WO2005105417A1 - Hohlstruktur aus faserverstärktem kunststoff mit lasteinleitungselementen - Google Patents

Hohlstruktur aus faserverstärktem kunststoff mit lasteinleitungselementen Download PDF

Info

Publication number
WO2005105417A1
WO2005105417A1 PCT/DE2005/000859 DE2005000859W WO2005105417A1 WO 2005105417 A1 WO2005105417 A1 WO 2005105417A1 DE 2005000859 W DE2005000859 W DE 2005000859W WO 2005105417 A1 WO2005105417 A1 WO 2005105417A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow structure
load introduction
structure according
elements
fiber
Prior art date
Application number
PCT/DE2005/000859
Other languages
English (en)
French (fr)
Inventor
Werner Hufenbach
Olaf Helms
Original Assignee
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Dresden filed Critical Technische Universität Dresden
Publication of WO2005105417A1 publication Critical patent/WO2005105417A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/127The tensile members being made of fiber reinforced plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/20Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor of articles having inserts or reinforcements ; Handling of inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/446Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/75Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft

Definitions

  • the invention relates to a hollow structure made of fiber-reinforced plastic in lightweight construction, in particular a hollow shaft or axis with structural elements that are usually connected to shafts and axes, such as bearings, bearing rings, shells, gear wheels, sleeves, coupling parts, pulleys, wheels, cranks or Cam discs made of metal, ceramic or plastic and a process for their production.
  • Hollow structures with load introduction elements for the introduction, absorption and transmission of forces and / or moments can be found in vehicle construction, in aerospace technology and in many other areas of mechanical engineering. Their lightweight construction is often of particular importance in these areas. For example, light, heavy-duty transmission shafts can not only reduce system masses but also reduce moments of inertia, which contributes to better dynamics of drive systems.
  • Hollow structures made of fiber-reinforced plastics are manufactured in various ways. Such hollow structures can e.g. B. from open fiber composite shell structures are glued together. On the other hand, the winding technology is used to impregnate fibers and semi-finished textile fibers with synthetic resin and then place or wind them on a mold core. In the hose blowing process, tubular textile preforms are placed in a mold, expanded with a blow hose and pressed against the inner wall of the mold until the fiber composite consolidation is complete.
  • Gluing is used for joining fiber-reinforced plastics with the same material or with metals.
  • special pasty structural adhesives are offered on the market which are used in general mechanical engineering, in automobile construction and in particular in aircraft construction. Such adhesives are also used for shaft-hub, sleeve and other pipe connections such.
  • B. used in bicycle frames. Conventional metallic fasteners such as rivets and screws are used for.
  • B. used in aircraft construction for joining aluminum with carbon fiber reinforced plastic, although they lead to significant notch stress concentrations in fiber composite components.
  • the cylinder press fit is suitable for making lightly stressed shaft-hub connections.
  • load introduction elements usually does not result in a suitable form fit for the transmission of high loads.
  • the positioning and alignment of the load introduction elements is difficult.
  • Post-processing is often necessary. Connecting elements such as rivets and screws weaken the fiber composite structure.
  • the object of the invention is to provide a hollow structure made of fiber-reinforced plastic in a mixed construction with load introduction elements and a method for its production, in which the load introduction elements are firmly and precisely connected to the hollow structure and are included in the production from the outset and do not have to be added subsequently.
  • the object is achieved in that the hollow structure is molded onto the inner contours of the load introduction elements.
  • the load introduction elements are placed in a molding box and a preform of the hollow structure in an expandable, flexible, radially drapable state is applied with precise contours to the inner surfaces of the tools and to the exposed contact surfaces of the load introduction elements and consolidated in this state under internal pressure.
  • the preform is preferably a tubular, radially drapable, semi-finished textile, e.g. B. a braided or woven hose or a circular knitted fabric. It can also be produced from wound fibers or semi-finished flat products or it is sewn from various semi-finished textile products.
  • the textile semi-finished products consist of endlessly processed reinforcing fibers (e.g. glass fibers, carbon fibers, aramid fibers, basalt fibers).
  • the preform is embedded in a matrix made of thermoplastic materials or reactive resins.
  • reaction resin matrix can be introduced in different ways. Pre-impregnated semi-finished textile products can be used, it can be laminated by hand or known infusion processes, such as resign transfer molding (RTM).
  • RTM resign transfer molding
  • a preform with a thermoplastic matrix can be made from hybrid yarns or hybrid textile semi-finished products with a finely divided thermoplastic component.
  • the polymer is briefly thermally plasticized for insertion into the shape and molding onto the load introduction elements.
  • contour-accurate shaping of the fiber composite hollow structure on the mold inner walls of the tool and on the inner contours of the load introduction elements can be ensured by means of a pressurized blow hose within the hollow structure, by centrifugal force in a rotating tool or by an elastic mold core inside the hollow structure.
  • the synthetic resin matrix also causes the fiber composite structure to adhere to the load introduction elements.
  • Surface pretreatment of the load transfer elements or an additional adhesive material application can improve the material bond.
  • Non-circular inner contours are preferably to be provided in order to transmit torques.
  • the hollow structure can laterally encompass the load introduction elements for transmitting axial forces, e.g. B. the curves and possibly parts of the side shoulders of the inner ring of a rolling bearing. (At least the lateral curves or lateral phases on other load introduction elements are understood as part of the contour of the arm.)
  • axial forces e.g. B. the curves and possibly parts of the side shoulders of the inner ring of a rolling bearing.
  • At least the lateral curves or lateral phases on other load introduction elements are understood as part of the contour of the arm.
  • To reinforce the axial positive locking it is possible to use the To change the inside diameter of the load introduction element across its width, e.g. B. by circumferential grooves or grooves.
  • Load introduction elements made of a wide variety of materials, in particular made of metal, but also ceramic or plastic, including polymeric functional material such as elastomer material, can be connected.
  • Consolidation at a higher temperature and subsequent cooling, depending on the prevailing thermal expansion coefficient, can also result in a non-positive press connection.
  • a pairing of aluminum hub and carbon fiber reinforced plastic shaft results in such a press connection in the cooling process, for example.
  • the type of fiber reinforcement of the hollow structure should preferably be matched to the mechanical stress conditions prevailing during operation.
  • a high proportion of threads with axial alignment as possible is necessary for structures subject to tensile and bending loads. Structures subject to torsion require a substantial +/- 45 ° thread orientation. Combined loads are best absorbed with a combination of fiber orientations that is appropriate to the force flow.
  • suitable preforms are u. a. Bi-axial and tri-axial braided hoses, fabric hoses with elastic circumferential threads or semi-finished textile products such as fabrics and technical uni-directional knitted fabrics to choose from. Carbon, aramid and glass fibers are used to transmit high forces.
  • the enclosing load transfer elements distribute external loads over the entire circumference of the hollow structure, depending on the material. Furthermore, the high-quality positive, non-positive and material connection enables the introduction of particularly high loads, so that the theoretical strength of the fiber composite structure can be largely exploited. Due to the diverse possibilities of preform design, stress concentrations under individual load introduction elements can be compensated for well. If necessary, the introduction of the load must be facilitated by constructive measures on the load introduction elements.
  • the hollow structure according to the invention is preferably suitable for the production of hollow shafts, such as, for. B. a gear shaft.
  • All load introduction elements which are usually connected to shafts and axles, such as bearings, bearing rings, shells, gears, sleeves, coupling parts, pulleys, wheels, cranks or cam disks, both centrally and eccentrically or via a cantilever arm, such as one Crankshaft with greater eccentricity.
  • the diameter of the hollow shaft can change from longitudinal section to longitudinal section. Step-shaped rounded or conical transitions can be implemented within wide limits due to the high radial drapability of certain textile semi-finished products.
  • roller bearings can be arranged in the middle section of a shaft, the diameter of which is smaller than the diameter at both shaft ends.
  • the fiber composite material used for the shaft dampens the vibrations introduced by the load introduction elements. The positioning of all load introduction elements during manufacture in the molding tool results in precise rework-free components.
  • the hollow structure 1 is a hollow shaft. It consists of a fiber-reinforced plastic. Two ball bearings, a pulley and a gearwheel are attached to the hollow shaft as load introduction elements 9.
  • the hollow shaft transmits the torque between the pulley and the gearwheel, and it transmits the transverse forces and bending moments introduced by these two outer load introduction elements 9.
  • Fig. 1 the manufacture of a similar gear shaft is shown.
  • the load introduction elements 9 are inserted in a two-part mold 10. An approximately tubular textile preform 2 made of a hybrid yarn (see FIG. 5) is then inserted. A blow hose 11 is inserted into the preform 2. An internal pressure p is generated with compressed air. Then the mold 10 is heated. The thermoplastic fibers soften and fuse to form the matrix. The internal pressure p presses the preform 2 on all sides against the inner contours of the load introduction elements
  • the preform 2 is molded onto the inner contours of the load introduction elements 9, both on their inner connecting surfaces and on their lateral collars, insofar as they extend to the adjacent inner contours of the molding tool
  • the molding tool is cooled under the pressure p, the plastic matrix thereby solidifying again.
  • the gear shaft can be removed. No rework is required.
  • FIG. 3 a section from FIG. 1 shows how the hollow shaft under the right ball bearing and the pulley and on the section between the two is increased in wall thickness by a local textile reinforcement 7. This means that the larger mechanical loads present in this area can be better absorbed, without therefore reinforcing the entire hollow shaft.
  • adhesive 12 is introduced between the pulley and the hollow structure 1, which improves the material bond.
  • FIG. 4 shows the hollow structure 1.
  • the preform 2 required for this is assembled in sections by sewing technology. As a result, even large eccentricities or cantilevers can be realized relatively easily. Various technical knitted fabrics can be stretched and shaped within very wide limits.
  • FIG. 5 shows the composition of a hybrid yarn 6 as used for the production of the preform 2 in FIG. 1.
  • the hybrid yarn 6 consists of a bundle of reinforcing fibers 4 and thermoplastic fibers 5.
  • the hollow structure 1 with the load introduction elements 9 is a spatial structure (space frame component).
  • the hollow structure is curved and slightly increases in diameter from left to right.
  • Flanges are provided on the end faces as load introduction elements. Their inner contact surfaces have circumferential grooves 3.
  • the changing inside diameter of the flange additionally creates a strong axial form fit.
  • a fastening element is provided as a further load introduction element 9 approximately in the middle of the structure. It sits in a groove in the hollow structure and can transmit radial and axial forces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Die Erfindung betrifft eine Hohlstruktur (1) aus faserverstärktem Kunststoff in Leichtbauweise, insbesondere eine Hohlwelle bzw. -achse mit Konstruktionselementen, die üblicherweise mit Wellen und Achsen verbundenen sind, wie Lager, Lagerringe, -schalen, Zahnräder, Muffen, Kupplungsteile, Riemenscheiben, Räder, Kurbeln oder Kurvenscheiben aus Metall, Keramik oder Kunststoff und ein Verfahren zu ihrer Fertigung. Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die Hohlstruktur an die Innenkonturen der Lasteinleitungselemente angeformt ist. Zur Herstellung werden die Lasteinleitungselemente in einen Formkasten eingelegt und eine Preform (2) der Hohlstruktur in einem dehnfähigen, flexiblen, radial drapierbaren Zustand konturgenau an die Werkzeuginnenflächen und an die freiliegenden Kontaktflächen der Lasteinleitungselemente angelegt und in diesem Zustand unter Innendruck konsolidiert. Die Vorteile bestehen dabei nicht nur in der Gewichtsersparnis durch die Hybridbauweise, sondern auch in der hohen Flexibilität der Gestaltungsmöglichkeiten. Beispielsweise können Wälzlager im Mittelabschnitt einer Welle angeordnet werden, deren Durchmesser kleiner ist als die Durchmesser an beiden Wellenenden. Der für die Welle eingesetzte Faserverbundwerkstoff dämpft die von den Lasteinleitungselementen eingetragenen Schwingungen. Durch das Positionieren aller Lasteinleitungselemente bei der Herstellung im Formwerkzeug entstehen genaue nacharbeitsfreie Bauteile.

Description

Hohlstruktur aus faserverstärktem Kunststoff mit Lasteinleitungselementen
Die Erfindung betrifft eine Hohlstruktur aus faserverstärktem Kunststoff in Leichtbauweise, insbesondere eine Hohlwelle bzw. -achse mit Konstruktionselementen, die üblicherweise mit Wellen und Achsen verbundenen sind, wie Lager, Lagerringe, -schalen, Zahnräder, Muffen, Kupplungsteile, Riemenscheiben, Räder, Kurbeln oder Kurvenscheiben aus Metall, Keramik oder Kunststoff und ein Verfahren zu ihrer Fertigung.
Hohlstrukturen mit Lasteinleitungselementen zur Einleitung, Aufnahme und Übertragung von Kräften oder/und von Momenten sind im Fahrzeugbau, in der Luft- und Raumfahrttechnik und in vielen weiteren Bereichen des Maschinenbaus anzutreffen. Ihre Leichtbauweise ist in diesen Bereichen oft von besonderer Bedeutung. Beispielsweise lassen sich durch leichte hochbelastbare Getriebewellen nicht nur Systemmassen reduzieren sondern auch Massenträgheitsmomente verringern, was zu einer besseren Dynamik von Antriebssystemen beiträgt.
Hohlstrukturen aus faserverstärkten Kunststoffen werden auf verschiedene Weise hergestellt. Solche Hohlstrukturen können z. B. aus offenen Faserverbund-Schalenstrukturen klebtechnisch zusammengefügt werden. Zum anderen werden mit Hilfe der Wickeltechnik Fasern und textile Faserhalbzeuge mit Kunstharz getränkt und dann auf einem Formkern abgelegt oder aufgewickelt. Beim Schlauchblas verfahren werden schlauchformige textile Preformen in eine Form eingelegt, mit einem Blasschlauch aufgeweitet und bis zum Abschluss der Faserverbund-Konsolidierung gegen die Forminnenwand gedrückt.
In herkömmlichen Hybridkonstruktionen kommen u. a. Klebe-, Press- und Nietverbindungen zur Verbindung der Lasteinleitungselemente mit den Hohlstrukturen zum Einsatz.
Für das Fügen von faserverstärkten Kunststoffen mit gleichem Werkstoff oder mit Metallen kommt u. a. das Kleben zum Einsatz. Dafür werden spezielle pastöse Strukturklebstoffe auf dem Markt angeboten, die im allgemeinen Maschinenbau, im Automobilbau und insbesondere im Luftfahrzeugbau eingesetzt werden. Solche Klebstoffe werden auch für Welle-Nabe-, für Muffen- und für sonstige Rohrverbindungen wie z. B. bei Fahrradrahmen eingesetzt. Herkömmliche metallische Verbindungselemente, wie Niete und Schrauben, werden z. B. im Flugzeugbau für das Fügen von Aluminium mit kohlenstofffaserverstärktem Kunststoff verwendet, obwohl sie zu erheblichen Kerbspannungskonzentrationen in Faserverbundbauteilen führen.
Bei Faserverbund-Rohrstrukturen eignet sich der Zylinderpressverband für das Herstellen leicht beanspruchter Welle-Nabe- Verbindungen.
Das nachträgliche Fügen von Lasteinleitungselementen ergibt meist keinen geeigneten Formschluss für die Übertragung hoher Lasten. Außerdem ist die Positionierung und Ausrichtung der Lasteinleitungselemente schwierig. Eine Nachbearbeitung nach dem Fügen ist häufig notwendig. Verbindungselemente, wie Niete und Schrauben, schwächen die F aserverbundstruktur.
Aufgabe der Erfindung ist es, eine Hohlstruktur aus faserverstärktem Kunststoff in Mischbauweise mit Lasteinleitungselementen sowie ein Verfahren zu ihrer Herstellung anzugeben, bei dem die Lasteinleitungselemente fest und positionsgenau mit der Hohlstruktur verbunden und von vornherein in die Fertigung einbezogen sind und nicht nachträglich gefügt werden müssen.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die Hohlstruktur an die Innenkonturen der Lasteinleitungselemente angeformt ist. Zur Herstellung werden die Lasteinleitungselemente in einen Formkasten eingelegt und eine Preform der Hohlstruktur in einem dehnfähigen, flexiblen, radial drapierbaren Zustand konturgenau an die Werkzeuginnenflächen und an die freiliegenden Kontaktflächen der Lasteinleitungselemente angelegt und in diesem Zustand unter Innendruck konsolidiert.
Die Preform ist vorzugsweise ein schlauchartiges, radial drapierbares, textiles Halbzeug, z. B. ein Flecht- oder Gewebeschlauch oder ein Rundgestrick. Sie kann auch aus aufgewickelten Fasern oder Flächenhalbzeugen hergestellt werden oder sie wird nähtechnisch aus verschiedenen textilen Halbzeugen zusammengesetzt. Die textilen Halbzeuge bestehen aus endlos verarbeiteten Verstärkungsfasern (z. B. Glasfasern, Kohlenstofffasern, Aramidfasern, Basaltfasern). Die Preform wird in eine Matrix aus thermoplastischen Kunststoffen oder Reaktionsharzen eingebettet.
Eine Reaktionsharz-Matrix kann verschieden eingebracht werden. Es können vorimprägnierte textile Halbzeuge verwendet, es kann von Hand laminiert oder es können bekannte Infusionsverfahrenverfahren eingesetzt werden, wie etwa das Resign-Transfer-Moulding (RTM).
Eine Preform mit einer thermoplastischen Matrix kann aus Hybridgarnen oder hybriden textilen Halbzeugen mit fein verteiltem Thermoplastanteil gefertigt sein. Zum Einlegen in die Form und Anformen an die Lasteinleitungselemente wird das Polymer kurzzeitig thermisch plastifiziert.
Die konturgenaue Anformung der Faserverbund-Hohlstruktur an die Forminnenwände des Werkzeugs und an die Innenkonturen der Lasteinleitungselemente kann mittels eines druckbeaufschlagten Blasschlauches innerhalb der Hohlstruktur, durch Fliehkraft in einem rotierenden Werkzeug oder durch einen elastischen Formkern im Inneren der Hohlstruktur gewährleistet werden.
Nach der Konsolidierung des Faserverbundes besteht eine hochfeste, vor allem formschlüssige Verbindung zwischen Hohlstruktur und Lasteinleitungselementen.
Durch die Kunstharzmatrix kommt es darüber hinaus zum adhäsiven Anhaften der Faserverbundstruktur an den Lasteinleitungselementen. Eine Oberflächenvorbehandlung der Lasteinleitungselemente oder ein zusätzlicher Kleb Stoffauftrag kann den Stoffschluss verbessern.
Vorzugsweise sind unrunde Innenkonturen vorzusehen, um Drehmomente zu übertragen.
Zur Übertragung von Axialkräften kann die Hohlstruktur im einfachsten Fall die Lasteinleitungselemente seitlich umfassen, z. B. die Rundungen und evtl. Teile der seitlichen Schultern des Innenrings eines Wälzlagers. (Mindestens die seitlichen Rundungen oder seitliche Phasen an anderen Lasteinleitungselementen werden dabei als ein Teil der Irmenkonturen verstanden.) Zur Verstärkung des axialen Formschlusses ist es möglich, den Innendurchmesser des Lasteinleitungselements über dessen Breite zu ändern, z. B. durch umlaufende Rillen oder Nuten.
Es können Lasteinleitungselemente aus den verschiedensten Werkstoffen, insbesondere aus Metall, aber auch Keramik oder Kunststoff, darunter polymerer Funktionswerkstoff wie etwa Elastomerwerkstoff, angeschlossen werden.
Durch eine Konsolidierung bei höherer Temperatur und anschließendes Abkühlen kann in Abhängigkeit vorherrschender Wärmeausdehnungskoeffizienten auch eine kraftschlüssige Pressve bindung entstehen. Eine Paarung aus Aluminiumnabe und kohlenstofffaserverstärkter Kunststoffwelle ergibt beispielsweise im Abkühlprozess eine solche Pressverbindung.
Vorzugsweise sollte die Art der Faserverstärkung der Hohlstruktur auf im Betrieb vorherrschende mechanische Spannungszustände abgestimmt sein. Ein hoher Anteil an Fäden mit möglichst axialer Ausrichtung ist für zug- und biegebelastete Strukturen notwendig. Torsionsbelastete Strukturen erfordern eine wesentliche +/- 45°-Fadenorientierung. Kombinierte Belastungen werden am besten mit einer kraftflussgerechten Kombination von Faserorientierungen aufgenommen. Für die Herstellung geeigneter Preformen stehen u. a. Bi- Axial- und Tri-Axial-Flechtschläuche, Gewebeschläuche mit elastischen Umfangsfäden oder textile Flächenhalbzeuge wie etwa Gewebe und technische Uni-Direktional-Gestricke zur Auswahl. Zur Übertragung hoher Kräfte kommen dabei Kohlenstoff-, Aramid- und Glasfasern zum Einsatz.
Die umschließenden Lasteinleitungselemente verteilen äußere Lasten werkstoffgerecht auf den ganzen Umfang der Hohlstruktur. Des Weiteren ermöglicht die hochwertige form-, kraft- und stoffschlüssige Verbindung die Einleitung besonders hoher Lasten, so dass die theoretische Festigkeit der Faserverbundstruktur weitgehend ausgenutzt werden kann. Durch die vielfältigen Möglichkeiten der Preform-Gestaltung können Spannungskonzentrationen unter einzelnen Lasteinleitungselementen gut kompensiert werden. Gegebenenfalls ist die Lasteinleitung durch konstruktive Maßnahmen an den Lasteinleitungselementen zu erleichtern.
Vorzugsweise eignet sich die erfindungsgemäße Hohlstruktur zur Fertigung von Hohlwellen, wie z. B. einer Getriebewelle. An eine solche Hohlwelle können alle Lasteinleitungselemente, die üblicherweise mit Wellen und Achsen verbundenen sind, wie Lager, Lagerringe, -schalen, Zahnräder, Muffen, Kupplungsteile, Riemenscheiben, Räder, Kurbeln oder Kurvenscheiben, angeschlossen werden, und zwar sowohl zentrisch als auch exzentrisch oder auch über einen Kragarm, wie bei einer Kurbelwelle mit einer größeren Exzentrizität. Der Durchmesser der Hohlwelle kann sich dabei von Längsabschnitt zu Längsabschnitt ändern. Stufenförmige gerundete oder kegelige Übergänge sind dabei aufgrund der hohen radialen Drapierbarkeit bestimmter textiler Halbzeuge in weiten Grenzen realisierbar.
Wie im Ausfuhrungsbeispiel noch näher gezeigt wird, bestehen die Vorteile dabei nicht nur in der Gewichtsersparnis durch die Hybridbauweise, sondern auch in der hohen Flexibilität der Gestaltungsmöglichkeiten. Beispielsweise können Wälzlager im Mittelabschnitt einer Welle angeordnet werden, deren Durchmesser kleiner ist als die Durchmesser an beiden Wellenenden. Der für die Welle eingesetzte Faserverbundwerkstoff dämpft die von den Lasteinleitungselementen eingetragenen Schwingungen. Durch das Positionieren aller Lasteinleitungselemente bei der Herstellung im Formwerkzeug entstehen genaue nacharbeitsfreie Bauteile.
Die Erfindung wird nachfolgend an Hand von Zeichnungen dargestellt. In den Zeichnungen zeigen
Fig. 1 ein Formwerkzeug zur Herstellung einer Getriebewelle,
Fig. 2 eine Getriebewelle,
Fig. 3 eine abschnittsweise verstärkte Getriebewelle,
Fig. 4 eine Kurbelwelle mit Preform,
Fig. 5 einen Querschnitt durch ein Hybridgarn,
Fig. 6 eine Space-Frame-Struktur
In Fig. 2 wird als Anwendungsbeispiel eine Getriebewelle gezeigt. Die Hohlstruktur 1 ist eine Hohlwelle. Sie besteht aus einem faserverstärkten Kunststoff. Als Lasteinleitungselemente 9 sind an der Hohlwelle zwei Kugellager, eine Riemenscheibe und ein Zahnrad befestigt. Die Hohlwelle überträgt das Drehmoment zwischen der Riemenscheibe und dem Zahnrad, und sie überträgt die von diesen beiden äußeren Lasteinleitungselementen 9 eingeleiteten Querkräfte und Biegemomente. In Fig. 1 wird die Herstellung einer ähnlichen Getriebewelle gezeigt. In einem zweiteiligen Formwerkzeug 10 werden die Lasteinleitungselemente 9 eingelegt. Danach wird eine etwa schlauchförmige textile Preform 2 aus einem Hybridgarn (s. Fig. 5) eingelegt. In die Preform 2 wird ein Blasschlauch 11 gesteckt. Mit Druckluft wird ein Innendruck p erzeugt. Dann wird die Form 10 erwärmt. Die Thermoplastfasern erweichen und verschmelzen zur Matrix. Der Innendruck p drückt die Preform 2 allseitig an die Innenkonturen der Lasteinleitungselemente
9 und des Formwerkzeuges 10. Die Preform 2 wird an die Innenkonturen der Lasteinleitungselemente 9 angeformt, sowohl an deren innere Anschlussflächen als auch an deren seitliche Bunde, soweit sie bis zu den angrenzenden Innenkonturen des Formwerkzeugs
10 frei zugänglich sind. Unter dem Druck p wird das Formwerkzeug abgekühlt, die Kunststoffmatrix wird dabei wieder fest. Die Getriebewelle kann entnommen werden. Sie bedarf keiner Nacharbeit.
Stellt man beiden Beispielen eine übliche in Stahl gefertigte Getriebewelle gegenüber, so ist leicht einzusehen, dass die Getriebewelle in Fig. 2 aus Stahl gefertigt und montiert werden könnte. Auf eine aus Stahl gedrehte Hohlwelle nach Fig. 1 könnten die Lasteinleitungselemente 9 dagegen nicht mehr montiert werden.
In Fig. 3 wird an einem Abschnitt aus Fig. 1 gezeigt, wie die Hohlwelle unter dem rechten Kugellager und der Riemenscheibe und auf dem Abschnitt zwischen beiden in der Wandstärke durch eine lokale textile Verstärkung 7 vergrößert ist. Damit können die gerade in diesem Bereich vorhandenen größeren mechanischen Belastungen besser abgefangen werden, ohne deshalb gleich die gesamte Hohlwelle zu verstärken. Zusätzlich ist zwischen der Riemenscheibe und der Hohlstruktur 1 Klebstoff 12 eingebracht, wodurch der Stoffschluss verbessert wird.
In Fig. 4 wird als Hohlstruktur 1 eine Kurbelwelle mit Lagerschalen als Lastelemente 9 gezeigt. Die hierzu erforderliche Preform 2 ist abschnittsweise nähtechnisch zusammengesetzt. Dadurch lassen sich auch große Exzentrizitäten bzw. Auskragungen relativ problemlos realisieren. Verschiedene technische Gewirke sind in sehr weiten Grenzen dehn- und formbar. In Fig. 5 wird die Zusammensetzung eines Hybridgarns 6 wie es zur Herstellung der Preform 2 in Fig. 1 verwendet wurde gezeigt. Das Hybridgarn 6 besteht aus einem Bündel von Verstärkungsfasern 4 und Thermoplastfasern 5.
In Fig. 6 ist die Hohlstruktur 1 mit den Lasteinleitungselementen 9 eine räumliche Struktur (Space-Frame-Komponente). Die Hohlstruktur ist gebogen und erweitert sich leicht von links nach rechts im Durchmesser. An den Stirnseiten sind als Lasteinleitungselemente Flansche vorgesehen. Deren innere Kontaktflächen weisen umlaufende Rillen 3 auf. Durch den sich ändernden Innendurchmesser des Flansches entsteht zusätzllich ein kräftiger axialer Formschluss. Etwa in der Mitte der Struktur ist als weiteres Lasteinleitungselement 9 ein Befestigungselement vorgesehen. Es sitzt in einer Nut der Hohlstruktur und kann radial und axial Kräfte übertragen.
Bezugszeichen
1 Hohlstruktur
2 Preform
3 Umfangsnuten
4 Verstärkungsfaser
5 Thermoplastfaser
6 Hybridgarn
7 lokale textile Verstärkung
8 Nähtechnische Verbindung
9 Lasteinleitungselement
10 Formwerkzeug
11 Blasschlauch
12 Klebstoff

Claims

Patentansprüche
1) Hohlstruktur aus faserverstärktem Kunststoff mit Lasteinleitungselementen zur Einleitung, Aufnahme und Übertragung von Kräften oder/und von Momenten, gekennzeichnet dadurch, dass der faserverstärkte Kunststoff an die Innenkonturen der Lasteinleitungselemente (9) angeformt ist.
2) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass die Innenkontur wenigstens eines Lasteinleitungselements (9) für die Realisierung eines Formschlusses ausgebildet ist.
3) Hohlstruktur nach Anspruch 2, gekennzeichnet dadurch, dass die Innenkontur wenigstens eines Lasteinleitungselements (9) unrund ist.
4) Hohlstruktur nach Anspruch 2, gekennzeichnet dadurch, dass sich der Innendurchmesser wenigstens eines Lasteinleitungselements (9) über dessen Länge ändert.
5) Hohlstruktur nach Anspruch 2, gekennzeichnet dadurch, dass die Hohlstruktur wenigstens ein Lasteinleitungselement (9) seitlich stützt.
6) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass zwischen der Hohlstruktur und der Innenkontur wenigstens eines Lasteinleitungselements (9) eine zusätzliche Klebeverbindung besteht.
7) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass wenigstens ein Lasteinleitungselement (9) aus metallischem, keramischen oder polymeren Werkstoff besteht.
8) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass die Faserverstärkungen der Hohlstruktur (1) Kohlenstofffasern, Glasfasern, Aramidfasern oder Basaltfasern sind.
9) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass die Matrix der Hohlstruktur (1) ein thermoplastischer Kunststoff ist. 10) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass die Matrix der Hohlstruktur (1) ein duroplastisches Kunstharz ist.
11) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass der Werkstoff wenigstens eines Lasteinleitungselements (9) eine höhere Wärmeausdehnung aufweist als die Hohlstruktur (1) im Kontaktbereich zu diesem Lasteinleistungselement (9).
12) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass die Orientierung der Verstärkungsfasern in der Hohlstruktur (1) wenigstens abschnittsweise auf die in diesem Abschnitt vorherrschende mechanische Beanspruchung abgestimmt ist.
13) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass die Wandstärke der Hohlstruktur (1) an wenigstens einem Abschnitt vergrößert ist.
14) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass die Querschnittsfläche der Hohlstruktur sich hinsichtlich Form oder/und Größe über deren Länge ändert.
15) Hohlstruktur nach Anspruch 1, gekennzeichnet dadurch, dass die Hohlstruktur eine Hohlwelle bzw. -achse ist und als Lasteinleitungselemente (9) die üblicherweise mit Wellen und Achsen verbundenen Konstruktionselemente, wie Lager, Lagerringe, - schalen, Zahnräder, Muffen, Kupplungsteile, Riemenscheiben, Räder, Kurbeln oder Kurvenscheiben, vorgesehen sind.
16)HoMstruktur nach Anspruch 16, gekennzeichnet dadurch, dass wenigstens ein Lasteinleitungselement (9) exzentrisch zur Achse angeordnet ist.
17) Hohlstruktur nach Anspruch 16, gekennzeichnet dadurch, dass die Mittelachsen einzelner Abschnitte der Hohlstruktur (1) gegeneinander versetzt sind.
18) Verfahren zur Herstellung einer Hohlstruktur aus textilverstarktem Kunststoff mit Lasteinleitungselementen zur Einleitung, Aufnahme und Übertragung von Kräften oder/und von Momenten mit den Verfahrensschritten Formung einer Hohlstruktur aus einer radial drapierbaren textilen Preform in einer geschlossenen Form und Konsolidierung der Preform zur festen Faserverbundstruktur durch Aushärten bzw. Verfestigen einer polymeren Matrix, gekennzeichnet dadurch, dass die Lasteinleitungselemente (9) in der Form funktionsgerecht positioniert werden, die Preform die Lasteinleitungselemente (9) durchdringt und konturgenau an die Innenkonturen der Lasteinleitungselemente und die dazwischenliegenden Forminnenflächen angeformt wird.
19) Verfahren nach Anspruch 18, gekennzeichnet dadurch, dass die konturgenaue Anformung der Faserverbund-Hohlstruktur an die Forminnenwände des Werkzeugs bzw. an die Innenkonturen der Lasteinleitungselemente mit einem druckbeaufschlagten Blasschlauch innerhalb der Hohlstruktur sichergestellt wird.
20) Verfahren nach Anspruch 18, gekennzeichnet dadurch, dass die konturgenaue Anformung der Faserverbund-Hohlstruktur an die Forminnenwände des Werkzeugs bzw. an die Innenkonturen der Lasteinleitungselemente mit Fliehkraft in einem rotierenden Werkzeug sichergestellt wird.
21) Verfahren nach Anspruch 18, gekennzeichnet dadurch, dass die konturgenaue Anformung der Faserverbund-Hohlstruktur an die Forminnenwände des Werkzeugs bzw. an die Innenkonturen der Lasteinleitungselemente durch einen elastischen Formkern im Inneren der Hohlstruktur gewährleistet wird.
22) Verfahren nach Anspruch 18, gekennzeichnet dadurch, dass die textile Verstärkung in einer Thermoplastmatrix eingebettet wird, wobei der thermoplastische Kunststoff zur Verarbeitung in fein verteilter Form in der textilen Preform vorhanden ist.
23) Verfahren nach Anspruch 18, gekennzeichnet dadurch, dass die textile Verstärkung in einer duroplastischen Kunstharzmatrix eingebettet wird, wobei das Kunstharz zur Verarbeitung in fein verteilter Form in der textilen Preform vorhanden ist.
24) Verfahren nach Anspruch 18, gekennzeichnet dadurch, dass die textile Verstärkung in einer duroplastischen Kunstharzmatrix eingebettet wird, wobei die textile Preform erst im Werkzeug von Harz durch Infusion imprägniert wird. 5) Verfahren nach Anspruch 18, gekennzeichnet dadurch, dass die textile Preform nähtechnisch aus verschiedenen textilen Halbzeugen zusammengesetzt ist.
PCT/DE2005/000859 2004-04-29 2005-04-28 Hohlstruktur aus faserverstärktem kunststoff mit lasteinleitungselementen WO2005105417A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004021294.5 2004-04-29
DE102004021294 2004-04-29

Publications (1)

Publication Number Publication Date
WO2005105417A1 true WO2005105417A1 (de) 2005-11-10

Family

ID=34969756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000859 WO2005105417A1 (de) 2004-04-29 2005-04-28 Hohlstruktur aus faserverstärktem kunststoff mit lasteinleitungselementen

Country Status (1)

Country Link
WO (1) WO2005105417A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020466A1 (en) * 2007-08-07 2009-02-12 Invision Consultants, Llc Hollow composite structure and method of amking same
DE102009010429A1 (de) 2008-03-14 2009-09-17 Thoenes Dichtungstechnik Gmbh Verfahren zur Herstellung einer Walze für die Bearbeitung bandförmigen Materials und nach diesem Verfahren hergestellte Walze
DE102009057498A1 (de) * 2009-12-10 2011-06-16 Rehau Ag + Co. Verfahren zur Herstellung eines faserverstärkten Kunststoff-Hohlprofils
RU2443554C1 (ru) * 2010-07-29 2012-02-27 Государственное образовательное учреждение высшего профессионального образования Омский государственный университет путей сообщения Способ центробежной наплавки полимерного слоя внутри металлической втулки
WO2012055516A1 (de) * 2010-10-26 2012-05-03 Rehau Ag + Co Verfahren zur herstellung von endlosfaserverstärkten kunststoffhohlformkörpern mit einer thermoplastischen kunststoffmatrix
GB2485334A (en) * 2010-10-11 2012-05-16 Gkn Aerospace Services Ltd Composite annular housing and sleeve structure
US8337740B2 (en) 2008-09-23 2012-12-25 Rodman William L Reinforced internal composite structures
DE102013226084A1 (de) * 2013-12-16 2015-06-18 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Hohlkörpers umfassend ein Innenelement aus einem metallischen oder nichtmetallischen Werkstoff und ein das innere Element umgebendes Außenelement aus einem Faserverbundwerkstoff
CZ305275B6 (cs) * 2009-05-28 2015-07-15 Jan Lochman Ohebný spojovací kompozitní hřídel
US9097602B2 (en) 2013-01-23 2015-08-04 Lawrence Livermore National Security, Llc Systems and methods for determining strength of cylindrical structures by internal pressure loading
DE102014004158A1 (de) 2014-03-17 2015-09-17 Technische Universität Dresden Verfahren zur Herstellung von Strukturelementen aus Lasteinleitungselement und Faser-Kunststoff-Verbund-Hohlprofil und Strukturelemente
DE102014111176A1 (de) 2014-08-06 2016-02-25 Universität Stuttgart Verfahren zur Herstellung eines Faserverbundbauteiles und Faserverbundteil
DE102016202012B3 (de) * 2016-02-10 2017-06-08 Leichtbau-Zentrum Sachsen Gmbh Verfahren zur Herstellung eines Strukturelements aus Faserverbund-Hohlprofil und Lasteinleitungselement
WO2021219526A1 (fr) 2020-04-30 2021-11-04 Conseil Et Technique Procédé de fabrication par moulage de pièces en matériau composite allongées et creuses, dispositif de moule pour sa mise en œuvre et pièces obtenues
EP4063673A1 (de) * 2021-03-23 2022-09-28 Hamilton Sundstrand Corporation Knickbeständige verbundwelle und verfahren zur herstellung einer knickfesten verbundwelle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0133340A1 (de) * 1983-06-20 1985-02-20 Secretary of State for Trade and Industry in Her Britannic Majesty's Gov. of the U.K. of Great Britain and Northern Ireland Zonenweise versteiftes Verbundmaterial
WO1992014599A1 (en) * 1991-02-18 1992-09-03 Polyinvent Ab Blow moulding method
JPH07237512A (ja) * 1994-02-28 1995-09-12 Idemitsu Petrochem Co Ltd ブロー成形バンパービーム
DE19842821A1 (de) * 1998-09-18 2000-04-20 Volkswagen Ag Verbindung und Welle
US6227805B1 (en) * 1998-03-23 2001-05-08 Eurocopter Composite material variable pitch blade for helicopter rotor and manufacturing process of such a blade
US6286244B1 (en) * 1997-04-25 2001-09-11 Pure Fishing, Inc. Molded fishing rod

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0133340A1 (de) * 1983-06-20 1985-02-20 Secretary of State for Trade and Industry in Her Britannic Majesty's Gov. of the U.K. of Great Britain and Northern Ireland Zonenweise versteiftes Verbundmaterial
WO1992014599A1 (en) * 1991-02-18 1992-09-03 Polyinvent Ab Blow moulding method
JPH07237512A (ja) * 1994-02-28 1995-09-12 Idemitsu Petrochem Co Ltd ブロー成形バンパービーム
US6286244B1 (en) * 1997-04-25 2001-09-11 Pure Fishing, Inc. Molded fishing rod
US6227805B1 (en) * 1998-03-23 2001-05-08 Eurocopter Composite material variable pitch blade for helicopter rotor and manufacturing process of such a blade
DE19842821A1 (de) * 1998-09-18 2000-04-20 Volkswagen Ag Verbindung und Welle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 01 31 January 1996 (1996-01-31) *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834782B2 (en) 2007-08-07 2014-09-16 William L. Rodman Composite structures and methods of making same
WO2009020466A1 (en) * 2007-08-07 2009-02-12 Invision Consultants, Llc Hollow composite structure and method of amking same
DE102009010429A1 (de) 2008-03-14 2009-09-17 Thoenes Dichtungstechnik Gmbh Verfahren zur Herstellung einer Walze für die Bearbeitung bandförmigen Materials und nach diesem Verfahren hergestellte Walze
US8337740B2 (en) 2008-09-23 2012-12-25 Rodman William L Reinforced internal composite structures
CZ305275B6 (cs) * 2009-05-28 2015-07-15 Jan Lochman Ohebný spojovací kompozitní hřídel
DE102009057498A1 (de) * 2009-12-10 2011-06-16 Rehau Ag + Co. Verfahren zur Herstellung eines faserverstärkten Kunststoff-Hohlprofils
RU2443554C1 (ru) * 2010-07-29 2012-02-27 Государственное образовательное учреждение высшего профессионального образования Омский государственный университет путей сообщения Способ центробежной наплавки полимерного слоя внутри металлической втулки
GB2485334A (en) * 2010-10-11 2012-05-16 Gkn Aerospace Services Ltd Composite annular housing and sleeve structure
GB2485334B (en) * 2010-10-11 2014-08-06 Gkn Aerospace Services Ltd Structure
US9120250B2 (en) 2010-10-11 2015-09-01 Gkn Aerospace Services Limited Structure comprising an annular housing made of composite material
WO2012055516A1 (de) * 2010-10-26 2012-05-03 Rehau Ag + Co Verfahren zur herstellung von endlosfaserverstärkten kunststoffhohlformkörpern mit einer thermoplastischen kunststoffmatrix
US9097602B2 (en) 2013-01-23 2015-08-04 Lawrence Livermore National Security, Llc Systems and methods for determining strength of cylindrical structures by internal pressure loading
DE102013226084A1 (de) * 2013-12-16 2015-06-18 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Hohlkörpers umfassend ein Innenelement aus einem metallischen oder nichtmetallischen Werkstoff und ein das innere Element umgebendes Außenelement aus einem Faserverbundwerkstoff
DE102014004158A1 (de) 2014-03-17 2015-09-17 Technische Universität Dresden Verfahren zur Herstellung von Strukturelementen aus Lasteinleitungselement und Faser-Kunststoff-Verbund-Hohlprofil und Strukturelemente
DE102014111176A1 (de) 2014-08-06 2016-02-25 Universität Stuttgart Verfahren zur Herstellung eines Faserverbundbauteiles und Faserverbundteil
DE102014111176B4 (de) 2014-08-06 2018-09-06 Universität Stuttgart Verfahren zur Herstellung eines Faserverbundbauteiles
DE102016202012B3 (de) * 2016-02-10 2017-06-08 Leichtbau-Zentrum Sachsen Gmbh Verfahren zur Herstellung eines Strukturelements aus Faserverbund-Hohlprofil und Lasteinleitungselement
WO2017137242A1 (de) 2016-02-10 2017-08-17 Leichtbau-Zentrum Sachsen Gmbh Verfahren zur herstellung eines strukturelements aus faserverbund-hohlprofil und lasteinleitungselement, sowie strukturelement
WO2021219526A1 (fr) 2020-04-30 2021-11-04 Conseil Et Technique Procédé de fabrication par moulage de pièces en matériau composite allongées et creuses, dispositif de moule pour sa mise en œuvre et pièces obtenues
FR3109746A1 (fr) * 2020-04-30 2021-11-05 Conseil Et Technique Procédé de fabrication par moulage de pièces en matériau composite allongées et creuses, dispositif de moule pour sa mise en œuvre et pièces obtenues.
EP4063673A1 (de) * 2021-03-23 2022-09-28 Hamilton Sundstrand Corporation Knickbeständige verbundwelle und verfahren zur herstellung einer knickfesten verbundwelle
US11795993B2 (en) 2021-03-23 2023-10-24 Hamilton Sundstrand Corporation Buckling resistant composite shaft and method of making a buckling resistant composite shaft

Similar Documents

Publication Publication Date Title
WO2005105417A1 (de) Hohlstruktur aus faserverstärktem kunststoff mit lasteinleitungselementen
DE102005020907A1 (de) Hohlstruktur aus faserverstärktem Kunststoff mit Lasteinleitungselementen
DE102007051517B4 (de) Hohlwelle aus Faserverbundwerkstoff und darauf zu befestigende Funktionselemente
EP1859958B1 (de) Flanschbauteil in Verbundbauweise sowie Verfahren zur Herstellung eines Flanschbauteils
DE102013001442B3 (de) Lenksäule in Faserverbundtechnologie, basierend auf Pultrusion- und Flecht- und/oder Wickeltechnologie
DE102011085962B4 (de) Innenprofilierte Welle aus Faserverbundwerkstoff mit Lasteinleitungselementen und Verfahren zur Herstellung
DE19613857C2 (de) Gelenkwelle mit verstärktem Kunststoffrohr und mit einem endseitig drehfest verbundenen Gelenkanschlußkörper
DE102007026453A1 (de) Mehrzellige Verbundstruktur mit Wagenradprofil für Achsen und Wellen
DE102014004157B4 (de) Verfahren zur Herstellung von Lasteinleitungs-Flanschen an faserverstärkten Hohlprofilen mit thermoplastischer Matrix
DE3228110C2 (de) Torsionswelle
DE102010049563B4 (de) Verfahren zum Herstellen einer Drehstabfeder
DE102006047412B4 (de) Stabförmige Faserverbundstruktur mit Lasteinleitungselementen sowie Verfahren zur Herstellung
EP2626218B1 (de) Verfahren zum Herstellen einer Radfelge aus Faserverbundwerkstoff und Radfelge für ein Kraftfahrzeug
DE102006047413B4 (de) Zylinder aus Faserverbundwerkstoff mit metallischen Flanschkomponenten sowie Verfahren zur Herstellung
DE3620097A1 (de) Rad fuer kraftfahrzeuge
WO2014005584A1 (de) Verfahren zum herstellen einer gelenkwelle aus einem faser-kunststoff-verbundmaterial, gelenkwelle sowie gelenkwellenanordnung
EP3974162A1 (de) Fahrzeugfelge mit umgekrempelten endseitigen ncf-subpreforms und verfahren zu deren herstellung
DE102017210205A1 (de) Zweipunktlenker für ein Fahrzeug
DE102015112173B4 (de) Verfahren zur Herstellung eines Anschlussteils für ein rohrförmiges Bauteil aus faserverstärktem Kunststoff
DE102012106118B3 (de) Einstückiges Gelenkbauteil, Gelenkwellenanordnung und Verfahren zum Herstellen
DE102012106120B4 (de) Verfahren zum Herstellen einer Gelenkwelle und Gelenkwelle
DE2146783C3 (de) Verfahren zur Herstellung eines kraftübertragenden Bauteiles und Formkörper zur Durchführung des Verfahrens
DE102017113928A1 (de) Faserverbundbauteil sowie eine Vorrichtung und ein Verfahren zur Herstellung eines Faserverbundbauteils
DE102017116792B4 (de) Schaltachse-Schaltgabel-Klebeverbindung
DE102013111693A1 (de) Verfahren zur Herstellung eines Formteils aus einem Faserverbundwerkstoff

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase