WO2005100011A1 - 光機能性積層体 - Google Patents

光機能性積層体 Download PDF

Info

Publication number
WO2005100011A1
WO2005100011A1 PCT/JP2005/004330 JP2005004330W WO2005100011A1 WO 2005100011 A1 WO2005100011 A1 WO 2005100011A1 JP 2005004330 W JP2005004330 W JP 2005004330W WO 2005100011 A1 WO2005100011 A1 WO 2005100011A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
optical functional
formula
polymer
layer
Prior art date
Application number
PCT/JP2005/004330
Other languages
English (en)
French (fr)
Inventor
Yoshito Ando
Takayuki Araki
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to DE200560026266 priority Critical patent/DE602005026266D1/de
Priority to US11/578,054 priority patent/US7378154B2/en
Priority to AT05720601T priority patent/ATE497879T1/de
Priority to EP20050720601 priority patent/EP1738897B1/en
Publication of WO2005100011A1 publication Critical patent/WO2005100011A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers

Definitions

  • the present invention relates to an optical functional laminate in which an optical functional layer containing a rare earth metal compound capable of exhibiting optical functionality such as a fluorescence (light emission) phenomenon and an optical amplification phenomenon is provided on a transparent base material.
  • the present invention relates to a laminate having a rare earth metal compound and a fluorine-containing polymer, which can provide optical functionality with higher efficiency, and an optical functional layer and a low refractive index layer.
  • An LED is a crystal having a PN junction.
  • a forward voltage When a forward voltage is applied, electrons move from the N region, holes move from the P region to the PN junction, and light is emitted when electrons and holes recombine. Emits. Therefore, the free electrons are bound and the emitted energy is emitted as light, so there is only a limited color LED.
  • the LED having the red LED chip emits only red light
  • the LED having the green LED chip emits green light
  • the LED having the blue LED chip emits only blue light
  • a red LED chip, a green LED chip, and a blue LED chip are combined and set in a light emitting diode, and the light is emitted by changing the combination of the respective chips.
  • Such a light-emitting diode requires four terminals in addition to the above-mentioned three-color LED chips, which results in a complicated design in structure, and furthermore, any one of the three-color LED chips When the chip was damaged, there was a problem that the color balance was lost and the desired light emission could not be obtained.
  • This white LED lamp is composed of a blue light-emitting diode and light excited by a phosphor layer. White light is produced by the afterglow.
  • the white LED lamp described above has a small amount of fluorescent substance on the blue light-emitting diode chip, and the color tone is likely to change greatly depending on the slight error and the processing method. It is difficult to perform this, and variations in color and brightness are inevitable. As a result, the yield is poor and the cost is high.
  • Japanese Patent Application Laid-Open No. 11-87784 discloses a method in which a covering material containing a fluorescent substance and a resin acting as a binder for the fluorescent substance is attached to a light emitting diode, and a desired color tone is obtained. Suggest to adjust. In other words, the type and content of the fluorescent substance included in the coating material are adjusted, and a coloring agent is further included as necessary, and the coating material is processed into a sheet or a cap shape, and is mounted on a light emitting diode. Thus, the desired color tone can be freely created with good reproducibility.
  • the present inventors have conducted various studies on a laminate having an optical functional layer containing a rare earth metal compound capable of exhibiting a fluorescence (emission) phenomenon, an optical amplification phenomenon, and the like.
  • a low-refractive-index layer is provided on the optical functional layer, and the refractive index of each layer of the transparent substrate, the optical functional layer, and the low-refractive index layer is used. It has been found that by selecting a specific value of, the luminous intensity, luminous efficiency, and furthermore, the fluorescence lifetime of the laminate are further improved, and the present invention has been completed.
  • An object of the present invention is to provide an optically functional laminate excellent in various optical functions, in particular, luminous intensity, luminous efficiency, fluorescence lifetime, and optical amplification. [0016] That is, the present invention provides
  • (L2) layer Low refractive index layer formed on (L1)
  • n (LO), n (Ll), and n (L2) are the refractive indices of the respective layers, where n (L0) ⁇ n (Ll)> n (L2)
  • the present invention relates to an optical functional laminate having the following relationship:
  • the fluorine-containing polymer (A) in the optical functional layer (L1) is an amorphous polymer having a fluorine content of 30% by mass or more, or a fluorine-containing acrylic polymer and has a glass transition temperature of 0%.
  • the fluorine-containing polymer (A) in the optical functional layer (L1) is the fluorine-containing polymer (A) in the optical functional layer (L1)
  • X 1 is H, F, Cl, CH or CF; R 1 is carbon which may have an ether bond
  • a monovalent fluorinated hydrocarbon group having carbon number of 150 may also be selected, provided that X 1 , R 1 At least one of which contains a fluorine atom), and a structural unit derived from at least one fluorine-containing acrylate.
  • X 2 and X 3 are the same or different and H, F, Cl, CH or CF; nl is 1
  • R 2 is preferably a fluorine-containing acrylic polymer having a structural unit power derived from at least one polyfunctional acrylate selected from (nl + 1) -valent organic groups having 1 to 50 carbon atoms.
  • Examples of the material for the transparent substrate (LO) include a glass-based material and a transparent resin, and examples of the transparent resin include acrylic resins, polycarbonate resins, transparent polyethylene terephthalates, and the like. Methylcellulose resin and cycloolefin resin The at least one selected from the group is preferred.
  • the transparent substrate (LO) preferably has a film shape.
  • (L2) layer Low refractive index layer formed on (L1)
  • the optical functional layer (L1) a rare earth metal capable of expressing optical functions such as fluorescence (light emission) and optical amplification by supplying light source light (excitation light) is provided.
  • the rare earth metal compound in the optical functional layer (L1) can express optical functions such as fluorescence (emission) and optical amplification by incident light (excitation light) from a light source such as a light emitting diode.
  • a polymer containing fluorine atoms, especially an amorphous polymer with a high fluorination rate, as the matrix polymer (binder resin) of the optical functional layer (L1) the light from the light source (excitation light) can be more efficiently used. It can be changed to fluorescence (emission), and as a result, the emission intensity, the emission quantum yield and the emission lifetime can be improved.
  • a low-refractive-index layer (L2) on the optical functional layer (L1), and a low-refractive-index layer (L2) is provided at a position on the light incident side such as a light-emitting diode.
  • the reflection of incident light (excitation light) at the interface between the air layer and the laminate can be suppressed, and the incident light (excitation light) can be more efficiently provided to the rare earth metal compound in the optical functional layer (L1). Is preferred.
  • the low refractive index layer (L2) is provided in such a manner that incident light is supplied and light emission (fluorescence) made by the rare earth metal compound of the optical functional layer (L1) is directed to a desired direction, for example, incident light. This is preferable because it can be more preferentially directed in the opposite direction of light (the direction of the transparent substrate (LO)).
  • the optically functional layer (L1) is a layer in which the rare earth metal compound (B) is compatible or dispersed in the fluoropolymer (A).
  • the light-emitting phenomenon of a rare-earth metal compound usually occurs when the energy level of the rare-earth metal ion itself rises by absorbing excitation light such as ultraviolet light that is acted on, and then returns to the ground state in the next step.
  • excitation light such as ultraviolet light that is acted on
  • What is equivalent to the energy difference is a phenomenon that is generated as light of a specific wavelength (visible light or near-infrared light).
  • the required wavelength of the excitation light and the wavelength of the emitted light differ depending on the rare-earth metal ion, and are derived from the properties unique to the rare-earth metal ion.
  • the rare earth metal ion force By using a fluorine-containing polymer, particularly an amorphous fluorine-containing polymer having a high fluorine content, as the matrix polymer of the rare earth metal compound (B), the rare earth metal ion force The transfer of energy to the mer can be suppressed, and as a result, the emission intensity and quantum yield of the rare earth metal compound can be increased.
  • a fluorine-containing polymer particularly an amorphous fluorine-containing polymer having a high fluorine content
  • the fluoropolymer (A) used in the photofunctional layer (L1) of the present invention is colorless and transparent over a wide wavelength range, although it is appropriately selected depending on the purpose and emission (fluorescence) wavelength. It is preferably an amorphous fluoropolymer having high properties.
  • the fluorine content of the fluoropolymer (A) is preferably as high as possible.
  • % Or more preferably 30% by mass or more, more preferably 40% by mass or more, especially 50% by mass or more.
  • the fluoropolymer (A) be transparent in a wide wavelength range of light, but the types of light handled in actual use, for example, incident light (excitation light) and emission light It is important to be transparent to the wavelength of (fluorescent light).
  • the absorption coefficient of itself with respect to the wavelength of the incident light (excitation light) and emission light (fluorescent light) 5.
  • the absorption coefficient of itself with respect to the wavelength of the incident light (excitation light) and emission light (fluorescent light) 5.
  • OX 10- 5 m- 1 or less preferably 1.
  • OX 10- 5 / zm- 1 or less more preferably 5.
  • OX 10- 6 m 1 or less particularly preferably 2.
  • the fluorine-containing polymer (A) may be an amorphous polymer having the above characteristics, but the first preferable fluorine-containing polymer is a fluorine-containing acrylate polymer (A1).
  • the fluorinated acrylate copolymer (A1) is a fluorinated acrylate having a fluorine atom in at least one of a portion capable of forming a polymer side chain and a portion capable of forming a polymer main chain. Having a structural unit derived therefrom.
  • the fluorinated acrylate polymer (A1) is represented by the formula (1):
  • X 1 is H, F, Cl, CH or CF; R 1 is carbon which may have an ether bond
  • a monovalent fluorinated hydrocarbon group having carbon number of 150 may also be selected, provided that X 1 , R 1 at least one fluorine-containing Atari rate compound represented by containing a fluorine atom) (al- 1) force those having at least one structural unit derived from a monomer is preferably selected tool specifically, R 1 As the structure excluding
  • the composition having the structure of (1) is a composition with the rare earth metal compound (B), the obtained polymer, which is preferable in that the emission intensity and emission efficiency can be improved, has transparency and heat resistance. It is preferable in that it can provide mechanical strength and can provide mechanical strength.
  • 1 to 50 monovalent fluorinated alkyl group, monovalent fluorinated aryl group having 2 to 50 carbon atoms including an aromatic cyclic structure which may have an ether bond At least one selected from preferable.
  • the fluorine content of the fluorinated acrylate polymer (A1) can be greatly improved.
  • the composition with the rare earth metal compound (B) is used, the luminous intensity and luminous efficiency can be improved. Is preferred because it can improve!
  • a monovalent fluorinated alkyl group having 1 to 50 carbon atoms which may have an ether bond is preferably at least one selected from the viewpoints of transparency, luminous intensity and luminous efficiency. In view of this, it is further improved and preferred.
  • Z 11 is at least one selected from H, F, CI and Br; ql is an integer of 0 or 115; q2 is an integer of 112).
  • ql is preferably an integer of 1 to 4, particularly 1 or 2.
  • q2 is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 4.
  • Z 11 at the side chain terminal is preferably H or C1, and particularly preferably an H atom.
  • R 1Q is a linear alkylene group in which part or all of hydrogen atoms having 1 to 10 carbon atoms may be substituted with a fluorine atom
  • R 11 is a linear alkylene group having 1 to 10 carbon atoms.
  • R 12 is a linear alkyl group having 15 to 15 carbon atoms and a linear chain which may contain an ether bond having 115 carbon atoms
  • R 13 is H, F, a linear alkyl group having 115 carbon atoms and a linear chain which may contain an ether bond having 11 to 10 carbon atoms.
  • At least one selected from the group consisting of: q3 is a fluorine-containing alkyl group having a branched structure represented by 0 or 1), and specifically has the formula (R1-2-1):
  • Rf 1 and Rf 2 are the same or different and are a perfluoroalkyl group having 115 carbon atoms; R 14 is a hydrogen atom even if a part or all of hydrogen atoms are substituted with fluorine atoms
  • R 1 is the formula (R1—2—2) of the formula (R1—2—1):
  • Rf 2 and R 14 are preferably fluorine-containing alkyl groups represented by the formula (R1-2-1)), more specifically,
  • the glass transition point can be set higher and that they have excellent dispersibility in rare earth metal compounds.
  • R 1 is represented by the following formula (R1-2-3):
  • Rf 2 and R 14 are preferably fluorine-containing alkyl groups represented by the formula (Rl-2-1)), more specifically, [0081]
  • a fluorine-containing alkyl group represented by the following formula: is preferable because it can have excellent dispersibility in a wider range of rare earth metal compounds, can improve the glass transition temperature, and can provide a polymer having excellent heat resistance. .
  • the luminescence (amplification) intensity and the luminescence (amplification) efficiency of the composition with the rare earth metal compound (B) can be improved.
  • a fluorinated alkyl group having a site of a fluorinated alkylene ether structure specifically, a compound represented by the formula (11):
  • the polymer (A) of the present invention using a fluorinated acrylate polymer having these sites has a high fluorine content and a high transparency, which is a composition with a rare earth metal compound (B). Smell As a result, the emission (amplification) intensity and the emission (amplification) efficiency can be increased.
  • Equation (1 7) [0102] [Formula 22]
  • fluorinated atalylate (al-1) that provides the structural unit Al-1 constituting the fluorinated atalylate polymer (A1) include: The following monomers are preferred.
  • CH 2 C— COO— CH 2 CF 2 CF 2 H
  • CH 2 C— COO— CH 2 (CF 2 CF 2 ) 2 H
  • CH 2 CF-COO-CH 2 (CF 2 CF 2 ) 2 H, CH 3
  • CH 2 C— COO— CH 2 CF 2 CF 3 ,
  • I CF 3 ⁇ 4 and the like are preferred.
  • the weight average molecular weight of the fluorinated acrylate polymer (A1) is 500-1,000,000, more preferably 5,000-800,000, particularly 10,000-500,000 force ⁇ Like! / ,.
  • a preferred first of the fluorinated acrylate polymer (A1) of the present invention is:
  • the glass transition temperature is lower than 40 ° C, deformation occurs at room temperature, causing a problem in shape stability, and rare earth metal ions may migrate and redistribute to cause phase separation.
  • the glass transition temperature is such that the matrix polymer itself is heated by self-heating when it is made into a light emitting device, etc. Therefore, the heat resistance is preferably 65 ° C or more, more preferably 100 ° C or more.
  • the upper limit is not particularly limited, but is usually about 200 ° C. for a fluorine-containing acrylic polymer.
  • the higher the fluorine content the more preferred it is 52% by mass or more, especially 55% by mass or more.
  • the upper limit of the fluorine content is not particularly limited, it is usually about 76% by mass from the viewpoint of not deteriorating the compatibility with the rare earth metal ion and the chemical structural limitation.
  • the fluorine-containing acrylate polymer (A1-I) is preferably a compound represented by the formula (2):
  • Rf 1 is a fluorine-containing hydrocarbon group having 1 to 40 carbon atoms which may contain an ether bond.
  • the fluorine-containing acrylic polymer may be a homopolymer or a copolymer. Even when the polymer is combined, it becomes a polymer having a glass transition temperature of 40 ° C. or more and a fluorine content of 50% by mass or more, and has a sufficiently high rectifying power and luminous intensity, and is preferable.
  • Rf 1 may preferably have a fluorine-containing alkyl group having 1 to 40 carbon atoms or a fluorine-containing aryl group having 3 to 40 carbon atoms having an ether bond, which may have an ether bond. .
  • a F atalylate which is a high-potential fluorine atom capable of forming the fluorine-containing acrylic polymer of the above formula (2), for example, the following are preferred. It can.
  • the description after each monomer is (abbreviation) and (glass transition temperature of homopolymer and fluorine content (% by mass)) (the same applies hereinafter).
  • CH 2 CFCOOCH 2 CFO-C 3 F 7 (6FOnO) (53 ⁇ , 57%),
  • HFIP-F and 8FF are preferable because of their high affinity for the complex.
  • aF acrylates having a branched structure in the side chain are preferable in that the glass transition temperature can be increased.
  • fluorine-containing acrylate polymer (A1-I) is represented by the formula (3):
  • Rf 3 is a fluorine-containing hydrocarbon group having 1 to 40 carbon atoms which may have an ether bond and has 7 or more fluorine atoms. Even when a single polymer is used, the glass transition temperature is 0 ° C or more, the fluorine content is 50% by mass or more, and the emission intensity is sufficiently high.
  • Rf 3 has an ether bond and may have a fluorine-containing alkyl group having 1 to 40 carbon atoms or a fluorine-containing aryl group having 3 to 40 carbon atoms having an ether bond. Preferred.
  • the monomer giving the structure represented by the formula (3) for example, the following can be preferably exemplified.
  • CH C (CH) COOC (CF) CF (132.C, 52%) [0129]
  • 8FM is preferable because it has a high affinity for the complex.
  • the fluorinated metal tallate those having a branched structure in the side chain are preferable because the glass transition temperature becomes high.
  • the fluorine-containing acrylate polymer (A1-I) has a copolymer composition and a copolymerization ratio which are suitable for the copolymer of the ⁇ F acrylate and the fluorine-containing metathallate.
  • the composition and the copolymerization ratio that result in a copolymer having a glass transition temperature of 40 ° C or higher and a fluorine content of 50% by mass or higher are selected.
  • copolymer examples include a copolymer of HFIP-F and 8FM,
  • a combination of a copolymer of FONO and 8FM, a copolymer of 17FF and 8FM, and the like are also preferable in terms of point strength, which is excellent in emission intensity and mechanical strength.
  • the fluorine-containing acrylate polymer (A1-I) may be prepared by adding another copolymerizable monomer to the above-mentioned aF atalylate and Z or fluorine-containing metharylate. good.
  • a composition and a copolymerization ratio are selected so that the resulting copolymer has a glass transition temperature of 0 ° C. or more and a fluorine content of 50% by mass or more.
  • Examples of other monomers include, for example, the following.
  • MMA is preferable in that the mechanical strength is improved and improved.
  • 6FNPM, 6FNPF, and PFPh-F are preferable because the glass transition point can be increased without substantially decreasing the fluorine content.
  • preferred combinations of the copolymers include: HFIP-F and MMA binary copolymers, HFIP-F and MMA and 6FNPF terpolymers, and 5FF and 6FNPF copolymers. It is also preferable that the combination of the original copolymer and the like has a good balance of mechanical strength and luminous intensity.
  • the second preferred of the fluorinated acrylate polymer (A1) of the present invention is: (Al-II) Glass transition temperature is 100 ° C or more, fluorine content is 30% by mass or more and 50% by mass
  • the glass transition temperature is higher than 100 ° C, sufficient emission intensity can be obtained even if the fluorine content is relatively small.
  • the higher the fluorine content the more preferred is 35% by mass or more, especially 40% by mass or more.
  • the upper limit of the glass transition temperature is not particularly limited.
  • fluorinated acrylic polymer (A1-II) include the following.
  • those having a fluorine content satisfying 30% by mass or more and less than 50% by mass at 100 ° C. or more at the homopolymer include the above-mentioned (
  • 6FNPF and 6FNPM are preferable because of their high affinity with rare earth metal compounds, particularly with rare earth metal complexes. Further, the obtained fluorinated acrylic polymer having a branched structure in the side chain is preferable because the glass transition temperature becomes high.
  • the copolymer composition and copolymerization ratio are such that the glass transition temperature is 100 ° C or higher and the fluorine content is
  • a composition and a copolymerization ratio that result in a copolymer of 30% by mass or more and less than 50% by mass are selected.
  • fluorine-containing acrylic monomers examples include 6FiP-M and IP-F.
  • combinations of 3FF and 6FNPM copolymers, PFPh-F and 6FNPM copolymers, and 6FNPF and 6FNPM copolymers are examples of luminescence intensity and mechanical strength.
  • good point force is also preferable.
  • 6FiP-M or IP-F is used as another fluorine-containing acrylic monomer, it is preferable because mechanical strength can be imparted without lowering the glass transition temperature.
  • non-fluorinated acrylic monomer select the composition and copolymerization ratio that will result in a copolymer having a glass transition temperature of 100 ° C or higher and a fluorine content of 30% by mass or more and less than 50% by mass of the obtained copolymer. I do.
  • MMA 120 ° C, 0%
  • MMA 120 ° C, 0%
  • Preferred copolymers include, for example, a binary copolymer of 6FNPM and MMA, a binary copolymer of 6FNPF and MMA, a ternary copolymer of 6FNPM, MMA and IP—F, 6FNPF, MMA and IP —
  • the terpolymer of F, and the terpolymer of MMA and 5FF preferably have a good balance of mechanical strength and emission intensity.
  • a preferred third of the fluorine-containing acrylic polymer (A1) of the present invention is:
  • polyfunctional atalylate (al-2) is represented by the formula (4):
  • X 2 and X 3 are the same or different and H, F, Cl, CH or CF; nl is an integer of 1 to 6;
  • R 2 is at least one selected from (nl + 1) -valent organic groups having 1 to 50 carbon atoms.
  • Equation (4) is X 2 and X 3 in the multifunctional Atari rate of H, CH, F, CF or Cl, especially
  • CH and F are more preferable, and F is more preferable.
  • R 2 is a (nl + 1) -valent organic group having 1 one 50 carbon atoms, specifically,
  • (1) having a linear or branched ether bond may have a (nl + 1) valent organic group,
  • hydrogen atoms forming carbon-hydrogen bonds may be partially or entirely substituted with fluorine atoms.
  • the linear or branched alkylene group-having divalent or higher organic group as R 2 is preferable in that it can impart flexibility and elasticity to the polymer. Also, rare earth metal compounds It is preferable because it has excellent compatibility with (B). Further, when a fluorine atom is introduced, it can be introduced at a high content, which is advantageous in terms of luminescence (amplification) intensity and luminescence (amplification) efficiency, which is preferable.
  • R 21 and R 22 are the same or different, and have the same number of carbon atoms]
  • Z 21 and Z 22 are the same or different and are an alkyl group having 115 carbon atoms, a fluorine-containing alkyl group having 115 carbon atoms, a functional group, a hydrogen atom or a halogen atom;
  • rl And r2 are the same or different, and are divalent organic groups containing a moiety represented by
  • R 23 , R 24 , R 25 and R 26 are the same or different and each have an alkyl group having 5 carbon atoms or a fluorine-containing alkyl group having 15 carbon atoms; and Z 23 has 11 carbon atoms.
  • Equation (R2—7) [0191] [Formula 41]
  • R 27 , R 29 and R 3 ° are the same or different, and have an alkyl group having 15 to 15 carbon atoms or a fluorinated alkyl group having 15 to 15 carbon atoms;
  • R 31 and R 32 are the same or different, and are an alkyl group having 15 to 15 carbon atoms group, fluoroalkyl group of 1 one 5 carbon atoms, a hydrogen atom;
  • Z 24, Z 25 Contact and Z 26 are the same force or different, an alkyl group having 1 one 5 carbon atoms, a fluorine-containing ⁇ alkyl group having 1 one 5 carbon atoms ,
  • r4 and r5 are the same force or different, an integer of 1 4;
  • r6 is an integer of 1 2;
  • r7 and r8 are the same or different, an integer of 1 3; Even with the same sign, different groups and integers can be used if the formulas are different.
  • Z 25 and Z 26 include, for example, a hydrogen atom, a fluorine atom, a methyl group and the like.
  • These divalent or higher-valent organic groups having an aromatic cyclic structure can set a glass transition point, which is preferable in terms of excellent heat resistance and mechanical properties, and as a result, the emission (amplification) intensity, emission intensity It is preferable because the light (amplification) efficiency can be improved.
  • fluorine atoms are preferable because they have high transparency to near-infrared light at the time of optical amplification for communication.
  • introduction of fluorine atoms further enhances luminous efficiency It is preferred because it works effectively on amplification efficiency.
  • R 33 and R 34 are the same or different and have an alkyl group having 115 carbon atoms or a fluorinated alkyl group having 15 carbon atoms;
  • Z 27 and Z 28 are the same or different, and Alkyl group of number 5 to 15, fluorine-containing alkyl group of carbon number of 15 to 15, functional group, hydrogen atom or halogen atom;
  • si and s2 have the same power or different, and include a site represented by an integer of 14
  • R 35, R 36, R 37 and R 38 are the same or different, number 1 one 5 alkyl group or fluorinated alkyl group of 1 one 5 carbon carbon;
  • Z 29 is the number of carbon atoms And a divalent organic group containing a site represented by the following formula: an alkyl group of 115, a fluorinated alkyl group of 15 to 15 carbon atoms, a functional group, a hydrogen atom or a halogen atom;
  • s3 is an integer of 114.
  • R 39, R 4 °, R 41 and R 42 are the same force or different, a fluorine-containing alkyl group of the alkyl group carbon atoms or 1 one 5 number 1 one 5 carbon atoms;
  • R 43 and R 44 Unlike the same force or an alkyl group of carbon number 1 one 5, a fluorine-containing alkyl group having 1 one 5 carbon atoms, a hydrogen atom;
  • Contact and Z 32 are the same force or different and 1 one 5 carbon atoms
  • S4 and s5 are the same or different and have an integer of 114;
  • s6 is an integer of 112;
  • s8 is the same or different and is an integer of 1 to 3, and even if it has the same sign, it can take a different group or an integer
  • Z 3 ° Z 31 and Z 32 include, for example, a hydrogen atom, a fluorine atom, a methyl group and the like.
  • These divalent or higher valent organic groups having an aliphatic cyclic structure are preferable because they can set a high glass transition temperature and are excellent in heat resistance and mechanical properties. Further, it is particularly preferable because ultraviolet light, which is generally used as excitation light for light emission, is preferred because of its high transparency, resulting in improved light emission (amplification) intensity and light emission (amplification) efficiency. Further, it is preferable because it has excellent ultraviolet resistance. [0271] Among them, those having a fluorine atom are preferable because they have high transparency to near-infrared light at the time of optical amplification for communication. Further, introduction of a fluorine atom is more preferable since it further effectively affects the luminous efficiency and the amplification efficiency.
  • a polyfunctional atalylate toy conjugate is preferably exemplified.
  • the fluorinated atalylate polymer (A1-III) used in the optical functional laminate of the present invention is obtained by adding to the fluorinated atalylate (al-1) and the polyfunctional atalylate (al-2). If necessary, an arbitrary monomer (n) may be copolymerized to introduce an arbitrary structural unit N.
  • the arbitrary monomer (n) is not limited as long as it can be copolymerized with (al-1) and (al-2), but is usually (al-1), (al-1) Other than 2) acrylate monomers, (meth) acrylic acids, fluorinated acrylic acids, maleic acid derivatives, vinyl chloride, ethylenes, styrene derivatives, norbornene derivatives, etc. , Is introduced in the range.
  • These optional structural units N are used, for example, for the purpose of improving the dispersibility and compatibility with the rare earth metal compound (B), the purpose of improving the adhesion to the substrate, and the adhesion of the other material to the substrate. It is introduced for the purpose of improving the transparency, improving the heat resistance and mechanical properties, and adjusting the refractive index and transparency.
  • Atalylate monomers other than (al-1) and (al-2), (meth) atalylic acids, fluorinated (meth) acrylic acids, and maleic acid derivatives include atalylate monomers other than (al-1) and (al-2), (meth) atalylic acids, fluorinated (meth) acrylic acids, and maleic acid derivatives. Structural unit force derived from monomer is preferred to be selected!
  • Examples of the atalylate monomer include a (meth) atalylate monomer having a straight-chain or branched alkyl group having 120 carbon atoms in a side chain, specifically, methyl methacrylate.
  • MMA Methyl acrylate
  • MA Methyl methacrylate
  • EMA ethyl methacrylate
  • EA ethyl acrylate
  • isopropyl methacrylate isopropyl acrylate, butyl methacrylate, butyl acrylate, hexyl methacrylate, hexyl
  • Preferable examples include atalylate, octadecyl meta acrylate, and octadecyl acrylate.
  • a (meth) acrylate monomer having a functional group such as a hydroxyl group, an epoxy group, or a carboxyl group in a side chain specifically, hydroxyethyl methacrylate (HEMA), Athalylate, glycidyl metharylate (GMA), glycidyl atalylate and the like are also included.
  • HEMA hydroxyethyl methacrylate
  • GMA glycidyl metharylate
  • glycidyl atalylate are also included.
  • a (meth) alkyl acrylate monomer having a hydrocarbon group having a carbon number of 3 to 20 including an aromatic cyclic structure in a side chain such as a benzene ring structure, a naphthyl ring structure, or a heterocyclic structure, may be used.
  • Those contained in the chain specifically, phenol meta-arylate, phenol acrylate, benzyl methacrylate, benzyl acrylate, naphthyl methacrylate, naphthyl acrylate, and the like are also included.
  • cyclohexyl methacrylate cyclohexyl acrylate, adamantyl methacrylate, adamantyl acrylate, methyl adamantyl methacrylate, methyl
  • adamantyl acrylate, ethiladamantyl meta acrylate, ethyl adamantyl acrylate, and the like can be mentioned.
  • Examples of (meth) acrylic acids and fluorine-containing (meth) acrylic acids include methacrylic acid, acrylic acid, ⁇ -fluoroacrylic acid, ⁇ -trifluoromethylacrylic acid, and the like.
  • Maleic acid derivatives include maleic acid, maleic anhydride, and maleic acid monoesters.
  • the fluorine-containing acrylate polymer used for the optical functional laminate of the present invention is the above-mentioned fluorine-containing acrylate. It is obtained by polymerizing atalylate (al-1) and polyfunctional atalylate (al-2), and comprises a structural unit A1-1 derived from a monomer (al-1) and a monomer (al-2) ) to minutes required forming the structural units a 1-2 from the structural units Al- 1 20- 99. 9 mole 0/0, which is 0.1 structural units A1- 2 1-80 mol 0/0 Dressings containing.
  • the fluorine-containing acrylate polymer used for the optically functional laminate of the present invention is characterized by containing a structural unit A1-2 of a polyfunctional acrylate (al-2). Functionality
  • the luminescence (amplification) intensity and luminescence (amplification) efficiency of the laminate can be greatly improved.
  • the fluorine content of the fluorine-containing acrylate polymer of the present invention is preferably 20% by mass or more, more preferably 30% by mass or more, and particularly preferably 50% by mass or more.
  • the preferred abundance ratio of the structural units A1-1 and A1-2 differs depending on the types of the monomers (al-1) and (al-2), but the molar ratio of the structural units Al-1 / A1-2 is The molar ratio is 30 / 70-99 / 1, more preferably 40Z60-98Z2, most preferably 50Z50-95Z5.
  • Arbitrary structural unit N is introduced within a range that does not impair the effects of the structural units A1-1 and A1-2 on the luminescence (amplification) intensity and the luminescence (amplification) efficiency.
  • the proportion of the polymer (Al) in all the monomers is 60 mol% or less, preferably 50 mol% or less, more preferably 30 mol% or less, and particularly preferably 10 mol% or less.
  • the second preferred of the fluoropolymer (A) in the optical functional layer (L1) is a fluoropolymer having a curable site at a side chain or at an end of a main chain. (A2).
  • fluorine-containing polymer (A2) having a curable site those similar to those described in WO02Z72706 and WO2004Z016689 are specifically preferably mentioned.
  • the fluorine-containing polymer (A) in the optically functional layer (L1) is preferable.
  • fluorine-containing polymer (A3) having a functional group capable of forming a complex those similar to those described in WO02 / 72696 and WO03Z91343 are specifically preferably mentioned.
  • the rare earth element used in the rare earth metal compound (B) is at least one element selected from 17 elements of a scandium-group element and a lanthanoid, excluding chromium, in the periodic table. Above all, erbium (Er), thulium (Tm), praseodymium (Pr), holmium (Ho), neodymium (Nd), europium (Eu), cerium (Ce), samarium (Sm), dysperm shim (Dy), Terbium (Tb) is preferred.
  • the type of rare earth element to be used is selected according to applications such as light emission, optical amplification, and wavelength conversion, and according to the type (wavelength) of light required.
  • rare earth elements such as praseodymium (fluorescence wavelength: 1300 nm) and erbium (fluorescence wavelength: 1550 nm) are mentioned. And neodymium (fluorescence wavelength: 850 nm) are preferred. Europium (fluorescence wavelength: 615 nm) is preferred for optical amplification of optical communication using visible light with a wavelength of 650 nm.
  • a rare earth element that generates light of a required wavelength as fluorescence is selected.
  • the rare earth metal compound (B) in the optical functional laminate of the present invention includes a rare earth metal complex (in a state of forming a complex with a ligand) (B1), a rare earth activated inorganic phosphor ( (B2), a rare earth metal ion (a state existing by ordinary ionic bonding) (B3), and among them, a rare earth metal complex and a rare earth activated inorganic phosphor are preferable. Of these, rare earth metal complexes are particularly preferred.
  • Rare earth metal complexes are preferred because they have high luminescence (amplification) efficiency per se and have excellent dispersibility and compatibility with the fluorine-containing polymer (A) used in the present invention.
  • a rare-earth metal complex is usually a rare-earth element in which one or more ligands are coordinated and bonded, and a ligand surrounds the rare-earth element as compared with a rare-earth metal ion. Yes.
  • the stored energy of the rare earth element is prevented from escaping to surrounding matrix molecules (polymer molecules, etc.), and as a result, the emission intensity and luminous efficiency of the rare earth metal are increased. Is what you do.
  • the ligand of the rare earth metal complex may be either inorganic or organic as long as it contains an atom having a ⁇ electron (for example, a heteroatom) ⁇ an unsaturated bond.
  • the rare-earth metal complex of the rare-earth metal complex contains a charge-compensating ligand that forms a ligand itself and a coordination bond with a rare-earth metal ion (cation). It is preferable because it has excellent stability, heat resistance and UV resistance.
  • the ligand of the charge compensation type is, for example, a compound represented by the formula (bl): [0328] [Formula 88]
  • X 11 is a hydrogen atom, a deuterium atom, a fluorine atom, a hydrocarbon group of 1 one 20 carbon atoms, and some of the water atom or all of the carbon number of 1 one 20 comprising substituted by fluorine atom containing Those having the structural unit represented by:
  • Y 3 is 0, S or N— (R ′ is a hydrogen atom, a hydrocarbon group having 120 carbon atoms, and a hydrogen atom is partially or entirely substituted with a fluorine atom. A fluorine-containing hydrocarbon group having a carbon number of 1 to 20 is also selected.) A power is also selected; Y 4 is [0334] [Formula 91]
  • R 1 ′ is a hydrogen atom, a hydrocarbon group having 120 carbon atoms, or a fluorine-containing carbon atom having 1 to 20 carbon atoms in which some or all of the hydrogen atoms are substituted with fluorine atoms.
  • the hydrocarbon groups having 120 carbon atoms and 120 or more carbon atoms obtained by substituting a part or all of the hydrogen atoms with fluorine atoms are also selected, and R 2 ′ and R 3 ′ / May form a ring structure together with a phosphorus atom, and has at least one selected from the group consisting of:
  • RLA Rb 2 are the same or different, a hydrocarbon group of 1 one 20 carbon atoms, a fluorine-containing part of the hydrogen atoms or all of the carbon number of 1 one 20 comprising substituted by fluorine atoms carbide
  • X 11 is a ligand represented by the above formula (bl)); It is preferable because of its good amplification efficiency and good compatibility between the formed complex and the fluorinated acrylate polymer (A).
  • RlA Rb 2 is the same as in the above formula (bl-1); X 11 is the same as the above formula (bl)), and these are luminous efficiency, amplification efficiency and formation. This is preferred because the compatibility between the obtained complex and the fluorinated acrylate polymer (A) is good! / ⁇ .
  • RlA Rb 2 is the same as the above formula (bl-1)
  • RlA Rb 2 is the same as the above formula (bl-1)
  • This is preferred because of good compatibility with (A).
  • Rb 2 is a ligand represented by the above formula (b2-1)
  • Rb 2 is a ligand represented by the above formula (b2-1)
  • Rb 2 is a fluorine-containing hydrocarbon group having 120 or more carbon atoms in which at least a part or all of hydrogen atoms are substituted with fluorine atoms, from the viewpoint of emission (amplification) efficiency. ,.
  • X 11 is particularly preferably a deuterium atom or a fluorine atom from the viewpoint of emission (amplification) efficiency.
  • Rb 3 is a hydrogen atom, a hydrocarbon group having 120 carbon atoms, a fluorine-containing hydrocarbon having 120 carbon atoms in which part or all of the hydrogen atoms are substituted with fluorine atoms.
  • Rb 4 is a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms which may have an ether bond, hydrogen, and at least one kind selected from a group and a hydrocarbon group having a heterocyclic structure and having 1 to 20 carbon atoms.
  • Rb 3 and Rb 4 are the same as those in the above formula (b3-1); Y 3 is the same as the above (b3)) These are preferred because they have good luminous efficiency, amplification efficiency, and good compatibility between the formed complex and the fluoropolymer (A).
  • Equation (b3-3) [0391] Equation (b3-3):
  • Rb 3 and Rb 4 are the same as those in the above formula (b3-1); R 2 / is a ligand represented by the same as the above (b3), and these are luminous efficiency, amplification efficiency, formed complex and fluoropolymer ( A) is preferred because of good compatibility with A).
  • R, R 2 , and R 3 are each a fluorine-containing carbon atom having 120 or more carbon atoms in which part or all of the hydrogen atoms are replaced by fluorine atoms.
  • a hydrogen group is preferred in terms of luminescence (amplification) efficiency.
  • the rare-earth metal complex used in the optical functional laminate of the present invention may further have no charge (negative charge)! And may have a charge-uncompensated ligand introduced therein.
  • a charge-uncompensated ligand is a ligand that has no charge in the entire ligand and has a ⁇ -electron pair that can coordinate to the empty d-actuation of the rare-earth metal.
  • a compound having a site such as a compound is usually selected.
  • the charge-uncompensated ligands those in which a fluorine atom is partially introduced are preferable in terms of light emission (amplification) efficiency.
  • at least one kind of ligand selected from the aforementioned charge compensation type or charge non-compensation type ligands is coordinated with the positive trivalent rare earth metal ion. As long as they are combined, they are preferably those in which 3 or 4 ligands are coordinated.
  • the ligand is composed of only one of the charge compensation type and the charge non-compensation type !, or includes both the charge compensation type and the charge non-compensation type! / No.
  • charge-compensating ligand those having at least one charge-compensating ligand are preferred, and those having three charge-compensating ligands coordinated are particularly preferred. If necessary, a charge-incompensating ligand may be introduced as the fourth ligand! / ⁇ . Complexes containing these charge-compensating ligands themselves have high stability and excellent luminescence (amplification) efficiency, and furthermore are excellent in dispersibility and compatibility with the fluoropolymer (A) used in the present invention. ⁇
  • the optical functional laminate of the present invention is preferred because it acts particularly effectively with respect to light emission (amplification) intensity and light emission (amplification) efficiency.
  • the rare-earth-activated inorganic phosphor is obtained by activating a rare-earth metal in an inorganic salt, and is preferable because of its high heat resistance.
  • rare earth activated inorganic phosphor include:
  • YOS Er, etc.
  • the rare earth metal ion is usually mixed in the form of a salt with a counter ion capable of ionic bonding with the rare earth metal ion.
  • Rare earth metal cations are not limited in valence, and are usually used as salts of divalent, trivalent or tetravalent metal cations.
  • Examples of the rare earth metal salts include halides such as chlorides, bromides, and iodides of the rare earth elements described above; salts such as nitrates, perchlorates, bromates, acetates, sulfates, and phosphates. And the like.
  • organic salts of rare earth metals such as salts of organic acids and salts of organic sulfonic acids may be used.
  • double nitrates, double sulfates, and chelate toys can also be used.
  • rare earth metal salts include salted praseodyme, praseodyme bromide, praseodyme iodide, praseodyme nitrate, praseodyme perchlorate, praseodyme bromate, praseodyme acetate, praseodyme sulfate, and praseodyme phosphate.
  • Neodymium salts such as neodymium neodymium, neodymium bromide, neodymium iodide, neodymium nitrate, neodymium perchlorate, neodymium bromate, neodymium acetate, neodymium sulfate, and neodymium phosphate; europium chloride, odor Europium salts such as europium iodide, europium iodide, europium nitrate, europium perchlorate, europium bromate, europium acetate, europium sulfate, europium phosphate; erbium chloride, erbium bromide, rubium iodide, nitric acid Erbium salts such as rubium, erbium perchlorate, erbium bromate, erbium acetate, erbium sul
  • the fluorine-containing polymer (A) and the rare earth metal compound (B) are 1 one 99.99 mass 0/0, (B) O. 01- 99 weight 0/0 (mass% as an ion.
  • Rare earth metal compound (B) with respect to content The same applies hereinafter), and is appropriately selected depending on the type, use, purpose, and the like of the rare earth metal compound (B) and the fluoropolymer (A) to be used.
  • the content of the rare earth metal compound is in the range of 0.01% to 20% by mass from the viewpoint of improving the fluorescence intensity. More preferably, it is 0.1 to 15% by mass, most preferably 0.5 to 10% by mass.
  • the desired performance such as the wavelength conversion effect is not exhibited.
  • the content of rare earth metal ions can be determined by burning organic components in an electric furnace at a temperature of about 600 ° C and quantifying the ash content, or by physical physics such as X-ray fluorescence analysis. It can be measured quantitatively by the method.
  • additives include, for example, leveling agents, viscosity modifiers, light stabilizers, antioxidants, moisture absorbers, pigments, dyes
  • the low refractive index layer (L2) is usually the optical functional layer.
  • This is a layer directly contacted on (L1), and is a transparent layer having a lower refractive index than the optical functional layer (L1).
  • the preferred refractive index difference (n-n) between the optical functional layer (L1) and the low refractive index layer (L2) is targeted
  • the difference in refractive index in () is 0.005 or more, more preferably 0.05 or more, and particularly preferably 0.1 or more.
  • the preferred refractive index of the low refractive index layer (L2) is 1.30-1.45, more preferably 1.30-1.40, and particularly preferably 1. 30-1. 38.
  • the low refractive index layer (L2) has high transparency in the kind of target light. Specifically, it is preferable that at least the wavelength (excitation light wavelength) of the light supplied to the optical functional layer (L1) is transparent. in extinction coefficient 1. 0 X 10- 5 m or less, preferably 5. 0 X 10- 6 m or less, particularly preferably not more than 2. OX 10- 6 m.
  • the low refractive index layer (L2) is preferably a layer made of an amorphous fluoropolymer.
  • fluoropolymer used for the low refractive index layer (L2) include the following.
  • a polymer having a high fluorine content which is preferable, is preferably a polymer having a structural unit derived from a fluorine-containing acrylate which contains a fluorine atom in a portion capable of forming a polymer side chain.
  • the glass transition point of the fluorinated acrylate polymer is preferably higher than 40 ° C, more preferably higher than 60 ° C, more preferably higher than 80 ° C, in that mechanical strength and surface hardness can be improved. ° C or higher, particularly preferably 100 ° C or higher.
  • fluorinated acrylate constituting the fluorinated acrylate polymer
  • optically functional layer (L1) Those selected from fluorine acrylates can also be preferably used.
  • Fluorine containing a curable (or crosslinkable) functional group at the polymer side chain or main chain terminal It also includes a polymer which has a polymer strength or a cured product obtained by curing (crosslinking) in the presence of a polymer itself or a curing agent (crosslinking agent).
  • a fluorine-containing polymer having a structural unit derived from a fluorine-containing ethylenic monomer having a curable (crosslinkable) functional group at a terminal of a side chain for example, WO02 / 1845 7 Patent Publication No. WO02Z073255 or a fluorine-containing prepolymer containing a carbon-carbon double bond, or a cured product obtained by curing them, a fluorine-containing polymer containing a crosslinkable cyclic ether structure described in WO2004Z016689,
  • at least one kind of fluorine-containing polymer is selected.
  • the fluorine-containing polymer layer having these curable sites is preferred in that it can be easily cured by light or heat and the mechanical strength and hardness can be drastically improved. When it is used as the outermost surface layer, it causes scratches and wear.
  • the structural unit of the fluorinated aliphatic cyclic structure is represented by the formula (5):
  • n2 is an integer of 0-13; nl, n3, n4 and n5 are the same or different and 0 or 1) The following is preferred.
  • R 41 and R 42 are the same or different and each of F, H and C is a perfluoroalkyl group having 15 to 15 carbon atoms; X 41 and X 42 are the same or different; , H and C are OR 43 (R 43 is a perfluoroalkyl group having 15 carbon atoms), provided that at least one of R 41 and R 42 is F or a perfluoroalkyl group having 15 carbon atoms.
  • a cyclic ether copolymer obtained from a 1,3-dioxole ring structure-containing compound represented by the formula (1) and an ethylenically unsaturated monomer.
  • the 1,3-dioxole ring structure-containing conjugate of the formula (6) includes a perfluoro (2) compound in which X 41 and X 42 are a fluorine atom, and R 41 and R 42 are CF. , 2 Dimethyl 1, 3-dioxo
  • the structural unit of the ethylenically unsaturated monomer in the cyclic ether copolymer is preferably a fluorine-containing ethylenically unsaturated monomer, especially tetrafluoroethylene, Structural units derived from a monomer selected from trifluoroethylene are preferable in terms of transparency and low refractive index.
  • the above cyclic ether copolymer has a glass transition point of 100 to 135 ° C and an intrinsic viscosity at 35 ° C in perfluoro-2-butyltetrahydrofuran of 0.01 to 0.4dlZg,
  • L2 low refractive index layer
  • a structural unit of a norbornene derivative for example, a copolymer of a norbornene derivative with a fluorinated olefin such as tetrafluoroethylene or chloro opening trifluoroethylene, or a copolymer of a fluorinated acrylic with a norbornene derivative
  • a fluorinated olefin such as tetrafluoroethylene or chloro opening trifluoroethylene
  • a copolymer of a fluorinated acrylic with a norbornene derivative Preferable examples include coalescence.
  • the transparent substrate (L0) is the optical functional layer (L1).
  • the generated target light (fluorescence) functions as a supporting substrate when passing through and irradiating the target object, and is appropriately selected depending on the purpose, application, and method of use, such as material and shape.
  • the transparent substrate (LO) is a layer having the same force or a large refractive index as the optical functional layer (L1) applied thereon, and as a result, the optical functional layer (L1) The generated light (fluorescence) more preferentially passes through the transparent substrate (LO) side and is efficiently irradiated to the target.
  • the material is selected from inorganic transparent base materials and organic, particularly resin-based transparent base materials.
  • Inorganic transparent base materials include glass base materials, specifically, soda-lime glass, soda-potassium lead glass, hard glass (primary and secondary), tungsten glass, quartz (doped with various metals). And the like, and crystals such as calcium fluoride and magnesium fluoride are preferred, and among them, a glass-based substrate is preferred.
  • the organic transparent substrate is usually selected from transparent resins, and specifically, acrylic resins, polycarbonate resins, transparent polyester resins, transparent polyethylenes, and transparent propylene resins. , Transparent ABS resin, methylcellulose resin, transparent polystyrene, transparent epoxy resin, polyarylate, polysulfone, polyethersulfone, transparent nylon resin, transparent polybutylene terephthalate, transparent polyethylene Terephthalates, transparent fluoroplastics, TPX (poly 4-methylpentene 1), transparent phenoxy resins, polyimide resins, cycloolefin resins (norbornene resins, etc.), silicone elastomers, polystyrene thermoplastic elastomers , Polyolefin-based thermoplastic elastomer, polyurethane-based thermoplastic Sex elastomers One class, and organic nonlinear optical materials.
  • transparent resins and specifically, acrylic resins, polycarbonate resins, transparent polyester resins, transparent polyethylenes, and transparent
  • acrylic resins polycarbonate resins, transparent polyethylene terephthalates, methylcellulose resins, cycloolefin resins, etc. are preferred because of their excellent transparency and usefulness for optical applications. Even when used in the form of a film, it is preferred because it has good mechanical properties and flexibility.
  • the shape of the transparent substrate (LO) of the present invention depends on the purpose and application, and specifically, the optical functional layer.
  • those using a film-shaped transparent resin-based substrate are excellent in workability when producing the laminate itself of the present invention, and can be easily processed by post-processing according to various objects. It is preferable because it can be applied.
  • the thickness of the film-shaped transparent resin-based substrate varies depending on the material of the film, usually 0.5 to 5 000 111, preferably ⁇ 1 to 1,000 ⁇ m, more preferably.
  • the length is preferably 500 m, particularly preferably 10-300 ⁇ m.
  • the thickness of the optical functional layer (L1) varies depending on the light emission (fluorescence) intensity of the optical functional layer (L1) itself, its use, and its target, and is appropriately selected. However, it is usually about lnm-lmm, preferably 0.05-5,000 ⁇ m, more preferably 0.1-1,000 m, particularly preferably 0.5-500 m, and still more preferably 1-1100 m. m.
  • the first preferable thickness of the low refractive index layer (L2) is a film intended to obtain an antireflection effect on light (excitation light) supplied to the optical functional layer (L1). Thickness, usually the thickness d
  • L2 is the formula:
  • d is the thickness of the low refractive index layer (nm); x is an odd integer; ⁇ is the wavelength of the excitation light (nm); n
  • the thickness of the low refractive index layer is preferable to adjust the thickness of the low refractive index layer to a value calculated by the refractive index measured at the wavelength ( ⁇ ) of the low refractive index layer.
  • the thickness of the low refractive index layer (L2) is preferable.
  • the second is that light (fluorescence) generated in the optical functional layer (L1) by the supply of excitation light is directed to a target direction, for example, transparent.
  • the substrate (L0) direction which has the purpose of more priority to direct, usually, 1.0X10- 1 - 1.
  • OXlo m preferred lay ⁇ or 1.0X10- 1 - 5.
  • OXlo m the preferred especially 1.0X10- 1 - 5 ⁇ 10 2 / ⁇ , more 1.0X10- 1 - is 1.0 ⁇ 10 2 / ⁇
  • a coating composition or the like comprising a fluoropolymer () and a rare earth metal compound ( ⁇ ) is applied onto a transparent substrate (L0), followed by drying and the like.
  • Membrane In some cases, a curing reaction is performed by irradiation of heat or light to form a photofunctional layer (L1), and then a coating composition containing a fluoropolymer having a low refractive index is applied thereon, and the coating is similarly applied.
  • the low refractive index layer (L2) can be formed by the method.
  • optical functional layer (L1), the low refractive index layer (L2), and the respective single-layer films are laminated on a transparent substrate (LO) by thermocompression bonding or the like. May be.
  • optical functional layer (L1) and the low refractive index layer (L2) include:
  • next low-refractive-index layer (L2) is formed by a coating method, intermixing of the interface between the optical functional layer (L1) and the low-refractive-index layer (L2) does not easily occur. .
  • This case is preferable in that the light emission (fluorescence) efficiency and the mechanical properties of the surface are good.
  • the optical functional laminate of the present invention propagates the light (excitation light) supplied from the side force of the low refractive index layer (L2) therein to the optical functional layer (L1), which improves efficiency.
  • the photo-functional layer (L1) can generate high-intensity light with high light emission (fluorescence) efficiency.
  • the light emitted from the optical functional layer (L1) is more efficiently transmitted to the target direction, that is, the transparent substrate (
  • a specific wavelength (band) of sunlight is converted to another desired wavelength (band), and the transparent substrate (LO A) a wavelength conversion laminate, for example, a wavelength conversion film, which selectively irradiates the side.
  • a wavelength conversion film is provided on the surface of a solar cell element, and a low refractive index layer (L2
  • the specific wavelength of sunlight is converted into a wavelength band with high photo-electro-electric conversion efficiency, which is unique to solar cells, and as a result, it is amplified and the energy conversion efficiency can be improved.
  • the laminate of the present invention By applying the laminate of the present invention on a light-emitting diode such as an LED, it is possible to convert the emission color of the LED itself to a desired color by using a part of the light of the LED as excitation light. .
  • NMR measurement device manufactured by BRUKER
  • IR analysis Measured at room temperature with a Perkin Elmer Fourier transform infrared spectrophotometer 1760X.
  • the sample lOmg is burned by the oxygen flask combustion method, the decomposed gas is absorbed in 20 ml of deionized water, and the fluorine ion concentration in the absorbing solution is measured by a fluorine selective electrode method (fluorine ion meter, type 901 manufactured by Orion). determined by (mass 0/0).
  • the emission spectrum of each sample is measured using a fluorescence spectrophotometer (Fluorescence Spectrophotometer F-4010 manufactured by HITACHI), the peak areas at specific wavelengths are compared, and the relative emission intensity is calculated.
  • a fluorescence spectrophotometer Fluorescence Spectrophotometer F-4010 manufactured by HITACHI

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Glass Compositions (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 各種の光機能、特に発光強度、発光効率、さらには蛍光寿命、光増幅性、に優れた光機能性積層体であって、透明基材(L0)、基材(L0)上に形成されてなる含フッ素ポリマー(A)および希土類金属化合物(B)からなる光機能性層(L1)および層(L1)上に形成されてなる低屈折率層(L2)からなり、各層の屈折率をn(L0)、n(L1)、およびn(L2)としたとき、下式:n(L0)≧n(L1)>n(L2)の関係を有することを特徴とする光機能性積層体を提供する。

Description

明 細 書
光機能性積層体
技術分野
[0001] 本発明は、蛍光 (発光)現象や光増幅現象などの光機能性を発現可能な希土類金 属化合物を含有する光機能層を透明性基材に設けてなる光機能性積層体に関する
[0002] 詳しくは、より高効率で光機能性を付与できる希土類金属化合物と含フッ素ポリマ 一力ゝらなる光機能性層と低屈折率層を有する積層体に関する。
背景技術
[0003] LEDは PN接合を持つ結晶体であって、順電圧を印加すると N領域から電子が、 P 領域から正孔が PN接合に移動して、電子と正孔が再結合する際に光を発する。従 つて、自由な電子が結合状態になり、この際放出されたエネルギーが光となって放出 されるため、限られた色調の LEDしか存在しない。
[0004] つまり、赤色 LEDチップを有する LEDは赤色、緑色 LEDチップを有する LEDは緑 色、青色 LEDチップを有する LEDは青色の発光のみであった。
[0005] し力しながら、多目的の用途に応じて、色変化をさせ得る発光ダイオードが強く求 められている。
[0006] 通常、色変化の方法としては、例えば発光ダイオードの中に赤色 LEDチップ、緑色 LEDチップ、青色 LEDチップを組み合わせてセットし、それぞれのチップの組合せ を変えて発光させることにより、色変化を実現させていた。
[0007] このような発光ダイオードでは、上記 3色の LEDチップの異なる併せて 4つの端子 が必要となるため、構造として複雑な設計となる点、またさらには 3色のうちのいずれ かの LEDチップが破損したとき色調のバランスが崩れ、目的とする発光が得られなく なる点などの課題があった。
[0008] また、一方、青色発光ダイオードのチップ上に YAG (アルミン酸イットリウム)系蛍光 体の層を設けた白色 LEDランプが提案されている。
[0009] この白色 LEDランプは、蛍光体の層によって励起された光と青色発光ダイオードの 残光とによって白色光を作り出すものである。
[0010] し力しながら、上記の白色 LEDランプは青色発光ダイオードチップ上の蛍光物質 が微量であり、その微量の誤差や加工方法によって色調が大きく変化しやすいこと等 により、均一な LEDを生産するのが困難で、色や輝度などにバラツキが不可避的に 発生する。そのため、歩留まりが悪ぐ結果的にコスト高となってしまう。
[0011] これらの課題を解決するために、特開平 11— 87784号公報において、蛍光物質と それらのバインダーの働きをする榭脂を含む被覆材を、発光ダイオードに装着し、目 的の色調に調整することを提案している。つまり、上記被覆材の含める蛍光物質の種 類や含有量を調整し、さらには必要に応じて着色剤を含有させ、その被覆材をシート や、キャップ形状などに加工し、発光ダイオードに装着することで、所望の色調を自 由に再現良く作り出したものである。
[0012] しかし、本発明者らの検討では、特開平 11 87784号公報に記載されている被覆 材の発光強度、発光効率において不充分であり、目的の色調、発色を達成するため には、被覆材中の蛍光物質の含有比率を高めたり、被覆材の厚みなどを高く設定す る必要がある。
[0013] ただし、発光強度を向上させるために、被覆材中の蛍光物質の含有比率を高める 試みを行っても、混合できる蛍光物質量には限界があり、蛍光物質の比率を高めす ぎると分散不良や白濁などを起こし、光の透過性自体が悪化し目的の発色や発光が 得られなくなる。
[0014] 本発明者らは蛍光 (発光)現象や光増幅現象などを発現可能な希土類金属化合物 を含有する光機能層を有する積層体について種々検討を重ねた結果、第一に、光 機能層のマトリックスポリマー (バインダー榭脂)に特定のポリマーを使用すること、第 二に、光機能層上に低屈折率層を設けさらに透明基材、光機能層、低屈折率層の 各層の屈折率を特定の値に選択することで、積層体の発光強度、発光効率、さらに は蛍光寿命がより向上することを見出し、本発明を完成するに至った。
発明の開示
[0015] 本発明は、各種の光機能、特に発光強度、発光効率、さらには蛍光寿命、光増幅 性、に優れた光機能性積層体を提供することを目的とする。 [0016] すなわち本発明は、
(LO)透明基材、
(L1)基材 (LO)上に形成されてなる含フッ素ポリマー (A)および希土類金属化合物(
B)からなる光機能性層、および
(L2)層 (L1)上に形成されてなる低屈折率層
からなり、各層の屈折率を n(LO)、 n(Ll)、および n(L2)としたとき、下式: n(L0)≥n(Ll)>n(L2)
の関係を有することを特徴とする光機能性積層体に関する。
[0017] 光機能性層 (L1)における含フッ素ポリマー (A)は、フッ素含有率が 30質量%以上 の非晶性ポリマーであるか、または含フッ素アクリル重合体であってガラス転移温度 力 0°C以上でフッ素含有率が 50質量%以上の含フッ素アクリル重合体である力、ま たは含フッ素アクリル重合体であってガラス転移温度が 100°C以上でフッ素含有率 が 30質量%以上かつ 50質量%未満の含フッ素アクリル重合体であることが好ましい
[0018] また、光機能性層 (L1)における含フッ素ポリマー (A)が、
(al - 1):式(1):
[0019] [化 1]
CH^CX1— C— O— R1 (1)
ϋ
ο
[0020] (式中、 X1は H、 F、 Cl、 CHまたは CF; R1はエーテル結合を有していても良い炭素
3 3
数 1一 50の一価の炭化水素基およびエーテル結合を有して 、ても良 、炭素数 1一 5 0の一価の含フッ素炭化水素基力も選ばれ、ただし、 X1、 R1の少なくとも一方にフッ素 原子を含む)から選ばれる少なくとも 1種の含フッ素アタリレート類由来の構造単位お よび
(al— 2):式 (4): [0021] [化 2]
CH2 = CX2-C-0-R2 -fO-C-CX3 = CH2 ]nl (4)
II 1 II J
o o
[0022] (式中、 X2、 X3は同じかまたは異なり、 H、 F、 Cl、 CHまたは CF; nlは 1
3 3 一 6の整数;
R2は炭素数 1一 50の (nl + 1)価の有機基)から選ばれる少なくとも 1種の多官能ァク リレート類由来の構造単位力もなる含フッ素アクリル重合体であるものが好ましい。
[0023] 透明基材 (LO)の材料としては、ガラス系材料または透明性榭脂が挙げられ、透明 性榭脂としては、アクリル榭脂類、ポリカーボネート榭脂類、透明ポリエチレンテレフタ レート類、メチルセルロース榭脂類およびシクロォレフイン榭脂類力 選ばれる少なく とも 1種が好ましく挙げられる。
[0024] 透明基材 (LO)はフィルム形状をとることが好ま 、。
発明を実施するための最良の形態
[0025] 本発明の積層体は、
(LO)透明基材、
(L1)基材 (LO)上に形成されてなる含フッ素ポリマー (A)および希土類金属化合物(
B)からなる光機能性層、および
(L2)層 (L1)上に形成されてなる低屈折率層
力もなる光機能性積層体に関するものであって、各層の屈折率を n(LO)、 n(Ll)、 および n(L2)としたとき、下式
n(L0)≥n(Ll)>n(L2)
の関係を有することを特徴とするものである。
[0026] つまり、本発明の光機能性積層体は、光機能性層 (L1)として、光源光 (励起光)の 供給によって、蛍光 (発光)や光増幅などの光機能を発現できる希土類金属化合物(
B)と、含フッ素ポリマー (A)からなる層を有すること、さらに該光機能性層(L1)上に
、低屈折率層 (L2)が設けられていることを特徴とする。
[0027] 光機能性層 (L1)中の希土類金属化合物は、発光ダイオードなどの光源等力ゝらの 入射光 (励起光)によって蛍光 (発光)や光増幅などの光機能を発現できるものであり 、光機能性層(L1)のマトリックスポリマー (バインダー榭脂)として、フッ素原子を有す るポリマー、特に高フッ素化率の非晶性ポリマーを用いることで、光源光 (励起光)を より効率的に蛍光 (発光)に変化させることができるものであり、その結果、発光強度、 発光量子収率および発光寿命を改善することが可能となる。
[0028] さらに光機能性層 (L1)上に、低屈折率層 (L2)を設けることが重要であり、発光ダ ィオードなど力 の入射光側の位置に低屈折率層 (L2)を設置した場合において、 空気層と積層体の界面での入射光 (励起光)の反射現象が抑制でき、より効率的に 入射光 (励起光)が光機能性層 (L1)の希土類金属化合物に提供される点で好まし い。
[0029] またさらに、低屈折率層 (L2)の設置は、入射光を供給され光機能性層 (L1)の希 土類金属化合物によってなされた発光 (蛍光)を、目的の方向、例えば入射光の反 対方向(透明基材 (LO)方向)に、より優先的に向けることができる点で好ましい。
[0030] つぎに、本発明の光機能性積層体における各層の構成について説明する。
[0031] 本発明の積層体において、光機能性層 (L1)は、含フッ素ポリマー (A)中に希土類 金属化合物(B)が相溶または分散したものであって、含フッ素ポリマー (A)によって 、高強度で高効率の発光が可能となる。
[0032] 希土類金属化合物の発光現象は、通常、作用される紫外光などの励起光を吸収 することで希土類金属イオン自体のエネルギー準位が上昇し、次 ヽでそれが基底状 態に戻る際に、そのエネルギー差に相当するものが、特定波長(可視光または近赤 外光)の光として発生する現象である。
[0033] 必要とする励起光の波長や発光する光の波長は、希土類金属イオンそれぞれによ つて異なり、希土類金属イオン特有の性質に由来するものである。
[0034] 一般に上記発光現象において加えられた励起光のすべてが発光エネルギーに変 換されるわけではなぐ励起光の一部は希土類金属イオンに隣接する分子または原 子の振動エネルギー(つまり熱エネルギー)に変化するため、その発光強度、発光量 子収率 (発光効率)が不充分なものとなると考えられる。
[0035] 含フッ素ポリマー、特にフッ素含有率の高い非晶性含フッ素ポリマーを希土類金属 化合物(B)のマトリックスポリマーに用いることで希土類金属イオン力 マトリックスポリ マーへのエネルギー移動を抑制させることができ、その結果として希土類金属化合 物の発光強度、量子収率を増大させることができたものである。
[0036] 本発明の光機能性層 (L1)に用いる含フッ素ポリマー (A)は、目的や、発光 (蛍光) 波長によって異なり適宜選択されるが、それ自体、無色で、広い波長範囲で透明性 の高 ヽ非晶性フッ素ポリマーであることが好まし 、。
[0037] 含フッ素ポリマー (A)のフッ素含有率は、出来る限り高い方が望ましいが、 20質量
%以上、好ましくは 30質量%以上、より好ましくは 40質量%以上、特に 50質量%以 上である。
[0038] ポリマーの構造によって異なるが、逆にフッ素含有率が高くなりすぎると、希土類金 属化合物 (B)との相溶性、分散性が低下してしまうため好ましくない。
[0039] また、含フッ素ポリマー (A)は、広い光の波長範囲において透明であることが望まし いが、実際の利用の場面で取り扱う光の種類、例えば入射光 (励起光)や発光光 (蛍 光光)の波長に対して透明であることが重要である。
[0040] 具体的には、入射光 (励起光)および発光光 (蛍光光)の波長に対して含フッ素ポリ マー(A)自体の吸光係数で 5. 0 X 10— 5 m—1以下、好ましくは 1. O X 10— 5 /z m— 1以下 、より好ましくは 5. O X 10— 6 m 1以下、特に好ましくは 2. O X 10— 6 m 1以下である。
[0041] 含フッ素ポリマー (A)の透明性が不十分であると、発光強度を低下させてしまうた め好ましくない。
[0042] 含フッ素ポリマー (A)は具体的には、上記特徴の非晶性ポリマーであればょ 、が、 好ましい含フッ素ポリマーの第一は含フッ素アタリレート系重合体 (A1)である。
[0043] 含フッ素アタリレート系重合体 (A1)は、ポリマー側鎖を形成し得る部分またはポリ マー主鎖を形成し得る部分のいずれ力少なくとも一方に、フッ素原子を有する含フッ 素アタリレート類由来の構造単位を有するものであり、具体的に、含フッ素アタリレート 系重合体 (A1)は、式(1) :
[0044] [化 3]
C H ^ C X 1— C— O— R 1 ( 1 )
II
o
[0045] (式中、 X1は H、 F、 Cl、 CHまたは CF; R1はエーテル結合を有していても良い炭素 数 1一 50の一価の炭化水素基およびエーテル結合を有して 、ても良 、炭素数 1一 5 0の一価の含フッ素炭化水素基力も選ばれ、ただし、 X1、 R1の少なくとも一方にフッ素 原子を含む)で表される含フッ素アタリレート類 (al— 1)力も選ばれる少なくとも 1種の 単量体由来の構造単位を有するものが好ましぐ具体的には、 R1を除いた構造として
[0046] [化 4]
Figure imgf000008_0001
[0047] などの構造を有するものが挙げられ、なかでも、
[0048] [化 5]
Figure imgf000008_0002
[0049] の構造を有するものが重合性の面で好ましく、さら〖こは、
[0050] [化 6]
Figure imgf000008_0003
[0051] の構造を有するものが希土類金属化合物 (B)との組成物とした場合、発光強度、発 光効率を向上できる点で好ましぐさらに得られた重合体に透明性と耐熱性を付与で きる点で、また機械的強度を付与できる点で好まし 、。
[0052] 含フッ素アタリレート(al— 1)における X力 または CFである場合、側鎖の R1は、フ
3
ッ素原子を含んでいなくてもよいが、通常、エーテル結合を有していても良い炭素数 1一 50の一価の含フッ素アルキル基、エーテル結合を有していても良い芳香族環状 構造を含む炭素数 2— 50の一価の含フッ素ァリール基力 選ばれる少なくとも 1種で あることが好ましい。
[0053] それによつて、含フッ素アタリレート系重合体 (A1)のフッ素含有率を大幅に向上さ せることができ、希土類金属化合物 (B)との組成物とした場合、発光強度、発光効率 を向上できる点で好まし!/、。
[0054] なかでもエーテル結合を有していても良い炭素数 1一 50の一価の含フッ素アルキ ル基力 選ばれる少なくとも 1種であることが、透明性の点で、発光強度、発光効率の 面でさらに向上し、好ましい。
[0055] 式(al—l)の含フッ素アタリレートにおいて、側鎖 R1の好ましい具体例としては、つ ぎのものがあげられる。
[0056] (i)直鎖状の含フッ素アルキル基
具体的には、
式 (R1 - 1):
[0057] [化 7]
___( C H 2 __ c F ^ z l l (R 1 - 1 )
[0058] (式中、 Z11は H、 F、 CIおよび Brから選ばれる少なくとも 1種; qlは 0または 1一 5の整 数; q2は 1一 20の整数)で示される基である。
[0059] 式 (R— 1)において、 qlは、好ましくは 1一 4の整数、特に 1または 2である。 q2は、 好ましくは 1一 10、より好ましくは 1一 6、特に好ましくは 1一 4である。
[0060] qlが大きすぎると、希土類金属化合物(B)との組成物の発光強度、発光効率の改 善効果が低くなる傾向にある。また q2が大きすぎると、含フッ素アタリレート系重合体 (A1)自体の透明性が低下したり、希土類金属化合物 (B)の分散性が低下し、その 結果、希土類金属化合物 (B)との組成物の透明性が低下してしまう傾向にある。
[0061] より具体的には、
-CH CF
2 3、
-CH CF CF
2 2 3、
-CH CF CF H、 CH (CF CF ) H、
2 2 2 2
CH CH (CF CF ) F、
2 2 2 2 2
CH CH (CF CF ) F、
2 2 2 2 3
CH (CF CF ) Cl、
2 2 2 2
CH CF CF CI
2 2 2
などが挙げられる。
[0062] またさらには、上記式 (Rl— 1)において側鎖末端の Z11が H、 C1であることが好ましく 、特には H原子であることが好ましい。それによつて、 F原子であるときに比べて、希 土類金属化合物 (B)との分散性や溶解性 (相溶性)を改善できる。
[0063] これらの観点から、具体的には、
-CH CF CF H、
2 2 2
CH (CF CF ) H、
2 2 2 2
CH (CF CF ) H、
2 2 2 3
CH (CF CF ) H、
2 2 2 4
CH (CF CF ) Cl、
2 2 2 2
CH CF CF CI
2 2 2
が好ましぐなかでも、
CH CF CF H、
2 2 2
CH (CF CF ) H
2 2 2 2
が好ましい。
[0064] (ii)分枝状の含フッ素アルキル基
具体的には、
式 (R1 - 2): [0065] [化 8]
Figure imgf000011_0001
[0066] (式中、 R1Qは炭素数 1一 10の水素原子の一部またはすべてがフッ素原子で置換さ れていても良い直鎖状のアルキレン基; R11は炭素数 1一 10のエーテル結合を含ん でいても良い直鎖の含フッ素アルキル基; R12は炭素数 1一 5の直鎖状のアルキル基 および炭素数 1一 5のエーテル結合を含んでいても良い直鎖状の含フッ素アルキル 基力 選ばれる少なくとも 1種; R13は H、 F、炭素数 1一 5の直鎖状のアルキル基およ び炭素数 1一 10のエーテル結合を含んでいても良い直鎖状の含フッ素アルキル基 力 選ばれる少なくとも 1種; q3は 0または 1)で表される分岐構造の含フッ素アルキル 基であり、具体的には、式 (R1— 2— 1):
[0067] [化 9]
R f 1
Figure imgf000011_0002
[0068] (式中、 Rf1および Rf2は同じかまたは異なり、炭素数 1一 5のパーフルォロアルキル基 ; R14は水素原子の一部または全部がフッ素原子で置換されていてもよい炭素数 1一 5の炭化水素基、 Hまたは F; q4 + q5が 1一 10の整数)で表される含フッ素アルキル 基であることが好ましぐより具体的には、
[0069] [化 10]
CF3 CF3
I I
~ CH2~½F2hC— CF3 _ C2H4 ~ CF C_C3F7
I i
C2F5 CF3
[0070] などが好ましく挙げられる。
[0071] これらは、本発明の含フッ素アタリレート系重合体 (A1)に、より向上した透明性を 付与できる点で好ましい。
[0072] また R1は、式 (R1— 2— 1)のうちで式 (R1— 2— 2):
[0073] [化 11]
R f 1
I
-CH2C-R f 2 (R iート 2)
[0074] (式中、
Figure imgf000012_0001
Rf2および R14は式 (R1— 2— 1)と同じ)で表される含フッ素アルキル基で あることが好ましぐより具体的には、
[0075] [化 12]
CF3 CF3
i I
― CH2C— CF3 ― CH 2 C— C F 3
I I
C ϊ し
[0076] などが好ましく挙げられる。
[0077] これらは、ガラス転移点をより高く設定できる点で、また希土類金属化合物に対して 分散性に優れる点で好ま ヽ。
[0078] またさらに、 R1は式 (R1—2—3):
[0079] [化 13]
R f 1
— C— R f 2 CR 1 - 2 - 3)
I
R14
[0080] (式中、
Figure imgf000012_0002
Rf2および R14は式 (Rl— 2— 1)と同じ)で表される含フッ素アルキル基で あることが好ましぐより具体的には、 [0081] [化 14]
CF3 CF3 — C— CF3 — c— CF3
H CF3
[0082] などが好ましく挙げられる。
[0083] これらの分枝状の含フッ素アルキル基 GOの例示において、なかでも、
[0084] [化 15]
CF3 CF3
I j
3 ―し Jrlgし し 3
H CH3
[0085] で表される含フッ素アルキル基であること力 より広範囲の希土類金属化合物に対し て分散性に優れ、ガラス転移温度を向上させ、耐熱性に優れた重合体を得ることが できるため好ましい。
[0086] これらの効果により、希土類金属化合物 (B)との組成物の発光 (増幅)強度、発光 ( 増幅)効率を向上させることができる。
[0087] (iii)エーテル結合を有する含フッ素アルキル基
含フッ素アルキレンエーテル構造の部位を有する含フッ素アルキル基であり、具体 的には式(1 1):
[0088] [化 16]
-(OCF2^liTr-(OCF2CFZ1 ^OCF2CF2CF2^3
(1- 1)
~ (リ Cri2Cf 2 t 2') [0089] (Ζ1は Fまたは CF; ml m2 m3 m4は 0または 1 10の整数であって、ただし ml
3
+m2+m3+m4が 1 10の整数)で表される構造を含む含フッ素アルキル基であ る。
[0090] これらの部位を持つ含フッ素アタリレート単量体を用いた本発明の重合体 (A)は、 高いフッ素含有率を有し、透明性が高ぐ希土類金属化合物 (B)との組成物におい て発光 (増幅)強度、発光 (増幅)効率を高くすることができる。
[0091] 式(1 1)の部位を有する側鎖部分 R1は、具体的には、
(1-2):
[0092] [化 17]
Figure imgf000014_0001
(式中、 m5は 1〜5の整数)
[0093] 式(1 3):
[0094] [化 18]
Figure imgf000014_0002
(式中、 m6は 1〜6の整数)
[0095] 式(1 4):
[0096] [化 19]
一し rf 2し i4 ~^XJ C 2 ) """ ml F
(式中、 m7は: L〜8の整数)
[0097] 式(1 5):
[0098] [化 20]
CH2CF OCF2CF2 F
(式中、 m8は 1〜8の整数)
[0099] 式(1 6):
[0100] [化 21]
-CH2C2F4-(OCF2CF2CF2)^F
(式中、 m9は 1〜7の整数)
[0101] 式(1 7): [0102] [化 22]
-CH2CF2- 0CH2CF2CF2^ToF
(式中、 ml 0は 1〜8の整数)
[0103] などがあげられる。
[0104] これらの中でもフッ素含有率が高ぐ希土類金属化合物(B)との組成物において、 発光 (増幅)強度、発光 (増幅)効率をより効果的に高くすることができる点で、式 (1— 2):
[0105] [化 23]
Figure imgf000015_0001
(式中、 m5は 1〜5の整数)
[0106] の側鎖構造のものがより好ましい。
[0107] 本発明の光機能性積層体において、含フッ素アタリレート系重合体 (A1)を構成す る構造単位 Al— 1を与える含フッ素アタリレート (al— 1)としては、具体的には以下の 単量体が好ましく挙げられる。
(al-i)直鎖状の含フッ素アルキル基を有する単量体
[0108] [化 24]
CH2 = C— COO— CH2CF2CF2H、
CH2 = CF - COO - CH2CF2CF2H、
CH3
CH2 = C— COO— CH2 (CF2CF2) 2H、
CH2 = CF-COO-CH2 (CF2CF2) 2H、 C H 3
CH2 = C - COO - CH2CF3
CH2 = CF - COO— CH2CF3
CH3
I
CH2 = C— COO— CH2CF2CF3
CH2 = CF-COO-CH2CF2CF3
[0109] が好ましく挙げられ、なかでも
CH =CF— COO— CH CF CF H、
2 2 2 2
CH =CF— COO— CH (CF CF ) H
2 2 2 2 2
が特に好ましく挙げられる。
[0110] また、
(al-ii)分枝状の含フッ素アルキル基を有する単量体
[0111] [化 25]
CH. CF. CF
CH2=C— COO— CCF3 CH2=CF— COO— CCF
I i
H H
CH3 C 3 C F
CH. C— COO ■ C H ? C― C F ¾ CH2=CF— COO— CH2C_CF3
I
CH3 CH3
Figure imgf000017_0001
CH3 CF3 CF3
C一 COO C-C F CH, F― COO― C一 C F
I CF¾ などが好ましく挙げられ、 なかでも
CF3 CF3
CH2 = CF— COO— CCF3 CH: F— COO_CH2C— C F3
H CH,
[0112] が特に好ましく挙げられる c
(al— iii)エーテル結合を有する含フッ素アルキル基を側鎖にもつ単量体
[0113] [化 26]
CH3
CH2-C-COO-CH2CFOCF2CF2CF3
CF3
CH2 = CF— COO— CH2CFOCF2CF2CF3
CF3
CH2 = C-COO-CH2CFOCF2CFOCF2CF2CF3
CF3 CF3
CH2 = CF-COO-CH2CFOCF2CFOCF2CF2CF3
CF3 CF3 などが挙げられ、 なかでも
CH2 = CF-COO-CH2CFOCF3CF2CF3
CF3
CH2 = CF-COO-CH3CFOCF2CFOCF2CF2CF3
CF3 CF3
[0114] が特に好ましく挙げられる。
[0115] また、含フッ素アタリレート系重合体 (A1)の重量平均分子量は 500— 1, 000, 00 0、さらに ίま 5, 000— 800, 000、特に 10, 000— 500, 000力 ^好まし!/、。
[0116] 本発明の含フッ素アタリレート系重合体 (A1)の好ましい第一は、
(A1— I)ガラス転移温度力 0°C以上でフッ素含有率が 50質量%以上である含フッ 素アクリル重合体である。
[0117] ガラス転移温度が 40°Cより低いと室温で変形して形状安定性に問題があり、また希 土類金属イオンが移動し再分布して相分離を惹き起こすことがある。ガラス転移温度 は、発光素子などにした際に自己発熱によりマトリックスの重合体自体が加熱される ため、耐熱性の点力も好ましくは 65°C以上、さらには 100°C以上である。上限は特に 限定されな 、が、含フッ素アクリル重合体では通常 200°C程度である。
[0118] もちろん、フッ素含有率が高い方が好ましぐ 52質量%以上、特に 55質量%以上 である。フッ素含有率の上限も特に限定されないが、希土類金属イオンとの相溶性を 悪化させない点、および化学構造的な制限から、通常 76質量%程度である。
[0119] 含フッ素アタリレート系重合体 (A1-I)は、なかでも、式(2):
[0120] [化 27]
^ C H 2 - C F ~ ( 2 )
C I O O R f 3
[0121] (式中、 Rf1はエーテル結合を含んでいてもよい炭素数 1一 40の含フッ素炭化水素基 )の構造を含む含フッ素アクリル重合体が、単独重合体でも、さらには共重合体として も、ガラス転移温度が 40°C以上、フッ素含有率が 50質量%以上を示す重合体となり やすぐし力も発光強度も充分高く好ましい。 Rf1としてはエーテル結合を有していて もよ 、炭素数 1一 40の含フッ素アルキル基またはエーテル結合を有して 、てもよ ヽ 炭素数 3— 40の含フッ素ァリール基が好ましくあげられる。
[0122] 上記式(2)の含フッ素アクリル重合体を形成しうる、 ひ位力フッ素原子であるアタリレ ート(以下、「a Fアタリレート」という)としては、たとえばつぎのものが好ましく例示でき る。なお、各モノマーの後の記載は、(略称)そして(単独重合体のガラス転移温度と フッ素含有率 (質量%) )である (以下同様)。
CH =CFCOOCH C F (5FF) (101。C、 51%)、
2 2 2 5
CH =CFCOOCH CF CFHCF (6FF) (70。C、 52%)、
2 2 2 3
CH =CFCOOCH C F H (8FF) (65
2 2 4 8 。C、 56%)、
CH =CFCOOC H C F (17FF) (66
2 2 4 8 17 。C、 64%)、
CH =CFCOOC (CF ) H (HFIP— F) (104
2 3 2 。C、 55%)、
CH =CFCOOC (CF ) C F (147。C、 56%)、 [0123] [化 28]
CH2 = CFCOOCH2CFO-C3F7 (6FOnO) (53Ό、 57%) 、
CF3
CH2 = CFCOOCH2CFO— CF2— CF— O C3F7
CF3 CF3
(6FOn 1) (7 60%)
[0124] なかでも HFIP— F、 8FFは錯体との親和性が高く好ましい。また、 aFアタリレートは、 側鎖に分岐構造をもつものがガラス転移温度を高くすることができる点で好ましい。
[0125] また、含フッ素アタリレート系重合体 (A1— I)は、式(3):
[0126] [化 29]
CH3
I
Figure imgf000020_0001
[0127] (式中、 Rf3はエーテル結合を有していてもよい炭素数 1一 40の含フッ素炭化水素基 でフッ素原子の数が 7個以上)の構造を含む含フッ素メタタリレート重合体が、単独重 合体でもガラス転移温度力 0°C以上、フッ素含有率が 50質量%以上を示し、発光 強度も充分高く好まし 、。 Rf3としてはエーテル結合を有して 、てもよ ヽ炭素数 1一 40 の含フッ素アルキル基またはエーテル結合を有して 、てもよ 、炭素数 3— 40の含フ ッ素ァリール基が好ましくあげられる。
[0128] 式(3)で示される構造を与えるモノマーとしては、たとえばつぎのものが好ましく例 示できる。
CH =C(CH )COOCH CFH (8FM) (47
2 3 2 4 8 。C、 51%)、
CH =C(CH )COOC H C F (17FM) (40。C、 61%)、
2 3 2 4 8 17
CH =C(CH )COOC(CF ) (9FtBuM) (156。Cゝ 56%)、
2 3 3 3
CH =C(CH )COOC(CF ) C F (132。C、 52%) [0129] なかでも 8FMは錯体との親和性が良く好ましい。また、含フッ素メタタリレートは、側 鎖に分岐構造をもつものがガラス転移温度が高くなることから好ましい。
[0130] またさらに、含フッ素アタリレート系重合体 (A1-I)は、前記《Fアタリレートと前記含 フッ素メタタリレートとの共重合体であっても良ぐ共重合の組成および共重合比は、 ガラス転移温度が 40°C以上でフッ素含有率が 50質量%以上の共重合体となる組成 と共重合比が選択される。
[0131] この場合の、好ましい共重合体の組合せとしては、 HFIP— Fと 8FMの共重合体、 6
FONOと 8FMの共重合体、 17FFと 8FMの共重合体などの組合せが、発光強度や 機械的強度に優れる点力も好ましい。
[0132] 含フッ素アタリレート系重合体 (A1— I)には、前記例示の a Fアタリレートおよび Zま たは含フッ素メタタリレートにカ卩えて、共重合可能な他のモノマーを導入しても良い。
[0133] 他のモノマーとしては、得られる共重合体のガラス転移温度力 0°C以上でフッ素含 有率が 50質量%以上の共重合体となる組成と共重合比を選択する。
[0134] 他のモノマーとしては、たとえばつぎのものが例示できる。
CH =C (CH ) COOCH (MMA) (120。Cゝ 0%)、
2 3 3
CH =C (CH ) COOCH C (CF ) H (6FiP— M) (72°C、 48%)、
2 3 2 3 2
CH =C (CH ) COOCH C (CF ) CH (6FNPM) (120。Cゝ 43%)、
2 3 2 3 2 3
CH =CFCOOCH CF (3FF) (125。C、 44%)、
2 2 3
CH =CFCOOCH C (CF ) CH (6FNPF) (135。C、 49%)、
2 2 3 2 3
CH =CFCOOC (CH ) H (IP— F) (93。C、 14%)、
2 3 2
CH =CFCOOC F (PFPh-F) (160。C、 45%)
2 6 5
[0135] 他のモノマーとしては、なかでも MMAが機械的強度が向上改善される点で好まし い。また、 6FNPM、 6FNPF、 PFPh— Fはフッ素含有率をほとんど低下させずにガラ ス転移点を上げられる点で好まし 、。
[0136] また、好まし!/、共重合体の組合せとしては、 HFIP— Fと MMAの 2元共重合体、 HF IP— Fと MMAと 6FNPFの 3元共重合体、 5FFと 6FNPFの 2元共重合体などの組合 せが、機械的強度と発光強度のバランスが良好な点力も好ましい。
[0137] 本発明の含フッ素アタリレート系重合体 (A1)の好ましい第二は、 (Al-II)ガラス転移温度が 100°C以上でフッ素含有率が 30質量%以上かつ 50質量
%未満である含フッ素アクリル重合体である。
[0138] ガラス転移温度が 100°Cより高い場合、フッ素含有率が比較的小さくても充分な発 光強度が得られる。もちろん、フッ素含有率が高い方が好ましぐ 35質量%以上、特 に 40質量%以上である。
[0139] ガラス転移温度の上限は特に限定されないが、含フッ素アクリル重合体では通常 2
00°C程度である。
[0140] 含フッ素アクリル重合体 (A1— II)の具体例としては、つぎのものがあげられる。
[0141] (Al-IIa)含フッ素アクリル系モノマーの単独重合体:
式(1)で示される構造を与えるモノマーのうち、単独重合体で 100°C以上でフッ素 含有率が 30質量%以上かつ 50質量%未満を満たすものとしては、たとえば前記の(
A1—I)で例示した 3FF (125°C、 44%)、 6FNPF (135°C、 49%)、 PFPh— F (160
。C、 45%)、 6FNPM (120°C、 43%)などがあげられる。
[0142] なかでも 6FNPFおよび 6FNPMは希土類金属化合物、特には希土類金属錯体と の親和性が高く好ましい。また、得られる含フッ素アクリル重合体は、側鎖に分岐構 造をもつものがガラス転移温度が高くなることから好ましい。
[0143] (Al-IIb)前記(A1— Ila)で示す含フッ素アクリル系モノマー同士または他の含フッ 素アクリル系モノマーとの共重合体:
共重合の組成および共重合比は、ガラス転移温度が 100°C以上でフッ素含有率が
30質量%以上かつ 50質量%未満の共重合体となる組成と共重合比を選択する。
[0144] 他の含フッ素アクリル系モノマーとしては、たとえば 6FiP— M、 IP— Fなどがあげられ る。
[0145] また、好ましい共重合体の組合せとしては、 3FFと 6FNPMの共重合体、 PFPh— F と 6FNPMの共重合体、 6FNPFと 6FNPMの共重合体などの組合せが、発光強度 や機械的強度が良好な点力も好ましい。また、他の含フッ素アクリル系モノマーとして 6FiP— Mや IP— Fを使用するときは、ガラス転移温度を低下させずに機械的強度を 付与できる点から好ましい。
[0146] (Al-IIc)前記(A1— Ila)で示す含フッ素アクリル系モノマーと非フッ素系アクリル系 モノマーとの共重合体:
非フッ素系アクリル系モノマーとしては、得られる共重合体のガラス転移温度が 100 °C以上でフッ素含有率が 30質量%以上かつ 50質量%未満の共重合体となる組成と 共重合比を選択する。
[0147] 非フッ素系アクリルモノマーとしては、たとえば MMA(120°C、 0%)は機械的強度 を改善できる点で特に好まし 、。
[0148] 好ましい共重合体としては、たとえば 6FNPMと MMAの 2元共重合体、 6FNPFと MMAの 2元共重合体、 6FNPMと MMAと IP— Fの 3元共重合体、 6FNPFと MMA と IP— Fの 3元共重合体が、さらに MMAと 5FFの 2元共重合体が、機械的強度と発 光強度のバランスが良好な点力も好ましく例示できる。
[0149] 本発明の含フッ素アクリル重合体 (A1)の好ましい第三は、
(A1— III)前記含フッ素アタリレート(al— 1)由来の構造単位に加えて、多官能アタリ レート(al— 2)由来の構造単位を有することを特徴とする重合体である。
[0150] その多官能アタリレート (al— 2)由来の構造単位を導入することで、希土類金属化 合物との組成物からなる光機能性光学材料の発光 (増幅)強度および発光 (増幅)効 率を大幅に向上させることができる。
[0151] 多官能アタリレート (al— 2)は、式 (4):
[0152] [化 30]
CH2 = CX2-C-0-R2- 0-C-CX3 = CH21 nl (4)
II II
〇 o
[0153] (式中、 X2、 X3は同じかまたは異なり、 H、 F、 Cl、 CHまたは CF; nlは 1一 6の整数;
3 3
R2は炭素数 1一 50の (nl + 1)価の有機基)から選ばれる少なくとも 1種である。
[0154] 式 (4)の多官能アタリレートにおいて X2および X3は H、 CH、 F、 CFまたは Cl、特
3 3
に CH、 Fが好ましぐさらには Fが好ましい。
3
[0155] R2は、炭素数 1一 50の(nl + 1)価の有機基であり、具体的には、
(1)直鎖状または分枝状のエーテル結合を有して 、てもよ 、 (nl + 1)価の有機基、
(2)芳香族環状構造を有する (nl + 1)価の有機基、 (3)脂肪族環状 (単環または多環)構造を有する (nl + 1)価の有機基、
(4)ウレタン結合を含む (nl + 1)価の有機基
などが挙げられ、これら有機基において、炭素一水素結合を形成する水素原子の一 部またはすべてがフッ素原子で置換されたものであってもよい。
[0156] まず、上記 R2のそれぞれの好ましい態様について、具体例を挙げて説明する。
[0157] (1)直鎖状または分枝状のエーテル結合を有して 、てもよ 、 (nl + 1)価の有機基: 前記多官能アタリレート (al-2)を示す式 (4)における nl = 1のもの(二官能アタリ レート)としては、たとえば
式 (R2 - 1):
(CH) — ((CCFF)) —- ((C( (CH)) - (R2-1)
2 p2
(式中、 pl+p2+p3 = 、30)で示される有機基が例示できる c
[0158] 具体例としては、
-CH CH
2 2
-CH CH(CH )
2 3
-CH CH CH(CH )
2 2 3
(CH)
2 4
(CH)
2 6
一(CH) (CF) (CH)
2 2 2 2 2 2
一(CH) (CF) (CH)
2 2 2 4 2 2
一(CH) (CF) (CH)
2 2 2 6 2 2
-CHC(CH) CH—
2 3 2 2
などがあげられる。
[0159] また、式 (R2— 1— 1):
[0160] [化 31]
CH2
I
CHCH20- CH2) pi (CF2†- -fCH2- 30CHECH は 2— 1) OH OH
[0161] (式中、 pl p2 P3は前記式 (R2-1)と同じ)も挙げられる。 [0162] より具体的には、
[0163] [化 32]
— C H し ri2
I I
HOCHCH2OCH2CH2OCH2CHOH,
-CH, CH3 CH2-
I ! I
HOCHCH2OCH2CHOCH3CHOH,
Figure imgf000025_0001
CH2 CH2 -
HOCHCH2OCHi-tCF2- - 4CH2OCH2CHOH,
― C C
1 I
HOCHCH2OCH2— ^CF3 iCH2OCH2CHOH,
-CH2 CH2-
I I
H O C H C H 2 O C H 2 C H C F C H 2 C H 2 O C H 2 C H O H、 — CH2 CHつ一
! I
HOCHCH2OCH2CHi" CF3 -4CH2CH2OCH2CHOH, 一 CH2 CH2
I I HOCHCH2OCH2CHj-<CF3-^-6CH2CH2OCH2CHOH,
-CH2 CH2
! I
HOCHCH2OCH2CHj-(CF2 -8CH2CH2OCH2CHOH
[0164] などが好ましく挙げられる。
[0165] その他、式 (R2— 1— 2)、 (R2-1-3): [0166] [化 33]
"CHCH2-fOCHCH2- - :OCHCH2- (R2 - 1 - 2)
-CH2 Z1S Z16 Z17 CH2 -
HOCHCH2OCHCH2 OCHCHiT ^OCHCH2OCH2CHOH
(R 2 - 1 - 3}
[0167] (式中、 p4は 0または 1一 20の整数、 Z15、 Z16、 Z17は同じかまたは異なり、 Hまたは CH
)なども挙げられる。
3
[0168] また、 nl= 2以上(三官能以上)のものとしては、式 (R2— 2):
[0169] [化 34]
— し (R 2 - 2 )
Figure imgf000026_0001
[0170] (式中、 p5は 0または 1、 5の整数)があげられる。
[0171] 具体的には、
[0172] [化 35]
し h2_
― !
ϊ I 2 H 2
i
CH,—
Figure imgf000026_0002
[0173] などが挙げられる。
[0174] また、式 (R2— 2)以外のものとして、たとえば [0175] [化 36]
C H 2―
I
HgCH2Cし H2― 、
CH2 -
CH2- CH2
I i
CH3CH2CCH2OCH2CCH2CH3
CHt2— iiH2
[0176] などが挙げられる。
[0177] また、含フッ素アルキレン基を含むものとして、式 (R2— 3)、(R2— 4):
[0178] [化 37]
-CH2 CH2-
I I
-CH-(CH2) p6 (CF2) p 7 (CHiTTiCH— (R2— 3) 、
™CH2 CH2
-CHCH¾0- CH2) p6 (CF2) P 7 (CH^"TsOCH2CH— (R2-4)
[0179] (式中、 p6、 p8は同じかまたは異なり、 1一 10の整数; p7は 1一 30の整数)などが挙 げられる。
[0180] 具体的には、
[0181] [化 38]
I I
一 CHCH C F 2 -)— 2 C H 2 C H— 、
— CH2 し H2
I ί
一 CHCH CF2 CH2CH— 、
~CH2 CH2-
- CHCH CF2 6CH20H - 、
Figure imgf000028_0001
— C H 2 C H 2
I !
-CHCH2OCH2CHi~ CF2-^-2CH2CH2OCH2CH- 、
-CH2 CH2
I !
-CHCH2OCH2CHi-(CF2--4CH2CH2OCH2CH- 、
Figure imgf000028_0002
— CH2 CH2-
I f I
-CHCH2OCH2CHr- CFj-7CH2CH2OCH2CH-
[0182] などが好ましく挙げられる。
[0183] R2としてこれら例示の直鎖または分枝状のアルキレン基力もなる二価以上の有機 基は、重合体に柔軟性や弾性を付与できる点で好ましい。また、希土類金属化合物 (B)との相溶性に優れる点で好ましい。さらにフッ素原子を導入する際、高含有率で 導入でき、発光 (増幅)強度、発光 (増幅)効率の点で有利となるため好ましい。
[0184] (2)芳香族環状構造を含む (nl + 1)価の有機基:
たとえば、式 (R2— 5):
[0185] [化 39]
Figure imgf000029_0001
[0186] (式中、 R21および R22は同じ力または異なり、炭素数] '5のアルキル基または炭素数
722 >
'5の含フッ素アルキル基; Z21および Z22は同じかまたは異なり、炭素数 1一 5のアル キル基、炭素数 1一 5の含フッ素アルキル基、官能基、水素原子またはハロゲン原子 ; rlおよび r2は同じ力または異なり、 1一 4の整数)で表わされる部位を含む二価の有 機基、
または式 (R2— 6):
[0187] [化 40]
Figure imgf000029_0002
[0188] (式中、 R23、 R24、 R25および R26は同じかまたは異なり、炭素数 5のアルキル基また は炭素数 1一 5の含フッ素アルキル基; Z23は炭素数 1一 5のアルキル基、炭素数 1一 5の含フッ素アルキル基、官能基、水素原子またはハロゲン原子; r3は 1一 4の整数) で表わされる部位を含む二価の有機基があげられる。
[0189] そのほか、つぎの式 (R2— 7)— (R2-11)で表わされる部位を含む二価の有機基も あげられる。
[0190] 式 (R2— 7): [0191] [化 41]
Figure imgf000030_0001
[0192] 式 (R2— 8) :
[0193] [化 42]
Figure imgf000030_0002
[0194] 式 (R2— 9) [0195] [化 43]
Figure imgf000030_0003
[0196] 式 (R2—10) [0197] [化 44]
Figure imgf000030_0004
[0198] 式 (R2—11) [0199] [化 45]
Figure imgf000031_0001
[0200] 上記式中、 R27
Figure imgf000031_0002
R29および R3°は同じ力または異なり、炭素数 1一 5のアルキル 基または炭素数 1一 5の含フッ素アルキル基; R31および R32は同じ力または異なり、炭 素数 1一 5のアルキル基、炭素数 1一 5の フッ素アルキル基、水素原子; Z24、 Z25お よび Z26は同じ力または異なり、炭素数 1一 5のアルキル基、炭素数 1一 5の含フッ素ァ ルキル基、官能基、水素原子またはハロゲン原子; r4および r5は同じ力または異なり 、 1一 4の整数; r6は 1一 2の整数; r7および r8は同じかまたは異なり、 1一 3の整数で あり、同じ符号であっても式が異なれば別異の基や整数をとりうる。
[0201] 式 (R2— 5)の具体例としては、
Figure imgf000032_0001
[0203] [化 47] H
Figure imgf000033_0001
CH2CH2
~ CH2CH2
Figure imgf000033_0002
[0204] (式中、 、 r5は同じかまたは異なり、 1一 10の整数; Z21
Figure imgf000033_0003
rl、 r2は前記式 (R2-
5)と同じ)などが好ましく挙げられる。
[0205] (R2— 6)の具体例としては、
[0206] [化 48]
Figure imgf000034_0001
[0207] (式中、 Z 、 r3は前記式 (R2— 6)と同じ)などが好ましく挙げられる。
[0208] 式 (R2— 7)の具体例としては、 [0209] [化 49]
Figure imgf000035_0001
[0210] (式中、 Z24、 T r4および r5は前記式 (R2— 7)と同じ)などが好ましく挙げられる。
[0211] 式 (R2— 8)の具体例としては、 [0212] [化 50]
Figure imgf000036_0001
[0213] などが好ましく挙げられる。
[0214] 式 (R2— 9)の具体例としては、 [0215] [化 51]
Figure imgf000037_0001
Figure imgf000037_0002
[0216] (式中、 Z 4 r4および r5は前記式 (R2— 9)と同じ)などが好ましく挙げられる。
[0217] 式 (R2— 10)の具体例としては、
Figure imgf000038_0001
Figure imgf000038_0002
£J0
Figure imgf000038_0003
[2S^ ] [8 ISO] οεε簡 soozdf/ェ:) d ζε ΐΐΟΟΟΐ/SOOZ OAV [0219] [化 53]
Figure imgf000039_0001
H
Figure imgf000039_0002
Figure imgf000039_0003
C一 OCH2CH—
CH3
[0220] (式中、 Z 、 Z 、 r7および r8は前記式 (R2- 10)と同じ)などが好ましく挙げられる。
[0221] 式 (R2— 11)の具体例としては、
4]
Figure imgf000040_0001
Figure imgf000040_0002
Figure imgf000040_0003
[0223] [化 55]
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0003
―りし し J L一
CH3
[0224] (式中、 ZM、 ZA ZA r6、 r7および r8は前記式 (R2— 11)と同じ)などが好ましく挙げ られる。
[0225]
Figure imgf000041_0004
Z25および Z26の具体例としては、たとえば水素原子、フッ素原子、 メチル基などが例示できる。
[0226] これらの芳香族環状構造を有する二価以上の有機基は、耐熱性と機械的特性に 優れる点で好ましぐガラス転移点を高く設定でき、その結果、発光 (増幅)強度、発 光 (増幅)効率を向上できる点で好ま 、。
[0227] なかでもフッ素原子を有するものが、通信用の光増幅時において、近赤外領域の 光に対して透明性が高い点で好ましい。また、フッ素原子の導入は、さらに発光効率 、増幅効率にぉ 、て効果的に作用するため好ま 、。
[0228] (3)脂肪族環状 (単環または多環)構造を有する (nl + 1)価の有機基:
具体的には、式 (R2— 12) :
[0229] [化 56]
Figure imgf000042_0001
[0230] (式中、 R33および R34は同じ力または異なり、炭素数 1一 5のアルキル基または炭素数 1一 5の含フッ素アルキル基; Z27および Z28は同じかまたは異なり、炭素数 1一 5のアル キル基、炭素数 1一 5の含フッ素アルキル基、官能基、水素原子またはハロゲン原子 ; siおよび s2は同じ力または異なり、 1一 4の整数)で表わされる部位を含む二価の 有機基、または式 (R2— 13) :
[0231] [化 57]
Figure imgf000042_0002
[0232] (式中、 R35、 R36、 R37および R38は同じかまたは異なり、炭素数 1一 5のアルキル基また は炭素数 1一 5の含フッ素アルキル基; Z29は炭素数 1一 5のアルキル基、炭素数 1一 5の含フッ素アルキル基、官能基、水素原子またはハロゲン原子; s3は 1一 4の整数) で表わされる部位を含む二価の有機基があげられる。
[0233] そのほか、つぎの式 (R2—14)—(R2—18)で表わされる部位を含む二価の有機基 ちあげられる。
[0234] 式 (R2— 14) : [0235] [化 58]
Figure imgf000043_0001
[0242] 式 (R2— 18): [0243] [化 62]
Figure imgf000044_0001
R42
[0244] 上記式中、 R39、 R4°、 R41および R42は同じ力または異なり、炭素数 1一 5のアルキル 基または炭素数 1一 5の含フッ素アルキル基; R43および R44は同じ力または異なり、炭 素数 1一 5のアルキル基、炭素数 1一 5の含フッ素アルキル基、水素原子; Z3°、 Z31お よび Z32は同じ力または異なり、炭素数 1一 5のアルキル基、炭素数 1一 5の含フッ素ァ ルキル基、官能基、水素原子またはハロゲン原子; s4および s5は同じ力または異なり 、 1一 4の整数; s6は 1一 2の整数; s7および s8は同じかまたは異なり、 1一 3の整数で あり、同じ符号であっても式が異なれば別異の基や整数をとりうる。
[0245] 式 (R2— 12)の具体例としては、
3]
Figure imgf000045_0001
— C H 2 (ム Z28)s2 CH2 - HOCHCH, O OCH2CHOH
[0247] [化 64]
Figure imgf000046_0001
[0248] (式中、 s4 s5は同じかまたは異なり、 10の整数; Z27
Figure imgf000046_0002
sl s2は前記式 (R2 -12)と同じ)
などが好ましく挙げられる。
[0249] (R2— 13)の具体例としては、
[0250] [化 65]
Figure imgf000047_0001
[0251] (式中、 Z29、 s3は前記式 (R2-13)と同じ)などが好ましく挙げられる。
[0252] 式 (R2— 14)の具体例としては、 [0253] [化 66]
Figure imgf000048_0001
[0254] (式中、 Z3° s4および s5は前記式 (R2— 14)と同じ)などが好ましく挙げられる。
[0255] 式 (R2— 15)の具体例としては、 [0256] [化 67]
Figure imgf000049_0001
[0257] などが好ましく挙げられる。
[0258] 式 (R2— 16)の具体例としては、 [0259] [化 68]
Figure imgf000050_0001
Figure imgf000050_0002
[0260] (式中、 Z3° Z31 s4および s5は前記式 (R2— l6)と同じ)などが好ましく挙げられる。
[0261] 式 (R2-17)の具体例としては、 [0262] [化 69]
Figure imgf000051_0001
Figure imgf000051_0002
Figure imgf000051_0003
[0263] [化 70]
Figure imgf000052_0001
HO
Figure imgf000052_0002
Figure imgf000052_0003
[0264] (式中、 Z3°、 Z31、 s7および s8は前記式 (R2-l7)と同じ)などが好ましく挙げられる c [0265] 式 (R2— 18)の具体例としては、
[0266] [化 71]
Figure imgf000053_0001
Figure imgf000053_0002
c c————
Figure imgf000053_0003
[0267] [化 72]
Figure imgf000054_0001
nリ
Figure imgf000054_0002
Figure imgf000054_0003
[0268] (式中、 Z3U ZA ZA s6 s7および s8は前記式 (R2— 18)と同じ)などが好ましく挙げ られる。
[0269]
Figure imgf000054_0004
Z3° Z31および Z32の具体例としては、たとえば水素原子、フッ素原子、 メチル基などが例示できる。
[0270] これらの脂肪族環状構造を有する二価以上の有機基は、ガラス転移温度を高く設 定でき、耐熱性、機械的特性に優れる点で好ましい。また、発光の励起光に通常に 用いられる紫外光に対して、透明性が高い点で好ましぐ結果的に発光 (増幅)強度 、発光 (増幅)効率を向上できるため特に好ましい。また、耐紫外線性にも優れる点で 好ましい。 [0271] なかでもフッ素原子を有するものが、通信用の光増幅時において、近赤外領域の 光に対して透明性が高い点で好ましい。また、フッ素原子の導入は、さらに発光効率 、増幅効率にぉ 、て効果的に作用するため好ま 、。
[0272] (4)ウレタン結合を含む (nl + 1)価の有機基
具体的には、
[0273] [化 73]
-C
Figure imgf000055_0001
— CH2CH CH2CH2- CH2CH
Figure imgf000055_0002
CH2CH2-
[0274] などの有機基が挙げられる。
[0275] 以上に R2を中心に説明した力 式 (4)で示される多官能アタリレート (al— 2)の具体 例としては次のものが例示できる。
4] 2
Figure imgf000056_0001
C H 2 = C F— C 04C H2 OC— CF = CH,
o II o '
CH CH
CH2 = C-CO- CH26 Of — C = CH2
〇 O
CH2 = CF— C04CH OC-CF = CH2
M ii
O O 、
、 H 2
Figure imgf000056_0002
CH2 = CF-CO- CH2)-^-(CF-5)- -(CH5)-2OC-CF-CH2
& O 、
75] H.
Figure imgf000057_0001
O
CH,OC-CF = CH-
CH, = C-COCH,CCH,0 (0 = C CF = CH
O CH2OC C F = CH
O
Figure imgf000057_0002
O
CH2OC-CF=CH2
CH,CH2CCH„0 (0 = C)-C F = CH.
CH2OC-C F = CH2
Figure imgf000057_0003
O
CH, = C FCOOCH CH,OC-CF = CH.
CH2 = C FCOOCHCHi~~fCF2-— 4CH2CHO -CF = CH2
O
Figure imgf000058_0001
Figure imgf000058_0002
O
0 = d 3-BoH02H05- Ed D^— 'HOHOOOOJ D = 2HO
eH3 = d0-0OEH0 HDOODdO='HO
O 6HD
sHD
Figure imgf000058_0003
[9Z^ ] [8Z20] οε oo/soo df/iDd HOOOl/SOOZ OAV
Figure imgf000059_0001
〔〕〔U027977 78]
H?
Figure imgf000060_0001
O O
Figure imgf000060_0002
[0281] [化 79]
——广
Figure imgf000061_0001
Figure imgf000061_0002
[0282] [化 80]
CF, CF,
CH,=CFCO- OHO ■OCCF=CH.
O CF, CF3 O
Figure imgf000061_0003
[0283] [化 81]
Figure imgf000062_0001
O
Figure imgf000062_0002
[0284] [化 82]
Figure imgf000062_0003
[0285] [化 83]
Figure imgf000063_0001
O O
Figure imgf000063_0002
[0286] [化 84]
Figure imgf000063_0003
Figure imgf000063_0004
[0287] [化 85]
Figure imgf000064_0001
O
Figure imgf000064_0002
[0288] [化 86]
Figure imgf000064_0003
Figure imgf000064_0004
[0289] [化 87]
Figure imgf000065_0001
[0290] などの多官能アタリレートイ匕合物が好ましく挙げられる。
[0291] 本発明の光機能性積層体に用いる含フッ素アタリレート系重合体 (A1— III)は、前 記含フッ素アタリレート(al—l)と多官能アタリレート (al— 2)に加えて、必要に応じ、 任意の単量体 (n)を共重合し、任意の構造単位 Nを導入してもよ ヽ。
[0292] 任意の単量体 (n)は、(al—l)、(al— 2)と共重合可能なものであれば制限されな いが、通常、(al— 1)、(al— 2)以外のアタリレート系単量体、(メタ)アクリル酸類、含 フッ素アクリル酸類、マレイン酸誘導体、塩化ビニル、エチレン類、スチレン誘導体、 ノルボルネン誘導体など力 選択され、フッ素含有率を低下させすぎな 、範囲で導 入される。
[0293] これら任意の構造単位 Nは、例えば、希土類金属化合物 (B)との分散性、相溶性 を改善する目的、基材との密着性を改善する目的、他素材の基材との密着性を改善 する目的、耐熱性や機械的特性を改善する目的、屈折率や透明性を調整する目的 などのため導入される。
[0294] なかでも具体的には、(al— 1)、(al— 2)以外のアタリレート系単量体、(メタ)アタリ ル酸類、含フッ素 (メタ)アクリル酸類、マレイン酸誘導体などの単量体由来の構造単 位力 選ばれるのが好まし!/、。
[0295] アタリレート系単量体としては、直鎖または分枝状の炭素数 1一 20のアルキル基を 側鎖に有する (メタ)アタリレート系単量体、具体的にはメチルメタタリレート (MMA)、 メチルアタリレート(MA)、ェチルメタアタリレート(EMA)、ェチルアタリレート(EA)、 イソプロピルメタアタリレート、イソプロピルアタリレート、ブチルメタアタリレート、ブチル アタリレート、へキシルメタアタリレート、へキシルアタリレート、ォクタデシルメタアタリレ ート、ォクタデシルアタリレートなどが好ましく挙げられる。
[0296] また、側鎖にヒドロキシル基、エポキシ基、カルボキシル基などの官能基を有する( メタ)アタリレート系単量体、具体的には、ヒドロキシェチルメタアタリレート(HEMA)、 ヒドロキシェチルアタリレート、グリシジルメタアタリレート(GMA)、グリシジルアタリレ ートなども挙げられる。
[0297] また、芳香族環状構造を含む炭素数 3— 20の炭化水素基を側鎖に有する (メタ)了 タリレート系単量体、例えばベンゼン環構造、ナフチル環構造、複素環構造などを側 鎖に含むもの、具体的には、フエ-ルメタアタリレート、フエ-ルアタリレート、ベンジル メタアタリレート、ベンジルアタリレート、ナフチルメタアタリレート、ナフチルアタリレート なども挙げられる。
[0298] また、脂肪族環状構造を含む炭素数 3— 20の炭化水素基を側鎖に有する (メタ)了 タリレート系単量体、例えば、シクロへキシル構造、ノルボルナン構造、デカリン構造、 ァダマンチル構造などを側鎖に含むもの、具体的には、シクロへキシルメタアタリレー ト、シクロへキシルアタリレート、ァダマンチルメタアタリレート、ァダマンチルアタリレー ト、メチルァダマンチルメタアタリレート、メチルァダマンチルアタリレート、ェチルァダ マンチルメタアタリレート、ェチルァダマンチルアタリレートなども挙げられる。
[0299] (メタ)アクリル酸類および含フッ素 (メタ)アクリル酸類としては、例えばメタアクリル 酸、アクリル酸、 α—フロロアクリル酸、 α—トリフロロメチルアクリル酸などが挙げられる
[0300] マレイン酸誘導体としては、マレイン酸、無水マレイン酸、マレイン酸モノエステル類
(例えば、マレイン酸モノメチルエステル、マレイン酸モノェチルエステル、マレイン酸 モノプロピルエステルなど)、マレイン酸ジエステル類(例えば、マレイン酸ジメチルェ ステル、マレイン酸ジェチルエステル、マレイン酸ジプロピルエステルなど)などが好 ましい。
[0301] 本発明の光機能性積層体に用いる含フッ素アタリレート系重合体は前記含フッ素 アタリレート(al— 1)と多官能アタリレート (al-2)を重合してなるものであって、単量 体(al— 1)由来の構造単位 A1— 1と単量体(al— 2)由来の構造単位 A 1— 2を必須成 分とし、構造単位 Al— 1を 20— 99. 9モル0 /0、構造単位 A1— 2を 0. 1— 80モル0 /0含 むものである。
[0302] 本発明の光機能性積層体に用いる含フッ素アタリレート系重合体は、多官能アタリ レート(al— 2)の構造単位 A1— 2を含むことに特徴があり、それによつて、光機能性 積層体の発光 (増幅)強度、発光 (増幅)効率を大きく向上できる。
[0303] 一方、構造単位 A1— 1を導入することで、重合体のフッ素含有率を向上させること 力 Sでき、それによつてもさらに光機能性積層体の発光 (増幅)強度、発光 (増幅)効率 を向上できる。
[0304] 本発明の含フッ素アタリレート系重合体のフッ素含有率は、好ましくは 20質量%以 上、より好ましくは 30質量%以上、特に好ましくは 50質量%以上である。
[0305] 構造単位 A1—1と A1—2の好ましい存在比率は、単量体(al—l)、 (al—2)の種類 によって異なるが、構造単位 Al— 1/A1— 2モル比率で、 30/70— 99/1モル比、 より好ましくは 40Z60— 98Z2モル比、特に好ましくは 50Z50— 95Z5モル比であ る。
[0306] 構造単位 A1—1の比率が少なすぎると含フッ素アタリレート系重合体 (A1)中のフッ 素含有率が低下してしまい、充分な発光 (増幅)強度、発光 (増幅)効率が得られにく くなる傾向にある。
[0307] 構造単位 A1— 2の比率が少なすぎると、重合体分子自体の運動性を抑制すること が困難となり、結果的に充分な発光 (増幅)強度、発光 (増幅)効率が得られに《な る傾向にある。
[0308] 逆に構造単位 A1— 2の比率が大きくなりすぎると、含フッ素アタリレート系重合体 (A 1)自体の機械的物性が低下、例えば脆くなつたり、また、希土類金属化合物 (B)との 相溶性が低下し、相分離などを起こし、発光 (増幅)強度、発光 (増幅)効率への効果 を低下させてしまう傾向にある。
[0309] 任意の構造単位 Nは、構造単位 A1— 1、 A1— 2による、発光 (増幅)強度、発光 (増 幅)効率に対する効果を損なわない範囲で導入され、通常、含フッ素アタリレート系 重合体 (Al)の全単量体に占める割合を 60モル%以下、好ましくは 50モル%以下、 より好ましくは 30モル%以下、特には 10モル%以下とするのが好ましい。
[0310] 本発明の光機能性積層体において、光機能性層(L1)における含フッ素ポリマー( A)の好ましい第二は、硬化性の部位を側鎖又は主鎖末端に有する含フッ素ポリマ 一(A2)である。
[0311] 硬化性部位を有する含フッ素ポリマー(A2)としては、 WO02Z72706公報や WO 2004Z016689公報に記載と同様のもの力 具体的に好ましく挙げられる。
[0312] さらに、本発明の光機能性積層体において、光機能性層 (L1)における含フッ素ポ リマー (A)の好ま ヽ第三は、光機能性層 (L1)に用いる希土類金属化合物 (B)中 の希土類金属イオンと配位結合することが可能な官能基または錯体形成可能な官能 基を側鎖又は主鎖末端に有する含フッ素ポリマー (A3)である。
[0313] 錯形成可能な官能基を有する含フッ素ポリマー (A3)としては、 WO02/72696公 報や WO03Z91343公報に記載と同様のもの力 具体的に好ましく挙げられる。
[0314] つぎに、本発明の光機能性積層体において、光機能性層 (L1)に用いる希土類金 属化合物について説明する。
[0315] 希土類金属化合物(B)に用いられる希土類元素は、周期律表にお 、て了クチユウ ムを除くスカンジ-ゥム族元素とランタノイドの 17種の元素力 選ばれる少なくとも 1種 であり、なかでも、エルビウム(Er)、ツリウム (Tm)、プラセォジゥム(Pr)、ホルミウム( Ho)、ネオジゥム(Nd)、ユーロピウム(Eu)、セリウム(Ce)、サマリウム(Sm)、ジスプ 口シゥム(Dy)、テルビウム (Tb)などが好ましく挙げられる。
[0316] これらのなかから、発光、光増幅および波長変換などの用途に応じ、また必要とす る光の種類 (波長)に応じて用いる希土類元素の種類が選択される。
[0317] 例えば、波長 1300— 1550nmの近赤外光を用いた光通信の光増幅用途では、近 赤外領域の蛍光発生能を有する希土類元素から選択するのが好ましい。
[0318] 具体的には、プラセォジゥム(蛍光波長: 1300nm)、エルビウム(蛍光波長:1550 nm)などの希土類元素があげられ、波長 850nmの近赤外光を用いた光通信の光増 幅用途では、ネオジゥム(蛍光波長: 850nm)が好ましい。波長 650nmの可視光を 用いた光通信の光増幅用途では、ユーロピウム (蛍光波長: 615nm)などが好まし ヽ [0319] 発光素子および波長変換材料としての用途では、それぞれ必要とする波長の光を 蛍光として発生する希土類元素が選択される。
[0320] 例えば、発光用途では、緑色発光のテルビウム (蛍光波長: 532nm)、赤色発光の ユーロピウム(蛍光波長: 615nm)など力も選択するのが好まし 、。
[0321] 本発明の光機能性積層体中における希土類金属化合物 (B)とは、希土類金属錯 体 (配位子と錯体を形成している状態)(B1)、希土類付活無機蛍光体 (無機塩中に 付活された状態)(B2)、希土類金属イオン (通常のイオン結合で存在した状態)(B3 )のことであり、なかでも希土類金属錯体、希土類付活無機蛍光体が好ましい。なか でも特に、希土類金属錯体が好ましい。
[0322] 以下、各希土類金属化合物について説明する。
[0323] (B1)希土類金属錯体
希土類金属錯体はそれ自体の発光 (増幅)効率が高く、また本発明で用いる含フッ 素ポリマー (A)との分散性、相溶性に優れる点で好ましい。
[0324] つまり、通常、希土類金属錯体は、希土類元素に 1つ以上の配位子が配位結合し たものであり、希土類金属イオンと比べ、希土類元素の周りを配位子がとり囲んでい る。そのため励起した希土類元素が発光する過程で、その蓄えられた希土類元素の エネルギーが周りのマトリックス分子(ポリマー分子など)へ逃げるのを抑えられ、その 結果、希土類金属力もの発光強度 ·発光効率が増大するものである。
[0325] 希土類金属錯体の配位子は、 π電子を有する原子 (例えばへテロ原子など)ゃ不 飽和結合などを含むものであれば無機系、有機系のいずれのものであってもよいが 、炭素 -炭素二重結合、炭素 -へテロ原子間の二重結合、ヘテロ原子 -へテロ原子 間二重結合を有する有機系化合物であることが、特に、本発明に用いる含フッ素ポリ マー (Α)への分散性や相溶性に優れる点で好まし!/、。
[0326] さら〖こは、配位子自体ァ-オンを形成し、希土類金属イオン (カチオン)と配位結合 とイオン結合を形成する電荷補償タイプの配位子を含むことが希土類金属錯体の安 定性、耐熱性、耐紫外線性に優れる点で好ましい。
[0327] 電荷補償タイプの配位子は具体的には、例えば、式 (bl): [0328] [化 88]
Figure imgf000070_0001
(式中、 、 Y 2は同じかまたは異なり、 c oまたは o= s =o ;
I I
[0329] X11は水素原子、重水素原子、フッ素原子、炭素数 1一 20の炭化水素基、および水 素原子の一部またはすべてがフッ素原子に置換されてなる炭素数 1一 20の含フッ素 炭化水素基から選ばれるもの)で示される構造単位を有するもの、
式(b2):
[0330] [化 89]
Figure imgf000070_0002
[0331] (式中、 Υ Υ2は式 (bl)と同じ)で示される構造単位を有するもの、
式(b3):
[0332] [化 90]
Figure imgf000070_0003
[0333] [式中、 Y3は 0、 Sまたは N— (R' は水素原子、炭素数 1一 20の炭化水素基、お よび水素原子の一部またはすべてがフッ素原子に置換されてなる炭素数 1一 20の含 フッ素炭化水素基力も選ばれるもの)力も選ばれるもの; Y4は、 [0334] [化 91]
C = 0, 0= S = 0, = N— R 、 R 2— P = 0, R 3二 p = s
[0335] (式中、 R1' は水素原子、炭素数 1一 20の炭化水素基、および水素原子の一部また はすべてがフッ素原子に置換されてなる炭素数 1一 20の含フッ素炭化水素基力 選 ばれるものであって、またさらに R は C=N中の炭素原子を伴って環構造を形成し ていてもよい; R2' 、R3' は同じかまたは異なり、炭素数 1一 20の炭化水素基および 水素原子の一部またはすべてがフッ素原子に置換されてなる炭素数 1一 20の含フッ 素炭化水素基力も選ばれるものであって、またさらに R2' 、 R3/ はリン原子を伴って 環構造を形成してもよ ヽ)カゝら選ばれる少なくとも 1種]で示される構造単位を有する ものなどが挙げれる。
[0336] 式 (bl)の構造を有する配位子としては具体的には、たとえばつぎのものがあげら れる。
[0337] (bl— 1) —ジケトン構造を有する配位子
具体的には、式 (bl— 1) :
[0338] [化 92]
Figure imgf000071_0001
[0339] (式中、 RlA Rb2は同じかまたは異なり、炭素数 1一 20の炭化水素基、水素原子の 一部またはすべてがフッ素原子に置換されてなる炭素数 1一 20の含フッ素炭化水素 基、および複素環構造を有する炭素数 1一 20の炭化水素基力 選ばれる少なくとも 1種; X11は前記式 (bl)と同じ)で示される配位子であり、これらは、発光効率、増幅 効率、形成した錯体と含フッ素アタリレート系重合体 (A)との相溶性が良好な点で好 ましい。
[0340] 具体的には、 [化 93]
Figure imgf000072_0001
が例示でき、なかでも
[0343] [化 94]
C F ヽ Θ
Figure imgf000073_0001
[0344] が好ましく挙げられる。
[0345] (bl-2) j8—ジスルフォニル構造を有する配位子
具体的には、式 (bl— 2) :
[0346] [化 95]
Figure imgf000073_0002
[0347] (式中、 RlA Rb2は前記式 (bl— 1)と同じ; X11は前記式 (bl)と同じ)で示される配位 子であり、これらは発光効率、増幅効率、形成した錯体と含フッ素アタリレート系重合 体 (A)との相溶性が良好な点で好まし!/ヽ。
[0348] 具体的には、 [0349] [化 96]
、 Θ 、θ
C H C F
、 ノ
c o o s = =
c
c o os
Figure imgf000074_0001
[0350] が例示でき、なかでも
[0351] [化 97]
Figure imgf000074_0002
[0352] が好ましく挙げられる。
[0353] また、式 (b2)の構造を有する配位子としては、具体的には、つぎのものがあげられ 5
[0354] (b2-l)カルボ二ルイミド構造を有する配位子
具体的には、式 (b2— 1) :
[0355] [化 98]
Figure imgf000075_0001
[0356] (式中、 RlA Rb2は前記式 (bl—1)と同じ)で示される配位子であり、これらは、発光 効率、増幅効率、形成した錯体と含フッ素アタリレート系重合体 (A)との相溶性が良 好な点で好ましい。
[0357] 具体的には、
[0358] [化 99]
Figure imgf000075_0002
[0359] が例示でき、なかでも [0360] [化 100] ヽ o
Figure imgf000076_0001
[0361] が好ましく挙げられる。
[0362] (b2-2)スルホンイミド構造を有する配位子
具体的には、式 (b2— 2) :
[0363] [化 101]
ocnn
Figure imgf000076_0002
[0364] (式中、
Figure imgf000076_0003
Rb2は前記式 (b2— 1)と同じ)で示される配位子であり、これらは発光効 率、増幅効率、形成した錯体と含フッ素ポリマー (A)との相溶性が良好な点で好まし
[0365] 具体的には、
[0366] [化 102]
Figure imgf000077_0001
[0367] が例示でき、なかでも
[0368] [化 103]
Θ、
Figure imgf000077_0002
[0369] が好ましく挙げられる。
[0370] 式(bl— 1)、(bl— 2)、(b2— 1)および(b2— 2)において、
Figure imgf000077_0003
Rb2はなかでも、少 なくとも一方が水素原子の一部またはすべてがフッ素原子に置換されてなる炭素数 1 一 20の含フッ素炭化水素基であることが発光 (増幅)効率の点で好ま 、。
[0371] さらに式 (bl— 1)、(bl— 2)において、 X11はなかでも、重水素原子またはフッ素原 子であることが発光 (増幅)効率の点で好ま 、。
[0372] また、式 (b3)の構造を有する配位子としては、具体的には、つぎのものがあげられ る。 [0373] (b3— 1)式(b3— 1):
[0374] [化 104]
Figure imgf000078_0001
[0375] (式中、 Rb3は水素原子、炭素数 1一 20の炭化水素基、水素原子の一部またはすベ てがフッ素原子に置換されてなる炭素数 1一 20の含フッ素炭化水素基、および複素 環構造を有する炭素数 1一 20の炭化水素基力も選ばれる少なくとも 1種; Rb4は水素 原子、エーテル結合を有していてもよい炭素数 1一 20の炭化水素基、水素原子の一 部またはすべてがフッ素原子に置換されてなるエーテル結合を有して 、てもよ 、含フ ッ素炭化水素基; Y3は前記 (b3)と同じ)で示される配位子であり、これらは発光効率 、増幅効率、形成した錯体と含フッ素ポリマー (A)との相溶性が良好な点で好ましい
[0376] 具体的には、
105]
oen
Figure imgf000079_0001
Figure imgf000079_0002
Figure imgf000079_0003
Figure imgf000079_0004
[0378] [化 106]
Figure imgf000080_0001
oen
Figure imgf000080_0002
[0379] が例示でき、なかでも [0380] [化 107]
Figure imgf000081_0001
C F q
F ,
Figure imgf000081_0002
[0381] が好ましく挙げられる。
[0382] (b3— 2)式(b3— 2):
[0383] [化 108]
Figure imgf000081_0003
[0384] (式中、 Rb3および Rb4は前記式 (b3— 1)と同じ; Y3は前記 (b3)と同じ)で示される配 位子であり、これらは発光効率、増幅効率、形成した錯体と含フッ素ポリマー (A)との 相溶性が良好な点で好まし ヽ。
具体的には、
[0386] [化 109]
Figure imgf000083_0001
Figure imgf000083_0002
Figure imgf000083_0003
Figure imgf000083_0004
[0387] [化 110]
Figure imgf000084_0001
[0388] が例示でき、なかでも [0389] [化 111]
Figure imgf000085_0001
Figure imgf000085_0002
[0390] が好ましく挙げられる。
[0391] (b3— 3)式(b3— 3):
[0392] [化 112]
Figure imgf000085_0003
[0393] (式中、 Rb3および Rb4は前記式 (b3— 1)と同じ;
Figure imgf000085_0004
R2/ は前記 (b3)と同じ)で示さ れる配位子であり、これらは発光効率、増幅効率、形成した錯体と含フッ素ポリマー ( A)との相溶性が良好な点で好まし 、。
[0394] 具体的には、
[0395] [化 1131
Figure imgf000086_0001
Figure imgf000086_0002
Figure imgf000086_0003
Figure imgf000086_0004
Figure imgf000086_0005
[0396] [化 114]
Figure imgf000087_0001
[0397] が例示でき、なかでも
[0398] [化 115]
Figure imgf000088_0001
Figure imgf000088_0002
Figure imgf000088_0003
Figure imgf000088_0004
[0399] が好ましく挙げられる。
[0400] 式(b3)、 (b3-l)、 (b3-2)および(b3— 3)にお!/、て、 Rb3は、水素原子の一部また はすべてがフッ素原子に置換されてなる炭素数 1一 20の含フッ素炭化水素基である ことが発光 (増幅)効率の点で好ま 、。
[0401] 式 (b3)および (b3— 3)において、 R , R2 , R3 は、水素原子の一部またはす ベてがフッ素原子に置換されてなる炭素数 1一 20の含フッ素炭化水素基であること が発光 (増幅)効率の点で好ま 、。
[0402] 本発明の光機能性積層体に用いる希土類金属錯体は、さらに電荷 (負の電荷)を 有さな!/、電荷非補償型の配位子を導入したものであってもよ [0403] 電荷非補償型の配位子とは、配位子全体で電荷を有さず、希土類金属の空の d起 動に配位可能な π電子対を有するもので、
[0404] [化 116] c = o、 s=o、 一 p=o、 一 P = S
i l l !
[0405] などの部位を有する化合物力 通常選択される。
[0406] 具体的には、
Figure imgf000090_0001
C2HE
Figure imgf000090_0002
Figure imgf000090_0003
"^OC H
Figure imgf000090_0004
Figure imgf000091_0001
Figure imgf000091_0002
[0409] などが挙げられ、好ましくは [0410] [化 119]
Figure imgf000092_0001
Figure imgf000092_0002
Figure imgf000093_0001
Figure imgf000093_0002
[0412] などが挙げられる。
[0413] 電荷非補償型の配位子において、一部にフッ素原子を導入したものが発光 (増幅) 効率の点で好ましい。 [0414] 本発明に用いる希土類金属錯体はプラス三価の希土類金属イオンに、前述の電荷 補償型または電荷非補償型の配位子カゝら選ばれる少なくとも 1種の配位子が配位結 合したものであればよぐ好ましくは 3または 4個の配位子が配位結合したものである 。希土類金属錯体において配位子は、電荷補償型または電荷非補償型のいずれか 一方のみで構成されて!、ても、電荷補償型と電荷非補償型の両方を含んで!/、てもよ い。
[0415] なかでも、電荷補償型の配位子を少なくとも 1個含むものが好ましぐ特には 3個の 電荷補償型の配位子が配位結合したものが好ましい。さらに必要に応じて 4個目の 配位子として電荷非補償型の配位子を導入したものであってもよ!/ヽ。これら電荷補償 型の配位子を含む錯体は、それ自体安定性が高く発光 (増幅)効率に優れ、さらに は本発明に用いる含フッ素ポリマー (A)への分散性や相溶性に優れる点で好ま ヽ
[0416] その結果、本発明の光機能性積層体において、発光 (増幅)強度、発光 (増幅)効 率にぉ 、て、特に効果的に作用する点で好ま 、。
[0417] (B2)希土類付活無機蛍光体
希土類付活無機蛍光体は、無機塩中に希土類金属が付活されたものであり、耐熱 性が高い点で好ましい。
[0418] 希土類付活無機蛍光体の具体例としては、
(1) YAG (黄色発光材料)
具体的には(YaGdl— a) (AlbGal— b) O Ce3+など
12
(2) YOS (赤色発光材料)
具体的には Y O S :Erなど
2 2
(3) BAM: Eu (青色発光材料)
具体的には(Ba, Mg)Al O : Erなど
10 17
(4) SCA (青色発光材料)
具体的には(Sr、 CaBaMg) (PO ) CI: Euなど
10 4 6 2
(5) GN4 (緑色発光材料)
ZnS : Cu, A1など (6) BAM :Eu, Mn (緑色発光材料)
具体的には(Ba, Mg)Al O : Eu, Mnなど
10 17
の蛍光体があげられる。
[0419] (B3)希土類金属イオン
本発明で用いる希土類金属化合物 (B)において、希土類金属イオンは通常、希土 類金属イオンとイオン結合できる対ァ-オンとの塩の形態で混合される。希土類金属 陽イオンは価数には制限はなぐ通常 2価または 3価あるいは 4価の金属カチオンの 塩として用いられる。
[0420] 希土類金属塩としては、前記例示の希土類元素の塩化物、臭化物、ヨウ化物など のハロゲン化物;硝酸塩、過塩素酸塩、臭素酸塩、酢酸塩、硫酸塩、リン酸塩などの 塩などが挙げられる。また、有機酸の塩、有機スルホン酸の塩など、希土類金属の有 機塩であってもよい。また、複硝酸塩、複硫酸塩、キレートイ匕物も使用可能である。
[0421] 具体的な希土類金属塩としては、塩ィ匕プラセォジゥム、臭化プラセォジゥム、ヨウ化 ブラセォジゥム、硝酸プラセォジゥム、過塩素酸プラセォジゥム、臭素酸プラセォジゥ ム、酢酸プラセォジゥム、硫酸プラセォジゥム、リン酸プラセォジゥム等のプラセォジ ゥム塩;塩ィ匕ネオジゥム、臭化ネオジゥム、ヨウ化ネオジゥム、硝酸ネオジゥム、過塩 素酸ネオジゥム、臭素酸ネオジゥム、酢酸ネオジゥム、硫酸ネオジゥム、リン酸ネオジ ゥム等のネオジゥム塩;塩化ユーロピウム、臭化ユーロピウム、ヨウ化ユーロピウム、硝 酸ユーロピウム、過塩素酸ユーロピウム、臭素酸ユーロピウム、酢酸ユーロピウム、硫 酸ユーロピウム、リン酸ユーロピウム等のユーロピウム塩;塩化エルビウム、臭化エル ピウム、ヨウ化工ルビゥム、硝酸エルビウム、過塩素酸エルビウム、臭素酸エルビウム 、酢酸エルビウム、硫酸エルビウム、リン酸エルビウム等のエルビウム塩;塩化テルビ ゥム、臭化テルビウム、ヨウ化テルビウム、硝酸テルビウム、過塩素酸テルビウム、臭 素酸テルビウム、酢酸テルビウム、硫酸テルビウム、リン酸テルビウム等のテルビウム 塩;塩化サマリウム、臭化サマリウム、ヨウ化サマリウム、硝酸サマリウム、過塩素酸サ マリゥム、臭素酸サマリウム、酢酸サマリウム、硫酸サマリウム、リン酸サマリウム等のサ マリゥム塩などをあげることができる。
[0422] 本発明の光機能性層 (L1)にお ヽて、含フッ素ポリマー (A)と希土類金属化合物( B)の存在比率は(A)が 1一 99. 99質量0 /0、 (B) O. 01— 99質量0 /0 (イオンとしての 質量%。希土類金属化合物 (B)含有量に関しては、以下同様)であり、使用する希 土類金属化合物 (B)および含フッ素ポリマー (A)の種類、用途、目的などによって適 宜選択される。
[0423] 光増幅器や光導波路等の光通信用部品や発光体として利用する場合には、この 希土類金属化合物の含有量は、蛍光強度の向上の観点から 0. 01— 20質量%の範 囲で選ぶのが好ましぐさらに好ましくは 0. 1— 15質量%、最も好ましくは 0. 5— 10 質量%である。
[0424] 希土類金属化合物 (B)の含有量が少なすぎると目的とする光増幅作用、発光強度
、波長変換効果などの目的の性能が発揮されなくなる。
[0425] 一方、希土類金属化合物 (B)の含有量が多すぎると、希土類金属化合物 (B)とマト リックスポリマーを形成する含フッ素ポリマー (A)との分散性、相溶性が悪くなるため 好ましくない。
[0426] なお、希土類金属イオンの含有量は、約 600°Cの温度の電気炉中で有機成分を燃 焼してその灰分を定量するか、または蛍光 X線分析などの物理ィヒ学的手法により定 量的に測定することができる。
[0427] 本発明の光機能性層 (L1)には、前述の含フッ素ポリマー (A)と希土類金属化合 物(B)のほかに、必要に応じて種々の添加剤を配合してもよい。添加剤としては、た とえばレべリング剤、粘度調整剤、光安定剤、酸化防止剤、水分吸収剤、顔料、染料
、補強剤などがあげられる。
[0428] 本発明の光機能性積層体にぉ ヽて、低屈折率層 (L2)は、通常、前記光機能性層
(L1)上に直接接触されてなる層であり、光機能性層 (L1)より低屈折率の透明層で ある。
[0429] 光機能性層 (L1)と低屈折率層 (L2)の好ま ヽ屈折率差 (n — n )は、対象とする
LI L2
光の種類によって異なるが、具体的には光機能性層 (L1)に供給される光の波長 (励 起光波長)および Zまたは光機能性層 (L1)自体が発する光の波長 (蛍光波長)にお ける屈折率差において、 0. 005以上、より好ましくは 0. 05以上、特に好ましくは 0. 1 以上である。 [0430] 低屈折率層 (L2)の好ましい屈折率は上記対象となる光の波長に対して、 1. 30— 1. 45、より好ましくは 1. 30-1. 40、特に好ましくは 1. 30-1. 38である。
[0431] さらに、低屈折率層 (L2)は、対象とする光の種類において透明性が高いものが好 ましい。具体的には、少なくとも光機能性層 (L1)に供給される光の波長 (励起光波 長)に対して、透明であることが好ましぐ具体的には、上記光の波長に対して、吸光 係数で 1. 0 X 10— 5 m以下、好ましくは 5. 0 X 10— 6 m以下、特に好ましくは 2. O X 10— 6 m以下である。
[0432] したがって、低屈折率層 (L2)は、非晶性の含フッ素ポリマーからなる層であること が好ましい。
[0433] 低屈折率層 (L2)に用いる含フッ素ポリマーは、具体的にはつぎのものが例示でき る。
[0434] (1)含フッ素アタリレート系重合体
ポリマー側鎖を形成し得る部分またはポリマー主鎖を形成し得る部分のいずれ力少 なくとも一方に、フッ素原子を有する含フッ素アタリレート類由来の構造単位を有する 重合体である。
[0435] なかでも、フッ素含有率が高 、ものが好ましぐその点でもポリマー側鎖を形成し得 る部分にフッ素原子を含む含フッ素アタリレート由来の構造単位を有する重合体でる ことが好ましい。
[0436] 含フッ素アタリレート系重合体のガラス転移点は、機械的強度、表面硬度を改善で きる点で高い方が好ましぐ 40°C以上、好ましくは 60°C以上、より好ましくは 80°C以 上、特に好ましくは 100°C以上である。
[0437] 低屈折率層 (L2)にお ヽて、含フッ素アタリレート系重合体を構成する含フッ素ァク リレートとしては、具体的には、前記光機能性層(L1)で利用した含フッ素アタリレート 類から選ばれるものが、同様に好ましく利用できる。
[0438] なかでも具体的には、前述の(Al-I)、 (A1-II)および (Α1-ΙΠ)で示した含フッ素 アタリレート重合体力も選ばれるものが好ましい。
[0439] (2)硬化性部位を有する非晶性含フッ素ポリマーまたはその硬化物
ポリマー側鎖または主鎖末端に硬化性 (または架橋性)の官能基を有する含フッ素 重合体力もなるもの、またはポリマー自身または、硬化剤 (架橋剤)の存在下で硬化( 架橋)してなる硬化物を含むものである。
[0440] 具体的には、側鎖末端に硬化性 (架橋性)の官能基を有する含フッ素エチレン性 単量体由来の構造単位を有する含フッ素重合体であって、例えば、 WO02/1845 7公報や WO02Z073255公報で記載の炭素 炭素二重結合を含む含フッ素プレ ポリマー、またはそれらを硬化してなる硬化物や WO2004Z016689公報で記載の 架橋性環状エーテル構造を含む含フッ素ポリマー、およびそれらを硬化してなる硬 化物などが好ましく挙げられ、これらの中の少なくとも 1種の含フッ素ポリマーが選択 される。
[0441] これら硬化性部位を有する含フッ素ポリマー力 なる層は、光や熱などによって容 易に硬化させることができ、機械的強度や硬度が飛躍的に改善できる点で好ましぐ その結果、最表面層としたときに傷や磨耗を起こしに《なる。
[0442] (3)主鎖に脂肪族環状構造を有する含フッ素重合体
具体的に好ましくは含フッ素脂肪族環状構造の構造単位を有する含フッ素重合体 であることが好ましぐ例えば、含フッ素脂肪族環状の構造単位としては式 (5):
[0443] [化 121]
(C X23X24) n2
— { ( c X19X20) nlc x21 C X22 (C X2SX26) n3J
S I ( 5 )
(o) n4 (o) n5
Rf6
[0444] (式中、 X19、 X2°、 X23、 X24、 X25および X26は同じ力または異なり、 Hまたは F ;X21および X22は同じかまたは異なり、 H、 F、 Cほたは CF; Rf6は炭素数 1
3 一 10の含フッ素アル キレン基または炭素数 2— 10のエーテル結合を有する含フッ素アルキレン基; n2は 0 一 3の整数; nl、 n3、 n4および n5は同じかまたは異なり、 0または 1)で示されるもの が好ましい。
[0445] 具体的には、たとえば、 [0446] [化 122]
CX2
o o
\ /
Rf6
[0447] (式中、 Rf6、 X21および X22は前記と同じ)で示される構造単位を有するものが好ましく あげられ、
さらに具体的には、
[0448] [化 123]
CF-CF^- - "C F— C F - +CF— CF
i i I I
o o o o o o
F F CF3 CF3 F CF3
Figure imgf000100_0001
CI CI CI
—- c— c 4CF— C -eCF2-CF-CF-CF:
I i
o o o o O CF2
\ /
CF, CF- CF, CF, CF,
CF2
/ \ / \
- CF2CF CF • CFCF CF -
I I \ I
O F 2 O— CF2
\ /
CF2
- CX19X0-CF CF -f CX19X20CF-CFCF2
CF2-0 CF¾-0
Figure imgf000100_0002
CF3
[0449] (式中、 X19 X2° X23および X24は前記と同じ)などの構造単位を有するものがあげら れる。
[0450] これら含フッ素重合体は真空紫外光領域から近赤外領域の広い波長領域で透明 性が高ぐさらに高 ヽガラス転移温度を有する点で好ま '
なかでも、式(6)
[0451] [化 124]
41 V 42
O 0 ( 6 )
[0452] (式中、 R41および R42は、同じかまたは異なり、 F、 H、 Cほたは炭素数 1一 5のパーフ ルォロアルキル基; X41および X42は、同じかまたは異なり、 F、 H、 Cほたは OR43 (R43 は、炭素数 1一 5のパーフルォロアルキル基)。ただし、 R41または R42の少なくとも一方 は、 Fまたは炭素数 1一 5のパーフルォロアルキル基である)で表される 1, 3 ジォキ ソール環構造含有化合物と、エチレン性不飽和単量体とから得られる環状エーテル 共重合体であることが好まし 、。
[0453] 具体的には、式 (6)の 1, 3 ジォキソール環構造含有ィ匕合物は、 X41および X42がフ ッ素原子、 R41および R42が CFであるパーフルォロ—(2, 2 ジメチルー 1, 3—ジォキソ
3
ール)〔PDD〕であることが好ましぐさらに環状エーテル共重合体中のエチレン性不 飽和単量体の構造単位は、含フッ素エチレン性不飽和単量体、なかでもテトラフル ォロエチレン、クロ口トリフルォロエチレンから選ばれる単量体由来の構造単位である ことが、透明性、低屈折率性の点で好ましい。
[0454] さらには、上記環状エーテル共重合体は、ガラス転移点が 100— 135°C、パーフル オロー 2—ブチルテトラヒドロフラン中 35°Cにおける固有粘度が 0. 01-0. 4dlZgで あるものが、低屈折率層(L2)を形成する際、成膜性に優れる点で特に好ましい。
[0455] そのほか、ノルボルネン誘導体の構造単位を有するもの、例えばテトラフルォロェ チレンやクロ口トリフルォロエチレンなどの含フッ素ォレフィン類とノルボルネン誘導体 との共重合体、含フッ素アクリル類とノルボルネン誘導体との共重合体なども好ましく 挙げられる。
[0456] 本発明の光機能性積層体において、透明基材 (L0)は、前記光機能性層 (L1)で 発生した目的の光 (蛍光)が、通過し目的物に照射する際の支持基材の働きをするも のであり、 目的や用途、使用方法によって、材質、形状など適宜選択される。
[0457] なお、透明基材 (LO)は、その上に施される光機能性層 (L1)と同じ力または大きな 屈折率を有する層であり、その結果、光機能性層 (L1)で発生した光 (蛍光)が、より 優先的に透明基材 (LO)側を通過し、 目的物に効率的に照射されるものである。
[0458] 材質としては、無機系の透明基材および有機系、特に榭脂系の透明基材の中から 選択される。
[0459] 無機系の透明基材としては、ガラス系基材、具体的にはソーダ石灰ガラス、ソーダ カリ鉛ガラス、硬質ガラス (一級、二級)、タングステンガラス、石英 (各種金属をドープ したものも含む)など、フッ化カルシウム、フッ化マグネシウムなどの結晶などが好まし く挙げられ、なかでもガラス系基材が好ましく挙げられる。
[0460] 有機系透明基材としては、通常、透明性榭脂から選ばれ、具体的には、アクリル榭 脂類、ポリカーボネート榭脂類、透明ポリエステル榭脂類、透明ポリエチレン類、透明 プロピレン榭脂類、透明 ABS榭脂類、メチルセルロース榭脂類、透明ポリスチレン類 、透明エポキシ榭脂類、ポリアリレート類、ポリサルフォン類、ポリエーテルサルフォン 類、透明ナイロン榭脂類、透明ポリブチレンテレフタレート類、透明ポリエチレンテレ フタレート類、透明フッ素榭脂、 TPX (ポリ 4ーメチルペンテン 1)、透明フエノキシ榭 脂、ポリイミド榭脂、シクロォレフイン榭脂類 (ノルボルネン系榭脂類など)、シリコーン 系エラストマ一類、ポリスチレン系熱可塑性エラストマ一類、ポリオレフイン系熱可塑 性エラストマ一類、ポリウレタン系熱可塑性エラストマ一類、および有機非線形光学 材料などがあげられる。
[0461] なかでも、アクリル榭脂類、ポリカーボネート榭脂類、透明ポリエチレンテレフタレー ト類、メチルセルロース榭脂類、シクロォレフイン榭脂類等が透明性において優れ、 光学用途として有用である点で好ましぐフィルム状として利用した場合においても、 良好な機械的物性、フレキシブル性を有する点でも好まし 、。
[0462] 本発明の、透明基材 (LO)の形状は、 目的、用途によって、具体的には光機能性層
(L1)で発生した光 (蛍光)を照射する対象物の構造、積層体を含めたデバイスの構 成、構造などによって適宜選択され、特に限定はされないが、板状、シート状、フィル ム状、繊維状、棒状、球状、粒子状、さらには予め成型された各種形状の基材が採 用される。
[0463] 特に、フィルム状の透明榭脂系基材を用いたものが、本発明の積層体自体を作製 する場合の加工性に優れ、さらに種々の対象物に合わせて後加工などで容易に適 用できる点で好ましい。
[0464] フィルム状の透明榭脂系基材の厚さは、そのフィルムの材質によって異なる力 通 常、 0.5-5, 000 111、好まし<【ま1ー1, 000 μ m,より好まし <ίま 5一 500 m、特 に好ましくは 10— 300 μ mである。
[0465] 本発明の光機能性積層体において、光機能性層 (L1)の厚さは、光機能性層 (L1 )自体の発光 (蛍光)強度やその用途やその目標によって異なり、適宜選択されるが 、通常、 lnm— lmm程度であり、好ましくは、 0.05-5, 000 μ m,より好ましくは 0. 1-1, 000 m、特に好ましくは 0.5— 500 m、さらに好ましくは 1一 100 mであ る。
[0466] 低屈折率層 (L2)の厚さの好ましい第一は、光機能性層 (L1)に供給される光 (励 起光)に対して反射防止効果を得ることを目的とした膜厚であり、通常、膜厚 d
L2は、 数式:
Figure imgf000103_0001
(式中、 d は低屈折率層の膜厚 (nm) ;xは奇数の整数; λは励起光の波長 (nm); n
L2
し 2は低屈折率層の波長( λ )で測定した屈折率)で算出される膜厚に調整することが 好ましい。
[0467] また、低屈折率層 (L2)の厚さの好まし 、第二は、励起光の供給によって光機能性 層(L1)で発生した光 (蛍光)を、目的の方向、例えば透明基材 (L0)方向に、より優 先的に向けることを目的としたものであり、通常、 1.0X10— 1— 1. OXlo m、好ま しく ίま 1.0X10— 1— 5. OXlO^m,より好ましく ίま 1.0X10— 1— 1. OXlo m,特 に好ましくは 1.0X10— 1— 5Χ102/ζπι、さらには 1.0X10— 1— 1.0Χ102/ζπιである
[0468] 本発明の積層体の作製方法としては、透明基材 (L0)上に含フッ素ポリマー (Α)と 希土類金属化合物 (Β)からなる塗料用組成物などを塗布後、乾燥などにより成膜、さ らに場合によっては、熱や光の照射による硬化反応を行い光機能性層(L1)を形成 した後、その上に低屈折率のフッ素ポリマーを含む塗料用組成物を用い、同様に塗 布法により低屈折率層 (L2)を形成できる。
[0469] 光機能性層 (L1)、低屈折率層 (L2)の各層の塗布法としては、公知の方法が広く 採用でき、例えば、回転塗布 (スピンコート)、流延塗布、ロール塗布、グラビア塗装な どが利用できる。
[0470] また、光機能性層 (L1)、低屈折率層 (L2)、それぞれの単層フィルムを溶融押出 成型などにより形成した後、透明基材 (LO)上に熱圧着等により積層してもよい。
[0471] また、さらに、共押出法により、光機能性層 (L1)と低屈折率層 (L2)との積層フィル ムを、また透明榭脂フィルムをカ卩えた 3層積層フィルムを、同時に成型して得ても良い
[0472] 本発明の光機能性積層体にぉ ヽて、光機能性層 (L1)と低屈折率層 (L2)の好まし い組合せとしては、
(I)光機能性層 (L1)を構成する含フッ素ポリマー (A)と低屈折率層 (L2)を構成する ポリマーが同じ含フッ素ポリマーで構成された積層体:
これらは前述の共押出法による積層体の製造法などにおいて、より効率的に積層 体を得ることができる点で好まし 、。
(II)光機能性層 (L1)を構成する含フッ素ポリマー (A)が硬化性部位を持つポリマー であって、硬化操作による硬化物である積層体:
この場合、塗布法により次の低屈折率層 (L2)を形成する際、光機能性層 (L1)と低 屈折率層 (L2)の界面のインターミキシングを起こしにく 、点で好まし 、。
(III)光機能性層 (L1)を構成する含フッ素ポリマー (A)および低屈折率層 (L2)を構 成するポリマーの 、ずれもが硬化性部位を持つポリマーであって、硬化操作による硬 化物である積層体:
この場合、発光 (蛍光)効率、表面の機械的特性が良好な点で好ましい。
[0473] 本発明の光機能性積層体は、その中の低屈折率層 (L2)の側力 供給された光( 励起光)を効率よぐ光機能性層 (L1)に伝搬させ、その励起光を受けて光機能性層 (L1)にて発光 (蛍光)効率良ぐ高強度の光を発生させることができる。 [0474] さらに、光機能性層 (L1)で発した光を、より効率よく目的の方向、つまり透明基材(
LO)の方向に供給できるものである。
[0475] そのため、種々の光学機能用途に適用可能となる。
[0476] 例えば、
(0波長変換用途
太陽光など力 の入射光を低屈折率層 (L2)より照射することで、太陽光の特定の 波長 (帯域)から、目的とする別の波長 (帯域)に変換し、透明基材 (LO)側に選択的 に照射する波長変換積層体、例えば波長変換フィルム。
[0477] 例えば、太陽電池用素子表面に波長変換フィルムを、太陽光側に低屈折率層 (L2
)を向けて施すことで、太陽光の特定の波長を効率よぐ太陽電池素子特有の光一電 気変換効率の高い波長帯域に変換し、結果的に増幅し、エネルギー変換効率の向 上を可能とする。
[0478] (ii)画像の色補正用途
プロジェクターなどのレンズに本発明の積層体を施し、赤み (光機能性層にユウロピ ゥム化合物を利用)などを増加させ、画像に自然な色合 ヽを付与する等の用途。
[0479] 例えば、本発明の積層体の低屈折率層 (L2)を光源側に向けてレンズ上などに施 すことで、より効率的に画像の色補正が可能となる。
[0480] (iii)LED等の演色用途
LED等カゝらなる発光ダイオード上に本発明の積層体を施し、 LEDの光の一部を励 起光に利用しての LED自体の発光色を所望の色に変換することが可能となる。
[0481] 具体的には、本発明の積層体の低屈折率層 (L2)を光源側に LED上に装着するこ とで効率よぐ単一の LEDで安定した色調バランスに調整できるものである。
[0482] さらには、光機能性層 (L1)中の希土類金属化合物を調整し、青色発光ダイオード 上に上記と同様に本発明の積層体を装着することで、より効率よく白色発光も可能と なる。
実施例
[0483] つぎに本発明を実施例などにより具体的に説明するが、本発明は力かる実施例の みに限定されるものではない。 [0484] ここで、本発明で使用する各種の物性およびパラメータの測定法について、まとめ て述べる。
(1) NMR
NMR測定装置: BRUKER社製
iH— NMR測定条件: 300MHz (テトラメチルシラン =Oppm)
19F— NMR測定条件: 282MHz (トリクロ口フルォロメタン =Oppm)
(2) IR分析
IR分析: Perkin Elmer社製フーリエ変換赤外分光光度計 1760Xで室温にて測定 する。
(3)ガラス転移温度 Tg
DSC (示差走査熱量計: SEIKO社、 RTG220)を用いて、 30°C力ら 200°Cまでの 温度範囲を 10°CZ分の条件で昇温 (ファーストラン) -降温-昇温 (セカンドラン)させ 、セカンドランにおける吸熱曲線の中間点を Tg (°C)とした。
(4)フッ素含有率
酸素フラスコ燃焼法により試料 lOmgを燃焼し、分解ガスを脱イオン水 20mlに吸収 させ、吸収液中のフッ素イオン濃度をフッ素選択電極法 (フッ素イオンメータ。ォリオ ン社製の 901型)で測定することによって求める(質量0 /0)。
(5)透過率の測定
分光光度計(HITACHI社製 Spectrophotometer U— 4100)を用い、各サン プルの透過率を測定する。
(6)屈折率の測定
アッベ屈折計を用いて 25°Cで 550nmの波長の光について屈折率を測定する。
(7)発光強度の測定
蛍光分光光度計 (HITACHI社製 Fluorescence Spectrophotometer F - 40 10)を用い、各サンプルの発光スペクトルを測定し、特定波長のピーク面積を比較し 相対発光強度を算出する。
[0485] 合成例 1 (Eu (CF COCHCOCF )の調製)
3 3 3
100mlのガラス製フラスコに、酢酸ユーロピウム 4水和物の 2. 0g (5mmol)、へキ サフルォロアセチルアセトンの 3. 0g (20mmol)および純水の 50mlを投入し、 25°C で 3日間攪拌した。
[0486] ついで、析出した固形物をろ過により取り出し、固形物を水洗後、水 メタノール混 合溶媒で再結晶したところ白色の結晶が得られた (収率 60%)。
[0487] この結晶を IR分析、 NMRおよび19 F— NMR分析し、 目的の錯体、 Eu (CF CO
3
CHCOCF )であることを確認した。
3 3
[0488] また、得られた白色結晶は Tg— DTA測定により、 2水和物であることが推測された。
[0489] 合成例 2 (PMMAの合成)
50mlのガラス製三つ口フラスコに、メチルメタタリレート 10g、ラジカル重合開始剤と してァゾビスイソブチ口-トリル (AIBN) 50mgを入れ、撹拌したところ均一溶液となつ た。ついで、窒素置換しながら、 60°Cで 10時間加熱撹拌し、塊状重合させたところ、 透明な固体を得た。
[0490] っ 、で、得られた固体をアセトン 50mlに溶解させ、へキサンに滴下し再沈澱し、沈 殿物を 60°Cで 5時間真空乾燥し、無色透明な固体 8. Ogを得た。得られたポリマー は1 H— NMR、 IR分析の結果、ポリメチルメタタリレート(PMMA)であった。
[0491] 合成例 3 (含フッ素アタリレート重合体の合成)
メチルメタタリレートに代えて、下式 (a— 1):
[0492] [化 125]
C H 2 = C F C O O C H 2 ( C F 2 C F H ( a— 1 )
[0493] で示される含フッ素アタリレート(8FFA)の 10gを用いた以外は、合成例 2と同様にし て含フッ素アタリレート重合体を合成し、さらに単離 '精製し、無色透明な固体 7. 5g を得た。
[0494] 得られたポリマーは1 H— NMR、 19F— NMR、 IR分析の結果、前記式(a— 1)で示さ れる 8FFAの単独重合体であつた。
[0495] 前記酸素フラスコ燃焼法により測定したフッ素含有率は 56質量%であった。
[0496] また、 DSC測定によるガラス転移点は 65°Cであった。
[0497] 合成例 4 (含フッ素アタリレート重合体の合成) メチルメタタリレートに代えて、下式 (a— 2):
CH =CFCOOCH CF (a~2)
2 2 3
で示される 2, 2, 2—トリフルォロェチルー αフルォロアタリレート(3FFA)の 10gを用 いた以外は、合成例 2と同様にして含フッ素アタリレート重合体を合成し、さらに単離 · 精製し、無色透明な固体 7.8gを得た。
[0498] 得られたポリマーは1 H— NMR、 19F— NMR、 IR分析の結果、前記式(a— 2)で示さ れる 3FFAの単独重合体であつた。
[0499] 前記酸素フラスコ燃焼法により測定したフッ素含有率は 44質量%であった。
[0500] また、 DSC測定によるガラス転移点は 125°Cであった。
[0501] 合成例 5 (OH基を有する含フッ素ァリルエーテルホモポリマーの合成)
撹拌装置および温度計を備えた 100mlのガラス製四つ口フラスコに、パーフルォロ 一(1, 1, 9, 9ーテトラハイド口— 2, 5 ビストリフルォロメチル— 3, 6—ジォキサノネノー ル)、式(a— 3):
[0502] [化 126]
CH2 = CFCF2OCFCF2OCFCH2OH 3)
CF3 CF3
[0503] の 20.4gと下式:
[0504] [化 127]
[H- CF2CF2) 3COOh
[0505] で示される含フッ素パーオキサイドの 8.0質量%パーフルォ口へキサン溶液、 21.2 gを入れ、十分に窒素置換を行ったのち、窒素気流下 20°Cで 24時間撹拌を行ったと ころ、高粘度の固体が生成した。
[0506] 得られた固体をジェチルエーテルに溶解させたものをパーフルォ口へキサンに注 ぎ、分離、真空乾燥させ、無色透明の固体、 17.6gを得た。
[0507] この固体を IR分析、 NMRおよび19 F— NMR分析により分析したところ、上記含 フッ素ァリルエーテルの構造単位のみ力 なり、側鎖末端に OH基を有する含フッ素 重合体であった。
[0508] 合成例 6 ( a フルォロアクリロイル基を有する含フッ素硬化性ポリマーの合成)
還流冷却器、温度計、撹拌装置、滴下漏斗を備えた 200mlの四つ口フラスコに、 ジェチルエーテル 80ml、前記合成例 5で得たヒドロキシル基含有含フッ素ァリルェ 一テルの単独重合体 5. Ogとピリジン 1. Ogを仕込み、 5°C以下に冷却した。
[0509] ついで、窒素気流下、撹拌を行いながら、 α—フルォロアクリル酸フルオライド 1. Og をジェチルエーテル 20mlに溶解したものを約 30分かけて滴下した。滴下終了後、 室温まで温度を上げさらに 4. 0時間撹拌を継続した。
[0510] 反応後のエーテル溶液を分液漏斗に入れ、水洗、 2%塩酸水洗浄、 5%NaCl水溶 液で洗浄し、さらに水洗を繰り返した。
[0511] エーテル溶液を無水硫酸マグネシウムで乾燥しついでエーテル溶液を濾過により 分離した。このエーテル溶液を19 F— NMRにより調べたところ、
[0512] [数 1]
O H基含有含フッ素ァリルエーテル ノ _〇C O C F = C H 2含有 (前記式 (a— 3 ) ) Z フッ素ァリルエーテル
[0513] 力 S 85Z 15モル%の共重合体であつた。
[0514] NaCl板に塗布し、室温にてキャスト膜としたものを IR分析したところ、炭素 炭素二 重結合の吸収が 1661cm 1に、 C = O基の吸収が 1770cm 1に観測された。
[0515] 得られたエーテル溶液をガラス板上に塗布し室温にてキャスト膜とした被膜の一部 とり、前記酸素フラスコ燃焼法によりフッ素含有率を測定したところ 55質量%であった
[0516] 合成例 7 (TFEZパーフルオロー 1, 3 ジォキソール共重合体の合成)
内容積 300mLの SUS316製才ートクレーブに、 HCFC225の 300gと 4, 4,一ビス (tーブチルシクロへキシル)パーォキシジカーボネートの 1. 47g (仕込んだモノマー の総モル数に対して 1. 53モル%に相当)を入れ、 0°Cに冷却し、反応系内を 3回窒 素で置換した。その後、パーフルオロー 2, 2-ジメチル -1, 3-ジォキソール(PDD): 下式: [0517] [化 128]
Figure imgf000110_0001
F 3
[0518] の 30g、次いでテトラフルォロエチレン (TFE) 11. 7gを供給し、 40°Cで 10時間撹拌 した。
[0519] 反応後、重合溶液にへキサンを加えポリマーを析出させ、分離し、乾燥したところ、 白色固体、 32gが得られた。
[0520] 得られたポリマーは19 F— NMR分析の結果、 TFEZPDD = 49Z51モル0 /0、であ つた o
[0521] また、 DSC測定によるガラス転移点は 110°Cであった。
[0522] またさらに、固有粘度( 7? )および見掛けの溶融粘度 (AMV)を以下の方法で測定 した。
[0523] 〔固有粘度 r?〕
ウベローデ型毛細管粘度計を用いて 35°Cにお 、てパーフルオロー 2 プチルテトラ ヒドロフランに溶解させた充分希薄な溶液の濃度を 4点以上変えて測定し得られた還 元粘度の値を濃度 0に外挿し得た。
固有粘度( r? )は 0. 2 (dl/g)であった。
[0524] 〔見掛けの溶融粘度 (AMV)〕
AMVは 230°Cで 383. lgの荷重を力け、 ASTM D 2116法により、溶融流速度 〔MFR〕から、以下の式を用いて計算されたものである。
AMV (パスカル.秒) =6. 4 X荷重(g) ZMFR(gZlO分)
見掛けの溶融粘度 (AMV)は 100 (パスカル '秒)以下であった。
[0525] 実施例 1 (光機能性積層体の作製)
(1)光機能性層 (L1)の作製
(光機能性組成物の調整)
合成例 6で得た 0L フルォロアクリロイル基を有する含フッ素ポリマー(エーテル溶 液)にメチルイソブチルケトン(MIBK)をカ卩えた後、エーテルをエバポレーターにより 留去することで、ポリマー濃度で 15質量%のMIBK溶液に調製した。
[0526] 得られたポリマー溶液 2. Ogに活性エネルギー線硬化開始剤として 2—ヒドロキシー 2 メチルプロピオフエノンの 3mgおよび合成例 1で得たユーロピウム錯体(Eu(CF C
3
OCHCOCF ) )の 9mgを添カ卩し、溶解させた。
3 3
[0527] (光機能性層 (L1)の作製)
上記光機能性組成物をマイクロスライドガラス:屈折率 1. 521 (透明基材 (L0) )上 にアプリケーターを用いて膜厚が約 50 mになるように塗布し、室温で 10時間乾燥 させた。
[0528] 次 、で、乾燥後の被膜に、高圧水銀灯を用いて 300mjZcm2Uの強度で紫外線を 照射した。
[0529] 得られた光照射後の光機能性層 (L1)の膜厚は、マイクロメーターを用いて測定し 、詳しくは積層体全体の膜厚力 予め同様に測定したマイクロスライドガラス (透明基 材 (L0) )の厚みを差し弓 I V、て算出したところ、 70 μ mであった。
[0530] (2)低屈折率層 (L2)の作製
(低屈折率層用組成物の調製)
合成例 7で得た TFE—PDD共重合体 2gをパーフルオロー 2—ブチルテトラヒドロフラ ンに溶解させ、ポリマー濃度 10質量%に調整した。
[0531] (低屈折率層 (L2)の作製)
上記低屈折率層用組成物を前記(1)で得た光機能性層上に、アプリケーターを用 いて膜厚が約 20 mになるように塗布し、室温で 12時間乾燥させた。
[0532] 低屈折率層 (L2)の膜厚は、前記と同様マイクロメーターを用いて測定し、光機能 性積層体全体の膜厚から、透明基材 (L0)および光機能性層 (L1)の膜厚を差し引 いて算出した。その結果、低屈折率層 (L2)は 30 mであった。
[0533] 実施例 2 (光機能性積層体の作製)
(1)光機能性層 (L1)の作製
(光機能性組成物の調製)
メチルイソブチルケトン 50mlに、合成例 3で得た含フッ素アタリレート重合体の 3g、 合成 f列 1で得たユーロピウム錯体(Eu(CF COCHCOCF ) ) 0. 09gを混合、溶解
3 3 3
させた。
[0534] (光機能性層 (L1)の作製)
上記組成物を用い、マイクロスライドガラス (透明基材 (L0) )上にアプリケーターを 用いて膜厚が 50 mになるように塗布し、室温で 10時間乾燥させ、光機能性層 (L1 )を形成した。得られた光機能性層 (L1)の膜厚を実施例 1と同様に測定したところ 5 5 μ mで &)つた。
[0535] (2)低屈折率層 (L2)の作製
上記(1)で得た光機能性層 (L1)上に実施例 1と同様にして、 TFE— PDD共重合 体からなる低屈折率層 (L2)を作製した。
[0536] 低屈折率層 (L2)の膜厚は 35 μ mであった。
[0537] 実施例 3 (光機能性積層体の作製)
(1)光機能性層 (L1)の作製
合成例 3で得た含フッ素アタリレート重合体に代えて、合成例 4で得た含フッ素ァク リレート重合体を用いた以外は、実施例 2と同様にして、光機能性組成物を調製し、 さらに実施例 2と同様にしてマイクロスライドガラス上に光機能性層 (L1)を作製した。 光機能性層 (L1)の膜厚は 45 μ mであった。
[0538] (2)低屈折率層 (L2)の作製
上記(1)で得た光機能性層 (L1)上に実施例 1と同様にして、 TFE— PDD共重合 体からなる低屈折率層 (L2)を作製した。
[0539] 低屈折率層 (L2)の膜厚は 43 μ mであった。
[0540] 実施例 4 (光機能性積層体の作製)
(1)光機能性層 (L1)の作製
(光機能性組成物の調製)
式 (a— 1) : [0541] [化 129]
CH2 = CFCOOCH2 (CF2CF H (a— 1)
[0542] で示される含フッ素アタリレート(8FFA)の 1.16g、式(a— 4):
[0543] [化 130]
CH2 CH2 (a- 4)
Figure imgf000113_0001
[0544] で示される二官能含フッ素アタリレート 1.83g、合成例 1で得たユーロピウム錯体 (E u(CF COCHCOCF ) )0.09g、および 2—ヒドロキシー 2—メチルプロピオフエノンの
3 3 3
0.03gを混合、溶解させた。
[0545] (光機能性層 (L1)の作製)
上記光機能性組成物をマイクロスライドガラス (透明基材 (L0) )上にアプリケーター を用いて膜厚が約 50 mになるように塗布した後、直ちに高圧水銀灯を用いて 300 mjZcm2Uの強度で紫外線を照射したところ、膜厚 60 mの均一透明被膜からなる 光機能性層 (L1)を得た。
[0546] (2)低屈折率層 (L2)の作製
上記(1)で得た光機能性層 (L1)上に実施例 1と同様にして、 TFE— PDD共重合 体からなる低屈折率層 (L2)を作製した。
[0547] 低屈折率層 (L2)の膜厚は 40 μ mであった。
[0548] 比較例 1(光機能性積層体の製造)
実施例 1において、低屈折率層(L2)を、設けな力 た点以外は、実施例 1と同様 にしてマイクロスライドガラス (透明基材 (L0) )上に光機能性層 (L1)のみを有する光 機能性積層体を得た。
[0549] 光機能性層 (L1)の膜厚は 75 μ mであった。
[0550] 比較例 2 (光機能性積層体の製造)
(1)光機能性層 (L1)の作製
合成例 3で得た含フッ素アタリレート重合体に代えて、合成例 2で得たポリメチルメタ タリレート (PMMA)を用いた以外は、実施例 2と同様にして、光機能性組成物を調 製し、さらに実施例 2と同様にして光機能性層 (L1)を作製した。光機能性層 (L1)の 膜厚は 83 mであった。
[0551] 本比較例においては、上記光機能性層 (L1)上には低屈折率層 (L2)は設けなか つた o
[0552] 比較例 3 (光機能性積層体の製造)
合成例 2で得た含フッ素アタリレートに代えて、合成例 3で得た 8FFAを用いた以外 は、実施例 2と同様にして、光機能性組成物を調製し、さらに実施例 2と同様にして 光機能性層 (L1)を作製した。光機能性層 (L1)の膜厚は 40 μ mであった。
[0553] 本比較例においては、上記光機能性層 (L1)上には低屈折率層 (L2)は設けなか つた o
[0554] 比較例 4 (光機能性積層体の製造)
合成例 3で得た含フッ素アタリレートに代えて、合成例 4で得た 2, 2, 2—トリフルォロ メチル aフルォロアタリレート(3FFA)を用いた以外は、実施例 2と同様にして光機能 性組成物を調製し、さらに実施例 2と同様にして、光機能性層 (L1)を作製した。光機 能性層 (L1)の膜厚は 50 μ mであった。
[0555] 本比較例においては、上記光機能性層 (L1)上には低屈折率層 (L2)は設けなか つた o
[0556] 比較例 5 (光機能性積層体の製造)
( 1)光機能性層 (L1)の作製
比較例 2と同様にして光機能性組成物を調製し、さらに比較例 2と同様にして、光 機能性層 (L1)を作製した。光機能性層 (L1)の膜厚は 25 μ mであった。
[0557] (2)低屈折率層 (L2)の作製
上記(1)で得た光機能性層 (L1)上に実施例 1と同様にして、 TFE— PDD共重合 体からなる低屈折率層 (L2)を作製した。
[0558] 低屈折率層 (L2)の膜厚は 49 μ mであった。
[0559] 試験例 1 (光機能性積層体における各層の物性の測定)
実施例 1一 4、および比較例 1一 5のそれぞれの光機能性積層体について各層の 物性を以下の方法で測定した。
[0560] (1)光機能性層 (L1)の屈折率の測定
実施例 1一 4、および比較例 1一 5で作製した光機能性組成物のそれぞれをアルミ 箔上に、アプリケーターを用いて、成膜後の膜厚が約 100 /z mとなるように塗布した 以外は各実施例および各比較例で記載した方法と同様にして、光機能性層 (L1)の 被膜を作製した。
[0561] アルミ箔を希塩酸で溶力したところ透明なフィルムが得られた。
[0562] アッベ屈折率計を用いて上記希土類金属化合物を含むフィルムの 550nm波長で の屈折率 (n )を測定した。
し 1
[0563] (2)低屈折率層 (L2)の屈折率の測定
実施例 1で作製した低屈折率層用組成物をアルミ箔上に、アプリケーターを用いて
、成膜後の膜厚が約 100 mとなるように塗布した以外は実施例 1に記載した方法と 同様にして、低屈折率層 (L2)の被膜を作製した。
[0564] アルミ箔を希塩酸で溶力したところ透明なフィルムが得られた。
[0565] アッベ屈折率計を用いて上記フィルムの 550nm波長での屈折率 (n )を測定した
L2
[0566] さらに、上記(1)、 (2)の結果より、光機能性層 (L1)と低屈折率層 (L2)の屈折率 差 (n -n )を算出した。
LI L2
[0567] 各試験結果を表 1に示す。
[0568] 試験例 2 (光機能性積層体の光学特性の測定)
実施例 1一 4、および比較例 1一 5で作製した光機能性積層体の光学特性、外観を 以下の方法で測定した。
[0569] (1)光機能性積層体の透過率の測定
実施例 1一 4、比較例 1一 5で得た光機能性積層体のそれぞれについて、低屈折率 層(L2)側を前記分光光度計の入射光側にセットし、 394nm、 615nmのそれぞれで の透過率を測定した。
[0570] (2)相対発光強度
前記蛍光分光光度計に実施例 1一 4、比較例 1一 5の光機能性積層体をセットし、 励起波長として一定量の 394nmの波長光を照射し、蛍光スペクトルを測定した。
[0571] 蛍光スペクトルの測定において、照射される励起光は、透明基材 (L0)側より、透明 基材 (L0)の水平面に対して 45度の角度で入射した。
[0572] 蛍光スペクトルは、透明基材 (LO)側に入射光に対して 90度の角度に設置した受 光部により測定した。
[0573] 得られた蛍光スペクトルにおいて、 615nmの発光ピーク面積に着目し、比較例 2の 光機能性積層体の 615nm発光ピーク強度を 100としたときの、各光機能性積層体 の相対的な発光ピーク面積比を算出し、相対発光強度とした。
[0574] (3)光機能性積層体の外観
実施例 1一 4、および比較例 1一 5の光機能性積層体のそれぞれについて、目視に より透明性について、次の基準で評価した。
〇:光機能膜中の希土類金属錯体の析出無く完全に透明なもの
X:希土類金属錯体の析出が観察され、濁りを生じているもの
各試験結果を表 1に示す。
[0575] [表 1]
Figure imgf000117_0001
産業上の利用可能性
本発明の光機能性積層体によれば、各種の光機能、特に発光強度、発光効率、さ らには蛍光寿命、光増幅性を向上させることができる。

Claims

請求の範囲 [1] (LO)透明基材、
(L1)基材 (LO)上に形成されてなる含フッ素ポリマー (A)および希土類金属化合物(
B)からなる光機能性層、および
(L2)層 (L1)上に形成されてなる低屈折率層
からなり、各層の屈折率を n(LO)、 n(Ll)、および n(L2)としたとき、下式: n(L0)≥n(Ll)>n(L2)
の関係を有することを特徴とする光機能性積層体。
[2] 光機能性層 (L1)における含フッ素ポリマー (A)がフッ素含有率が 30質量%以上 の非晶性ポリマーである請求の範囲第 1項記載の光機能性積層体。
[3] 光機能性層 (L1)における含フッ素ポリマー (A)力 含フッ素アクリル重合体であつ て、ガラス転移温度が 40°C以上でフッ素含有率が 50質量%以上の含フッ素アクリル 重合体である請求の範囲第 1項記載の光機能性積層体。
[4] 光機能性層 (L1)における含フッ素ポリマー (A)力 含フッ素アクリル重合体であつ て、ガラス転移温度が 100°C以上でフッ素含有率が 30質量%以上かつ 50質量%未 満の含フッ素アクリル重合体である請求の範囲第 1項記載の光機能性積層体。
[5] 光機能性層 (L1)における含フッ素ポリマー (A)が、
(al - 1):式(1):
[化 1]
CH^CX1— C— O— R1 (1)
ii
o
(式中、 X1は H、 F、 Cl、 CHまたは CF
3 3; R1はエーテル結合を有していても良い炭素 数 1一 50の一価の炭化水素基およびエーテル結合を有して 、ても良 、炭素数 1一 5 0の一価の含フッ素炭化水素基力も選ばれ、ただし、 X1、 R1の少なくとも一方にフッ素 原子を含む)から選ばれる少なくとも 1種の含フッ素アタリレート類由来の構造単位お よび
(al— 2):式 (4): [化 2]
CH2 = CX2-C-0-R2 -^) -C-CX3-CH2 }tll (4)
O O
(式中、 X2、 X3は同じかまたは異なり、 H、 F、 Cl、 CHまたは CF; nlは 1
3 3 一 6の整数;
R2は炭素数 1一 50の (nl + 1)価の有機基)から選ばれる少なくとも 1種の多官能ァク リレート類由来の構造単位力 なる含フッ素アクリル重合体である請求の範囲第 1項 または第 2項記載の光機能性積層体。
[6] 透明基材 (LO)が、ガラス系材料力もなる基材である請求の範囲第 1項一第 5項の
V、ずれかに記載の光機能性積層体。
[7] 透明基材 (LO)が、透明性榭脂からなる基材である請求の範囲第 1項一第 5項のい ずれ力に記載の光機能性積層体。
[8] 透明性榭脂がアクリル榭脂類、ポリカーボネート榭脂類、透明ポリエチレンテレフタ レート類、メチルセルロース榭脂類およびシクロォレフイン榭脂類力 選ばれる少なく とも 1種である請求の範囲第 7項記載の光機能性積層体。
[9] 透明基材 (LO)がフィルム形状である請求の範囲第 7項または第 8項記載の光機能 性積層体。
PCT/JP2005/004330 2004-04-15 2005-03-11 光機能性積層体 WO2005100011A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE200560026266 DE602005026266D1 (de) 2004-04-15 2005-03-11 Photofunktionales laminat
US11/578,054 US7378154B2 (en) 2004-04-15 2005-03-11 Photofunctional laminated article
AT05720601T ATE497879T1 (de) 2004-04-15 2005-03-11 Photofunktionales laminat
EP20050720601 EP1738897B1 (en) 2004-04-15 2005-03-11 Photofunctional laminate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004120818 2004-04-15
JP2004-120818 2004-04-15
JP2004-180916 2004-06-18
JP2004180916 2004-06-18
JP2005021193A JP4315106B2 (ja) 2004-04-15 2005-01-28 光機能性積層体
JP2005-021193 2005-01-28

Publications (1)

Publication Number Publication Date
WO2005100011A1 true WO2005100011A1 (ja) 2005-10-27

Family

ID=35149853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004330 WO2005100011A1 (ja) 2004-04-15 2005-03-11 光機能性積層体

Country Status (6)

Country Link
US (1) US7378154B2 (ja)
EP (1) EP1738897B1 (ja)
JP (1) JP4315106B2 (ja)
AT (1) ATE497879T1 (ja)
DE (1) DE602005026266D1 (ja)
WO (1) WO2005100011A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956888B2 (ja) * 2004-03-29 2012-06-20 ダイキン工業株式会社 含フッ素アクリレート系重合体を含んでなる光機能性光学材料
JP2009200348A (ja) * 2008-02-22 2009-09-03 Hitachi Chem Co Ltd 光ドーピング用材料及び光増幅媒体
CN102186900B (zh) * 2008-10-21 2013-06-05 日本瑞翁株式会社 聚合性组合物、树脂成形体及叠层体
BR112012002097A2 (pt) * 2009-07-31 2019-09-24 Du Pont composição de mescla, produto de reticulação da composição de mescla processo para produzir uma folha, folha formada pelo processo modulo de culula solar processo para a reparação de um modulo de celula solar, modulo de controle solar processo para produzir a composição de mescla, folha extrudada e folha extrudada de multiplas camadas
EP2933097B1 (en) * 2010-07-30 2021-01-20 Performance Materials NA, Inc. Crosslinkable materials for safety laminates
US8609980B2 (en) * 2010-07-30 2013-12-17 E I Du Pont De Nemours And Company Cross-linkable ionomeric encapsulants for photovoltaic cells
US8507097B2 (en) * 2010-12-21 2013-08-13 E I Du Pont De Nemours And Company Multilayer films containing a fluorinated copolymer resin layer and a cross-linkable ionomeric encapsulant layer
CN107406526A (zh) * 2014-12-30 2017-11-28 莫门蒂夫性能材料股份有限公司 官能化的硅氧烷材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190066A (ja) * 1996-12-27 1998-07-21 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いたled表示装置
JP2003017755A (ja) * 2002-06-13 2003-01-17 Nichia Chem Ind Ltd 発光装置
JP2003124530A (ja) * 1996-12-12 2003-04-25 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いたled表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556898A (en) * 1995-01-11 1996-09-17 Elf Atochem North America, Inc. Radiation-shielding polymeric compositions
JP3720578B2 (ja) * 1997-06-19 2005-11-30 富士写真フイルム株式会社 放射線増感スクリーン
JP4075804B2 (ja) * 2002-04-25 2008-04-16 ダイキン工業株式会社 希土類金属イオンと錯形成可能な官能基含有フッ素ポリマーを含んでなる含フッ素光学材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124530A (ja) * 1996-12-12 2003-04-25 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いたled表示装置
JPH10190066A (ja) * 1996-12-27 1998-07-21 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いたled表示装置
JP2003017755A (ja) * 2002-06-13 2003-01-17 Nichia Chem Ind Ltd 発光装置

Also Published As

Publication number Publication date
US20070218289A1 (en) 2007-09-20
ATE497879T1 (de) 2011-02-15
JP4315106B2 (ja) 2009-08-19
JP2006027260A (ja) 2006-02-02
EP1738897A1 (en) 2007-01-03
EP1738897B1 (en) 2011-02-09
US7378154B2 (en) 2008-05-27
DE602005026266D1 (de) 2011-03-24
EP1738897A4 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
WO2005100011A1 (ja) 光機能性積層体
JP6442539B2 (ja) 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
KR101985916B1 (ko) 광산란층용 수지 조성물, 광산란층, 및 유기 전계 발광 장치
JP2006135225A (ja) 発光装置
KR101821917B1 (ko) 액정 표시 장치 및 그 제조 방법
WO2015111531A1 (ja) 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法
JP2003081986A (ja) 希土類錯体並びにそれを用いた光機能材料及び発光装置
JP6643804B2 (ja) 希土類金属錯体及びそれを用いる発光装置
WO2005092977A1 (ja) 含フッ素アクリレート系重合体を含んでなる光機能性光学材料
EP1375598B1 (en) Optical material comprising curable fluoropolymer
JP3933180B2 (ja) 環状エーテル共重合体、コーティング用樹脂組成物、光デバイス、光デバイス製造方法
JP5169213B2 (ja) 硬化性組成物およびそれを硬化してなる光学部材
EP1498459A1 (en) Fluorinated optical material comprising fluoropolymer having functional group capable of forming complex with rare earth metal ion
JP6066977B2 (ja) 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、ならびに、カメラモジュールおよびその製造方法
JP2007031478A (ja) 重合性含フッ素化合物金属錯体、該金属錯体を含む重合性含フッ素錯体組成物および該組成物から得られる複合材料
EP1375589B1 (en) Optical material containing functional fluoropolymer
JP3885476B2 (ja) 高分子ゲルの製造方法
JP2004346233A (ja) 蛍光体含有含フッ素共重合体組成物およびその製造方法並びに蛍光体含有含フッ素共重合体成形物の製造方法
WO2006123734A1 (ja) 含フッ素ポリマー錯体を含んでなる複合材料
JP2005320356A (ja) 光機能性材料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11578054

Country of ref document: US

Ref document number: 2007218289

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005720601

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005720601

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11578054

Country of ref document: US