JP2007137260A - Ballast water tank structure, ballast water manufacturing device, and manufacturing method of ballast water - Google Patents
Ballast water tank structure, ballast water manufacturing device, and manufacturing method of ballast water Download PDFInfo
- Publication number
- JP2007137260A JP2007137260A JP2005333722A JP2005333722A JP2007137260A JP 2007137260 A JP2007137260 A JP 2007137260A JP 2005333722 A JP2005333722 A JP 2005333722A JP 2005333722 A JP2005333722 A JP 2005333722A JP 2007137260 A JP2007137260 A JP 2007137260A
- Authority
- JP
- Japan
- Prior art keywords
- ballast water
- seawater
- bag
- container
- microorganism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、船舶の航行時における重心安定のために積載する海洋環境に悪影響を与えないバラスト水を貯留するバラスト水槽構造体、バラスト水製造装置及びバラスト水の製造方法に関する。 The present invention relates to a ballast water tank structure, a ballast water production apparatus, and a ballast water production method that store ballast water that does not adversely affect the marine environment that is loaded to stabilize the center of gravity during navigation of a ship.
原油タンカー、鉱石運搬船、自動車運搬船等は空荷や積載貨物量が少ない状態で航行する場合がある。その際、船体が浮力により浮き上がり、スクリューや方向舵が水面下に没しなかったり、水面上の船体が風の影響を大きく受けて操縦性が損なわれ航行上極めて危険な状態となる。このため、通常の船舶は航行時の浮力を調整するため、通常載荷重量の30〜40重量%のバラスト水を積載する。 Crude oil tankers, ore carriers, car carriers, etc. may sail with low or no cargo. At that time, the hull is lifted by buoyancy, and the screw and rudder are not submerged under the surface of the water, or the hull on the surface of the water is greatly affected by the wind and the maneuverability is impaired, making it extremely dangerous for navigation. For this reason, in order to adjust the buoyancy at the time of navigation, a normal ship carries a ballast water of 30 to 40% by weight of the normal load.
例えば、原油タンカーによる輸送は産油国と消費国の往復となり、消費国から産油国への航行では積荷がなく、消費国で船舶内の油槽に停泊区域の海水等を積載してバラスト水としている。一方、バラスト水を積んだ船舶は産油国の近海、あるいは港湾でバラスト水を排出して、原油を再度積載している。 For example, transportation by crude oil tankers is a round trip between oil-producing countries and consuming countries, and there is no cargo when navigating from consuming countries to oil-producing countries. . On the other hand, a ship loaded with ballast water discharges the ballast water in the sea near the oil-producing country or at a port and reloads with crude oil.
近年、船舶から排出されるバラスト水により特定海域に本来生息しない微生物が持ち込まれ、これに起因して海洋生態系の破壊が生じ、当該水域住民の生活に重大な被害を与えるだけではなく、全世界的な海洋環境の破壊が生じており、深刻な国際問題となっている。このため、バラスト水中の微生物による汚染防止を目的として、国際的な規模で各種の方法が検討されている。 In recent years, the ballast water discharged from ships has brought in microorganisms that do not inherently live in specific waters, which has resulted in the destruction of marine ecosystems, not only causing serious damage to the lives of those waters, The destruction of the global marine environment has occurred and has become a serious international problem. For this reason, various methods have been studied on an international scale for the purpose of preventing contamination by microorganisms in the ballast water.
バラスト水として汲み込まれる海水中の微生物を除去して海洋汚染を防止する方法としては、例えば海水を加熱して微生物を死滅させる方法(特開2003−181443号公報)、海水に紫外線を照射して微生物を不活性化させる方法(特表2000−515803号公報、特開平11−265684号公報)、海水を電解装置に通して死滅させる方法(特開2003−334563号公報)、ヨウ素で処理する方法(特表2002−504851号公報)及び次亜塩素酸で処理する方法(特開平04−322788号公報)等が提案されている。 As a method for preventing marine pollution by removing microorganisms in seawater pumped as ballast water, for example, a method of killing microorganisms by heating seawater (Japanese Patent Laid-Open No. 2003-181443), irradiating seawater with ultraviolet rays A method of inactivating microorganisms (Japanese translations of PCT publication No. 2000-515803, JP-A-11-265684), a method of killing seawater through an electrolyzer (JP-A-2003-334563), and treatment with iodine A method (Japanese Patent Publication No. 2002-504851) and a method of treating with hypochlorous acid (Japanese Patent Laid-Open No. 04-322788) have been proposed.
一方、船舶が停泊する港湾域において、バラスト水を船舶に汲み上げる場合、船舶の停泊期間が限られているため、海水をバラスト水槽に汲み上げた後、航海中の比較的長い期間を利用して、上記のようなバラスト水中の微生物による汚染防止処理を行うことも検討されている。
しかしながら、海水を直接バラスト水槽に汲み上げ、その後、バラスト水槽内の海水を順次、例えば濾過処理などの海水中の微生物を除去する処理を行う場合、濾過水はバラスト水槽へ戻すため、無限希釈になってしまい、比較的長い航海中であっても、バラスト水中の微生物残存量を規定値以下とすることはできないという問題がある。これを解決するものとして、複数の室に区画されるバラスト水槽に、海水を汲み上げる際、空の室を設け、微生物除去水を空の室へ順次移す方法も考えられる。しかし、この方法は、船舶のバランスを崩すという点で実施は困難であり、また、配管やバルブの調整が複雑になるという問題がある。また、海水を直接バラスト水槽に汲み上げると、バラスト水槽の内壁にスライムが発生してしまい、当該バラスト水槽は、微生物除去処理がされた処理水の貯留槽とすることができないという問題がある。 However, when the seawater is pumped directly into the ballast tank, and then the seawater in the ballast tank is sequentially removed, for example, by filtration to remove microorganisms in the seawater, the filtered water is returned to the ballast tank, resulting in infinite dilution. As a result, there is a problem that the remaining amount of microorganisms in the ballast water cannot be reduced to a specified value or less even during a relatively long voyage. As a solution to this problem, when pumping seawater into a ballast aquarium partitioned into a plurality of chambers, an empty chamber is provided, and microorganism removal water is sequentially transferred to the empty chamber. However, this method is difficult to implement in that the balance of the ship is lost, and there is a problem that the adjustment of piping and valves becomes complicated. Moreover, when seawater is directly pumped into the ballast water tank, slime is generated on the inner wall of the ballast water tank, and there is a problem that the ballast water tank cannot be used as a storage tank for treated water that has been subjected to microorganism removal processing.
従って、本発明の目的は、配管やバルブの調整を複雑にすることなく、海水中の微生物を濾過膜で効率的に除去してバラスト水を製造すると共に、船舶から排出される大量のバラスト水により特定海域に本来生息しない微生物が持ち込まれることがなく、更に海洋環境を破壊することもない効率的なバラスト水の製造方法、バラスト水槽構造体及びバラスト水製造装置を提供することにある。 Therefore, an object of the present invention is to produce ballast water by efficiently removing microorganisms in seawater with a filter membrane without complicating adjustment of piping and valves, and a large amount of ballast water discharged from a ship. It is an object of the present invention to provide an efficient method for producing ballast water, a ballast water tank structure, and a ballast water production apparatus that does not bring in microorganisms that do not originally inhabit a specific sea area and that does not destroy the marine environment.
かかる実情において、本発明者らは鋭意検討を行った結果、船舶のバラスト水槽内に、不定形状の袋状容器を配置して、該バラスト水槽内を、該袋状容器の内部と外部に仕切り、該袋状容器の内部と外部のいずれか一方に汲み上げられ貯留された海水を、微生物除去処理し、得られた処理水を該袋状容器の内部と外部のいずれか他方に供給し貯留すれば、大量の海水であっても、比較的長い航海中に簡易な装置で効率的に微生物除去処理ができ、更に、船舶から排出される大量のバラスト水により特定海域に本来生息しない微生物が持ち込まれることがなく、更に海洋環境を破壊することもないこと等を見出し、本発明を完成するに至った。 In such a situation, the present inventors have conducted intensive investigations. As a result, an indefinite bag-shaped container is arranged in the ballast water tank of the ship, and the inside of the ball-shaped container is divided into the inside and the outside of the ball-shaped container. The seawater pumped and stored either inside or outside the bag-like container is subjected to microorganism removal treatment, and the resulting treated water is supplied to either the inside or outside of the bag-like container and stored. For example, even with a large amount of seawater, microorganisms can be efficiently removed with a simple device during a relatively long voyage. In addition, a large amount of ballast water discharged from a ship brings in microorganisms that do not naturally inhabit a specific sea area. It has been found that the marine environment is not destroyed, and the present invention has been completed.
すなわち、本発明(1)は、船舶のバラスト水槽内に、不定形状の袋状容器を配置して、該バラスト水槽内を、該袋状容器の内部と外部に仕切り、該袋状容器の内部と外部のいずれか一方を汲み上げられた海水の貯留槽とし、他方を該貯留された海水を微生物除去処理した処理水の貯留槽とすることを特徴とするバラスト水槽構造体を提供するものである。 That is, the present invention (1) arranges a bag-shaped container of indefinite shape in a ballast water tank of a ship, partitions the inside of the ball-shaped water tank into an inside and an outside of the bag-shaped container, A ballast water tank structure is provided, in which one of the water and the outside is used as a storage tank for pumped seawater, and the other is used as a storage tank for treated water obtained by removing microorganisms from the stored seawater. .
また、本発明(2)は、前記処理水が、濾過処理された処理水であることを特徴とする前記バラスト水槽構造体を提供するものである。 The present invention (2) provides the ballast water tank structure, wherein the treated water is filtered treated water.
また、本発明(3)は、前記濾過処理した処理水が、微生物濾過膜で処理された濾過水であることを特徴とする前記バラスト水槽構造体を提供するものである。 Moreover, this invention (3) provides the said ballast water tank structure characterized by the said filtered treated water being filtered water processed with the microorganisms filtration membrane.
また、本発明(4)は、前記バラスト水槽構造体と、該一方の貯留槽に貯留された海水中の微生物を除去する微生物除去装置と、該一方の貯留槽と該微生物除去装置を接続する海水供給管と、該微生物除去装置と該他方の貯留槽を接続する微生物除去処理水供給管を備えることを特徴とするバラスト水製造装置を提供するものである。 Moreover, this invention (4) connects the said ballast water tank structure, the microorganism removal apparatus which removes the microorganisms in the seawater stored by this one storage tank, and this one storage tank and this microorganism removal apparatus. The present invention provides a ballast water production apparatus comprising a seawater supply pipe, a microorganism removal treated water supply pipe connecting the microorganism removal apparatus and the other storage tank.
また、本発明(5)は、前記微生物除去装置が、浸漬型中空糸膜装置又は加圧型中空糸膜装置であることを特徴とする前記バラスト水製造装置を提供するものである。 Moreover, this invention (5) provides the said ballast water manufacturing apparatus characterized by the said microorganisms removal apparatus being an immersion type hollow fiber membrane apparatus or a pressurization type hollow fiber membrane apparatus.
また、本発明(6)は、船舶のバラスト水槽内に、不定形状の袋状容器を配置して、該バラスト水槽内を、該袋状容器の内部と外部に仕切り、該袋状容器の内部と外部のいずれか一方に汲み上げられ貯留された海水を、微生物除去処理し、得られた処理水を該袋状容器の内部と外部のいずれか他方に供給し貯留することを特徴とするバラスト水の製造方法を提供するものである。 Moreover, this invention (6) arrange | positions the bag-shaped container of indefinite shape in the ballast water tank of a ship, partitions the inside of this ball-shaped water tank into the inside and outside of this bag-shaped container, The ballast water is characterized in that the seawater pumped up and stored in either the outside or the outside is subjected to microorganism removal treatment, and the resulting treated water is supplied to and stored in the inside or outside of the bag-like container The manufacturing method of this is provided.
また、本発明(7)は、前記微生物除去処理が、中空糸膜による処理であることを特徴とする前記バラスト水の製造方法を提供するものである。 Moreover, this invention (7) provides the said ballast water manufacturing method characterized by the said microorganisms removal process being the process by a hollow fiber membrane.
本発明によれば、比較的長い航海中に海水中の微生物を除去することができる。また、袋状容器をバラスト水槽に配置して容積可変の二重槽を形成するため、複雑な配管やバルブ類の設置を省略して、装置をコンパクトにすることができる。また、微生物除去が進むにしたがって、例えば袋状容器内部の海水量が減少し、その分だけ袋状容器外部の膜濾過水量が増加し、袋状容器内部と外部のバランスが変化するだけで、バラスト水槽内部に存在する海水の水位は変化しない。このため、船体の重心が不安定になる等の航行に対する悪影響はない。また、濾過処理の場合、濾過水は原海水が貯留されたバラスト水槽へ戻すことがないため、無限希釈になることがなく、効率的な濾過処理ができる。また、微生物膜による処理の場合、微生物除去後、袋状容器内部の底部に残存する海水のひき残し分は比較的少量であるため、殺菌剤や加熱処理を行ったとしても、殺菌剤の使用量も少量でよく、また加熱に伴う消費エネルギーも少なくてよい。また、船舶から排出されるバラスト水により特定海域に本来生息しない微生物が持ち込まれることはなく、更に海洋環境を破壊することもない。また油分を比較的多く含む海水であっても、これらは微生物濾過膜で処理する前に予め除去されるため、微生物濾過膜が汚染されることがなく、長期間安定して処理することができる。 According to the present invention, microorganisms in seawater can be removed during a relatively long voyage. Further, since the bag-like container is disposed in the ballast water tank to form a variable volume double tank, the installation of complicated piping and valves can be omitted, and the apparatus can be made compact. In addition, as the microorganism removal progresses, for example, the amount of seawater inside the bag-like container decreases, the amount of membrane filtrate water outside the bag-like container increases, and the balance between the inside and outside of the bag-like container changes, The water level of seawater existing inside the ballast tank does not change. For this reason, there is no adverse effect on navigation such as the unstable center of gravity of the hull. Moreover, in the case of a filtration process, since filtered water does not return to the ballast water tank in which original seawater was stored, it does not become infinite dilution, but an efficient filtration process can be performed. In addition, in the case of treatment with a microbial membrane, the remaining amount of seawater remaining in the bottom of the bag-like container after removal of microorganisms is relatively small, so even if a sterilizing agent or heat treatment is performed, the sterilizing agent is used. The amount may be small, and the energy consumption accompanying heating may be small. Further, the ballast water discharged from the ship does not bring in microorganisms that do not originally live in the specific sea area, and further does not destroy the marine environment. Even seawater containing a relatively large amount of oil is removed in advance before being treated with the microbial filtration membrane, so that the microbial filtration membrane is not contaminated and can be treated stably for a long period of time. .
本発明において、微生物除去処理としては、特に制限されず、例えば海水を加熱して微生物を死滅させる加熱処理、海水に紫外線を照射して微生物を不活性化させる紫外線照射処理、海水を電解装置に通して死滅させる電気処理、ヨウ素処理、次亜塩素酸処理、砂濾過処理、生物フィルタを用いた濾過処理、粒状無煙炭濾過材を用いた濾過処理、微生物濾過膜を用いた濾過膜処理などが挙げられ、このうち、微生物濾過膜を用いた濾過膜処理が、微生物を高度に除去処理することができる点で好ましい。また、微生物除去処理された処理水中の微生物残存量は、該処理水が海洋に廃棄された場合、海洋の汚染を防止するものであればよく、例えば、2004年2月国際海事機関(IMO)が、「バラスト水管理条約」の審議において採択した「バラスト水及び沈殿物の排出基準」をクリアーするものが挙げられる。 In the present invention, the microorganism removal treatment is not particularly limited. For example, heat treatment for heating the seawater to kill the microorganisms, ultraviolet irradiation treatment for irradiating the seawater with ultraviolet rays to inactivate the microorganisms, and seawater as an electrolytic device. Electrical treatment that kills through, iodine treatment, hypochlorous acid treatment, sand filtration treatment, filtration treatment using biological filter, filtration treatment using granular anthracite filter material, filtration membrane treatment using microbial filtration membrane, etc. Among these, a filtration membrane treatment using a microorganism filtration membrane is preferable in that a microorganism can be highly removed. Further, the remaining amount of microorganisms in the treated water subjected to the microorganism removal treatment may be anything that prevents pollution of the ocean when the treated water is discarded into the ocean. For example, the International Maritime Organization (IMO) in February 2004 However, those that clear the “ballast water and sediment discharge standards” adopted in the discussion of the “Ballast Water Management Convention”.
本発明の実施の形態におけるバラスト水槽構造体、バラスト水製造装置及びバラスト水の製造方法の一例を図1及び図2を参照して説明する。図1及び図2は本例の船舶の概略横断面図であって、図1は海水を袋状容器に汲み上げ貯留した状態を示し、図2は袋状容器に貯留した海水を微生物濾過膜で処理し、得られた膜濾過水を袋状容器の外部に貯留した状態を示す図である。バラスト水槽構造体10は、船舶1のバラスト水槽2内に、不定形状の袋状容器3を配置して、バラスト水槽2内を、袋状容器3の内部31と外部32に仕切り、袋状容器2の内部31を汲み上げられた海水の貯留槽とし(図1)、袋状容器2の外部32を貯留された海水41を微生物濾過膜装置5で処理した膜濾過水の貯留槽とする(図2)ものである。
An example of the ballast water tank structure, the ballast water production apparatus, and the ballast water production method in the embodiment of the present invention will be described with reference to FIGS. 1 and 2. 1 and 2 are schematic cross-sectional views of the ship of this example. FIG. 1 shows a state in which seawater is pumped up and stored in a bag-like container, and FIG. 2 shows the seawater stored in the bag-like container with a microbial filtration membrane. It is a figure which shows the state which processed and obtained the membrane filtered water was stored outside the bag-shaped container. The ballast
船舶1のバラスト水槽2の構造としては、特に制限されず、例えば原油等の荷を積載する積荷室11とバラスト水槽2が区画されたダブルハル構造のものが好適である。ダブルハル構造としては、図1のもの以外に、種々の形態のものが適用可能である。なお、図1のバラスト水槽2には、膜濾過水が流入又は流出する水管接続口34が設置されている。
The structure of the ballast water tank 2 of the ship 1 is not particularly limited, and for example, a double hull structure in which a
不定形状の袋状容器3は、例えば不透水性で中空の可撓性袋であり、海水が流入又は流出する水管接続口33を有するものである。また、袋状容器3の容量としては、特に制限されず、バラスト水槽1の中、80容量%以上、好ましくは90容量%以上、更に好ましくはバラスト水槽1中、いっぱいに膨らむものである。これにより、バラスト水の積載量が制限されず、使い勝手がよくなる。袋状容器3の材質としては、特に制限されず、ポリイソプレン、クロロプレンゴム、アクリルゴム、エチレン−プロピレンゴム、ABS樹脂、ポリプロピレン、ポリ塩化ビニル、ポリアミド、ポリエチレン及びポリエステルが挙げられる。
The bag-
バラスト水槽2中、袋状容器3の設置形態としては、特に制限されず、図2のように袋状容器の外部に膜濾過水が貯留される状態(収納状態)において、袋状容器の積荷室11側の袋とバラスト水槽2の内壁を複数箇所12で固定したものが、袋の膨張及び収縮が円滑であり、且つ袋を損傷させることがない点で好ましい。本発明のバラスト水槽構造体は、既存の船舶のバラスト水槽に対して、実質的に、袋状容器を設置するだけでよく、製造コストを抑制することができる。
The form of installation of the bag-
本発明において、袋状容器3の内部に汲み上げられ、貯留される海水としては、特に制限されないが、通常船舶が停泊する港湾域の海水であり、該海水には、微生物の他、通常油分が0.05〜1.0%含まれ、濁度が1〜100度である。また、海水中の微生物のうち、特に国際的に問題とされる微生物としては、大腸菌群、コレラ菌、腸球菌、ミジンコの幼生、北太平洋ヒトデの幼生、アジア昆布の幼生、ゼブラ貝の幼生及び毒性藻類等が挙げられ、これらの微生物の大きさはほとんどが数μmであり、最も小さいもので0.3〜0.5μmである。
In the present invention, the seawater that is pumped and stored inside the bag-
本発明のバラスト水製造装置20は、バラスト水槽構造体10と、海水31中の油分を除去する油分吸着除去装置6と、海水31中の微生物を除去する微生物濾過膜装置5とを備え、一端の開口が海中にある海水取水配管91、水管接続口33に接続する海水供給配管95及び油分吸着除去装置6に接続する被処理水供給配管92は三方弁8により接続され、油分吸着除去装置6と微生物濾過膜装置5は接続配管93で接続され、微生物濾過膜装置5とバラスト水槽2の水管接続口34は膜濾過水供給配管94で接続されている。また、油分吸着除去装置6の後段で且つ微生物濾過膜装置5の前段に、必要に応じて不図示の除濁装置を設置することができる。また、油分吸着除去装置6は、任意の構成要素であり、設置を省略することができる。また、本発明のバラスト水製造装置20の関連設備としては、海水4を袋状容器3の内部31に汲み上げる海水ポンプ及び袋状容器3に貯留された海水を油分吸着除去装置6及び微生物濾過膜装置5に供給する送液ポンプなどがある。
The ballast
本発明のバラスト水製造装置20に用いられる微生物濾過膜の形状としては、中空糸膜、平膜、管状膜が挙げられる。このうち、中空糸膜が、単位容量当りの濾過面積を最も大とすることができる点で好ましい。
Examples of the shape of the microorganism filtration membrane used in the ballast
中空糸膜は、中空構造を有し、更に該中空構造を形成する孔に連通して、膜面の該孔に連通する細孔を多数形成したものであり、外圧式と内圧式とがある。本発明において、微生物濾過膜として精密濾過膜を用いる場合、中空糸膜の細孔の径としては、0.01〜0.4μm、好ましくは0.01〜0.3μmである。また、限外濾過膜を用いる場合は、中空糸膜の細孔の径としては、0.002〜0.01μmである。海水中に生息する細菌や幼生等の微生物の大きさは通常数μm、最小のものでも0.3〜0.5μm程度であり、従って、上記細孔径の中空糸膜を使用すれば、海水中のこれらの細菌、幼生等の微生物をほぼ完全に除去することができる。また、膜面に付着した微生物を除去して、その濾過能力を回復するために逆洗を行うが、本逆洗とは別に、濾過中に膜面の外側から気泡でバブリングして膜面に付着した微生物を剥離除去する操作ができる点で外圧式中空糸膜を使用することが好ましい。 The hollow fiber membrane has a hollow structure, and further has a plurality of pores communicating with the holes forming the hollow structure and communicating with the holes on the membrane surface, and there are an external pressure type and an internal pressure type. . In the present invention, when a microfiltration membrane is used as the microorganism filtration membrane, the pore diameter of the hollow fiber membrane is 0.01 to 0.4 μm, preferably 0.01 to 0.3 μm. Moreover, when using an ultrafiltration membrane, it is 0.002-0.01 micrometer as a diameter of the pore of a hollow fiber membrane. The size of microorganisms such as bacteria and larvae inhabiting seawater is usually several μm, and the smallest is about 0.3 to 0.5 μm. Therefore, if a hollow fiber membrane having the above pore diameter is used, These microorganisms such as bacteria and larvae can be almost completely removed. In addition, backwashing is performed to remove microorganisms adhering to the membrane surface and restore its filtration ability, but separately from this backwashing, bubbles are bubbled from the outside of the membrane surface during filtration to the membrane surface. It is preferable to use an external pressure type hollow fiber membrane in that an operation of peeling and removing attached microorganisms can be performed.
また、中空糸膜は浸漬型中空糸膜装置又は加圧型中空糸膜装置として使用される。浸漬型中空糸膜装置を用いる方法は、海水貯槽中に浸漬された該装置の該中空糸の内側をヘッド差又は吸引ポンプによる吸引等で通水し、海水中の微生物を除去する方法である。また、浸漬型中空糸膜装置及び加圧型中空糸膜装置ともに、前述した通り、中空糸膜の下方から微細な気泡を発生させて、中空糸膜に付着した微生物を適宜剥離させながら、膜の表面を洗浄しつつ濾過することができる。 The hollow fiber membrane is used as an immersion type hollow fiber membrane device or a pressure type hollow fiber membrane device. The method using the submerged hollow fiber membrane device is a method of removing microorganisms in the seawater by passing the inside of the hollow fiber of the device immersed in the seawater storage tank by a head difference or suction by a suction pump or the like. . In addition, as described above, both the immersion type hollow fiber membrane device and the pressure type hollow fiber membrane device generate fine bubbles from below the hollow fiber membrane, and appropriately remove the microorganisms adhering to the hollow fiber membrane. It can be filtered while washing the surface.
本発明で使用する精密濾過膜の素材としては、ポリエチレン、ポリプロピレン、ポリスルホン、ポリ塩化ビニリデン、ポリフッ化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリアクリロニトリル、酢酸セルロースなどが挙げられる。 Examples of the material for the microfiltration membrane used in the present invention include polyethylene, polypropylene, polysulfone, polyvinylidene chloride, polyvinylidene fluoride, chlorinated polyethylene, chlorinated polypropylene, polyacrylonitrile, and cellulose acetate.
海水を微生物濾過膜に通す方法としては、特に制限されないが、微生物濾過膜を組み込んだ微生物濾過膜装置の2基以上を並列配置するようにしてもよい。この場合、一の微生物濾過膜装置が逆洗工程であっても、他の微生物濾過膜装置は微生物除去工程を実施することができ、多量の膜濾過水を連続して得ることができる。 The method for passing seawater through the microbial filtration membrane is not particularly limited, but two or more microbial filtration membrane devices incorporating the microbial filtration membrane may be arranged in parallel. In this case, even if one microbial filtration membrane device is in the backwashing step, the other microbial filtration membrane device can perform the microbial removal step, and a large amount of membrane filtered water can be obtained continuously.
海水中に微量含まれる油分は 微生物濾過膜で捕捉されるが、微生物や他の濁質と異なり、油分は膜面に付着すると前記のバブリングや逆洗工程では容易に除去することができず、微生物濾過膜を目詰まりさせ、濾過能力の低下の原因となる。従って、海水を、微生物濾過膜装置5の前段の油分吸着除去装置6に通すことにより、微生物濾過膜の寿命を延ばすことができる。
Oils contained in trace amounts in seawater are captured by microbial filtration membranes, but unlike microorganisms and other turbid substances, oils cannot be easily removed by the bubbling or backwashing process once attached to the membrane surface, It clogs the microorganism filtration membrane and causes a reduction in filtration capacity. Therefore, the life of the microbial filtration membrane can be extended by passing seawater through the oil adsorption /
油水分離装置としては、特に制限されず、例えば疎水性吸着材を用いたものが、簡易な方法で且つ高い油分吸着能力を示すので好ましい。疎水性吸着材としては、親油性のポリエチレンやポリプロピレン等の素材で作製された不織布フィルター、粉体物、及び中空糸膜が挙げられる。具体的には、油分吸着材「ダイヤマルス(商標登録)」を使用すると、極めて効率よく油分を除去することができる。海水の油分の除去工程により、例えば油分0.05〜1.0%の海水は、油分0.005〜0.02%の海水とすることができる。 The oil-water separation device is not particularly limited, and for example, a device using a hydrophobic adsorbent is preferable because it exhibits a high oil content adsorption capability with a simple method. Examples of the hydrophobic adsorbent include a non-woven filter made of a material such as lipophilic polyethylene or polypropylene, a powder, and a hollow fiber membrane. Specifically, when an oil adsorbent “Diamarus (registered trademark)” is used, the oil can be removed extremely efficiently. For example, seawater having an oil content of 0.05 to 1.0% can be converted to seawater having an oil content of 0.005 to 0.02% by the oil removal process of seawater.
海水中の油分を除去することは微生物濾過膜の汚染防止において必要であるが、微生物濾過膜における微生物除去の負荷を低減させるために海水中の濁質を予め除去することが好ましい。海水中の濁質を除去する方法としては、特に制限されず、公知の除濁装置を用いることができる。除濁装置としては、砂濾過装置、ポリエチレンやポリプロピレン製の不織布濾過布を備えた装置、濾過槽体中に立設された繊維の束に濁質を吸着させる長繊維束除濁装置等が挙げられる。油分吸着材「ダイヤマルス(商標登録)」を使用すると油分の除去と濁質を共に除去することができる点で好ましい。 Removal of oil in seawater is necessary to prevent contamination of the microbial filtration membrane, but it is preferable to remove turbidity in seawater in advance in order to reduce the load of microbial removal on the microbial filtration membrane. It does not restrict | limit especially as a method of removing the turbidity in seawater, A well-known turbidity removal apparatus can be used. Examples of the turbidity removal device include a sand filtration device, a device provided with a nonwoven fabric filter cloth made of polyethylene or polypropylene, a long fiber bundle turbidity removal device that adsorbs turbidity to a bundle of fibers erected in a filtration tank body, and the like. It is done. Use of an oil adsorbent “Diamarus (registered trademark)” is preferred in that both oil removal and turbidity can be removed.
次に、本発明のバラスト水の製造方法を図1及び図2を参照して説明する。先ず、海水取水配管91と海水供給配管95がつながるように三方弁8を切り替える。次に、船舶が停泊する港湾域の海水を、不図示の海水ポンプにより、バラスト水槽2内に配置された袋状容器3の内部31に汲み上げる。海水の汲み上げと共に、海水が流入する袋状容器3は次第に膨らみ、遂にはバラスト水槽2内いっぱいに膨らむ(図1)。バラスト水を積載した船舶は、例えば消費国の港を後に、産油国に向けて航行する。次いで、航海中の比較的長い期間を利用して、袋状容器3に貯留された海水を微生物濾過膜装置5で処理して微生物を除去する。すなわち、被処理水供給配管92と海水供給配管95がつながるように三方弁8を切り替える。次に、袋状容器3内の海水を不図示の送液ポンプにより汲み上げ、油分吸着除去装置6及び微生物濾過膜装置5を通して、膜濾過水を袋状容器3の外部32に流入させる。貯留された海水の汲み上げと共に、海水が流出する袋状容器3は次第に萎み、遂にはバラスト水槽2内の袋状容器の外部32に膜濾過水が満たされる(図2)。
Next, the manufacturing method of the ballast water of this invention is demonstrated with reference to FIG.1 and FIG.2. First, the three-
図1及び図2において、航行中、微生物の除去が進むにつれ、袋状容器3の内部31の海水量が減少し、その分だけ袋状容器3の外部32の膜濾過水量が増加し、袋状容器3の内部32と外部32のバランスが変化するだけで、バラスト水槽2の内部32に存在する海水の水位は変化しない。このため、船体の重心が不安定になる等の航行に対する悪影響はない。また、微生物除去後、袋状容器3の内部32の底部に残存する海水のひき残し分は比較的少量であるため、殺菌剤や加熱処理を行ったとしても、殺菌剤の使用量も少量でよく、また加熱に伴う消費エネルギーも少なくてよい。
1 and 2, as the removal of microorganisms progresses during navigation, the amount of seawater in the
本発明のバラスト水の製造方法においては、逆洗により微生物濾過膜を洗浄する工程を有していてもよい。微生物除去工程において、時間が経過するにつれ、膜の目詰まりの原因物質となる微生物等が微生物濾過膜に付着して膜の入口と出口で膜差圧が上昇してくる。このため、海水の濾過を停止し、膜濾過水を洗浄水として微生物濾過膜を逆洗する。逆洗工程を行うことにより、微生物濾過膜の濾過機能が回復する。そして、逆洗工程を終えると、再度微生物除去工程に移り、これを繰り返し行うことで、長期間に亘る濾過を可能にする。なお、逆洗により生成する微生物濃縮液は、次亜塩素酸など薬剤の添加や加熱処理など公知の殺菌処理が行われる。この微生物濃縮液は比較的少量であるため、殺菌剤の使用量も少量でよく、また加熱に伴う消費エネルギーも少ない。 The method for producing ballast water of the present invention may include a step of washing the microbial filtration membrane by backwashing. In the microorganism removal process, as time elapses, microorganisms or the like that cause clogging of the membrane adhere to the microorganism filtration membrane, and the membrane differential pressure rises at the inlet and outlet of the membrane. For this reason, the filtration of seawater is stopped, and the microbial filtration membrane is back-washed using the membrane filtrate as washing water. By performing the backwashing step, the filtration function of the microorganism filtration membrane is restored. And when the backwashing process is completed, it moves to a microorganism removal process again, and filtration over a long period of time is enabled by performing this repeatedly. The microbial concentrate produced by backwashing is subjected to known sterilization treatments such as addition of chemicals such as hypochlorous acid and heat treatment. Since this microbial concentrate is relatively small, the amount of the bactericide used may be small, and the energy consumed by heating is small.
本発明のバラスト水は、比較的長い航行中、船舶上で製造される。これにより大量の海水を、微生物濾過膜で効果的に処理することができ、船舶から排出されるバラスト水により特定海域に本来生息しない微生物が持ち込まれることがない。 The ballast water of the present invention is manufactured on a ship during relatively long navigation. As a result, a large amount of seawater can be effectively treated with the microorganism filtration membrane, and the microorganisms that do not originally inhabit the specific sea area are not brought in by the ballast water discharged from the ship.
なお、本例のバラスト水槽構造体10及びバラスト水製造装置20では、バラスト水槽2内において、袋状容器3の内部31を汲み上げられた海水を貯留する貯留槽とし、袋状容器3の外部32を膜濾過水の貯留槽としたが、これに限定されず、図3及び図4に示すように、逆に袋状容器3の外部32を汲み上げられた海水を貯留する貯留槽とし、袋状容器3の内部31を膜濾過水の貯留槽としてもよい。この場合、水管接続口33は、膜濾過水が流入又は流出し、水管接続口34は、海水が流入又は流出することになる。
In the ballast
このようなバラスト水製造装置20aを用い、袋状容器3の外部32に汲み上げられた海水を微生物濾過膜で処理し、膜濾過水を袋状容器3内に満たす方法を図3及び図4を参照して説明する。先ず、海水取水配管91と海水供給配管95がつながるように三方弁8を切り替える。次に、船舶が停泊する港湾域の海水を、不図示の海水ポンプにより、バラスト水槽2内に配置された袋状容器3の外部32に汲み上げる。海水の汲み上げと共に、バラスト水槽2内は海水でいっぱいとなる(図3)。バラスト水を積載した船舶は、例えば消費国の港を後に、産油国に向けて航行する。次いで、航海中の比較的長い期間を利用して、バラスト水槽2内であって袋状容器3の外部32に貯留された海水を微生物濾過膜装置5で処理して微生物を除去する。すなわち、被処理水供給配管92と海水供給配管95がつながるように三方弁8を切り替える。次に、袋状容器3の外部32に満たされた海水を不図示の送液ポンプにより汲み上げ、油分吸着除去装置6及び微生物濾過膜装置5を通して、膜濾過水を袋状容器3の内部31に流入させる。貯留された海水の汲み上げと共に、海水が流入する袋状容器3は次第に膨らみ、遂にはバラスト水槽2内いっぱいに膨らむ(図4)。図3及び図4のバラスト水製造装置20aを使用したバラスト水製造方法においても、図1及び図2のバラスト水製造装置20を使用したバラスト水製造方法と同様の効果を奏する。なお、図3及び図4のバラスト水製造装置20aを使用したバラスト水製造方法の場合、バラスト水槽2の内壁にスライムが発生することがあるが、袋状容器3の内部を膜濾過水とする限り、膜濾過水を汚染するようなことはない。
A method of using such a ballast
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
実際の船舶を使用することなく、図5に示した陸上設置の実験用バラスト水製造装置を用いて行った。すなわち、船舶が停泊する国内のA港湾域の海水(以下「原海水」と言う。)を実験用バラスト水製造装置の袋状容器内に満たし、この海水を下記の運転条件で処理した。原海水及び処理水(膜濾過水)の大腸菌群を下記測定方法により測定した。なお、原海水の油分はn−ヘキサン抽出物として8mg/l、原海水の濁度は5度であった。 The actual ballast water production apparatus installed on land shown in FIG. 5 was used without using an actual ship. That is, seawater (hereinafter referred to as “raw seawater”) in port A in Japan where the ship is anchored was filled in a bag-like container of an experimental ballast water production apparatus, and this seawater was treated under the following operating conditions. The coliforms of raw seawater and treated water (membrane filtered water) were measured by the following measuring method. The oil content of the raw seawater was 8 mg / l as an n-hexane extract, and the turbidity of the raw seawater was 5 degrees.
(実験用バラスト水製造装置)
図5に示す装置を用いた。実験用バラスト水製造装置30は、ポリ塩化ビニル製の袋状容器52を収容した原海水タンク51と、中空糸膜型微生物濾過装置5aと、逆洗タンク53を備えるもので、中空糸膜型微生物濾過装置5aは処理槽58に処理能力3m3/時の精密濾過膜からなる中空糸膜モジュール57「ステラポアSUR31534」(三菱レイヨン製)を浸漬したものを用いた。また、袋状容器52と中空糸膜型微生物濾過装置5a間は配管47で接続し、中空糸膜型微生物濾過装置5aと逆洗タンク53間は処理水管42で接続し、逆洗タンク53と原海水タンク51間は返送配管(オーバーフロー管)48で接続した。処理水管42には吸引ポンプ44を設置した。また逆洗ポンプ45を設置し、逆洗タンク53内の濾過水を逆洗配管43によって前記精密濾過膜を逆洗できるようにした。なお、袋状容器52の最大容積は原海水タンクの内容積とほぼ同じとした。
(Experimental ballast water production system)
The apparatus shown in FIG. 5 was used. The experimental ballast
(運転方法)
模擬ワンパス処理方法で行った。すなわち、袋状容器52内の原海水を中空糸膜型微生物濾過装置5aに3m3/時の処理量で供給し、膜濾過水は海水タンク51内であって、袋状容器52の外部に流入させた。微生物除去工程においては、ブロワ−46からの空気を中空糸膜モジュール57の下部に設置したディストリビュータ41から微細な気泡としてバブリングして、中空糸膜表面に付着した微生物等を剥離しながら濾過を行った。また微生物除去工程15分に対して、逆洗工程1分とし、これを繰り返した。また、微生物が濃縮された廃液は、中空糸膜型微生物濾過装置5aの処理槽58の下部から適宜抜液した。
(how to drive)
The simulated one-pass processing method was used. That is, the raw seawater in the bag-
(微生物の測定方法)
大腸菌群は、BGLB培地(Brilliant Green Lactose Bile Broch)に試料を添加し、35℃で24時間培養した後、大腸菌群を計測した。
(Method for measuring microorganisms)
The coliform group was added to a BGLB medium (Brilliant Green Lactose Bile Broch) and cultured at 35 ° C. for 24 hours, and then the coliform group was counted.
(処理結果)
原海水中の大腸菌群数は3500個/100mlであったが、原海水タンク51内であって、袋状容器52の外部に満たされた処理水に大腸菌群は検出されなかった。また処理水のn−ヘキサン抽出物は検出されず、濁度は2度以下であった。ただし濾過運転の初期における逆洗直後の所定流量での差圧は0.01MPa以下であったが、濾過運転170時間後における逆洗直後の差圧は0.045MPaであった。
(Processing result)
Although the number of coliforms in the raw seawater was 3500/100 ml, no coliforms were detected in the treated water filled in the
下記実験用バラスト水製造装置及び下記の運転条件で処理した以外は、実験例1と同様の方法で行った。 The test was performed in the same manner as in Experimental Example 1 except that the treatment was performed under the following experimental ballast water production apparatus and the following operating conditions.
(実験用バラスト水製造装置)
袋状容器52と中空糸膜型微生物濾過装置5a間に、処理能力3m3/時の油水分離装置「ダイヤマルスRH−03」(三菱レイヨンエンジニアリング社製)(不図示)を配置した以外は、実施例1と同様の装置を用いた。
(Experimental ballast water production system)
An oil / water separator “Diamarus RH-03” (manufactured by Mitsubishi Rayon Engineering Co., Ltd.) (not shown) having a processing capacity of 3 m 3 / hour is disposed between the bag-
(運転方法)
模擬ワンパス処理方法で行った。すなわち、袋状容器52内の原海水を中空糸膜型微生物濾過装置5aに3m3/時の処理量で供給し、膜濾過水は海水タンク51内であって、袋状容器52の外部に流入させた。微生物除去工程においては、ブロワー41からの空気を中空糸膜モジュール7の下部に設置したディストリビュータ41から微細な気泡としてバブリングし、中空糸膜表面に付着した微生物等を剥離させながら、濾過を続けた。また、微生物除去工程15分に対して、逆洗工程1分とし、これを繰り返した。また、微生物が濃縮された廃液は、中空糸膜型微生物濾過装置4aの処理槽8の下部から適宜抜液した。
(how to drive)
The simulated one-pass processing method was used. That is, the raw seawater in the bag-
(処理結果)
原海水中の大腸菌群数は3500個/100mlであったが、原海水タンク51内であって、袋状容器52の外部に満たされた処理水に大腸菌群は検出されなかった。また処理水のn−ヘキサン抽出物は検出されず、濁度は2度以下であった。なお、濾過運転の初期における逆洗直後の所定流量での差圧は0.01MPa以下であり、濾過運転170時間後における逆洗直後の差圧も同様にして0.01MPa以下であり、原海水中の油分を予め油水分離装置で除去することにより、精密濾過膜の油分による汚染が効果的に防止できた。
(Processing result)
Although the number of coliforms in the raw seawater was 3500/100 ml, no coliforms were detected in the treated water filled in the
浸漬型の中空糸膜型微生物濾過装置5aに代えて、加圧型の中空糸膜型微生物濾過装置(不図示)を用い、実験例1と同じように気泡による洗浄と定期的な逆洗工程を行った。但し、気泡による洗浄は、膜処理装置への通水を中断し、約5分間、膜の下部から空気を流入して得られる気泡によるバブリングを行った。なお、加圧型の中空糸膜型微生物濾過装置で用いた中空糸膜モジュールは、処理能力3m3/時の精密濾過膜である「ステラポアG型UMF−2024WFA」3本(三菱レイヨン社製)を用いた。また、中空糸膜型微生物濾過装置の前段に、処理能力3m3/時の油水分離装置「ダイヤマルスRH−03」を配置した。
Instead of the immersion type hollow fiber membrane type
(処理結果)
原海水中の大腸菌群数は3500個/100mlであったが、原海水タンク51内であって、袋状容器52の外部に満たされた処理水に大腸菌群は検出されなかった。また処理水のn−ヘキサン抽出物は検出されず、濁度は2度以下であった。なお、精密濾膜の差圧データも実験例2と同様であった。
(Processing result)
Although the number of coliforms in the raw seawater was 3500/100 ml, no coliforms were detected in the treated water filled in the
各実施例に示すように、原海水タンク内に収容された袋状容器に貯留された原海水をバラスト水製造装置で処理することにより、原海水中の大腸菌群が検出されない程度まで除去された。また中空糸膜型微生物濾過装置の前段に油水分離装置を設置することにより、精密濾過膜の油分による汚染を効果的に防止することができた。また、微生物除去工程中、原海水タンクにおける原海水の水位の変化はほとんどなかった。 As shown in each Example, by treating the raw seawater stored in the bag-like container accommodated in the raw seawater tank with the ballast water production apparatus, the coliforms in the raw seawater were removed to the extent that they were not detected. . In addition, by installing an oil-water separator in front of the hollow fiber membrane type microorganism filtration device, it was possible to effectively prevent contamination of the microfiltration membrane due to oil. Moreover, there was almost no change in the water level of the raw seawater in the raw seawater tank during the microorganism removal process.
1 船舶
2 バラスト水槽
3 袋状容器
4 海中
5 微生物濾過膜装置
5a 中空糸膜型微生物濾過装置
6 油分吸着除去装置
7 中空糸膜モジュール
8 三方弁
10、10a バラスト水槽構造体
11 積荷室
12 接着点
20、20a バラスト水製造装置
30 実験用バラスト水製造装置
31 袋状容器の内部
32 袋状容器の外部
33、34 水管接続口
41 ディストリビュータ
43 逆洗配管
44 吸引ポンプ
45 逆洗ポンプ
46 ブロアー
61 汲み上げられた海水
62 膜濾過水
DESCRIPTION OF SYMBOLS 1 Ship 2
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005333722A JP2007137260A (en) | 2005-11-18 | 2005-11-18 | Ballast water tank structure, ballast water manufacturing device, and manufacturing method of ballast water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005333722A JP2007137260A (en) | 2005-11-18 | 2005-11-18 | Ballast water tank structure, ballast water manufacturing device, and manufacturing method of ballast water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007137260A true JP2007137260A (en) | 2007-06-07 |
Family
ID=38200639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005333722A Pending JP2007137260A (en) | 2005-11-18 | 2005-11-18 | Ballast water tank structure, ballast water manufacturing device, and manufacturing method of ballast water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007137260A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010019815A (en) * | 2008-07-14 | 2010-01-28 | Technical Research & Development Institute Ministry Of Defence | Electrode device for measurement of miniature potential in liquid |
JP2012035147A (en) * | 2010-08-03 | 2012-02-23 | Precision Machinery Research Development Center | Ballast water-introducing method and device |
CN103950532A (en) * | 2014-04-15 | 2014-07-30 | 浙江海洋学院 | Large ship ballast water environment-friendly operation processing system |
-
2005
- 2005-11-18 JP JP2005333722A patent/JP2007137260A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010019815A (en) * | 2008-07-14 | 2010-01-28 | Technical Research & Development Institute Ministry Of Defence | Electrode device for measurement of miniature potential in liquid |
JP2012035147A (en) * | 2010-08-03 | 2012-02-23 | Precision Machinery Research Development Center | Ballast water-introducing method and device |
CN103950532A (en) * | 2014-04-15 | 2014-07-30 | 浙江海洋学院 | Large ship ballast water environment-friendly operation processing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005313143A (en) | Method and apparatus for manufacturing marine ballast water | |
JP5804228B1 (en) | Water treatment method | |
US20150108071A1 (en) | De-ballast filtration | |
WO2013111826A1 (en) | Desalination method and desalination device | |
JP5093835B2 (en) | Ballast water membrane treatment method and membrane treatment apparatus using membrane module | |
WO2005110928A1 (en) | Production method of ballast water for vessel, production system of ballast water for vessel and use | |
JP2007160242A (en) | Ballast water preparation apparatus, ship equipped with it, and ballast water preparation method | |
JP4421494B2 (en) | Ballast water intake and treatment equipment | |
JP2014018782A (en) | System and method for cleaning filtration film of ballast water treatment | |
JP2007130563A (en) | Utilization system of ballast water | |
JP2006239530A (en) | Manufacturing method and manufacturing apparatus of ballast water for ship | |
JP2007137260A (en) | Ballast water tank structure, ballast water manufacturing device, and manufacturing method of ballast water | |
JP5793713B2 (en) | Ballast water production equipment | |
JPWO2011071047A1 (en) | Cleaning method for ballast water treatment membrane cartridge and cleaning method for filter | |
WO2012164070A1 (en) | De-ballast filtration | |
JP2006000729A (en) | Ship ballast water production method and apparatus | |
JP2006000728A (en) | Method for preparing ballast water and apparatus for preparing ballast water to be loaded onto vessel | |
JP2007090214A (en) | Ship ballast water production method and apparatus | |
JP2006188140A (en) | Operation method of vessel and vessel | |
KR101148753B1 (en) | Method of membrane treatment for ship ballast water | |
CN1938229A (en) | Process for producing ship ballast water, ship ballast water producing apparatus and use thereof | |
JP5985914B2 (en) | Control device for chemical solution circulation in membrane treatment equipment | |
KR101779119B1 (en) | Ballast water treatment system and method | |
JP2009112908A (en) | Method of backwashing membrane filtration device | |
JP2009241042A (en) | Method and apparatus for refreshing membrane for preparing ballast water |