WO2005103812A1 - 投射型表示装置 - Google Patents

投射型表示装置 Download PDF

Info

Publication number
WO2005103812A1
WO2005103812A1 PCT/JP2005/007608 JP2005007608W WO2005103812A1 WO 2005103812 A1 WO2005103812 A1 WO 2005103812A1 JP 2005007608 W JP2005007608 W JP 2005007608W WO 2005103812 A1 WO2005103812 A1 WO 2005103812A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wire grid
color
beam splitter
display device
Prior art date
Application number
PCT/JP2005/007608
Other languages
English (en)
French (fr)
Inventor
Yuji Manabe
Kenzaburo Suzuki
Tetsuo Hattori
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2005103812A1 publication Critical patent/WO2005103812A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles

Definitions

  • the present invention provides an analysis of light emitted from a light valve by an analysis optical system including a wire grid polarizer or the like in which a polarization separation element is disposed on the surface of a parallel plate optical member. And a projection display device configured to project the image with a projection lens.
  • Wire grid polarizers are lighter than conventionally used polarizing prisms, and their polarization performance is higher than when a polarizing film is used.
  • wire grid polarizers have been used instead of polarizing prisms. Is coming.
  • light emitted from a light valve is incident on a wire grid polarizer arranged obliquely with respect to the optical axis, and modulated light is detected and transmitted as transmitted light by the polarizer, and projected.
  • a projection display device configured to project with a lens is disclosed.
  • a wire grid polarizer is one in which metal wires having a width shorter than the wavelength used are arranged at equal intervals at a pitch smaller than the wavelength.
  • a wire grid used for light in the visible region is generally manufactured by forming a metal film on a substrate that transmits light of a used wavelength, and patterning the metal wires by a lithography process. Therefore, the metal wire of the wire lid is formed on a parallel flat plate that cannot be formed by the metal wire alone. In some cases, a parallel flat plate is further placed on the metal wire forming surface, and the metal wire is sandwiched between two parallel flat plates in order to protect a metal wire thinner than the wavelength of the polarizer.
  • Patent Document 1 International Publication No. 01Z009677 pamphlet
  • Patent Document 2 International Publication No. 01Z018570 pamphlet
  • Patent Document 3 U.S. Patent No. 6,585,378
  • Patent Document 4 U.S. Patent No. 6,666,556
  • a wire grid polarizer In a projection display device using such a wire grid polarizer, a wire grid polarizer is used. When light is transmitted through photons for analysis, the light passes through a parallel flat plate that is arranged obliquely with respect to the optical axis, so that coma aberration (lateral aberration) and astigmatism occur in the projected image. A good projection image could not be obtained.
  • the light subjected to the modulation action may also enter the force of the wire grid polarizer on the parallel plate substrate side, or if the wire lid is In the case of a configuration sandwiched between two parallel flat plates, the wire grid is arranged obliquely with respect to the optical axis twice, when entering the polarizer and when reflecting and exiting. Since the light passes through the parallel plate, the projected image has coma and astigmatism as in the transmission through the wire grid polarizer, so that a good projected image cannot be obtained.
  • the present invention provides a projection-type display device capable of suppressing aberrations and obtaining a good projection image even when the wire grid polarizer is arranged obliquely to the optical axis.
  • a projection display apparatus includes: a light valve arranged for each of a plurality of color lights; a wire grid polarizer or a wire grid for detecting light modulated by the light valve.
  • a projection display device includes a light valve arranged for each of a plurality of color lights, a wire grid polarizer for detecting light modulated by the light valve, and a method for detecting a plurality of color lights.
  • a color combining optical system that combines colors of light, and an optical path of at least one of the plurality of color light paths between the wire grid polarizer and the color combining optical system, which is disposed at an inclination V with respect to the optical axis in the optical path of the color light.
  • a projection type display device includes: a reflection type light valve arranged for each of a plurality of color lights; A wire grid polarizer that separates polarized light into a reflection type light valve and analyzes the light modulated by the reflection type light valve, and a color combining optical system that combines the colors of the analysis light of multiple color lights , Wire grid polarization And a color combining optical system And a correction member for correcting coma caused by a wire-grid polarizer, the correction member being disposed in at least one of the optical paths of the plurality of color lights.
  • a projection display apparatus includes: a color separation optical system that separates light from a light source into a mixed light of a first color light and a second color light and a third color light; A reflective light valve for colored light, a reflective light valve for second colored light, and a reflective light valve for third colored light.
  • the mixed light is polarized and separated into first and second colored lights, and the first colored light is separated.
  • Into the reflective light valve for the first color light and the reflective light valve for the second color light respectively, and analyze the light emitted from the reflective light valve for the first color light and the reflective light valve for the second color light.
  • the first wire-grid polarizer that synthesizes and colors the light, and the third color light emitted from the color separation optical system is polarized and separated, and emitted to the reflective light valve for the third color light, and the reflective type for the third color light
  • Light valve force A second wire grid polarizer that detects the emitted light, and a first wire
  • a color combining optical system for combining colors of the first color light and the second color light synthesized by the grid polarizer and the third color light analyzed by the second wire grid polarizer, and the first wire It is arranged on at least one of the optical path between the grid polarizer and the color synthesizing optical system or the optical path between the second wire grid polarizer and the color synthesizing optical system, and corrects coma caused by the wire grid polarizer.
  • a correction member is arranged on at least one of the optical path between the grid polarizer and the color synthesizing optical system or the optical path between the second wire grid polarizer and the color synthes
  • the projection-type display device is disposed in an optical path of light that has been color-combined by the color-combining optical system, and has a wire grid polarizer or a wire. It is preferable to further include a cylindrical lens for correcting astigmatism caused by the grid polarization beam splitter and the correction member.
  • the wire grid polarizer or the wire grid polarization beam splitter has a grid formed on a parallel plate substrate.
  • the correction member is a parallel plate that corrects coma aberration caused by the parallel plate substrate.
  • the parallel plates are disposed in the optical path at an inclination opposite to the inclination of the parallel plate substrate with respect to the optical axis.
  • the thickness of the parallel plate is tl
  • the refractive index is nl
  • the thickness of the parallel plate substrate is t
  • the refractive index is n
  • the wire grid polarizer or the wire grid polarization beam splitter is a parallel plate substrate on which a darid is formed.
  • the correction member is a parallel plate correction member for correcting coma caused by the parallel plate substrate.
  • the color combining optical system is a dichroic prism having a parallelogram cross section, and The entrance and exit surfaces of the prism are inclined in the direction opposite to the optical axis of the wire grid polarizer or the wire grid polarizing beam splitter, and the dichroic prism is corrected using a wire grid polarizer or a wire grid polarizing beam as a correction member. It is preferable to correct coma caused by the splitter.
  • the correction member comprises a wire grid polarizer or a grid of a wire grid polarization beam splitter with respect to the optical axis. It is preferable that they are arranged so that the incident angle is smaller than the formed substrate.
  • the correction member is configured to minimize coma of color light having high visibility. Is preferred.
  • the cylindrical lens is preferably configured so as to minimize astigmatism of blue light having high visibility. Better.
  • the correction member minimizes coma aberration of each of the plurality of color lights.
  • a projection display device includes a light valve that modulates light having a light source, and a wire grid polarizer or a wire that detects light modulated by the light valve. And a projection lens that projects the light detected by the wire grid polarizer or the wire grid polarizing beam splitter, and a light path between the wire grid polarizer or the wire grid polarizing beam splitter and the projection lens.
  • a correction member that is disposed and corrects coma aberration of light detected by the wire grid polarizer or the wire grid polarization beam splitter.
  • the wire grid polarizer or the wire grid polarizing beam splitter comprises a transparent flat plate and a wire grid formed on the transparent flat plate
  • the correction member is preferably a transparent flat plate, and is preferably disposed in the optical path at a tilt opposite to the tilt of the wire grid polarizer or the wire grid polarizing beam splitter with respect to the optical axis of the transparent flat plate.
  • the transparent flat plate of the correction member has a thickness and a refractive index larger than those of the transparent flat plate of the wire grid polarizer or the wire grid polarized beam splitter. Preferably, at least one of them is large.
  • the transparent flat plate of the correction member in the projection display device according to the seventeenth aspect, is more to the optical axis than the flat plate substrate of the wire grid polarizer or the wire grid polarizing beam splitter. Preferably, they are arranged with a near vertical inclination.
  • a possible projection type display device can be provided.
  • FIG. 1 is a plan configuration diagram of a projection display device according to a first embodiment.
  • FIG. 2 is a plan view of a projection display device according to a second embodiment.
  • FIG. 3 is a plan view of a projection display device according to a third embodiment.
  • FIG. 4 is a plan configuration diagram of a projection display device according to a fourth embodiment.
  • FIG. 5 is a plan configuration diagram of a projection display device according to a fifth embodiment.
  • FIG. 6 is a plan view of a projection display device according to a sixth embodiment.
  • FIG. 7 is a plan view of a projection display device according to a seventh embodiment.
  • FIG. 8 is a plan configuration diagram of a projection display device according to another mode of the seventh embodiment.
  • FIG. 9 is a plan configuration diagram of a projection display device according to an eighth embodiment.
  • FIG. 1 shows a plan view of a first embodiment of the present invention.
  • Light emitted from the light source 11 is converted into single polarized light (for example, S-polarized light) by the polarization conversion illuminating device 12.
  • the configuration of the polarization conversion illuminating device 12 is not shown, a first lens plate in which a plurality of lenses are planarly formed in a matrix shape, and the first lens plate in which a lens is disposed at a position facing each lens of the first lens plate.
  • a light source light equalizing member composed of a second lens plate having the same configuration as the one lens plate, and a polarization separation surface that separates outgoing light from each lens of the second lens plate into transmitted light and reflected light.
  • a single polarization conversion device comprising a plurality of composite prism members having a plurality of reflection surfaces parallel to the polarization separation surface arranged adjacent to each other; and a condenser for superimposing and illuminating a single polarized light on a light valve described later. And a lens.
  • a 1Z2 wavelength phase plate is disposed on the specific exit surface of the composite prism member, and the light transmitted through the polarization separation surface or reflected by the adjacent reflection surface after reflecting the polarization separation surface. By rotating the polarization direction of either light by 90 °, all the light emitted from the composite prism member is converted into a single polarized light.
  • the single polarized light emitted from the polarization conversion illuminating device 12 is color-separated into three color lights of R (red) light, G (green) light, and B (blue) light by a color separation optical system.
  • the color separation optical system includes a dichroic mirror 13RG that reflects R light and G light and transmits B light, and a dichroic mirror that reflects B light and transmits R light and G light. It comprises a cross dichroic mirror 13 in which mirrors 13B are arranged orthogonal to each other, and a dichroic mirror 16 having G light reflection and R light transmission characteristics.
  • the single polarized light is color-separated by the cross dichroic mirror 13 into a mixed light of R light and G light and a B light, and the mixed light of the R and G lights separated by color is polarized by a deflection mirror 14.
  • the light is deflected in the direction, enters the dichroic mirror 16 having G light reflection and R light transmission characteristics, and is color-separated into G light and R light.
  • the color-separated B light is deflected in the traveling direction by a deflection mirror 15, and is incident on a wire grid polarizer 17B arranged obliquely with respect to the optical axis.
  • the color separated R light and G Light also enters the wire grid polarizers 17R and 17B, which are arranged obliquely with respect to the optical axis.
  • the wire grid polarizers 17R, 17G, and 17B are wire grids in which metal wires having a width shorter than the wavelength are arranged at equal intervals on a transparent parallel plate that transmits light of the used wavelength. Are formed on the parallel flat plate. Since the wire grid forming surface is arranged so as to face the side where the color separation light is incident, the wavelength-separated color lights enter the wire grid formation surface.
  • Each color light incident on the wire grid forming surface is S-polarized light, and is reflected on the wire grid forming surface.
  • Each color light reflected from the wire grid enters the light valve 18R, 18G, 18B for each color light, and is emitted for each color light by receiving a modulation action according to the image signal input to the light valve for each color light. .
  • the light modulated by the light valve becomes P-polarized light, and the unmodulated light is reflected with the same S-polarization as the incident light (hereinafter, the modulated light is referred to as “modulated light”.
  • the light that did not exist is called "unmodulated light.”
  • the color lights modulated by the light valve enter the wire grid polarizers 17R, 17G, and 17B, respectively, and the modulated light (P-polarized light) passes through the wire grid polarizer and is extracted.
  • Light (S-polarized light) reflects off the wire grid and is discarded in the direction of the light source. That is, the light incident on the wire grid polarizers 17R, 17G, and 17B is polarized and separated and analyzed.
  • the wire grid polarizers 17R, 17G, and 17B may be referred to as wire grid polarizing beam splitters.
  • the wire grid polarizers 17R, 17G, and 17B initially receive only the S-polarized light from which the polarization conversion illuminating device 12 has also been emitted, and the wire grid polarizers 17R, 17G, and 17B leave the S-polarized light as it is. reflect. However, due to factors such as manufacturing errors of the polarization conversion illuminator 12, and the change in the polarization state when S-polarized light passes through and reflects through the cross dichroic mirror 13, the deflecting mirrors 14, 15, and the dichroic mirror 16, etc. Actually, P-polarized light is mixed in the light incident on the wire grid polarizers 17R, 17G, and 17B. The wire grid polarizers 17R, 17G, and 17B polarize and separate S-polarized light from the mixed light of P-polarized light and enter the light valve.
  • each light transmitted through the wire grid polarizers 17R, 17G, and 17B has a coma aberration component and an astigmatism component of a predetermined size. It will be.
  • the frame difference generated by the parallel flat plate of the wire grid polarizer is determined by using the wire grid polarizers 17R, 17G, and 17B and the cross dichroic aperture prism 20 as a color combining optical system.
  • the correction is performed by arranging a parallel plate aberration correction member in between.
  • the detection lights detected by the wire grid polarizers 17R, 17G, and 17B pass through parallel plate-shaped aberration correction members 19R, 19G, and 19B, and are respectively different to the cross dichroic prism 20 of the color combining optical system. Light is incident on the incident surface.
  • the parallel plate aberration correction members 19R, 19G, and 19G are formed of transparent members that transmit light of a used wavelength, and as illustrated, all have the same thickness, and the thickness is a wire. It is thicker than the thickness of the parallel plate members of the Darled polarizers 17R, 17G, and 17B.
  • the wire grid polarizers 17R, 17G, and 17B are arranged so as to be inclined in a direction opposite to the inclination direction of the light valves 18R, 18G, and 18B.
  • the thickness of the parallel plate aberration correction member is tl
  • the refractive index is nl
  • the substrate thickness of the wire grid polarizers 17R, 17G, and 17B is t
  • the refractive index is n
  • astigmatism and coma are generated by a parallel plate obliquely placed on the optical axis of divergent light or convergent light.
  • the amount of these aberrations has the following properties: the greater the inclination angle of the parallel plate with respect to the plane perpendicular to the optical axis, and the greater the refractive index and thickness of the optical member, the greater the property.
  • a parallel plate having the same member and the same thickness as the substrate of the wire grid polarizer is inclined by the same angle in the opposite direction to the wire grid to form the wire grid polarizer.
  • coma aberration in the opposite direction is generated with the same magnitude as the amount of coma aberration generated by the substrate of the wire grid polarizer, so that coma aberration is offset as a whole. can do.
  • the thickness or the refractive index of the parallel plate in this manner, the space required for the arrangement becomes small, and the parallel plate can be arranged in the optical system. That is, a member that satisfies the condition of the above equation (1) can be selected as a parallel plate-shaped correction member.
  • a cylindrical lens is inserted in the optical path between the light valves 18R, 18G, 18B and the projected image.
  • This cylindrical lens may be a convex cylindrical lens having a curvature in the plane of the drawing or a concave cylindrical lens having a curvature in a plane perpendicular to the plane of the drawing.
  • Each of the color lights that have entered the cross dichroic prism 20 via the parallel plate-shaped correction members 19R, 19G, and 19B is internally provided with R light reflecting dichroic films 20R and B light that are arranged orthogonal to each other.
  • the color composition is achieved by the reflection dichroic film 20B, and the combined light is emitted from the cross dichroic prism 20 as well.
  • a cylindrical lens 21 is disposed between the cross dichroic prism 20 and the projection lens 22 in order to correct the astigmatism.
  • the thickness, angle, and material of the flat plate correction member, the curvature of the cylindrical lens, and the insertion position are appropriately determined by ray tracing calculation as appropriate.
  • the projected light emitted from the reflective light valves 18R, 18G, and 18B for each color light as described above is generated by transmitting through the parallel plate members of the wire grid polarizers 17R, 17G, and 17B. Since coma and astigmatism are corrected by passing through the aforementioned parallel plate correcting members 19R, 19G and 19B and the cylindrical lens 21, the projection lens 22 minimizes the amount of aberration on a screen (not shown). Further, an excellent projection image can be projected.
  • each color light is constituted by an independent optical system using a wire grid polarizer individually as in the present embodiment
  • the amount of aberration generated for each color light optical system is exactly the same. Is not always the case.
  • the reason is a thickness variation due to a manufacturing error of the wire grid polarizer.
  • the parallel plate-shaped correction members are all formed with the same thickness, fine adjustment of the inclination angle of the parallel plate correction member can correct the coma aberration for each color light.
  • the parallel plate-shaped correction member having a thickness determined according to the individual thickness of the wire grid polarizer is prepared in advance, and by combining them, the amount of coma aberration for each color light can be adjusted. Aberration correction can be performed.
  • the optical path lengths passing through the wire grid polarizer arranged for each color light and the correction member having the shape of a parallel plate are different, astigmatism whose amount is slightly different for each color light is generated. I do.
  • the astigmatism correction is optimized according to the color having the highest visibility among the respective color lights, it is possible to minimize the deterioration of the image. For example, in the case of three colors of B light, G light, and R light, it is sufficient to match the G light with the highest visibility among them.
  • G light has high luminance and can be called color light, and astigmatism correction may be optimized according to the highest luminance of each color light.
  • FIG. 2 shows a plan configuration of the second embodiment of the present invention.
  • the basic configuration of the projection display device is the same as that of the first embodiment, and the light source, the polarization conversion illumination device, and the color separation optical system are not shown in FIG. 2 and the configuration is the same. Description is omitted.
  • a feature of the present embodiment is that the arrangement position of the cylindrical lens 21 in the previous embodiment is different.
  • the light reflected and emitted from the reflective light valves 18R, 18G, and 18B for the respective color lights is, as in the previous embodiment, a wire grid polarizer 17R having a parallel plate member obliquely arranged with respect to the optical axis,
  • the modulated light modulated by 17G and 17B is detected and extracted, and the coma is corrected by the correction member 19R, 19G, and 19B in the form of a flat plate, color is synthesized by the color synthesis optical system, and the color is synthesized by the projection lens 22.
  • This is a configuration for projecting.
  • the cylindrical lens member 21 is arranged at a stop position in the projection lens 22.
  • the projection lens 22 includes a front group lens 22A on the synthetic light incident side and a rear group lens 22B on the exit surface side. Since the optical path between the light valves 18R, 18G, 18B for each color light and the projection lens 22 is telecentric, the numerical aperture NA of the light valve power is determined at the focal position of the front lens group 22A. Aperture stop 22C is arranged! The cylindrical lens 22C of the astigmatism correction member according to the present embodiment is arranged at this aperture position. With this arrangement, as shown in the ray diagram of FIG. 2, the cross section of the light beam is the smallest at the aperture position, and therefore, the size of the cylindrical lens 22 can be reduced by the most / J ⁇ . .
  • the coma aberration and astigmatism generated by the parallel plate substrates of the wire grid polarizers 17R, 17G, and 17B are reduced by the flat plate correction member and the cylindrical lens as in the previous embodiment. Similarly, it is possible to project an excellent projection image that can be corrected and the aberration is suppressed to a very small value.
  • FIG. 3 shows a plan view of a third embodiment of the present invention.
  • a force using a reflection type light valve is used.
  • a transmission type light valve is used.
  • the light from the light source 11 passes through the polarization conversion illuminating device 12, and is mixed by the dichroic mirror 29 having B light transmission, R light and G light reflection characteristics, and is a mixture of B light, G light and R light. Color separation.
  • the combined light of the R light and the G light is color-separated into G light and R light by a dichroic mirror that reflects the G light and transmits the R light.
  • the color-separated B light travels in a deflecting mirror 25 with its traveling direction changed, and is incident on a transmission type light valve 24B via a polarizer 23B.
  • the color separated G light passes through the polarizer 23G. After that, the light enters the transmission type light valve 24G.
  • the color-separated R light passes through a deflecting mirror 27, a relay optical system 30, and a deflecting mirror 26, and enters a transmissive light valve 24R through a polarizer 23R.
  • Each color light modulated according to the image signal input to each of the transmission type light valves 24R, 24G, and 24B for each color light is converted into a wire grid polarizer 17R, 17G arranged obliquely on the optical axis. , 17B.
  • the modulated light is detected as transmitted light by the wire grid, and the plane that satisfies the above formula (1) is disposed obliquely in a direction opposite to the optical axis with the parallel plate optical substrates of the wire grid polarizers 17R, 17G, and 17B.
  • the light enters the cross dichroic prism 20 of the color synthesizing optical system via the flat plate correcting members 19R, 19G, and 19B from different incident surfaces.
  • the synthesized color light is emitted and enters the cylindrical lens 21 for correcting astigmatism, and the emitted light is incident on the projection lens 22 to project an excellent projection image on a screen (not shown) with very small aberration. Can be.
  • the wire grid polarizers 17R, 17G, and 17B are obliquely arranged with respect to the optical axis as the analysis optical system. By correcting various aberrations caused by the arrangement, an excellent projection image can be projected.
  • the same effect can be obtained by disposing the cylindrical lens correcting member at the stop position of the projection lens 22.
  • FIG. 4 shows a plan view of a fourth embodiment of the present invention.
  • the light emitted from the light source 11 and converted into the predetermined linearly polarized light by the polarization conversion illuminating device 12 is transmitted through a dichroic mirror 32 having characteristics of transmitting R light and reflecting B light and G light. And the reflected B light and the mixed light of G light are color-separated.
  • the mixed light of the color-separated B light and G light is emitted by the wavelength-selective optical rotator 33 with the polarization direction of only the B color light rotated by 90 °.
  • the color-separated R light is reflected by a wire grid polarizer 17R in which a metal wire of a wire grid is formed on the light incident side of the parallel plate substrate, and is incident on a reflection light valve for R light 18R.
  • the wire-darid polarizer 17R has a parallel flat A parallel plate member 34 of the same thickness and the same glass material as the plate member is disposed close to and opposite to the plate member.
  • the wire grid polarizer of the present embodiment functions as a polarizing beam splitter.
  • the B light and the G light having different polarization directions passing through the wavelength-selective optical rotator 33 are incident on a wire grid polarizer 17BG in which a metal wire of a wire grid is formed on the light emission side of the parallel plate substrate.
  • the G light is reflected by the metal wire forming surface of the wire grid opposite to the plane of incidence of the parallel plate substrate, and again enters the reflection light valve for G light 18G via the parallel plate substrate.
  • the incident B light of the G light and the B light has its polarization oscillation direction rotated by 90 °, it passes through the wire grid polarizer 17BG, and the light of the wire grid polarizer placed close to it.
  • the light further passes through a parallel plate member 35 having the same thickness as that of the parallel plate member and made of the same glass material, and is incident on the reflection light valve 18B for B light. That is, the wire grid polarizer 17B G polarizes and separates the incident mixed light of G light and B light to separate it into G light and B light.
  • the light reflected and emitted from the R color light valve is incident on the wire grid polarizer 17R, and the modulated light is analyzed and transmitted as transmitted light, passed through the adjacent parallel plate member 34, and the color combining optical system dichroic light is extracted.
  • the light enters the prism 31.
  • the light reflected and emitted from the G color light valve is incident on the wire grid polarizer 17BG, and the modulated light is detected and transmitted as transmitted light, and is incident on the dichroic prism 31 via the adjacent parallel plate member 35. .
  • the light reflected and emitted from the B-color light valve enters the wire grid polarizer 17BG via the parallel plate member 35, and the modulated light is reflected by the metal wire of the wire grid disposed on the incident side and detected.
  • the light is emitted, passes through the adjacent parallel plate member 35 again, and is color-combined with the G light.
  • the combined light of the G light and the B light enters the wavelength-selective optical rotator 36, which has the characteristic of rotating the polarization direction of only the B light by 90 °, and both light beams are aligned in the same polarization direction and exit. After passing through 37, the light enters the dichroic prism 31 of the color combining optical system with the R light.
  • the dichroic prism 31 of the color combining optical system has a configuration in which a dichroic film that transmits B light and G light and reflects R light is disposed between two triangular prisms having the same shape. This Is an isosceles triangular prism having the same apex angle of 90 degrees or more.
  • the dichroic film is disposed so as to have an angle of 45 degrees with respect to the optical axis of each color light.
  • the incident surface of the R light and the incident surfaces of the B light and the G light are configured to be inclined at the same angle with respect to the optical axis.
  • the exit surface from which the combined light of the R light and the B light and the G light mixed by the dichroic film is emitted has the same angle with respect to the optical axis as the incident surface, and is oblique. It has become. That is, the shape of the color combining prism is a rhombic prism.
  • the incident surface and the outgoing surface of the R light and the incident surface and the outgoing surface of the B light and the G light have inclinations in directions opposite to the inclinations of the wire grid polarizer 17R and the wire grid polarizer 17BG with respect to the optical axis, respectively.
  • a thick parallel plate member inclined with respect to the optical axis in a direction opposite to the wire grid polarizer 17R and the wire-one grid polarizer 17BG is arranged for each color light. That is, as described above, the light emitted from the light valve 18R of the R light passes through the wire grid polarizer 17R, the parallel plate member 34, and the light emitted from the light valve 18G of the G light passes. Coma caused by the wire grid polarizer 17BG, the parallel plate member 35, and the parallel plate member 35 through which the light valve 18B of the B light passes twice as much as the emitted light can be corrected.
  • the combined light emitted from the dichroic prism 31 passes through the cylindrical lens 21, and the astigmatism generated by the wire grid polarizer, the astigmatism generated by the parallel plate member, and the rhombus
  • the projection lens 22 corrects the astigmatism of the aberration amount to which the astigmatism generated by the dichroic prism having the shape is added, and suppresses the aberration to a very small value by the projection lens 22. It becomes possible to project on.
  • the parallel plate members 35 and 34 of the same thickness and the same material are disposed adjacent to and parallel to the wire grid polarizers 17GB and 17R, respectively, because each color light This is because the light path at the point has the same amount of difference in the optical path to the dichroic prism. That is, for the R light and the G light, the light emitted from the light valve passes through the wire grid polarizer and the parallel plate member, and for the B light, the light emitted from the light valve is the parallel plate light. Each light is made to enter the dichroic prism while passing through the member twice.
  • the metal wire of the wire grid is formed on the light incident surface of the wire grid polarizer 17R.
  • the position may be replaced by the parallel plate 34 and the wire grid. May be. That is, the wire grid may be formed on any surface of the two parallel flat plates.
  • wire grid polarizer 17R and the parallel plate member 34 may be arranged in close contact with each other or may be adhered with an adhesive or the like. Further, the wire grid polarizer 17R in which the metal wire of the wire grid is formed may be arranged on one parallel plate substrate having a double thickness without the parallel plate member.
  • the wire grid polarizer 17BG and the parallel plate member 35 may be closely arranged. Also in the present embodiment, as disclosed in the second embodiment, it is possible to provide a projection type display device having the same effect even if a configuration in which a cylindrical lens is arranged at the stop position of the projection lens 22 is adopted. , It's not necessary.
  • the dichroic prism for color synthesis has the function of a parallel plate for coma aberration correction. Therefore, the device for aberration correction does not increase the size of the device, and is small and small. It is possible to provide a projection type display device which is well corrected.
  • FIG. 5 shows a plan configuration diagram of a fifth embodiment of the present invention.
  • the light that has been emitted from the light source 11 and converted to predetermined linearly polarized light via the polarization conversion illuminator 12 enters the time-series color separation optical system 38 and travels along the same optical axis.
  • R, G, and B light Are separated by time division.
  • This time series color separation optical system divides the optical disk into three parts with respect to the center O ', and a film that transmits R light and reflects G light and B light on each of the divided surfaces, and transmits G light and R light And a film that reflects the B light and a film that transmits the B light and reflects the R and G light, and rotates about the center O 'of the disk.
  • the wire grid polarizer of the present embodiment is a wire grid polarizing beam splitter. Functions as a utter.
  • the light from the time-sequential color separation optical system is transmitted through the B light, is incident on the dichroic mirror 32 that reflects the G light and the R light, is transmitted through the B light, and is reflected and time-divided.
  • Color separation into G light and R light that travels at The color-separated B light is incident on a wire grid polarizer 17B that is arranged obliquely with respect to the optical axis and has a function as a polarizing beam splitter, and is reflected by the wire grid surface of the wire grid polarizer,
  • the light enters the reflective light valve 18B for B light.
  • the G light and the R light which are color-separated and travel in a time-division manner, enter the wire grid polarizer 17GR, are reflected, and enter the reflection type light valves 18GR arranged for the G light and the R light.
  • the B light reflected by the light valve 18B after being modulated is incident on the wire grid polarizer 17B, the modulated light is detected as transmitted light, extracted, and has the same shape as in the previous embodiment. However, the light enters a dichroic prism 31 on which a dichroic film having characteristics of reflecting B light and transmitting G light and R light is formed.
  • the G light and the R light that are incident on the light valve 17GR in a time-division manner are reflected and emitted by the light valve 18GR upon modulation of the colored light, respectively, and are incident on the wire grid polarizer 17GR.
  • the modulated light is detected and extracted as transmitted light, and the modulated light is incident on the dichroic prism 31 and color-combined with the B light to form R light, G light, and B light.
  • the detector beam is emitted coaxially in a time sharing manner.
  • the dichroic prism 31 has the same shape as that of the previous embodiment, similarly, the parallel plate substrates of the wire grid polarizers 17B and 17GR of each color light obliquely arranged with respect to the optical axis. Coma aberration can be corrected. Then, the R light, the G light, and the B light emitted from the dichroic prism 31 in a time-division manner enter the cylindrical lens 21, and generate astigmatism generated by the wire grid polarizers 17R and 17BG and the dichroic prism 31. The amount of astigmatism is corrected by addition to astigmatism. Therefore, the projection lens 22 can project an excellent image with corrected aberration on an unillustrated screen. Also in the present embodiment, if the cylindrical lens 21 is arranged at the stop position of the projection lens, the cylindrical lens can be formed small.
  • a dichroic prism for color synthesis is used as in the previous embodiment. Since it also serves as a parallel plate member for ma aberration, it is possible to further reduce the size of the device as compared with a case where a parallel plate member for coma is separately provided.
  • the dichroic film of the above-described dichroic prism 31 according to the present embodiment reflects B light and transmits G light and R light. However, as the optical characteristics, it transmits B light and transmits G light.
  • a configuration may be used in which colors are synthesized using a dichroic film that reflects R light.
  • color separation into B light, G light and R light is performed by the time-series color separation optical system 38 and the dichroic mirror 32.
  • the present invention is not limited to this, and the time-sequential color separation optical system performs time-sequential color separation into four color lights of B (blue) light, E (emerald) light, G (green) light, and R (red) light.
  • the dichroic mirror uses an optical system that separates color into B light and E light that travels in time series, and G light and R light that travels in time series.
  • the dichroic film of the dichroic prism for color synthesis reflects the B light and the E light and transmits the G light and the R light, or the B light and the E light. It may be configured to transmit light and reflect G light and R light.
  • a projection display device capable of correcting aberrations caused by a parallel plate-shaped optical member obliquely arranged with respect to the optical axis and capable of projecting a projected image with further excellent color reproducibility is provided. can do.
  • FIG. 6 shows a plan configuration diagram of a sixth embodiment of the present invention.
  • Light emitted from the light source 11 and passed through the polarization conversion illuminator 12 is color-separated into R light, G light, and B light in a time-division manner by the time-sequential color separation optical system 38, and changes its traveling direction through the deflection mirror 39.
  • the R light, G light, and B light that enter in a time-division manner travel in the wavelength-selective optical rotator 33 by rotating the polarization direction of only the B light by 90 ° with respect to the polarization at the time of incidence.
  • the light enters a wire grid polarizer 17 having a metal wire of a wire grid formed on a surface opposite to a light incident surface.
  • the B light is transmitted through the wire grid surface, transmitted through a parallel plate member 34 having the same material and the same thickness as the parallel plate substrate of the wire grid polarizer 17, and is provided with a reflection type light disposed for the B light.
  • the light enters the light valve 18B and undergoes a modulation operation based on the image information input to the light valve.
  • the G light and the R light are reflected by the wire grid surface, pass through the parallel plate substrate of the wire grid polarizer 17, and are provided with reflection type light valves 18G for the G light and the R light.
  • the light enters R and undergoes a modulation action based on the image information input to the light valve.
  • the wire grid polarizer 17 and the parallel plate member 34 are arranged with an inclination of 45 ° with respect to the optical axis of the incident light.
  • the wire grid polarizer of the present embodiment functions as a polarization beam splitter.
  • the B light emitted from the reflection type light valve 18B passes through the parallel plate member 34, and the modulated light is detected as reflected light by the wire grid of the wire grid polarizer 17, and is emitted from the reflection type light valve 18GR.
  • the light and the R light pass through the parallel plate substrate of the wire grid polarizer 17, and the modulated light is detected as transmitted light by the wire grid, and the B light and the G light and the R light are analyzed.
  • the analysis light is color-combined.
  • the combined light of the B light, the G light and the R light passes through a parallel plate member 34 and is incident on a wavelength-selective optical rotator 36 that rotates the polarization direction of only the B light by 90 °.
  • the light exits through the polarizer 37 with the polarization direction aligned with the light.
  • the B light passes through the parallel plate member 34 twice, and the G light and the R light pass through the parallel plate substrate of the wire grid polarizer 17. , Once through the parallel plate member 34.
  • the inclination directions of the parallel plates arranged obliquely with respect to the optical axis in each optical path are the same. Therefore, the image light formed by the light valve enters the wavelength-selective optical rotator 36 with the same amount of aberration for any color light.
  • the amount of difference given by the parallel plates obliquely arranged in the optical path is the same for all the optical paths of color light, and the inclination of the parallel plates in each optical path is Since the arrangement is devised so that the scanning directions are the same, the coma aberration correction can be performed by arranging the parallel plate member for coma aberration correction in the optical path after the color synthesis of each color light.
  • the astigmatism generated by the wire-grid polarizer 17 and the parallel plate member 34 and the coma aberration correcting member is corrected by the cylindrical lens 21 as in the previous embodiment. Therefore, the projection lens 22 can project an excellent projection image on a screen (not shown) with the aberration suppressed to a very small value.
  • the wire grid polarizer 17 and the parallel plate member 34 are arranged with a space. However, even if the wire grid polarizer 17 and the parallel plate member 34 are closely arranged. It may be bonded with a glue or the like.
  • the wavelength-selective optical rotator 33 has a characteristic of rotating the polarization direction of the B light by 90 °, but this wavelength-selective optical rotator rotates the polarization directions of the G light and the R light. It may have characteristics that are as follows. In this case, a wavelength-selective optical rotator 36 having a characteristic of rotating the polarization directions of the G light and the R light by 90 ° is used.
  • the light source light is color-separated into four-color light
  • the wavelength-selective optical rotator is configured to change the polarization of the two-color light
  • the light valve 18B of the present embodiment is monochromatic. If a configuration is adopted in which two-color light that progresses in time series while changing polarization by the wavelength-selective optical rotator instead of light is incident in time series, aberration is corrected by the same configuration described in the present embodiment. At the same time, it is possible to project a more excellent color light projection image.
  • FIG. 7 shows a plan view of a seventh embodiment of the present invention.
  • Light emitted from the light source 11 and passed through the polarization conversion illuminating device 12 enters the time-series color separation optical system 38, and is color-separated into R light, G light, and B light traveling on the same optical path by time division.
  • the light that has been color-separated by the time-sequential color separation optical system enters a dichroic mirror 32 that transmits B light, reflects G light and R light, and transmits B light that is transmitted and travels. Light and R light are color-separated.
  • the color-separated B light is incident on a wire grid polarizer 17B in which a metal wire of a wire grid is formed on the incident side of the B light on the parallel plate substrate, and reflects the wire grid surface to generate a B light beam.
  • Light enters the reflective light valve 18B.
  • the wire grid polarizer of the present embodiment functions as a polarization beam splitter.
  • the color-separated G light and R light are incident on a wire grid polarizer 17GR in which a metal wire of a wire grid is formed on the parallel plate substrate on the incident side of the G light and R light, The light is reflected and enters the reflective light valves 18GR arranged for G light and R light.
  • the B light reflected by being modulated by the image signal input to the light valve 18B re-enters the wire grid polarizer 17B, and the modulated light is detected and transmitted as transmitted light.
  • the modulated light of the B light passes through a parallel plate correcting member 19B for correcting a coma aberration generated when the B light is transmitted through the wire grid polarizer 17B, and internally reflects the characteristics of the B light reflection, the G light, and the R light transmission.
  • Dichroic prism having a dichroic film having a square cross section Incident on the beam 41.
  • the G light and the R light that enter the light valve 18GR are modulated and reflected and emitted by the image signal input to the light valve 18GR at each incidence, re-enter the wire grid polarizer 17GR, and are modulated. Is extracted as transmitted light, and enters a dichroic prism 41 via a parallel plate correcting member 19GR for correcting coma aberration generated when the light passes through the wire grid polarizer 17GR.
  • the B light, the G light, and the R light are color-combined by the dichroic film, and the R light, the G light, and the B light are emitted coaxially.
  • the astigmatism generated by the wire grid polarizer arranged in the optical path of each color and the parallel plate correcting member for correcting coma aberration is corrected by the cylindrical lens 21, and the projection lens 22 has no aberration and excellent projection. Images can be projected.
  • the cylindrical lens 21 is arranged at the stop position of the projection lens, the cylindrical lens can be formed small.
  • the dichroic film of the dichroic prism 41 according to the present embodiment reflects B light and transmits G light and R light, but transmits B light and G light as optical characteristics.
  • a similar projection display device can be provided by using a dichroic film that reflects R and R light.
  • the light source light may be color-separated into four-color light by the time-sequential color separation optical system 38, and two color lights may be incident on the two light valves in time series.
  • a projection type display device that projects a projected image with even better color reproducibility can be provided.
  • FIG. 8 shows a plan configuration diagram of a projection display device according to another embodiment of the present embodiment.
  • the configuration is the same as that of the projection display device in FIG. 7 except for the arrangement of the parallel plate member for correcting the frame difference.
  • the forces with the aberration correcting members 19B and 19GR arranged in the optical path of the B light and the optical paths of the G light and the R light, respectively.
  • An aberration correction member 19 is arranged on the optical path of the combined light with the light.
  • the optical path of the R light and the G light is a force in which the inclination direction of the wire grid polarizer 17RG and the inclination direction of the parallel plate member 19 for coma aberration correction are arranged opposite to each other.
  • the inclination direction of the grid polarizer 17B and the inclination direction of the parallel plate member 19 in the coma aberration correction method are inclined in the same direction with respect to the optical path.
  • the light valve for B light 18B The mirror image is inverted by the dichroic film of the dichroic prism and its image power
  • the color is synthesized with the image formed by 18RG, the behavior of the aberration is reversed left and right only for the B light, so that for the B light, the inclination direction of the parallel plate member 19 is inclined in the same direction with respect to the optical path. Even in this case, it is possible to correct coma.
  • coma aberration correction can be performed at a time after color synthesis, and the projection display device in which the aberration generated by the wire grid polarizer is corrected can be reduced in size.
  • the parallel plate correction member 19 and the cylindrical lens 21 are most viewed from the human eye.
  • a good image can be obtained by designing the G light, which is a highly sensitive color light, to be optimal.
  • FIG. 9 shows a plan view of an eighth embodiment of the present invention.
  • Light emitted from the light source 11 and passed through the polarization conversion illuminating device 12 is color-separated into R light, G light, and B light that travel in a time-division manner by the time-sequential color separation optical system 38, and the traveling direction is
  • the metal wire of the wire grid is incident on the wire grid polarizer 17 formed on the light incident side of the parallel plate substrate, reflects the wire grid surface, is incident on the reflection type light valve 18, and is incident on the light valve.
  • the light is modulated according to the image signal of each color light input to and reflected and emitted.
  • Each color light subjected to the modulation action is incident on the wire grid polarizer 17, the modulated light of each color is detected and extracted as transmitted light, and transmitted through the parallel plate substrate of the wire grid polarizer.
  • the projection lens makes it possible to project an excellent projection image on a screen (not shown) with aberrations extremely small.
  • wire grid polarizer of the present embodiment functions as a polarizing beam splitter.
  • a feature of the present invention is that only one light valve is used.
  • the cylindrical lens 21 is further moved to the stop position of the projection lens 22 as in the previous embodiments.
  • the color separation by the time-series color separation optical system may be separated into more than three colors, for example, four-color light, and the color-separated light may be time-sequentially incident on one light valve. The same effect can be obtained with the configuration, and it is possible to provide a projection display device that projects a projection image of excellent color light with good color reproducibility.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Projection Apparatus (AREA)

Abstract

 投射型表示装置は、複数の色光毎に配置されたライトバルブと、ライトバルブで変調された光を検光するワイヤーグリッド偏光子と、検光光を投射する投射レンズと、ライトバルブと投射レンズの間の光路に配置され、複数の色光におけるワイヤーグリッド偏光子によるコマ収差を補正する補正部材とを有する。

Description

明 細 書
投射型表示装置
技術分野
[0001] 本発明は、ライトバルブを射出する光を、平行平板光学部材の表面に偏光分離素 子を配置したワイヤーグリッド偏光子等で構成される検光光学系により検光し、検光 光を投射レンズで投射する構成の投射型表示装置に関する。
背景技術
[0002] ワイヤーグリッド偏光子は、従来用いられていた偏光プリズムよりも軽量であり、偏光 膜を用いたときに比べてその偏光性能がよぐ近年、偏光プリズムの替わりに用いら れるようになってきている。下記の特許文献には、ライトバルブを射出した光を光軸に 対して斜めに配置したワイヤーグリッド偏光子に入射し、変調光を当該偏光子にて透 過光として検光して取りだし、投射レンズにて投射する構成の投射型表示装置が開 示されている。
[0003] ワイヤーグリッド偏光子は、使用波長よりも短 、幅を有する金属線を、該波長よりも 小さいピッチで等間隔に並べたものである。可視域の光に用いられるワイヤーグリッド は、一般に、使用波長の光を透過する基板の上に金属膜を形成し、リソグラフィープ ロセスによって、金属線をパターユングする方法で作製される。従って、ワイヤーダリ ッドの金属線は金属線単独ではなぐ平行平板の上に形成されている。また、偏光子 の波長よりも細い金属線を保護するために、更に金属線形成面の上に平行平板を載 せて、金属線を 2枚の平行平板で挟まれている場合もある。
[0004] 特許文献 1:国際公開第 01Z009677号パンフレット
特許文献 2:国際公開第 01Z018570号パンフレット
特許文献 3 :米国特許第 6,585, 378号明細書
特許文献 4:米国特許第 6,666,556号明細書
発明の開示
発明が解決しょうとする課題
[0005] このようなワイヤーグリッド偏光子を用いた投射型表示装置では、ワイヤーグリッド偏 光子を透過して検光を行う際に、光が、光軸に対して斜めに配置された平行平板を 経由するため、投射像にコマ収差 (横収差)と非点収差が発生し、良好な投射像が得 られなかった。
[0006] また、ワイヤーグリッド偏光子を反射して検光を行う際であっても、変調作用を受け た光がワイヤーグリッド偏光子の平行平板基板側力も入射する場合や、ワイヤーダリ ッドが 2枚の平行平板の間に挟まれている構成を有する場合には、ワイヤーグリッド 偏光子へ入射するときと反射して射出されるときとで計 2回、光軸に対して斜めに配 置された平行平板を経由するので、ワイヤーグリッド偏光子を透過するときと同様に、 投射像にコマ収差と非点収差とが発生して良好な投射像が得られない。
[0007] 本発明は、ワイヤーグリッド偏光子を光軸に対して斜めに配置されていても、収差を 小さく抑え、良好な投射像が得られる投射型表示装置を提供する。
課題を解決するための手段
[0008] 本発明の第 1の態様によると、投射型表示装置は、複数の色光毎に配置されたライ トバルブと、ライトバルブで変調された光を検光するワイヤーグリッド偏光子またはワイ ヤーグリッド偏光ビームスプリッタと、検光光を投射する投射レンズと、ライトバルブと 投射レンズの間の光路に配置され、複数の色光におけるワイヤーグリッド偏光子また はワイヤーグリッド偏光ビームスプリッタによるコマ収差を補正する補正部材とを有す る。
本発明の第 2の態様によると、投射型表示装置は、複数の色光毎に配置されたライ トバルブと、ライトバルブで変調された光を検光するワイヤーグリッド偏光子と、複数の 色光の検光光を色合成する色合成光学系と、ワイヤーグリッド偏光子と色合成光学 系との間の複数の色光の光路のうち少なくとも 1つの色光の光路に光軸に対して傾 V、て配置され、ワイヤーグリッド偏光子によるコマ収差を補正する補正部材とを有する 本発明の第 3の態様によると、投射型表示装置は、複数の色光毎に配置された反 射型ライトバルブと、光源からの光を偏光分離して反射型ライトバルブに入射させ、 反射型ライトバルブで変調された光を検光するワイヤーグリッド偏光子と、複数の色 光の検光光を色合成する色合成光学系と、ワイヤーグリッド偏光子と色合成光学系と の間の複数の色光の光路のうち少なくとも 1つの色光の光路に配置され、ワイヤーグ リツド偏光子によるコマ収差を補正する補正部材とを有する。
本発明の第 4の態様によると、投射型表示装置は、光源からの光を第 1色光と第 2 色光との混合光と、第 3色光とに色分解する色分解光学系と、第 1色光用の反射型ラ イトバルブと、第 2色光用の反射型ライトバルブと、第 3色光用の反射型ライトバルブと 、混合光を第 1色光と第 2色光とに偏光分離し、第 1色光用の反射型ライトバルブと第 2色光用の反射型ライトバルブにそれぞれ射出して、第 1色光用の反射型ライトバル ブと第 2色光用の反射型ライトバルブとから射出された光を検光して色合成する第 1 のワイヤーグリッド偏光子と、色分解光学系から射出された第 3色光を偏光分離して 第 3色光用の反射型ライトバルブに射出し、第 3色光用の反射型ライトバルブ力 射 出された光を検光する第 2のワイヤーグリッド偏光子と、第 1のワイヤーグリッド偏光子 で色合成された第 1色光と第 2色光の混合光と、第 2のワイヤーグリッド偏光子で検光 された第 3色光とを色合成する色合成光学系と、第 1のワイヤーグリッド偏光子と色合 成光学系との間の光路、または第 2のワイヤーグリッド偏光子と色合成光学系との間 の光路の少なくとも一方に配置され、ワイヤーグリッド偏光子によるコマ収差を補正す る補正部材とを有する。
本発明の第 5の態様によると、第 2から第 4のいずれか 1の態様の投射型表示装置 において、色合成光学系で色合成された光の光路に配置され、ワイヤーグリッド偏光 子またはワイヤーグリッド偏光ビームスプリッタと補正部材による非点収差を補正する 円柱レンズをさらに有するのが好ましい。
本発明の第 6の態様によると、第 1から第 5のいずれか 1の態様の投射型表示装置 において、ワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリッタは、平 行平板基板にグリッドが形成されたものであり、補正部材は、平行平板基板によるコ マ収差を補正する平行平板であるのが好まし 、。
本発明の第 7の態様によると、第 6の態様の投射型表示装置において、平行平板 は、平行平板基板の光軸に対する傾きと逆の傾きで光路に配置されているのが好ま しい。
本発明の第 8の態様によると、第 6または第 7の態様の投射型表示装置において、 平行平板の厚さを tl、屈折率を nl、平行平板基板の厚さを t、屈折率を nとすると、 n l X tl >n X tの関係を有するのが好まし!/、。
本発明の第 9の態様によると、第 1から第 5のいずれか 1の態様の投射型表示装置 において、ワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリッタは、ダリ ッドが形成された平行平板基板に平行平板基板と同じ平行平板基板を張り合わせた 構造であり、補正部材は、平行平板基板によるコマ収差を補正する平行平板補正部 材であるのが好ましい。
本発明の第 10の態様によると、第 2から第 4のいずれか 1の態様の投射型表示装 置において、色合成光学系は、断面が平行四辺形のダイクロイツクプリズムであり、ダ ィクロイツクプリズムの入射面および出射面は、ワイヤーグリッド偏光子またはワイヤー グリッド偏光ビームスプリッタの光軸に対する傾きと逆の方向に傾き、ダイクロイツクプ リズムは、補正部材としてワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームス プリッタによるコマ収差を補正するのが好ましい。
本発明の第 11の態様によると、第 1から第 10のいずれか 1の態様の投射型表示装 置において、補正部材は光軸に対し、ワイヤーグリッド偏光子またはワイヤーグリッド 偏光ビームスプリッタのグリッドが形成された基板よりも小さ ヽ入射角となるように配置 されているのが好ましい。
本発明の第 12の態様によると、第 1から第 9のいずれか 1の態様の投射型表示装 置において、補正部材は、視感度の高い色光のコマ収差を最小にするよう構成され ているのが好ましい。
本発明の第 13の態様によると、第 5の態様の投射型表示装置において、円柱レン ズは、視感度の高 ヽ色光の非点収差を最小にするように構成されて ヽるのが好まし い。
本発明の第 14の態様によると、第 1から第 9のいずれか 1の態様の投射型表示装 置において、補正部材は、複数の色光のそれぞれのコマ収差を最小にするのが好ま しい。
本発明の第 15の態様によると、投射型表示装置は、光源力もの光を変調するライト バルブと、ライトバルブで変調された光を検光するワイヤーグリッド偏光子またはワイ ヤーグリッド偏光ビームスプリッタと、ワイヤーグリッド偏光子またはワイヤーグリッド偏 光ビームスプリツタで検光された光を投射する投射レンズと、ワイヤーグリッド偏光子 またはワイヤーグリッド偏光ビームスプリッタと投射レンズの間の光路に配置され、ワイ ヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリツタで検光された光が有 するコマ収差を補正する補正部材とを備える。
本発明の第 16の態様によると、第 15の態様の投射型表示装置において、ワイヤー グリッド偏光子またはワイヤーグリッド偏光ビームスプリッタは、透明平板と該透明平 板上に形成されたワイヤーグリッドからなり、補正部材は透明平板力 なり、ワイヤー グリッド偏光子またはワイヤーグリッド偏光ビームスプリッタの透明平板の光軸に対す る傾きと逆の傾きで光路に配置されて 、るのが好ま 、。
本発明の第 17の態様によると、第 16の態様の投射型表示装置において、補正部 材の透明平板は、ワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリッタ の透明平板より、厚さおよび屈折率のうち少なくとも 1つが大きいのが好ましい。 本発明の第 18の態様によると、第 17の態様の投射型表示装置において、補正部 材の透明平板は、ワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリッタ の平板基板より、光軸に対してより垂直に近い傾きで配置されるのが好ましい。 発明の効果
[0009] 本発明によれば、ワイヤーグリッド偏光子が光軸に対して斜めに配置された検光子 を用いた投射型表示装置であっても、収差を小さく抑えた、良好な投射像を投射可 能な投射型表示装置を提供できる。
図面の簡単な説明
[0010] [図 1]第 1の実施の形態の投射型表示装置の平面構成図。
[図 2]第 2の実施の形態の投射型表示装置の平面構成図。
[図 3]第 3の実施の形態の投射型表示装置の平面構成図。
[図 4]第 4の実施の形態の投射型表示装置の平面構成図。
[図 5]第 5の実施の形態の投射型表示装置の平面構成図。
[図 6]第 6の実施の形態の投射型表示装置の平面構成図。
[図 7]第 7の実施の形態の投射型表示装置の平面構成図。 [図 8]第 7の実施の形態の他の形態の投射型表示装置の平面構成図。
[図 9]第 8の実施の形態の投射型表示装置の平面構成図。
発明を実施するための最良の形態
[0011] 第 1の実施の形態
図 1には本発明第 1の実施の形態の平面構成図を示す。光源 11から射出の光源 光は偏光変換照明装置 12により単一偏光 (例えば S偏光)に変換される。偏光変換 照明装置 12は構成を図示しないが、複数のレンズをマトリクス形状に平面的に形成 した第 1レンズ板と、前記第 1レンズ板の各レンズと相対する位置にレンズが配置され た前記第 1レンズ板と同様の構成の第 2レンズ板とからなる光源光均一化部材と、前 記第 2レンズ板の各レンズからの射出光を透過光と反射光とに偏光分離する偏光分 離面と、該偏光分離面に対して平行な反射面とを互いに隣接させて複数配置した複 合プリズム部材とからなる単一偏光変換装置と、単一偏光光を後述のライトバルブに 重畳照明するコンデンサレンズとから構成される。
[0012] 前記複合プリズム部材の特定射出面には、 1Z2波長位相板が配置され、前記偏 光分離面を透過光した光、または前記偏光分離面を反射して隣接する反射面で反 射された光のどちらかの偏光方向を 90° 回転することにより複合プリズム部材力 射 出される全ての光を単一偏光光に変換する。
[0013] 前記偏光変換照明装置 12を射出した単一偏光光は色分離光学系によって R (赤) 光、 G (緑)光、 B (青)光の 3色光に色分離される。本実施の形態における色分離光 学系は、 R光と G光を反射、 B光を透過する特性のダイクロイツクミラー 13RGと、 B光 を反射、 R光と G光を透過する特性のダイクロイツクミラー 13Bとを互 、に直交配置し たクロスダイクロイツクミラー 13と、 G光反射、 R光透過特性のダイクロイツクミラー 16と で構成される。前記単一偏光光は、前記クロスダイクロイツクミラー 13によって R光と G 光の混合光と、 B光とに色分離され、前記色分離された R光と G光の混合光は偏向ミ ラー 14にて進行方向を偏向されて、 G光反射、 R光透過特性のダイクロイツクミラー 1 6に入射し、 G光と R光とに色分離される。
[0014] 色分離された前記 B光は偏向ミラー 15にて進行方向を偏向され、光軸に対して斜 めに配置されたワイヤーグリッド偏光子 17Bに入射する。前記色分離された R光と G 光も、それぞれ光軸に対して斜めに配置されたワイヤーグリッド偏光子 17R、 17Bに 入射する。
[0015] ここで、前述のワイヤーグリッド偏光子 17R、 17G、 17Bは、使用波長の光を透過す る透明な平行平板上に波長よりも短い幅を有する金属線が等間隔に並んだワイヤー グリッドが形成された平行平板である。該ワイヤーグリッド形成面を前記色分離光の 入射する側に向けて配置されているので、前記波長分離された前記各色光は、該ヮ ィヤーグリッド形成面に入射する。
[0016] ワイヤーグリッド形成面に入射する各色光は S偏光された偏光光であり、ワイヤーグ リツド形成面で反射する。ワイヤーグリッドを反射した各々の色光は、各色光用のライ トバルブ 18R、 18G、 18Bにそれぞれ入射して、各色光毎にライトバルブに入力され た像信号に応じた変調作用を受けて射出される。ライトバルブで変調された光は P偏 光となり、変調されな力つた光は入射光と同じ S偏光のまま反射される(以下、変調さ れた光を「変調光」と言 、、変調されなかった光を「非変調光」と言う)。
[0017] ライトバルブで変調作用を受けた各色光は、それぞれ、ワイヤーグリッド偏光子 17R 、 17G、 17Bに入射し、変調光 (P偏光)はワイヤーグリッド偏光子を透過して取り出さ れ、非変調光 (S偏光)はワイヤーグリッドを反射して光源方向へ廃棄される。すなわ ち、ワイヤーグリッド偏光子 17R、 17G、 17Bに入射された光は偏光分離され検光さ れる。ワイヤーグリッド偏光子 17R、 17G、 17Bは、ワイヤーグリッド偏光ビームスプリ ッタと言ってもよ ヽ。
[0018] なお、ワイヤーグリッド偏光子 17R、 17G、 17Bには、最初、偏光変換照明装置 12 力も射出された S偏光のみが入射し、ワイヤーグリッド偏光子 17R、 17G、 17Bはこの S偏光をそのまま反射する。しかし、偏光変換照明装置 12の製造誤差等の要因や、 S偏光がクロスダイクロイツクミラー 13、偏向ミラー 14、 15、ダイクロイツクミラー 16など を透過、反射する際に偏光状態が変化することにより、実際にはワイヤーグリッド偏光 子 17R、 17G、 17Bに入射する光には P偏光が混合している。ワイヤーグリッド偏光 子 17R、 17G、 17Bは、このような P偏光が混合した光から S偏光を偏光分離してライ トバルブに入射する。
[0019] ここで、ライトバルブからの変調光はワイヤーグリッド偏光子を透過するので、各変 調光は、ワイヤーグリッドが形成された平行平板をも透過することになる。該平行平板 は光軸に対して傾いて配置されているため、ワイヤーグリッド偏光子 17R、 17G、 17 Bを透過した各々の光には所定の大きさのコマ収差成分と非点収差成分がのること になる。
[0020] 本実施の形態では、前記ワイヤーグリッド偏光子の平行平板により発生したコマ収 差を、ワイヤーグリッド偏光子 17R、 17G、 17Bと、色合成光学系であるクロスダイク口 イツクプリズム 20との間に平行平板形状の収差補正部材を配置して補正する。
[0021] ワイヤーグリッド偏光子 17R、 17G、 17Bで検光された検光光は、平行平板形状の 収差補正部材 19R、 19G、 19Bを経て色合成光学系のクロスダイクロイツクプリズム 2 0にそれぞれ異なる入射面カゝら入射する。
[0022] 平行平板形状の収差補正部材 19R、 19G、 19Gは、使用波長の光を透過する透 明な部材で形成され、図示のように、全て同じ厚さで、且つ、その厚さはワイヤーダリ ッド偏光子 17R、 17G、 17Bの平行平板部材の厚さよりも厚い。また、ワイヤーグリツ ド偏光子 17R、 17G、 17Bの前記ライトバルブ 18R、 18G、 18Bに対する傾き方向と は、逆の方向に傾けて配置されている。平行平板形状の収差補正部材の厚みを tl、 屈折率を nlとし、ワイヤーグリッド偏光子 17R、 17G、 17Bの基板の厚みを t、屈折率 を nとすると、下記の式(1)を満たす構成となって 、る。
nl X tl >n X t (1)
[0023] この式を満足させることにより、図に示すように平行平板形状の補正部材 19R、 19 G、 19Bの前記ライトバルブ 18R、 18G、 18Bに対する傾き角を小さくすることができ 、その平板補正部材を配置する空間を小さくすることが可能となる。
[0024] 一般に、発散光または収束光の光軸上に斜めに置かれた平行平板によって非点 収差とコマ収差とが発生することは広く知られている。これらの収差の収差量は、光 軸に対して垂直な面に対する前記平行平板の傾き角が大きい程、また、光学部材の 屈折率や厚さが大き ヽほど、大きくなると ヽぅ性質がある。
[0025] まず、コマ収差を補正については、前記ワイヤーグリッド偏光子の基板と同じ部材、 同じ厚さの平行平板を、前記ワイヤーグリッドとは反対の向きに同じ角度傾けて前記 ワイヤーグリッド偏光子と前記ダイクロイツクプリズムとの間、または前記ワイヤーグリツ ド偏光子と前記ライトバルブとの間に配置すれば、前記ワイヤーグリッド偏光子の基 板によって発生するコマ収差量と同じ大きさで反対方向のコマ収差が発生するので、 全体としてコマ収差を相殺することができる。
[0026] し力しワイヤーグリッド偏光子とライトバルブとの間の空間、及びワイヤーグリッド偏 光子とライトバルブとの間の空間が限られているため、ワイヤーグリッド偏光子と反対 向きに同じ角度だけ傾けて平行平板を挿入することは難しい。そこで前述の収差量 の性質を利用して、収差補正手段としてより厚い、あるいはより屈折率の高い平行平 板状光学部材を使うことによって、光軸に対してより小さな傾き角でも前記ワイヤーグ リツドで発生するコマ収差を補正するようにすればよい。このように平行平板の厚み、 または、屈折率とを工夫することによって配置に必要な空間が小さくなり、光学系内 に配置することができるようになる。つまり平行平板形状の補正部材として前記(1)式 の条件を満たすものを選べばょ 、。
[0027] 次に非点収差であるが、前記平行平板形状の補正部材を挿入すると、前記ワイヤ 一グリッド偏光子によって発生する非点収差と、前記平行平板形状の補正部材によ つて発生する非点収差とが加算される。これらを補正するために、前記ライトバルブ 1 8R、 18G、 18Bと投射像との光路中に円柱レンズを挿入する。この円柱レンズは、図 面上紙面内に曲率を持った凸円柱レンズか、図面上紙面に垂直な面内に曲率を持 つた凹円柱レンズであればよい。
[0028] 前記平行平板形状の補正部材 19R、 19G、 19Bを経てクロスダイクロイツクプリズム 20に入射した各色光はその内部に、互いに直交して配置された R光反射ダイクロイ ック膜 20R、 B光反射ダイクロイツク膜 20Bによって色合成が達成され、該クロスダイク ロイックプリズム 20の射出面力も合成光が射出される。本実施の形態では、前記クロ スダイクロイツクプリズム 20と投射レンズ 22との間には、前記非点収差を補正するた めに、円柱レンズ 21が配置されている。
[0029] 前記平板補正部材の厚さ、角度、素材、及び、前記円柱レンズの曲率、挿入位置 は、光線追跡計算により最適解を適宜決定する。
[0030] 以上、説明のように各色光用の反射型ライトバルブ 18R、 18G、 18Bを射出した投 射光はワイヤーグリッド偏光子 17R、 17G、 17Bの平行平板部材を透過して発生した コマ収差と非点収差を前述の平行平板補正部材 19R、 19G、 19Bと、円柱レンズ 21 とを透過することにより補正するので、投射レンズ 22によって、図示しないスクリーン 上に収差量を非常に小さく抑えた、優れた投射像を投射することができる。
[0031] なお、本実施の形態の様に、各色光が個別にワイヤーグリッド偏光子を用いた独立 した光学系からなる構成の場合には、各色光光学系毎に発生する収差量は全く同じ になるとは限らない。理由は前記ワイヤーグリッド偏光子の製造誤差による、厚さのば らつきである。そこで例えば前記平行平板形状の補正部材がすべて同じ厚さで作ら れた場合には、前記平行平板補正部材の傾き角を微調整することで、各色光別にコ マ収差を補正することができる。あるいは、前記ワイヤーグリッド偏光子の個々の厚さ に合わせて厚さを決めた前記平行平板形状の補正部材をあらかじめ用意し、これら を組み合わせることによつても各色光別のコマ収差量に応じた収差補正を行うことが できる。
[0032] 上記のように各色光用に配置されたワイヤーグリッド偏光子と平行平板形状の補正 部材とを通過する光路長が異なると、各色光毎にわずかに量が異なった非点収差が 発生する。この場合、非点収差補正を各色光の中で最も視感度の高い色に合わせ て最適化して行うと、画像の劣化を最小限に抑えることが可能になる。例えば B光 G 光 R光 3色の場合には、このうち最も視感度の高い G光に合わせればよい。すなわち 、G光に発生する収差量に合わせて曲率を決めた前記円柱レンズをあら力じめ用意 して組み合わせる力、あるいは、 G光の像が最良になるように、前記円柱レンズ位置 を光軸上で光軸方向に動かして調整すればよ!、。 G光は輝度が高 、色光とも言え、 非点収差補正を各色光の中で最も輝度の高 ヽ色に合わせて最適化するとしてもよ ヽ
[0033] 第 2の実施の形態
図 2には本発明第 2の実施の形態の平面構成を示す。投射型表示装置としての基 本構成は第 1の実施の形態と同じであり、図 2においては光源、偏光変換照明装置、 色分離光学系はその図示を省略し、その構成も同じであるので説明は省略する。
[0034] 本実施の形態の特徴は前実施の形態における円柱レンズ 21の配置位置が異なる ことである。 [0035] 各色光用の反射型ライトバルブ 18R、 18G、 18Bを反射射出した光は前実施の形 態と同様に光軸に対して斜めに配置の平行平板部材を有するワイヤーグリッド偏光 子 17R、 17G、 17Bによって変調された変調光を検光して取り出し、平面平板形状 の補正部材 19R、 19G、 19Bにてコマ収差を補正し、色合成光学系にて色合成して 投射レンズ 22にて投射する構成である。
[0036] 本実施の形態では、円柱レンズ部材 21が投射レンズ 22中の絞り位置に配置され ている。投射レンズ 22は図 2に示すように、合成光の入射側の前群レンズ 22Aと射出 面側の後群レンズ 22Bとで構成される。各色光用のライトバルブ 18R、 18G、 18Bと 投射レンズ 22の間の光路はテレセントリックに構成されるため、前記前群レンズ群 22 Aの焦点位置にはライトバルブ力もの光の開口数 NAを決定する開口絞り 22Cが配 置されて!、る。本実施の形態における非点収差補正部材の円柱レンズ 22Cはこの絞 り位置に配置する構成とした。この配置とすることにより、図 2の光線図に示すように、 当該絞り位置においては、光束の断面が最も小さくなるので、円柱レンズ 22の大きさ を最も/ Jヽさくすることができることができる。
[0037] 本実施の形態においても、ワイヤーグリッド偏光子 17R、 17G、 17Bの平行平板基 板により発生したコマ収差と非点収差を、前記平面平板補正部材と前記円柱レンズ によって前実施の形態と同様に補正でき、収差を非常に小さい値に抑えた、優れた 投射像を投射することが可能となる。
[0038] 第 3の実施の形態
本発明第 3の実施の形態の平面構成図を図 3に示す。前述の 2つの実施の形態で は、反射型のライトバルブを使用した力 本実施形態では透過型のライトバルブを使 用している。
[0039] 光源 11からの光源光は偏光変換照明装置 12を経て、 B光透過、 R光と G光反射特 性のダイクロイツクミラー 29にて、 B光と、 G光と R光の混合光に色分離される。前記 R 光と G光の合成光は G光反射、 R光透過のダイクロイツクミラーにて G光と R光に色分 離する。
[0040] 前記色分離された B光は偏向ミラー 25にて進行方向を変えて進行し、偏光子 23B を経て透過型ライトバルブ 24Bに入射する。前記色分離された G光は偏光子 23Gを 経て透過型ライトバルブ 24Gに入射する。前記色分離された R光は偏向ミラー 27、リ レー光学系 30、偏向ミラー 26を経て偏光子 23Rを経て透過型ライトバルブ 24Rに入 射する。
[0041] 各色光用の透過型ライトバルブ 24R、 24G、 24Bにそれぞれ入力された像信号に 応じて各々変調された各色光は、光軸に斜めに配置されたワイヤーグリッド偏光子 1 7R、 17G、 17Bに入射する。該ワイヤーグリッドにより変調光が透過光として検光され 、前記ワイヤーグリッド偏光子 17R、 17G、 17Bの平行平板光学基板と光軸に対して 反対方向に斜めに配置した上記式(1)を満たす平面平板補正部材 19R、 19G、 19 Bを経て色合成光学系のクロスダイクロイツクプリズム 20に異なる入射面カゝら入射する 。色合成光は射出して非点収差補正用の円柱レンズ 21に入射、射出した光は投射 レンズ 22に入射、図示しないスクリーン上に収差を非常に小さく抑えた、優れた投射 像を投射することができる。
[0042] このように、本実施の形態の構成の透過型ライトバルブを使用する投射型表示装置 においても、検光光学系としてワイヤーグリッド偏光子 17R、 17G、 17Bを光軸に対し て斜めに配置したことにより発生する諸収差を補正して、優れた投射像を投射するこ とがでさる。
[0043] さらに、前述の第 2の実施の形態と同様に、円柱レンズ補正部材を投射レンズ 22の 絞り位置に配置しても、同様の効果が得られる。
[0044] 第 4の実施の形態
本発明第 4の実施の形態の平面構成図を図 4に示す。
[0045] 光源 11から射出し偏光変換照明装置 12で所定の直線偏光光に変換された光は、 R光透過、 B光と G光を反射する特性のダイクロイツクミラー 32にて透過する R光と、 反射する B光と G光の混合光とに色分離される。前記色分離された B光と G光の混合 光は波長選択性旋光子 33によって、 B色光のみ偏光方向が 90° 回転されて射出さ れる。
[0046] 前記色分離された R光は平行平板基板の光入射側にワイヤーグリッドの金属線が 形成されたワイヤーグリッド偏光子 17Rで反射され、 R光用反射型ライトバルブ 18R に入射する。ワイヤーダリッド偏光子 17Rは透過光射出側には当該偏光子の平行平 板部材と同じ厚さで、同じ硝材の平行平板部材 34が近接、相対して配置されている
[0047] なお、本実施の形態のワイヤーグリッド偏光子は、偏光ビームスプリッタとして機能 する。
[0048] 一方、波長選択性旋光子 33を経た偏光方向の異なる B光と G光は、平行平板基板 の光射出側にワイヤーグリッドの金属線が形成されたワイヤーグリッド偏光子 17BG に入射し、入射光のうち、 G光は平行平板基板入射面と相対するワイヤーグリッドの 金属線形成面にて反射されて、再度平行平板基板を経て、 G光用反射型ライトバル ブ 18Gに入射する。
[0049] 入射した G光と B光のうちの B光は偏光の振動方向が 90° 回転しているので、ワイ ヤーグリッド偏光子 17BGを透過し、近接して配置されたワイヤーグリッド偏光子の平 行平板部材と同じ厚さを有し、同じ硝材で形成された平行平板部材 35を更に透過し 、 B光用反射型ライトバルブ 18Bに入射する。すなわち、ワイヤーグリッド偏光子 17B Gは、入射した G光と B光の混合光を、偏光分離して G光と B光に分離する。
[0050] R色光用のライトバルブを反射射出した光は、ワイヤーグリッド偏光子 17Rに入射、 変調光を透過光として検光して取りだし、隣接の平行平板部材 34を経て色合成光学 系のダイクロイツクプリズム 31に入射する。
[0051] G色光用のライトバルブを反射射出した光はワイヤーグリッド偏光子 17BGに入射、 変調光を透過光として検光して取りだし、隣接の平行平板部材 35を経てダイクロイツ クプリズム 31に入射する。
[0052] B色光用のライトバルブを反射射出した光は平行平板部材 35を経てワイヤーグリツ ド偏光子 17BGに入射し、変調光は入射側に配置のワイヤーグリッドの金属線にて反 射されて検光され、隣接の平行平板部材 35を再度経て、前記 G光と色合成される。 この G光と B光の合成光は B光のみの偏光方向を 90° 回転する特性を有する波長 選択性旋光子 36に入射して、両光とも同じ偏光方向にそろえられて射出し、偏光子 37を経て R光との色合成光学系のダイクロイツクプリズム 31に入射する。
[0053] 色合成光学系のダイクロイツクプリズム 31は、二個の同じ形状の三角プリズムの間 に B光と G光を透過、 R光を反射するダイクロイツク膜を配置した構成となっている。こ の三角プリズムは 90度以上の同じ頂角を有する 2等辺三角プリズムである。前記ダイ クロイツク膜は、各色光の光軸に対して 45度の角度を有するように配置されている。
[0054] 図に示すように、 R光の入射面、 B光と G光との入射面はそれぞれ光軸に対して同 じ角度傾いた構成となっている。さらに、前記ダイクロイツク膜にて色合成された R光と 、B光と G光の混合光の合成光が射出される射出面も光軸に対して入射面と同じ角 度を有して斜めになつている。つまり、この色合成プリズムの形状は菱形形状プリズム なのである。 R光の入射面および出射面、 B光と G光との入射面および出射面は、ヮ ィヤーグリッド偏光子 17Rおよびワイヤーグリッド偏光子 17BGの光軸に対する傾きと 、それぞれ反対方向の傾きを有する。
[0055] このような形状にすれば各色光について、ワイヤーグリッド偏光子 17Rおよびワイヤ 一グリッド偏光子 17BGとは反対方向に光軸に対して傾きを持った肉厚の平行平板 部材が配置されたことになり、前述の説明のとおり、前記 R光のライトバルブ 18Rから の射出光が通過するワイヤーグリッド偏光子 17R、平行平板部材 34と、前記 G光のラ イトバルブ 18Gからの射出光が通過するワイヤーグリッド偏光子 17BGと平行平板部 材 35と、前記 B光のライトバルブ 18B力もの射出光が 2回通過する平行平板部材 35 とによるコマ収差をネ ΐ正することができる。
[0056] さらに、前記ダイクロイツクプリズム 31を射出した合成光は円柱レンズ 21を通過する ことにより前記ワイヤーグリッド偏光子で発生する非点収差と前記平行平板部材で発 生する非点収差と前記菱形形状のダイクロイツクプリズムで発生する非点収差とが加 算された収差量の非点収差を補正して、投射レンズ 22によって、収差を非常に小さ く抑えた、優れた投射像を図示しないスクリーン上に投射することが可能となる。
[0057] 前述のように、本実施の形態においてはワイヤーグリッド偏光子 17GB、 17Rとそれ ぞれ平行に隣接して同一厚、同一材質の平行平板部材 35、 34を配置したのは、各 色光におけるライトバルブ力 ダイクロイツクプリズムに至る光路において、同様の収 差量を持たせるためである。すなわち、 R光と G光においてはライトバルブを射出した 光がそれぞれ、ワイヤーグリッド偏光子と平行平板部材とを通過するようにし、 B光に おいては、ライトバルブを射出した光が、平行平板部材を 2回通過するようにして、各 々の光をダイクロイツクプリズムに入射させる。ワイヤーグリッド偏光子の平行平板基 板と、平行平板部材とは、厚みと材質、光軸に対する角度がともに同じなので、それ ぞれの光路における光軸に対して斜めに配置された平行平板の総厚は等しくなる。
[0058] 従って、どの色光についても、ダイクロイツクプリズム 31による高度なコマ収差補正 が可能となり、円柱レンズ 21による高度な非点収差補正も可能となる。
[0059] また、本実施形態ではワイヤーグリッド偏光子 17Rの光入射面にワイヤーグリッドの 金属線を形成したが、射出面であってもよぐまた、平行平板 34とワイヤーグリッドと の位置を入れ替えてもよい。即ち、 2枚の平行平板のどの面にワイヤーグリッドが形成 されていても構わない。
[0060] 更に、ワイヤーグリッド偏光子 17Rと平行平板部材 34とは密着配置されていてもよ ぐ接着剤等によって接着されていてもよい。また、平行平板部材をなくし、倍の厚さ を有する 1枚の平行平板基板状にワイヤーグリッドの金属線が形成されたワイヤーグ リツド偏光子 17Rを配置してもよい。
[0061] また、ワイヤーグリッド偏光子 17BGと平行平板部材 35とが密着配置されていてもよ い。本実施の形態においても、第 2の実施の形態にて開示のように、投射レンズ 22の 絞り位置に円柱レンズを配置する構成を採用しても同様の効果を奏する投射型表示 装置を提供できることは 、うまでもな 、。
[0062] 本実施形態では、色合成用のダイクロイツクプリズムにコマ収差補正用の平行平板 の機能をもたせたので、収差補正用部材によって装置が大型化せず、小型でありか つ、収差の良好に補正された投射型表示装置を提供できる。
[0063] 第 5の実施の形態
本発明第 5の実施の形態の平面構成図を図 5に示す。光源 11を射出し、偏光変換 照明装置 12を経て所定の直線偏光に変換された光は、時系列色分離光学系 38に 入射し、同じ光軸にて進行する R光、 G光、 B光に時分割で色分離される。本時系列 色分離光学系は光学円盤をその中心 O'に対して三分割し、分割した各々の面に R 光を透過し G光と B光を反射する膜、 G光を透過し R光と B光を反射する膜、 B光を透 過し R光と G光を反射する膜を形成し、その円盤の中心 O'を中心に回転させる構成 である。
[0064] なお、本実施の形態のワイヤーグリッド偏光子は、ワイヤーグリッド偏光ビームスプリ ッタとして機能する。
[0065] 前記時系列色分離光学系による光は、 B光を透過し、 G光と R光を反射するダイク口 イツクミラー 32に入射し、透過して進行する B光と、反射して時分割にて進行する G光 と R光とに色分離される。前記色分離された B光は偏光ビームスプリッタとしての機能 を有する、光軸に対して斜めに配置されたワイヤーグリッド偏光子 17Bに入射し、該 ワイヤーグリッド偏光子のワイヤーグリッド面で反射されて、 B光用の反射型ライトバル ブ 18Bに入射する。
[0066] 前記色分離され、時分割で進行する G光と R光はワイヤーグリッド偏光子 17GRに 入射し、反射して G光用及び R光用に配置の反射型ライトバルブ 18GRに入射する。
[0067] ライトバルブ 18Bにて変調作用を受けて反射した B光は、ワイヤーグリッド偏光子 17 Bに入射し、変調光が透過光として検光されて取り出され、前実施の形態と同様の形 状であるが、 B光反射、 G光と R光を透過する特性を有するダイクロイツク膜が形成さ れたダイクロイツクプリズム 31に入射する。
[0068] ライトバルブ 17GRに時分割で入射する G光と R光は、それぞれ色光の入射時にラ イトバルブ 18GRにて変調作用を受けて反射射出し、ワイヤーグリッド偏光子 17GR に入射する。ここで、変調光が透過光として検光されて取りだされ、該変調光は、前 記ダイクロイツクプリズム 31に入射して、前記 B光と色合成されて R光、 G光、 B光の検 光光を時分割にて同軸に射出する。
[0069] ダイクロイツクプリズム 31は前実施の形態と同じ形状を有しているので、同様に、光 軸に対して斜めに配置された各色光のワイヤーグリッド偏光子 17B、 17GRの平行平 板基板によるコマ収差を補正することができる。そしてダイクロイツクプリズム 31を時 分割で射出した R光、 G光、 B光は円柱レンズ 21に入射、前記ワイヤーグリッド偏光 子 17R、 17BGで発生した非点収差と、前記ダイクロイツクプリズム 31で発生した非 点収差との加算による非点収差量を補正する。従って、投射レンズ 22によって、図示 しないスクリーン上に、収差の補正された、優れた投像を投射することが可能となる。 本実施の形態においても、円柱レンズ 21を投射レンズの絞り位置に配置すれば、円 柱レンズを小さく形成することができる。
[0070] 本実施の形態では、前実施の形態と同様に色合成用のダイクロイツクプリズムがコ マ収差用の平行平板部材を兼ねて ヽるので、コマ収差用の平行平板部材を別に置 いた場合と比較して、更に装置を小型に形成することが可能になる。
[0071] 本実施の形態における上述のダイクロイツクプリズム 31のダイクロイツク膜は B光を 反射し、 G光と R光を透過する特性であつたが、光学特性として B光を透過、 G光と R 光を反射するダイクロイツク膜を使用して色合成する構成であってもよい。
[0072] さらに、本実施の形態の投射型表示装置の色分離光学系においては時系列色分 離光学系 38とダイクロイツクミラー 32によって、 B光と、 G光と R光に色分離したが、本 発明はそれには限定されず、時系列色分離光学系にて B (青)光、 E (エメラルド)光、 G (緑)光、 R (赤)光の 4色光に時系列に色分離し、次にダイクロイツクミラーにて時系 列に進行する B光と E光と、時系列に進行する G光と R光に色分離する光学系を使用 し、図 5における反射型ライトバルブ 18Bを前記 B光と E光が時系列に入射する構成 とし、色合成用のダイクロイツクプリズムのダイクロイク膜を B光と E光を反射、 G光と R 光を透過する構成、又は B光と E光を透過、 G光と R光を反射する構成としてもよい。 この場合にも同様に光軸に対して斜めに配置された平行平板形状の光学部材に起 因する収差を補正できるとともに、さらに色再現性の優れた投射像を投射できる投射 型表示装置を提供することができる。
[0073] 第 6の実施の形態
本発明第 6の実施の形態の平面構成図を図 6に示す。光源 11を射出し、偏光変換 照明装置 12を経た光は、時系列色分離光学系 38にて時分割で R光、 G光、 B光に 色分離され、偏向ミラー 39を経て進行方向を変えて進行する。時分割で入射する R 光、 G光、 B光は、波長選択性旋光子 33にて、 B光のみの偏光方向を入射時の偏光 に対して 90° 回転されて進行し、平行平板基板の、光の入射面とは反対側の面にヮ ィヤーグリッドの金属線を形成したワイヤーグリッド偏光子 17に入射する。前記 B光は 、該ワイヤーグリッド面を透過し、ワイヤーグリッド偏光子 17の平行平板基板と同じ材 質で同じ厚みを有する平行平板部材 34を透過して、 B光用に配置された反射型ライ トバルブ 18Bに入射し、該ライトバルブに入力された像情報に基づいて変調作用を 受ける。また、前記 G光と R光とは、該ワイヤーグリッド面を反射して、ワイヤーグリッド 偏光子 17の平行平板基板を経て、 G光と R光用とに配置の反射型ライトバルブ 18G Rに入射し、該ライトバルブに入力された像情報に基づいて変調作用を受ける。ここ で、ワイヤーグリッド偏光子 17及び平行平板部材 34は入射光の光軸に対して 45° の傾きを有して配置されて 、る。
[0074] なお、本実施の形態のワイヤーグリッド偏光子は、偏光ビームスプリッタとして機能 する。
[0075] 反射型ライトバルブ 18Bを射出した B光は、平行平板部材 34を経てワイヤーグリツ ド偏光子 17のワイヤーグリッドにて変調光が反射光として検光され、反射型ライトバ ルブ 18GRを射出した G光と R光は、ワイヤーグリッド偏光子 17の平行平板基板を経 てワイヤーグリッドにて変調光が透過光として検光されて、前記 B光の検光光と、前記 G光と R光との検光光が色合成される。該 B光と G光と R光との合成光は平行平板部 材 34を経て、 B光のみの偏光方向を 90° 回転する波長選択性旋光子 36に入射し、 G光と R光と B光との偏光方向をそろえて、偏光子 37を経て射出される。
[0076] 各反射型ライトバルブから波長選択性旋光子 36までの光路において、 B光は平行 平板部材 34を 2回経由し、 G光と R光とはワイヤーグリッド偏光子 17の平行平板基板 と、平行平板部材 34とを 1度づっ経由している。また、各光路で光軸に対して斜めに 配置された平行平板の傾き方向も同じである。従って、ライトバルブで形成された像 光はどの色光についても同じ量の収差を有して波長選択性旋光子 36に入射する。
[0077] 本実施の形態では、上述のように光路中に斜めに配置された平行平板が与える収 差量が全ての色光の光路について同じになるように、かつ各光路での平行平板の傾 き方向が同じになるように配置を工夫したので、コマ収差補正用の平行平板部材を、 各色光の色合成後の光路に配置して、コマ収差補正を行うことができる。また、ワイヤ 一グリッド偏光子 17及び平行平板部材 34と、前記コマ収差補正部材により発生した 非点収差は、前の実施の形態と同様に、円柱レンズ 21にて非点収差を補正する。従 つて、投射レンズ 22にて図示しないスクリーン上に、収差を非常に小さい値に抑えた 、優れた投射像を投射することができる。尚、前記ワイヤーグリッド偏光子 17と平行平 板部材 34とは上記説明では空間を有して配置されて 、るが、前記ワイヤーグリッド偏 光子 17と平行平板部材 34とが密着配置されていてもよぐ接着剤等によって接着さ れていてもよい。 [0078] 上述において、波長選択性旋光子 33は B光の偏光方向を 90° 回転させる特性を 有するものを使用したが、この波長選択性旋光子を G光と R光の偏光方向を回転す る特性を有するものとしてもよい。その際には波長選択性旋光子 36にも G光と R光の 偏光方向を 90° 回転させる特性を有するものを使用する。
[0079] 本実施の形態においても光源光を 4色光に色分離し、波長選択性旋光子をそのう ちの 2色光の偏光を変える構成とし、本実施の形態のライトバルブ 18Bのところには 単色光ではなぐ前記の波長選択性旋光子によって偏光を変えて時系列に進行する 2色光を時系列にて入射する構成とすれば、本実施の形態で説明した同様の構成で 収差が補正されるとともに、さらに優れた色光の投射像を投射することができる。
[0080] 第 7の実施の形態
本発明第 7の実施の形態の平面構成図を図 7に示す。光源 11を射出し、偏光変換 照明装置 12を経た光は時系列色分離光学系 38に入射し、時分割で同じ光路に進 行する R光、 G光、 B光に色分離される。前記時系列色分離光学系により色分離され た光は、 B光透過、 G光と R光を反射するダイクロイツクミラー 32に入射し透過して進 行する B光と、反射して進行する G光と R光に色分離される。前記色分離された B光 は平行平板基板の、該 B光の入射側にワイヤーグリッドの金属線を形成したワイヤー グリッド偏光子 17Bに入射し、該ワイヤーグリッド面を反射して、 B光用の反射型ライト バルブ 18Bに入射する。
[0081] なお、本実施の形態のワイヤーグリッド偏光子は、偏光ビームスプリッタとして機能 する。
[0082] 前記色分離された G光と R光とは、平行平板基板の、該 G光と R光との入射側にワイ ヤーグリッドの金属線を形成したワイヤーグリッド偏光子 17GRに入射し、反射して G 光用と R光用に配置の反射型ライトバルブ 18GRに入射する。
[0083] ライトバルブ 18Bに入力した像信号に応じた変調作用を受けて反射した B光は、ヮ ィヤーグリッド偏光子 17Bに再入射し、変調光が透過光として検光されて取りだされ る。該 B光の変調光は、前記ワイヤーグリッド偏光子 17Bを透過するときに発生するコ マ収差を補正するための平行平板補正部材 19Bを経て、内部に B光反射 G光 R光透 過の特性を有するダイクロイツク膜を有する断面形状が正方形のダイクロイツクプリズ ム 41に入射する。
[0084] ライトバルブ 18GRに入射する G光と R光はそれぞれの入射時にライトバルブ 18GR に入力された像信号によって変調作用を受けて反射射出し、ワイヤーグリッド偏光子 17GRに再入射し、変調光が透過光として検光されて取りだされ、前記ワイヤーグリツ ド偏光子 17GRを透過するときに発生するコマ収差を補正するための平行平板補正 部材 19GRを経てダイクロイツクプリズム 41に入射する。前記 B光と前記 G光、 R光と は前記ダイクロイツク膜で色合成され、 R光、 G光、 B光を同軸にて射出する。各色の 光路に配置された前記ワイヤーグリッド偏光子とコマ収差補正用の平行平板補正部 材によって発生する非点収差は円柱レンズ 21によって補正され、投射レンズ 22にて 収差の無!、優れた投射像を投射することができる。
[0085] 本実施の形態においても、円柱レンズ 21を投射レンズの絞り位置に配置すれば、 円柱レンズを小さく形成することができる。
[0086] また、本実施の形態における前記ダイクロイツクプリズム 41のダイクロイツク膜は B光 を反射し、 G光と R光を透過する特性であつたが、光学特性として B光を透過、 G光と R光を反射するダイクロイツク膜を使用しても同様の投射型表示装置が提供できる。
[0087] さらに、本実施の形態においても時系列色分離光学系 38によって光源光を 4色光 に色分離して、 2つのライトバルブにそれぞれ 2色光を時系列にて入射する構成とし てもよぐこの場合には更に色再現性の優れた投射像を投射する投射型表示装置が 提供できることは 、うまでもな 、。
[0088] 図 8に本実施の形態の他の形態の投射型表示装置の平面構成図を示す。コマ収 差補正用の平行平板部材の配置以外は図 7の投射型表示装置と同様の構成を有し ている。図 7では、 B光の光路及び G光と R光との光路のそれぞれに収差補正部材 1 9B、 19GRを配置した力 図 8ではダイクロイツクプリズム 41で色合成された R光と G 光と B光との合成光の光路に収差補正部材 19を配置している。ここで、 R光と G光の 光路についてはワイヤーグリッド偏光子 17RGの傾き方向と、コマ収差補正用の平行 平板部材 19の傾き方向とが逆に配置されている力 B光の光路についてはワイヤー グリッド偏光子 17Bの傾き方向とコマ収差補正法の平行平板部材 19の傾き方向が光 路に対して同じ方向に傾いている。しかしながら、 B光用ライトバルブ 18Bで形成され た像は、ダイクロイツクプリズムのダイクロイツク膜で反転してその鏡像力 ライトバルブ
18RGで形成された像と色合成するので、 B光に関してのみ、収差の挙動が左右逆 転することになるため、 B光については平行平板部材 19の傾き方向が光路に対して 同じ方向に傾 、てもコマ収差を補正することが可能となる。
[0089] このように、本実施の形態の別の形態は、色合成後にコマ収差補正を一度に行うこ とができ、ワイヤーグリッド偏光子により発生する収差が補正された投射型表示装置 を小型に構成することが可能になる。本実施形態において、 2つのワイヤーグリッド偏 光子の平行平板基板の厚みが全く同じでな!、場合であっても、平行平板補正部材 1 9と円柱レンズ 21を、人間の眼に対して最も視感度の高い色光である G光に対して 最適になるように設計することによって良像を得ることができる。
[0090] 第 8の実施の形態
本発明第 8の実施の形態の平面構成図を図 9に示す。光源 11を射出し、偏光変換 照明装置 12を経た光は時系列色分離光学系 38にて時分割で進行する R光、 G光、 B光に色分離され、偏向ミラー 39にて進行方向を変えて、ワイヤーグリッドの金属線 を平行平板基板の光の入射側に形成したワイヤーグリッド偏光子 17に入射し、該ヮ ィヤーグリッド面を反射して、反射型ライトバルブ 18に入射し、該ライトバルブに入力 された各色光の像信号に応じて変調されて反射射出する。該変調作用を受けた各 色光は、ワイヤーグリッド偏光子 17に入射して、各色の変調光が透過光として検光さ れて取りだされ、このワイヤーグリッド偏光子の平行平板基板を透過することによって 発生するコマ収差を補正する平行平板補正部材 19と、前記ワイヤーグリッド偏光子 1 7の平行平板基板と平行平板補正部材 19により発生した非点収差を補正する円柱 レンズ 21とを経て、投射レンズ 22に入射する。そして該投影レンズによって図示しな いスクリーン上に収差を非常に小さく抑えた、優れた投射像を投射することが可能と なる。
[0091] なお、本実施の形態のワイヤーグリッド偏光子は、偏光ビームスプリッタとして機能 している。
[0092] 本発明における特徴は、使用するライトバルブは 1個ですむことである。本実施形 態でも、さらに、今までの実施の形態と同様に円柱レンズ 21を投射レンズ 22の絞り位 置に配置してもよ 、し、時系列色分離光学系による色分離を 3色より多 、例えば 4色 光に色分離して、その色分離光を時系列に 1つのライトバルブに入射する構成として も同様の効果を奏し、色再現性のよい、優れた色光の投射像を投射する投射型表示 装置を提供することが可能となる。
[0093] 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容 に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態 様も本発明の範囲内に含まれる。
[0094] 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願 2004年第 127493号(2004年 4月 23日出願)

Claims

請求の範囲
[1] 投射型表示装置であって、
複数の色光毎に配置されたライトバルブと、
前記ライトバルブで変調された光を検光するワイヤーグリッド偏光子またはワイヤー グリッド偏光ビームスプリッタと、
前記検光光を投射する投射レンズと、
前記ライトバルブと前記投射レンズの間の光路に配置され、前記複数の色光にお ける前記ワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリッタによるコ マ収差を補正する補正部材とを有する。
[2] 投射型表示装置であって、
複数の色光毎に配置されたライトバルブと、
前記ライトバルブで変調された光を検光するワイヤーグリッド偏光子と、 前記複数の色光の検光光を色合成する色合成光学系と、
前記ワイヤーグリッド偏光子と前記色合成光学系との間の前記複数の色光の光路 のうち少なくとも 1つの色光の光路に光軸に対して傾いて配置され、前記ワイヤーダリ ッド偏光子によるコマ収差を補正する補正部材とを有する。
[3] 投射型表示装置であって、
複数の色光毎に配置された反射型ライトバルブと、
光源からの光を偏光分離して前記反射型ライトバルブに入射させ、前記反射型ライ トバルブで変調された光を検光するワイヤーグリッド偏光ビームスプリッタと、
前記複数の色光の検光光を色合成する色合成光学系と、
前記ワイヤーグリッド偏光ビームスプリッタと前記色合成光学系との間の前記複数 の色光の光路のうち少なくとも 1つの色光の光路に配置され、前記ワイヤーグリッド偏 光ビームスプリッタによるコマ収差を補正する補正部材とを有する。
[4] 投射型表示装置であって、
光源からの光を第 1色光と第 2色光との混合光と、第 3色光とに色分解する色分解 光学系と、
前記第 1色光用の反射型ライトバルブと、 前記第 2色光用の反射型ライトバルブと、
前記第 3色光用の反射型ライトバルブと、
前記混合光を前記第 1色光と前記第 2色光とに偏光分離し、前記第 1色光用の反 射型ライトバルブと前記第 2色光用の反射型ライトバルブにそれぞれ射出して、前記 第 1色光用の反射型ライトバルブと前記第 2色光用の反射型ライトバルブとから射出 された光を検光して色合成する第 1のワイヤーグリッド偏光ビームスプリッタと、 前記色分解光学系から射出された前記第 3色光を偏光分離して第 3色光用の反射 型ライトバルブに射出し、前記第 3色光用の反射型ライトバルブから射出された光を 検光する第 2のワイヤーグリッド偏光ビームスプリッタと、
前記第 1のワイヤーグリッド偏光ビームスプリッタで色合成された前記第 1色光と前 記第 2色光の混合光と、前記第 2のワイヤーグリッド偏光ビームスプリツタで検光され た前記第 3色光とを色合成する色合成光学系と
前記第 1のワイヤーグリッド偏光ビームスプリッタと前記色合成光学系との間の光路 、または前記第 2のワイヤーグリッド偏光ビームスプリッタと前記色合成光学系との間 の光路の少なくとも一方に配置され、前記ワイヤーグリッド偏光ビームスプリッタによる コマ収差を補正する補正部材とを有する。
[5] 請求項 2から請求項 4のいずれ力 1項に記載の投射型表示装置において、
前記色合成光学系で色合成された光の光路に配置され、前記ワイヤーグリッド偏 光子またはワイヤーグリッド偏光ビームスプリッタと前記補正部材による非点収差を補 正する円柱レンズをさらに有する。
[6] 請求項 1から請求項 5のいずれ力 1項に記載の投射型表示装置において、
前記ワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリッタは、平行平 板基板にグリッドが形成されたものであり、
前記補正部材は、前記平行平板基板によるコマ収差を補正する平行平板である。
[7] 請求項 6に記載の投射型表示装置において、
前記平行平板は、前記平行平板基板の光軸に対する傾きと逆の傾きで光路に配 置されている。
[8] 請求項 6または請求項 7に記載の投射型表示装置にお 、て、 前記平行平板の厚さを tl、屈折率を nl、前記平行平板基板の厚さを t、屈折率を n とすると、 nl X tl >n X tの関係を有する。
請求項 1から請求項 5のいずれ力 1項に記載の投射型表示装置において、 前記ワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリッタは、グリッド が形成された平行平板基板に前記平行平板基板と同じ平行平板基板を張り合わせ た構造であり、
前記補正部材は、前記平行平板基板によるコマ収差を補正する平行平板補正部 材である。
請求項 2から請求項 4のいずれ力 1項に記載の投射型表示装置において、 前記色合成光学系は、断面が平行四辺形のダイクロイツクプリズムであり、 前記ダイクロイツクプリズムの入射面および出射面は、前記ワイヤーグリッド偏光子 またはワイヤーグリッド偏光ビームスプリッタの光軸に対する傾きと逆の方向に傾き、 前記ダイクロイツクプリズムは、前記補正部材として前記ワイヤーグリッド偏光子また はワイヤーグリッド偏光ビームスプリッタによるコマ収差を補正する。
請求項 1から請求項 10のいずれ力 1項に記載の投射型表示装置において、 前記補正部材は光軸に対し、前記ワイヤーグリッド偏光子またはワイヤーグリッド偏 光ビームスプリッタのグリッドが形成された基板よりも小さ ヽ入射角となるように配置さ れている。
請求項 1から請求項 9のいずれ力 1項に記載の投射型表示装置において、 前記補正部材は、?見感度の高い色光の前記コマ収差を最小にするよう構成されて いる。
請求項 5に記載の投射型表示装置において、
前記円柱レンズは、視感度の高い色光の前記非点収差を最小にするように構成さ れている。
請求項 1から請求項 9のいずれ力 1項に記載の投射型表示装置において、 前記補正部材は、前記複数の色光のそれぞれの前記コマ収差を最小にする。 投射型表示装置であって、
光源力 の光を変調するライトバルブと、 前記ライトバルブで変調された光を検光するワイヤーグリッド偏光子またはワイヤー グリッド偏光ビームスプリッタと、
前記ワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリツタで検光され た光を投射する投射レンズと、
前記ワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリッタと前記投射 レンズの間の光路に配置され、前記ワイヤーグリッド偏光子またはワイヤーグリッド偏 光ビームスプリツタで検光された光が有するコマ収差を補正する補正部材とを備える
[16] 請求項 15に記載の投射型表示装置において、
前記ワイヤーグリッド偏光子またはワイヤーグリッド偏光ビームスプリッタは、透明平 板と該透明平板上に形成されたワイヤーグリッドからなり、
前記補正部材は透明平板力 なり、前記ワイヤーグリッド偏光子またはワイヤーダリ ッド偏光ビームスプリッタの透明平板の光軸に対する傾きと逆の傾きで光路に配置さ れている。
[17] 請求項 16に記載の投射型表示装置において、
前記補正部材の透明平板は、前記ワイヤーグリッド偏光子またはワイヤーグリッド偏 光ビームスプリッタの透明平板より、厚さおよび屈折率のうち少なくとも 1つが大きい。
[18] 請求項 17に記載の投射型表示装置において、
前記補正部材の透明平板は、前記ワイヤーグリッド偏光子またはワイヤーグリッド偏 光ビームスプリッタの平板基板より、前記光軸に対してより垂直に近い傾きで配置さ れる。
PCT/JP2005/007608 2004-04-23 2005-04-21 投射型表示装置 WO2005103812A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004127493A JP2007316093A (ja) 2004-04-23 2004-04-23 投射型表示装置
JP2004-127493 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005103812A1 true WO2005103812A1 (ja) 2005-11-03

Family

ID=35197130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007608 WO2005103812A1 (ja) 2004-04-23 2005-04-21 投射型表示装置

Country Status (2)

Country Link
JP (1) JP2007316093A (ja)
WO (1) WO2005103812A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139389A (ja) * 2006-11-30 2008-06-19 Victor Co Of Japan Ltd 投射型表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645223A (ja) * 1993-06-25 1994-02-18 Nikon Corp 投影型露光装置
JP2000121996A (ja) * 1998-10-15 2000-04-28 Minolta Co Ltd 画像投影装置
WO2002100115A1 (en) * 2001-06-02 2002-12-12 Koninklijke Philips Electronics N.V. Digital image projector with oriented fixed-polarization-axis polarizing beamsplitter
JP2002372749A (ja) * 2001-03-20 2002-12-26 Eastman Kodak Co デジタルシネマプロジェクター
JP2004126496A (ja) * 2002-08-05 2004-04-22 Hitachi Ltd 光学ユニット及びそれを用いた投射型映像表示装置
JP2004533644A (ja) * 2001-05-21 2004-11-04 モックステック 偏光ビームスプリッタを備える画像投影システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645223A (ja) * 1993-06-25 1994-02-18 Nikon Corp 投影型露光装置
JP2000121996A (ja) * 1998-10-15 2000-04-28 Minolta Co Ltd 画像投影装置
JP2002372749A (ja) * 2001-03-20 2002-12-26 Eastman Kodak Co デジタルシネマプロジェクター
JP2004533644A (ja) * 2001-05-21 2004-11-04 モックステック 偏光ビームスプリッタを備える画像投影システム
WO2002100115A1 (en) * 2001-06-02 2002-12-12 Koninklijke Philips Electronics N.V. Digital image projector with oriented fixed-polarization-axis polarizing beamsplitter
JP2004126496A (ja) * 2002-08-05 2004-04-22 Hitachi Ltd 光学ユニット及びそれを用いた投射型映像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139389A (ja) * 2006-11-30 2008-06-19 Victor Co Of Japan Ltd 投射型表示装置

Also Published As

Publication number Publication date
JP2007316093A (ja) 2007-12-06

Similar Documents

Publication Publication Date Title
US6786604B2 (en) Projection system having low astigmatism
US7568805B2 (en) Illumination unit and image projecting apparatus employing the same
KR101001451B1 (ko) 조명 광학계
TWI311232B (en) Light processing structure for a digital light processing projection device
US8248545B2 (en) Projector
TW200408284A (en) Color management system having a field lens
JP3891178B2 (ja) 照明光学系およびプロジェクタ
JP2004533019A (ja) 低い非点収差を有する投影システム
JP2000111839A (ja) 偏光装置および投射装置
US6698893B2 (en) Optical device suitable for separating and synthesizing light
JP2000347293A (ja) 光源装置、および、これを備えた照明光学系ならびにプロジェクタ
US6942345B2 (en) Projection type image display apparatus and image display system
WO2002001289A1 (fr) Projecteur
JP2007102101A (ja) 照明光学系及びそれを有する画像投射装置
JP2005321544A (ja) 投射型表示装置
JP2004233961A (ja) 投射型表示装置
WO2005103812A1 (ja) 投射型表示装置
JP4967201B2 (ja) 投射型表示装置
JP2008145483A (ja) プロジェクタ
JP2003161916A (ja) 投射型画像表示装置および画像表示システム
JPH10111539A (ja) 投射型表示装置
JP2006030421A (ja) 投射型表示装置
JP4055516B2 (ja) 偏光変換素子及びプロジェクタ
JPH11316357A (ja) 投射型表示装置
TW200814795A (en) Image engine for enhancing blue and red light of RPTV

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP