WO2005104106A1 - 情報記録媒体 - Google Patents

情報記録媒体 Download PDF

Info

Publication number
WO2005104106A1
WO2005104106A1 PCT/JP2005/007796 JP2005007796W WO2005104106A1 WO 2005104106 A1 WO2005104106 A1 WO 2005104106A1 JP 2005007796 W JP2005007796 W JP 2005007796W WO 2005104106 A1 WO2005104106 A1 WO 2005104106A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
unit
signal
units
frame
Prior art date
Application number
PCT/JP2005/007796
Other languages
English (en)
French (fr)
Inventor
Hiromichi Ishibashi
Junichi Minamino
Masahito Nakao
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05734387A priority Critical patent/EP1758105A1/en
Priority to US11/568,232 priority patent/US20070211615A1/en
Priority to JP2006519507A priority patent/JPWO2005104106A1/ja
Publication of WO2005104106A1 publication Critical patent/WO2005104106A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00745Sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24079Width or depth
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24082Meandering

Definitions

  • the present invention relates to an information recording medium, and a method for recording data using the information recording medium.
  • the information recording medium of the present invention is, for example, an optical disk medium on which data can be additionally written or rewritable, and its track has a meandering shape.
  • FIG. 10 is an enlarged plan view showing a part of a recording layer of an optical disc medium 1000 provided with an LPP.
  • a track group (track groove) 1100 formed on the recording layer of the optical disc medium 1000 meanders (pops) in a sinusoidal shape at a constant period.
  • the LPP 1200 is formed at a specific position in an area where the track group 1100 is not formed.
  • 1-bit information can be recorded on the recording layer of the optical disc medium 1000 depending on whether or not the LPP 1200 is present.
  • the LPP 1200 represents address information
  • no overhead occurs in the area for recording user data on the track group 1100, and a large recording capacity for recording user data can be secured.
  • LPP 1200 is formed in an area outside track group 1100. For this reason, it is relatively easy to separate and reproduce the user data that rarely records user data on the LPP 1200 and the information represented by the LPP 1200.
  • Data reproduction is usually performed using light-receiving elements divided along the track tangential direction. Nau.
  • An addition signal and a difference signal are generated based on the output signal of each area force of the divided light receiving element.
  • An RF signal indicating data is generated from the added signal, and a signal indicating the meandering state of the track group 1100 and the state of the LPP 1200 is generated from the difference signal.
  • the amplitude of the signal (LPP signal) corresponding to the LPP1200 is larger than the amplitude of the signal (wobble signal) corresponding to the meandering of the track group 1100, and the LPP signal is calculated using the amplitude difference between the signals. It is possible to separate the signal from the wobble signal.
  • the difference signal is dichotomized using a threshold (or window ⁇ ⁇ ⁇ ) that is larger than the amplitude of the wobble signal and smaller than the amplitude of the LPP signal
  • the difference signal power is also converted into a pulse signal of the LPP signal.
  • Patent Document 1 JP-A-9-326138
  • Conditions with poor SN include, for example, a case where recording and reproduction are performed at a high speed, and a case where an optical disc medium has two or more recording layers.
  • the high speed refers to a linear speed higher than the standard speed in the standard of the optical disc medium, for example, about 8 times (216 Mbps) or more of the standard speed (27 Mbps) in the DVD standard.
  • the amplitude of the LPP signal itself decreases, and at the time of recording, the laser modulation signal is superimposed on the LPP signal as noise. Also, when the optical disc medium has a recording layer, the SN during reproduction is reduced by about 6 dB. Furthermore, after an off-track occurs during the recording operation and data is overwritten on the LPP1200, it is difficult to accurately detect the LPP signal when executing the reproduction.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an information recording medium capable of accurately reproducing information such as an address under bad SN conditions, and an information recording medium therefor. It is an object of the present invention to provide an apparatus for performing data recording and Z or reproduction using a recording medium.
  • An information recording medium is an information recording medium including a track meandering at a predetermined cycle and a plurality of prepits adjacent to the track, wherein the track includes a plurality of frame units. At least one of the plurality of pre-pits is assigned to each of the plurality of frame units, and each of the plurality of frame units has a steeper falling portion than a rising portion.
  • the first meandering shape has at least one of a meandering shape and a second meandering shape in which a rising portion is steeper than a falling portion, the first meandering shape represents first information, and the second meandering shape represents the second information.
  • Meandering shape represents second information, and the first information and the second information are different from each other.
  • each of the plurality of frame units has one of the first meandering shape and the second meandering shape, and includes a predetermined frame of the plurality of frame units.
  • the at least one pre-pit assigned to a unit represents third information corresponding to the first information or the second information represented by the shape of the predetermined frame unit.
  • the third information indicates the same content as the first information or the second information represented by the shape of the predetermined frame unit.
  • the at least one pre-pit assigned to each of the plurality of frame units is adjacent to a predetermined position of the corresponding frame unit.
  • each of the first meandering shape and the second meandering shape is a unit shape representing 1-bit information
  • the plurality of frame units define a portion of the unit shape. They have the same number as each other.
  • the plurality of frame units are divided into a plurality of word units including two or more of the frame units, and are assigned to a frame unit located at the head of each of the plurality of word units.
  • the at least one pre-bit indicates information indicating a head of the word unit.
  • the apparatus of the present invention is an apparatus for executing at least one of recording data on the information recording medium and reproducing data of the information recording medium, A first outputting a first signal indicating the first information and the second information included in a signal obtained based on a reflected light of the information recording medium when the medium is irradiated with a laser beam; A second signal output unit for outputting a second signal indicating the meandering frequency of the track included in the signal obtained based on the reflected light, and a second signal output unit outputting the second signal based on the reflected light. And a third signal output unit that outputs a third signal indicating third information represented by the pre-pit included in the signal.
  • the apparatus comprises: an integrating unit that detects and integrates the value of the first signal at a predetermined cycle, and the first information and the second information based on the integrated result.
  • a first detection unit for detecting information.
  • each of the first meandering shape and the second meandering shape is a unit shape representing 1-bit information
  • the plurality of frame units define a portion of the unit shape.
  • the apparatus further includes a force counter unit that counts a predetermined number of times, and the predetermined number of times is a number corresponding to the number of the unit-shaped portions included in one frame unit.
  • the integrating unit resets the integrated result every time the counter counts the predetermined number of times.
  • the plurality of frame units are divided into a plurality of word units including two or more of the frame units, and are assigned to a frame unit located at the head of each of the plurality of word units.
  • the third information represented by the at least one pre-bit indicates the start of the word unit, and the apparatus obtains the third information indicating the start of the word unit from the third signal.
  • the information processing apparatus further includes a second detecting unit for detecting, and the counter unit sets the count number to an initial value when the second detecting unit detects the third information indicating the head of the word cut.
  • the plurality of frame units are divided into a plurality of word units including two or more frame units, and the plurality of word units include two or more word units. It is divided into a plurality of block units, and identification information for identifying the head of each of the plurality of block units is written at a position corresponding to the head of each of the plurality of block units in the track. And the device is obtained based on the reflected light from the information recording medium.
  • a third detection unit that detects the identification information, wherein the counter unit sets a count number to an initial value when the third detection unit detects the identification information.
  • the plurality of frame units are divided into a plurality of word units including two or more of the frame units, and are assigned to a frame unit located at the head of each of the plurality of word units.
  • the third information represented by the at least one pre-bit indicates the beginning of the word unit, and the plurality of word units are divided into a plurality of block units including two or more word units. In a position corresponding to the head of each of the plurality of block units in the track, identification information for identifying the head of each of the plurality of block units is recorded.
  • a second step of detecting the third information indicating the head of the word unit from the third signal A detection unit, and a third detection unit that detects the reproduction information obtained based on the reflected light from the information recording medium and the identification information, wherein the counter unit is configured by the second detection unit.
  • the count number is set to an initial value according to one of the detection of the third information indicating the head of the word unit and the detection of the identification information by the third detection unit.
  • each of the plurality of frame units has one of the first meandering shape and the second meandering shape, and includes a predetermined frame of the plurality of frame units.
  • the third information represented by the at least one pre-pit assigned to a unit indicates the same content as the first information or the second information represented by the shape of the predetermined frame unit,
  • the apparatus includes the first information and the second information among the first information, the second information, and the third information.
  • the second information is selected and the laser beam scans the track at a second speed
  • the third information of the first information, the second information, and the third information is selected.
  • Selector for selecting information Provided on said first speed is faster than the second speed.
  • each of the plurality of frame units has one of the first meandering shape and the second meandering shape, and the plurality of frame units
  • the third information represented by the at least one pre-pit allocated to a predetermined frame unit of the first frame is the same as the first information or the second information represented by the shape of the predetermined frame unit
  • the apparatus transmits the first information and the second information among the first information, the second information, and the third information.
  • the apparatus further includes a selector section for selecting the third information among the first information, the second information, and the third information.
  • a first error rate when detecting the first information and the second information from the first signal, and the third information from the third signal is compared with the second error rate. If the first error rate is lower than the second error rate, the first information, the second information, and the third information are compared. The first information and the second information are selected, and if the first error rate is higher than the second error rate, the first information, the second information,
  • the information processing apparatus further includes a selector unit that selects the third information among the third information.
  • the method of the present invention is a method for executing at least one of recording data on the information recording medium and reproducing data of the information recording medium, and irradiating the information recording medium with a laser beam.
  • a first step of outputting a first signal indicating the first information and the second information included in a signal obtained based on the reflected light of the information recording medium at the time of performing the reflection A second step of outputting a second signal indicating the meandering frequency of the track included in the signal obtained based on the light, and the pre-pit included in the signal obtained based on the reflected light.
  • a third step of outputting a third signal indicating third information is a method for executing at least one of recording data on the information recording medium and reproducing data of the information recording medium, and irradiating the information recording medium with a laser beam.
  • the information recording medium of the present invention is an information recording medium provided with a plurality of recording layers, wherein each of the plurality of recording layers includes a track meandering at a predetermined cycle and a plurality of tracks adjacent to the track.
  • the track includes a plurality of frame units, at least one of the plurality of pre-pits is assigned to each of the plurality of frame units, and each of the plurality of frame units includes: The first meandering shape where the falling part is steeper than the rising part, and The rising portion has at least one of a steep second meandering shape, the first meandering shape represents first information, and the second meandering shape represents second information.
  • the first information and the second information are different from each other.
  • the track has the first meandering shape representing the first information and the second meandering shape representing the second information.
  • Information such as an address is represented by combining the first meandering shape and the second meandering shape. Since it is not necessary to record address information in an area for recording user data on a track, a large recording capacity for recording user data can be secured.
  • the meandering shape of a predetermined frame unit and the pre-pits assigned to the predetermined frame unit represent information corresponding to each other (for example, the same information), the information represented by the pre-pits can be accurately determined. Even in the case of a force that cannot be reproduced, the information represented by the meandering shape of the frame unit can be reproduced accurately by reproducing the information.
  • the information represented by the meandering shape is detected by integrating the values of the signals (second harmonic signals) representing the first and second information based on the information represented by the prepit. can do.
  • the second harmonic signal By integrating the value of the second harmonic signal, high-frequency noise components can be removed, and information such as an address represented by a meandering shape can be accurately reproduced.
  • the LPP signal has a high frequency and is not easily affected by low-frequency noise components. By properly using the second harmonic signal and the LPP signal according to the type of noise, information such as an address can be reproduced more accurately.
  • the second harmonic signal For example, at the time of low-speed recording / reproduction, information is detected using the LPP signal from the viewpoint of compatibility with the conventional information recording medium, and at the time of high-speed recording / reproduction, information is detected using the second harmonic signal. It is possible to use the second harmonic signal and the LPP signal in consideration of the advantages of both the second harmonic signal and the LPP signal.
  • FIG. 1A is an enlarged plan view showing a part of a recording layer included in an optical disc medium according to Embodiment 1 of the present invention.
  • FIG. 1B is a perspective view three-dimensionally showing a part of the optical disc medium according to Embodiment 1 of the present invention.
  • FIG. 2A is a diagram showing a table representing frame units according to Embodiment 1 of the present invention.
  • FIG. 2B is a diagram showing a table representing a frame unit according to Embodiment 1 of the present invention.
  • FIG. 2C is a diagram showing a table representing frame units according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a table representing word units according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a table representing block units according to Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram showing an optical disc device according to Embodiment 2 of the present invention.
  • FIG. 6 is a timing chart showing the operation of the optical disc device according to Embodiment 2 of the present invention.
  • FIG. 7 is a block diagram showing an optical disc device according to Embodiment 3 of the present invention.
  • FIG. 8 is a block diagram showing an optical disc device according to Embodiment 4 of the present invention.
  • FIG. 9 is a block diagram showing an optical disc device according to Embodiment 5 of the present invention.
  • FIG. 10 is an enlarged plan view showing a part of a recording layer of a conventional optical disc medium.
  • FIG. 1A is an enlarged plan view showing a part of a recording layer 101 included in the information recording medium 100 of the present embodiment.
  • the information recording medium 100 is an optical disk medium.
  • the recording layer 101 includes a track group formed spirally around the center of the optical disc medium 100.
  • a loop (hereinafter abbreviated as “track”) 10 is provided.
  • the track 10 may be a force convex portion which is a concave portion (groove) in the recording layer 101 in view of the incident direction power of the laser beam.
  • the track 10 meanders (wobbles) in the radial direction of the optical disk medium 100 at a predetermined single basic cycle.
  • the meandering shape of the portion of the track 10 corresponding to one cycle of the meandering is a sawtooth meandering (Saw Tooth Wobble: STW) shape.
  • the track 10 has a first meandering shape 111 and a second meandering shape 112 as STW shapes.
  • the first meandering shape 111 has a steeper shape at the falling portion 114 than the rising portion 113
  • the second meandering shape 112 has a steeper shape at the rising portion 115 than the falling portion 116.
  • Each of the first meandering shape 111 and the second meandering shape 112 is a unit shape representing 1-bit information.
  • the first meandering shape 111 represents the first information
  • the second meandering shape 112 represents the second information.
  • the first information and the second information are different from each other.
  • the first information is 1-bit information “0”
  • the second information is 1-bit information “1”.
  • the first information and the second information indicate, for example, sub-information (address information and the like) of the information recorded on the optical disc medium 100!
  • the waveform of the signal corresponding to the first meandering shape 111 obtained based on the reflected light from the recording layer 101 has a steeper falling edge than a rising edge.
  • the waveform of the signal corresponding to the second meandering shape 112 obtained based on the reflected light has a steeper rising edge than a falling edge.
  • the difference between the waveform of the signal corresponding to the meandering shape 111 and the waveform of the signal corresponding to the meandering shape 112 distinguishes the first information “0” and the second information “1”. Can be.
  • a beam spot of a laser beam is formed on the recording layer 101 of the rotating optical disk medium 100, and substantially follows the center of the track 10.
  • the position of the beam spot is controlled with high accuracy. Such control is called tracking control.
  • the light reflected from the optical disk medium 100 is detected by a photodetector provided in the optical pickup of the optical disk device, and tracking control is performed based on a signal output from the photodetector. Under tracking control, the beam spot follows substantially the center of track 10.
  • the difference signal output from the photodetector includes a component indicating a change in intensity reflecting the STW shape of the track 10.
  • the first meandering shape 111 and the second meandering shape 112 have different steepness when the track 10 wobble in the radial direction of the optical disc medium 100 (the direction perpendicular to the tangential direction of the center of the track 10). ing. For this reason, the STW shape is reflected in the difference in steepness between the rising edge and the falling edge of the signal waveform corresponding to the STW shape.
  • the first meandering shape 111 is relatively gradually displaced from the inside to the outside of the optical disc medium 100 in the direction of the force, and then relatively steeply moved in the direction from the outside of the optical disc medium 100 to the inside. It is displaced. Therefore, even in the signal corresponding to the first meandering shape 111, the falling edge is relatively steeper than the rising edge.
  • the second meandering shape 112 is relatively steeply displaced from the inside to the outside of the optical disc medium 100, and then relatively displaced from the outside to the inside of the optical disc medium 100. Displaced slowly. Therefore, even in the signal corresponding to the second meandering shape 112, the rising edge is relatively steeper than the falling edge.
  • the track 10 includes a plurality of frame units 11 and 12.
  • Each of the plurality of frame cuts 11 has a plurality of first meandering shapes 111.
  • Each of the plurality of frame units 12 includes a plurality of second meandering shapes 112.
  • Each of the first meandering shape 111 and the second meandering shape 112 is a unit shape representing 1-bit information, and each of the frame units 11 and 12 includes the same number of portions having these unit shapes.
  • the recording layer 101 includes a plurality of LPPs (land pits) 21 and 22 at specific positions in a region where the track 10 is not formed (a region between adjacent portions of the spiral track 10).
  • LPPs 21 and 22 are formed adjacent to track 10. At least one LPP 21 or 22 is assigned to each of frame units 11 and 12.
  • LP P21 is allocated adjacent to a predetermined position of the frame unit 11, and LPP22 is allocated adjacent to a predetermined position of the frame unit 12.
  • the LPP 21 represents information corresponding to the first information represented by the shape of the frame unit 11 (the first meandering shape 111).
  • the LPP 22 indicates information corresponding to the second information represented by the shape of the frame unit 12 (the second meandering shape 112).
  • the LPP 21 and the first meandering shape 111 represent the same information (first information)
  • the ⁇ 22 and the second meandering shape 112 represent the same information (second information).
  • FIG. 1B is a perspective view showing a part of the optical disk medium 100 in a three-dimensional manner.
  • the number of recording layers included in the optical disc medium 100 may be one, or two or more.
  • the optical disc medium 100 shown in FIG. 1B includes two recording layers 101 and 101a.
  • the components included in the recording layer 101a are the same as the components included in the recording layer 101, and a description thereof will not be repeated.
  • the optical disc medium 100 includes a substrate 102, and a recording layer 101 is formed on the recording surface side of the substrate 102.
  • the recording surface is a surface facing the optical pickup when the optical disk medium 100 is mounted on the optical disk device.
  • a transparent resin layer 103 is formed on a side of the recording layer 101 opposite to the substrate 102, and a recording layer 101a is formed on a side of the transparent resin layer 103 opposite to the recording layer 101.
  • a predetermined interval (for example, about 30 to 60 m) is provided between the recording layer 101 and the recording layer 101a by the transparent resin layer 103.
  • a protective layer 104 is formed on the side of the recording layer 101a opposite to the transparent resin layer 103.
  • the protective layer 104 protects the recording layers 101 and 10 la so that they are not stained or scratched!
  • the distance between adjacent groups of the track 10 is about 0.7 to 0.8 ⁇ , and the gnoreve width of the track 10 is about 0.2 to 0.8 ⁇ ⁇ ⁇ .
  • the distance between the recording layer 101 and the recording layer 101a is about 30 to 60 m.
  • the shapes of the LPPs 21 and 22 are shown in a circle in FIG.
  • the size of the track 10 along the tangential direction is about 0.5 to 1.0 m.
  • the length of one cycle of meandering on track 10 is about 15 to 30 / zm.
  • the frequency of the signal corresponding to the meandering shape is about 1Z30, which is the frequency of the signal corresponding to LPP. Note that the size of each of these components is merely an example, and the smaller the beam spot of the laser light used, the smaller the size of each component can be.
  • FIGS. 2A to 2C are diagrams showing tables representing three types of frame units 11, 12, and 13.
  • FIG. The symbol “L” indicates the first meandering shape 111, and the symbol “T” indicates the second meandering shape 112.
  • Each of the frame units 11, 12, and 13 is assigned one-bit information ("0" or "1") represented by the first meandering shape 111 or the second meandering shape 112. Further, information “SYNC” is further allocated to the frame unit 13. The information “SYNC” is information indicating the head of a word unit (FIG. 3) described later.
  • 1-bit information “0” is assigned to the frame unit 11.
  • One-bit information “1” is assigned to the frame unit 12.
  • the frame units 11, 12, and 13 have the same number of portions each having the first meandering shape 111 or the second meandering shape 112, which are unit shapes representing 1-bit information. In the example shown in FIGS. 2A to 2C, each of the frame units 11, 12, and 13 has a portion having 16 unit shapes.
  • Each of the frame units 11, 12, and 13 is assigned an LPP 21 or 22, and the LPPs 21 and 22 identify the frame units 11, 12, and 13, respectively.
  • the LPPs 21 and 22 are formed, for example, adjacent to at least one of the two unit shapes located on the leading side of each of the frame units 11, 12 and 13.
  • the symbol “P” shown in FIGS. 2A to 2C indicates a unit shape in which the LPPs 21 and 22 are formed among the 16 unit shapes.
  • LPP21 is not assigned to the first unit shape of the two unit shapes located on the leading side of frame unit 11, and LPP21 is assigned to the second unit shape from the top.
  • Such an allocation pattern of the LPP 21 to the frame unit 11 indicates 1-bit information “0”.
  • LPP22 is assigned to the foremost unit shape of the two unit shapes located at the head of frame unit 12. Therefore, LPP22 is not assigned to the second unit shape from the top.
  • Such an allocation pattern of the LPP 22 to the frame unit 12 indicates 1-bit information “1”.
  • LPP21 is assigned to both of the two unit shapes located at the head of frame unit 13.
  • Such an allocation pattern of the LPP 21 to the frame unit 13 indicates information "SYNC”.
  • the information represented by the first meandering shape 111 included in the frame unit 11 represents the same content (one-bit information “0”) as the information represented by the allocation pattern of the LPP 21 to the frame unit 11.
  • the information represented by the second meandering shape 112 included in the frame unit 12 represents the same content (one-bit information “1”) as the information represented by the allocation pattern of the LPP 22 to the frame unit 12.
  • LPPs 21 and 22 are provided centrally on the front side of the frame unit! /, However, each of first meandering shape 111 and second meandering shape 112 passes through a meander of 16 periods. Are formed continuously.
  • 16 first meandering shapes 111 code “L”
  • each of the 16 first meandering shapes 111 represents 1-bit information “0”.
  • 16 second meandering shapes 112 symbol “T”
  • each of the 16 second meandering shapes 112 represents 1-bit information “1”.
  • the first and second meandering shapes are obtained.
  • the information represented by the meandering shapes 111 and 112 can be detected.
  • the noise level in the high frequency range can be reduced to about 1 Z4 (about -12 dB) compared to the case where integration is not performed.
  • the rate at which information can be detected accurately even under poor conditions can be increased.
  • LPP signals 21 and 22 are intensively arranged at the head of the frame unit, signals (LPP signals) corresponding to LPPs 21 and 22 have high frequencies.
  • LPP signals are affected by low-frequency noise components. It is hard to shake. Therefore, by properly using the second harmonic signal and the LPP signal according to the type of generated noise, information such as an address can be reproduced more accurately. Such an operation of detecting the information contained in the second harmonic signal and the LPP signal will be described in more detail in the second and subsequent embodiments.
  • the SN at the time of detecting the first and second information can be improved by 12 dB.
  • the second harmonic signal can be detected even when its amplitude is 1Z4 (-12 dB) of the carrier amplitude.
  • the slope level of the rising and falling portions of the meandering shape is adjusted. It is possible to decide. Even if the waveform of the signal indicating the meandering frequency of the track 10 is distorted by about ⁇ 12 dB, the detection of the meandering frequency of the track 10 does not have a great effect. This is very advantageous in ensuring compatibility between optical disc media of different formats.
  • An optical disc device that does not have a function of detecting the STW shape and detects only the LPP address information detects the meandering frequency ignoring some distortion of the signal waveform indicating the meandering frequency. For this reason, even when the optical disk medium 100 is mounted on such an optical disk device, the optical disk device ignores some distortion of the signal waveform indicating the meandering frequency (distortion due to the STW shape) and ignores the meandering frequency. Therefore, the recording / reproducing operation can be performed in the same manner as the optical disk medium other than the optical disk medium 100.
  • the meandering shape of the frame unit 13 to which the information “SYNC” is assigned does not have a shape corresponding to “PP”.
  • the frame unit 13 has a first meandering shape 111 indicating 1-bit information “0” as a reference.
  • FIG. 3 shows a table representing the word units 14 FIG.
  • the word unit 14 includes twelve frame units 11, 12, and 13. That is, one word unit 14 has 12 bits of information.
  • the frame unit 13 is located.
  • the LPP 21 assigned to the frame unit 13 indicates information "SYNC" indicating the head of the word unit 14.
  • FIG. 4 is a diagram showing a table representing the block unit 15.
  • the block unit 15 includes eight word units 14.
  • the 11-bit information represented by the 11 word units 14 other than the word unit 14 representing "SYNC" is divided into 3-bit word address data and 8-bit byte data.
  • Each bit data of the eight word units 14 indicates the address information and the management information of the block unit 15 and the parity information for them.
  • the block unit 15 as described above corresponds to one ECC (Error Correction Code) block unit of user data recorded on the track 10.
  • ECC Error Correction Code
  • FIG. 5 is a block diagram showing the optical disk device 200 of the present embodiment
  • FIG. 6 is a timing chart showing the operation of the optical disk device 200.
  • the optical disk device 200 is a device that performs at least one of recording data on the optical disk medium 100 and reproducing data from the optical disk medium 100.
  • the optical disk device 200 includes an optical pickup (not shown) provided in a known optical disk device.
  • the laser light emitted from the semiconductor laser in the optical pickup is condensed on the recording layer 101 of the optical disc medium 100 (FIG. 1A) by the objective lens, and a beam spot is formed on the recording layer 101.
  • the beam spot follows the track 10 by the tracking control and the focusing control by the optical disc device 200.
  • the light reflected by the recording layer 101 is an optical pickup. Detected by the photo detector in the map.
  • the photo detector is divided into a plurality of light receiving areas.
  • the light receiving area is divided from each other along the tangential direction of the track 10, and signals WBLP and WBLN are output as the light receiving area force.
  • the differential amplifier 30 included in the optical disk device 200 generates a differential signal (wobble signal) WBL based on the signals WBLP and WBLN.
  • the wobble signal WBL includes a fundamental signal indicating the fundamental frequency of the meandering of the track 10, a second harmonic signal indicating information represented by the STW shape on the recording layer 101, and an LPP signal indicating information indicated by the LPP.
  • the second harmonic signal has a spectrum that is relatively dispersed in the low frequency region
  • the LPP signal has a spectrum that is relatively concentrated in the high frequency region.
  • the frequency of the second harmonic signal is about 200 kHz to 2 MHz
  • the frequency of the LPP signal is about 8 MHz to 16 MHz.
  • the optical disc device 200 includes a first signal output unit 41 that outputs a second harmonic signal HM2 indicating information represented by the STW shape included in the wobble signal WBL, and a meandering track 10 included in the wobble signal WBL. And a third signal output unit 43 that outputs an LPP signal 43a indicating information represented by the LPP included in the cobbled signal WBL. .
  • the first signal output unit 41 is a bandpass filter (BPF) that receives the wobble signal WBL and passes at least the second harmonic signal HM2 included in the wobble signal WBL.
  • the second signal output unit 42 is a BPF that receives the wobble signal WBL and passes at least the fundamental signal 42a.
  • the third signal output unit 43 is a BPF that receives the wobble signal WBL and passes at least the LPP signal 43a.
  • the BPFs 41 to 43 extract the second harmonic signal HM2, the fundamental wave signal 42a, and the LPP signal 43a from the pebble signal WBL.
  • a so-called heterodyne detection circuit composed of a multiplier 71 and an integrator 72 described later constitutes a practical bandpass filter.
  • the signal processing performed by the BPF 41 may be considered as preprocessing before the signal processing of the heterodyne detection circuit.
  • the multiplier 71 and the integrator 72 may have the function of the BPF 41.
  • the optical disc device 200 further includes a detection unit 33 that binarizes the LPP signal 43a and detects information “SYNC” indicating the beginning of a word unit, and an address decoder 56 that generates an address signal.
  • the detection unit 33 includes a comparator 53 that binarizes the LPP signal 43a extracted by the BPF 43, and a SYNC detection circuit 54 that detects information “SYNC”.
  • the comparator 53 binarizes the LPP signal 43a using a threshold 53b (FIG. 6) to generate a binarized signal 53a.
  • the comparator 53 outputs the binary signal 53a to the address decoder 56 and the SYNC detection circuit 54.
  • the SYNC detection circuit 54 detects information "SYNC” from the binary signal 53a and outputs a signal 54a indicating the information "SYNC” to the address decoder 56.
  • the optical disk device 200 further includes a synchronization signal generation unit 32 that generates a synchronization signal CLK.
  • the synchronization signal generation unit 32 includes a comparator 51 that binarizes the fundamental signal 42a, a PLL (Phase-Locked Loop) 61 that generates the synchronization signal CLK, and frequency dividers (counters) 62 and 63. Prepare.
  • the comparator 51 outputs the binary signal 51a generated by binarizing the fundamental wave signal 42a to the PLL 61.
  • the PLL 61 generates a synchronization signal CLK from the binary signal 51a.
  • the synchronization signal CLK is sequentially frequency-divided by frequency dividers 62 and 63 into NZ2 and frequency-divided by 2, and the synchronous binary signal PWBL output from the frequency divider 63 is successively output from the phase comparator of the PLL 61 (not shown). Is fed back.
  • the address decoder 56 operates in synchronization with the synchronization signal CLK.
  • the second harmonic signal HM2 is extracted from the wobble signal WBL by the BPF41.
  • the difference between the first meandering shape 111 and the second meandering shape 112 appears as a polarity inversion of the second harmonic signal HM2.
  • the second harmonic signal HM2 corresponding to the first meandering shape 111 has a solid line waveform shown in FIG. 6, and the second harmonic signal HM2 corresponding to the second meandering shape 112.
  • the signal HM2 has a waveform shown by a dotted line in FIG. 6 (a waveform in which the polarity of the second harmonic signal HM2 corresponding to the first meandering shape 111 is inverted).
  • the optical disc device 200 is based on a counter 64 for counting a predetermined number of times, an integrating unit 31 for detecting and integrating the value of the second harmonic signal HM2 at a predetermined cycle, and based on the integrated result. And a detector 34 for detecting information indicated by the first and second meandering shapes 111 and 112.
  • the integrating section 31 includes a phase corrector 70, a multiplier 71, and an integrator 72.
  • the phase corrector 70 corrects the phase of the second harmonic signal HM2.
  • the multiplier 71 multiplies the synchronous double signal SS2 output from the frequency divider 62 by the second harmonic signal HM2.
  • Integrator 72 integrates the value of signal 71a output from multiplier 71 for a period corresponding to one frame unit, and outputs signal 72a indicating the integrated value to detector 34.
  • the detection unit 34 includes a comparator 73 and an address decoder 74.
  • the comparator 73 binarizes the integrated value indicated by the signal 72a using a preset threshold value, thereby obtaining information (for example, “0”) represented by the first meandering shape 111 and the second meandering shape.
  • the information represented by 112 (for example, "1") can be detected.
  • the address decoder 74 generates a binary address signal of the comparator 73.
  • Each of the frame units 11 to 13 includes 16 portions each having a meandering unit shape.
  • the counter 64 outputs the frame pulse signal FR every time the pulse of the synchronization binary signal PWBL is counted 16 times.
  • the pulse interval of the frame pulse signal FR corresponds to the frame unit length.
  • the counter 64 sets an initial value using a signal 54a indicating the information "SYNC" output from the SYNC detection circuit 54. As described with reference to FIG. 2A, since the LPPs representing the information "SYNC" are arranged in a concentrated manner, the timing corresponding to the head of the frame unit can be accurately obtained.
  • the number of portions having a meandering unit shape provided in one frame unit is set to six.
  • the counter 64 detects the signal 54a and sets the count number to the initial value “2” in accordance with the output timing of the signal 54a.
  • Counter 64 is a synchronous binary signal. No. Each time a PWBL pulse is generated, the cyclic counting operation is performed in the order of 3 ⁇ 4 ⁇ 5 ⁇ 0 ⁇ 1 ⁇ .
  • the counter 64 is a ring force counter that performs a self-reset in a so-called frame cycle. Therefore, even if the information "S YNC" can be detected only at a low probability that the reproduction quality of the LPP signal 43a is low, the counter 64 continues the cyclic count as long as the tracking control is continued once the initial value is set. I do.
  • the frequency divider 62 outputs a synchronous doubled signal SS2 having a frequency twice as high as that of the cobbled signal WBL.
  • the phase of the second harmonic signal HM2 (type of STW shape) can be determined.
  • the result of the multiplication takes a positive (solid line) or negative (dotted line) value.
  • the comparator 73 has a determination level (threshold) of “0” and “1”, and performs binary conversion on the integrated value to obtain information (for example, “0”) represented by the first meandering shape 111. And information (for example, “1”) represented by the second meandering shape 112 can be detected.
  • the address decoder 74 operates in synchronization with the synchronous binary signal PWBL. The integrator 72 resets the integrated value each time the frame pulse signal FR is output.
  • FIG. 7 is a block diagram showing another embodiment of the optical disk device of the present invention.
  • the optical disk device 300 shown in FIG. 7 has the same components as those of the optical disk device 200 shown in FIG. 5, and an adder 80 that generates a reproduction signal by adding the signals WBLP and WBLN, and identification information from the reproduction signal. , A data decoder 85 for outputting user data, and a selector 86.
  • the detection unit 35 includes an EQ circuit 81, a comparator 82, a PLL 83, and a header detection circuit 84.
  • the reproduced signal 80a output from the adder 80 is binarized by the comparator 82 and is phase-synchronized by the PLL 83. Thereafter, the reproduced signal 80a is separated into a clock signal DCK and synchronous data SDAT, and is output to a data decoder 85 and a header detection circuit 84.
  • the header detection circuit 84 outputs identification information for identifying the head of the block unit 15. Synchronous data Detected from SDAT, and header signal HDR indicating identification information is detected.
  • the initial value of the counter 64 can be set using the header signal HDR.
  • the selector 86 selects one of the header signal HDR and the signal 54a output from the SYNC detection circuit 54 and outputs the selected signal to the counter 64.
  • the counter 64 Upon receiving one of the header signal HDR and the signal 54a output from the selector 86, the counter 64 sets the count number to an initial value.
  • the initial value of the counter 64 is set using the header signal HDR instead of the signal 54a. be able to.
  • the selector 86 receives, for example, a signal 86a indicating whether the area of the track scanned by the laser light is a recorded area or an unrecorded area, and outputs a header signal HDR when the laser light is scanning the recorded area. Is output to the counter 64, and the signal 54a is output to the counter 64 when the laser beam scans the unrecorded area.
  • FIG. 8 is a block diagram showing another embodiment of the optical disk device of the present invention.
  • the optical disk device 400 shown in FIG. 8 further includes a selector 75 in addition to the components of the optical disk device 200 shown in FIG.
  • Address decoder 56 outputs address signal 56a to selector 75, and address decoder 74 outputs address signal 74a to selector 75.
  • the selector 75 receives the speed mode switching signal 75a indicating the drive speed of the optical disc medium 100, and selects one of the address signal 56a and the address signal 74a according to the drive speed of the optical disc medium 100.
  • the optical disc medium 100 is driven in the high-speed mode, and the laser beam travels on the track 10 at a linear velocity V.
  • the selector 75 selects and outputs the address signal 74a (that is, selects the information represented by the STW shape from the information represented by the STW shape and the information represented by the LPP).
  • the selector 75 sets the address 75
  • the signal 56a is selected and output (that is, the information represented by the LPP is selected from the information represented by the STW shape and the information represented by the LPP).
  • the band of the second harmonic signal HM2 is relatively low, and the band of the LPP signal 43a is relatively low. It is a high region. Therefore, when the optical disc medium 100 is driven at a high speed, the address signal 74a generated from the second harmonic signal HM2 has higher reliability than the address signal 56a generated from the LPP signal 43a. Get higher. Therefore, in this case, the selector 75 selects the address signal 74a. On the other hand, when the optical disk medium 100 is driven in the standard speed or the low speed mode, the reliability of the address signal 56a generated from the LPP signal 43a is high. Therefore, in this case, the address signal 56a is selected in consideration of compatibility with another optical disk medium having the LPP but not having the STW shape.
  • the selector 75 may select one of the address signal 56a and the address signal 74a depending on whether the optical disc device 400 performs a reproducing operation or a recording operation. . In this case, the selector 75 receives the recording / reproduction switching signal 75b indicating the operation status of the optical disc device 400.
  • the selector 75 selects and outputs the address signal 56a (that is, the information represented by the LPP among the information represented by the STW shape and the information represented by the LPP). select).
  • the selector 75 selects and outputs the address signal 74a (that is, the information represented by the STW shape among the information represented by the STW shape and the information represented by the LPP). select).
  • FIG. 9 is a block diagram showing another embodiment of the optical disk device of the present invention.
  • the optical disc device 500 shown in FIG. 9 further includes a selector unit 76 in addition to the components of the optical disc device 200 shown in FIG.
  • the selector unit 76 includes a selector 77 and a comparator 78.
  • the address decoder 56 outputs an address signal 56a to the selector 77, and the address decoder 74 outputs an address signal 74a to the selector 77.
  • the address decoder 56 When decoding the address information from the binary signal output from the comparator 53, the address decoder 56 detects the notice information and determines whether or not the received data is erroneous. If the address decoder 56 determines that the received data is incorrect, it outputs an error detection signal PT1 to the comparator 78. Similarly, when decoding the binary information signal output from the comparator 73, the address decoder 74 detects parity information and determines whether or not the received data is erroneous. If the address decoder 74 determines that the received data is incorrect, it outputs an error detection signal PT2 to the comparator 78.
  • Comparator 78 receives error detection signals PT1 and PT2, and detects error rate E when address information is detected from second harmonic signal HM2 and address information from LPP signal 43a.
  • the selector 77 is controlled so as to select the address signal 74a. Conversely, the error rate E is
  • comparator 78 causes selector 77 to select address signal 56a.
  • the selector 77 selects and outputs one of the address signal 56a and the address signal 74a according to the control of the comparator 78.
  • Either the address signal 56a or the address signal 74a may be selected.
  • the LPP is formed intensively at the head of one frame unit, and the STW shape repeats over the entire one frame unit. It is formed back. For this reason, if dust or the like adheres directly above the LPP, it is highly likely that information cannot be read from that LPP. On the other hand, if dirt spread over a wide area such as a fingerprint adheres to the optical disc medium 100, information may not be read from the STW shape, but information may be read from the LPP. As described above, the error rate E and the error rate E change due to dust, dirt, scratches, and the like. Address is generated according to the error rate when generating the address signal.
  • the optical disc medium of the present invention can exhibit excellent SN characteristics, and is a write-once or rewritable optical disc medium compatible with high-speed recording and reproduction, and an optical disc medium having a plurality of recording layers (for high-vision video recording). Large-capacity optical disk media).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

 本発明の情報記録媒体100は、所定の周期で蛇行するトラック10と、トラック10に隣接する複数のプレピット21および22とを備える。複数のフレームユニット11および12のそれぞれに対して複数のプレピット21および22のうちの少なくとも1つが割り当てられている。複数のフレームユニット11および12のそれぞれは、立ち上がり部分よりも立ち下がり部分が急峻な第1の蛇行形状111、および立ち下がり部分よりも立ち上がり部分が急峻な第2の蛇行形状112の少なくとも一方を有している。第1の蛇行形状111は第1の情報を表しており、第2の蛇行形状112は第2の情報を表しており、第1の情報と第2の情報とは互いに異なっている。                                                                       

Description

情報記録媒体
技術分野
[0001] 本発明は、情報記録媒体、およびその情報記録媒体を用いてデータの記録および
Zまたは再生を実行する装置に関する。本発明の情報記録媒体は、例えば、データ の追記可能又は書き換え可能な光ディスク媒体であり、そのトラックは蛇行形状を有 している。
背景技術
[0002] 現在普及している追記可能な光ディスク媒体または書き換え可能な光ディスク媒体 の中には、ランドプレピット(Land Pre— Pits (以下、「LPP」と呼ぶ))を用いてァドレ スを表す方式が採用された光ディスク媒体がある(例えば、 DVD— Rディスク媒体)。 このような光ディスク媒体は、例えば特許文献 1に開示されて 、る。
[0003] 図 10は、 LPPを備えた光ディスク媒体 1000の記録層の一部を拡大して示す平面 図である。
[0004] 光ディスク媒体 1000の記録層に形成されたトラックグループ(トラック溝) 1100は、 一定周期でサイン波状に蛇行 (ゥォプリング)して 、る。トラックグループ 1100が形成 されていない領域の特定位置には、 LPP 1200が形成されている。この LPP1200の 有無などにより、 1ビット情報を光ディスク媒体 1000の記録層に記録しておくことがで きる。
[0005] 例えば、 LPP1200がアドレス情報を表すことにより、トラックグループ 1100上のュ 一ザデータを記録するための領域にオーバーヘッドが生じず、ユーザデータを記録 するための記録容量を大きく確保できる。
[0006] ユーザデータはトラックグループ 1100に沿って記録される力 LPP1200はトラック グループ 1100から外れた領域に形成されている。このため、 LPP1200上にユーザ データが記録されることはほとんど無ぐユーザデータと LPP1200が表す情報とを分 離して再生することは比較的容易である。
[0007] データの再生は、通常、トラック接線方向に沿って分割された受光素子を用いて行 なう。分割された受光素子の各領域力 の出力信号に基づいて加算信号および差 信号が生成される。加算信号からデータを示す RF信号が生成され、差信号から、ト ラックグループ 1100の蛇行状態および LPP1200の状態を示す信号が生成される。 通常、 LPP1200に対応する信号 (LPP信号)の振幅は、トラックグループ 1100の蛇 行に対応する信号 (ゥォブル信号)の振幅よりも大きいので、それらの信号の間の振 幅差を利用して LPP信号とゥォブル信号とを分離することが可能である。例えば、ゥ ォブル信号の振幅よりも大きく、 LPP信号の振幅よりも小さ 、しき 、値 (またはウィンド ゥ)を用いて差信号をニ値ィ匕することにより、差信号力も LPP信号をパルス信号として 得ることができる。
特許文献 1 :特開平 9— 326138号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、 LPP信号の周波数はゥォブル信号の周波数に比べて格段に高いた め、 SN (Signal to Noise ratio)の悪い条件下では、 LLP1200が表す情報を正 しく再生できない場合がある。 SNの悪い条件とは、例えば高倍速で記録および再生 を実行して ヽる場合や、光ディスク媒体が 2層以上の記録層を有して ヽる場合などで ある。高倍速とは、その光ディスク媒体の規格における標準速よりも速い線速度を指 し、例えば、 DVD規格における標準速(27Mbps)の 8倍速(216Mbps)程度以上を 指す。高倍速での記録再生時には LPP信号自体の振幅が低下し、さらに記録時に はレーザ変調信号がノイズとして LPP信号に重畳されてしまう。また、光ディスク媒体 力^層の記録層を有している場合は、再生時の SNが 6dB程度低下する。さらに、記 録動作中にオフトラックが発生し、 LPP1200の上にデータが上書きされてしまった後 、再生を実行する場合も正確な LPP信号の検出が困難となってしまう。
[0009] 本発明は、上記問題に鑑みてなされたものであり、その目的は、 SNの悪い条件下 にお!/、ても正確にアドレス等の情報を再生できる情報記録媒体、およびその情報記 録媒体を用いてデータの記録および Zまたは再生を実行する装置を提供することに ある。
課題を解決するための手段 [0010] 本発明の情報記録媒体は、所定の周期で蛇行するトラックと、前記トラックに隣接す る複数のプレピットとを備えた情報記録媒体であって、前記トラックは、複数のフレー ムユニットを備え、前記複数のフレームユニットのそれぞれに対して前記複数のプレ ピットのうちの少なくとも 1つが割り当てられており、前記複数のフレームユニットのそ れぞれは、立ち上がり部分よりも立ち下がり部分が急峻な第 1の蛇行形状、および立 ち下がり部分よりも立ち上がり部分が急峻な第 2の蛇行形状の少なくとも一方を有し ており、前記第 1の蛇行形状は第 1の情報を表しており、前記第 2の蛇行形状は第 2 の情報を表しており、前記第 1の情報と前記第 2の情報とは互いに異なることを特徴と する。
[0011] ある実施形態において、前記複数のフレームユニットのそれぞれは、前記第 1の蛇 行形状および前記第 2の蛇行形状の一方を有しており、前記複数のフレームユニット のうちの所定のフレームユニットに割り当てられた前記少なくとも 1つのプレピットは、 前記所定のフレームユニットの形状が表す前記第 1の情報または前記第 2の情報に 対応する第 3の情報を表して 、る。
[0012] ある実施形態において、前記第 3の情報は、前記所定のフレームユニットの形状が 表す前記第 1の情報または前記第 2の情報と同じ内容を示している。
[0013] ある実施形態において、前記複数のフレームユニットのそれぞれに割り当てられた 前記少なくとも 1つのプレピットは、対応するフレームユニットの所定の位置に隣接し ている。
[0014] ある実施形態において、前記第 1の蛇行形状および前記第 2の蛇行形状のそれぞ れは、 1ビット情報を表す単位形状であり、前記複数のフレームユニットは、前記単位 形状の部分を互いに同じ個数有して 、る。
[0015] ある実施形態において、前記複数のフレームユニットは、 2つ以上の前記フレーム ユニットを備える複数のワードユニットに分けられており、前記複数のワードユニットの それぞれの先頭に位置するフレームユニットに割り当てられた前記少なくとも 1つのプ レビットは、前記ワードユニットの先頭を示す情報を表して 、る。
[0016] 本発明の装置は、前記情報記録媒体へのデータの記録および前記情報記録媒体 力 のデータの再生のうちの少なくとも一方を実行する装置であって、前記情報記録 媒体にレーザ光を照射したときの前記情報記録媒体力 の反射光に基づいて得られ る信号に含まれる前記第 1の情報および前記第 2の情報を示す第 1の信号を出力す る第 1の信号出力部と、前記反射光に基づいて得られる前記信号に含まれる前記ト ラックの蛇行の周波数を示す第 2の信号を出力する第 2の信号出力部と、前記反射 光に基づいて得られる前記信号に含まれる前記プレピットが表す第 3の情報を示す 第 3の信号を出力する第 3の信号出力部とを備えることを特徴とする。
[0017] ある実施形態において、前記装置は、前記第 1の信号の値を所定の周期で検出し て積算する積算部と、前記積算した結果に基づいて前記第 1の情報および前記第 2 の情報を検出する第 1の検出部とをさらに備える。
[0018] ある実施形態において、前記第 1の蛇行形状および前記第 2の蛇行形状のそれぞ れは、 1ビット情報を表す単位形状であり、前記複数のフレームユニットは、前記単位 形状の部分を互いに同じ個数有しており、前記装置は、所定の回数をカウントする力 ゥンタ部をさらに備え、前記所定の回数は、 1つの前記フレームユニットが有する前記 単位形状の部分の個数に対応した回数であり、前記積算部は、前記カウンタ部が前 記所定の回数をカウントする毎に前記積算した結果をリセットする。
[0019] ある実施形態において、前記複数のフレームユニットは、 2つ以上の前記フレーム ユニットを備える複数のワードユニットに分けられており、前記複数のワードユニットの それぞれの先頭に位置するフレームユニットに割り当てられた前記少なくとも 1つのプ レビットが表す前記第 3の情報は、前記ワードユニットの先頭を示しており、前記装置 は、前記第 3の信号から前記ワードユニットの先頭を示す前記第 3の情報を検出する 第 2の検出部をさらに備え、前記カウンタ部は、前記第 2の検出部が前記ワードュ- ットの先頭を示す前記第 3の情報を検出すると、カウント数を初期値に設定する。
[0020] ある実施形態において、前記複数のフレームユニットは、 2つ以上の前記フレーム ユニットを備える複数のワードユニットに分けられており、前記複数のワードユニットは 、 2つ以上の前記ワードユニットを備える複数のブロックユニットに分けられており、前 記トラックのうちの前記複数のブロックユニットのそれぞれの先頭に対応する位置に は、前記複数のブロックユニットのそれぞれの先頭を識別するための識別情報が記 録されており、前記装置は、前記情報記録媒体からの前記反射光に基づいて得られ る再生信号力 前記識別情報を検出する第 3の検出部をさらに備え、前記カウンタ部 は、前記第 3の検出部が前記識別情報を検出すると、カウント数を初期値に設定する
[0021] ある実施形態において、前記複数のフレームユニットは、 2つ以上の前記フレーム ユニットを備える複数のワードユニットに分けられており、前記複数のワードユニットの それぞれの先頭に位置するフレームユニットに割り当てられた前記少なくとも 1つのプ レビットが表す前記第 3の情報は、前記ワードユニットの先頭を示しており、前記複数 のワードユニットは、 2つ以上の前記ワードユニットを備える複数のブロックユニットに 分けられており、前記トラックのうちの前記複数のブロックユニットのそれぞれの先頭 に対応する位置には、前記複数のブロックユニットのそれぞれの先頭を識別するため の識別情報が記録されており、前記装置は、前記第 3の信号から前記ワードユニット の先頭を示す前記第 3の情報を検出する第 2の検出部と、前記情報記録媒体からの 前記反射光に基づいて得られる再生信号力 前記識別情報を検出する第 3の検出 部とをさらに備え、前記カウンタ部は、前記第 2の検出部による前記ワードユニットの 先頭を示す前記第 3の情報の検出と、前記第 3の検出部による前記識別情報の検出 とのうちの一方に応じて、カウント数を初期値に設定する。
[0022] ある実施形態において、前記複数のフレームユニットのそれぞれは、前記第 1の蛇 行形状および前記第 2の蛇行形状の一方を有しており、前記複数のフレームユニット のうちの所定のフレームユニットに割り当てられた前記少なくとも 1つのプレピットが表 す前記第 3の情報は、前記所定のフレームユニットの形状が表す前記第 1の情報ま たは前記第 2の情報と同じ内容を示しており、前記装置は、前記レーザ光が前記トラ ックを第 1の速度で走査するときは、前記第 1の情報、前記第 2の情報および前記第 3の情報のうちの前記第 1の情報および前記第 2の情報を選択し、前記レーザ光が前 記トラックを第 2の速度で走査するときは、前記第 1の情報、前記第 2の情報および前 記第 3の情報のうちの前記第 3の情報を選択するセレクタ部をさらに備え、前記第 1の 速度は前記第 2の速度よりも速い。
[0023] ある実施形態において、前記複数のフレームユニットのそれぞれは、前記第 1の蛇 行形状および前記第 2の蛇行形状の一方を有しており、前記複数のフレームユニット のうちの所定のフレームユニットに割り当てられた前記少なくとも 1つのプレピットが表 す前記第 3の情報は、前記所定のフレームユニットの形状が表す前記第 1の情報ま たは前記第 2の情報と同じ内容を示しており、前記装置は、記録動作時においては、 前記第 1の情報、前記第 2の情報および前記第 3の情報のうちの前記第 1の情報およ び前記第 2の情報を選択し、再生動作時においては、前記第 1の情報、前記第 2の 情報および前記第 3の情報のうちの前記第 3の情報を選択するセレクタ部をさらに備 える。
[0024] ある実施形態において、前記第 1の信号から前記第 1の情報および前記第 2の情 報を検出するときの第 1の誤り率と、前記第 3の信号から前記第 3の情報を検出すると きの第 2の誤り率とを比較し、前記第 1の誤り率が前記第 2の誤り率よりも低い場合は 、前記第 1の情報、前記第 2の情報および前記第 3の情報のうちの前記第 1の情報お よび前記第 2の情報を選択し、前記第 1の誤り率が前記第 2の誤り率よりも高い場合 は、前記第 1の情報、前記第 2の情報および前記第 3の情報のうちの前記第 3の情報 を選択するセレクタ部をさらに備える。
[0025] 本発明の方法は、前記情報記録媒体へのデータの記録および前記情報記録媒体 力 のデータの再生のうちの少なくとも一方を実行する方法であって、前記情報記録 媒体にレーザ光を照射したときの前記情報記録媒体力 の反射光に基づいて得られ る信号に含まれる前記第 1の情報および前記第 2の情報を示す第 1の信号を出力す る第 1のステップと、前記反射光に基づいて得られる前記信号に含まれる前記トラック の蛇行の周波数を示す第 2の信号を出力する第 2のステップと、前記反射光に基づ いて得られる前記信号に含まれる前記プレピットが表す第 3の情報を示す第 3の信号 を出力する第 3のステップとを包含することを特徴とする。
[0026] 本発明の情報記録媒体は、複数の記録層を備えた情報記録媒体であって、前記 複数の記録層のそれぞれは、所定の周期で蛇行するトラックと、前記トラックに隣接 する複数のプレピットとを備え、前記トラックは、複数のフレームユニットを備え、前記 複数のフレームユニットのそれぞれに対して前記複数のプレピットのうちの少なくとも 1つが割り当てられており、前記複数のフレームユニットのそれぞれは、立ち上がり部 分よりも立ち下がり部分が急峻な第 1の蛇行形状、および立ち下がり部分よりも立ち 上がり部分が急峻な第 2の蛇行形状の少なくとも一方を有しており、前記第 1の蛇行 形状は第 1の情報を表しており、前記第 2の蛇行形状は第 2の情報を表しており、前 記第 1の情報と前記第 2の情報とは互いに異なることを特徴とする。
発明の効果
[0027] 本発明によれば、トラックは、第 1の情報を表す第 1の蛇行形状と、第 2の情報を表 す第 2の蛇行形状とを備える。これらの第 1の蛇行形状および第 2の蛇行形状を組み 合わせることにより、アドレス等の情報が表される。トラック上のユーザデータを記録す るための領域にアドレス情報を記録しておく必要がな 、ので、ユーザデータを記録す るための記録容量を大きく確保することができる。また、所定のフレームユニットの蛇 行形状と、その所定のフレームユニットに割り当てられたプレピットとが互いに対応し た情報 (例えば、同じ情報)を表す構成を採用すれば、プレピットが表す情報を正確 に再生できな力つた場合でも、フレームユニットの蛇行形状が表す情報を再生するこ とにより、その情報を正確に再生することができる。
[0028] また、本発明によれば、プレピットが表す情報を基点として第 1および第 2の情報を 示す信号 (二次高調波信号)の値を積分することにより、蛇行形状が表す情報を検出 することができる。二次高調波信号の値を積分することにより、高域ノイズ成分を除去 することができ、蛇行形状が表すアドレスなどの情報を正確に再生することが可能に なる。また、一方、 LPP信号は高い周波数を有しており、低域ノイズ成分の影響を受 けにくい。ノイズの種類に応じて二次高調波信号と LPP信号とを使い分けることにより 、アドレス等の情報をより正確に再生することができる。また、例えば、低倍速記録再 生時には、従来の情報記録媒体との互換性の観点から LPP信号を用いて情報を検 出し、高倍速記録再生時には二次高調波信号を用いて情報を検出するといつた、二 次高調波信号および LPP信号の双方の利点を考慮した二次高調波信号と LPP信 号との使!、分けも可能である。
図面の簡単な説明
[0029] [図 1A]本発明の実施形態 1による光ディスク媒体が備える記録層の一部を拡大して 示す平面図である。
[図 1B]本発明の実施形態 1による光ディスク媒体の一部を立体的に示す斜視図であ る。
[図 2A]本発明の実施形態 1によるフレームユニットを表すテーブルを示す図である。
[図 2B]本発明の実施形態 1によるフレームユニットを表すテーブルを示す図である。
[図 2C]本発明の実施形態 1によるフレームユニットを表すテーブルを示す図である。
[図 3]本発明の実施形態 1によるワードユニットを表すテーブルを示す図である。
[図 4]本発明の実施形態 1によるブロックユニットを表すテーブルを示す図である。
[図 5]本発明の実施形態 2による光ディスク装置を示すブロック図である。
[図 6]本発明の実施形態 2による光ディスク装置の動作を示すタイミングチャートであ る。
[図 7]本発明の実施形態 3による光ディスク装置を示すブロック図である。
[図 8]本発明の実施形態 4による光ディスク装置を示すブロック図である。
[図 9]本発明の実施形態 5による光ディスク装置を示すブロック図である。
[図 10]従来の光ディスク媒体の記録層の一部を拡大して示す平面図である。
符号の説明
[0030] 10 トラック
11、 12 フレームユニット
21、 22 ランドプレピット
100 情報記録媒体
101 記録層
111 第 1の蛇行形状
112 第 2の蛇行形状
発明を実施するための最良の形態
[0031] 以下、図面を参照しながら本発明の実施形態を説明する。
[0032] (実施形態 1)
まず、図 1 Aを参照して、本実施形態の情報記録媒体を説明する。図 1Aは、本実 施形態の情報記録媒体 100が備える記録層 101の一部を拡大して示す平面図であ る。情報記録媒体 100は光ディスク媒体である。
[0033] 記録層 101は、光ディスク媒体 100の中心の周りに渦巻き状に形成されたトラックグ ループ(以下、「トラック」と略記する) 10を備える。トラック 10は、レーザ光の入射方向 力も見ると記録層 101中の凹部 (溝)である力 凸部であってもよい。トラック 10は、光 ディスク媒体 100の径方向に所定の単一の基本周期で蛇行(ゥォブリング)して 、る。
[0034] トラック 10の蛇行の一周期に相当する部分の蛇行形状は、鋸歯状蛇行 (Saw To oth Wobble : STW)形状である。トラック 10は、 STW形状として、第 1の蛇行形状 1 11と第 2の蛇行形状 112とを有して 、る。
[0035] トラック 10上におけるビームスポットの移動方向(トラック 10の中心の接線方向と平 行な方向)に沿って、光ディスク媒体 100の内側から外側へ向力う方向へ曲がってい る蛇行形状の部分を立ち上がり部分と呼び、光ディスク媒体 100の外側から内側へ 向力う方向へ曲がっている蛇行形状の部分を立ち下がり部分と呼ぶ。第 1の蛇行形 状 111は、立ち上がり部分 113よりも立ち下がり部分 114が急峻な形状であり、第 2の 蛇行形状 112は立ち下がり部分 116よりも立ち上がり部分 115が急峻な形状である。 第 1の蛇行形状 111および第 2の蛇行形状 112のそれぞれは、 1ビット情報を表す単 位形状である。第 1の蛇行形状 111は第 1の情報を表しており、第 2の蛇行形状 112 は第 2の情報を表している。第 1の情報と第 2の情報とは互いに異なる。例えば、第 1 の情報は 1ビット情報の" 0"であり、第 2の情報は 1ビット情報の" 1"である。第 1の情 報および第 2の情報は、例えば、光ディスク媒体 100に記録された情報のうちの副情 報 (アドレス情報等)を示して!/、る。
[0036] 記録層 101からの反射光に基づ 、て得られる第 1の蛇行形状 111に対応した信号 の波形は、立ち上がりエッジよりも立ち下がりエッジが急峻となる。また、その反射光 に基づいて得られる第 2の蛇行形状 112に対応した信号の波形は、立ち下がりエツ ジよりも立ち上がりエッジが急峻となる。このような蛇行形状 111に対応した信号の波 形と、蛇行形状 112に対応した信号の波形との違いから、第 1の情報" 0"と第 2の情 報" 1"とを識別することができる。
[0037] 光ディスク媒体 100へのデータの記録および光ディスク媒体 100からのデータの再 生時には、回転する光ディスク媒体 100の記録層 101上にレーザ光のビームスポット が形成され、トラック 10の略中心を追従するようにビームスポットの位置が高い精度で 制御される。このような制御はトラッキング制御と呼ばれる。 [0038] 光ディスク媒体 100から反射される光を光ディスク装置の光ピックアップが備えるフ オトディテクタが検出し、フォトディテクタから出力される信号に基づいてトラッキング 制御は行なわれる。トラッキング制御の下では、ビームスポットはトラック 10の略中心 を追従している。
[0039] フォトディテクタから出力される差信号には、トラック 10の STW形状を反映した強度 変化を示す成分が含まれている。第 1の蛇行形状 111と第 2の蛇行形状 112とでは、 トラック 10が光ディスク媒体 100の径方向(トラック 10の中心の接線方向に対して垂 直な方向)にゥォブリングするときの急峻さが異なっている。このため、 STW形状に対 応する信号波形の立ち上がりエッジと立ち下がりエッジとの間の急峻さの違いに ST W形状が反映される。
[0040] 第 1の蛇行形状 111は、光ディスク媒体 100の内側から外側へ向力 方向へ相対 的に緩やかに変位した後、光ディスク媒体 100の外側から内側へ向力う方向へ相対 的に急峻に変位している。このため、第 1の蛇行形状 111に対応する信号でも、立ち 上がりエッジよりも立ち下がりエッジが相対的に急峻になる。
[0041] 一方、第 2の蛇行形状 112は、光ディスク媒体 100の内側から外側へ向かう方向へ 相対的に急峻に変位した後、光ディスク媒体 100の外側から内側へ向力う方向へ相 対的に緩やかに変位している。このため、第 2の蛇行形状 112に対応する信号でも、 立ち下がりエッジよりも立ち上がりエッジが相対的に急峻になる。
[0042] 次に、フレームユニットを説明する。
[0043] トラック 10は、複数のフレームユニット 11および 12を備える。複数のフレームュ-ッ ト 11のそれぞれは、複数の第 1の蛇行形状 111を備える。複数のフレームユニット 12 のそれぞれは、複数の第 2の蛇行形状 112を備える。第 1の蛇行形状 111および第 2 の蛇行形状 112のそれぞれは 1ビット情報を表す単位形状であり、フレームユニット 1 1および 12のそれぞれは、これら単位形状を有する部分を同じ個数備えている。
[0044] 記録層 101は、トラック 10が形成されていない領域 (渦巻き状のトラック 10の隣接す る部分間の領域)の特定位置に複数の LPP (ランドブレピット) 21および 22を備える。 LPP21および 22はトラック 10に隣接して形成されている。フレームユニット 11および 12のそれぞれに対して少なくとも 1つの LPP21または 22が割り当てられている。 LP P21はフレームユニット 11の所定の位置に隣接して割り当てられており、 LPP22はフ レームユニット 12の所定の位置に隣接して割り当てられている。 LPP21は、フレーム ユニット 11の形状 (第 1の蛇行形状 111)が表す第 1の情報に対応する情報を表して いる。 LPP22は、フレームユニット 12の形状 (第 2の蛇行形状 112)が表す第 2の情 報に対応する情報を表している。例えば、 LPP21および第 1の蛇行形状 111は、互 いに同じ情報 (第 1の情報)を表し、 ^22ぉょび第2の蛇行形状112は、互いに同 じ情報 (第 2の情報)を表して ヽる。
[0045] 次に、図 1Bを参照して、光ディスク媒体 100をより詳細に説明する。図 1Bは、光デ イスク媒体 100の一部を立体的に示す斜視図である。光ディスク媒体 100が備える記 録層の数は 1層でもよいし、 2層以上でも良い。図 1Bに示す光ディスク媒体 100は、 2つの記録層 101および 101aを備える。記録層 101aが備える構成要素は、記録層 101が備える構成要素と同様であるので、ここでは説明を省略する。
[0046] 光ディスク媒体 100は基板 102を備え、基板 102の記録面側に記録層 101が形成 されている。記録面とは、光ディスク媒体 100が光ディスク装置に装着されたときに光 ピックアップと対向する側の面である。記録層 101の基板 102とは反対の側には透明 榭脂層 103が形成されており、透明榭脂層 103の記録層 101とは反対の側に記録 層 101aが形成されている。透明榭脂層 103により、記録層 101と記録層 101aとの間 に所定の間隔 (例えば約 30〜60 m)があけられている。記録層 101aの透明榭脂 層 103とは反対の側には、保護層 104が形成されている。保護層 104は、記録層 10 1および 10 laを汚れやキズが付かな!/、ように保護して 、る。
[0047] 各構成要素のサイズとしては、例えば、トラック 10の隣接するグループ間の距離は 約 0. 7〜0. 8 μ ι,トラック 10のグノレーブ幅は約 0. 2〜0. δ μ ί,トラック 10の段差 (高さまたは深さ)は波長換算で λ Z16〜え Ζ8 ( λ:波長)に設定されて!、る。これ らのサイズは、ビームスポットの直径が約 1 μ mである場合に対応している(例えば、 波長 650nm、 NA= 0. 65のレーザ光を用いるとビームスポットの直径は約 1 μ mに なる)。記録層 101と記録層 101aとの間の距離は、約 30〜60 mである。 LPP21 および 22の形状は、図 1B中では円形で示されており、トラック 10の接線方向に沿つ たサイズは約 0. 5〜1. 0 mである。トラック 10の蛇行の 1周期の長さは約 15〜30 /z mである。この場合、蛇行形状に対応した信号の周波数は、 LPPに対応した信号 の周波数の 1Z30程度となる。なお、これらの各構成要素のサイズは一例であり、使 用するレーザ光のビームスポットが小さくなれば、それに比例して、各構成要素のサ ィズも小さくなり得る。
[0048] 次に、図 2A、図 2Bおよび図 2Cを参照して、フレームユニットをより詳細に説明する
[0049] 図 2A〜図 2Cは、 3種類のフレームユニット 11、 12および 13を表すテーブルを示 す図である。符号" L"は、第 1の蛇行形状 111を示し、符号" T"は、第 2の蛇行形状 1 12を示している。
[0050] 各フレームユニット 11、 12および 13には、第 1の蛇行形状 111または第 2の蛇行形 状 112によって表される 1ビット情報("0"または" 1")が割り当てられている。また、フ レームユニット 13には、更に、情報" SYNC"が割り当てられている。情報" SYNC"は 、後述するワードユニット(図 3)の先頭を示す情報である。フレームユニット 11には 1 ビット情報" 0"が割り当てられている。フレームユニット 12には 1ビット情報" 1"が割り 当てられている。フレームユニット 11、 12および 13は、 1ビット情報を表す単位形状 である第 1の蛇行形状 111を有する部分または第 2の蛇行形状 112を有する部分を 互いに同じ個数備えている。図 2A〜図 2Cに示す例では、各フレームユニット 11、 1 2および 13は、 16個の単位形状を有する部分を備えている。
[0051] 各フレームユニット 11、 12および 13には、 LPP21または 22が割り当てられており、 LPP21および 22によってフレームユニット 11、 12および 13が識別される。
[0052] LPP21および 22は、例えば、各フレームユニット 11、 12および 13の先頭側に位置 する 2つの単位形状のうちの少なくとも一方に隣接して形成されている。図 2A〜図 2 Cに示す符号" P"は、 16個の単位形状のうちの LPP21および 22が形成される単位 形状を示している。フレームユニット 11の先頭側に位置する 2つの単位形状のうちの 一番先頭の単位形状には LPP21は割り当てられておらず、先頭から 2番目の単位 形状には LPP21が割り当てられている。このようなフレームユニット 11への LPP21の 割り当てパターンは 1ビット情報" 0"を表している。フレームユニット 12の先頭側に位 置する 2つの単位形状のうちの一番先頭の単位形状には LPP22が割り当てられて おり、先頭から 2番目の単位形状には LPP22が割り当てられていない。このようなフ レームユニット 12への LPP22の割り当てパターンは 1ビット情報" 1"を表している。フ レームユニット 13の先頭側に位置する 2つの単位形状の両方に LPP21が割り当てら れている。このようなフレームユニット 13への LPP21の割り当てパターンは情報" SY NC"を表している。
[0053] 先頭側に位置する 2つの単位形状のうちの LPP21および 22が形成されていない 単位形状を"—"と表す場合、 1ビット情報" 0"は"— P"とバイフェーズ表記で表すこと 力 Sできる。同様に、 1ビット情報" 1"は" P— "と表され、情報" SYNC"は" PP"と表され る。
[0054] フレームユニット 11が有する第 1の蛇行形状 111が表す情報は、フレームユニット 1 1への LPP21の割り当てパターンが表す情報と同じ内容(1ビット情報" 0")を表して いる。また、フレームユニット 12が有する第 2の蛇行形状 112が表す情報は、フレー ムユニット 12への LPP22の割り当てパターンが表す情報と同じ内容(1ビット情報" 1 ")を表している。
[0055] LPP21および 22がフレームユニットの先頭側に集中して設けられて!/、るのに対し、 第 1の蛇行形状 111および第 2の蛇行形状 112のそれぞれは、 16周期の蛇行に渡 つて連続して形成されている。フレームユニット 11では、第 1の蛇行形状 111 (符号" L")が 16個連続しており、 16個の第 1の蛇行形状 111のそれぞれが 1ビット情報" 0" を表している。フレームユニット 12では、第 2の蛇行形状 112 (符号" T")が 16個連続 しており、 16個の第 2の蛇行形状 112のそれぞれが 1ビット情報" 1"を表している。
[0056] このような第 1および第 2の蛇行形状 111および 112に対応する信号(二次高調波 信号)の値を所定の周期で 16回検出して積算することにより、第 1および第 2の蛇行 形状 111および 112が表す情報を検出することができる。二次高調波信号の値を 16 回積算することにより、積算しな 、場合と比較して高域のノイズレベルを約 1 Z4に低 下 (約— 12dB)させることができ、その分、 SNが悪い条件下でも正確に情報を検出 できる割合を高めることが出来る。また、一方、 LPP21および 22はフレームユニット の先頭部に集中的に配置されて 、るので、 LPP21および 22に対応する信号 (LPP 信号)は高い周波数を有している。このため、 LPP信号は低域ノイズ成分の影響を受 けにくい。従って、発生するノイズの種類に応じて二次高調波信号と LPP信号とを使 い分けることにより、アドレス等の情報をより正確に再生することができる。このような、 二次高調波信号および LPP信号に含まれる情報の検出動作につ 、ては、実施形態 2以降でより詳細に説明する。
[0057] 上述のように、二次高調波信号の値を 16回積算することにより、第 1および第 2の情 報の検出時の SNを 12dB改善させることができる。言い換えれば、二次高調波信号 は、その振幅がキャリア振幅の 1Z4 (— 12dB)でも検出可能ということになり、その条 件に合わせて、蛇行形状の立ち上がり部分および立ち下がり部分の傾斜のレベルを 決定することが可能である。トラック 10の蛇行の周波数を示す信号の波形が— 12dB 程度歪んでも、トラック 10の蛇行の周波数の検出に大きな影響は与えない。このこと は、互いに異なるフォーマットの光ディスク媒体同士の互換性を確保するという点に おいて非常に有利である。 STW形状を検出する機能を備えておらず、 LPPのみカゝら アドレス情報を検出する光ディスク装置は、蛇行の周波数を示す信号の波形の多少 の歪みは無視して蛇行の周波数を検出する。このため、そのような光ディスク装置に 光ディスク媒体 100が装着された場合でも、光ディスク装置は、蛇行の周波数を示す 信号の波形の多少の歪み(STW形状に起因する歪み)は無視して蛇行の周波数を 検出するので、光ディスク媒体 100以外の光ディスク媒体と同様に記録再生動作を 実行することができる。
[0058] LPPおよび STW形状の両方力 アドレス情報を検出する光ディスク装置(実施形 態 2以降で説明する)では、仮に LPP (または STW形状)からのアドレス情報の検出 に失敗しても、 STW形状 (または LPP)力もアドレス情報を検出すればよいので、アド レス情報の検出の信頼性を高めることができる。
[0059] なお、情報" SYNC"が割り当てられたフレームユニット 13の蛇行形状は、 "PP"に 相当する形状を有していない。本実施形態では、フレームユニット 13は、レファレンス として 1ビット情報" 0"を示す第 1の蛇行形状 111を備えている。
[0060] 次に、図 3を参照して、ワードユニットを説明する。トラック 10が備える複数のフレー ムユニット 11、 12および 13は、 2つ以上のフレームユニットを備える複数のワードュ ニット 14にグループ分けされている。図 3は、ワードユニット 14を表すテーブルを示す 図である。ワードユニット 14は、 12個のフレームユニット 11、 12および 13を備える。 すなわち、 1つのワードユニット 14は、 12ビットの情報を有している。ワードユニット 14 の先頭には、フレームユニット 13が位置している。フレームユニット 13に割り当てられ た LPP21は、ワードユニット 14の先頭を示す情報" SYNC"を表している。
[0061] 次に、図 4を参照して、ブロックユニットを説明する。複数のワードユニット 14は、 2つ 以上のワードユニット 14を備える複数のブロックユニット 15にグループ分けされてい る。図 4は、ブロックユニット 15を表すテーブルを示す図である。ブロックユニット 15は 、 8個のワードユニット 14を備える。 "SYNC"を表すワードユニット 14以外の 11個の ワードユニット 14が表す 11ビットの情報は、 3ビットのワードアドレスデータと 8ビットの バイトデータとに分けられている。 8個のワードユニット 14の各ビットデータは、ブロッ クユニット 15のアドレス情報および管理情報、並びにそれらに対するパリティ情報を 示している。
[0062] なお、トラック 10のブロックユニット 15の先頭に対応する位置には、複数のブロック ユニット 15のそれぞれの先頭を識別するための識別情報が記録されている。
[0063] 上記のようなブロックユニット 15は、トラック 10に記録されるユーザデータの 1ECC ( Error Correction Code)ブロック単位に相当する。
[0064] (実施形態 2)
図 5および図 6を参照しながら、本発明による光ディスク装置の実施形態を説明する 。図 5は、本実施形態の光ディスク装置 200を示すブロック図であり、図 6は、光デイス ク装置 200の動作を示すタイミングチャートである。光ディスク装置 200は、光ディスク 媒体 100へのデータの記録および光ディスク媒体 100からのデータの再生のうちの 少なくとも一方を実行する装置である。
[0065] 光ディスク装置 200は、公知の光ディスク装置が備えて 、る光ピックアップ (不図示) を備えている。この光ピックアップ内の半導体レーザ力も放射されたレーザ光が対物 レンズによって光ディスク媒体 100 (図 1A)の記録層 101上に集光され、その記録層 101上にビームスポットを形成する。光ディスク装置 200によるトラッキング制御およ びフォーカシング制御により、ビームスポットはトラック 10を追従する。
[0066] 記録層 101にレーザ光を照射したときに記録層 101で反射された光は、光ピックァ ップ内のフォトディテクタで検出される。フォトディテクタは、複数の受光領域に分割さ れている。受光領域は、トラック 10の接線方向に沿って互いに分割されており、受光 領域力も信号 WBLPおよび WBLNが出力される。光ディスク装置 200が備える差動 アンプ 30は、信号 WBLPおよび WBLNに基づ!/、て差動信号(ゥォブル信号) WBL を生成する。このゥォブル信号 WBLは、トラック 10の蛇行の基本周波数を示す基本 波信号と、記録層 101上の STW形状が表す情報を示す二次高調波信号と、 LPPが 表す情報を示す LPP信号とを含んでいる。周波数軸で見ると、二次高調波信号は相 対的に低周波の領域に分散したスペクトルを有しており、 LPP信号は相対的に高周 波の領域に集中したスペクトルを有している。例えば、 DVD規格における標準速に 対応する速度で光ディスク媒体 100を駆動しているとき、二次高調波信号の周波数 は約 200kHz〜2MHz、 LPP信号の周波数は約 8MHz〜16MHzである。
[0067] 光ディスク装置 200は、ゥォブル信号 WBLに含まれる STW形状が表す情報を示 す二次高調波信号 HM2を出力する第 1の信号出力部 41と、ゥォブル信号 WBLに 含まれるトラック 10の蛇行の基本周波数を示す基本波信号 42aを出力する第 2の信 号出力部 42と、ゥォブル信号 WBLに含まれる LPPが表す情報を示す LPP信号 43a を出力する第 3の信号出力部 43とを備える。
[0068] 第 1の信号出力部 41は、ゥォブル信号 WBLを受け取り、ゥォブル信号 WBLに含ま れる二次高調波信号 HM2を少なくとも通過させるバンドパスフィルタ(BPF)である。 第 2の信号出力部 42は、ゥォブル信号 WBLを受け取り、基本波信号 42aを少なくと も通過させる BPFである。第 3の信号出力部 43は、ゥォブル信号 WBLを受け取り、 L PP信号 43aを少なくとも通過させる BPFである。 BPFを用いることにより、相対的に 低周波の領域にスペクトルを有する二次高調波信号 HM2と、相対的に高周波の領 域にスペクトルを有する LPP信号 43aとを分離することができる。
[0069] BPF41〜43により、ゥォブル信号 WBLから、二次高調波信号 HM2、基本波信号 42a、および LPP信号 43aがそれぞれ抽出される。
[0070] なお、 BPF41〜43は、結果的に BPFとして機能する回路を利用できれば、特別の フィルタ回路を設けて実現する必要はない。例えば、 LPP信号 43aの周波数は相対 的に高いため、意図的にローパスフィルタを設けなくとも、回路の周波数特性によつ ては高域の通過が自然と制限される。また、 LPP信号 43aの周波数は相対的に高い ことにより、 BPF43は、低域の波形変動分を除去するための単なるハイパスフィルタ を実際に回路に付加するだけでも実現できる。
[0071] また、後述の乗算器 71および積算器 72で構成されるいわゆるヘテロダイン検出回 路が事実上のバンドパスフィルタを構成している。このため、 BPF41が行う信号処理 は、ヘテロダイン検出回路の信号処理前の前処理的なものと考えてよい。また、乗算 器 71および積算器 72が BPF41の機能を有していてもよい。
[0072] 光ディスク装置 200は、 LPP信号 43aをニ値ィ匕すると共にワードユニットの先頭を 示す情報" SYNC"を検出する検出部 33と、アドレス信号を生成するアドレスデコー ダ 56とをさらに備える。検出部 33は、 BPF43で抽出された LPP信号 43aを二値ィ匕 するコンパレータ 53と、情報" SYNC"を検出する SYNC検出回路 54とを備える。コ ンパレータ 53は、閾値 53b (図 6)を用いて LPP信号 43aを二値化して二値化信号 5 3aを生成する。コンパレータ 53は、二値化信号 53aをアドレスデコーダ 56および SY NC検出回路 54へ出力する。 SYNC検出回路 54は、二値ィ匕信号 53aから情報" SY NC"を検出して、情報" SYNC"を示す信号 54aをアドレスデコーダ 56へ出力する。
[0073] 光ディスク装置 200は、同期信号 CLKを生成する同期信号生成部 32をさらに備え る。同期信号生成部 32は、基本波信号 42aをニ値ィ匕するコンパレータ 51と、同期信 号 CLKを生成する PLL (Phase— Locked Loop) 61と、順次分周器(カウンタ) 62 および 63とを備える。コンパレータ 51は、基本波信号 42aをニ値ィ匕して生成した二 値ィ匕信号 51aを PLL61へ出力する。 PLL61は、二値ィ匕信号 51aから同期信号 CL Kを生成する。同期信号 CLKは、順次分周器 62および 63によって NZ2分周およ び 2分周され、順次分周器 63から出力された同期二値ィ匕信号 PWBLが PLL61の位 相比較器(図示せず)にフィードバックされる。アドレスデコーダ 56は同期信号 CLKと 同期して動作する。
[0074] ゥォブル信号 WBLからは、 BPF41によって二次高調波信号 HM2が抽出される。
第 1の蛇行形状 111と第 2の蛇行形状 112との違 、は、二次高調波信号 HM2の極 性の反転として現れる。例えば、第 1の蛇行形状 111に対応した二次高調波信号 H M2は図 6に示す実線の波形となり、第 2の蛇行形状 112に対応した二次高調波信 号 HM2は図 6に示す点線の波形 (第 1の蛇行形状 111に対応した二次高調波信号 HM2の極性が反転した波形)となる。
[0075] 光ディスク装置 200は、所定の回数をカウントするカウンタ部 64と、二次高調波信 号 HM2の値を所定の周期で検出して積算する積算部 31と、その積算した結果に基 づいて第 1および第 2の蛇行形状 111および 112が示す情報を検出する検出部 34と をさらに備える。積算部 31は、位相補正器 70と、乗算器 71と、積算器 72とを備える。 位相補正器 70は、二次高調波信号 HM2の位相を補正する。乗算器 71は、分周器 62から出力された同期遁倍信号 SS2と、二次高調波信号 HM2とを乗算する。積算 器 72は、 1フレームユニットに相当する期間、乗算器 71から出力された信号 71aの値 を積算し、その積算値を示す信号 72aを検出部 34へ出力する。
[0076] 検出部 34は、コンパレータ 73と、アドレスデコーダ 74とを備える。コンパレータ 73は 、予め設定されたしきい値を用いて信号 72aが示す積算値をニ値ィ匕することにより、 第 1の蛇行形状 111が表す情報 (例えば" 0")および第 2の蛇行形状 112が表す情 報(例えば" 1")を検出することができる。アドレスデコーダ 74は、コンパレータ 73の 二値ィ匕結果力 アドレス信号を生成する。
[0077] フレームユニット 11〜13 (図 2A〜図 2C)は、蛇行の単位形状を有する部分を 16 個備えている。カウンタ 64は、同期二値化信号 PWBLのパルスを 16回カウントする 毎にフレームパルス信号 FRを出力する。フレームパルス信号 FRのパルス間隔は、フ レームユニット長に相当して 、る。
[0078] このパルス信号 FRをフレームユニットの先頭に相当するタイミングで発生させるた めには、適切なタイミングでカウンタ 64の値を初期値にセットする必要がある。カウン タ 64は、 SYNC検出回路 54から出力される情報" SYNC"を示す信号 54aを用いて 、初期値をセットする。図 2Aを参照して説明したように、情報" SYNC"を表す LPPは 集中配置されているため、フレームユニットの先頭に相当するタイミングを正確に得る ことができる。
[0079] 図 6では、簡単化のため、 1つのフレームユニットが備える蛇行の単位形状を有する 部分は 6個に設定している。カウンタ 64は、信号 54aを検出し、信号 54aの出カタイミ ングに合わせて、カウント数を初期値「2」に設定する。カウンタ 64は、同期二値化信 号 PWBLのパルスの発生毎に「2」から順次、 3→4→5→0→1→· · ·と巡回計数動 作を実行する。カウンタ 64は、いわゆるフレーム周期で自己リセットがかかるリング力 ゥンタである。したがって、 LPP信号 43aの再生品位が悪ぐ低い確率でしか情報" S YNC"が検出できなくとも、カウンタ 64は、初期値が 1回セットされれば、トラッキング 制御が続く限り、巡回カウントを継続する。
[0080] 次に、 STW形状が表す情報の検出動作をより詳細に説明する。
[0081] 分周器 62からは、ゥォブル信号 WBLの 2倍の周波数の同期遁倍信号 SS2が出力 される。位相補正器 70で位相が補正された二次高調波信号 HM2と、同期遁倍信号 SS2とを乗算器 71で乗算すれば、二次高調波信号 HM2の位相極性(STW形状の 種類)に応じて、乗算結果は正 (実線)または負(点線)の値をとる。
[0082] 積算器 72が、この乗算結果を示す信号 71aを、 1フレームユニットに相当する期間 積算すれば、ノイズ成分は除去される。コンパレータ 73は、 "0"および" 1"の判定レ ベル (しきい値)を有し、積算値をニ値ィ匕することにより、第 1の蛇行形状 111が表す 情報 (例えば" 0")および第 2の蛇行形状 112が表す情報 (例えば" 1")を検出するこ とができる。アドレスデコーダ 74は、同期二値ィ匕信号 PWBLと同期して動作する。な お、積算器 72は、フレームパルス信号 FRが出力される毎に積算値をリセットする。
[0083] (実施形態 3)
図 7は、本発明の光ディスク装置の他の実施形態を示すブロック図である。
[0084] 図 7に示す光ディスク装置 300は、図 5に示す光ディスク装置 200の構成要素にカロ え、信号 WBLPおよび WBLNを加算して再生信号を生成する加算器 80と、再生信 号から識別情報を検出する検出部 35と、ユーザデータを出力するデータデコーダ 8 5と、セレクタ 86とをさらに備える。検出部 35は、 EQ回路 81と、コンパレータ 82と、 P LL83と、ヘッダー検出回路 84とを備える。
[0085] 加算器 80から出力された再生信号 80aは、コンパレータ 82によってニ値ィ匕されると 共に、 PLL83によって位相同期がなされる。その後、再生信号 80aは、クロック信号 DCKと同期データ SDATとに分離され、データデコーダ 85およびヘッダー検出回 路 84へ出力される。
[0086] ヘッダー検出回路 84は、ブロックユニット 15の先頭を識別するための識別情報を 同期データ SDATから検出し、識別情報を示すヘッダー信号 HDRを検出する。
[0087] 本実施形態では、このヘッダー信号 HDRを用いてカウンタ 64の初期値を設定する ことができる。セレクタ 86は、ヘッダー信号 HDRと、 SYNC検出回路 54から出力され る信号 54aとのうちの一方を選択してカウンタ 64へ出力する。カウンタ 64は、セレクタ 86から出力されたヘッダー信号 HDRおよび信号 54aの一方を受け取ると、カウント 数を初期値に設定する。
[0088] LPP上にデータが誤って上書きされ、情報" SYNC"の検出頻度が極端に低くなつ た場合には、信号 54aの代わりにヘッダー信号 HDRを用いて、カウンタ 64の初期値 を設定することができる。セレクタ 86は、例えば、レーザ光が走査しているトラックの領 域が記録済み領域か未記録領域かを示す信号 86aを受け取り、レーザ光が記録済 み領域を走査しているときはヘッダー信号 HDRをカウンタ 64へ出力し、レーザ光が 未記録領域を走査しているときは信号 54aをカウンタ 64へ出力する。
[0089] (実施形態 4)
図 8は、本発明の光ディスク装置の他の実施形態を示すブロック図である。
[0090] 図 8に示す光ディスク装置 400は、図 5に示す光ディスク装置 200の構成要素にカロ え、セレクタ 75をさらに備える。
[0091] アドレスデコーダ 56はアドレス信号 56aをセレクタ 75へ出力し、アドレスデコーダ 74 はアドレス信号 74aをセレクタ 75へ出力する。セレクタ 75は、光ディスク媒体 100の 駆動速度を示す速度モード切り替え信号 75aを受け取り、光ディスク媒体 100の駆動 速度に応じてアドレス信号 56aおよびアドレス信号 74aの一方を選択する。
[0092] 光ディスク媒体 100が高速モードで駆動され、レーザ光がトラック 10を線速度 Vで
1 走査しているときは、セレクタ 75は、アドレス信号 74aを選択して出力する(すなわち 、 STW形状が表す情報および LPPが表す情報のうちの STW形状が表す情報を選 択する)。一方、光ディスク媒体 100が標準速あるいは低速モードで駆動され、レー ザ光がトラック 10を線速度 V (V >V )で走査しているときは、セレクタ 75は、アドレス
2 1 2
信号 56aを選択して出力する(すなわち、 STW形状が表す情報および LPPが表す 情報のうちの LPPが表す情報を選択する)。
[0093] 二次高調波信号 HM2の帯域は相対的に低域であり、 LPP信号 43aの帯域は相対 的に高域である。このため、光ディスク媒体 100が高倍速で駆動されているときは、 L PP信号 43aから生成されたアドレス信号 56aよりも、二次高調波信号 HM2から生成 されたアドレス信号 74aの方が信頼性は高くなる。従って、この場合は、セレクタ 75は 、アドレス信号 74aを選択する。一方、光ディスク媒体 100が標準速あるいは低速モ ードで駆動されて 、るときは、 LPP信号 43aから生成されたアドレス信号 56aの信頼 性も高い。従って、この場合は、 LPPを有するが STW形状を有しない他の光ディスク 媒体との互換性を考慮して、アドレス信号 56aを選択する。
[0094] このように、光ディスク媒体 100の駆動速度に応じてアドレス信号 56aおよびァドレ ス信号 74aを使 、分けることにより、よりエラーの少な 、信頼性の高!、光ディスク装置 を実現することができる。
[0095] なお、セレクタ 75は、光ディスク装置 400が再生動作を実行して 、るか記録動作を 実行して 、るかに応じて、アドレス信号 56aおよびアドレス信号 74aの一方を選択し てもよい。この場合、セレクタ 75は、光ディスク装置 400の動作状況を示す記録再生 切り替え信号 75bを受け取る。光ディスク装置 400が再生動作を実行しているときに は、セレクタ 75は、アドレス信号 56aを選択して出力する(すなわち、 STW形状が表 す情報および LPPが表す情報のうちの LPPが表す情報を選択する)。光ディスク装 置 400が記録動作を実行しているときには、セレクタ 75は、アドレス信号 74aを選択 して出力する(すなわち、 STW形状が表す情報および LPPが表す情報のうちの ST W形状が表す情報を選択する)。
[0096] 記録動作中は、レーザ光はマルチパルス波形を有するので、信号 WBLPおよび W BLNには高域の強いノイズが重畳される。従って、この場合は、高域ノイズの影響を 受けにくい二次高調波信号 HM2から生成されたアドレス信号 74aの信頼性がァドレ ス信号 56aよりも高くなると想定されるので、セレクタ 75は、アドレス信号 74aを選択し て出力する。
[0097] 再生動作中は、ユーザデータを示す信号がゥォブル信号 WBLに低域ノイズとして 重畳される。従って、この場合は、低域ノイズの影響を受けにくい LPP信号 43aから 生成されたアドレス信号 56aの信頼性がアドレス信号 74aよりも高くなると想定される ので、セレクタ 75は、アドレス信号 56aを選択して出力する。 [0098] このように、光ディスク装置 400が再生動作を実行しているか記録動作を実行して いるかに応じて、アドレス信号 56aおよびアドレス信号 74aを使い分けることにより、よ りエラーの少な 、信頼性の高 、光ディスク装置を実現することができる。
[0099] (実施形態 5)
図 9は、本発明の光ディスク装置の他の実施形態を示すブロック図である。
[0100] 図 9に示す光ディスク装置 500は、図 5に示す光ディスク装置 200の構成要素にカロ え、セレクタ部 76をさらに備える。セレクタ部 76は、セレクタ 77と、比較器 78とを備え る。
[0101] アドレスデコーダ 56はアドレス信号 56aをセレクタ 77へ出力し、アドレスデコーダ 74 はアドレス信号 74aをセレクタ 77へ出力する。
[0102] アドレスデコーダ 56は、コンパレータ 53から出力された二値化信号からアドレス情 報を復号するとき、ノ^ティ情報を検出し、受け取ったデータが誤っている力否かを判 定する。アドレスデコーダ 56は、受け取ったデータが誤っていると判定した場合は、 誤り検出信号 PT1を比較器 78へ出力する。同様に、アドレスデコーダ 74は、コンパ レータ 73から出力された二値ィ匕信号力もアドレス情報を復号するとき、パリティ情報 を検出し、受け取ったデータが誤っている力否かを判定する。アドレスデコーダ 74は 、受け取ったデータが誤っていると判定した場合は、誤り検出信号 PT2を比較器 78 へ出力する。
[0103] 比較器 78は、誤り検出信号 PT1および PT2を受け取り、二次高調波信号 HM2か らアドレス情報を検出するときの誤り率 Eと、 LPP信号 43aからアドレス情報を検出す
1
るときの誤り率 Eとを比較する。誤り率 Eが誤り率 Eよりも低い場合は、比較器 78は、
2 1 2
アドレス信号 74aを選択するようにセレクタ 77を制御する。反対に、誤り率 Eが誤り率
1
Eよりも高い場合は、比較器 78は、アドレス信号 56aを選択するようにセレクタ 77を
2
制御する。セレクタ 77は、比較器 78の制御に応じて、アドレス信号 56aおよびァドレ ス信号 74aの一方を選択して出力する。なお、誤り率 Eと誤り率 Eとが等しいときは、
1 2
アドレス信号 56aおよびアドレス信号 74aのどちらを選択してもよい。
[0104] 図 1Aおよび図 2A〜図 2Cを参照して説明したように、 LPPは 1フレームユニットの 先頭部に集中的に形成されており、 STW形状は 1フレームユニット全体に渡って繰り 返し形成されている。このため、 LPPの真上にゴミ等が付着した場合、その LPPから は情報を読み取れない可能性が高い。一方、指紋のような広域に分散する汚れが光 ディスク媒体 100に付着した場合は、 STW形状からは情報を読み取れな 、が LPP からは情報を読みとれる場合がある。このように、ゴミ、汚れおよびキズ等によって、誤 り率 Eおよび誤り率 Eは変化する。アドレス信号を生成するときの誤り率に応じてアド
1 2
レス信号 56aおよびアドレス信号 74aを使い分けることにより、よりエラーの少ない信 頼性の高 、光ディスク装置を実現することができる。
産業上の利用可能性
本発明の光ディスク媒体は、優れた SN特性を発揮することができ、高倍速記録再 生に対応した追記型または書き換え型の光ディスク媒体、および複数の記録層を備 えた光ディスク媒体 (ハイビジョン映像録画用の大容量光ディスク媒体等)の分野で 特に好適に用いられる。

Claims

請求の範囲
[1] 所定の周期で蛇行するトラックと、
前記トラックに隣接する複数のプレピットと
を備えた情報記録媒体であって、
前記トラックは、複数のフレームユニットを備え、前記複数のフレームユニットのそれ ぞれに対して前記複数のプレピットのうちの少なくとも 1つが割り当てられており、 前記複数のフレームユニットのそれぞれは、立ち上がり部分よりも立ち下がり部分が 急峻な第 1の蛇行形状、および立ち下がり部分よりも立ち上がり部分が急峻な第 2の 蛇行形状の少なくとも一方を有しており、
前記第 1の蛇行形状は第 1の情報を表しており、前記第 2の蛇行形状は第 2の情報 を表しており、
前記第 1の情報と前記第 2の情報とは互いに異なる、情報記録媒体。
[2] 前記複数のフレームユニットのそれぞれは、前記第 1の蛇行形状および前記第 2の 蛇行形状の一方を有しており、
前記複数のフレームユニットのうちの所定のフレームユニットに割り当てられた前記 少なくとも 1つのプレピットは、前記所定のフレームユニットの形状が表す前記第 1の 情報または前記第 2の情報に対応する第 3の情報を表して 、る、請求項 1に記載の 情報記録媒体。
[3] 前記第 3の情報は、前記所定のフレームユニットの形状が表す前記第 1の情報また は前記第 2の情報と同じ内容を示している、請求項 2に記載の情報記録媒体。
[4] 前記複数のフレームユニットのそれぞれに割り当てられた前記少なくとも 1つのプレ ピットは、対応するフレームユニットの所定の位置に隣接している、請求項 1に記載の 情報記録媒体。
[5] 前記第 1の蛇行形状および前記第 2の蛇行形状のそれぞれは、 1ビット情報を表す 単位形状であり、
前記複数のフレームユニットは、前記単位形状の部分を互いに同じ個数有している 、請求項 1に記載の情報記録媒体。
[6] 前記複数のフレームユニットは、 2つ以上の前記フレームユニットを備える複数のヮ ードユニットに分けられており、
前記複数のワードユニットのそれぞれの先頭に位置する前記フレームユニットに割 り当てられた前記少なくとも 1つのプレピットは、前記ワードユニットの先頭を示す情報 を表している、請求項 1に記載の情報記録媒体。
[7] 請求項 1に記載の情報記録媒体へのデータの記録および前記情報記録媒体から のデータの再生のうちの少なくとも一方を実行する装置であって、
前記情報記録媒体にレーザ光を照射したときの前記情報記録媒体からの反射光 に基づいて得られる信号に含まれる前記第 1の情報および前記第 2の情報を示す第 1の信号を出力する第 1の信号出力部と、
前記反射光に基づいて得られる前記信号に含まれる前記トラックの蛇行の周波数 を示す第 2の信号を出力する第 2の信号出力部と、
前記反射光に基づいて得られる前記信号に含まれる前記プレピットが表す第 3の 情報を示す第 3の信号を出力する第 3の信号出力部と
を備えた、装置。
[8] 前記第 1の信号の値を所定の周期で検出して積算する積算部と、
前記積算した結果に基づいて前記第 1の情報および前記第 2の情報を検出する第 1の検出部と
をさらに備える、請求項 7に記載の装置。
[9] 前記第 1の蛇行形状および前記第 2の蛇行形状のそれぞれは、 1ビット情報を表す 単位形状であり、
前記複数のフレームユニットは、前記単位形状の部分を互いに同じ個数有しており 前記装置は、所定の回数をカウントするカウンタ部をさらに備え、
前記所定の回数は、 1つの前記フレームユニットが有する前記単位形状の部分の 個数に対応した回数であり、
前記積算部は、前記カウンタ部が前記所定の回数をカウントする毎に前記積算した 結果をリセットする、請求項 8に記載の装置。
[10] 前記複数のフレームユニットは、 2つ以上の前記フレームユニットを備える複数のヮ ードユニットに分けられており、
前記複数のワードユニットのそれぞれの先頭に位置する前記フレームユニットに割 り当てられた前記少なくとも 1つのプレピットが表す前記第 3の情報は、前記ワードュ ニットの先頭を示しており、
前記装置は、前記第 3の信号から前記ワードユニットの先頭を示す前記第 3の情報 を検出する第 2の検出部をさらに備え、
前記カウンタ部は、前記第 2の検出部が前記ワードユニットの先頭を示す前記第 3 の情報を検出すると、カウント数を初期値に設定する、請求項 9に記載の装置。
[11] 前記複数のフレームユニットは、 2つ以上の前記フレームユニットを備える複数のヮ ードユニットに分けられており、
前記複数のワードユニットは、 2つ以上の前記ワードユニットを備える複数のブロック ユニットに分けられており、
前記トラックのうちの前記複数のブロックユニットのそれぞれの先頭に対応する位置 には、前記複数のブロックユニットのそれぞれの先頭を識別するための識別情報が 記録されており、
前記装置は、
前記情報記録媒体からの前記反射光に基づいて得られる再生信号から前記識別 情報を検出する第 3の検出部をさらに備え、
前記カウンタ部は、前記第 3の検出部が前記識別情報を検出すると、カウント数を 初期値に設定する、請求項 9に記載の装置。
[12] 前記複数のフレームユニットは、 2つ以上の前記フレームユニットを備える複数のヮ ードユニットに分けられており、
前記複数のワードユニットのそれぞれの先頭に位置する前記フレームユニットに割 り当てられた前記少なくとも 1つのプレピットが表す前記第 3の情報は、前記ワードュ ニットの先頭を示しており、
前記複数のワードユニットは、 2つ以上の前記ワードユニットを備える複数のブロック ユニットに分けられており、
前記トラックのうちの前記複数のブロックユニットのそれぞれの先頭に対応する位置 には、前記複数のブロックユニットのそれぞれの先頭を識別するための識別情報が 記録されており、
前記装置は、
前記第 3の信号から前記ワードユニットの先頭を示す前記第 3の情報を検出する第 2の検出部と、
前記情報記録媒体からの前記反射光に基づいて得られる再生信号から前記識別 情報を検出する第 3の検出部と
をさらに備え、
前記カウンタ部は、前記第 2の検出部による前記ワードユニットの先頭を示す前記 第 3の情報の検出と、前記第 3の検出部による前記識別情報の検出とのうちの一方 に応じて、カウント数を初期値に設定する、請求項 9に記載の装置。
[13] 前記複数のフレームユニットのそれぞれは、前記第 1の蛇行形状および前記第 2の 蛇行形状の一方を有しており、
前記複数のフレームユニットのうちの所定のフレームユニットに割り当てられた前記 少なくとも 1つのプレピットが表す前記第 3の情報は、前記所定のフレームユニットの 形状が表す前記第 1の情報または前記第 2の情報と同じ内容を示しており、 前記装置は、
前記レーザ光が前記トラックを第 1の速度で走査するときは、前記第 1の情報、前記 第 2の情報および前記第 3の情報のうちの前記第 1の情報および前記第 2の情報を 選択し、前記レーザ光が前記トラックを第 2の速度で走査するときは、前記第 1の情報 、前記第 2の情報および前記第 3の情報のうちの前記第 3の情報を選択するセレクタ 部をさらに備え、
前記第 1の速度は前記第 2の速度よりも速い、請求項 7に記載の装置。
[14] 前記複数のフレームユニットのそれぞれは、前記第 1の蛇行形状および前記第 2の 蛇行形状の一方を有しており、
前記複数のフレームユニットのうちの所定のフレームユニットに割り当てられた前記 少なくとも 1つのプレピットが表す前記第 3の情報は、前記所定のフレームユニットの 形状が表す前記第 1の情報または前記第 2の情報と同じ内容を示しており、 前記装置は、
記録動作時は、前記第 1の情報、前記第 2の情報および前記第 3の情報のうちの前 記第 1の情報および前記第 2の情報を選択し、再生動作時は、前記第 1の情報、前 記第 2の情報および前記第 3の情報のうちの前記第 3の情報を選択するセレクタ部を さらに備える、請求項 7に記載の装置。
[15] 前記第 1の信号から前記第 1の情報および前記第 2の情報を検出するときの第 1の 誤り率と、前記第 3の信号力 前記第 3の情報を検出するときの第 2の誤り率とを比較 し、前記第 1の誤り率が前記第 2の誤り率よりも低い場合は、前記第 1の情報、前記第 2の情報および前記第 3の情報のうちの前記第 1の情報および前記第 2の情報を選 択し、前記第 1の誤り率が前記第 2の誤り率よりも高い場合は、前記第 1の情報、前記 第 2の情報および前記第 3の情報のうちの前記第 3の情報を選択するセレクタ部をさ らに備える、請求項 7に記載の装置。
[16] 請求項 1に記載の情報記録媒体へのデータの記録および前記情報記録媒体から のデータの再生のうちの少なくとも一方を実行する方法であって、
前記情報記録媒体にレーザ光を照射したときの前記情報記録媒体からの反射光 に基づいて得られる信号に含まれる前記第 1の情報および前記第 2の情報を示す第 1の信号を出力する第 1のステップと、
前記反射光に基づいて得られる前記信号に含まれる前記トラックの蛇行の周波数 を示す第 2の信号を出力する第 2のステップと、
前記反射光に基づいて得られる前記信号に含まれる前記プレピットが表す第 3の 情報を示す第 3の信号を出力する第 3のステップと
を包含する、方法。
[17] 複数の記録層を備えた情報記録媒体であって、
前記複数の記録層のそれぞれは、
所定の周期で蛇行するトラックと、
前記トラックに隣接する複数のプレピットと
を備え、
前記トラックは、複数のフレームユニットを備え、前記複数のフレームユニットのそれ ぞれに対して前記複数のプレピットのうちの少なくとも 1つが割り当てられており、 前記複数のフレームユニットのそれぞれは、立ち上がり部分よりも立ち下がり部分が 急峻な第 1の蛇行形状、および立ち下がり部分よりも立ち上がり部分が急峻な第 2の 蛇行形状の少なくとも一方を有しており、
前記第 1の蛇行形状は第 1の情報を表しており、前記第 2の蛇行形状は第 2の情報 を表しており、
前記第 1の情報と前記第 2の情報とは互いに異なる、情報記録媒体。
PCT/JP2005/007796 2004-04-26 2005-04-25 情報記録媒体 WO2005104106A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05734387A EP1758105A1 (en) 2004-04-26 2005-04-25 Information recording medium
US11/568,232 US20070211615A1 (en) 2004-04-26 2005-04-25 Information storage medium
JP2006519507A JPWO2005104106A1 (ja) 2004-04-26 2005-04-25 情報記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004129368 2004-04-26
JP2004-129368 2004-04-26

Publications (1)

Publication Number Publication Date
WO2005104106A1 true WO2005104106A1 (ja) 2005-11-03

Family

ID=35197229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007796 WO2005104106A1 (ja) 2004-04-26 2005-04-25 情報記録媒体

Country Status (5)

Country Link
US (1) US20070211615A1 (ja)
EP (1) EP1758105A1 (ja)
JP (1) JPWO2005104106A1 (ja)
CN (1) CN1947185A (ja)
WO (1) WO2005104106A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097743A (ja) * 2006-10-13 2008-04-24 Teac Corp 光ディスク装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115114A (ja) * 2000-08-31 2003-04-18 Matsushita Electric Ind Co Ltd 光ディスク媒体、光ディスク装置および光ディスク再生方法
JP2003123320A (ja) * 2001-10-16 2003-04-25 Koninkl Philips Electronics Nv 光ディスクおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703569B2 (ja) * 1996-04-02 2005-10-05 ソニー株式会社 光記録媒体及びその記録再生方法、記録再生装置
PL209249B1 (pl) * 2000-08-31 2011-08-31 Panasonic Corp Dyskowy nośnik optyczny

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115114A (ja) * 2000-08-31 2003-04-18 Matsushita Electric Ind Co Ltd 光ディスク媒体、光ディスク装置および光ディスク再生方法
JP2003123320A (ja) * 2001-10-16 2003-04-25 Koninkl Philips Electronics Nv 光ディスクおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097743A (ja) * 2006-10-13 2008-04-24 Teac Corp 光ディスク装置

Also Published As

Publication number Publication date
CN1947185A (zh) 2007-04-11
EP1758105A1 (en) 2007-02-28
US20070211615A1 (en) 2007-09-13
JPWO2005104106A1 (ja) 2008-03-13

Similar Documents

Publication Publication Date Title
US6587428B2 (en) Information record disc and information recording apparatus
US7408871B2 (en) Optical disc with wobbled tracks and apparatus using this optical disc
WO2001052250A1 (fr) Disque optique et dispositif de lecture d'adresses de disque optique et procede associe
US7898933B2 (en) Optical disc, optical disc drive, optical disc recording/reproducing method, and integrated circuit
US8934325B2 (en) Information recording medium, information reproducing method, and information reproducing apparatus
WO2005104106A1 (ja) 情報記録媒体
JP4363883B2 (ja) 情報記録方法及び装置
JP3714117B2 (ja) プリピット検出装置、プリピット検出方法、位置及び周波数信号の検出回路
US20070288948A1 (en) Information Recording Medium, and Information Reproducing Apparatus and Method
JP4051357B2 (ja) 光記録媒体の記録方法及び記録装置
JP4099202B2 (ja) 情報記録媒体、情報記録装置、情報記録方法及び情報再生装置
RU2295164C2 (ru) Дисковый носитель записи, устройство для нарезки и привод диска
JP3836448B2 (ja) 記録及び/又は再生装置
JP4130785B2 (ja) 記録装置
JP3956650B2 (ja) 記録クロック生成方法及び光ディスク装置
EP1643494A1 (en) Information recording medium, method for determining recording layer, recording layer determining device, optical disk device, information recording medium producing apparatus, method for producing information recording medium, method for detecting information, information detecting device, and info
EP2027582A2 (en) System and method for identifying adip information
JPH11328690A (ja) 光ディスク装置
JP2003217132A (ja) 光ディスク媒体、情報再生方法および装置
JP2005196968A (ja) 情報記録ディスクおよび情報記録ディスク再生装置
JP2006196049A (ja) セグメントタイプ識別方法及び装置
JP2003045039A (ja) 光情報記録媒体、光情報記録媒体記録方法、光情報記録媒体再生方法、光情報記録媒体記録装置、光情報記録媒体再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519507

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11568232

Country of ref document: US

Ref document number: 2007211615

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580013020.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 3920/CHENP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005734387

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005734387

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11568232

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005734387

Country of ref document: EP