軸を支える軸受がシールを兼ね備えることを特徴と する請求項 1記載の圧縮機。
[5] 前記駆動軸を支える軸受に前記潤滑油導入流路から潤滑オイルが供給されるよう にしたことを特徴とする請求項 1記載の圧縮機。
[6] 前記駆動軸を支える軸受として滑り軸受が用いられることを特徴とする請求項 4又 は 5記載の圧縮機。
[7] 前記潤滑オイル導入流路は、駆動軸と別体で、当該駆動軸内に設けられた中空軸 であることを特徴とする請求項 1記載の圧縮機。
[8] 前記潤滑オイル導入流路には潤滑オイル圧送用のボンビング機構を設けたことを 特徴とする請求項 1又は 7記載の圧縮機。
[9] 前記ボンビング機構は、前記駆動軸端に設けた翼列であることを特徴とする請求項 8記載の圧縮機。
[10] 前記軸封装置はメカニカルシールであることを特徴とする請求項 1記載の圧縮機。
[11] 前記軸封装置はリップシールであることを特徴とする請求項 1記載の圧縮機。
[12] 前記メカ-カルシールは、その摺動部材の少なくとも一部に焼成炭素系の材料ある いは炭化珪素系の材料が用いられていることを特徴とする請求項 10記載の圧縮機。
[13] 前記リップシールは、その摺動部材の少なくとも一部にフッ素榭脂材料あるいは水 素添加-トリルゴム系材料であることを特徴とする請求項 11記載の圧縮機。
[14] 前記滑り軸受はスラスト荷重とラジアル荷重を受けることができることを特徴とする請 求項 6記載の圧縮機。
[15] 前記滑り軸受は環状部材と筒状部材を組み合せによりスラスト兼ラジアル荷重を受 けることができる請求項 14記載の圧縮機。
[16] 前記第 1の隔離空間を画成する滑り軸受に、スラストギャップを解消する弾性体が 当接していることを特徴とする請求項 1, 5, 14又は 15記載の圧縮機。
[17] 前記第 1の隔離空間を画成する滑り軸受に、スラストギャップを解消する弾性材料 が当接していることを特徴とする請求項 1, 5, 14又は 15記載の圧縮機。
[18] 圧縮媒体が二酸ィ匕炭素であることを特徴とする請求項 1から 17のいずれか 1つに 記載の圧縮機。
[19] 前記潤滑オイルがポリアルキレングリコール系の基油であることを特徴とする請求項
1から 18のいずれか 1つに記載の圧縮機。
[20] 圧縮機としてクラッチレス圧縮機であることを特徴とする請求項 1から 19のいずれか
1つに記載の圧縮機。
PCT/JP2005/002404 2004-05-19 2005-02-17 圧縮機 WO2005111417A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004148470A JP2005330855A (ja) 2004-05-19 2004-05-19 圧縮機
JP2004-148470 2004-05-19

Publications (1)

Publication Number Publication Date
WO2005111417A1 true WO2005111417A1 (ja) 2005-11-24

Family

ID=35394225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002404 WO2005111417A1 (ja) 2004-05-19 2005-02-17 圧縮機

Country Status (2)

Country Link
JP (1) JP2005330855A (ja)
WO (1) WO2005111417A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520210B2 (en) 2006-09-27 2009-04-21 Visteon Global Technologies, Inc. Oil separator for a fluid displacement apparatus
CN111852814A (zh) * 2020-07-08 2020-10-30 河北华本机械有限公司 一种活塞式空气压缩机润滑系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001965A1 (en) * 2006-06-30 2008-01-03 Doowon Technical College A oil separating structure of variable displacement compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431611A (en) * 1977-08-12 1979-03-08 Sentoraru Jidoushiya Kougiyou Cooling medium compressor
JPS56131861A (en) * 1980-03-18 1981-10-15 Taiho Kogyo Co Ltd Mechanical seal
JPS5744783A (en) * 1980-08-30 1982-03-13 Diesel Kiki Co Ltd Lubricating oil charge device for rotary swash plate compressor
JPS59105076U (ja) * 1982-12-29 1984-07-14 株式会社豊田自動織機製作所 圧縮機における駆動軸の軸受け装置
JPS6284681U (ja) * 1985-11-14 1987-05-29
JPH05202847A (ja) * 1992-01-30 1993-08-10 Hitachi Ltd 冷凍機用圧縮機
JP2002005026A (ja) * 2000-06-16 2002-01-09 Toyota Industries Corp ピストン式圧縮機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431611A (en) * 1977-08-12 1979-03-08 Sentoraru Jidoushiya Kougiyou Cooling medium compressor
JPS56131861A (en) * 1980-03-18 1981-10-15 Taiho Kogyo Co Ltd Mechanical seal
JPS5744783A (en) * 1980-08-30 1982-03-13 Diesel Kiki Co Ltd Lubricating oil charge device for rotary swash plate compressor
JPS59105076U (ja) * 1982-12-29 1984-07-14 株式会社豊田自動織機製作所 圧縮機における駆動軸の軸受け装置
JPS6284681U (ja) * 1985-11-14 1987-05-29
JPH05202847A (ja) * 1992-01-30 1993-08-10 Hitachi Ltd 冷凍機用圧縮機
JP2002005026A (ja) * 2000-06-16 2002-01-09 Toyota Industries Corp ピストン式圧縮機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520210B2 (en) 2006-09-27 2009-04-21 Visteon Global Technologies, Inc. Oil separator for a fluid displacement apparatus
CN111852814A (zh) * 2020-07-08 2020-10-30 河北华本机械有限公司 一种活塞式空气压缩机润滑系统

Also Published As

Publication number Publication date
JP2005330855A (ja) 2005-12-02

Similar Documents

Publication Publication Date Title
US5795139A (en) Swash plate type refrigerant compressor with improved internal lubricating system
JP2006307700A (ja) 圧縮機
KR101166288B1 (ko) 가변용량형 사판식 압축기
JP3896822B2 (ja) 斜板型圧縮機
EP0943802A2 (en) Variable capacity swash-plate compressor with oil separator
US4444549A (en) Refrigerant compressor
KR20070098534A (ko) 사판식 압축기
JP2019515184A (ja) ガス状流体の圧縮装置
US5009574A (en) Thrust bearing and shoe lubricator for a swash plate type compressor
JP2004239116A (ja) 圧縮機における潤滑構造
US4522112A (en) Swash-plate type compressor having improved lubrication of swash plate and shoes
JP2008144631A (ja) 可変容量型圧縮機
US20020002840A1 (en) Motor-driven compressor
WO2005111417A1 (ja) 圧縮機
US20040265144A1 (en) Hybrid compressor
US20090220355A1 (en) Swash plate compressor
EP1688618B1 (en) Swash plate type compressor
JP2006144660A (ja) 圧縮機
JP4630801B2 (ja) 圧縮機
US6523455B1 (en) Compressor having an oil collection groove
JPH08284816A (ja) 斜板式圧縮機
KR102308681B1 (ko) 압축기의 오일 순환구조
CN113260786B (zh) 压缩机
EP0911521B1 (en) Arrangement of lubrication fluid grooves in a rotating drive plate for a swash plate compressor
JP2017145827A (ja) 可変容量型斜板式圧縮機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase