WO2005106573A1 - Liquid crystal display and process for fabricating the same - Google Patents

Liquid crystal display and process for fabricating the same Download PDF

Info

Publication number
WO2005106573A1
WO2005106573A1 PCT/JP2004/006300 JP2004006300W WO2005106573A1 WO 2005106573 A1 WO2005106573 A1 WO 2005106573A1 JP 2004006300 W JP2004006300 W JP 2004006300W WO 2005106573 A1 WO2005106573 A1 WO 2005106573A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
organic
insulating film
layer
Prior art date
Application number
PCT/JP2004/006300
Other languages
French (fr)
Japanese (ja)
Inventor
Masaya Nakayama
Masaru Kinoshita
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Priority to PCT/JP2004/006300 priority Critical patent/WO2005106573A1/en
Priority to TW093112448A priority patent/TWI251700B/en
Publication of WO2005106573A1 publication Critical patent/WO2005106573A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines

Definitions

  • the present invention relates to a liquid crystal display device using a so-called organic EL lighting device as a backlight of a liquid crystal cell, and a method for manufacturing the same.
  • Liquid crystal display devices are used in monitors, notebook computers, mobile phones, televisions, etc., and are widely used as representatives of flat panel displays. Since a liquid crystal cell is a non-light emitting element that does not emit light, a light source called a backlight that normally illuminates the liquid crystal cell from the backside is required.
  • the most commonly used backlight is a so-called light guide system comprising a fluorescent tube and a light guide for turning light emitted from the fluorescent tube into a surface light source. .
  • this light guide method requires a certain thickness (about three times that of the liquid crystal cell) to obtain uniform surface light emission, making it difficult to reduce the overall thickness of the liquid crystal display device. Was.
  • an organic EL lighting device using an organic EL device as a surface light emitting device is very effective as a backlight for a liquid crystal display device because it can be made very thin.
  • FIG. 9 is a schematic cross-sectional view showing one configuration example of a conventional organic EL lighting device.
  • an anode 102 made of a transparent electrode such as ITO is formed on a transparent substrate 101 made of glass or the like, and an organic EL layer 103 containing an organic luminescent material is further formed thereon.
  • Cathodes 104 made of a metal having a small work function such as L i, Mg and A 1 are sequentially laminated, and a sealing plate 105 made of glass or the like is further provided for protection from the outside air such as moisture and oxygen. It is bonded and sealed in a dry nitrogen atmosphere using a transparent substrate 101 and an adhesive 106.
  • Patent Document 1 discloses a technique for reducing the resistance of a transparent electrode by using a low-resistance auxiliary electrode made of metal.
  • the metal since the metal has light impermeability in the visible light castle, the metal is shielded from light by the luminescent capture electrode, and the brightness of the organic EL lighting device is reduced.
  • Patent Document 2 This is a method in which an auxiliary electrode is provided in a portion of the liquid crystal display device other than the region where the display pixel electrode is formed, that is, in a portion that does not directly affect display. With this configuration, since the auxiliary electrode is provided at the light-impermeable portion of the liquid crystal display device, the decrease in brightness due to the light blocking of the auxiliary electrode is effectively eliminated in the entire liquid crystal display device.
  • the metal material usually has poor surface flatness compared to ITO, so that a short circuit may occur between the auxiliary electrode and the cathode or a leak may occur between the two.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-2000
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-15056 633
  • the present invention has been made in view of the above-described problems, and achieves low power consumption by improving the luminous efficiency of an organic EL lighting device, and generates a short circuit between an auxiliary electrode and a second electrode. It is an object of the present invention to provide a liquid crystal display device having an organic EL lighting device with low power consumption and high reliability and capable of emitting clean uniform light, and a method of manufacturing the same.
  • a liquid crystal display device includes a liquid crystal cell having a liquid crystal layer, a plurality of display pixels formed thereon, and an organic EL layer for illuminating the liquid crystal cell from behind a first electrode.
  • the insulating film is formed on the first electrode so as to cover at least an upper surface of the auxiliary electrode.
  • the insulating film may be formed on the first electrode so as to cover the entire surface of the trapping electrode.
  • the method for manufacturing a liquid crystal display device includes a step of sequentially forming a first electrode, which is a transparent electrode, an electrode material and an insulating resin on a surface of a transparent substrate, and processing the insulating resin by lithography. Forming an electrode-shaped insulating film; processing the electrode material using the insulating film as a mask to pattern an auxiliary electrode; and forming the auxiliary electrode on the first electrode via the insulating film.
  • Another aspect of the method for manufacturing a liquid crystal display device of the present invention includes a step of sequentially forming a first electrode, which is a transparent electrode, and an electrode material on a surface of a transparent substrate; Forming an insulating material on the first electrode so as to cover the auxiliary electrode; processing the insulating material to cover the auxiliary electrode according to the shape of the auxiliary electrode Forming a pattern, and sequentially forming an organic EL layer and a second electrode which is a metal electrode on the first electrode so as to cover the auxiliary electrode via the insulating film.
  • Another aspect of the method for manufacturing a liquid crystal display device of the present invention includes a step of patterning an auxiliary electrode on a surface of a transparent substrate, and a first step of forming a transparent electrode on the transparent substrate so as to cover the auxiliary electrode.
  • FIG. 1A and 1B are schematic plan views showing the configuration of the liquid crystal display device according to the first embodiment.
  • FIG. 1C is a schematic cross-sectional view along the line II of FIG. 1B.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration of an organic EL lighting device that is a component of the liquid crystal display device according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of a comparative example (conventional example) of an organic EL lighting device used for a backlight of a liquid crystal display device.
  • 4A to 4F are schematic cross-sectional views illustrating a method for manufacturing the liquid crystal display device according to the first embodiment in the order of steps.
  • FIG. 5 is a schematic cross-sectional view illustrating a configuration of an organic EL lighting device that is a component of a liquid crystal display device according to a modification of the first embodiment.
  • 6A to 6G are schematic cross-sectional views illustrating a method for manufacturing a liquid crystal display according to a modification of the first embodiment in the order of steps.
  • FIG. 7 is a schematic cross-sectional view illustrating a configuration of an organic EL lighting device that is a component of the liquid crystal display device according to the second embodiment.
  • FIGS. 8A to 8G are schematic cross-sectional views illustrating a method for manufacturing the liquid crystal display device according to the second embodiment in the order of steps.
  • FIG. 9 is a schematic cross-sectional view showing one configuration example of a conventional organic EL lighting device.
  • FIG. 1A and 1B are schematic plan views showing the configuration of the liquid crystal display device according to the present embodiment
  • FIG. 1C is a schematic cross-sectional view along the line I-I in FIG. 1B
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration of an organic EL lighting device that is a component of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device 1 of the present embodiment includes a liquid crystal cell 2 as a display means and an organic EL lighting device 3 used as a backlight of the liquid crystal cell 2. ing.
  • the liquid crystal cell 2 has a plurality of strip-shaped transparent electrodes 11 made of ITO or the like formed on the surface thereof, and an alignment film 12 formed on the transparent electrodes 11.
  • a polarizing plate 19 is arranged on the back surface of 16 respectively.
  • the transparent electrode 11 and the transparent electrode 14 are orthogonal to each other, the transparent electrode 11 and the transparent electrode 14 overlap each other via the liquid crystal layer 1.7 and the like.
  • a plurality of display pixel electrodes (apertures) 10 are formed from the portions indicated by.
  • liquid crystal cell is described as a simple matrix type in the text, an active matrix type liquid crystal cell provided with a switching element such as a thin film transistor (TFT) in a pixel portion is also described. This is applicable in the configuration of the present invention.
  • TFT thin film transistor
  • the organic EL lighting device 3 is, as shown in FIG. 2, a third transparent substrate made of glass or the like.
  • An anode 22 which is a transparent electrode made of ITO or the like is formed on the surface of the auxiliary electrode 23, and an auxiliary electrode 23 is patterned on the anode 22, and an insulating film 2 is formed so as to cover the upper surface of the auxiliary electrode 23.
  • an organic EL layer 25 and a cathode 26 as a metal electrode are sequentially formed on the anode 22 so as to cover the auxiliary electrode 23 and the insulating film 24, and are made of a barrier oxide or the like.
  • a sealing plate 28 is provided above the cathode 26 via a hygroscopic material 27, and the sealing plate 28 is fixed by an adhesive (not shown).
  • the capture electrodes 23 are arranged in a region other than the display pixel electrode 10, in other words, in a portion matching the non-formation region of the display surface element electrode 10, that is, arranged in a matrix as shown in FIGS. 1A and 1B.
  • the display pixel electrodes 10 are provided in a lattice shape and are made of a metal such as aluminum, silver, chromium, or molybdenum.
  • the insulating film 24 is made of an insulating inorganic material such as silicon oxide or a photosensitive resin material such as polyimide, and is made of the latter here.
  • the upper surface of the auxiliary electrode 23 is formed in a shape following the auxiliary electrode 23.
  • the insulating film 24 separates the upper surface of the auxiliary electrode 23 from the organic EL layer 25, and the auxiliary electrode 23 and the organic EL layer 25 are located above the auxiliary electrode 23. Insulated with
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a comparative example (conventional example) of an organic EL lighting device used as a backlight of a liquid crystal display device.
  • the organic EL layer 25 is formed directly so as to cover the auxiliary electrode 23 without the insulating film 24 as in the present embodiment.
  • the organic EL layer 25 has a two-layer structure of a hole transport layer / organic light emitting layer from the anode 22 side, and There are three-layer structure of a hole transport layer, an organic light-emitting layer, and an electron transport layer, or a four-layer structure of a hole injection layer, a hole transport layer, an organic light-emitting layer, and an electron transport layer.
  • a hole transport layer there is a two-layer organic EL layer using ⁇ -NPD as a hole transport layer and Alq as an organic light emitting layer.
  • the device having this configuration emits green light.
  • organic EL elements having various luminescent colors can be formed.
  • the cathode 26 is made of an alkali metal such as lithium and an alkali metal compound such as lithium fluoride, which have a small work function, to effectively inject electrons into the organic EL layer 25.
  • aluminum monolithium alloy, lithium fluoride / aluminum two-layer birch is used as the cathode 26.
  • the sealing plate 28 is made of glass or the like, and is used in a dry nitrogen atmosphere using the third transparent substrate 21 and, for example, an epoxy resin adhesive to protect the organic EL layer 25 from the outside air. And sealed.
  • the liquid crystal cell 2 and the organic EL lighting device 3 face each other, and the polarizing plate 18 of the liquid crystal cell 2 and the third transparent substrate 21 of the organic EL lighting device 3 face each other.
  • the grid-like auxiliary electrodes 23 are aligned between the matrix-arranged display pixel electrodes 10 which are regions where the display pixel electrodes 10 are not formed.
  • the liquid crystal display device 1 is configured.
  • FIGS. 4A to 4F are schematic cross-sectional views showing the method for manufacturing the liquid crystal display device according to the above-described present embodiment in the order of steps.
  • the manufacturing process of the organic EL lighting device which is the main configuration of the liquid crystal display device according to the present embodiment, will be mainly described.
  • an anode 22 made of ITO or the like is formed on a third transparent substrate 21 made of glass or the like, and an electrode material such as aluminum is formed on the anode 22.
  • the polyimide film 32 is exposed and developed by photolithography, and the polyimide film 32 is processed to form an insulating film 24 as a pattern.
  • the A1 film 31 is dry-etched using the insulating film 24 as a mask to form a pattern of auxiliary electrodes 2 and 3 following the shape of the insulating film 24.
  • the auxiliary electrode 23 is formed so as to be located at a position matching the non-formation region of the display pixel electrode 10 when superimposed on the liquid crystal cell 2.
  • an organic EL layer 25 is formed on the anode 22 by an evaporation method so as to cover the insulating film 24 and the auxiliary electrode 23.
  • 2TNTATA as a hole injection layer
  • ⁇ —NPD as a hole transport layer
  • Alq as a light emitting layer
  • a cathode 26 is formed on the organic EL layer 25 by depositing LiF to a thickness of 0.5 nm and A1 to a thickness of 200 nm.
  • a third gas is applied with an epoxy resin adhesive under a dry nitrogen atmosphere.
  • the sealing is performed by bonding the glass substrate 21 and the sealing plate 28.
  • the organic EL lighting device 3 for backlight of the present embodiment is completed.
  • the organic EL lighting device 3 emits green light.
  • the liquid crystal cell 2 is manufactured by a known method. For example, a plurality of strip-shaped transparent electrodes 11 made of ITO or the like are patterned on the surface of a first transparent substrate 13 made of glass or the like, and then an alignment film 1 is formed so as to cover the transparent electrodes 11. After forming a plurality of strip-shaped transparent electrodes 14 made of ITO or the like and orthogonal to the transparent electrodes 11 on the surface of the second transparent substrate 16 made of glass or the like, the transparent electrodes 1 An alignment film 15 is formed so as to cover 4.
  • the first and second transparent substrates 13 and 16 are connected to the transparent electrode 11 and the transparent electrode 11 through a spacer for controlling the thickness of the injected liquid crystal. 1 and 4 are orthogonally opposed to each other and bonded together. A crystal layer 17 is formed. Finally, polarizing plates 18 and 19 are formed on the back surfaces of the first and second transparent substrates 13 and 16. As shown by a circle C in the figure, a portion where the strip-shaped transparent electrodes 11 and 13 orthogonal to each other overlap is the display pixel electrode 10.
  • the liquid crystal cell 2 and the organic EL lighting device 3 are connected to each other, and the polarizing plate 18 of the liquid crystal cell 2 and the third transparent substrate 21 of the organic EL lighting device 3 face each other.
  • the liquid crystal display device 1 is completed by overlapping and fixing the lattice-shaped trapping electrodes 23 between the display pixel electrodes 10 arranged in a matrix, which is a formation region, so as to be aligned. In order to perform this superposition step reliably, it is desirable to provide an alignment mark at an appropriate portion of each of the liquid crystal cell 2 and the organic EL lighting device 3.
  • the auxiliary electrode 23 made of a metal material is provided on the anode 22 that is a transparent electrode, the resistance value of the anode 22 can be reduced.
  • a reliable OLED lighting device 3 for backlight which can prevent light emission unevenness and heat generation due to a voltage drop and achieve clean uniform light emission, is realized.
  • the auxiliary electrode 23 is provided in a region where the display pixel electrode 10 of the liquid crystal cell 2 is not formed, a decrease in luminance of the organic EL lighting device 3 due to the light shielding of the auxiliary electrode 23 is suppressed.
  • the insulating film 24 is formed on the trapping electrode 23, no current flows through the organic EL layer 25 in a portion of the organic EL layer 25 that is shielded from light by the auxiliary electrode 23. Low power consumption of lighting equipment is realized. Further, by forming the insulating film 24, it is possible to prevent short-circuit and leakage between the trapping electrode 23 and the cathode 26 due to poor flatness of the auxiliary electrode 23. As described above, a liquid crystal display device having an organic EL lighting device with high reliability and low power consumption capable of emitting clean uniform light is realized.
  • FIG. 5 is a schematic cross-sectional view illustrating a configuration of an organic EL lighting device that is a component of the liquid crystal display device according to the present modification.
  • the liquid crystal display device of this modification (the liquid crystal display device 41 shown in FIG. 6G) includes a liquid crystal cell 2 similar to the first embodiment, which is a liquid crystal cell, and an organic EL used as a backlight of the liquid crystal cell 2.
  • the lighting device 42 is provided.
  • an anode 22 which is a transparent electrode made of IT, etc. is formed on the surface of a third transparent substrate 21 made of glass or the like, and a trapping electrode 23 is formed on the anode 22 in a pattern.
  • An insulating film 43 is formed so as to cover the entire surface of the auxiliary electrode 23, and an organic EL layer 25 and a cathode 26 which is a metal electrode are sequentially formed on the anode 22 so as to cover the insulating film 43.
  • a sealing plate 28 is provided above the cathode 26 via a hygroscopic material 27 made of a barrier oxide or the like, and the sealing plate 28 is fixed by an adhesive (not shown). ing.
  • the insulating film 43 is made of an insulating inorganic material such as silicon oxide or a photosensitive resin material such as polyimide. In this case, the former is used as the material, and the trapping electrode 23 is shaped like the auxiliary electrode 23. This insulating film 43 separates the trapping electrode 23 from the organic EL layer 25, and insulates the trapping electrode 23 from the organic EL layer 25. ing.
  • the insulating film 43 is formed so as to cover the entire surface of the auxiliary electrode 23, and the trapping electrode 23 is insulated from the organic EL layer 25. Luminous efficiency can be improved. Furthermore, by forming the insulating film 43 so as to cover the entire surface of the auxiliary electrode 23, the auxiliary electrode 23 and the cathode 26 are separated by the insulating film 43 to ensure insulation. The above short leak is prevented.
  • FIGS. 6A to 6G are schematic cross-sectional views illustrating a method of manufacturing the liquid crystal display device according to the above-described modification in the order of steps.
  • the manufacturing process of the organic EL lighting device which is the main configuration of the liquid crystal display device according to the present modification, will be mainly described.
  • an anode 22 made of ITO or the like is formed on a third transparent substrate 21 made of glass or the like, and an electrode material such as aluminum (A) is formed on the anode 22.
  • an electrode material such as aluminum (A) is formed on the anode 22.
  • the auxiliary film 23 is patterned by patterning the A1 film 31 into an electrode shape. At this time, the auxiliary electrode 23 overlaps the liquid crystal cell 2 It is formed so as to be located at a position matching the non-formation region of the display pixel electrode 10 when they are combined.
  • a silicon oxide film 44 as an insulating inorganic material is formed on the anode 22 so as to cover the auxiliary electrode 23.
  • the silicon oxide film 44 is patterned in a shape following the auxiliary electrode 23, and an insulating film 43 covering the entire surface of the capture electrode 23 is patterned. .
  • an organic EL layer 25 is formed on the anode 22 by an evaporation method so as to cover the insulating film 43.
  • 2TNATA as a hole injection layer
  • a—NPD as a hole transport layer
  • Alq as a light emitting layer
  • a cathode 26 is formed on the organic EL layer 25 by depositing LiF to a thickness of 0.5 nm and Al to a thickness of 200 nm.
  • a third gas is applied with an epoxy resin adhesive under a dry nitrogen atmosphere.
  • the sealing is performed by bonding the glass substrate 21 and the sealing plate 28.
  • the organic EL lighting device 42 for backlight of the present modified example is completed.
  • the organic EL lighting device 42 emits green light.
  • the liquid crystal cell 2 is manufactured by a known method. For example, a plurality of strip-shaped transparent electrodes 11 made of ITO or the like are patterned on the surface of a first transparent substrate 13 made of glass or the like, and then an alignment film 1 is formed so as to cover the transparent electrodes 11. After forming a plurality of strip-shaped transparent electrodes 14 made of ITO or the like and orthogonal to the transparent electrodes 11 on the surface of the second transparent substrate 16 made of glass or the like, the transparent electrodes 1 An alignment film 15 is formed so as to cover 4.
  • the first and second transparent substrates 13 and 16 are connected to the transparent electrode 11 and the transparent electrode 11 through a spacer for controlling the thickness of the injected liquid crystal.
  • 14 are arranged so as to be orthogonal to each other and bonded together, and a liquid crystal is injected into the inside to form a liquid crystal layer 17.
  • polarizing plates 18 and 19 are formed on the back surfaces of the first and second transparent substrates 13 and 16. As shown by the circle C in the figure, stripes that are orthogonal to each other A portion where the transparent electrodes 11 and 13 overlap each other becomes a display pixel electrode 10.
  • the liquid crystal cell 2 and the organic EL lighting device 42 are connected to each other, and the polarizing plate 18 of the liquid crystal cell 2 and the third transparent substrate 21 of the organic EL lighting device 3 face each other.
  • a grid-like trapping electrode 23 is overlapped and fixed between the display pixel electrodes 10 arranged in a matrix shape, which is a formation area, so as to be aligned, and the liquid crystal display device 41 is completed. In order to surely perform this superposition step, it is desirable to provide an alignment mark at an appropriate portion of each of the liquid crystal cell 2 and the organic EL lighting device 42.
  • the auxiliary electrode 23 made of a metal material is provided on the anode 22 that is a transparent electrode, the resistance value of the anode 22 can be reduced.
  • An organic EL lighting device 42 for a backlight that can prevent light emission unevenness and heat generation due to a voltage drop and achieve clean uniform light emission is realized.
  • the auxiliary electrode 23 is provided in a region where the display pixel electrode 10 of the liquid crystal cell 2 is not formed, a decrease in luminance of the organic EL lighting device 42 due to light shielding of the capture electrode 23 is suppressed.
  • the insulating film 43 is formed so as to cover the entire surface of the auxiliary electrode 23, no current flows in a portion of the organic EL layer 25 shielded by the auxiliary electrode 23. Thus, low power consumption of the organic EL lighting device is realized. Further, by forming the insulating film 43, it is possible to prevent short-circuit and leakage between the auxiliary electrode 23 and the cathode 26 due to the poor flatness of the auxiliary electrode 23. As described above, a liquid crystal display device having an organic EL lighting device with high reliability and low power consumption capable of emitting clean uniform light is realized.
  • the present embodiment differs from the first embodiment in that the configuration of the organic EL lighting device of the liquid crystal display device is slightly different.
  • the same components as those of the liquid crystal display device according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 7 is a schematic cross-sectional view illustrating the configuration of an organic EL lighting device that is a component of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device of the present embodiment (the liquid crystal display device 51 shown in FIG. 8G) includes a liquid crystal cell 2 similar to that of the first embodiment and an organic EL device used as a backlight of the liquid crystal cell 2.
  • L lighting device 52 is provided.
  • a trapping electrode 23 is pattern-formed on the surface of a third transparent substrate 21 made of glass or the like, and ITO is formed on the third transparent substrate 21 so as to cover the auxiliary electrode 23.
  • An anode 22 is formed as a transparent electrode made of the same material.
  • An insulating film 53 is formed on the anode 22 at a position aligned above the trapping electrode 23, and the anode 2 is formed so as to cover the insulating film 53.
  • An organic EL layer 25 and a cathode 26 serving as a metal electrode are sequentially formed on 2, and a sealing plate 28 is provided above the cathode 26 via a hygroscopic material 27 made of, for example, vacuum oxide. The sealing plate 28 is fixed by an adhesive (not shown).
  • the insulating film 53 is made of silicon oxide, positive photosensitive polyimide, or the like, and is shaped like the auxiliary electrode 23 so as to be aligned with the upper surface of the auxiliary electrode 23 via the anode 22.
  • the insulating film 43 separates the upper surface of the trapping electrode 23 from the organic EL layer 25.
  • the trapping electrode 23 and the organic EL layer 25 are located above the trapping electrode 23. Insulated.
  • an insulating film 53 is formed at a position aligned above the auxiliary electrode 23 to insulate the trapping electrode 23 from the organic EL layer 25, so that the organic EL lighting device 5 is formed. 2 can improve the luminous efficiency. Further, by forming the insulating film 53 at a position aligned above the trapping electrode 23, the trapping electrode 23 and the cathode 26 are separated by the insulating film 53 to ensure reliable insulation. And the short leak described above is prevented.
  • FIGS. 8A to 8G are schematic sectional views showing the method for manufacturing the liquid crystal display device according to the above-described present embodiment in the order of steps.
  • the manufacturing process of the organic EL lighting device which is the main configuration of the liquid crystal display device according to the present embodiment, will be mainly described.
  • an aluminum (A 1) film 31 is formed as an electrode material on a third transparent substrate 21 made of glass or the like, and then the A 1 film 31 is formed into an electrode shape.
  • the trapping electrode 23 is patterned to form a pattern.
  • the capture electrode 23 is formed so as to be located at a position matching the non-formation region of the display pixel electrode 10 when it is overlapped with the liquid crystal cell 2.
  • a positive electrode made of ITO or the like covers the auxiliary electrode 23.
  • Form pole 2 2 a positive electrode made of ITO or the like.
  • a positive photosensitive polyimide film 54 is applied on the anode 22 to form a film, and then the back surface of the transparent substrate 21 is irradiated with exposure light to form the auxiliary electrode 23.
  • the positive photosensitive polyimide film 54 is exposed and imaged by photolithography using the mask as a mask, and as shown in FIG. 8D, the positive photosensitive polyimide film 54 is processed to form an electrode.
  • An insulating film 53 is formed.
  • an organic EL layer 25 is formed on the anode 22 by an evaporation method so as to cover the insulating film 53.
  • 2 TNATA as the hole injection layer, ⁇ -NPD as the hole transport layer, and Alq as the light emitting layer are deposited from the anode 22 side, and the organic EL layer 25 is formed into a three-layer structure.
  • a cathode 26 is formed on the organic EL layer 25 by depositing LiF to a thickness of 0.5 nm and A1 to a thickness of 200 nm.
  • the liquid crystal cell 2 is manufactured by a known method. For example, a plurality of strip-shaped transparent electrodes 11 made of ITO or the like are patterned on the surface of a first transparent substrate 13 made of glass or the like, and then an alignment film 1 is formed so as to cover the transparent electrodes 11. After forming a plurality of strip-shaped transparent electrodes 14 made of ITO or the like and orthogonal to the transparent electrodes 11 on the surface of the second transparent substrate 16 made of glass or the like, the transparent electrodes 1 An alignment film 15 is formed so as to cover 4. '
  • the first and second transparent substrates 13 and 16 are connected to the transparent electrode 11 and the transparent electrode 11 through a spacer for controlling the thickness of the injected liquid crystal.
  • 14 are arranged so as to be orthogonal to each other and bonded together, and a liquid crystal is injected into the inside to form a liquid crystal layer 17.
  • polarizing plates 18 and 19 are formed on the back surfaces of the first and second transparent substrates 13 and 16. As shown by a circle C in the figure, a portion where the stripe-shaped transparent electrodes 11 and 13 orthogonal to each other overlap is the display pixel electrode 10.
  • the liquid crystal cell 2 and the organic EL lighting device 52 are opposed to each other, and the polarizing plate 18 of the liquid crystal cell 2 and the third transparent substrate 21 of the organic EL lighting device 3 face each other.
  • a grid-like trapping electrode 23 is overlapped and fixed between the display pixel electrodes 10 arranged in a matrix, which is a formation area, so as to be aligned, and a liquid crystal display device 51 is completed. In order to surely perform this superposition process, it is desirable to provide an alignment mark at an appropriate portion of each of the liquid crystal cell 2 and the organic EL lighting device 52.
  • the auxiliary electrode 23 made of a metal material is provided in the anode 22 which is a transparent electrode, so that the resistance value of the anode 22 can be reduced.
  • the capture electrode 23 is provided in a region where the display pixel electrode 10 of the liquid crystal cell 2 is not formed, a decrease in the brightness of the organic EL lighting device 52 due to the shielding of the capture electrode 23 is suppressed.
  • the insulating film 53 is formed above the auxiliary electrode 23, no current flows in the portion of the organic EL layer 25 that is shielded from light by the auxiliary electrode 23.
  • the low power consumption of the lighting device 52 is realized.
  • the insulating film 53 it is also possible to prevent short leakage between the auxiliary electrode 23 and the cathode 26 due to poor flatness of the auxiliary electrode 23.
  • a liquid crystal display device having an organic EL lighting device with high reliability and low power consumption capable of emitting clean uniform light is realized.
  • ADVANTAGE OF THE INVENTION According to this invention, the luminous efficiency of a backlight is improved, low power consumption is implement
  • a liquid crystal display device having a possible low power consumption organic EL lighting device is realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic EL illuminator (3) comprises a transparent electrode as an anode (22) formed on the surface of a third transparent substrate (21), an auxiliary electrode (23) patterned on the anode (22), an insulating film (24) formed to cover the upper surface of the auxiliary electrode (23), and an organic EL layer (25) and a cathode (26) sequentially formed on the anode (22) to cover the auxiliary electrode (23) and the insulating film (24). With such a structure, low power consumption of the organic EL illuminator (3) is realized by enhancing emission efficiency, and a highly-reliable low power consumption liquid crystal display capable of emitting light cleanly and uniformly can be realized by preventing short circuit or leakage between the auxiliary electrode (23) and the anode (22).

Description

明 細 書 液晶表示装置及びその製造方法 技術分野  Description Liquid crystal display device and manufacturing method thereof
本発明は、 いわゆる有機 E L照明装置を液晶セルのバックライ トとして用いる 液晶表示装置及びその製造方法に関する。  The present invention relates to a liquid crystal display device using a so-called organic EL lighting device as a backlight of a liquid crystal cell, and a method for manufacturing the same.
背景技術  Background art
液晶表示装置は、 モニターやノート型パソコン、 携帯電話、 テレビ等に用いら れ、 フラッ トパネルディスプレイの代表として普及している。 液晶セルは自身は 発光しない非発光型素子であるために、 通常この液晶セルを背面から照射するバ ックライ トと呼ばれる光源が必要である。 このバックライ トとして最も一般的に 使用されているものとしては、 蛍光管と、 蛍光管から照射された光を面光源にす るための導光体とからなる導光体方式と呼ばれるものがある。 しかしながら、 こ の導光体方式では、均一な面発光を得るにはある程度の厚み (液晶セルの約 3倍) が必要となるために、 液晶表示装置全体の厚みを薄くすることが困難であった。 そこで、 バックライ トとして面発光素子光源を用いる試みが近年盛んに行なわ れている。 特に、 面発光素子に有機 E L素子を用いてなる有機 E L照明装置は、 非常に薄くすることが可能であるために液晶表示装置のバックライ トとしては有 力である。 '  Liquid crystal display devices are used in monitors, notebook computers, mobile phones, televisions, etc., and are widely used as representatives of flat panel displays. Since a liquid crystal cell is a non-light emitting element that does not emit light, a light source called a backlight that normally illuminates the liquid crystal cell from the backside is required. The most commonly used backlight is a so-called light guide system comprising a fluorescent tube and a light guide for turning light emitted from the fluorescent tube into a surface light source. . However, this light guide method requires a certain thickness (about three times that of the liquid crystal cell) to obtain uniform surface light emission, making it difficult to reduce the overall thickness of the liquid crystal display device. Was. Accordingly, attempts to use a surface emitting element light source as a backlight have been actively made in recent years. In particular, an organic EL lighting device using an organic EL device as a surface light emitting device is very effective as a backlight for a liquid crystal display device because it can be made very thin. '
図 9は、 従来の有機 E L照明装置の一構成例を示す概略断面図である。  FIG. 9 is a schematic cross-sectional view showing one configuration example of a conventional organic EL lighting device.
この有機 E L照明装置は、 ガラス等からなる透明基板 1 0 1上に I T O等の透 明電極からなる陽極 1 0 2が形成され、 更にその上に有機発光体を含む有機 E L 層 1 0 3、 L i , M g , A 1等の仕事関数が小さい金属からなる陰極 1 0 4が順 次積層され、 更に水分や酸素等の外気から保護するためにガラス等からなる封止 板 1 0 5が透明基板 1 0 1 と接着剤 1 0 6を用いて乾燥窒素雰囲気で接着され封 止されてなるものである。 このよ う 有機 E L照明装置を液晶表示装置のバック ライ トとして利用することにより、 バックライ トが薄くなり液晶表示装置全体の 厚みも薄くすることが可能となった。 ところが近年では、 液晶表示装置の更なる大面積化の要求が高まり、 バックラ イ トの有機 E L照明装置も大面積化が必要となった。 しかしながら、 有機 E L照 明装置の大面積化が進むにつれて電極抵抗の影響が無視できなくなった。 特に、 陽極の透明電極に用いられる I T O等の非金属材料は抵抗率が低く、 そのために 電圧降下の影響が強くなり、有機 E L照明装置の発光にムラが形成される問題や、 透明電極における発熱が大きくなるという問題が生じる。 In this organic EL lighting device, an anode 102 made of a transparent electrode such as ITO is formed on a transparent substrate 101 made of glass or the like, and an organic EL layer 103 containing an organic luminescent material is further formed thereon. Cathodes 104 made of a metal having a small work function such as L i, Mg and A 1 are sequentially laminated, and a sealing plate 105 made of glass or the like is further provided for protection from the outside air such as moisture and oxygen. It is bonded and sealed in a dry nitrogen atmosphere using a transparent substrate 101 and an adhesive 106. By using such an organic EL lighting device as a backlight for a liquid crystal display device, the backlight can be made thinner, and the overall thickness of the liquid crystal display device can be reduced. However, in recent years, there has been an increasing demand for a larger area of the liquid crystal display device, and it has become necessary to increase the area of the backlight organic EL lighting device. However, as the area of the organic EL lighting device increased, the effect of electrode resistance became more significant. In particular, non-metallic materials such as ITO used for the anode transparent electrode have low resistivity, which increases the effect of the voltage drop, causing problems such as uneven light emission of the organic EL lighting device and heat generation at the transparent electrode. Is increased.
このような問題を解決するには、 透明電極の抵抗値を低下させることが必要で ある。 そこで、 金属からなる低抵抗な補助電極を用いることにより透明電極の抵 抗を下げる技術が特許文献 1に開示されている。 ところが、 金属は可視光城では 光不透過性を有するため、 発光の捕助電極部に遮光されて有機 E L照明装置の輝 度が低下する。 このような問題の解決策が、 特許文献 2に開示されている。 これ は、 液晶表示装置の表示画素電極の形成領域以外の部位、 即ち表示に直接影響し ない部位に補助電極を設ける手法である。 この構成により、 元々液晶表示装置と して光不透過の部位に補助電極を設けたので、 捕助電極の遮光による輝度低下は 液晶表示装置全体でみると実効的に解消される。  To solve such a problem, it is necessary to reduce the resistance of the transparent electrode. Therefore, Patent Document 1 discloses a technique for reducing the resistance of a transparent electrode by using a low-resistance auxiliary electrode made of metal. However, since the metal has light impermeability in the visible light castle, the metal is shielded from light by the luminescent capture electrode, and the brightness of the organic EL lighting device is reduced. A solution to such a problem is disclosed in Patent Document 2. This is a method in which an auxiliary electrode is provided in a portion of the liquid crystal display device other than the region where the display pixel electrode is formed, that is, in a portion that does not directly affect display. With this configuration, since the auxiliary electrode is provided at the light-impermeable portion of the liquid crystal display device, the decrease in brightness due to the light blocking of the auxiliary electrode is effectively eliminated in the entire liquid crystal display device.
しかしながら、 特許文献 2に開示された構成においても、 捕助電極上の光不透 過部位における有機 E L層にも電流が流れており、 有機 E L照明装置の発光効率 が低下を来す。 また、 金属材料は通常 I T Oと比較して表面の平坦性に劣るため に、 補助電極と陰極との間でショートが発生したり、 両者間でリークが発生する 原因となり得る。  However, even in the configuration disclosed in Patent Document 2, current also flows through the organic EL layer in the light-impermeable portion on the trapping electrode, and the luminous efficiency of the organic EL lighting device is reduced. In addition, the metal material usually has poor surface flatness compared to ITO, so that a short circuit may occur between the auxiliary electrode and the cathode or a leak may occur between the two.
特許文献 1 特開 2 0 0 0— 2 6 8 9 8 0号公報  Patent Document 1 Japanese Patent Application Laid-Open No. 2000-2000
特許文献 2 特開 2 0 0 2— 1 5 6 6 3 3号公報  Patent Document 2 Japanese Patent Application Laid-Open No. 2000-15056 633
本発明は、 上記の課題に鑑みてなされたものであり、 有機 E L照明装置の発光 効率を向上させて低消費電力を実現し、 補助電極と第 2の電極とのショートゃリ —クの発生を防止して、 信頼性が高く、 きれいな均一発光が可能な低消費電力の 有機 E L照明装置を有する液晶表示装置及びその製造方法を提供することを.目的 とする。  SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and achieves low power consumption by improving the luminous efficiency of an organic EL lighting device, and generates a short circuit between an auxiliary electrode and a second electrode. It is an object of the present invention to provide a liquid crystal display device having an organic EL lighting device with low power consumption and high reliability and capable of emitting clean uniform light, and a method of manufacturing the same.
発明の開示  Disclosure of the invention
本発明者は、 鋭意検討の結果、 以下に示す発明の諸態様に想到した。 本発明の液晶表示装置は、 液晶層を有し、 複数の表示画素が形成されてなる液 晶セルと、 前記液晶セルをその背後から照明するための有機 E L層を透明電極で ある第 1 の電極と金属電極である第 2の電極とにより挟持してなり、 前記液晶セ ルと前記第 1の電極側で対向するように配置される照明手段と、 前記表示画素の 非形成領域に整合する部位に設けられ、 前記第 1の電極と電気的に接続されてな る捕助電極と、 前記有機 E L層の表面において前記補助電極の形成領域に整合す る部位に設けられ、 前記有機 E L層と前記補助電極とを少なく とも部分的に絶縁 する絶縁膜とを含む。 As a result of intensive studies, the present inventors have arrived at various aspects of the invention described below. A liquid crystal display device according to the present invention includes a liquid crystal cell having a liquid crystal layer, a plurality of display pixels formed thereon, and an organic EL layer for illuminating the liquid crystal cell from behind a first electrode. An illuminating means sandwiched between an electrode and a second electrode which is a metal electrode, arranged so as to face the liquid crystal cell on the first electrode side, and matching with a non-formation region of the display pixel A trapping electrode provided at a position and electrically connected to the first electrode, and a trapping electrode provided at a position matching a region where the auxiliary electrode is formed on the surface of the organic EL layer; And an insulating film for at least partially insulating the auxiliary electrode.
ここで、 前記絶縁膜は、 前記第 1の電極上で前記補助電極の少なく とも上面を 覆うように形成されてなることが好適である。  Here, it is preferable that the insulating film is formed on the first electrode so as to cover at least an upper surface of the auxiliary electrode.
また、 前記絶縁膜は、 前記第 1の電極上で前記捕助電極の表面全体を覆うよう に形成されてなるようにしても良い。  Further, the insulating film may be formed on the first electrode so as to cover the entire surface of the trapping electrode.
本発明の液晶表示装置の製造方法は、 透明基板の表面に透明電極である第 1の 電極、 電極材料及び絶縁樹脂を順次形成する工程と、 リ ソグラフィ一により前記 絶縁榭脂を加工して、 電極形状の絶縁膜を形成する工程と、 前記絶縁膜をマスク として前記電極材料を加工して、 補助電極をパターン形成する工程と、 前記第 1 の電極上に、 前記絶縁膜を介して前記補助電極を覆うように有機 E L層及び金属 電極である第 2の電極を順次形成する工程と、 液晶層を有して複数の表示画素が 形成されてなる液晶セルと前記透明基板の裏面とを、 前記捕助電極が前記表示画 素の非形成領域に整合する部位に位置するように対向配置する工程とを含む。 本発明の液晶表示装置の製造方法の他の態様は、 透明基板の表面に透明電極で ある第 1の電極及び電極材料を順次形成する工程と、 前記電極材料を加工して捕 助電極をパターン形成する工程と、 前記補助電極を覆うように前記第 1 の電極上 に絶縁材料を形成する工程と、 前記絶縁材料を加工し、 前記補助電極の形状に倣 つて当該捕助電極を覆う絶縁膜をパターン形成する工程と、前記第 1 の電極上に、 前記絶縁膜を介して前記補助電極を覆うように有機 E L層及び金属電極である第 2の電極を順次形成する工程と、 液晶層を有して複数の表示画素が形成されてな る液晶セルと前記透明基板の裏面とを、 前記捕助電極が前記表示画素の非形成領 域に整合する部位に位置するように対向配置する工程とを含む。 本発明の液晶表示装置の製造方法の他の態様は、 透明基板の表面に補助電極を パターン形成する工程と、 前記補助電極を覆うように、 前記透明基板上に透明電 極である第 1の電極及び絶縁樹脂を順次形成する工程と、 前記透明基板の裏面か ら照射するリ ソグラフィ一により、 前記補助電極をマスクとして当該補助電極に 倣った形状に前記絶縁榭脂を加工し、 前記第 1の電極上の前記補助電極の形成領 域に整合する部位に絶縁膜を形成する工程と、 前記絶縁膜を覆うように前記第 1 の電極上に有機 E L層及び金属電極である第 2の電極を順次形成する工程と、 液 晶層を有して複数の表示画素が形成されてなる液晶セルと前記透明基板の裏面と を、 前記捕助電極が前記表示画素の非形成領域に整合する部位に位置するように 対向配置する工程とを含む。 The method for manufacturing a liquid crystal display device according to the present invention includes a step of sequentially forming a first electrode, which is a transparent electrode, an electrode material and an insulating resin on a surface of a transparent substrate, and processing the insulating resin by lithography. Forming an electrode-shaped insulating film; processing the electrode material using the insulating film as a mask to pattern an auxiliary electrode; and forming the auxiliary electrode on the first electrode via the insulating film. A step of sequentially forming an organic EL layer and a second electrode which is a metal electrode so as to cover the electrode; anda liquid crystal cell having a liquid crystal layer and a plurality of display pixels formed thereon and a back surface of the transparent substrate. Arranging the auxiliary electrodes so as to face each other so as to be located at a position matching the non-formation region of the display pixel. Another aspect of the method for manufacturing a liquid crystal display device of the present invention includes a step of sequentially forming a first electrode, which is a transparent electrode, and an electrode material on a surface of a transparent substrate; Forming an insulating material on the first electrode so as to cover the auxiliary electrode; processing the insulating material to cover the auxiliary electrode according to the shape of the auxiliary electrode Forming a pattern, and sequentially forming an organic EL layer and a second electrode which is a metal electrode on the first electrode so as to cover the auxiliary electrode via the insulating film. A step of arranging a liquid crystal cell having a plurality of display pixels formed thereon and a rear surface of the transparent substrate so as to face each other so that the trapping electrode is located at a position matching a region where the display pixels are not formed. And Another aspect of the method for manufacturing a liquid crystal display device of the present invention includes a step of patterning an auxiliary electrode on a surface of a transparent substrate, and a first step of forming a transparent electrode on the transparent substrate so as to cover the auxiliary electrode. A step of sequentially forming an electrode and an insulating resin; and performing lithography by irradiating from the back surface of the transparent substrate, processing the insulating resin into a shape following the auxiliary electrode using the auxiliary electrode as a mask, Forming an insulating film on a portion of the second electrode, the second electrode being an organic EL layer and a metal electrode on the first electrode so as to cover the insulating film. Forming a plurality of display pixels each having a liquid crystal layer and a rear surface of the transparent substrate, a portion where the trapping electrode is aligned with a region where the display pixels are not formed. Opposed to be located at And a degree.
図面の簡単な説明  Brief Description of Drawings
図 1 A , 図 1 Bは、 第 1の実施形態による液晶表示装置の構成を示す概略平面 図である。  1A and 1B are schematic plan views showing the configuration of the liquid crystal display device according to the first embodiment.
図 1 Cは、 図 1 Bの直線 I ― I に沿った概略断面図である。  FIG. 1C is a schematic cross-sectional view along the line II of FIG. 1B.
図 2は、 第 1の実施形態による液晶表示装置の構成要素である有機 E L照明装 置の構成を示す概略断面図である。  FIG. 2 is a schematic cross-sectional view illustrating a configuration of an organic EL lighting device that is a component of the liquid crystal display device according to the first embodiment.
図 3は、 液晶表示装置のバックライ トに用いられる有機 E L照明装置の比較例 (従来例) の構成を示す概略断面図である。  FIG. 3 is a schematic cross-sectional view showing the configuration of a comparative example (conventional example) of an organic EL lighting device used for a backlight of a liquid crystal display device.
図 4 A〜図 4 Fは、 第 1の実施形態による液晶表示装置の製造方法を工程順に 示す概略断面図である。  4A to 4F are schematic cross-sectional views illustrating a method for manufacturing the liquid crystal display device according to the first embodiment in the order of steps.
図 5は、 第 1の実施形態の変形例による液晶表示装置の構成要素である有機 E L照明装置の構成を示す概略断面図である。 ·  FIG. 5 is a schematic cross-sectional view illustrating a configuration of an organic EL lighting device that is a component of a liquid crystal display device according to a modification of the first embodiment. ·
図 6 A〜図 6 Gは、 第 1の実施形態の変形例による液晶表示装置の製造方法を 工程順に示す概略断面図である。  6A to 6G are schematic cross-sectional views illustrating a method for manufacturing a liquid crystal display according to a modification of the first embodiment in the order of steps.
図 7は、 第 2の実施形態による液晶表示装置の構成要素である有機 E L照明装 置の構成を示す概略断面図である。  FIG. 7 is a schematic cross-sectional view illustrating a configuration of an organic EL lighting device that is a component of the liquid crystal display device according to the second embodiment.
図 8 A〜図 8 Gは、 第 2の実施形態による液晶表示装置の製造方法を工程順に 示す概略断面図である。  8A to 8G are schematic cross-sectional views illustrating a method for manufacturing the liquid crystal display device according to the second embodiment in the order of steps.
図 9は、 従来の有機 E L照明装置の一構成例を示す概略断面図である。 発明を実施するための最良の形態 FIG. 9 is a schematic cross-sectional view showing one configuration example of a conventional organic EL lighting device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を適用した好適な諸実施形態について、 図面を参照しながら詳細 に説明する。  Hereinafter, preferred embodiments to which the present invention is applied will be described in detail with reference to the drawings.
一第 1の実施形態一  1st Embodiment 1
(液晶表示装置の構成)  (Configuration of liquid crystal display device)
図 1 A , 図 1 Bは本実施形態による液晶表示装置の構成を示す概略平面図であ り、 図 1 Cは図 1 Bの直線 I 一 Iに沿った概略断面図である。 また、 図 2は本実 施形態による液晶表示装置の構成要素である有機 E L照明装置の構成を示す概略 断面図である。  1A and 1B are schematic plan views showing the configuration of the liquid crystal display device according to the present embodiment, and FIG. 1C is a schematic cross-sectional view along the line I-I in FIG. 1B. FIG. 2 is a schematic cross-sectional view illustrating a configuration of an organic EL lighting device that is a component of the liquid crystal display device according to the present embodiment.
本実施形態の液晶表示装置 1は、 図 1 Cに示すように、 表示手段である液晶セ ル 2 と、 液晶セル 2のバックライ トと して用いられる有機 E L照明装置 3とを備 えて構成されている。  As shown in FIG. 1C, the liquid crystal display device 1 of the present embodiment includes a liquid crystal cell 2 as a display means and an organic EL lighting device 3 used as a backlight of the liquid crystal cell 2. ing.
液晶セル 2は、 表面に I T O等からなるス トライプ状の複数の透明電極 1 1が 形成され、 透明電極 1 1上に配向膜 1 2が形成されてなる、 ガラス等からなる第 The liquid crystal cell 2 has a plurality of strip-shaped transparent electrodes 11 made of ITO or the like formed on the surface thereof, and an alignment film 12 formed on the transparent electrodes 11.
1の透明基板 1 3 と、 表面に I T O等からなり透明電極 1 1 と直交するス トライ プ状の複数の透明電極 1 4が形成され、 透明電極 1 4上に配向膜 1 5が形成され てなる、 ガラス等からなる第 2の透明基板 1 6 と、 第 1の透明基板 1 3 と第 2の 透明基板 1 6 とにより、 配向膜 1 2 , 1 5が対向するように挟持されてなる液晶 層 1 7 とを備え、 第 1の透明基板 1 3の裏面には偏光板 1 8が、 第 2の透明基板1 transparent substrate 13 and a plurality of strip-shaped transparent electrodes 14 made of ITO or the like on the surface and orthogonal to the transparent electrode 11, and an alignment film 15 is formed on the transparent electrode 14. A liquid crystal in which alignment films 12 and 15 are sandwiched between a second transparent substrate 16 made of glass or the like and a first transparent substrate 13 and a second transparent substrate 16. A polarizing plate 18 on the back surface of the first transparent substrate 13, and a second transparent substrate
1 6の裏面には偏光板 1 9がそれぞれ配されて構成されている。 この液晶セル 2 では、 図 1 A , 図 1 Bに示すように、 透明電極 1 1 と透明電極 1 4 とが直交する ことにより、 両者の液晶層 1. 7等を介して重畳するマ トリタス状とされてなる部 分から複数の表示画素電極 (開口部) 1 0が構成される。 A polarizing plate 19 is arranged on the back surface of 16 respectively. In this liquid crystal cell 2, as shown in FIGS. 1A and 1B, when the transparent electrode 11 and the transparent electrode 14 are orthogonal to each other, the transparent electrode 11 and the transparent electrode 14 overlap each other via the liquid crystal layer 1.7 and the like. A plurality of display pixel electrodes (apertures) 10 are formed from the portions indicated by.
なお、 液晶セルと しては、 本文中では単純マ トリクス型で記述しているが、、 薄 膜トランジスタ (T F T ) 等のスイッチング素子を画素部に設けたアクティブマ トリクス型の液晶セルにも、 本発明の構成では、 適用できる。  Although the liquid crystal cell is described as a simple matrix type in the text, an active matrix type liquid crystal cell provided with a switching element such as a thin film transistor (TFT) in a pixel portion is also described. This is applicable in the configuration of the present invention.
有機 E L照明装置 3は、 図 2に示すように、 ガラス等からなる第 3の透明基板 The organic EL lighting device 3 is, as shown in FIG. 2, a third transparent substrate made of glass or the like.
2 1の表面に I T O等からなる透明電極である陽極 2 2が形成され、 陽極 2 2上 に補助電極 2 3がパターン形成され、 補助電極 2 3の上面を覆うように絶縁膜 2 4が形成され、 補助電極 2 3及び絶縁膜 2 4を覆'うように陽極 2 2上に有機 E L 層 2 5及び金属電極である陰極 2 6が順次形成され、 酸化バリ ゥム等からなる吸 湿材 2 7を介して陰極 2 6の上方に封止板 2 8が設けられ、 不図示の接着剤によ り封止板 2 8が固定されて構成されている。 An anode 22 which is a transparent electrode made of ITO or the like is formed on the surface of the auxiliary electrode 23, and an auxiliary electrode 23 is patterned on the anode 22, and an insulating film 2 is formed so as to cover the upper surface of the auxiliary electrode 23. 4, an organic EL layer 25 and a cathode 26 as a metal electrode are sequentially formed on the anode 22 so as to cover the auxiliary electrode 23 and the insulating film 24, and are made of a barrier oxide or the like. A sealing plate 28 is provided above the cathode 26 via a hygroscopic material 27, and the sealing plate 28 is fixed by an adhesive (not shown).
捕助電極 2 3は、 表示画素電極 1 0以外の領域、 換言すれば表示面素電極 1 0 の非形成領域に整合する部位、 即ち図 1 A , 図 1 Bに示すようにマトリクス状に 配置された表示画素電極 1 0間に格子状に設けされており、 アルミニウムや銀、 クロム、 モリブデン等の金属を材料としてなるものである。  The capture electrodes 23 are arranged in a region other than the display pixel electrode 10, in other words, in a portion matching the non-formation region of the display surface element electrode 10, that is, arranged in a matrix as shown in FIGS. 1A and 1B. The display pixel electrodes 10 are provided in a lattice shape and are made of a metal such as aluminum, silver, chromium, or molybdenum.
絶縁膜 2 4は、 酸化シリ コン等の絶縁性無機材料またはポリイミ ド等の感光性 樹脂材料、' ここでは後者を材料としてなり、 補助電極 2 3に倣った形状で補助電 極 2 3の上面を覆うように形成されており、 この絶縁膜 2 4により補助電極 2 3 の上面と有機 E L層 2 5 とが隔てられ、 補助電極 2 3 と有機 E L層 2 5 とは補助 電極 2 3の上側で絶縁されている。  The insulating film 24 is made of an insulating inorganic material such as silicon oxide or a photosensitive resin material such as polyimide, and is made of the latter here. The upper surface of the auxiliary electrode 23 is formed in a shape following the auxiliary electrode 23. The insulating film 24 separates the upper surface of the auxiliary electrode 23 from the organic EL layer 25, and the auxiliary electrode 23 and the organic EL layer 25 are located above the auxiliary electrode 23. Insulated with
図 3は、 液晶表示装置のバックライ トとして用いられる有機 E L照明装置の比 較例 (従来例) の構成を示す概略断面図である。 図 3の例では、 本実施形態の如 き絶縁膜 2 4を有さず、 補助電極 2 3を覆うように直接的に有機 E L層 2 5が形 成されている。  FIG. 3 is a schematic cross-sectional view showing a configuration of a comparative example (conventional example) of an organic EL lighting device used as a backlight of a liquid crystal display device. In the example of FIG. 3, the organic EL layer 25 is formed directly so as to cover the auxiliary electrode 23 without the insulating film 24 as in the present embodiment.
有機 E L層 2 5には、 これを挟持する陽極 2 2 と陰極 2 6 との間に電圧が印加 されることから、 図 3の場合には補助電極 2 3の上面と有機 E L層 2 5を介して 陰極 2 6 との間の導通が有機 E L照明装置 3の発光効率の低下の主原因となる。 従って、 本実施形態のように、 補助電極 2 3の上面に絶縁膜 2 4を形成して補助 電極 2 の上面と有機 E L層 2 5 とを絶縁することにより、 有機 E L照明装置 3 の発光効率を向上させることができる。  Since a voltage is applied to the organic EL layer 25 between the anode 22 and the cathode 26 sandwiching the organic EL layer 25, the upper surface of the auxiliary electrode 23 and the organic EL layer 25 are connected in FIG. The continuity between the cathode and the cathode 26 is a major cause of the decrease in the luminous efficiency of the organic EL lighting device 3. Therefore, as in the present embodiment, by forming an insulating film 24 on the upper surface of the auxiliary electrode 23 to insulate the upper surface of the auxiliary electrode 2 from the organic EL layer 25, the luminous efficiency of the organic EL lighting device 3 is improved. Can be improved.
更に、 図 3の場合には、 金属材料が平坦性に劣ることに起因して、 捕助電極 2 3 と陰極 2 6 との間にショートやリークが生じる虞がある。 本実施形態では、 捕 助電極 2 3の上面に絶縁膜 2 4を形成することにより、 補助電極 2 3と陰極 2 6 との間が絶縁膜 2 4で隔てられて確実な絶縁がなされ、 上記のショートゃリーク が防止される。  Further, in the case of FIG. 3, there is a possibility that a short circuit or a leak may occur between the trapping electrode 23 and the cathode 26 due to the poor flatness of the metal material. In the present embodiment, by forming the insulating film 24 on the upper surface of the auxiliary electrode 23, the auxiliary electrode 23 and the cathode 26 are separated by the insulating film 24 so that reliable insulation is achieved. Short leak is prevented.
有機 E L層 2 5は、 陽極 2 2側から正孔輸送層/有機発光層の 2層構成、 また は正孔輸送層ノ有機発光層ノ電子輸送層の 3層構成、 あるいは正孔注入層 Z正孔 輸送層 有機発光層 Z電子輸送層の 4層構成のもの等がある。 例えば、 正孔輸送 層として α— N P D、 有機発光層として A l qを用いた 2層構成の有機 E L層が ある。 この構成の素子では、 緑色の発光が得られる。 また、 有機発光層に様々な 発光色を持つドーパントを添加することにより、 様々な発光色を持つ有機 E L素 子が形成できる。 The organic EL layer 25 has a two-layer structure of a hole transport layer / organic light emitting layer from the anode 22 side, and There are three-layer structure of a hole transport layer, an organic light-emitting layer, and an electron transport layer, or a four-layer structure of a hole injection layer, a hole transport layer, an organic light-emitting layer, and an electron transport layer. For example, there is a two-layer organic EL layer using α-NPD as a hole transport layer and Alq as an organic light emitting layer. The device having this configuration emits green light. Further, by adding dopants having various luminescent colors to the organic luminescent layer, organic EL elements having various luminescent colors can be formed.
また、 R , G , Bにそれぞれに発光する ドーパントを有機発光層に添加するこ とにより、 あるいは R, G , Bにそれぞれに発光する ド一パン トを添加した有機 発光層を積層することに白色に発光する有機 E L素子を得ることができる。 陰極 2 6は、 有機 E L層 2 5に有効に電子を注入するために仕事関数の小さい リチウム等のアルカリ金属およびフッ化リチウムなどのアル力リ金属化合物を材 料としてなるものである。 しかしながら、 アルカリ金属な ifの仕事関数の小さい 金属は不安定であるために、 安定化のためにアルミニウムや銀等の安定な金属と 共に用いられる。 例えば、 アルミニウム一リチウム合金、 フッ化リチウム/アル ミニゥム 2層樺成が陰極 2 6 と して用いられる。  Further, by adding a dopant emitting light to each of R, G, and B to the organic light emitting layer, or by stacking an organic light emitting layer to which a dopant emitting light to each of R, G, and B is added. An organic EL device that emits white light can be obtained. The cathode 26 is made of an alkali metal such as lithium and an alkali metal compound such as lithium fluoride, which have a small work function, to effectively inject electrons into the organic EL layer 25. However, alkali metals having a small work function of if are unstable, so they are used together with stable metals such as aluminum and silver for stabilization. For example, aluminum monolithium alloy, lithium fluoride / aluminum two-layer birch is used as the cathode 26.
封止板 2 8は、 ガラス等を材料としてなり、 有機 E L層 2 5を外気から保護する ために、 第 3の透明基板 2 1 と例えばエポキシ樹脂系接着剤によ り乾燥窒素雰囲 気下で接着して封止するものである。 The sealing plate 28 is made of glass or the like, and is used in a dry nitrogen atmosphere using the third transparent substrate 21 and, for example, an epoxy resin adhesive to protect the organic EL layer 25 from the outside air. And sealed.
そして、 図 1 Cに示すように、 液晶セル 2 と有機 E L照明装置 3 とが、 液晶セ ル 2の偏光板 1 8 と有機 E L照明装置 3の第 3の透明基板 2 1 とが対向し、 図 1 A , 図 1 Bに示すように、 表示画素電極 1 0の非形成領域であるマ ト リ クス状に 配置された表示画素電極 1 0間に格子状の補助電極 2 3が位置整合するように重 ね合わせられ、 液晶表示装置 1が構成されている。  Then, as shown in FIG. 1C, the liquid crystal cell 2 and the organic EL lighting device 3 face each other, and the polarizing plate 18 of the liquid crystal cell 2 and the third transparent substrate 21 of the organic EL lighting device 3 face each other. As shown in FIGS. 1A and 1B, the grid-like auxiliary electrodes 23 are aligned between the matrix-arranged display pixel electrodes 10 which are regions where the display pixel electrodes 10 are not formed. Thus, the liquid crystal display device 1 is configured.
(液晶表示装置の製造方法)  (Method of manufacturing liquid crystal display device)
図 4 A〜図 4 Fは、 上述した本実施形態による液晶表示装置の製造方法を工程 順に示す概略断面図である。 ここでは、 本実施形態による液晶表示装置の主要構 成である有機 E L照明装置の製造工程について主に説明する。  4A to 4F are schematic cross-sectional views showing the method for manufacturing the liquid crystal display device according to the above-described present embodiment in the order of steps. Here, the manufacturing process of the organic EL lighting device, which is the main configuration of the liquid crystal display device according to the present embodiment, will be mainly described.
先ず、 図 4 Aに示すように、 ガラス等からなる第 3の透明基板 2 1上に I T O 等からなる陽極 2 2を形成し、 陽極 2 2上に電極材料として例えばアルミニウム JP2004/006300 First, as shown in FIG. 4A, an anode 22 made of ITO or the like is formed on a third transparent substrate 21 made of glass or the like, and an electrode material such as aluminum is formed on the anode 22. JP2004 / 006300
( A 1 ) 膜 3 1を成膜した後、 感光性樹脂材料であるポリイミ ド膜 3 2を塗布成 膜する。 (A 1) After forming the film 31, a polyimide film 32 as a photosensitive resin material is applied and formed.
続いて、 図 4 Bに示すように、 ポリイミ ド膜 3 2をフォ トリ ソグラフィ一によ り露光し現像して、ポリイミ ド膜 3 2を加工して絶縁膜 2 4をパターン形成する。 続いて、 図 4 Cに示すように、 絶縁膜 2 4をマスクと して A 1膜 3 1をドライ エッチングすることにより、 絶縁膜 2 4の形状に倣った補助電極 2· 3をパターン 形成する。 このとき、 補助電極 2 3は、 液晶セル 2 と重ね合わせられた際に表示 画素電極 1 0の非形成領域に整合する部位に位置するように形成される。  Subsequently, as shown in FIG. 4B, the polyimide film 32 is exposed and developed by photolithography, and the polyimide film 32 is processed to form an insulating film 24 as a pattern. Subsequently, as shown in FIG. 4C, the A1 film 31 is dry-etched using the insulating film 24 as a mask to form a pattern of auxiliary electrodes 2 and 3 following the shape of the insulating film 24. . At this time, the auxiliary electrode 23 is formed so as to be located at a position matching the non-formation region of the display pixel electrode 10 when superimposed on the liquid crystal cell 2.
続いて、 酸素プラズマを用いて陽極 2 2の表面を酸化する。 その後、 図 4 Dに 示すように、 絶縁膜 2 4及び補助電極 2 3を覆うように陽極 2 2上に蒸着法によ り有機 E L層 2 5を成膜する。 ここでは、 陽極 2 2側から正孔注入層として 2 T N A T A、 正孔輸送層として α — N P D、 発光層として A l qを蒸着して、 3層 構成に有機 E L層 2 5を形成する。その後、有機 E L層 2 5上に L i Fを厚み 0 . 5 n m、 A 1 を厚み 2 0 0 n mにそれぞれ蒸着することにより、 陰極 2 6を形成 する。  Subsequently, the surface of the anode 22 is oxidized using oxygen plasma. Thereafter, as shown in FIG. 4D, an organic EL layer 25 is formed on the anode 22 by an evaporation method so as to cover the insulating film 24 and the auxiliary electrode 23. Here, from the anode 22 side, 2TNTATA as a hole injection layer, α—NPD as a hole transport layer, and Alq as a light emitting layer are deposited to form an organic EL layer 25 in a three-layer structure. Then, a cathode 26 is formed on the organic EL layer 25 by depositing LiF to a thickness of 0.5 nm and A1 to a thickness of 200 nm.
続いて、 図 4 Eに示すように、 酸化バリ ウム等からなる吸湿材 2 7が貼付され た封止板 2 8を用い、 乾燥窒素雰囲気下にてエポキシ樹脂系接着剤にて第 3のガ ラス基板 2 1 と封止板 2 8 とを接着することにより封止を行なう。 このようにし て、 本実施形態のバックライ ト用の有機 E L照明装置 3を完成させる。 この有機 E L照明装置 3は緑色に発光するものである。  Subsequently, as shown in FIG. 4E, using a sealing plate 28 to which a hygroscopic material 27 made of barium oxide or the like is adhered, a third gas is applied with an epoxy resin adhesive under a dry nitrogen atmosphere. The sealing is performed by bonding the glass substrate 21 and the sealing plate 28. Thus, the organic EL lighting device 3 for backlight of the present embodiment is completed. The organic EL lighting device 3 emits green light.
液晶セル 2は、 公知の方法より製造する。 例えば、 ガラス等からなる第 1の透 明基板 1 3の表面には、 I T O等からなるス トライプ状の複数の透明電極 1 1を パターン形成した後、 透明電極 1 1を覆うように配向膜 1 2を形成し、 ガラス等 からなる第 2の透明基板 1 6の表面には、 I T O等からなり透明電極 1 1 と直交 するス トライプ状の複数の透明電極 1 4を形成した後、 透明電極 1 4を覆うよう に配向膜 1 5を形成する。  The liquid crystal cell 2 is manufactured by a known method. For example, a plurality of strip-shaped transparent electrodes 11 made of ITO or the like are patterned on the surface of a first transparent substrate 13 made of glass or the like, and then an alignment film 1 is formed so as to cover the transparent electrodes 11. After forming a plurality of strip-shaped transparent electrodes 14 made of ITO or the like and orthogonal to the transparent electrodes 11 on the surface of the second transparent substrate 16 made of glass or the like, the transparent electrodes 1 An alignment film 15 is formed so as to cover 4.
そして、 図 4 Fに示すように、 第 1及び第 2の透明基板 1 3 , 1 6を、 注入さ れる液晶の膜厚を制御するためのスぺーサを介して透明電極 1 1 と透明電極 1 4 とが直交して対向するように配置して貼り合わせ、 その内部に液晶を注入して液 晶層 1 7を形成する。 最後に、 第 1及び第 2の透明基板 1 3 , 1 6の裏面に偏光 板 1 8, 1 9を形成する。 図中の円 Cで示すように、 互いに直交するス トライブ 状の透明電極 1 1 , 1 3が重畳する部分が表示画素電極 1 0 となる。 Then, as shown in FIG. 4F, the first and second transparent substrates 13 and 16 are connected to the transparent electrode 11 and the transparent electrode 11 through a spacer for controlling the thickness of the injected liquid crystal. 1 and 4 are orthogonally opposed to each other and bonded together. A crystal layer 17 is formed. Finally, polarizing plates 18 and 19 are formed on the back surfaces of the first and second transparent substrates 13 and 16. As shown by a circle C in the figure, a portion where the strip-shaped transparent electrodes 11 and 13 orthogonal to each other overlap is the display pixel electrode 10.
しかる後、 液晶セル 2と有機 E L照明装置 3 とを、 液晶セル 2の偏光板 1 8 と 有機 E L照明装置 3の第 3の透明基板 2 1 とが対向し、 表示画素電極 1 0の非形 成領域であるマトリクス状に配置された表示画素電極 1 0間に格子状の捕助電極 2 3が位置整合するように重ね合わせて固定し、 液晶表示装置 1を完成させる。 この重ね合わせ工程を確実に行なうため、 液晶セル 2及ぴ有機 E L照明装置 3の 各々適宜の部位に位置合わせマークを設けておく ことが望ましい。  Thereafter, the liquid crystal cell 2 and the organic EL lighting device 3 are connected to each other, and the polarizing plate 18 of the liquid crystal cell 2 and the third transparent substrate 21 of the organic EL lighting device 3 face each other. The liquid crystal display device 1 is completed by overlapping and fixing the lattice-shaped trapping electrodes 23 between the display pixel electrodes 10 arranged in a matrix, which is a formation region, so as to be aligned. In order to perform this superposition step reliably, it is desirable to provide an alignment mark at an appropriate portion of each of the liquid crystal cell 2 and the organic EL lighting device 3.
以上説明したように、 本実施形態によれば、 先ず透明電極である陽極 2 2上に 金属材料からなる補助電極 2 3を設けているので、 陽極 2 2の抵抗値を下げるこ とができ、 電圧降下による発光ムラや発熱を防止でき、 きれいな均一発光が可能 な信頼性の良いバックライ ト用の有機 E L照明装置 3が実現する。 また、 補助電 極 2 3を液晶セル 2の表示画素電極 1 0の非形成領域に設けているので、 補助電 極 2 3の遮光による有機 E L照明装置 3の輝度低下が抑止される。 しかも、 捕助 電極 2 3上に絶縁膜 2 4を形成しているので、 有機 E L層 2 5の補助電極 2 3に より遮光された部位には電流が流れない構造とされており、 有機 E L照明装置の 低消費電力が実現する。 更に、 絶縁膜 2 4を形成することにより、 補助電極 2 3 の平坦性が悪いことに起因する捕助電極 2 3 と陰極 2 6 とのショートやリークを 防止することもできる。 以上により、 信頼性が高く、 きれいな均一発光が可能な 低消費電力の有機 E L照明装置を有する液晶表示装置が実現する。  As described above, according to the present embodiment, first, since the auxiliary electrode 23 made of a metal material is provided on the anode 22 that is a transparent electrode, the resistance value of the anode 22 can be reduced. A reliable OLED lighting device 3 for backlight, which can prevent light emission unevenness and heat generation due to a voltage drop and achieve clean uniform light emission, is realized. Further, since the auxiliary electrode 23 is provided in a region where the display pixel electrode 10 of the liquid crystal cell 2 is not formed, a decrease in luminance of the organic EL lighting device 3 due to the light shielding of the auxiliary electrode 23 is suppressed. In addition, since the insulating film 24 is formed on the trapping electrode 23, no current flows through the organic EL layer 25 in a portion of the organic EL layer 25 that is shielded from light by the auxiliary electrode 23. Low power consumption of lighting equipment is realized. Further, by forming the insulating film 24, it is possible to prevent short-circuit and leakage between the trapping electrode 23 and the cathode 26 due to poor flatness of the auxiliary electrode 23. As described above, a liquid crystal display device having an organic EL lighting device with high reliability and low power consumption capable of emitting clean uniform light is realized.
一第 1の実施形態の変形例一  Modification 1 of the first embodiment
ここで、 第 1の実施形態の変形例について説明する。 この変形例では、 液晶表 示装置の有機 E L照明装置の構成が若干異なる点で第 1の実施形態と相違する。 なお、 第 1の実施形態による液晶表示装置と同一の構成部材等については同符号 を記して説明を省略する。  Here, a modified example of the first embodiment will be described. This modification is different from the first embodiment in that the configuration of the organic EL lighting device of the liquid crystal display device is slightly different. The same components as those of the liquid crystal display device according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
(液晶表示装置の構成)  (Configuration of liquid crystal display device)
図 5は、 本変形例による液晶表示装置の構成要素である有機 E L照明装置の構 成を示す概略断面図である。 本変形例の液晶表示装置 (図 6 Gで示す液晶表示装置 4 1 ) は、 液晶セルであ る第 1の実施形態と同様の液晶セル 2 と、 液晶セル 2のバックライ トとして用い られる有機 E L照明装置 4 2 とを備えて構成されている。 FIG. 5 is a schematic cross-sectional view illustrating a configuration of an organic EL lighting device that is a component of the liquid crystal display device according to the present modification. The liquid crystal display device of this modification (the liquid crystal display device 41 shown in FIG. 6G) includes a liquid crystal cell 2 similar to the first embodiment, which is a liquid crystal cell, and an organic EL used as a backlight of the liquid crystal cell 2. The lighting device 42 is provided.
有機 E L照明装置 4 2は、 ガラス等からなる第 3の透明基板 2 1の表面に I T ◦等からなる透明電極である陽極 2 2が形成され、 陽極 2 2上に捕助電極 2 3が パターン形成され、補助電極 2 3の表面全体を覆うように絶縁膜 4 3が形成され、 絶縁膜 4 3を覆うように陽極 2 2上に有機 E L層 2 5及び金属電極である陰極 2 6が順次形成され、 酸化バリ ゥム等からなる吸湿材 2 7を介して陰極 2 6の上方 に封止板 2 8が設けられ、 不図示の接着剤により封止板 2 8が固定されて構成さ れている。  In the organic EL lighting device 42, an anode 22 which is a transparent electrode made of IT, etc. is formed on the surface of a third transparent substrate 21 made of glass or the like, and a trapping electrode 23 is formed on the anode 22 in a pattern. An insulating film 43 is formed so as to cover the entire surface of the auxiliary electrode 23, and an organic EL layer 25 and a cathode 26 which is a metal electrode are sequentially formed on the anode 22 so as to cover the insulating film 43. A sealing plate 28 is provided above the cathode 26 via a hygroscopic material 27 made of a barrier oxide or the like, and the sealing plate 28 is fixed by an adhesive (not shown). ing.
絶縁膜 4 3は、 酸化シリ コン等の絶縁性無機材料またはポリイミ ド等の感光性 樹脂材料、 ここでは前者を材料と してなり、 補助電極 2 3に倣った形状で捕助電 極 2 3の表面全体を覆うように形成されており、 この絶縁膜 4 3により捕助電極 2 3 と有機 E L層 2 5 とが隔てられ、 捕助電極 2 3 と有機 E L層 2 5とが絶縁さ れている。  The insulating film 43 is made of an insulating inorganic material such as silicon oxide or a photosensitive resin material such as polyimide. In this case, the former is used as the material, and the trapping electrode 23 is shaped like the auxiliary electrode 23. This insulating film 43 separates the trapping electrode 23 from the organic EL layer 25, and insulates the trapping electrode 23 from the organic EL layer 25. ing.
本変形例のように、 補助電極 2 3の表面全体を覆うように絶縁膜 4 3を形成し て捕助電極 2 3 と有機 E L層 2 5 とを絶縁することにより、 有機 E L照明装置 4 2の発光効率を向上させることができる。 更に、 捕助電極 2 3の表面全体を覆う ように絶縁膜 4 3を形成することにより、 補助電極 2 3 と陰極 2 6 との間が絶縁 膜 4 3で隔てられて確実な絶縁がなされ、上記のショートゃリークが防止される。  As in the present modification, the insulating film 43 is formed so as to cover the entire surface of the auxiliary electrode 23, and the trapping electrode 23 is insulated from the organic EL layer 25. Luminous efficiency can be improved. Furthermore, by forming the insulating film 43 so as to cover the entire surface of the auxiliary electrode 23, the auxiliary electrode 23 and the cathode 26 are separated by the insulating film 43 to ensure insulation. The above short leak is prevented.
(液晶表示装置の製造方法)  (Method of manufacturing liquid crystal display device)
図 6 A〜図 6 Gは、 上述した本変形例による液晶表示装置の製造方法を工程順 に示す概略断面図である。 ここでは、 本変形例による液晶表示装置の主要構成で ある有機 E L照明装置の製造工程について主に説明する。  6A to 6G are schematic cross-sectional views illustrating a method of manufacturing the liquid crystal display device according to the above-described modification in the order of steps. Here, the manufacturing process of the organic EL lighting device, which is the main configuration of the liquid crystal display device according to the present modification, will be mainly described.
先ず、 図 6 Aに示すように、 ガラス等からなる第 3の透明基板 2 1上に I T O 等からなる陽極 2 2を形成し、 その陽極 2 2上に電極材料として例えばアルミ二 ゥム (A 1 ) 膜 3 1を成膜する。  First, as shown in FIG. 6A, an anode 22 made of ITO or the like is formed on a third transparent substrate 21 made of glass or the like, and an electrode material such as aluminum (A) is formed on the anode 22. 1) Film 31 is formed.
続いて、 図 6 Bに示すように、 A 1膜 3 1を電極形状にパターユングして、 補 助電極 2 3をパターン形成する。 このとき、 補助電極 2 3は、 液晶セル 2 と重ね 合わせられた際に表示画素電極 1 0の非形成領域に整合する部位に位置するよう に形成される。 Subsequently, as shown in FIG. 6B, the auxiliary film 23 is patterned by patterning the A1 film 31 into an electrode shape. At this time, the auxiliary electrode 23 overlaps the liquid crystal cell 2 It is formed so as to be located at a position matching the non-formation region of the display pixel electrode 10 when they are combined.
続いて、 図 6 Cに示すように、 補助電極 2 3を覆うよ うに陽極 2 2上に絶縁性 無機材料である酸化シリ コン膜 4 4を成膜する。  Subsequently, as shown in FIG. 6C, a silicon oxide film 44 as an insulating inorganic material is formed on the anode 22 so as to cover the auxiliary electrode 23.
続いて、 図 6 Dに示すように、 酸化シリ コン膜 4 4を補助電極 2 3に倣った形 状にパターユングし、 捕助電極 2 3の表面全体を覆う絶縁膜 4 3をパターン形成 する。  Subsequently, as shown in FIG. 6D, the silicon oxide film 44 is patterned in a shape following the auxiliary electrode 23, and an insulating film 43 covering the entire surface of the capture electrode 23 is patterned. .
続いて、 酸素プラズマを用いて陽極 2 2の表面を酸化する。 その後、 図 6 Eに 示すように、 絶縁膜 4 3を覆うように陽極 2 2上に蒸着法により有機 E L層 2 5 を成膜する。 ここでは、 陽極 2 2側から正孔注入層として 2 T N A T A、 正孔輸 送層として a— N P D、 発光層として A l qを蒸着して、 3層構成に有機 E L層 2 5を形成する。 その後、 有機 E L層 2 5上に L i Fを厚み 0 . 5 n m、 A l を 厚み 2 0 0 n mにそれぞれ蒸着することにより、 陰極 2 6を形成する。  Subsequently, the surface of the anode 22 is oxidized using oxygen plasma. Thereafter, as shown in FIG. 6E, an organic EL layer 25 is formed on the anode 22 by an evaporation method so as to cover the insulating film 43. Here, from the anode 22 side, 2TNATA as a hole injection layer, a—NPD as a hole transport layer, and Alq as a light emitting layer are deposited to form an organic EL layer 25 in a three-layer structure. Thereafter, a cathode 26 is formed on the organic EL layer 25 by depositing LiF to a thickness of 0.5 nm and Al to a thickness of 200 nm.
続いて、 図 6 Fに示すように、 酸化バリ ウム等からなる吸湿材 2 7が貼付され た封止板 2 8を用い、 乾燥窒素雰囲気下にてエポキシ樹脂系接着剤にて第 3のガ ラス基板 2 1 と封止板 2 8 とを接着することにより封止を行なう。 このよ うにし て、 本変形例のバックライ ト用の有機 E L照明装置 4 2を完成させる。 この有機 E L照明装置 4 2は緑色に発光するものである。  Subsequently, as shown in FIG. 6F, using a sealing plate 28 to which a hygroscopic material 27 made of barium oxide or the like is adhered, a third gas is applied with an epoxy resin adhesive under a dry nitrogen atmosphere. The sealing is performed by bonding the glass substrate 21 and the sealing plate 28. In this way, the organic EL lighting device 42 for backlight of the present modified example is completed. The organic EL lighting device 42 emits green light.
液晶セル 2は、 公知の方法より製造する。 例えば、 ガラス等からなる第 1の透 明基板 1 3の表面には、 I T O等からなるス トライプ状の複数の透明電極 1 1を パターン形成した後、 透明電極 1 1を覆うように配向膜 1 2を形成し、 ガラス等 からなる第 2の透明基板 1 6の表面には、 I T O等からなり透明電極 1 1 と直交 するス トライプ状の複数の透明電極 1 4を形成した後、 透明電極 1 4を覆うよう に配向膜 1 5を形成する。  The liquid crystal cell 2 is manufactured by a known method. For example, a plurality of strip-shaped transparent electrodes 11 made of ITO or the like are patterned on the surface of a first transparent substrate 13 made of glass or the like, and then an alignment film 1 is formed so as to cover the transparent electrodes 11. After forming a plurality of strip-shaped transparent electrodes 14 made of ITO or the like and orthogonal to the transparent electrodes 11 on the surface of the second transparent substrate 16 made of glass or the like, the transparent electrodes 1 An alignment film 15 is formed so as to cover 4.
そして、 図 6 Gに示すように、 第 1及び第 2の透明基板 1 3 , 1 6を、 注入さ れる液晶の膜厚を制御するためのスぺーサを介して透明電極 1 1 と透明電極 1 4 とが直交して対向するように配置して貼り合わせ、 その内部に液晶を注入して液 晶層 1 7を形成する。 最後に、 第 1及び第 2の透明基板 1 3 , 1 6の裏面に偏光 板 1 8 , 1 9を形成する。 図中の円 Cで示すように、 互いに直交するス トライブ 状の透明電極 1 1, 1 3が重畳する部分が表示画素電極 1 0 となる。 Then, as shown in FIG. 6G, the first and second transparent substrates 13 and 16 are connected to the transparent electrode 11 and the transparent electrode 11 through a spacer for controlling the thickness of the injected liquid crystal. 14 are arranged so as to be orthogonal to each other and bonded together, and a liquid crystal is injected into the inside to form a liquid crystal layer 17. Finally, polarizing plates 18 and 19 are formed on the back surfaces of the first and second transparent substrates 13 and 16. As shown by the circle C in the figure, stripes that are orthogonal to each other A portion where the transparent electrodes 11 and 13 overlap each other becomes a display pixel electrode 10.
しかる後、 液晶セル 2と有機 E L照明装置 4 2 とを、 液晶セル 2の偏光板 1 8 と有機 E L照明装置 3の第 3の透明基板 2 1 とが対向し、 表示画素電極 1 0の非 形成領域であるマ トリタス状に配置された表示画素電極 1 0間に格子状の捕助電 極 2 3が位置整合するように重ね合わせて固定し、 液晶表示装置 4 1を完成させ る。 この重ね合わせ工程を確実に行なうため、 液晶セル 2及び有機 E L照明装置 4 2の各々適宜の部位に位置合わせマークを設けておく ことが望ましい。  Thereafter, the liquid crystal cell 2 and the organic EL lighting device 42 are connected to each other, and the polarizing plate 18 of the liquid crystal cell 2 and the third transparent substrate 21 of the organic EL lighting device 3 face each other. A grid-like trapping electrode 23 is overlapped and fixed between the display pixel electrodes 10 arranged in a matrix shape, which is a formation area, so as to be aligned, and the liquid crystal display device 41 is completed. In order to surely perform this superposition step, it is desirable to provide an alignment mark at an appropriate portion of each of the liquid crystal cell 2 and the organic EL lighting device 42.
以上説明したように、 本実施形態によれば、 先ず透明電極である陽極 2 2上に 金属材料からなる補助電極 2 3を設けているので、 陽極 2 2の抵抗値を下げるこ とができ、 電圧降下による発光ムラや発熱を防止でき、 きれいな均一発光が可能 なバックライ ト用の有機 E L照明装置 4 2が実現する。 また、 補助電極 2 3を液 晶セル 2の表示画素電極 1 0の非形成領域に設けているので、 捕助電極 2 3の遮 光による有機 E L照明装置 4 2の輝度低下が抑止される。 しかも、 補助電極 2 3 の表面全体を覆うように絶縁膜 4 3を形成しているので、 有機 E L層 2 5の補助 電極 2 3により遮光された部位には電流が流れない構造とされており、 有機 E L 照明装置の低消費電力が実現する。 更に、 絶縁膜 4 3を形成することにより、 補 助電極 2 3の平坦性が悪いことに起因する捕助電極 2 3 と陰極 2 6 とのショー ト やリークを防止することもできる。 以上により、 信頼性が高く、 きれいな均一発 光が可能な低消費電力の有機 E L照明装置を有する液晶表示装置が実現する。  As described above, according to the present embodiment, first, since the auxiliary electrode 23 made of a metal material is provided on the anode 22 that is a transparent electrode, the resistance value of the anode 22 can be reduced. An organic EL lighting device 42 for a backlight that can prevent light emission unevenness and heat generation due to a voltage drop and achieve clean uniform light emission is realized. In addition, since the auxiliary electrode 23 is provided in a region where the display pixel electrode 10 of the liquid crystal cell 2 is not formed, a decrease in luminance of the organic EL lighting device 42 due to light shielding of the capture electrode 23 is suppressed. In addition, since the insulating film 43 is formed so as to cover the entire surface of the auxiliary electrode 23, no current flows in a portion of the organic EL layer 25 shielded by the auxiliary electrode 23. Thus, low power consumption of the organic EL lighting device is realized. Further, by forming the insulating film 43, it is possible to prevent short-circuit and leakage between the auxiliary electrode 23 and the cathode 26 due to the poor flatness of the auxiliary electrode 23. As described above, a liquid crystal display device having an organic EL lighting device with high reliability and low power consumption capable of emitting clean uniform light is realized.
(第 2の実施形態)  (Second embodiment)
以下、 本発明の第 2の実施形態について説明する。 本実施形態では、 液晶表示 装置の有機 E L照明装置の構成が若干異なる点で第 1の実施形態と相違する。 な お、 第 1の実施形態による液晶表示装置と同一の構成部材等については同符号を 記して説明を省略する。  Hereinafter, a second embodiment of the present invention will be described. The present embodiment differs from the first embodiment in that the configuration of the organic EL lighting device of the liquid crystal display device is slightly different. The same components as those of the liquid crystal display device according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
(液晶表示装置の構成)  (Configuration of liquid crystal display device)
図 7は、 本実施形態による液晶表示装置の構成要素である有機 E L照明装置の 構成を示す概略断面図である。  FIG. 7 is a schematic cross-sectional view illustrating the configuration of an organic EL lighting device that is a component of the liquid crystal display device according to the present embodiment.
本実施形態の液晶表示装置 (図 8 Gで示す液晶表示装置 5 1 ) は、 第 1の実施 形態と同様の液晶セル 2と、 液晶セル 2のバックライ トとして用いられる有機 E L照明装置 5 2とを備えて構成されている。 The liquid crystal display device of the present embodiment (the liquid crystal display device 51 shown in FIG. 8G) includes a liquid crystal cell 2 similar to that of the first embodiment and an organic EL device used as a backlight of the liquid crystal cell 2. L lighting device 52 is provided.
有機 E L照明装置 5 2は、 ガラス等からなる第 3の透明基板 2 1の表面に捕助 電極 2 3がパターン形成され、 補助電極 2 3を覆うように第 3の透明基板 2 1上 に I T O等からなる透明電極である陽極 2 2が形成され、 陽極 2 2上の捕助電極 2 3の上方に整合した部位に絶縁膜 5 3が形成され、 絶縁膜 5 3を覆うように陽 極 2 2上に有機 E L層 2 5及び金属電極である陰極 2 6が順次形成され、 酸化バ リ ゥム等からなる吸湿材 2 7を介して陰極 2 6の上方に封止板 2 8が設けられ、 不図示の接着剤により封止板 2 8が固定されて構成されている。  In the organic EL lighting device 52, a trapping electrode 23 is pattern-formed on the surface of a third transparent substrate 21 made of glass or the like, and ITO is formed on the third transparent substrate 21 so as to cover the auxiliary electrode 23. An anode 22 is formed as a transparent electrode made of the same material.An insulating film 53 is formed on the anode 22 at a position aligned above the trapping electrode 23, and the anode 2 is formed so as to cover the insulating film 53. An organic EL layer 25 and a cathode 26 serving as a metal electrode are sequentially formed on 2, and a sealing plate 28 is provided above the cathode 26 via a hygroscopic material 27 made of, for example, vacuum oxide. The sealing plate 28 is fixed by an adhesive (not shown).
絶縁膜 5 3は、 酸化シリ コンやポジ型感光性ポリイミ ド等を材料としてなり、 補助電極 2 3に倣った形状で陽極 2 2を介して補助電極 2 3の上面に位置整合す るように形成されており、 この絶縁膜 4 3により捕助電極 2 3の上面と有機 E L 層 2 5とが隔てられ、 捕助電極 2 3と有機 E L層 2 5 とは捕助電極 2 3の上方で 絶縁されている。  The insulating film 53 is made of silicon oxide, positive photosensitive polyimide, or the like, and is shaped like the auxiliary electrode 23 so as to be aligned with the upper surface of the auxiliary electrode 23 via the anode 22. The insulating film 43 separates the upper surface of the trapping electrode 23 from the organic EL layer 25. The trapping electrode 23 and the organic EL layer 25 are located above the trapping electrode 23. Insulated.
本実施形態のように、 補助電極 2 3の上方で位置整合した部位に絶縁膜 5 3を 形成して捕助電極 2 3 と有機 E L層 2 5とを絶縁することにより、 有機 E L照明 装置 5 2の発光効率を向上させることができる。 更に、 捕助電極 2 3の上方で位 置整合した部位に絶縁膜 5 3を形成することにより、 捕助電極 2 3 と陰極 2 6 と の間が絶縁膜 5 3で隔てられて確実な絶縁がなされ、 上記のショートゃリークが 防止される。  As in the present embodiment, an insulating film 53 is formed at a position aligned above the auxiliary electrode 23 to insulate the trapping electrode 23 from the organic EL layer 25, so that the organic EL lighting device 5 is formed. 2 can improve the luminous efficiency. Further, by forming the insulating film 53 at a position aligned above the trapping electrode 23, the trapping electrode 23 and the cathode 26 are separated by the insulating film 53 to ensure reliable insulation. And the short leak described above is prevented.
(液晶表示装置の製造方法)  (Method of manufacturing liquid crystal display device)
図 8 A〜図 8 Gは、 上述した本実施形態による液晶表示装置の製造方法を工程 順に示す概略断面図である。 ここでは、 本実施形態による液晶表示装置の主要構 成である有機 E L照明装置の製造工程について主に説明する。  8A to 8G are schematic sectional views showing the method for manufacturing the liquid crystal display device according to the above-described present embodiment in the order of steps. Here, the manufacturing process of the organic EL lighting device, which is the main configuration of the liquid crystal display device according to the present embodiment, will be mainly described.
先ず、 図 8 Aに示すように、 ガラス等からなる第 3の透明基板 2 1上に電極材 料として例えばアルミニウム (A 1 ) 膜 3 1 を成膜した後、 A 1膜 3 1を電極形 状にパタ一ニングして捕助電極 2 3をパターン形成する。 このとき、 捕助電極 2 3は、 液晶セル 2 と重ね合わせられた際に表示画素電極 1 0の非形成領域に整合 する部位に位置するように形成される。  First, as shown in FIG. 8A, for example, an aluminum (A 1) film 31 is formed as an electrode material on a third transparent substrate 21 made of glass or the like, and then the A 1 film 31 is formed into an electrode shape. The trapping electrode 23 is patterned to form a pattern. At this time, the capture electrode 23 is formed so as to be located at a position matching the non-formation region of the display pixel electrode 10 when it is overlapped with the liquid crystal cell 2.
続いて、 図 8 Bに示すように、 捕助電極 2 3を覆うように I T O等からなる陽 極 2 2を形成する。 Subsequently, as shown in FIG. 8B, a positive electrode made of ITO or the like covers the auxiliary electrode 23. Form pole 2 2.
続いて、 図 8 Cに示すように、 陽極 2 2上にポジ型感光性ポリイ ミ ド膜 5 4を 塗布成膜した後、 透明基板 2 1の裏面から露光光を照射し、 補助電極 2 3をマス クとしてフォ トリ ソグラフィ一によりポジ型感光性ポリイミ ド膜 5 4を露光し現 像して、 図 8 Dに示すように、 ポジ型感光性ポリイミ ド膜 5 4を加工して電極形 状の絶縁膜 5 3を形成する。  Subsequently, as shown in FIG. 8C, a positive photosensitive polyimide film 54 is applied on the anode 22 to form a film, and then the back surface of the transparent substrate 21 is irradiated with exposure light to form the auxiliary electrode 23. The positive photosensitive polyimide film 54 is exposed and imaged by photolithography using the mask as a mask, and as shown in FIG. 8D, the positive photosensitive polyimide film 54 is processed to form an electrode. An insulating film 53 is formed.
続いて、 酸素プラズマを用いて陽極 2 2の表面を酸化する。 その後、 図 8 Eに 示すように、 絶縁膜 5 3を覆うように陽極 2 2上に蒸着法により有機 E L層 2 5 を成膜する。 ここでは、 陽極 2 2側から正孔注入層として 2 T N A T A、 正孔輸 送層と して α— N P D、 発光層と して A l qを蒸着して、 3層構成に有機 E L層 2 5を形成する。 その後、 有機 E L層 2 5上に L i Fを厚み 0 . 5 n m、 A 1 を 厚み 2 0 0 n mにそれぞれ蒸着することにより、 陰極 2 6を形成する。  Subsequently, the surface of the anode 22 is oxidized using oxygen plasma. Thereafter, as shown in FIG. 8E, an organic EL layer 25 is formed on the anode 22 by an evaporation method so as to cover the insulating film 53. Here, 2 TNATA as the hole injection layer, α-NPD as the hole transport layer, and Alq as the light emitting layer are deposited from the anode 22 side, and the organic EL layer 25 is formed into a three-layer structure. Form. Thereafter, a cathode 26 is formed on the organic EL layer 25 by depositing LiF to a thickness of 0.5 nm and A1 to a thickness of 200 nm.
続いて、 図 8 Fに示すように、 酸化バリ ウム等からなる吸湿材 2 7が貼付され た封止板 2 8を用い、 乾燥窒素雰囲気下にてエポキシ榭脂系接着剤にて第 3のガ ラス基板 2 1 と封止板 2 8 とを接着することにより封止を行なう。 このようにし て、 本実施形態のバックライ ト用の有機 E L照明装置 5 2を完成させる。 この有 機 E L照明装置 5 2は緑色に発光するものである。  Subsequently, as shown in FIG. 8F, using a sealing plate 28 to which a hygroscopic material 27 made of barium oxide or the like is stuck, a third epoxy resin-based adhesive was used in a dry nitrogen atmosphere. The sealing is performed by bonding the glass substrate 21 and the sealing plate 28. Thus, the organic EL lighting device 52 for backlight of the present embodiment is completed. This organic EL lighting device 52 emits green light.
液晶セル 2は、 公知の方法より製造する。 例えば、 ガラス等からなる第 1の透 明基板 1 3の表面には、 I T O等からなるス トライプ状の複数の透明電極 1 1を パターン形成した後、 透明電極 1 1を覆うように配向膜 1 2を形成し、 ガラス等 からなる第 2の透明基板 1 6の表面には、 I T O等からなり透明電極 1 1 と直交 するス トライプ状の複数の透明電極 1 4を形成した後、 透明電極 1 4を覆うよう に配向膜 1 5を形成する。'  The liquid crystal cell 2 is manufactured by a known method. For example, a plurality of strip-shaped transparent electrodes 11 made of ITO or the like are patterned on the surface of a first transparent substrate 13 made of glass or the like, and then an alignment film 1 is formed so as to cover the transparent electrodes 11. After forming a plurality of strip-shaped transparent electrodes 14 made of ITO or the like and orthogonal to the transparent electrodes 11 on the surface of the second transparent substrate 16 made of glass or the like, the transparent electrodes 1 An alignment film 15 is formed so as to cover 4. '
そして、 図 8 Gに示すように、 第 1及び第 2の透明基板 1 3 , 1 6を、 注入さ れる液晶の膜厚を制御するためのスぺーサを介して透明電極 1 1 と透明電極 1 4 とが直交して対向するように配置して貼り合わせ、 その内部に液晶を注入して液 晶層 1 7を形成する。 最後に、 第 1及び第 2の透明基板 1 3 , 1 6の裏面に偏光 板 1 8 , 1 9を形成する。 図中の円 Cで示すように、 互いに直交するス トライブ 状の透明電極 1 1 , 1 3が重畳する部分が表示画素電極 1 0となる。 しかる後、 液晶セル 2と有機 E L照明装置 5 2 とを、 液晶セル 2の偏光板 1 8 と有機 E L照明装置 3の第 3の透明基板 2 1 とが対向し、 表示画素電極 1 0の非 形成領域であるマトリタス状に配置された表示画素電極 1 0間に格子状の捕助電 極 2 3が位置整合するように重ね合わせて固定し、 液晶表示装置 5 1を完成させ る。 この重ね合わせ工程を確実に行なうため、 液晶セル 2及ぴ有機 E L照明装置 5 2の各々適宜の部位に位置合わせマークを設けておく ことが望ましい。 Then, as shown in FIG. 8G, the first and second transparent substrates 13 and 16 are connected to the transparent electrode 11 and the transparent electrode 11 through a spacer for controlling the thickness of the injected liquid crystal. 14 are arranged so as to be orthogonal to each other and bonded together, and a liquid crystal is injected into the inside to form a liquid crystal layer 17. Finally, polarizing plates 18 and 19 are formed on the back surfaces of the first and second transparent substrates 13 and 16. As shown by a circle C in the figure, a portion where the stripe-shaped transparent electrodes 11 and 13 orthogonal to each other overlap is the display pixel electrode 10. Thereafter, the liquid crystal cell 2 and the organic EL lighting device 52 are opposed to each other, and the polarizing plate 18 of the liquid crystal cell 2 and the third transparent substrate 21 of the organic EL lighting device 3 face each other. A grid-like trapping electrode 23 is overlapped and fixed between the display pixel electrodes 10 arranged in a matrix, which is a formation area, so as to be aligned, and a liquid crystal display device 51 is completed. In order to surely perform this superposition process, it is desirable to provide an alignment mark at an appropriate portion of each of the liquid crystal cell 2 and the organic EL lighting device 52.
以上説明したように、 本実施形態によれば、 先ず透明電極である陽極 2 2内に 金属材料からなる捕助電極 2 3を設けているので、 陽極 2 2の抵抗値を下げるこ とができ、 電圧降下による発光ムラや発熱を防止でき、 きれいな均一発光が可能 な信頼性の良いバックライ ト用の有機 E L照明装置 5 2が実現する。 また、 捕助 電極 2 3を液晶セル 2の表示画素電極 1 0の非形成領域に設けているので、 捕助 電極 2 3の遮光による有機 E L照明装置 5 2の輝度低下が抑止される。 しかも、 補助電極 2 3の上方に絶縁膜 5 3を形成しているので、 有機 E L層 2 5の補助電 極 2 3により遮光された部位には電流が流れない構造とされており、 有機 E L照 明装置 5 2の低消費電力が実現する。 更に、 絶縁膜 5 3を形成することにより、 補助電極 2 3の平坦性が悪いことに起因する捕助電極 2 3 と陰極 2 6 とのショー トゃリークを防止することもできる。 以上により、 信頼性が高く、 きれいな均一 発光が可能な低消費電力の有機 E L照明装置を有する液晶表示装置が実現する。  As described above, according to the present embodiment, first, the auxiliary electrode 23 made of a metal material is provided in the anode 22 which is a transparent electrode, so that the resistance value of the anode 22 can be reduced. In addition, it is possible to realize a reliable OLED lighting device 52 for a backlight, which can prevent uneven light emission and heat generation due to a voltage drop, and can perform clean uniform light emission. In addition, since the capture electrode 23 is provided in a region where the display pixel electrode 10 of the liquid crystal cell 2 is not formed, a decrease in the brightness of the organic EL lighting device 52 due to the shielding of the capture electrode 23 is suppressed. In addition, since the insulating film 53 is formed above the auxiliary electrode 23, no current flows in the portion of the organic EL layer 25 that is shielded from light by the auxiliary electrode 23. The low power consumption of the lighting device 52 is realized. Further, by forming the insulating film 53, it is also possible to prevent short leakage between the auxiliary electrode 23 and the cathode 26 due to poor flatness of the auxiliary electrode 23. As described above, a liquid crystal display device having an organic EL lighting device with high reliability and low power consumption capable of emitting clean uniform light is realized.
産業上の利用可能性  Industrial applicability
本発明によれば、 バックライ トの発光効率を向上させて低消費電力を実現し、 補助電極と第 2の電極とのショートやリークの発生を防止して、 信頼性が高く、 きれいな均一発光が可能な低消費電力の有機 E L照明装置を有する液晶表示装置 が実現する。  ADVANTAGE OF THE INVENTION According to this invention, the luminous efficiency of a backlight is improved, low power consumption is implement | achieved, short circuit and leak of an auxiliary electrode and a 2nd electrode are prevented from occurring, and high reliability and clean uniform light emission are performed. A liquid crystal display device having a possible low power consumption organic EL lighting device is realized.

Claims

請 求 の 範 囲 The scope of the claims
1 . 液晶層を有し、 複数の表示画素が形成されてなる液晶セルと、 1. a liquid crystal cell having a liquid crystal layer and comprising a plurality of display pixels;
前記液晶層をその背後から照明するための有機 E L層を透明電極である第 1の 電極と金属電極である第 2の電極とにより挟持してなり、 前記液晶セルと前記第 1の電極側で対向するように配置される照明手段と、  An organic EL layer for illuminating the liquid crystal layer from behind is sandwiched between a first electrode, which is a transparent electrode, and a second electrode, which is a metal electrode. Lighting means arranged to face each other;
前記表示画素の非形成領域に整合する部位に設けられ、 前記第 1の電極と電気 的に接続されてなる補助電極と、  An auxiliary electrode provided at a position matching the non-formation region of the display pixel and electrically connected to the first electrode;
前記有機 E L層の表面において前記補助電極の形成領域に整合する部位に設け られ、 前記有機 E L層と前記補助電極とを少なく とも部分的に絶縁する絶縁膜と を含むことを特徴とする液晶表示装置。  A liquid crystal display, comprising: an insulating film provided on a surface of the organic EL layer at a position matching the region where the auxiliary electrode is formed, and at least partially insulating the organic EL layer and the auxiliary electrode. apparatus.
2 . 前記絶縁膜は、 前記第 1の電極上で前記捕助電極の少なく とも上面を覆うよ うに形成されてなることを特徴とする請求の範囲 1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the insulating film is formed on the first electrode so as to cover at least an upper surface of the trapping electrode.
3 . 前記絶縁膜は、 前記第 1の電極上で前記捕助電極の表面全体を覆うように形 成されてなることを特徴とする請求の範囲 1に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein the insulating film is formed on the first electrode so as to cover the entire surface of the capture electrode.
4 . 前記絶縁膜は、 前記第 1の電極内に埋設されてなる前記捕助電極に整合する 部位に、 前記第 1の電極を隔てて形成されてなることを特徴とする請求の範囲 1 に記載の液晶表示装置。  4. The insulating film according to claim 1, wherein the insulating film is formed at a position matching the trapping electrode embedded in the first electrode with the first electrode interposed therebetween. The liquid crystal display device according to the above.
5 . 前記絶縁膜は、 絶縁樹脂を材料とするものであることを特徴とする請求の範 囲 1に記載の液晶表示装置。  5. The liquid crystal display device according to claim 1, wherein the insulating film is made of an insulating resin.
6 . 透明基板の表面に透明電極である第 1の電極、 電極材料及び絶縁樹脂を順次 形成する工程と、  6. a step of sequentially forming a first electrode which is a transparent electrode, an electrode material, and an insulating resin on the surface of the transparent substrate;
リ ソグラフィ一により前記絶縁樹脂を加工して、 電極形状の絶縁膜を形成する 工程と、  Processing the insulating resin by lithography to form an electrode-shaped insulating film;
前記絶縁膜をマスクとして前記電極材料を加工して、 補助電極をパターン形成 する工程と、  Processing the electrode material using the insulating film as a mask to form a pattern of an auxiliary electrode;
前記第 1の電極上に、 前記絶縁膜を介して前記補助電極を覆うように有機 E L 層及び金属電極である第 2の電極を順次形成する工程と、  Sequentially forming an organic EL layer and a second electrode that is a metal electrode on the first electrode so as to cover the auxiliary electrode with the insulating film interposed therebetween;
液晶層を有して複数の表示画素が形成されてなる液晶セルと前記透明基板の裏 面とを、 前記捕助電極が前記表示画素の非形成領域に整合する部位に位置するよ うに対向配置する工程と A liquid crystal cell having a liquid crystal layer and a plurality of display pixels formed thereon and the back of the transparent substrate And disposing the surface facing each other such that the trapping electrode is located at a position matching the non-forming region of the display pixel.
を含むことを特徴とする液晶表示装置の製造方法。  A method for manufacturing a liquid crystal display device, comprising:
7 . 透明基板の表面に透明電極である第 1の電極及び電極材料を順次形成するェ 程と、  7. a step of sequentially forming a first electrode, which is a transparent electrode, and an electrode material on the surface of the transparent substrate;
前記電極材料を加工して捕助電極をパターン形成する工程と、  Processing the electrode material and forming a pattern of the capture electrode,
前記捕助電極を覆うように前記第 1の電極上に絶縁材料を形成する工程と、 前記絶縁材料を加ェし、 前記補助電極の形状に倣つて当該捕助電極を覆う絶縁 膜をパターン形成する工程と、  Forming an insulating material on the first electrode so as to cover the trapping electrode; applying the insulating material to form an insulating film covering the trapping electrode according to the shape of the auxiliary electrode; The process of
前記第 1の電極上に、 前記絶縁膜を介して前記補助電極を覆うように有機 E L 層及び金属電極である第 2の電極を順次形成する工程と、  Sequentially forming an organic EL layer and a second electrode that is a metal electrode on the first electrode so as to cover the auxiliary electrode with the insulating film interposed therebetween;
液晶層を有して複数の表示画素が形成されてなる液晶セルと前記透明基板の裏 面とを、 前記補助電極が前記表示画素の非形成領域に整合する部位に位置するよ うに対向配置する工程と  A liquid crystal cell having a liquid crystal layer and having a plurality of display pixels formed thereon and a back surface of the transparent substrate are disposed so as to face each other such that the auxiliary electrode is located at a position where the auxiliary electrode is aligned with a region where the display pixels are not formed. Process and
を含むことを特徴とする液晶表示装置の製造方法。  A method for manufacturing a liquid crystal display device, comprising:
8 . 透明基板の表面に補助電極をパターン形成する工程と、  8. a step of patterning an auxiliary electrode on the surface of the transparent substrate;
前記補助電極を覆う ように、 前記透明基板上に透明電極である第 1の電極及び 絶縁樹脂を順次形成する工程と、  Forming a first electrode that is a transparent electrode and an insulating resin on the transparent substrate sequentially so as to cover the auxiliary electrode;
前記透明基板の裏面から照射するリ ソグラフィ一により、 前記補助電極をマス クと して当該補助電極に倣った形状に前記絶縁樹脂を加工し、 前記第 1 の電極上 の前記補助電極の形成領域に整合する部位に絶縁膜を形成する工程と、  The insulating resin is processed into a shape following the auxiliary electrode using the auxiliary electrode as a mask by lithography irradiating from the back surface of the transparent substrate, and a region for forming the auxiliary electrode on the first electrode is formed. Forming an insulating film in a portion matching the
前記絶縁膜を覆うように前記第 1の電極上に有機 E L層及び金属電極である第 2の電極を順次形成する工程と、 .  Sequentially forming an organic EL layer and a second electrode which is a metal electrode on the first electrode so as to cover the insulating film;
液晶層を有して複数の表示画素が形成されてなる液晶セルと前記透明基板の裏 面とを、 前記捕助電極が前記表示画素の非形成領域に整合する部位に位置するよ うに対向配置する工程と  A liquid crystal cell having a plurality of display pixels having a liquid crystal layer and a back surface of the transparent substrate are disposed so as to face each other such that the trapping electrode is located at a position matching the non-formation region of the display pixels. Process and
を含むことを特徴とする液晶表示装置の製造方法。  A method for manufacturing a liquid crystal display device, comprising:
PCT/JP2004/006300 2004-04-30 2004-04-30 Liquid crystal display and process for fabricating the same WO2005106573A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/006300 WO2005106573A1 (en) 2004-04-30 2004-04-30 Liquid crystal display and process for fabricating the same
TW093112448A TWI251700B (en) 2004-04-30 2004-04-30 Liquid crystal display and process for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/006300 WO2005106573A1 (en) 2004-04-30 2004-04-30 Liquid crystal display and process for fabricating the same

Publications (1)

Publication Number Publication Date
WO2005106573A1 true WO2005106573A1 (en) 2005-11-10

Family

ID=35241823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006300 WO2005106573A1 (en) 2004-04-30 2004-04-30 Liquid crystal display and process for fabricating the same

Country Status (2)

Country Link
TW (1) TWI251700B (en)
WO (1) WO2005106573A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2419023A (en) * 2004-10-07 2006-04-12 Dainippon Printing Co Ltd Luminescence display panel
WO2007102103A1 (en) * 2006-03-09 2007-09-13 Philips Intellectual Property & Standards Gmbh Lighting elements with segmented electrodes
WO2009001241A1 (en) * 2007-06-25 2008-12-31 Koninklijke Philips Electronics N.V. Organic functional device and method of manufacturing same
WO2010025696A2 (en) * 2008-09-04 2010-03-11 Osram Opto Semiconductors Gmbh Method for producing an organic radiation-emitting component and organic radiation-emitting component
WO2010089680A1 (en) * 2009-02-05 2010-08-12 Philips Intellectual Property & Standards Gmbh Electroluminescent device
JP2011249075A (en) * 2010-05-25 2011-12-08 Nec Lighting Ltd Method of manufacturing organic electroluminescent lighting device
WO2013004746A1 (en) * 2011-07-04 2013-01-10 Commissariat à l'énergie atomique et aux énergies alternatives Photodiode device containing a capacitor for controlling dark current or leakage current
RU2507638C2 (en) * 2008-10-02 2014-02-20 Конинклейке Филипс Электроникс Н.В. Oled device with covered shunting line
JP2015135821A (en) * 2015-03-02 2015-07-27 Necライティング株式会社 Organic electroluminescence illumination device and method for manufacturing the same
WO2016034533A1 (en) * 2014-09-04 2016-03-10 Osram Oled Gmbh Optoelectronic component, and method for producing an optoelectronic component

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752401B (en) * 2008-12-11 2013-09-18 奇晶光电股份有限公司 Double-sided display device and manufacturing method thereof
CN103024960A (en) * 2012-11-30 2013-04-03 昆山维信诺显示技术有限公司 Organic light emitting diode (OLED) lighting panel, preparation method and OLED lighting device
KR101854701B1 (en) * 2016-05-31 2018-05-04 엘지디스플레이 주식회사 Organic light emitting device and method of manufacturing the same
CN109659446A (en) * 2018-12-21 2019-04-19 固安翌光科技有限公司 High reliability OLED screen body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306668A (en) * 1996-05-13 1997-11-28 Hokuriku Electric Ind Co Ltd El element and its manufacture
JPH1062789A (en) * 1996-08-23 1998-03-06 Sharp Corp Liquid crystal display device and its production
JPH11339958A (en) * 1998-05-22 1999-12-10 Casio Comput Co Ltd Manufacture of electroluminescent element
JP2001015268A (en) * 1999-06-29 2001-01-19 Nippon Seiki Co Ltd Organic electroluminescence element and its manufacture
JP2001338770A (en) * 2000-05-26 2001-12-07 Tohoku Pioneer Corp Luminescent display device and its manufacturing method
JP2002156633A (en) * 2000-11-20 2002-05-31 Stanley Electric Co Ltd Liquid crystal display device with illumination, and method for manufacturing surface light emitting element light source
JP2003257663A (en) * 2002-03-04 2003-09-12 Rohm Co Ltd Organic el display panel and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306668A (en) * 1996-05-13 1997-11-28 Hokuriku Electric Ind Co Ltd El element and its manufacture
JPH1062789A (en) * 1996-08-23 1998-03-06 Sharp Corp Liquid crystal display device and its production
JPH11339958A (en) * 1998-05-22 1999-12-10 Casio Comput Co Ltd Manufacture of electroluminescent element
JP2001015268A (en) * 1999-06-29 2001-01-19 Nippon Seiki Co Ltd Organic electroluminescence element and its manufacture
JP2001338770A (en) * 2000-05-26 2001-12-07 Tohoku Pioneer Corp Luminescent display device and its manufacturing method
JP2002156633A (en) * 2000-11-20 2002-05-31 Stanley Electric Co Ltd Liquid crystal display device with illumination, and method for manufacturing surface light emitting element light source
JP2003257663A (en) * 2002-03-04 2003-09-12 Rohm Co Ltd Organic el display panel and its manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2419023B (en) * 2004-10-07 2008-08-27 Dainippon Printing Co Ltd Luminescence display panel
US7482745B2 (en) 2004-10-07 2009-01-27 Dai Nippon Printing Co., Ltd. Luminescence display panel displaying a predetermined pattern
GB2419023A (en) * 2004-10-07 2006-04-12 Dainippon Printing Co Ltd Luminescence display panel
WO2007102103A1 (en) * 2006-03-09 2007-09-13 Philips Intellectual Property & Standards Gmbh Lighting elements with segmented electrodes
WO2009001241A1 (en) * 2007-06-25 2008-12-31 Koninklijke Philips Electronics N.V. Organic functional device and method of manufacturing same
JP2012502411A (en) * 2008-09-04 2012-01-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Organic light emitting device manufacturing method and organic light emitting device
WO2010025696A2 (en) * 2008-09-04 2010-03-11 Osram Opto Semiconductors Gmbh Method for producing an organic radiation-emitting component and organic radiation-emitting component
DE102008045948A1 (en) * 2008-09-04 2010-03-11 Osram Opto Semiconductors Gmbh Method for producing an organic radiation-emitting component and organic radiation-emitting component
WO2010025696A3 (en) * 2008-09-04 2010-07-29 Osram Opto Semiconductors Gmbh Method for producing an organic radiation-emitting component and organic radiation-emitting component
US8927325B2 (en) 2008-09-04 2015-01-06 Osram Opto Semiconductor Gmbh Method for producing an organic radiation-emitting component and organic radiation-emitting component
RU2507638C2 (en) * 2008-10-02 2014-02-20 Конинклейке Филипс Электроникс Н.В. Oled device with covered shunting line
CN102308406A (en) * 2009-02-05 2012-01-04 皇家飞利浦电子股份有限公司 Electroluminescent device
US8334651B2 (en) 2009-02-05 2012-12-18 Koninklijke Philips Electronics N.V. Electroluminescent device with electrical shunt
WO2010089680A1 (en) * 2009-02-05 2010-08-12 Philips Intellectual Property & Standards Gmbh Electroluminescent device
JP2011249075A (en) * 2010-05-25 2011-12-08 Nec Lighting Ltd Method of manufacturing organic electroluminescent lighting device
WO2013004746A1 (en) * 2011-07-04 2013-01-10 Commissariat à l'énergie atomique et aux énergies alternatives Photodiode device containing a capacitor for controlling dark current or leakage current
FR2977719A1 (en) * 2011-07-04 2013-01-11 Commissariat Energie Atomique PHOTODIODE-TYPE DEVICE CONTAINING A CAPACITY FOR CONTROLLING DARK OR LEAKAGE CURRENT
US9142789B2 (en) 2011-07-04 2015-09-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photodiode device containing a capacitor for controlling dark current or leakage current
WO2016034533A1 (en) * 2014-09-04 2016-03-10 Osram Oled Gmbh Optoelectronic component, and method for producing an optoelectronic component
US10177340B2 (en) 2014-09-04 2019-01-08 Osram Oled Gmbh Optoelectronic device and method of producing an optoelectronic device
JP2015135821A (en) * 2015-03-02 2015-07-27 Necライティング株式会社 Organic electroluminescence illumination device and method for manufacturing the same

Also Published As

Publication number Publication date
TWI251700B (en) 2006-03-21
TW200535516A (en) 2005-11-01

Similar Documents

Publication Publication Date Title
KR101747737B1 (en) Luminescence dispaly panel and fabricating method of the same
US6624572B1 (en) Organic electroluminescence display panel and method for sealing the same
US9312316B2 (en) Organic light emitting diode display and manufacturing method of the same
US7888862B2 (en) Organic electroluminescent display device
US8044582B2 (en) Organic display apparatus comprising moisture propagation preventing means
JP4448148B2 (en) Organic light emitting device
JP2004006338A (en) Organic electroluminescent element and its manufacturing process
US8018143B2 (en) Organic electroluminescent display device and method of manufacturing the same
JP2007123240A (en) Manufacturing method of display device and display device
WO2005106573A1 (en) Liquid crystal display and process for fabricating the same
TW201017877A (en) Organic light emitting diode display device and manufacturing method thereof
US6781293B2 (en) Organic EL device with high contrast ratio and method for manufacturing the same
US7233020B2 (en) Design for an organic light-emitting display that eliminates deterioration of the emission layer due to outgassing from an underlying layer
KR20110035049A (en) Organic electro-luminescence device and method for fabricating of the same
JP2003092192A (en) Organic electroluminescent display device and method for manufacturing the same
KR100681022B1 (en) Organic Electro Luminescence Display Device And Fabricating Method Thereof
WO2004107821A1 (en) Organic electroluminescent display panel
JP5063294B2 (en) Light emitting device and manufacturing method thereof
JP2008243664A (en) Manufacturing method of organic el element
JP3531597B2 (en) Organic electroluminescent device
KR100631121B1 (en) Organic Electro Luminescence Display Device And Method For Fabricating Thereof
KR101427667B1 (en) organic electro-luminescent device
JP5330655B2 (en) Organic EL display device
KR20100001103A (en) Fabricating method of luminescence dispaly panel
JP2003007474A (en) Organic electric field light emitting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase