WO2005110928A1 - Production method of ballast water for vessel, production system of ballast water for vessel and use - Google Patents

Production method of ballast water for vessel, production system of ballast water for vessel and use Download PDF

Info

Publication number
WO2005110928A1
WO2005110928A1 PCT/JP2005/003125 JP2005003125W WO2005110928A1 WO 2005110928 A1 WO2005110928 A1 WO 2005110928A1 JP 2005003125 W JP2005003125 W JP 2005003125W WO 2005110928 A1 WO2005110928 A1 WO 2005110928A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane
ballast water
seawater
producing
Prior art date
Application number
PCT/JP2005/003125
Other languages
French (fr)
Japanese (ja)
Inventor
Makio Tamura
Sumiyuki Fusiki
Original Assignee
Organo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corporation filed Critical Organo Corporation
Publication of WO2005110928A1 publication Critical patent/WO2005110928A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/04Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability
    • B63B43/06Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability using ballast tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J1/00Arrangements of installations for producing fresh water, e.g. by evaporation and condensation of sea water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a method for producing ballast water for ships, an apparatus for producing ballast water for ships, and uses thereof.
  • the present invention relates to a method for producing ballast water for ships from which microorganisms have been removed (hereinafter, also simply referred to as "ballast water”) loaded for stabilizing the center of gravity during navigation of a ship, and for producing ballast water for ships. Equipment and use.
  • ballast water introduces microorganisms that do not naturally inhabit specific sea areas, resulting in the destruction of marine ecosystems and not only seriously damaging the lives of the people in the water area.
  • the destruction of the global marine environment is occurring and is a serious international problem.
  • various methods have been studied on an international scale for the purpose of removing microorganisms from ballast water (JP-A-2003-181443, JP-A-2000-515803, JP-A-11-265684). JP-A-2003-horizon, JP-T-2002-504851, JP-A-04-322788).
  • fresh water such as tap water is usually left standing for several days, even if it is tap water, since the free chlorine added thereto disappears, so that it becomes putrid odor and cannot be drunk. For example, it takes about 10 days for Japanese power to travel to oil-producing countries, so the freshwater onboard the vessel will rot and become unusable. Since freshwater spoils due to microorganisms in freshwater, the microorganisms may be killed by a known method. However, for example, the method of heating fresh water is not economical depending on the means of procuring heating energy, and it is difficult to completely kill microorganisms.
  • the method of irradiating freshwater with ultraviolet light requires a huge amount of power to kill or inactivate all microorganisms, and a large number of UV devices are installed in parallel to treat high-flow freshwater.
  • the cost of installation of the device will increase.
  • the method of treating fresh water with chemicals such as iodine and hypochlorous acid requires a high concentration of chemicals to kill some types of bacteria. You have to use
  • the method of killing microorganisms in freshwater is, as described above, difficult to completely kill microorganisms, and the small amount of microorganisms remaining without killing grows during transportation. The development of a method for removal is eagerly desired.
  • the present invention provides a method for removing microorganisms in freshwater or seawater by a method other than killing, and simultaneously desalinating seawater to prevent decay of freshwater during transportation and to reduce freshwater utilization value.
  • the present invention provides a method for passing freshwater through a microfiltration membrane, an ultrafiltration membrane, or a reverse osmosis membrane, thereby obtaining a membrane-treated water from which microorganisms in the freshwater have been removed. It is a manufacturing method.
  • the present invention is a method for producing ballast water for ships, which includes a step of removing microorganisms in seawater by passing seawater through a reverse osmosis membrane and obtaining desalinated membrane-treated water.
  • the fresh water is preferably at least one of industrial water, tap water, river water, lake water, groundwater, and sewage treatment water.
  • the oil component in the seawater is adsorbed and removed by a hydrophobic adsorbent.
  • a bactericide is added to the membrane-treated water.
  • the present invention provides a precision filtration membrane device, an ultrafiltration membrane device or a reverse osmosis membrane device for removing microorganisms in the supplied freshwater, and a ballast water storage tank for storing the treated water.
  • a ballast water producing apparatus for a ship comprising:
  • the present invention also provides a ballast water for ships, comprising: a reverse osmosis membrane device that removes microorganisms from seawater supplied from seawater supply means and desalinates the water; and a ballast water storage tank that stores membrane-treated water. Manufacturing equipment.
  • the marine ballast water producing apparatus further includes a chemical adding means for adding a germicide to the membrane-treated water.
  • the microfiltration membrane device is an immersion type hollow fiber membrane device or a pressure type hollow fiber membrane device.
  • the present invention is the use of membrane-treated water obtained by the method for producing ballast water for ships as ballast water for ships.
  • microorganisms in seawater or freshwater are removed by a microorganism filtration membrane, so that microorganisms in freshwater or seawater are removed by a method other than the method of killing them.
  • it is desalinated to prevent freshwater decay during transportation and to maintain the value of freshwater use. You can have.
  • FIG. 1 is a flowchart of a ballast water producing apparatus used in Example 1.
  • FIG. 2 is a flowchart of a ballast water production apparatus used in Example 3.
  • the fresh water is not particularly limited, and includes, for example, industrial water, tap water, river water, lake water, groundwater, or treated sewage water. Many of these freshwaters contain microorganisms and usually have a turbidity of 1-100 degrees.
  • Seawater is not particularly limited, and is seawater in a harbor area where ships are normally anchored. It contains 0.05-1.0% of oil, besides microorganisms, and has a turbidity of 1-100 degrees. .
  • those that particularly affect spoilage include coliform bacteria, cholera bacteria, enterococci, larvae of daphnia, larvae of North Pacific starfish, larvae of Asian kelp, larvae of zebra mussels and Toxic algae and the like are mentioned, and the size of these microorganisms is almost several / zm, most is / J, and the size is 0.3-0.
  • the microfiltration membrane (MF) used for the treatment of fresh water includes a hollow fiber membrane, a flat membrane, a snail membrane, and a tubular membrane.
  • the hollow fiber membrane is preferable because the filtration area per unit volume can be maximized.
  • the hollow fiber membrane uses a large number of hollow fibers arranged in parallel, has a hollow structure, and further has a large number of pores communicating with the holes forming the hollow structure and communicating with the holes on the membrane surface. It is an external pressure type and an internal pressure type.
  • the diameter of the pores of the hollow fiber membrane is 0.01-0.4 ⁇ m, preferably 0.01-0.3 m.
  • the diameter of the pores of the hollow fiber membrane is 0.002 to 0.011 m.
  • the size of microorganisms such as bacteria and larvae that inhabit freshwater is usually several m, and the smallest one is about 0.3-0.5 ⁇ m.
  • microorganisms such as these bacteria and larvae in fresh water can be almost completely removed.
  • an external pressure type hollow fiber membrane in that the separation and removal operation can be performed.
  • the hollow fiber membrane is used as an immersion type hollow fiber membrane device or a pressure type hollow fiber membrane device.
  • the method using an immersion type hollow fiber membrane device is a method of removing microorganisms in fresh water by sucking a hole side of the hollow fiber of the device crushed in a fresh water storage tank with a suction pump.
  • both the immersion type hollow fiber membrane device and the pressure type hollow fiber membrane device generate fine bubbles in the downward direction of the hollow fiber membrane, and while appropriately removing microorganisms attached to the hollow fiber membrane, Filtration can be continued while washing the surface of the membrane.
  • Materials for the microfiltration membrane used in the present embodiment include polyethylene, polypropylene, polysulfone, hydrophilized polysulfone, polychloridized biylidene, polyvinylidene fluoride, chlorinated polyethylene, chlorinated polypropylene, polyacrylonitrile, Examples thereof include polyether sulfone and cellulose acetate.
  • a reverse osmosis membrane used for the treatment of fresh water or seawater is usually used as a reverse osmosis membrane device incorporating a reverse osmosis membrane module.
  • the reverse osmosis membrane module for example, a module having a structure in which a bag-shaped reverse osmosis membrane is spirally wound around a permeated water collecting pipe, and the upper part thereof is covered with an outer package. Seawater or freshwater is injected into the reverse osmosis membrane module by a pump. Thereby, salts and organic substances in seawater or freshwater can be removed, and microorganisms such as bacteria and larvae can be almost completely removed. Therefore, when the raw water is seawater, the permeated water of the reverse osmosis membrane is desalinated.
  • the method of passing fresh water through a microfiltration membrane, ultrafiltration membrane, or reverse osmosis membrane, or the method of passing seawater through a reverse osmosis membrane is not particularly limited. It is preferable to arrange more than one group in parallel. In this case, even if one membrane device is a backwashing process or a regeneration process, the other membrane device can perform a microorganism removing step, and a large amount of membrane-treated water can be continuously obtained. Further, the membrane-treated water obtained in the microbial removal step can be stored in a ballast water storage tank, so that ballast water can be sent at a high flow rate to a ship anchored in the ballast water storage tank. The advantage is that the berthing period of the ship will not be extended to pump ballast water.
  • a backwashing step of washing the filtration membrane by backwashing is performed.
  • the time elapses in the microorganism removal process the cause of membrane clogging The quality of microorganisms and the like adhere to the filtration membrane, and the membrane differential pressure increases at the inlet and the outlet of the membrane. Therefore, the filtration of fresh water is stopped, and the filtration membrane is backwashed using the membrane-treated water as washing water.
  • the backwashing step the filtration function of the filtration membrane is restored.
  • the process proceeds to the microorganism removing step again, and by repeating this step, filtration for a long period of time is enabled.
  • the oil content in the seawater is removed in advance before the treatment with the reverse osmosis membrane, thereby preventing clogging of the reverse osmosis membrane surface.
  • oil cannot be easily removed when it adheres to the membrane surface, causing clogging of the filtration membrane and causing a reduction in filtration performance.
  • the method of removing oil from seawater is not particularly limited, and a known oil / water separator can be used.
  • the oil / water separator using a hydrophobic adsorbent is preferable because it exhibits a high oil adsorption capacity by a simple method.
  • the hydrophobic adsorbent include a nonwoven fabric filter, a powder material, and a hollow fiber membrane made of a material such as lipophilic polyethylene or polypropylene.
  • the use of the oil adsorbent “Diamarus (registered trademark)” enables the oil to be removed very efficiently.
  • the method for removing turbid matter in seawater or freshwater is not particularly limited, and a known clarifier can be used.
  • the turbidity removing device include a sand filtration device, a device equipped with a nonwoven fabric filter cloth made of polyethylene or polypropylene, and a long fiber bundle clarifying device that adsorbs turbid matter to a bundle of polyester fibers filled in a filter tank. Is mentioned.
  • the use of the oil adsorbent "Diamarus (registered trademark)" is preferred because both oil removal and turbidity can be removed.
  • a bactericide to the membrane-treated water, since the decay of fresh water as the membrane-treated water is further prevented.
  • the disinfectant include hypochlorous acid.
  • the location where the disinfectant is added to the membrane treated water is not particularly limited, and is a pipe connecting the membrane device to the ballast water storage tank, a pipe connecting the ballast water storage tank or the ballast water storage tank to the ballast water tank of the ship. And the like.
  • the apparatus for producing ballast water includes a microfiltration membrane device, an ultrafiltration membrane device, or a reverse osmosis membrane device that removes microorganisms in freshwater supplied from the freshwater supply means; Or a ballast water storage tank (first device) that accumulates seawater, or a reverse osmosis membrane device that removes microorganisms from the supplied seawater and desalinates the seawater, and a ballast that accumulates membrane-treated water And a water storage tank (second device).
  • both the first device and the second device may further include a drug adding means for adding a bactericide to the membrane-treated water.
  • the medicine adding means is usually constituted by a medicine tank, a pump, piping, and the like.
  • the second device is provided with an oil component adsorption / removal device for removing the oil component in seawater, in front of the reverse osmosis membrane device.
  • a turbidity removing apparatus is installed before the membrane apparatus, and in the second apparatus, before the membrane apparatus and after the oil adsorption and removal apparatus, as necessary.
  • the fresh water supply means is a means for supplying fresh water to the filtration membrane device, and includes a fresh water pump and a fresh water intake pipe having an opening at one end in a fresh water source and the other end connected to the fresh water pump.
  • the seawater supply means is a means for supplying seawater to the reverse osmosis membrane device, and includes a seawater pump and a seawater intake pipe having one end opening in seawater and the other end connected to the seawater pump.
  • the piping from the membrane device to the ballast water storage tank and the ballast water storage tank are preferably sterilized.
  • the number of ballast water storage tanks and the type of tanks are not particularly limited. Further, as related facilities of the manufacturing apparatus of the present embodiment, there are a liquid feed pump for drawing ballast water in a ballast water storage tank, and a liquid feed pipe connecting the liquid feed pump and a ballast water tank of a ship anchored.
  • the ballast water producing apparatus may be installed on land or on a ship.
  • the ballast water tank will be a reservoir for freshwater or seawater that is raw water, and will also be a ballast water storage tank.
  • microorganisms in seawater or freshwater can be effectively removed by the microbial filtration membrane.
  • freshwater is simultaneously desalinated.
  • the value of freshwater can be maintained.
  • membrane-treated water is stored in, for example, a ballast water storage tank, it can be pumped as ballast water to ships and ships when necessary.
  • Toda ⁇ industrial water (raw water) in Saitama Prefecture was treated using the following ballast water production equipment A under the following operating conditions. Immediately after the treatment of raw water and treated water (membrane filtered water), after storage for 1 day, and after storage for 7 days, odor measurement, bacterial count, etc. were measured. Further, the sample after storage for 7 days was subjected to a sand filtration treatment to be carried out when producing ordinary industrial water or deionized water, and the odor of the treated sample was measured. The storage was performed at room temperature and in an air atmosphere. Measurements of general bacteria were performed only on the samples immediately after treatment and after storage for 7 days. The results are shown in Table 1.
  • the ballast water production system A is mainly composed of a hollow fiber membrane type microbial filtration device 3 and a hollow fiber membrane module consisting of a microfiltration membrane with a processing capacity of 3 m 3 Z in a treatment tank 4 “Stellapore SUR31534” (Mitsubishi Rayon ) Was used. Further, the hollow fiber membrane type microbial filtration device 3 and the treated water storage tank 6 were connected by a treated water pipe 7, and a suction pump 8 was installed in the treated water pipe 7. In addition, a backwashing pump 9 was installed so that the microfiltration membrane could be backwashed by the backwashing pipe 10 for the filtered water in the treated water storage tank 6.
  • Raw water was supplied to ballast water production equipment A at a throughput of 3 m 3 Z.
  • air from the blower 11 is bubbled as fine bubbles from a distributor 12 installed below the hollow fiber membrane module 5, and filtered while removing microorganisms and the like adhering to the surface of the hollow fiber membrane.
  • the backwashing step was 1 minute with respect to the microorganism removing step of 15 minutes.
  • the waste liquid in which the microorganisms were concentrated was appropriately drained from the lower part of the treatment tank 4 of the hollow fiber membrane type microorganism filtration device 3.
  • BGLB Green Lactose Bile Broth
  • the samples were observed under a microscope and counted. The indication was expressed in the number per 1 mL.
  • Example 2 The procedure was performed in the same manner as in Example 1 except that the ballast water production apparatus B was used instead of the nost water production apparatus A. In Example 2, measurement of general bacteria and total plankton number was not performed. The results are shown in Table 1.
  • ballast water production apparatus A An apparatus similar to ballast water production apparatus A was used except that an ultrafiltration membrane apparatus LOV membrane (manufactured by Asahi Kasei Corporation) was used instead of the hollow fiber membrane type microbial filtration apparatus.
  • the operating pressure of the ultrafiltration membrane device LOV membrane is 0. IMPa.
  • the operation method is the same as the operation method of ballast water production system A.
  • Example 3 The procedure was performed in the same manner as in Example 1 except that the ballast water production apparatus C was used instead of the nost water production apparatus A. In Example 3, measurement of general bacteria and total plankton count was not performed. The results are shown in Table 1.
  • the ballast water production device C includes a fresh water supply pump 22, a reverse osmosis membrane device 21, and a treated water storage tank 6.
  • the reverse osmosis membrane device 21 has a reverse osmosis membrane module ES-10 (not shown) (manufactured by Nitto Denko Corporation). Is loaded. The operation of the reverse osmosis membrane module is performed by a known method, and the operating pressure is 0.6 MPa.
  • Example 1 The process was performed in the same manner as in Example 1 except that the treatment using the nost water producing apparatus was not performed, and the raw water was used as a measurement sample (untreated). The results are shown in Table 1.
  • Odor 2 5 5 General bacteria 1 0 0-1 0 4 or more-Total: r Rank tonnage 2 0 1 0 0 or more-Comparative example 2
  • Odor 3 ⁇ 4 tefu Odorless 5 5 General bacteria 0 ⁇ 10 4 or more
  • Example 2 The procedure was the same as in Example 1 except that the raw water used was Arakawa river water instead of Toda II industrial water. The measurement of general bacteria and the like was omitted. The results are shown in Table 2.
  • Example 2 The procedure was the same as in Example 2 except that the raw water used was Arakawa River water instead of Toda II industrial water. The measurement of general bacteria and the like was omitted. The results are shown in Table 2.
  • Example 2 The procedure was the same as in Example 3, except that Arakawa River water was used as raw water instead of Toda II industrial water. The measurement of general bacteria and the like was omitted. The results are shown in Table 2.
  • Example 4 The same procedure as in Example 4 was carried out except that the treatment using the nost water producing apparatus was not performed, and the raw water was used as a measurement sample as is (untreated). The results are shown in Table 2.
  • Example 4 was carried out in the same manner as in Example 4 except that the raw water was boiled at 100 ° C for 5 minutes instead of using the nost water producing apparatus. The results are shown in Table 2.
  • Example 4 In place of the treatment using the ballast water production equipment, the same operation as in Example 4 was carried out except that the raw water was subjected to ultrasonic treatment at a frequency of 28 kHz and an irradiation time of 10 minutes as mechanical crushing and cooled to prevent a temperature rise. .
  • the results are shown in Table 2.
  • Example 4 rtn breathless odor
  • Example 5 ut breathless te a.
  • Example 7 Hypochlorous acid was further added to the treated water and 2. Omg / L was added, and the measurement was carried out in the same manner as in Example 1 except that the measurement was performed after 14 days of storage. In Example 7, measurement of the number of general bacteria and total plankton was not performed. The results are shown in Table 3.
  • Example 8 Hypochlorous acid was further added to the treated water, 2. Omg / L was added, and the measurement was carried out in the same manner as in Example 2 except that the measurement was performed after storage for 14 days. In Example 8, measurement of the number of general bacteria and total plankton was not performed. The results are shown in Table 3.
  • Example 3 Hypochlorous acid was further added to the treated water, and 2.Omg / L was added. The measurement was carried out in the same manner as in Example 3 except that the measurement was performed after storage for 14 days. In Example 9, measurement of the number of general bacteria and the total plankton was not performed. The results are shown in Table 3.
  • Comparative Examples 7-9 were stored for 14 days from Comparative Examples 13 and 14, respectively. Comparative Example 10 did not perform treatment using a ballast water producing apparatus, and further added hypochlorous acid to raw water. This was performed in the same manner as in Example 1 except that the measurement was performed after adding / L and storing for 14 days. In Comparative Examples 7-9, measurement of general bacteria and total plankton count was not performed. The results are shown in Table 3.
  • Example 10 The same method as in Example 1 was adopted except that ballast water production equipment D was used instead of nost water production equipment A, and seawater from Odaiba, Tokyo, was used instead of industrial water for Toda ⁇ . I went. In Example 10, the measurement of the general bacteria and the total plankton number was not performed. The results are shown in Table 4.
  • the raw water is seawater from Odaiba instead of freshwater, a seawater supply pump is used instead of the freshwater supply pump 22, and the seawater desalination reverse osmosis module SU-810 (manufactured by Toray) is used instead of the reverse osmosis membrane module ES-10. ) And the operation pressure was changed to 6. OMPa instead of 0.6 MPa.
  • treated water obtained by treating fresh water with an MF membrane, a UF membrane, or an RO membrane has no odor even after being stored for one week, and general bacteria and plankton are also detected. Nakata.
  • the treated water obtained by treating seawater with the RO membrane was fresh water, and even after being stored for one week, it did not feel odor and did not detect general bacteria or plankton.
  • the bacterium-plankton is not mixed in the membrane-treated water, it is possible to prevent freshwater from being putrefactive during voyage and maintain the value of freshwater.
  • the treated water obtained by adding hypochlorous acid to the treated water of these examples did not have an odor even after being stored for a further one week (total of two weeks), so that it could be used for a longer voyage. it can.
  • both plantaton and general bacteria are killed, but since the storage container is not sterilized, it is presumed that bacteria are generated from the dead body of planktonic bacteria during storage. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Floating Material (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

A production method of ballast water for vessel in which membrane treated water is produced by passing fresh water through a microfilteration membrane, an ultrafiltration membrane or a reverse osmosis membrane thereby removing microorganisms in the fresh water, or membrane treated fresh water is produced by passing sea water through the reverse osmosis membrane thereby removing microorganisms in the sea water. Fresh water can be prevented from being decomposed during transportation by removing microorganisms in fresh water or sea water using a method other than an annihilation method and by producing fresh water from sea water simultaneously.

Description

明 細 書  Specification
船舶用バラスト水の製造方法、船舶用バラスト水製造装置及び使用 技術分野  TECHNICAL FIELD The present invention relates to a method for producing ballast water for ships, an apparatus for producing ballast water for ships, and uses thereof.
[0001] 本発明は、船舶の航行時における重心安定のために積載する、微生物が除去され た船舶用バラスト水(以下、単に「バラスト水」とも言う。)の製造方法、船舶用バラスト 水製造装置及び使用に関する。  [0001] The present invention relates to a method for producing ballast water for ships from which microorganisms have been removed (hereinafter, also simply referred to as "ballast water") loaded for stabilizing the center of gravity during navigation of a ship, and for producing ballast water for ships. Equipment and use.
背景技術  Background art
[0002] 原油タン力、鉱石運搬船、自動車運搬船等は空荷や積載貨物量が少な 、状態で 航行する場合がある。その際、船体が浮力により浮き上がり、スクリュゃ方向舵が水面 下に没しな力つたり、水面上の船体が風の影響を大きく受けて操縦性が損なわれ航 行上極めて危険な状態となる。このため、通常の船舶は航行時の浮力を調整するた め、通常載荷重量の 30— 40重量0 /0のバラスト水を積載する。 [0002] Crude oil power, ore carriers, car carriers, and the like sometimes travel with a small amount of empty or loaded cargo. At this time, the hull rises due to the buoyancy, and the rudder of the screw is not submerged below the water surface. Therefore, normal ship loading order was to adjust the buoyancy of cruising, the normal loading weight of 30- 40 weight 0/0 of the ballast water.
[0003] 例えば、原油タン力による輸送は産油国と消費国の往復となり、消費国から産油国 への航行では積荷がなぐ消費国で船舶内の油槽に停泊区域の海水等を積載して ノ《ラスト水としている。一方、バラスト水を積んだ船舶は産油国の近海、あるいは港湾 でバラスト水を排出して、原油を再度積載している。  [0003] For example, transportation using oil-tank power is a round trip between an oil-producing country and a consuming country. 《Last water. On the other hand, ships loaded with ballast water discharge ballast water near the oil-producing countries or in ports and reload crude oil.
[0004] 船舶力 排出されるバラスト水により特定海域に本来生息しない微生物が持ち込ま れ、これに起因して海洋生態系の破壊が生じ、当該水域住民の生活に重大な被害 を与えるだけではなぐ全世界的な海洋環境の破壊が生じており、深刻な国際問題と なっている。このため、バラスト水中の微生物除去を目的として、国際的な規模で各 種の方法が検討されている(特開 2003— 181443号公報、特表 2000— 515803号 公報、特開平 11— 265684号公報、特開 2003—„ 号公報、特表 2002— 504 851号公報、特開平 04— 322788号公報)。  [0004] Ship power The discharged ballast water introduces microorganisms that do not naturally inhabit specific sea areas, resulting in the destruction of marine ecosystems and not only seriously damaging the lives of the people in the water area. The destruction of the global marine environment is occurring and is a serious international problem. For this reason, various methods have been studied on an international scale for the purpose of removing microorganisms from ballast water (JP-A-2003-181443, JP-A-2000-515803, JP-A-11-265684). JP-A-2003- „, JP-T-2002-504851, JP-A-04-322788).
[0005] 従来、船舶用のバラスト水としては海水が使用されているものの、近年、離島の応 援給水を目的として、船舶のバラスト水として水道水を用いた例も報告されている。ま た、産油国においては飲用水や工業用水などの淡水が不足しており、船舶用のバラ スト水として水道水を用い、これを産油国に持ち込み、有効利用する方法も考えられ る。 [0005] Conventionally, seawater has been used as ballast water for ships. However, in recent years, examples have been reported in which tap water is used as ballast water for ships for the purpose of supporting and supplying water to remote islands. In oil-producing countries, there is a shortage of fresh water such as drinking water and industrial water.There is a possibility of using tap water as ballast water for ships and bringing it to oil-producing countries for effective use. The
発明の開示  Disclosure of the invention
[0006] し力しながら、水道水などの淡水は、通常数日間放置すると例え水道水であっても 添加されている遊離塩素が消失するため、腐敗臭がして飲用できなくなる。例えば我 が国力も産油国への航行は約 10日間程度かかるため、船舶に搭載した淡水は腐敗 して利用できなくなる。淡水を腐敗させる原因は淡水中の微生物であるため、微生物 を公知の方法で死滅させればよい。しかし、例えば淡水を加熱する方法は、加熱ェ ネルギの調達手段によっては経済的ではなぐまた微生物を完全に死滅させるのが 困難である。また、淡水に紫外線を照射する方法は、全ての微生物を死滅又は不活 性化させるために要する電力が膨大であり、また高流量の淡水を処理するには多数 の UV装置を並列に設置しなければない等、装置の設置コストを高騰させる。また、 淡水をヨウ素や次亜塩素酸等の薬剤で処理する方法は、細菌の種類によっては死 滅させるのに高濃度の薬剤が必要となり、処理後の淡水の中和に多大の中和剤を使 用せざるを得ない。淡水中の微生物を死滅させる方法は、前述の如ぐ微生物の死 滅に完全を期し難ぐまた死滅せずに残留した少量の微生物が輸送中に増殖するこ とから、これらの微生物を完全に除去する方法の開発が切望されている。  [0006] However, fresh water such as tap water is usually left standing for several days, even if it is tap water, since the free chlorine added thereto disappears, so that it becomes putrid odor and cannot be drunk. For example, it takes about 10 days for Japanese power to travel to oil-producing countries, so the freshwater onboard the vessel will rot and become unusable. Since freshwater spoils due to microorganisms in freshwater, the microorganisms may be killed by a known method. However, for example, the method of heating fresh water is not economical depending on the means of procuring heating energy, and it is difficult to completely kill microorganisms. In addition, the method of irradiating freshwater with ultraviolet light requires a huge amount of power to kill or inactivate all microorganisms, and a large number of UV devices are installed in parallel to treat high-flow freshwater. The cost of installation of the device will increase. The method of treating fresh water with chemicals such as iodine and hypochlorous acid requires a high concentration of chemicals to kill some types of bacteria. You have to use The method of killing microorganisms in freshwater is, as described above, difficult to completely kill microorganisms, and the small amount of microorganisms remaining without killing grows during transportation. The development of a method for removal is eagerly desired.
[0007] 本発明は、淡水又は海水中の微生物を、死滅させる方法以外の方法で除去して、 また海水は同時に淡水化して、輸送中における淡水の腐敗を防止し、淡水の利用価 値を維持する船舶用バラスト水の製造方法及び製造装置であり、前記船舶用バラス ト水の製造方法で得られる膜処理水の船舶用バラスト水としての使用である。  [0007] The present invention provides a method for removing microorganisms in freshwater or seawater by a method other than killing, and simultaneously desalinating seawater to prevent decay of freshwater during transportation and to reduce freshwater utilization value. A method and apparatus for producing ballast water for ships to be maintained, wherein the membrane-treated water obtained by the method for producing ballast water for ships is used as ballast water for ships.
[0008] かかる実情にお ヽて、本発明者らは鋭意検討を行った結果、淡水を精密濾過膜、 限外濾過膜又は逆浸透膜に通すことにより淡水中の微生物が除去された膜処理水 を得、該膜処理水をバラスト水として用いるカゝ、あるいは海水を逆浸透膜に通すこと により海水中の微生物を除去すると共に淡水化された膜処理水を得、該膜処理水を バラスト水として用いれば、海水中又は淡水中の微生物を微生物濾過膜で効果的に 除去でき、また、海水の場合は同時に淡水化されるため、輸送中、淡水の腐敗を防 止し淡水の利用価値を維持できること、また膜処理水を、例えばバラスト水貯留槽に 貯留しておけば、必要な時に船舶にバラスト水として汲み込めること等を見出し、本 発明を完成するに至った。 [0008] Under such circumstances, the present inventors have conducted intensive studies, and as a result, a membrane treatment in which microorganisms in fresh water were removed by passing fresh water through a microfiltration membrane, an ultrafiltration membrane, or a reverse osmosis membrane. Water, and using the membrane-treated water as ballast water, or passing seawater through a reverse osmosis membrane to remove microorganisms in the seawater and obtain desalinated membrane-treated water. When used as water, microorganisms in seawater or freshwater can be effectively removed by a microbial filtration membrane, and in the case of seawater, freshwater is also simultaneously desalinated. And that if the membrane-treated water is stored in, for example, a ballast water storage tank, it can be pumped to ships as ballast water when needed. The invention has been completed.
[0009] すなわち、本発明は、淡水を精密濾過膜、限外濾過膜又は逆浸透膜に通すこと〖こ より淡水中の微生物が除去された膜処理水を得る工程を含む船舶用バラスト水の製 造方法である。  [0009] That is, the present invention provides a method for passing freshwater through a microfiltration membrane, an ultrafiltration membrane, or a reverse osmosis membrane, thereby obtaining a membrane-treated water from which microorganisms in the freshwater have been removed. It is a manufacturing method.
[0010] また、本発明は、海水を逆浸透膜に通すことにより海水中の微生物を除去すると共 に淡水化された膜処理水を得る工程を含む船舶用バラスト水の製造方法である。  [0010] Further, the present invention is a method for producing ballast water for ships, which includes a step of removing microorganisms in seawater by passing seawater through a reverse osmosis membrane and obtaining desalinated membrane-treated water.
[0011] また、前記船舶用バラスト水の製造方法において、前記淡水は、工業用水、水道水 、河川水、湖沼水、地下水又は下水処理水のうちの少なくとも 1つであることが好まし い。  [0011] Further, in the method for producing ballast water for a ship, the fresh water is preferably at least one of industrial water, tap water, river water, lake water, groundwater, and sewage treatment water.
[0012] また、前記船舶用バラスト水の製造方法において、前記海水中の油分を、疎水性 吸着材で吸着除去することが好まし 、。  [0012] In the method for producing ballast water for a ship, it is preferable that the oil component in the seawater is adsorbed and removed by a hydrophobic adsorbent.
[0013] また、前記船舶用バラスト水の製造方法において、前記膜処理水に殺菌剤を添カロ することが好ましい。 [0013] In the method for producing ballast water for ships, it is preferable that a bactericide is added to the membrane-treated water.
[0014] また、本発明は、淡水供給手段力 供給された淡水中の微生物を除去する精密濾 過膜装置、限外濾過膜装置又は逆浸透膜装置と、膜処理水を溜めるバラスト水貯留 槽と、を備える船舶用バラスト水製造装置である。  [0014] Further, the present invention provides a precision filtration membrane device, an ultrafiltration membrane device or a reverse osmosis membrane device for removing microorganisms in the supplied freshwater, and a ballast water storage tank for storing the treated water. And a ballast water producing apparatus for a ship, comprising:
[0015] また、本発明は、海水供給手段から供給された海水中の微生物を除去すると共に 淡水化する逆浸透膜装置と、膜処理水を溜めるバラスト水貯留槽と、を備える船舶用 バラスト水製造装置である。 [0015] The present invention also provides a ballast water for ships, comprising: a reverse osmosis membrane device that removes microorganisms from seawater supplied from seawater supply means and desalinates the water; and a ballast water storage tank that stores membrane-treated water. Manufacturing equipment.
[0016] また、前記船舶用バラスト水製造装置において、前記膜処理水に殺菌剤を添加す る薬剤添加手段を更に備えることが好ましい。 [0016] Further, it is preferable that the marine ballast water producing apparatus further includes a chemical adding means for adding a germicide to the membrane-treated water.
[0017] また、前記船舶用バラスト水製造装置にお!ヽて、前記精密濾過膜装置が、浸漬型 中空糸膜装置又は加圧型中空糸膜装置であることが好ましい。  [0017] In the marine ballast water producing apparatus, it is preferable that the microfiltration membrane device is an immersion type hollow fiber membrane device or a pressure type hollow fiber membrane device.
[0018] さらに本発明は、前記船舶用バラスト水の製造方法により得られる膜処理水の船舶 用バラスト水としての使用である。  Further, the present invention is the use of membrane-treated water obtained by the method for producing ballast water for ships as ballast water for ships.
[0019] 本発明によれば、海水中又は淡水中の微生物を微生物濾過膜で除去することによ り、淡水又は海水中の微生物を、死滅させる方法以外の方法で除去して、また海水 は同時に淡水化して、輸送中における淡水の腐敗を防止し、淡水の利用価値を維 持することができる。 According to the present invention, microorganisms in seawater or freshwater are removed by a microorganism filtration membrane, so that microorganisms in freshwater or seawater are removed by a method other than the method of killing them. At the same time, it is desalinated to prevent freshwater decay during transportation and to maintain the value of freshwater use. You can have.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]実施例 1で使用したバラスト水製造装置のフロー図である。  FIG. 1 is a flowchart of a ballast water producing apparatus used in Example 1.
[図 2]実施例 3で使用したバラスト水製造装置のフロー図である。  FIG. 2 is a flowchart of a ballast water production apparatus used in Example 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明の実施形態について説明する。本実施形態に係る船舶用バラスト水の製造 方法において、淡水としては、特に制限されないが、例えば工業用水、水道水、河川 水、湖沼水、地下水又は下水処理水が挙げられる。これら淡水の多くは微生物を含 み、通常濁度が 1一 100度である。  An embodiment of the present invention will be described. In the method for producing marine ballast water according to the present embodiment, the fresh water is not particularly limited, and includes, for example, industrial water, tap water, river water, lake water, groundwater, or treated sewage water. Many of these freshwaters contain microorganisms and usually have a turbidity of 1-100 degrees.
[0022] 海水としては、特に制限されず、通常船舶が停泊する港湾域の海水であり、微生物 の他、油分が 0. 05- 1. 0%含まれ、濁度が 1一 100度である。また、淡水中及び海 水中の微生物のうち、特に腐敗に影響する微生物としては、大腸菌群、コレラ菌、腸 球菌、ミジンコの幼生、北太平洋ヒトデの幼生、アジア昆布の幼生、ゼブラ貝の幼生 及び毒性藻類等が挙げられ、これらの微生物の大きさはほとんどが数/ z mであり、最 も/ J、さいもので 0. 3—0. である。  [0022] Seawater is not particularly limited, and is seawater in a harbor area where ships are normally anchored. It contains 0.05-1.0% of oil, besides microorganisms, and has a turbidity of 1-100 degrees. . Among freshwater and seawater microorganisms, those that particularly affect spoilage include coliform bacteria, cholera bacteria, enterococci, larvae of daphnia, larvae of North Pacific starfish, larvae of Asian kelp, larvae of zebra mussels and Toxic algae and the like are mentioned, and the size of these microorganisms is almost several / zm, most is / J, and the size is 0.3-0.
[0023] 淡水の処理に使用される精密濾過膜 (MF)は、中空糸膜、平膜、スノィラル膜、管 状膜等が挙げられる。このうち、中空糸膜が、単位体積当りの濾過面積を最も大とす ることができる点で好ましい。中空糸膜は、中空糸を多数本並列に並べられて用いる もので、中空構造を有し、更に該中空構造を形成する孔に連通して、膜面の該孔に 連通する細孔を多数形成したものであり、外圧式と内圧式とがある。本実施形態にお いて、精密濾過膜を用いる場合は、中空糸膜の細孔の径としては、 0. 01-0. 4 μ m、好ましくは 0. 01 -0. 3 mである。また、淡水の処理に使用される限外濾過膜 の場合は、中空糸膜の細孔の径としては、 0. 002-0. 01 mである。淡水中に生 息する細菌、幼生等の微生物の大きさは通常数 m、最小のものでも 0. 3-0. 5 μ m程度であり、従って、上記細孔径の中空糸膜を使用すれば、淡水中のこれらの細 菌、幼生等の微生物をほぼ完全に除去することができる。また、膜面に付着した微生 物を除去して、その濾過能力を回復するために逆洗を行うことが好ましいが、本逆洗 とは別に、濾過中に膜面の外側力 気泡でバブルさせて膜面に付着した微生物を剥 離除去する操作ができる点で外圧式中空糸膜を使用することが好ましい。 The microfiltration membrane (MF) used for the treatment of fresh water includes a hollow fiber membrane, a flat membrane, a snail membrane, and a tubular membrane. Among them, the hollow fiber membrane is preferable because the filtration area per unit volume can be maximized. The hollow fiber membrane uses a large number of hollow fibers arranged in parallel, has a hollow structure, and further has a large number of pores communicating with the holes forming the hollow structure and communicating with the holes on the membrane surface. It is an external pressure type and an internal pressure type. In the present embodiment, when a microfiltration membrane is used, the diameter of the pores of the hollow fiber membrane is 0.01-0.4 μm, preferably 0.01-0.3 m. In the case of an ultrafiltration membrane used for the treatment of fresh water, the diameter of the pores of the hollow fiber membrane is 0.002 to 0.011 m. The size of microorganisms such as bacteria and larvae that inhabit freshwater is usually several m, and the smallest one is about 0.3-0.5 μm. In addition, microorganisms such as these bacteria and larvae in fresh water can be almost completely removed. In addition, it is preferable to perform backwashing to remove microbes attached to the membrane surface and restore its filtration ability.However, apart from main backwash, bubbles are generated by the external force of the membrane surface during filtration. To remove microorganisms attached to the membrane surface. It is preferable to use an external pressure type hollow fiber membrane in that the separation and removal operation can be performed.
[0024] また、中空糸膜は浸漬型中空糸膜装置又は加圧型中空糸膜装置として使用される 。浸漬型中空糸膜装置を用いる方法は、淡水貯槽中に浸潰された該装置の該中空 糸の孔側を吸引ポンプで吸引して淡水中の微生物を除去する方法である。また、浸 漬型中空糸膜装置及び加圧型中空糸膜装置ともに、前述した通り、中空糸膜の下 方力 微細な気泡を発生させて、中空糸膜に付着した微生物を適宜剥離させながら 、膜の表面を洗浄しつつ濾過を継続することができる。  [0024] The hollow fiber membrane is used as an immersion type hollow fiber membrane device or a pressure type hollow fiber membrane device. The method using an immersion type hollow fiber membrane device is a method of removing microorganisms in fresh water by sucking a hole side of the hollow fiber of the device crushed in a fresh water storage tank with a suction pump. In addition, as described above, both the immersion type hollow fiber membrane device and the pressure type hollow fiber membrane device generate fine bubbles in the downward direction of the hollow fiber membrane, and while appropriately removing microorganisms attached to the hollow fiber membrane, Filtration can be continued while washing the surface of the membrane.
[0025] 本実施形態で使用する精密濾過膜の素材としては、ポリエチレン、ポリプロピレン、 ポリスルホン、親水化ポリスルホン、ポリ塩ィ匕ビユリデン、ポリフッ化ビ-リデン、塩素化 ポリエチレン、塩素化ポリプロピレン、ポリアクリロニトリル、ポリエーテルスルホン、酢 酸セルロースなどが挙げられる。  [0025] Materials for the microfiltration membrane used in the present embodiment include polyethylene, polypropylene, polysulfone, hydrophilized polysulfone, polychloridized biylidene, polyvinylidene fluoride, chlorinated polyethylene, chlorinated polypropylene, polyacrylonitrile, Examples thereof include polyether sulfone and cellulose acetate.
[0026] 淡水又は海水の処理に使用される逆浸透膜は、通常逆浸透膜モジュールを組み 込んだ逆浸透膜装置として使用される。逆浸透膜モジュールとしては、例えば透過 水集水管に袋状の逆浸透膜をスパイラル状に巻きつけ、その上部を外装体で被覆 する構造のものが挙げられる。海水又は淡水はポンプにより逆浸透膜モジュールに 圧入される。これにより、海水又は淡水中の塩類、有機物が除去されると共に、細菌 、幼生等の微生物をほぼ完全に除去することができる。従って、原水が海水の場合 は、逆浸透膜の透過水は淡水化されている。  A reverse osmosis membrane used for the treatment of fresh water or seawater is usually used as a reverse osmosis membrane device incorporating a reverse osmosis membrane module. As the reverse osmosis membrane module, for example, a module having a structure in which a bag-shaped reverse osmosis membrane is spirally wound around a permeated water collecting pipe, and the upper part thereof is covered with an outer package. Seawater or freshwater is injected into the reverse osmosis membrane module by a pump. Thereby, salts and organic substances in seawater or freshwater can be removed, and microorganisms such as bacteria and larvae can be almost completely removed. Therefore, when the raw water is seawater, the permeated water of the reverse osmosis membrane is desalinated.
[0027] 淡水を精密濾過膜、限外濾過膜又は逆浸透膜に通す方法、又は海水を逆浸透膜 に通す方法としては、特に制限されないが、濾過膜又は透過膜を組み込んだ膜装置 の 2基以上を並列配置することが好ましい。この場合、一の膜装置が逆洗工程又は 回生工程であっても、他の膜装置は微生物除去工程を実施することができ、多量の 膜処理水を連続して得ることができる。また、該微生物除去工程で得られる膜処理水 はバラスト水貯留槽に貯留しておくことが、バラスト水貯留槽カゝら停泊中の船舶にバラ スト水を高流速で送液することができ、船舶の停泊期間をバラスト水の汲み込みのた めに延長させることがなくなる点で好まし 、。  [0027] The method of passing fresh water through a microfiltration membrane, ultrafiltration membrane, or reverse osmosis membrane, or the method of passing seawater through a reverse osmosis membrane is not particularly limited. It is preferable to arrange more than one group in parallel. In this case, even if one membrane device is a backwashing process or a regeneration process, the other membrane device can perform a microorganism removing step, and a large amount of membrane-treated water can be continuously obtained. Further, the membrane-treated water obtained in the microbial removal step can be stored in a ballast water storage tank, so that ballast water can be sent at a high flow rate to a ship anchored in the ballast water storage tank. The advantage is that the berthing period of the ship will not be extended to pump ballast water.
[0028] 精密濾過膜又は限外濾過膜を用いる場合、逆洗により濾過膜を洗浄する逆洗工程 を行う。微生物除去工程において、時間が経過するにつれ、膜の目詰まりの原因物 質となる微生物等が濾過膜に付着して膜の入口と出口で膜差圧が上昇してくる。こ のため、淡水の濾過を停止し、膜処理水を洗浄水として濾過膜を逆洗する。逆洗ェ 程を行うことにより、濾過膜の濾過機能が回復する。そして、逆洗工程を終えると、再 度微生物除去工程に移り、これを繰り返し行うことで、長期間に亘る濾過を可能にす る。 When using a microfiltration membrane or an ultrafiltration membrane, a backwashing step of washing the filtration membrane by backwashing is performed. As the time elapses in the microorganism removal process, the cause of membrane clogging The quality of microorganisms and the like adhere to the filtration membrane, and the membrane differential pressure increases at the inlet and the outlet of the membrane. Therefore, the filtration of fresh water is stopped, and the filtration membrane is backwashed using the membrane-treated water as washing water. By performing the backwashing step, the filtration function of the filtration membrane is restored. Then, after the backwashing step is completed, the process proceeds to the microorganism removing step again, and by repeating this step, filtration for a long period of time is enabled.
[0029] 本実施形態に係るバラスト水の製造方法において、原水が海水の場合、逆浸透膜 で処理する前に予め、海水中の油分を除去することが、逆浸透膜表面の目詰まりを 防止し、透過能力の低下を防止することができる点で好ましい。すなわち、微生物や 他の濁質と異なり、油分は膜面に付着すると容易に除去することができず、濾過膜を 目詰まりさせ、濾過能力の低下の原因となる。  [0029] In the method for producing ballast water according to the present embodiment, if the raw water is seawater, the oil content in the seawater is removed in advance before the treatment with the reverse osmosis membrane, thereby preventing clogging of the reverse osmosis membrane surface. However, it is preferable in that a decrease in transmission ability can be prevented. In other words, unlike microorganisms and other turbid substances, oil cannot be easily removed when it adheres to the membrane surface, causing clogging of the filtration membrane and causing a reduction in filtration performance.
[0030] 海水の油分を除去する方法としては、特に制限されず、公知の油水分離装置を用 いることができる。油水分離装置は、疎水性吸着材を用いたものが、簡易な方法で且 つ高い油分吸着能力を示すので好ましい。疎水性吸着材としては、親油性のポリエ チレンやポリプロピレン等の素材で作製された不織布フィルタ、粉体物、及び中空糸 膜が挙げられる。具体的には、油分吸着材「ダイヤマルス (商標登録)」を使用すると 、極めて効率よく油分を除去することができる。海水の油分の除去工程により、例え ば、油分 0. 05-1. 0%の海水は、油分 0. 005— 0. 02%の海水とすること力できる。  [0030] The method of removing oil from seawater is not particularly limited, and a known oil / water separator can be used. The oil / water separator using a hydrophobic adsorbent is preferable because it exhibits a high oil adsorption capacity by a simple method. Examples of the hydrophobic adsorbent include a nonwoven fabric filter, a powder material, and a hollow fiber membrane made of a material such as lipophilic polyethylene or polypropylene. Specifically, the use of the oil adsorbent “Diamarus (registered trademark)” enables the oil to be removed very efficiently. By the process of removing oil from seawater, for example, seawater with an oil content of 0.05 to 1.0% can be converted to seawater with an oil content of 0.005 to 0.02%.
[0031] また、濾過膜や逆浸透膜における微生物除去の負荷を低減させるために海水又は 淡水中の濁質を予め除去することが好ましい。海水中又は淡水中の濁質を除去する 方法としては、特に制限されず、公知の除濁装置を用いることができる。除濁装置と しては、砂濾過装置、ポリエチレンやポリプロピレン製の不織布濾過布を備えた装置 、濾過槽体中に充填されたポリエステル繊維の束に濁質を吸着させる長繊維束除濁 装置等が挙げられる。油分吸着材「ダイヤマルス (商標登録)」を使用すると油分の除 去と濁質を共に除去することができる点で好まし 、。  [0031] Further, in order to reduce the load of removing microorganisms on the filtration membrane or the reverse osmosis membrane, it is preferable to remove turbid matter in seawater or freshwater in advance. The method for removing turbid matter in seawater or freshwater is not particularly limited, and a known clarifier can be used. Examples of the turbidity removing device include a sand filtration device, a device equipped with a nonwoven fabric filter cloth made of polyethylene or polypropylene, and a long fiber bundle clarifying device that adsorbs turbid matter to a bundle of polyester fibers filled in a filter tank. Is mentioned. The use of the oil adsorbent "Diamarus (registered trademark)" is preferred because both oil removal and turbidity can be removed.
[0032] また、膜処理水に殺菌剤を添加すると、膜処理水である淡水の腐敗が更に防止さ れる点で好ましい。殺菌剤としては、次亜塩素酸等が挙げられる。膜処理水に殺菌 剤を添加する箇所としては、特に制限されず、膜装置とバラスト水貯留槽を接続する 配管、バラスト水貯留槽又はバラスト水貯留槽と船舶のバラスト水槽を接続する配管 などが挙げられる。 [0032] Further, it is preferable to add a bactericide to the membrane-treated water, since the decay of fresh water as the membrane-treated water is further prevented. Examples of the disinfectant include hypochlorous acid. The location where the disinfectant is added to the membrane treated water is not particularly limited, and is a pipe connecting the membrane device to the ballast water storage tank, a pipe connecting the ballast water storage tank or the ballast water storage tank to the ballast water tank of the ship. And the like.
[0033] 本実施形態に係るバラスト水の製造装置は、淡水供給手段から供給された淡水中 の微生物を除去する精密濾過膜装置、限外濾過膜装置又は逆浸透膜装置と、膜処 理水を溜めるバラスト水貯留槽と、を備えるもの (第 1装置)か、あるいは海水供給手 段力 供給された海水中の微生物を除去すると共に淡水化する逆浸透膜装置と、膜 処理水を溜めるバラスト水貯留槽と、を備えるもの (第 2装置)である。また、第 1装置 及び第 2装置共に、膜処理水に殺菌剤を添加する薬剤添加手段を更に備えてもよい 。薬剤添加手段は通常、薬剤タンク、ポンプ及び配管などで構成される。また、第 2 装置は、逆浸透膜装置の前段に、海水中の油分を除去する油分吸着除去装置を備 えることが好ましい。また、第 1装置においては膜装置の前段に、第 2装置において は膜装置の前段で且つ油分吸着除去装置の後段に必要に応じて除濁装置を設置 する。淡水供給手段は、濾過膜装置に淡水を供給する手段であって、淡水ポンプ及 び一端の開口が淡水源中にあり、他端が淡水ポンプに接続する淡水取水管を備え るものである。海水供給手段は、逆浸透膜装置に海水を供給する手段であって、海 水ポンプ及び一端の開口が海水中にあり、他端が海水ポンプに接続する海水取水 管を備えるものである。また、第 1装置及び第 2装置共に、膜装置からバラスト水貯留 槽までの配管類及びバラスト水貯留槽は無菌化されて ヽることが好ま ヽ。バラスト 水貯留槽は、その設置数、槽形式等は特に制限されない。また、本実施形態の製造 装置の関連設備としては、バラスト水貯留槽のバラスト水を汲みだす送液ポンプと、 該送液ポンプと停泊する船舶のバラスト水槽を接続する送液管などがある。本実施 形態に係るバラスト水の製造装置は、陸上設置又は船舶上設置のいずれであっても よい。船舶上設置の場合、バラスト水槽が原水である淡水又は海水の貯留槽となり、 またバラスト水貯留槽にもなる。  [0033] The apparatus for producing ballast water according to the present embodiment includes a microfiltration membrane device, an ultrafiltration membrane device, or a reverse osmosis membrane device that removes microorganisms in freshwater supplied from the freshwater supply means; Or a ballast water storage tank (first device) that accumulates seawater, or a reverse osmosis membrane device that removes microorganisms from the supplied seawater and desalinates the seawater, and a ballast that accumulates membrane-treated water And a water storage tank (second device). In addition, both the first device and the second device may further include a drug adding means for adding a bactericide to the membrane-treated water. The medicine adding means is usually constituted by a medicine tank, a pump, piping, and the like. Further, it is preferable that the second device is provided with an oil component adsorption / removal device for removing the oil component in seawater, in front of the reverse osmosis membrane device. In addition, in the first apparatus, a turbidity removing apparatus is installed before the membrane apparatus, and in the second apparatus, before the membrane apparatus and after the oil adsorption and removal apparatus, as necessary. The fresh water supply means is a means for supplying fresh water to the filtration membrane device, and includes a fresh water pump and a fresh water intake pipe having an opening at one end in a fresh water source and the other end connected to the fresh water pump. The seawater supply means is a means for supplying seawater to the reverse osmosis membrane device, and includes a seawater pump and a seawater intake pipe having one end opening in seawater and the other end connected to the seawater pump. In both the first device and the second device, the piping from the membrane device to the ballast water storage tank and the ballast water storage tank are preferably sterilized. The number of ballast water storage tanks and the type of tanks are not particularly limited. Further, as related facilities of the manufacturing apparatus of the present embodiment, there are a liquid feed pump for drawing ballast water in a ballast water storage tank, and a liquid feed pipe connecting the liquid feed pump and a ballast water tank of a ship anchored. The ballast water producing apparatus according to the present embodiment may be installed on land or on a ship. In the case of installation on a ship, the ballast water tank will be a reservoir for freshwater or seawater that is raw water, and will also be a ballast water storage tank.
[0034] 本実施形態によれば、海水中又は淡水中の微生物を微生物濾過膜で効果的に除 去でき、また、海水の場合は同時に淡水化されるため、輸送中、淡水の腐敗を防止し 淡水の利用価値を維持できる。また膜処理水を、例えばバラスト水貯留槽に貯留して おけば、必要な時に船、舶にバラスト水として汲み込める。  [0034] According to the present embodiment, microorganisms in seawater or freshwater can be effectively removed by the microbial filtration membrane. In the case of seawater, freshwater is simultaneously desalinated. The value of freshwater can be maintained. Also, if membrane-treated water is stored in, for example, a ballast water storage tank, it can be pumped as ballast water to ships and ships when necessary.
実施例 [0035] 次に実施例を挙げて本発明を更に具体的に説明する力 これは単に例示であって 本発明を制限するものではな 、。 Example Next, the ability to explain the present invention more specifically with reference to examples is merely an example and does not limit the present invention.
[0036] <実施例 1 >  <Example 1>
埼玉県の戸田巿工業用水 (原水)を下記のバラスト水製造装置 Aを用いて下記の 運転条件で処理した。原水及び処理水 (膜濾過水)の処理直後、 1日保存後、 7日保 存後の試料について臭気測定および細菌数などを測定した。また、 7日保存後の試 料について通常の工業用水又は巿水を製造する際に実施する砂濾過処理を行い、 該処理後の試料について臭気測定を行った。なお、保存は室温及び空気雰囲気下 で行った。一般細菌等の測定は処理直後、 7日保存後の試料についてのみ行った。 その結果を表 1に示す。  Toda 巿 industrial water (raw water) in Saitama Prefecture was treated using the following ballast water production equipment A under the following operating conditions. Immediately after the treatment of raw water and treated water (membrane filtered water), after storage for 1 day, and after storage for 7 days, odor measurement, bacterial count, etc. were measured. Further, the sample after storage for 7 days was subjected to a sand filtration treatment to be carried out when producing ordinary industrial water or deionized water, and the odor of the treated sample was measured. The storage was performed at room temperature and in an air atmosphere. Measurements of general bacteria were performed only on the samples immediately after treatment and after storage for 7 days. The results are shown in Table 1.
[0037] (バラスト水製造装置 A)  (Ballast water production equipment A)
図 1に示す装置を用いた。バラスト水製造装置 Aは中空糸膜型微生物濾過装置 3 を主体とするもので、処理槽 4に処理能力 3m3Z時の精密濾過膜からなる中空糸膜 モジュール 5「ステラポア SUR31534」(三菱レイヨン製)を浸漬したものを用いた。ま た、中空糸膜型微生物濾過装置 3と処理水貯槽 6間は処理水管 7で接続し、処理水 管 7には吸引ポンプ 8を設置した。また逆洗ポンプ 9を設置し、処理水貯槽 6内の濾 過水を逆洗配管 10によって前記精密濾過膜を逆洗できるようにした。 The apparatus shown in FIG. 1 was used. The ballast water production system A is mainly composed of a hollow fiber membrane type microbial filtration device 3 and a hollow fiber membrane module consisting of a microfiltration membrane with a processing capacity of 3 m 3 Z in a treatment tank 4 “Stellapore SUR31534” (Mitsubishi Rayon ) Was used. Further, the hollow fiber membrane type microbial filtration device 3 and the treated water storage tank 6 were connected by a treated water pipe 7, and a suction pump 8 was installed in the treated water pipe 7. In addition, a backwashing pump 9 was installed so that the microfiltration membrane could be backwashed by the backwashing pipe 10 for the filtered water in the treated water storage tank 6.
[0038] (運転方法)  [0038] (Driving method)
原水をバラスト水製造装置 Aに 3m3Z時の処理量で供給した。微生物除去工程に おいては、ブロワ 11からの空気を中空糸膜モジュール 5の下部に設置したディストリ ビュータ 12から微細な気泡としてバブルさせて、中空糸膜表面に付着した微生物等 を剥離しながら濾過を行った。また微生物除去工程 15分に対して、逆洗工程 1分とし 、これを繰り返した。また、微生物が濃縮された廃液は、中空糸膜型微生物濾過装置 3の処理槽 4の下部から適宜抜液した。 Raw water was supplied to ballast water production equipment A at a throughput of 3 m 3 Z. In the microorganism removing step, air from the blower 11 is bubbled as fine bubbles from a distributor 12 installed below the hollow fiber membrane module 5, and filtered while removing microorganisms and the like adhering to the surface of the hollow fiber membrane. Was done. This was repeated, except that the backwashing step was 1 minute with respect to the microorganism removing step of 15 minutes. Further, the waste liquid in which the microorganisms were concentrated was appropriately drained from the lower part of the treatment tank 4 of the hollow fiber membrane type microorganism filtration device 3.
[0039] (臭気測定) [0039] (Odor measurement)
JIS K0101に記載の方法に準拠し、 5人による官能検査を行い、その平均値で示 す。臭気強度の単位は TONであり、結果の表示は「無臭」、 1一 3が「極僅かに臭気 有り」、 4以上が「臭気有り」とした。 [0040] (一般細菌の測定方法) In accordance with the method described in JIS K0101, a sensory test is conducted by five people, and the average value is shown. The unit of the odor intensity was TON, and the results were displayed as "Odorless", 1 to 3 were "very slightly odorous", and 4 or more were "odorous". [0040] (Method for measuring general bacteria)
一般細菌は、 BGLB (Brilliant Green lactose Bile Broth)に試料を添カ卩し、 35°Cで 24時間培養した後、一般細菌を計測した。計数値は lOOmL当りの CFUで示した。  As for general bacteria, a sample was added to BGLB (Brilliant Green Lactose Bile Broth), cultured at 35 ° C. for 24 hours, and then measured for general bacteria. The counts were expressed in CFU per 100 mL.
[0041] (総プランクトン数の測定方法) (Method of measuring total plankton number)
試料を顕微鏡で観察し、数をカウントした。表示は lmL当りの個数で表示した。  The samples were observed under a microscope and counted. The indication was expressed in the number per 1 mL.
[0042] <実施例 2> <Example 2>
ノ スト水製造装置 Aに代えて、バラスト水製造装置 Bを用いた以外は、実施例 1と 同様の方法で行った。なお、実施例 2では一般細菌及び総プランクトン数の測定は 行わな力つた。その結果を表 1に示す。  The procedure was performed in the same manner as in Example 1 except that the ballast water production apparatus B was used instead of the nost water production apparatus A. In Example 2, measurement of general bacteria and total plankton number was not performed. The results are shown in Table 1.
[0043] (バラスト水製造装置 B及び運転方法) (Ballast Water Production Apparatus B and Operation Method)
中空糸膜型微生物濾過装置に代えて、限外濾過膜装置 LOV膜 (旭化成社製)を 用いた以外は、バラスト水製造装置 Aと同様の装置を用いた。なお、限外濾過膜装 置 LOV膜の操作圧力は 0. IMPaである。また、運転方法はバラスト水製造装置 Aの 運転方法と同様である。  An apparatus similar to ballast water production apparatus A was used except that an ultrafiltration membrane apparatus LOV membrane (manufactured by Asahi Kasei Corporation) was used instead of the hollow fiber membrane type microbial filtration apparatus. The operating pressure of the ultrafiltration membrane device LOV membrane is 0. IMPa. The operation method is the same as the operation method of ballast water production system A.
[0044] <実施例 3 > <Example 3>
ノ スト水製造装置 Aに代えて、バラスト水製造装置 Cを用いた以外は、実施例 1と 同様の方法で行った。なお、実施例 3では一般細菌及び総プランクトン数の測定は 行わな力つた。その結果を表 1に示す。  The procedure was performed in the same manner as in Example 1 except that the ballast water production apparatus C was used instead of the nost water production apparatus A. In Example 3, measurement of general bacteria and total plankton count was not performed. The results are shown in Table 1.
[0045] (バラスト水製造装置 C) (Ballast water production equipment C)
図 2に示す装置を用いた。バラスト水製造装置 Cは淡水供給ポンプ 22と、逆浸透膜 装置 21と、処理水貯槽 6からなり、逆浸透膜装置 21には不図示の逆浸透膜モジユー ル ES— 10 (日東電工社製)が装填されている。なお、逆浸透膜モジュールの運転は 公知の方法で行い、操作圧力は 0. 6MPaである。  The apparatus shown in FIG. 2 was used. The ballast water production device C includes a fresh water supply pump 22, a reverse osmosis membrane device 21, and a treated water storage tank 6. The reverse osmosis membrane device 21 has a reverse osmosis membrane module ES-10 (not shown) (manufactured by Nitto Denko Corporation). Is loaded. The operation of the reverse osmosis membrane module is performed by a known method, and the operating pressure is 0.6 MPa.
[0046] <比較例 1 > <Comparative Example 1>
ノ スト水製造装置を用いた処理を行わず、原水をそのまま測定試料とした (未処 理)以外は、実施例 1と同様に行った。その結果を表 1に示す。  The process was performed in the same manner as in Example 1 except that the treatment using the nost water producing apparatus was not performed, and the raw water was used as a measurement sample (untreated). The results are shown in Table 1.
[0047] <比較例 2> <Comparative Example 2>
ノ スト水製造装置を用いた処理に代えて、原水を 100°C、 5分間煮沸処理した以 外は、実施例 1と同様に行った。その結果を表 1に示す。 After the raw water was boiled at 100 ° C for 5 minutes instead of using the nost water production equipment Other than the above, the procedure was the same as in Example 1. The results are shown in Table 1.
[0048] <比較例 3 > <Comparative Example 3>
バラスト水製造装置を用いた処理に代えて、機械的破砕として原水を周波数 28kH z、照射時間 10分間の超音波処理し、温度上昇防止のため冷却した以外は、実施例 In place of the treatment using the ballast water production equipment, except that the raw water was subjected to ultrasonic treatment at a frequency of 28 kHz and irradiation time of 10 minutes as mechanical crushing and cooled to prevent temperature rise,
1と同様に行った。その結果を表 1に示す。 Performed similarly to 1. The results are shown in Table 1.
[0049] [表 1] 原水;戸田市ェ 処理直後 1日保存 7曰保存 その後砂処理 業用水 [Table 1] Raw water; Toda City Stored immediately after treatment Saved for 1 day Saved after 7 Sand treatment Industrial water
実施例 1  Example 1
臭気 to阜 挺阜 to直  Odor to Fu, Chofu to Nao
一般細菌 0 ― 0 ― 総アランクトン数 0 0 ― 実施例 2 躯息 M 阜 実施例 3 tea 息 阜 皇 比較例 1  General bacteria 0-0-Total number of alkantons 0 0-Example 2 Breath M Fu Example 3 tea
臭気 2 5 5 一般細菌 1 0 0 ― 1 0 4以上 ― 総: rランクトン数 2 0 1 0 0以上 ― 比較例 2 Odor 2 5 5 General bacteria 1 0 0-1 0 4 or more-Total: r Rank tonnage 2 0 1 0 0 or more-Comparative example 2
臭: ¾ te阜 無臭 5 5 一般細菌 0 ― 1 0 4以上 Odor: ¾ tefu Odorless 5 5 General bacteria 0 ― 10 4 or more
総フ°ランクトン数 0 ― 0 ― 比較例 3  Total Frankton number 0-0-Comparative example 3
臭 5¾ M. 4 7 7 一般細菌 7 0 ― 1 0 4以上 ― 総ァランクトン数 0 ― 0 ― 注)なお、実施例 1 2の 14日保存の臭気の結果は「2」、実施例 3の 14日保存の臭 気の結果は「1」である。 Odor 5¾ M. 4 7 7 General bacteria 7 0 ― 10 4 or more ― Total alankton number 0 ― 0 ― Note) The odor result of 14 days storage in Example 1 2 was “2” and 14 in Example 3 The odor result for day storage is “1”.
細菌; CFU/100mL 総プランクトン数;個/ mL Bacteria; CFU / 100mL Total plankton number / piece / mL
[0050] <実施例 4> <Example 4>
原水として、戸田巿工業用水に代えて、荒川河川水とした以外は、実施例 1と同様 の方法で行った。なお、一般細菌等の測定は省略した。その結果を表 2に示す。  The procedure was the same as in Example 1 except that the raw water used was Arakawa river water instead of Toda II industrial water. The measurement of general bacteria and the like was omitted. The results are shown in Table 2.
[0051] <実施例 5 > <Example 5>
原水として、戸田巿工業用水に代えて、荒川河川水とした以外は、実施例 2と同様 の方法で行った。なお、一般細菌等の測定は省略した。その結果を表 2に示す。  The procedure was the same as in Example 2 except that the raw water used was Arakawa River water instead of Toda II industrial water. The measurement of general bacteria and the like was omitted. The results are shown in Table 2.
[0052] <実施例 6 > <Example 6>
原水として、戸田巿工業用水に代えて、荒川河川水とした以外は、実施例 3と同様 の方法で行った。なお、一般細菌等の測定は省略した。その結果を表 2に示す。  The procedure was the same as in Example 3, except that Arakawa River water was used as raw water instead of Toda II industrial water. The measurement of general bacteria and the like was omitted. The results are shown in Table 2.
[0053] <比較例 4> <Comparative Example 4>
ノ スト水製造装置を用いた処理を行わず、原水をそのまま測定試料とした (未処 理)以外は、実施例 4と同様に行った。その結果を表 2に示す。  The same procedure as in Example 4 was carried out except that the treatment using the nost water producing apparatus was not performed, and the raw water was used as a measurement sample as is (untreated). The results are shown in Table 2.
[0054] <比較例 5 > <Comparative Example 5>
ノ スト水製造装置を用いた処理に代えて、原水を 100°C、 5分間煮沸処理した以 外は、実施例 4と同様に行った。その結果を表 2に示す。  Example 4 was carried out in the same manner as in Example 4 except that the raw water was boiled at 100 ° C for 5 minutes instead of using the nost water producing apparatus. The results are shown in Table 2.
[0055] <比較例 6 > <Comparative Example 6>
バラスト水製造装置を用いた処理に代えて、機械的破砕として原水を周波数 28kH z、照射時間 10分間の超音波処理し、温度上昇防止のため冷却した以外は、実施例 4と同様に行った。その結果を表 2に示す。  In place of the treatment using the ballast water production equipment, the same operation as in Example 4 was carried out except that the raw water was subjected to ultrasonic treatment at a frequency of 28 kHz and an irradiation time of 10 minutes as mechanical crushing and cooled to prevent a temperature rise. . The results are shown in Table 2.
[0056] [表 2] [Table 2]
原水; 処理直後 1日保存 7日保存 その後砂処理 荒川河川水 Raw water; Immediately after treatment 1 day storage 7 days storage Sand treatment Arakawa river water
実施例 4 rtn 無息 ίΠΕ臭 実施例 5 ut 無息 te a.  Example 4 rtn breathless odor Example 5 ut breathless te a.
実施例 6 lur—自 Jifc 比較例 4 5 8 8 比較例 5 無臭 1 5 5 比較例 6 無臭 8 9 8  Example 6 lur—self Jifc Comparative Example 4 5 8 8 Comparative Example 5 Odorless 1 5 5 Comparative Example 6 Odorless 8 9 8
[0057] <実施例 7> <Example 7>
処理水に次亜塩素酸を更に、 2. Omg/L添加し、 14日保存で測定した以外は、実 施例 1と同様の方法で行った。なお、実施例 7では一般細菌及び総プランクトン数の 測定は行わな力つた。その結果を表 3に示す。  Hypochlorous acid was further added to the treated water and 2. Omg / L was added, and the measurement was carried out in the same manner as in Example 1 except that the measurement was performed after 14 days of storage. In Example 7, measurement of the number of general bacteria and total plankton was not performed. The results are shown in Table 3.
[0058] <実施例 8 > <Example 8>
処理水に次亜塩素酸を更に、 2. Omg/L添加し、 14日保存で測定した以外は、実 施例 2と同様の方法で行った。なお、実施例 8では一般細菌及び総プランクトン数の 測定は行わな力つた。その結果を表 3に示す。  Hypochlorous acid was further added to the treated water, 2. Omg / L was added, and the measurement was carried out in the same manner as in Example 2 except that the measurement was performed after storage for 14 days. In Example 8, measurement of the number of general bacteria and total plankton was not performed. The results are shown in Table 3.
[0059] <実施例 9 > <Example 9>
処理水に次亜塩素酸を更に、 2. Omg/L添加し、 14日保存で測定した以外は、実 施例 3と同様の方法で行った。なお、実施例 9では一般細菌及び総プランクトン数の 測定は行わな力つた。その結果を表 3に示す。  Hypochlorous acid was further added to the treated water, and 2.Omg / L was added. The measurement was carried out in the same manner as in Example 3 except that the measurement was performed after storage for 14 days. In Example 9, measurement of the number of general bacteria and the total plankton was not performed. The results are shown in Table 3.
[0060] <比較例 7— 10 > <Comparative Examples 7—10>
比較例 7— 9は、比較例 1 3のそれぞれ 14日保存ものであり、また比較例 10はバ ラスト水製造装置を用いた処理を行わず、原水に次亜塩素酸を更に、 2. Omg/L添 加し、 14日保存で測定した以外は、実施例 1と同様の方法で行ったものである。なお 、比較例 7— 9では一般細菌及び総プランクトン数の測定は行わな力つた。その結果 を表 3に示す。  Comparative Examples 7-9 were stored for 14 days from Comparative Examples 13 and 14, respectively. Comparative Example 10 did not perform treatment using a ballast water producing apparatus, and further added hypochlorous acid to raw water. This was performed in the same manner as in Example 1 except that the measurement was performed after adding / L and storing for 14 days. In Comparative Examples 7-9, measurement of general bacteria and total plankton count was not performed. The results are shown in Table 3.
[0061] [表 3] 原水;戸田市ェ 処理直後 7日保存 1 4日保存 その後砂処理 趣 ― [Table 3] Raw water; Toda city Store immediately after treatment Save for 7 days 1 Save for 4 days Sand treatment
実施例 7 カルキ臭有 ^£皇  Example 7
実施例 8 カルキ臭有 ίΗΕ息 M B. 実施例 9 カルキ臭有 白  Example 8 Smelt with smell of breath M B.
i te阜 比較例 7 カルキ臭有 5 6 6 比較例 8 カルキ臭有 5 6 6 比較例 9 カルキ臭有 7 7 7 比較例 1 0 カルキ臭有 3 6 6  i te Fu Comparative Example 7 Calcium odor 5 6 6 Comparative Example 8 Calcium odor 5 6 6 Comparative Example 9 Calcium odor 7 7 7 Comparative Example 10 0 Calcium odor 3 6 6
[0062] <実施例 10 > <Example 10>
ノ スト水製造装置 Aに代えて、バラスト水製造装置 Dを用いた点、及び戸田巿ェ 業用水に代えて、東京都お台場の海水を用いた以外は、実施例 1と同様の方法で行 つた。なお、実施例 10では一般細菌及び総プランクトン数の測定は行わな力つた。 その結果を表 4に示す。  The same method as in Example 1 was adopted except that ballast water production equipment D was used instead of nost water production equipment A, and seawater from Odaiba, Tokyo, was used instead of industrial water for Toda 巿. I went. In Example 10, the measurement of the general bacteria and the total plankton number was not performed. The results are shown in Table 4.
[0063] (バラスト水製造装置 D及び運転方法) (Ballast Water Production Equipment D and Operation Method)
原水は淡水に代えて、お台場の海水とし、淡水供給ポンプ 22に代えて、海水供給 ポンプとし、逆浸透膜モジュール ES— 10に代えて、海水淡水化逆浸透膜モジュール SU-810 (東レ製)とし、操作圧力 0. 6MPaに代えて、 6. OMPaとした以外は、バラ スト水製造装置 Cと同様の装置、同様の運転方法で行った。  The raw water is seawater from Odaiba instead of freshwater, a seawater supply pump is used instead of the freshwater supply pump 22, and the seawater desalination reverse osmosis module SU-810 (manufactured by Toray) is used instead of the reverse osmosis membrane module ES-10. ) And the operation pressure was changed to 6. OMPa instead of 0.6 MPa.
[0064] <比較例 11 > <Comparative Example 11>
戸田巿工業用水に代えて、お台場の海水を用いた以外は、比較例 1と同様に行つ た。その結果を表 4に示す。  The procedure was the same as in Comparative Example 1, except that seawater from Odaiba was used instead of Toda II industrial water. The results are shown in Table 4.
[0065] <比較例 12 > <Comparative Example 12>
戸田巿工業用水に代えて、お台場の海水を用いた以外は、比較例 2と同様に行つ た。その結果を表 4に示す。  The procedure was the same as in Comparative Example 2, except that seawater from Odaiba was used instead of Toda II industrial water. The results are shown in Table 4.
[0066] <比較例 13 > <Comparative Example 13>
戸田巿工業用水に代えて、お台場の海水を用いた以外は、比較例 3と同様に行つ た。その結果を表 4に示す。 [0067] [表 4] 原水; 処理直後 1日保存 7曰保存 その後砂処理 実施例 1 0 1 1 1 ίκ息 比較例 1 1 1 4 5 5 The procedure was the same as in Comparative Example 3, except that seawater from Odaiba was used instead of Toda II industrial water. The results are shown in Table 4. [Table 4] Raw water; preserved for 1 day immediately after treatment Saved for 7 days and then treated with sand Example 1 0 1 1 1 ίκ breath Comparative example 1 1 1 4 5 5
比較例 1 2 2 3 7 7  Comparative Example 1 2 2 3 7 7
比較例 1 3 2 5 8 8  Comparative Example 1 3 2 5 8 8
[0068] 各実施例に示すように、淡水を MF膜、 UF膜又は RO膜で処理した処理水は、 1週 間保管されても、臭気を感じることはなぐまた一般細菌やプランクトンも検出されなか つた。また、海水を RO膜で処理した処理水は、淡水であり、且つ 1週間保管されても 、臭気を感じることはなぐまた一般細菌やプランクトンも検出されな力つた。このよう に、膜処理水には、菌ゃプランクトンが混入していないため、航海中、淡水の腐敗を 防止し淡水の利用価値を維持できる。また、これら実施例の処理水に次亜塩素酸を 添加した処理水は更に 1週間 (合計 2週間)保管されても臭気を感じることはな力つた ため、更に長期間に亘る航海にも対応できる。一方、比較例の煮沸処理では、プラン タトン及び一般細菌共に死滅するが、保存容器が無菌化されていないため、保管中 にプランクトンゃ菌の屍骸を栄養源に菌が発生するものと推定される。超音波処理に おいても同様であるが、超音波に代表される機械的なプランクトンや微生物を死滅さ せる方法は、プランクトンなど比較的大きなものは破壊され内容物が外部に出てしま ぃ菌の栄養源になり易いこと、微生物等の小さなものは殺菌効果が不十分である等 、種々の問題があることが判る。 [0068] As shown in each example, treated water obtained by treating fresh water with an MF membrane, a UF membrane, or an RO membrane has no odor even after being stored for one week, and general bacteria and plankton are also detected. Nakata. In addition, the treated water obtained by treating seawater with the RO membrane was fresh water, and even after being stored for one week, it did not feel odor and did not detect general bacteria or plankton. As described above, since the bacterium-plankton is not mixed in the membrane-treated water, it is possible to prevent freshwater from being putrefactive during voyage and maintain the value of freshwater. In addition, the treated water obtained by adding hypochlorous acid to the treated water of these examples did not have an odor even after being stored for a further one week (total of two weeks), so that it could be used for a longer voyage. it can. On the other hand, in the boiling treatment of the comparative example, both plantaton and general bacteria are killed, but since the storage container is not sterilized, it is presumed that bacteria are generated from the dead body of planktonic bacteria during storage. . The same applies to ultrasonic treatment, but the method of killing mechanical plankton and microorganisms represented by ultrasonic waves is that relatively large objects such as plankton are destroyed and their contents are exposed to the outside. It can be seen that there are various problems, such as being easy to become a nutrient source and small microorganisms and the like having insufficient bactericidal effect.

Claims

請求の範囲 The scope of the claims
[1] 淡水を精密濾過膜、限外濾過膜又は逆浸透膜に通すことにより淡水中の微生物が 除去された膜処理水を得る工程を含むことを特徴とする船舶用バラスト水の製造方 法。  [1] A method for producing marine ballast water, comprising the step of passing fresh water through a microfiltration membrane, an ultrafiltration membrane, or a reverse osmosis membrane to obtain a membrane-treated water from which microorganisms in the freshwater have been removed. .
[2] 海水を逆浸透膜に通すことにより海水中の微生物を除去すると共に淡水化された 膜処理水を得る工程を含むことを特徴とする船舶用バラスト水の製造方法。  [2] A method for producing ballast water for ships, comprising a step of removing microorganisms in seawater by passing seawater through a reverse osmosis membrane and obtaining desalinated membrane-treated water.
[3] 前記淡水は、工業用水、水道水、河川水、湖沼水、地下水又は下水処理水のうち の少なくとも 1つであることを特徴とする請求項 1記載の船舶用バラスト水の製造方法  3. The method for producing ballast water for ships according to claim 1, wherein the fresh water is at least one of industrial water, tap water, river water, lake water, groundwater, or sewage treatment water.
[4] 前記海水中の油分を、疎水性吸着材で吸着除去することを特徴とする請求項 2記 載の船舶用バラスト水の製造方法。 [4] The method for producing ballast water for ships according to claim 2, wherein the oil content in the seawater is adsorbed and removed by a hydrophobic adsorbent.
[5] 前記膜処理水に殺菌剤を添加することを特徴とする請求項 1一 4のいずれか 1項記 載の船舶用バラスト水の製造方法。 [5] The method for producing ballast water for ships according to any one of [14] to [14], wherein a bactericide is added to the membrane-treated water.
[6] 淡水供給手段から供給された淡水中の微生物を除去する精密濾過膜装置、限外 濾過膜装置又は逆浸透膜装置と、 [6] a microfiltration membrane device, an ultrafiltration membrane device or a reverse osmosis membrane device for removing microorganisms in the freshwater supplied from the freshwater supply means,
膜処理水を溜めるバラスト水貯留槽と、  A ballast water storage tank for storing membrane treatment water,
を備えることを特徴とする船舶用バラスト水製造装置。  An apparatus for producing ballast water for ships, comprising:
[7] 海水供給手段力 供給された海水中の微生物を除去すると共に淡水化する逆浸 透膜装置と、 [7] Seawater supply means power A reverse osmosis membrane device that removes microorganisms in the supplied seawater and desalinates it,
膜処理水を溜めるバラスト水貯留槽と、  A ballast water storage tank for storing membrane treatment water,
を備えることを特徴とする船舶用バラスト水製造装置。  An apparatus for producing ballast water for ships, comprising:
[8] 前記膜処理水に殺菌剤を添加する薬剤添加手段を更に備えることを特徴とする請 求項 6又は 7記載の船舶用バラスト水製造装置。 8. The marine ballast water producing apparatus according to claim 6, further comprising a chemical adding means for adding a bactericide to the membrane-treated water.
[9] 前記精密濾過膜装置が、浸漬型中空糸膜装置又は加圧型中空糸膜装置であるこ とを特徴とする請求項 6記載の船舶用バラスト水製造装置。 9. The marine ballast water production apparatus according to claim 6, wherein the microfiltration membrane device is a immersion type hollow fiber membrane device or a pressure type hollow fiber membrane device.
[10] 請求項 1一 5記載の船舶用バラスト水の製造方法により得られる膜処理水を船舶用 ノラスト水として用いることを特徴とする使用。 [10] Use of the membrane-treated water obtained by the method for producing ballast water for a ship according to claim 15 as nolast water for a ship.
PCT/JP2005/003125 2004-05-19 2005-02-25 Production method of ballast water for vessel, production system of ballast water for vessel and use WO2005110928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004148564A JP2005329300A (en) 2004-05-19 2004-05-19 Method and apparatus for preparing ballast water for ship
JP2004-148564 2004-05-19

Publications (1)

Publication Number Publication Date
WO2005110928A1 true WO2005110928A1 (en) 2005-11-24

Family

ID=35394098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003125 WO2005110928A1 (en) 2004-05-19 2005-02-25 Production method of ballast water for vessel, production system of ballast water for vessel and use

Country Status (2)

Country Link
JP (1) JP2005329300A (en)
WO (1) WO2005110928A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245034A (en) * 2006-03-16 2007-09-27 Mitsui Eng & Shipbuild Co Ltd Membrane treatment method and membrane treatment equipment using membrane module
CN102166479A (en) * 2011-03-07 2011-08-31 厦门绿邦膜技术有限公司 Improved antipollution membrane device
CN102963997A (en) * 2011-09-01 2013-03-13 富士电机株式会社 A water treatment method and a water treatment device
WO2020160735A2 (en) 2019-02-06 2020-08-13 Aridity Aps Method for cleaning sea water

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114793A1 (en) 2007-03-22 2008-09-25 Metawater Co., Ltd. Method of treating ballast water and apparatus therefor
JP2009241040A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for regenerating membrane for manufacturing ballast water
JP5281183B2 (en) * 2012-10-05 2013-09-04 三井造船株式会社 Replacement method of membrane cartridge used in membrane treatment equipment for ballast water treatment
US9492795B2 (en) * 2013-02-22 2016-11-15 Battelle Memorial Institute Membrane device and process for mass exchange, separation, and filtration
KR101636138B1 (en) 2014-08-13 2016-07-05 두산중공업 주식회사 Ballast water treatment device and method for a ship using FO process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04322788A (en) * 1991-02-25 1992-11-12 Mitsubishi Heavy Ind Ltd Method and device for disinfecting ballast water of ship
JPH08133177A (en) * 1994-11-14 1996-05-28 Sangyo Gijutsu Kenkyusho:Kk Water distilling tanker and method of transporting liquid of different kind by this tanker
JPH11169612A (en) * 1997-12-09 1999-06-29 Japan Organo Co Ltd Water filtration device and removing method of pathogenic microorganism in water
JP2001170458A (en) * 1999-12-15 2001-06-26 Meidensha Corp Method of detecting membrane breaking and fouling in membrane cleaning
WO2003022748A1 (en) * 2001-09-07 2003-03-20 Mitsubishi Rayon Co., Ltd. System and method for water treatment
JP2003154360A (en) * 2001-11-21 2003-05-27 Fuji Electric Co Ltd Method and apparatus for membrane-filtering bacteria in seawater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695071B2 (en) * 1990-10-12 1997-12-24 株式会社片山化学工業研究所 How to kill toxic plankton cysts
JP4374830B2 (en) * 2002-06-26 2009-12-02 株式会社日立製作所 Purified water supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04322788A (en) * 1991-02-25 1992-11-12 Mitsubishi Heavy Ind Ltd Method and device for disinfecting ballast water of ship
JPH08133177A (en) * 1994-11-14 1996-05-28 Sangyo Gijutsu Kenkyusho:Kk Water distilling tanker and method of transporting liquid of different kind by this tanker
JPH11169612A (en) * 1997-12-09 1999-06-29 Japan Organo Co Ltd Water filtration device and removing method of pathogenic microorganism in water
JP2001170458A (en) * 1999-12-15 2001-06-26 Meidensha Corp Method of detecting membrane breaking and fouling in membrane cleaning
WO2003022748A1 (en) * 2001-09-07 2003-03-20 Mitsubishi Rayon Co., Ltd. System and method for water treatment
JP2003154360A (en) * 2001-11-21 2003-05-27 Fuji Electric Co Ltd Method and apparatus for membrane-filtering bacteria in seawater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245034A (en) * 2006-03-16 2007-09-27 Mitsui Eng & Shipbuild Co Ltd Membrane treatment method and membrane treatment equipment using membrane module
WO2007119385A1 (en) * 2006-03-16 2007-10-25 Mitsui Engineering & Shipbuilding Co., Ltd. Membrane treatment method and membrane treatment equipment employing membrane module
CN102166479A (en) * 2011-03-07 2011-08-31 厦门绿邦膜技术有限公司 Improved antipollution membrane device
CN102963997A (en) * 2011-09-01 2013-03-13 富士电机株式会社 A water treatment method and a water treatment device
CN102963997B (en) * 2011-09-01 2015-10-14 富士电机株式会社 Water treatment method and water treatment device
WO2020160735A2 (en) 2019-02-06 2020-08-13 Aridity Aps Method for cleaning sea water

Also Published As

Publication number Publication date
JP2005329300A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
WO2005092801A1 (en) Process for producing ship ballast water, ship ballast water producing apparatus and use thereof
WO2005110928A1 (en) Production method of ballast water for vessel, production system of ballast water for vessel and use
JP5804228B1 (en) Water treatment method
TW200829514A (en) Ballast water treatment plant having filter, disinfection, instrumentation and control unit
Kim et al. A hybrid microfiltration–granular activated carbon system for water purification and wastewater reclamation/reuse
JPH06154752A (en) Method of treating fluid by using dynamic precision filtration and ultrafiltration
JP2009240902A (en) Water treating method and water treating apparatus
JP6194887B2 (en) Fresh water production method
WO2007142068A1 (en) Purification apparatus for ship ballast water
KR100221225B1 (en) Apparatus for brine conversion
KR101035899B1 (en) High recovery and low fouling type apparatus for reusing treated wastewater and method thereof
JP2004025018A (en) Sea water desalting apparatus by reverse osmosis
JPH0866697A (en) Fluid processing method
US20110174707A1 (en) Ballast Water Utilization System
Khan et al. Continuous and efficient removal of THMs from river water using MF membrane combined with high dose of PAC
JP2006000729A (en) Ship ballast water production method and apparatus
JP5250684B2 (en) Seawater desalination method and seawater desalination apparatus
JP4933679B1 (en) Seawater desalination method and seawater desalination apparatus
JP3148849B2 (en) Seawater desalination method by reverse osmosis
JP2007137260A (en) Ballast water tank structure, ballast water manufacturing device, and manufacturing method of ballast water
JP3269496B2 (en) Sterilization method and fresh water method of membrane
JP3087750B2 (en) Sterilization method of membrane
JP2006000728A (en) Method for preparing ballast water and apparatus for preparing ballast water to be loaded onto vessel
JP3353810B2 (en) Reverse osmosis seawater desalination system
JP2000167554A (en) Water making and membrane separator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase